WO2018088121A1 - 撮像装置、撮像方法、及び、撮像プログラム - Google Patents

撮像装置、撮像方法、及び、撮像プログラム Download PDF

Info

Publication number
WO2018088121A1
WO2018088121A1 PCT/JP2017/037247 JP2017037247W WO2018088121A1 WO 2018088121 A1 WO2018088121 A1 WO 2018088121A1 JP 2017037247 W JP2017037247 W JP 2017037247W WO 2018088121 A1 WO2018088121 A1 WO 2018088121A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
output
output terminal
control
unit
Prior art date
Application number
PCT/JP2017/037247
Other languages
English (en)
French (fr)
Inventor
田中 康一
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2018550087A priority Critical patent/JP6569015B2/ja
Priority to CN201780070271.6A priority patent/CN110024373B/zh
Publication of WO2018088121A1 publication Critical patent/WO2018088121A1/ja
Priority to US16/411,711 priority patent/US10742876B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/61Control of cameras or camera modules based on recognised objects
    • H04N23/611Control of cameras or camera modules based on recognised objects where the recognised objects include parts of the human body
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/65Control of camera operation in relation to power supply
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/667Camera operation mode switching, e.g. between still and video, sport and normal or high- and low-resolution modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/675Focus control based on electronic image sensor signals comprising setting of focusing regions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/265Mixing

Definitions

  • the present invention relates to an imaging apparatus, an imaging method, and an imaging program.
  • an image sensor such as a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor
  • an electronic endoscope a digital still camera, a digital video camera, a tablet terminal
  • Demand for information equipment having an imaging function is rapidly increasing.
  • an information device having the above imaging function is referred to as an imaging device.
  • a live view image is displayed on the display unit.
  • the speed of the live view image is given priority over the resolution. For this reason, at the time of imaging for live view image display, thinning readout is performed, in which signals are read from some of all the pixels of the imaging device.
  • Japanese Patent Application Laid-Open No. 2004-228561 describes an imaging device equipped with an imaging device that can output signals of all pixels from two output terminals.
  • a signal of an arbitrary field is output from the second output terminal, and image data for live view image display is generated based on the signal of the arbitrary field, and the live view image is generated based on the image data. Is displayed.
  • Patent Document 2 a captured image signal output from an image sensor by still image capturing is temporarily stored in a memory, the captured image signal is divided in the horizontal direction, and signal processing is performed for each of the divided captured image signals.
  • An imaging device that generates captured image data is described.
  • the imaging device described in Patent Document 2 generates image data for live view image display by resizing the captured image signal stored in the memory, and displays the live view image based on the image data.
  • the imaging device described in Patent Document 1 needs to wait for the signals of all pixels to be output from the imaging element. It takes a long time to complete the generation.
  • the imaging device described in Patent Document 2 needs to wait for the signals of all pixels to be output from the imaging element, and the captured image data after the imaging is performed. It takes a long time to complete the generation.
  • the imaging device described in Patent Document 2 cannot display a post-view image or a live-view image while generating captured image data.
  • An object of the present invention is to provide an imaging apparatus, an imaging method, and an imaging program capable of quickly confirming data after imaging.
  • An image pickup apparatus includes a sensor unit including a light receiving surface in which a plurality of pixel rows including a plurality of pixels arranged in a row direction are arranged in a column direction orthogonal to the row direction, and the plurality of pixel rows.
  • a storage unit that stores the imaging signals read from all the pixels, a first output terminal that outputs the imaging signals stored in the storage unit, and a first output terminal that outputs the imaging signals stored in the storage unit
  • An image pickup device having two output terminals, an image pickup control unit that performs first image pickup control that exposes all the pixels, reads out an image pickup signal from the pixels, and stores the image pickup signal in the storage unit;
  • the plurality of pixel rows are arranged in the column direction with N being a natural number of 2 or more.
  • a first output control for outputting an imaging signal read from the pixels included in the selected pixel row from the first output terminal, the captured image signal, and the light receiving surface on the light receiving surface.
  • the image signal read from the pixels in each divided area is divided into M groups of 2 or more, and the M groups are sequentially arranged.
  • An output control unit that performs a second output control to select and output the imaging signals of the selected group from the second output terminal; and processes the imaging signals output from the first output terminal
  • a first image processing unit that generates captured image data for display, and processes the imaging signals of the group output from the second output terminal to sequentially process the divided image data corresponding to the group. Generated, in which and a second image processing unit for generating image data for storage by combining the divided image data corresponding to each of the M groups.
  • the imaging method of the present invention includes a sensor unit including a light receiving surface in which a plurality of pixel rows including a plurality of pixels arranged in a row direction are arranged in a column direction orthogonal to the row direction, and the plurality of pixel rows.
  • a storage unit that stores the imaging signals read from all the pixels, a first output terminal that outputs the imaging signals stored in the storage unit, and a first output terminal that outputs the imaging signals stored in the storage unit
  • Output control and the imaged image signal is equal to or greater than 2 consisting of M of imaged signals read from the pixels in each divided area when the light receiving surface is divided in at least one of the row direction or the column direction.
  • Second image processing for sequentially processing signals to generate divided image data corresponding to the group, and combining the divided image data corresponding to each of the M groups to generate captured image data for storage And a step.
  • An imaging program includes a sensor unit including a light receiving surface in which a plurality of pixel rows including a plurality of pixels arranged in a row direction are arranged in a column direction orthogonal to the row direction, and the plurality of pixel rows.
  • a storage unit that stores the imaging signals read from all the pixels, a first output terminal that outputs the imaging signals stored in the storage unit, and a first output terminal that outputs the imaging signals stored in the storage unit
  • First output control to be performed, and M of image pickup signals read from the pixels in each divided area when the light receiving surface is divided into at least one of the row direction or the column direction.
  • the M groups are sequentially selected, and the second output control is performed to output the imaging signals of the selected groups from the second output terminal.
  • the divided image data corresponding to each of the groups is generated by sequentially processing the image pickup signals of the group, and the divided image data corresponding to each of the M groups is synthesized to generate captured image data for storage.
  • the second image processing step is to cause a computer to execute.
  • an imaging device an imaging method, and an imaging program can be provided.
  • FIG. 1 is a diagram illustrating a schematic configuration of a digital camera 100 as an imaging apparatus according to an embodiment of the present invention. It is a schematic diagram which shows schematic structure of the image pick-up element 5 mounted in the digital camera 100 shown in FIG.
  • FIG. 3 is a schematic plan view illustrating a configuration of a sensor unit 51 of the image sensor 5 illustrated in FIG. 2. It is a figure which shows the functional block of the system control part 11 shown in FIG. 3 is a schematic diagram showing a configuration in which a light receiving surface 60 of a sensor unit 51 is equally divided into four in a row direction X.
  • FIG. It is a figure which shows the functional block of the digital signal processing part 17 of the digital camera 100 of FIG. 2 is a timing chart schematically showing the operation of the digital camera 100 shown in FIG.
  • FIG. 1 in a continuous shooting mode. It is a figure which shows the modification of the functional block of the system control part 11 of the digital camera 100 shown in FIG. It is a figure which shows an example of arrangement
  • 6 is a flowchart for explaining an operation of a modified example of the digital camera 100 shown in FIG. 1 in a continuous shooting mode. 6 is a timing chart schematically showing an operation of a modification example in the continuous shooting mode of the digital camera 100 shown in FIG. 1. It is a figure which shows schematic structure of digital camera 100A which is a modification of the digital camera 100 shown in FIG. 13 is a flowchart for explaining a transfer mode setting operation of the digital camera 100A shown in FIG.
  • 13 is a timing chart schematically showing an operation when the continuous shooting mode and the field transfer mode of the digital camera 100A shown in FIG. 12 are set. 13 is a flowchart for explaining a modification of the operation of the digital camera 100A shown in FIG. It is a schematic diagram which shows the example of a division
  • the external appearance of the smart phone 200 which is one Embodiment of the imaging device of this invention is shown. It is a block diagram which shows the structure of the smart phone 200 shown in FIG.
  • FIG. 1 is a diagram showing a schematic configuration of a digital camera 100 as an imaging apparatus according to an embodiment of the present invention.
  • a digital camera 100 shown in FIG. 1 includes a lens device 40 having an imaging lens 1, a diaphragm 2, a lens control unit 4, a lens driving unit 8, and a diaphragm driving unit 9.
  • the lens device 40 is described as being detachable from the main body of the digital camera 100, but may be integrated with the main body of the digital camera 100.
  • the imaging lens 1 and the diaphragm 2 constitute an imaging optical system, and the imaging optical system includes a focus lens.
  • This focus lens is a lens for adjusting the focus of the imaging optical system, and is composed of a single lens or a plurality of lenses. Focus adjustment is performed by moving the focus lens in the optical axis direction of the imaging optical system.
  • a liquid lens capable of changing the focal position by variably controlling the curved surface of the lens may be used.
  • the lens control unit 4 of the lens device 40 is configured to be able to communicate with the system control unit 11 of the main body of the digital camera 100 by wire or wirelessly.
  • the lens control unit 4 drives the focus lens included in the imaging lens 1 through the lens driving unit 8 or drives the diaphragm 2 through the diaphragm driving unit 9 according to a command from the system control unit 11. .
  • the main body of the digital camera 100 controls a MOS type image pickup device 5 such as a CMOS image sensor that picks up an image of an object through an image pickup optical system, a sensor drive unit 10 that drives the image pickup device 5, and the entire electric control system of the digital camera 100.
  • a display driver 22 for driving the display unit 23.
  • the system control unit 11 includes various processors, a RAM (Random Access Memory), and a ROM (Read Only Memory), and controls the entire digital camera 100 as a whole.
  • a RAM Random Access Memory
  • ROM Read Only Memory
  • the system control unit 11 realizes each function to be described later when a processor executes a program including an imaging program stored in a built-in ROM.
  • the digital signal processing unit 17 includes various processors, a RAM, and a ROM, and performs various processes when the processor executes a program including an imaging program stored in the ROM.
  • programmable logic which is a processor whose circuit configuration can be changed after manufacturing, such as a CPU (Central Processing Unit) and an FPGA (Field Programmable Gate Array), which are general-purpose processors that execute programs and perform various processes Examples include a dedicated electrical circuit that is a processor having a circuit configuration that is specifically designed to execute a specific process such as a device (Programmable Logic Device: PLD) or an ASIC (Application Specific Integrated Circuit).
  • PLD Programmable Logic Device
  • ASIC Application Specific Integrated Circuit
  • the structures of these various processors are electric circuits in which circuit elements such as semiconductor elements are combined.
  • the processor of the system control unit 11 and the processor of the digital signal processing unit 17 may each be configured by one of various processors, or a combination of two or more processors of the same type or different types (for example, a plurality of processors) A combination of FPGAs or a combination of CPU and FPGA).
  • the digital signal processing unit 17, the external memory control unit 20, and the display driver 22 are connected to each other by a control bus 24 and a data bus 25, and operate based on a command from the system control unit 11.
  • FIG. 2 is a schematic diagram showing a schematic configuration of the image sensor 5 mounted on the digital camera 100 shown in FIG.
  • the image sensor 5 includes a sensor unit 51 and a storage unit 52.
  • the sensor unit 51 images a subject with a plurality of pixels, and outputs an imaging signal read from each pixel by this imaging.
  • the sensor unit 51 is driven by the sensor driving unit 10.
  • the storage unit 52 stores the imaging signal output from the sensor unit 51.
  • the storage unit 52 stores a large number of storage elements such as capacitors or flip-flops for storing data, and stores and reads data of the multiple storage elements. And a control circuit (not shown) for controlling. This control circuit is controlled by the system control unit 11.
  • the storage unit 52 may be anything as long as it includes a rewritable storage element, and a semiconductor memory or a ferroelectric memory can be used.
  • the storage unit 52 may be, for example, SRAM (Static Random Access Memory), DRAM (Dynamic Random Access Memory), FRAM (Ferroelectric Random Access Memory) (registered trademark), or flash memory.
  • the storage unit 52 is provided with a first output terminal CH0 and a second output terminal CH1 for outputting the stored imaging signal to the data bus 25.
  • the image sensor 5 includes an interface that conforms to a standard such as SLVS (Scalable Low Voltage Signaling) (not shown).
  • the imaging signal stored in the storage unit 52 is output to the data bus 25 from the first output terminal CH0 or the second output terminal CH1 by this interface.
  • FIG. 3 is a schematic plan view showing the configuration of the sensor unit 51 of the image sensor 5 shown in FIG.
  • the sensor unit 51 includes a light receiving surface 60 in which a plurality of pixel rows 62 including a plurality of pixels 61 arranged in a row direction X that is one direction are arranged in a column direction Y orthogonal to the row direction X, and a light receiving surface 60.
  • a driving circuit 63 that drives the arranged pixels 61 and a signal processing circuit 64 that processes an imaging signal read from each pixel 61 of the pixel row 62 arranged on the light receiving surface 60 are provided.
  • the upper end of the light receiving surface 60 in the column direction Y is referred to as the upper end
  • the lower end of the light receiving surface 60 in the column direction Y is referred to as the lower end.
  • the pixel 61 receives light passing through the imaging optical system of the lens device 40, generates a charge corresponding to the amount of received light, and stores the photoelectric conversion unit, and converts the charge accumulated in the photoelectric conversion unit into a voltage signal. And a readout circuit for reading out to the signal line.
  • a known configuration can be employed for the readout circuit.
  • the readout circuit outputs, for example, a transfer transistor for transferring the charge accumulated in the photoelectric conversion unit to the floating diffusion, a reset transistor for resetting the potential of the floating diffusion, and a voltage signal corresponding to the potential of the floating diffusion. And a selection transistor for selectively reading out a voltage signal output from the output transistor to a signal line. Note that the reading circuit may be shared by a plurality of photoelectric conversion units.
  • the region of the light receiving surface 60 where the (4n + 2) th pixel row 62 from the upper end side of the light receiving surface 60 among all the pixel rows 62 arranged on the light receiving surface 60 is arranged is referred to as a field F2.
  • the region of the light receiving surface 60 where the (4n + 3) th pixel row 62 is counted from the upper end side of the light receiving surface 60 among all the pixel rows 62 arranged on the light receiving surface 60 is referred to as a field F3.
  • the region of the light receiving surface 60 where the (4n + 4) th pixel row 62 from the upper end side of the light receiving surface 60 among all the pixel rows 62 arranged on the light receiving surface 60 is referred to as a field F4.
  • the pixel 61 constituting the pixel row 62 in any one of the field F1 to the field F4 includes a phase difference detection pixel.
  • the phase difference detection pixel is a pixel for detecting a phase difference between two images based on a pair of light beams that have passed through two different portions arranged in the row direction X of the pupil region of the imaging optical system of the lens device 40.
  • the phase difference detection pixel receives the first pixel including the first photoelectric conversion unit that receives one of the pair of light beams and accumulates the charge according to the amount of received light, and the other of the pair of light beams.
  • a plurality of pairs of the first pixel and the second pixel are arranged in the field F1, and a phase difference can be calculated based on a signal read from the pair.
  • phase difference detection pixel may be configured by a pixel including both the first photoelectric conversion unit and the second photoelectric conversion unit.
  • the drive circuit 63 drives a readout circuit connected to the photoelectric conversion unit of each pixel 61 in units of pixel rows 62, and resets each photoelectric conversion unit included in the pixel row 62 for each pixel row 62. A voltage signal corresponding to the electric charge accumulated in the photoelectric conversion unit is read out to the signal line.
  • the signal processing circuit 64 performs correlated double sampling processing on the voltage signal read out from each pixel 61 of the pixel row 62 to the signal line, converts the voltage signal after the correlated double sampling processing into a digital signal, and stores it. To the unit 52.
  • the digital signal obtained by reading from the arbitrary pixel 61 to the signal line and processing by the signal processing circuit 64 becomes the imaging signal read from the arbitrary pixel 61.
  • FIG. 4 is a diagram showing functional blocks of the system control unit 11 shown in FIG.
  • the system control unit 11 functions as an imaging control unit 11A and an output control unit 11B when the processor executes a program including the imaging program.
  • the imaging control unit 11A performs still image storage imaging control (first imaging control) and live view imaging control (second imaging control).
  • the imaging control for still image storage and the imaging control for live view each expose all the pixels 61 formed on the light receiving surface 60, and according to the charges accumulated in the photoelectric conversion unit of each pixel 61 by this exposure.
  • This control is to read out the captured image signal and store it in the storage unit 52.
  • the output control unit 11B performs first output control, second output control, and third output control.
  • the first output control is the light receiving surface 60 of the sensor unit 51 among the captured image signals composed of the imaging signals read from all the pixels 61 stored in the storage unit 52 by the imaging control for still image storage. Imaging signals read from the pixels 61 included in the selected pixel row 62 when N pixel rows 62 are selected one by one in the column direction Y (N is a natural number of 2 or more). This is control to output from one output terminal CH0.
  • N 4
  • the imaging signal read from the pixel 61 in the field F1 and stored in the storage unit 52 is output from the first output terminal CH0.
  • M groups M is a natural number greater than or equal to 2
  • the M groups are sequentially selected, and the image pickup signals of the selected group are output from the second output terminal CH1.
  • the imaging control unit 11A performs imaging control for live view at least once after performing imaging control for still image storage.
  • the third output control after the output of the imaging signal by the first output control is completed, reading is performed from the pixel 61 in the field F1 in the imaging signal stored in the storage unit 52 by the imaging control for live view. This is a control for outputting the captured image signal from the first output terminal CH0.
  • FIG. 5 is a schematic diagram showing a configuration in which the light receiving surface 60 of the sensor unit 51 is equally divided into four in the row direction X.
  • FIG. 6 is a diagram showing functional blocks of the digital signal processing unit 17 of the digital camera 100 of FIG.
  • the digital signal processing unit 17 functions as a first image processing unit 17A and a second image processing unit 17B when the processor executes a program including the above imaging program.
  • the first image processing unit 17A processes the imaging signal (hereinafter also referred to as field data) output from the first output terminal CH0 by the first output control and the third output control, and displays the captured image for display. Generate data.
  • the second image processing unit 17B processes the imaging signals of each group output from the second output terminal CH1 by the second output control to generate divided image data corresponding to this group, and the M groups The divided image data corresponding to each of these is synthesized to generate captured image data for storage.
  • FIG. 7 is a timing chart schematically showing the operation of the digital camera 100 shown in FIG. 1 in the continuous shooting mode.
  • the continuous shooting mode is an imaging mode in which still image capturing for generating captured image data to be stored in the storage medium 21 is continuously performed a plurality of times.
  • the system control unit 11 performs a plurality of still image storage imaging controls in accordance with a user's imaging instruction, and between the plurality of still image storage imaging controls.
  • the live view imaging control is performed a plurality of times.
  • the horizontal axis indicates time.
  • the vertical synchronization signal VD is shown in the first stage of FIG.
  • FIG. 7 shows the drive timing of each pixel row 62 on the light receiving surface 60 of the image sensor 5.
  • the vertical axis indicates the position in the column direction Y of the pixel row 62.
  • the straight line RS indicates the timing at which the photoelectric conversion unit of the pixel 61 is reset in each pixel row 62 included in the pixel row 62.
  • a straight line RO indicates the timing at which the imaging signal is read from the photoelectric conversion unit of the pixel 61 in each pixel row 62 and stored in the storage unit 52.
  • a period P sandwiched between the straight line RS and the straight line RO indicates a period during which imaging control for storing a still image is performed. Further, a period L sandwiched between the straight line RS and the straight line RO indicates a period during which live view imaging control is performed.
  • the straight line Pf1 is an image signal (field data) read from the field F1 among the imaged image signals stored in the storage unit 52 by the image pickup control for still image storage in the period P.
  • the data is output from the first output terminal CH0.
  • the state output to the bus 25 is shown.
  • the straight line Lf1 is a state in which the imaging signal (field data) read from the field F1 stored in the storage unit 52 by the live view imaging control in the period L is output from the first output terminal CH0 to the data bus 25. Is shown.
  • the drawing state of the display unit 23 is shown next to “display image processing”.
  • the vertical axis indicates the position of the display pixel row of the display unit 23, and each straight line indicates the timing at which drawing is performed on the display pixel row of the display unit 23 based on the field data. .
  • the AF calculation process includes a process for calculating a phase difference based on an imaging signal read from a phase difference detection pixel included in field data, and a defocus amount based on the phase difference. Processing to calculate.
  • the straight line GA is a state in which the image pickup signal of the group A among the image pickup image signals stored in the storage unit 52 by the image pickup control for still image storage in the period P is output from the second output terminal CH1 to the data bus 25. Is shown.
  • the straight line GB is a state in which the image pickup signal of the group B among the image pickup image signals stored in the storage unit 52 by the image pickup control for still image storage in the period P is output from the second output terminal CH1 to the data bus 25. Is shown.
  • the straight line GC indicates a state in which the image pickup signal of the group C among the image pickup image signals stored in the storage unit 52 by the image pickup control for still image storage in the period P is output from the second output terminal CH1 to the data bus 25. Is shown.
  • the straight line GD is a state in which the image pickup signal of the group D among the image pickup image signals stored in the storage unit 52 by the image pickup control for still image storage in the period P is output from the second output terminal CH1 to the data bus 25. Is shown.
  • the system control unit 11 When an imaging instruction is given, the system control unit 11 performs imaging control for storing a still image. When storage of the imaging signal read from the pixel 61 by the imaging control starts to be stored in the storage unit 52, the system control unit 11 stores the field stored in the storage unit 52 by the imaging control for still image storage. First output control is performed to sequentially output the imaging signal read from the pixel 61 at F1 from the first output terminal CH0 to the data bus 25 (straight line Pf1 in FIG. 7).
  • the digital signal processing unit 17 processes the imaging signals sequentially output to the data bus 25 by the straight line Pf 1 to generate display image data, and transmits this to the display driver 22.
  • the display driver 22 causes the display unit 23 to display a postview image based on the received display image data.
  • the system control unit 11 calculates the phase difference based on the imaging signal read from the phase difference detection pixel included in the field data (“AF calculation” in the figure). ").
  • the system control unit 11 When the imaging control for still image storage ends, the system control unit 11 outputs the group A imaging signals among the captured image signals stored in the storage unit 52 by the imaging control for still image storage to the second output terminal. Second output control is performed to output data from CH1 to the data bus 25 (straight line GA in FIG. 7).
  • the digital signal processing unit 17 processes the imaging signal output to the data bus 25 with a straight line GA to generate divided image data ga.
  • the system control unit 11 When the output of the imaging signal from the second output terminal CH1 by the straight line GA is completed, the system control unit 11 performs the imaging of the group B among the captured image signals stored in the storage unit 52 by the imaging control for still image storage. Second output control is performed to output a signal from the second output terminal CH1 to the data bus 25 (straight line GB in FIG. 7).
  • the digital signal processing unit 17 processes the imaging signal output to the data bus 25 with the straight line GB to generate divided image data gb.
  • the system control unit 11 captures the image of the group C among the captured image signals stored in the storage unit 52 by the imaging control for still image storage.
  • Second output control is performed to output a signal from the second output terminal CH1 to the data bus 25 (straight line GC in FIG. 7).
  • the digital signal processing unit 17 processes the imaging signal output to the data bus 25 by the straight line GC to generate divided image data gc.
  • the system control unit 11 captures the image of the group D among the captured image signals stored in the storage unit 52 by the imaging control for storing the still image. Second output control is performed to output a signal from the second output terminal CH1 to the data bus 25 (straight line GD in FIG. 7).
  • the digital signal processing unit 17 processes the imaging signal output to the data bus 25 by the straight line GD to generate divided image data gd.
  • the digital signal processing unit 17 then combines the divided image data ga to gd corresponding to each of the groups A to D to generate captured image data for storage, and stores it in the storage medium 21 via the external memory control unit 20.
  • the digital signal processing unit 17 The divided image data ga to gd are preferably generated by performing signal processing on the groups A to D with the width narrower than the width in the row direction X of the groups A to D output to the data bus 25 as a signal processing range. By performing such processing, the processing efficiency can be improved.
  • the system control unit 11 performs imaging control for live view three times in the example of FIG. 7 after performing imaging control for still image storage.
  • the imaging signal read from the sensor unit 51 by each of the three imaging controls is overwritten and stored in the storage unit 52. Then, the system control unit 11 outputs the imaging signal read from the pixel 61 in the field F1 stored in the storage unit 52 by the live view imaging control to the data bus 25 from the first output terminal CH0. Three output controls are performed (straight line Lf1 in FIG. 7).
  • the digital signal processing unit 17 processes the imaging signal output to the data bus 25 by the straight line Lf 1 to generate display image data, and transmits this to the display driver 22.
  • the display driver 22 causes the display unit 23 to display a live view image based on the received display image data.
  • the system control unit 11 When the output of the field data by the straight line Lf1 is completed, the system control unit 11 performs AF calculation processing for calculating the phase difference based on the imaging signal read from the phase difference detection pixel included in the field data.
  • the system control unit 11 for example, the second falling timing of the vertical synchronizing signal VD in FIG. 7, the third falling timing of the vertical synchronizing signal VD in FIG. 7, and the vertical synchronizing signal VD in FIG.
  • a defocus amount is calculated based on the phase difference calculated at the fourth falling timing, and the focus lens is driven based on the defocus amount to perform focusing control.
  • the system control unit 11 may perform focus control by driving the focus lens based on the phase difference every time the phase difference is calculated.
  • the system control unit 11 After the third live view imaging control is performed, the system control unit 11 performs still image storage imaging control for the second still image imaging. The above processing is repeated according to the number of continuous shots.
  • the imaging signal read from the pixel in the field F1 is the first. Since it is transferred from one output terminal CH0 to the digital signal processing unit 17, it is possible to display a postview image at high speed.
  • the imaging signal output from the first output terminal CH0 includes the imaging signal read from the phase difference detection pixel
  • focusing control can be performed based on this imaging signal, and the subject is tracked.
  • the in-focus control can be performed.
  • the captured image signal stored in the storage unit 52 by the imaging control for storing the still image is transferred from the second output terminal CH1 to the digital signal processing unit 17 in units of groups.
  • the digital signal processing unit 17 can start generating image data without waiting for all the captured image signals to be prepared. Therefore, it is possible to reduce the time from the start of the imaging control for storing the still image to the completion of the generation of the captured image data.
  • the digital camera 100 performs live view imaging control between still image storage imaging control and the next still image storage imaging control.
  • this live view imaging control is not essential. Absent. By performing imaging control for live view, it is possible to confirm in detail the state of the subject being imaged.
  • the imaging control for live view is omitted, the storage capacity of the storage unit 52 can be reduced, and the manufacturing cost of the digital camera 100 can be reduced.
  • the digital camera 100 by setting the number of fields “N” set on the light receiving surface 60 and the number of groups “M” set by the output control unit 11B to the same value, one vertical synchronization period
  • the number of imaging signals output from the first output terminal CH0 can be made equal to the number of imaging signals output from the second output terminal CH1.
  • the transfer rate of the imaging signal from the imaging device 5 to the data bus 25 can be made common, and driving and signal processing can be simplified.
  • FIG. 8 is a diagram showing a modification of the functional block of the system control unit 11 of the digital camera 100 shown in FIG.
  • the system control unit 11 shown in FIG. 8 has the same configuration as that of FIG. 6 except that an attention area determination unit 11C and a priority setting unit 11D are added.
  • the attention area determination unit 11C determines the attention area of the subject being imaged based on the field data output from the first output terminal CH0 by the first output control.
  • the attention area determination unit 11C performs, for example, a process of detecting a face area from the field data using a known face detection technique, and determines the detected face area as an attention area (ROI: Region of Interest).
  • ROI Region of Interest
  • the priority setting unit 11D sets the priority for each group when the captured image signal stored in the storage unit 52 is divided into M groups by the imaging control for still image storage.
  • the priority setting unit 11D includes, among the M groups, groups including imaging signals read from the pixels 61 in the divided area corresponding to the attention area determined by the attention area determination unit 11C. A priority higher than the priority threshold is set, and a priority lower than the priority threshold is set for the other groups.
  • the image based on the field data and the light receiving surface 60 correspond to each other, and if the position of the attention area in this image is known, the position on the light receiving surface 60 corresponding to the attention area can also be known.
  • the middle two divided areas of the four divided areas become the divided areas corresponding to the region of interest.
  • FIG. 10 is a flowchart for explaining the operation of the modified example when the digital camera 100 shown in FIG. 1 is in the continuous shooting mode.
  • FIG. 11 is a timing chart schematically showing the operation of the modified example when the digital camera 100 shown in FIG. 1 is in the continuous shooting mode. In FIG. 11, the same components as those in FIG.
  • the system control unit 11 When the continuous shooting mode is set and an imaging instruction is issued, the system control unit 11 performs imaging control for storing a still image.
  • the system control unit 11 stores the field stored in the storage unit 52 by the imaging control for still image storage.
  • the imaging signal read from the pixel 61 at F1 is output from the first output terminal CH0 to the data bus 25 (straight line Pf1 in FIG. 11).
  • the system control unit 11 When the output of the field data is completed on the straight line Pf1 in FIG. 11, the system control unit 11 performs face detection based on the known face detection technique from the field data (step S1).
  • the system control unit 11 sets the area including the face as the attention area of the subject from the face detection result in step S1, and determines the divided area corresponding to the attention area (step S2).
  • the system control unit 11 divides the captured image signals stored in the storage unit 52 by the imaging control for still image storage into four groups, and is read out from the pixels 61 in the divided area determined in step S2.
  • a priority level equal to or higher than the priority threshold is set for the group including the captured image signal, and a priority level lower than the priority threshold is set for the other groups (step S3).
  • the priority of group B and group C is set to be equal to or higher than the priority threshold, and the priority of group A and group D is set to be lower than the priority threshold.
  • step S3 the system control unit 11 starts the second output control according to the priority set in step S3 (step S4).
  • the system control unit 11 outputs the group B imaging signals among the captured image signals stored in the storage unit 52 by the imaging control for still image storage to the second output terminal. Output from CH1 to the data bus 25 (straight line GB).
  • the digital signal processing unit 17 generates divided image data gb based on the imaging signal output by the straight line GB.
  • the system control unit 11 captures the image of the group C among the captured image signals stored in the storage unit 52 by the imaging control for still image storage.
  • a signal is output from the second output terminal CH1 to the data bus 25 (straight line GC).
  • the digital signal processing unit 17 processes the imaging signal output to the data bus 25 by the straight line GC to generate divided image data gc.
  • the digital signal processing unit 17 When the digital signal processing unit 17 generates the divided image data gb and the divided image data gc, the digital signal processing unit 17 analyzes the face area included in these.
  • the analysis result here is used for, for example, processing of captured image data (for example, correction for brightening the face) or classification of captured image data (classification by a person determined from the face).
  • the system control unit 11 captures the image of the group A among the captured image signals stored in the storage unit 52 by the imaging control for still image storage.
  • a signal is output from the second output terminal CH1 to the data bus 25 (straight line GA).
  • the digital signal processing unit 17 processes the imaging signal output to the data bus 25 with a straight line GA to generate divided image data ga.
  • the system control unit 11 captures the image of the group D among the captured image signals stored in the storage unit 52 by the imaging control for storing the still image.
  • a signal is output from the second output terminal CH1 to the data bus 25 (straight line GD).
  • the digital signal processing unit 17 processes the imaging signal output to the data bus 25 by the straight line GD to generate divided image data gd.
  • the digital signal processing unit 17 then combines the divided image data ga to gd corresponding to each of the groups A to D to generate captured image data for storage, and stores it in the storage medium 21 via the external memory control unit 20.
  • imaging for still image storage is performed based on the field data output from the first output terminal CH ⁇ b> 0 by the first output control.
  • a group including a region of interest can be preferentially output from the second output terminal CH1.
  • the attention area determination unit 11C performs the process of detecting the face area from the field data and determines the face area as the attention area.
  • the present invention is not limited to this.
  • a process of detecting a moving body region included in the subject being imaged is performed.
  • the moving body region may be determined as the attention region.
  • the group including the moving object can be preferentially output from the second output terminal CH1
  • the detailed analysis of the moving object can be started quickly, and the subsequent processing using the analysis result Can be performed efficiently.
  • the priority setting unit 11D is in a divided area that overlaps the in-focus area selected by the user from among a plurality of in-focus areas set to be focused on the light receiving surface 60 among the M groups.
  • a priority level equal to or higher than the priority threshold value may be set for the group of imaging signals read from the pixels 61, and a priority level lower than the priority threshold value may be set for the other groups.
  • FIG. 12 is a diagram showing a schematic configuration of a digital camera 100A which is a modification of the digital camera 100 shown in FIG.
  • the digital camera 100A shown in FIG. 12 has the same configuration as the digital camera 100 shown in FIG. 1 except that a temperature sensor 70 and a battery capacity sensor 71 are added.
  • the temperature sensor 70 detects the temperature inside the digital camera 100A. The detected temperature information is input to the system control unit 11.
  • the battery capacity sensor 71 detects the capacity of the battery mounted on the digital camera 100A.
  • the detected battery information is input to the system control unit 11.
  • the imaging control unit 11A of the system control unit 11 is based on the battery information acquired from the battery capacity sensor 71 when the temperature inside the digital camera 100A based on the temperature information acquired from the temperature sensor 70 is equal to or higher than the temperature threshold.
  • the transfer mode for transferring the imaging signal from the second output terminal CH1 to the data bus 25 is set to the field transfer mode.
  • the imaging control unit 11A transfers from the second output terminal CH1 to the data bus 25.
  • the transfer mode for transferring the image signal is set to the group transfer mode.
  • the second output control is stopped and output from the first output terminal CH0 by the first output control of the captured image signals stored in the storage unit 52 by the imaging control for still image storage.
  • image signals other than the image signal to be output are output from the second output terminal CH1 in field units.
  • the group transfer mode is a mode in which the second output control described above is performed, and the captured image signal stored in the storage unit 52 is output from the second output terminal CH1 in units of groups by the imaging control for still image storage. It is.
  • FIG. 13 is a flowchart for explaining the transfer mode setting operation of the digital camera 100A shown in FIG.
  • the system control unit 11 determines whether or not the temperature inside the digital camera 100A is equal to or higher than the temperature threshold from the temperature information acquired from the temperature sensor 70 immediately before starting the imaging control for storing the still image (Step S11). .
  • step S11 determines whether or not the remaining battery capacity is equal to or less than the remaining capacity threshold from the battery information acquired from the battery capacity sensor 71. Determination is made (step S12).
  • step S12 determines that the remaining battery capacity exceeds the remaining amount threshold (step S12: NO)
  • the system control unit 11 sets the transfer mode to the group transfer mode (step S13). Since the operation in the group transfer mode has been described with reference to the timing chart of FIG.
  • the system control unit 11 determines that the temperature inside the digital camera 100A is equal to or higher than the temperature threshold (step S11: YES), or determines that the remaining battery capacity is equal to or less than the remaining threshold (step S12: YES). ), The transfer mode is set to the field transfer mode (step S14).
  • FIG. 14 is a timing chart schematically showing an operation when the digital camera 100A shown in FIG. 12 is set to the continuous shooting mode and the field transfer mode.
  • the timing chart shown in FIG. 14 is the same as the timing chart shown in FIG. 7 except that the states of “imaging device output CH1” and “stored image processing” are different.
  • the system control unit 11 When an imaging instruction is given, the system control unit 11 performs imaging control for storing a still image. When storage of the imaging signal read from the pixel 61 by the imaging control starts to be stored in the storage unit 52, the system control unit 11 stores the field stored in the storage unit 52 by the imaging control for still image storage. First output control is performed to output the imaging signal read from the pixel 61 at F1 from the first output terminal CH0 to the data bus 25 (straight line Pf1 in FIG. 14).
  • the system control unit 11 When a little has elapsed since the start of the field data output by the straight line Pf1, the system control unit 11 reads the imaging signal read from the pixel 61 in the field F2 stored in the storage unit 52 by the imaging control for still image storage. Is output from the second output terminal CH1 to the data bus 25 (straight line Pf2 in FIG. 14).
  • the system control unit 11 When the output of the imaging signal by the straight line Pf2 ends, the system control unit 11 outputs the imaging signal read from the pixel 61 in the field F3 stored in the storage unit 52 by the imaging control for still image storage to the second output.
  • the data is output from the terminal CH1 to the data bus 25 (straight line Pf3 in FIG. 14).
  • the system control unit 11 When the output of the imaging signal by the straight line Pf3 ends, the system control unit 11 outputs the imaging signal read from the pixel 61 in the field F4 stored in the storage unit 52 by the imaging control for storing the still image to the second output.
  • the data is output from the terminal CH1 to the data bus 25 (straight line Pf4 in FIG. 14).
  • the digital signal processing unit 17 processes the imaging signals output from each of the straight line Pf1, the straight line Pf2, the straight line Pf3, and the straight line Pf4 to generate captured image data for storage, and the external memory control unit 20 To the storage medium 21.
  • the operation shown in FIG. 7 and the operation shown in FIG. 14 can be switched based on the internal temperature and the remaining battery level.
  • the number of imaging signals output from the imaging device 5 can be reduced as compared with the operation shown in FIG. 7. For this reason, the power consumption required for signal transfer from the image sensor 5 can be reduced, and the heat generation can be suppressed or the operation time can be extended.
  • the system control unit 11 sets the output speed of the imaging signal from the second output terminal CH1 to be lower than the output speed of the imaging signal from the first output terminal CH0 by the first output control. It is preferable to make it.
  • the system control unit 11 switches between the group transfer mode and the field transfer mode based on the internal temperature and the battery remaining amount.
  • the transfer mode is not dependent on the internal temperature and the battery remaining amount.
  • the group transfer mode may be fixed, and the output speed of the imaging signal from the second output terminal CH1 when performing the second output control may be changed based on the internal temperature and the remaining battery level.
  • FIG. 15 is a flowchart for explaining a modified example of the operation of the digital camera 100A shown in FIG. In FIG. 15, the same processes as those shown in FIG.
  • step S12 determines that the remaining battery capacity exceeds the remaining amount threshold (step S12: NO)
  • the output speed of the imaging signal from the second output terminal CH1 when performing the second output control. Is set to the first value (high speed) (step S21).
  • the system control unit 11 determines that the temperature inside the digital camera 100A is equal to or higher than the temperature threshold (step S11: NO), or determines that the remaining battery capacity is equal to or less than the remaining amount threshold (step S12: NO). ), The output speed of the imaging signal from the second output terminal CH1 when performing the second output control is set to a second value (low speed) smaller than the first value (step S22).
  • step S11 or step S12 may be omitted. Even in this case, the effect of reducing heat generation and power consumption can be obtained.
  • the system control unit 11 divides the captured image signals stored in the storage unit 52 into groups by dividing the captured image signals in the row direction X.
  • the method of dividing the captured image signals is not limited to this. .
  • 16 and 17 are schematic views showing an example in which the light receiving surface 60 of the sensor unit 51 is divided into a plurality of parts.
  • FIG. 16 shows a configuration in the case where the light receiving surface 60 of the sensor unit 51 is equally divided into four in the column direction Y.
  • a group of imaging signals read from the pixels 61 in the first divided area counted from the upper end is set as the above group A, and the second divided area counted from the upper end is formed.
  • a group consisting of imaging signals read from a certain pixel 61 is referred to as group B described above.
  • group C the group consisting of the imaging signals read from the pixels 61 in the third divided area counted from the upper end
  • the imaging read from the pixels 61 in the fourth divided area counted from the upper end A group of signals is referred to as group D described above.
  • FIG. 17 shows a configuration in which the light receiving surface 60 of the sensor unit 51 is equally divided into two in the row direction X and further divided into two in the column direction Y.
  • a group consisting of imaging signals read from the pixels 61 in the upper left division area is the group A and a group consisting of imaging signals read from the pixels 61 in the upper right division area. Is the above-mentioned group B.
  • a group composed of image pickup signals read from the pixels 61 in the lower left divided area is referred to as the above group C
  • a group composed of image pickup signals read from the pixels 61 in the lower right divided area is referred to as the above group D.
  • the width of each group in the row direction X can be reduced. For this reason, the line memory capacity used by the digital signal processing unit 17 for generating image data can be reduced, and the manufacturing cost of the digital camera can be reduced.
  • a digital camera has been taken as an example of the imaging device, but an embodiment of a smartphone with a camera as the imaging device will be described below.
  • FIG. 18 shows an appearance of a smartphone 200 that is an embodiment of the photographing apparatus of the present invention.
  • a smartphone 200 illustrated in FIG. 18 includes a flat housing 201, and a display input in which a display panel 202 as a display unit and an operation panel 203 as an input unit are integrated on one surface of the housing 201. Part 204 is provided.
  • Such a casing 201 includes a speaker 205, a microphone 206, an operation unit 207, and a camera unit 208.
  • the configuration of the housing 201 is not limited to this, and for example, a configuration in which the display unit and the input unit are independent can be employed, or a configuration having a folding structure or a slide mechanism can be employed.
  • FIG. 19 is a block diagram showing a configuration of the smartphone 200 shown in FIG.
  • the main components of the smartphone include a wireless communication unit 210, a display input unit 204, a call unit 211, an operation unit 207, a camera unit 208, a storage unit 212, and an external input / output unit. 213, a GPS (Global Positioning System) receiving unit 214, a motion sensor unit 215, a power supply unit 216, and a main control unit 220.
  • a wireless communication function for performing mobile wireless communication via a base station device BS (not shown) and a mobile communication network NW (not shown) is provided.
  • the wireless communication unit 210 performs wireless communication with the base station apparatus BS accommodated in the mobile communication network NW according to an instruction from the main control unit 220. Using this wireless communication, transmission / reception of various file data such as audio data and image data, e-mail data, etc., or reception of Web data or streaming data is performed.
  • the display input unit 204 displays images (still images and moving images), character information, and the like by visually controlling the display by the control of the main control unit 220 and detects user operations on the displayed information.
  • a so-called touch panel which includes a display panel 202 and an operation panel 203.
  • the display panel 202 uses an LCD (Liquid Crystal Display), an OELD (Organic Electro-Luminescence Display), or the like as a display device.
  • LCD Liquid Crystal Display
  • OELD Organic Electro-Luminescence Display
  • the operation panel 203 is a device that is placed so that an image displayed on the display surface of the display panel 202 is visible and detects one or more coordinates operated by a user's finger or stylus.
  • a detection signal generated due to the operation is output to the main control unit 220.
  • the main control unit 220 detects an operation position (coordinates) on the display panel 202 based on the received detection signal.
  • the display panel 202 and the operation panel 203 of the smartphone 200 exemplified as an embodiment of the photographing apparatus of the present invention integrally constitute a display input unit 204.
  • the arrangement 203 covers the display panel 202 completely.
  • the operation panel 203 may have a function of detecting a user operation even in an area outside the display panel 202.
  • the operation panel 203 includes a detection area (hereinafter referred to as a display area) for an overlapping portion that overlaps the display panel 202 and a detection area (hereinafter, a non-display area) for an outer edge portion that does not overlap the other display panel 202. May be included).
  • the size of the display area and the size of the display panel 202 may be completely matched, it is not always necessary to match the two.
  • the operation panel 203 may include two sensitive areas of the outer edge portion and the other inner portion.
  • the width of the outer edge portion is appropriately designed according to the size of the housing 201 and the like.
  • examples of the position detection method employed in the operation panel 203 include a matrix switch method, a resistance film method, a surface acoustic wave method, an infrared method, an electromagnetic induction method, and a capacitance method. Can also be adopted.
  • the calling unit 211 includes a speaker 205 or a microphone 206, converts user's voice input through the microphone 206 into voice data that can be processed by the main control unit 220, and outputs the voice data to the main control unit 220. 210 or the audio data received by the external input / output unit 213 is decoded and output from the speaker 205.
  • the speaker 205 can be mounted on the same surface as the surface on which the display input unit 204 is provided, and the microphone 206 can be mounted on the side surface of the housing 201.
  • the operation unit 207 is a hardware key using a key switch or the like, and receives an instruction from the user.
  • the operation unit 207 is mounted on the side surface of the housing 201 of the smartphone 200 and is turned on when pressed with a finger or the like, and turned off by a restoring force such as a spring when the finger is released. It is a push button type switch.
  • the storage unit 212 is a control program or control data of the main control unit 220, application software, address data that associates the name or telephone number of a communication partner, transmitted / received e-mail data, Web data downloaded by Web browsing, or The downloaded content data is stored, and streaming data and the like are temporarily stored.
  • the storage unit 212 includes an internal storage unit 217 built in the smartphone and an external storage unit 218 having a removable external memory slot.
  • Each of the internal storage unit 217 and the external storage unit 218 constituting the storage unit 212 includes a flash memory type (hard memory type), a hard disk type (hard disk type), a multimedia card micro type (multimedia card micro type), This is realized using a storage medium such as a card type memory (for example, MicroSD (registered trademark) memory), a RAM (Random Access Memory), a ROM (Read Only Memory), or the like.
  • a flash memory type hard memory type
  • hard disk type hard disk type
  • multimedia card micro type multimedia card micro type
  • a storage medium such as a card type memory (for example, MicroSD (registered trademark) memory), a RAM (Random Access Memory), a ROM (Read Only Memory), or the like.
  • the external input / output unit 213 serves as an interface with all external devices connected to the smartphone 200, and communicates with other external devices (for example, universal serial bus (USB), IEEE 1394, etc.) or a network.
  • external devices for example, universal serial bus (USB), IEEE 1394, etc.
  • a network for example, Internet, wireless LAN, Bluetooth (registered trademark), RFID (Radio Frequency Identification), Infrared Data Association (IrDA) (registered trademark), UWB (Ultra Wideband) (registered trademark) ZigBee) (registered trademark) or the like
  • IrDA Infrared Data Association
  • UWB Ultra Wideband
  • ZigBee ZigBee
  • a wired / wireless headset for example, a wired / wireless headset, a wired / wireless external charger, a wired / wireless data port, a memory card (Memory card) connected via a card socket, or a SIM (Subscriber) Identity Module Card / UIM (User Identity Module) Card) card, external audio / video device connected via audio / video I / O (Input / Output) terminal, external audio / video device connected wirelessly, smartphone connected / wired, wired / wireless connection Personal computers connected, wired / wireless connected PDAs, wired / wireless connected personal computers, earphones, and the like.
  • a wired / wireless headset for example, a wired / wireless headset, a wired / wireless external charger, a wired / wireless data port, a memory card (Memory card) connected via a card socket, or a SIM (Subscriber) Identity Module Card / UIM (User Identity Module) Card) card, external
  • the external input / output unit 213 transmits data received from such an external device to each component inside the smartphone 200 or transmits data inside the smartphone 200 to the external device.
  • the GPS receiving unit 214 receives GPS signals transmitted from the GPS satellites ST1 to STn in accordance with instructions from the main control unit 220, executes a positioning calculation process based on the received plurality of GPS signals, A position consisting of longitude and altitude is detected.
  • the GPS receiving unit 214 can acquire position information from the wireless communication unit 210 or the external input / output unit 213 (for example, a wireless LAN), the GPS receiving unit 214 can also detect the position using the position information.
  • the motion sensor unit 215 includes, for example, a triaxial acceleration sensor, and detects the physical movement of the smartphone 200 in accordance with an instruction from the main control unit 220. By detecting the physical movement of the smartphone 200, the moving direction or acceleration of the smartphone 200 is detected. The detection result is output to the main control unit 220.
  • the power supply unit 216 supplies power stored in a battery (not shown) to each unit of the smartphone 200 in accordance with an instruction from the main control unit 220.
  • the main control unit 220 includes a microprocessor, operates according to a control program or control data stored in the storage unit 212, and controls each unit of the smartphone 200 in an integrated manner.
  • the main control unit 220 includes a mobile communication control function for controlling each unit of the communication system and an application processing function in order to perform voice communication or data communication through the wireless communication unit 210.
  • the application processing function is realized by the main control unit 220 operating according to the application software stored in the storage unit 212.
  • the application processing function includes, for example, an infrared communication function for controlling the external input / output unit 213 to perform data communication with the opposite device, an e-mail function for sending and receiving e-mails, or a web browsing function for browsing web pages. is there.
  • the main control unit 220 also has an image processing function such as displaying video on the display input unit 204 based on received data or downloaded image data such as streaming data (still image or moving image data).
  • the image processing function refers to a function in which the main control unit 220 decodes the image data, performs image processing on the decoding result, and displays an image on the display input unit 204.
  • the main control unit 220 executes display control for the display panel 202 and operation detection control for detecting a user operation through the operation unit 207 and the operation panel 203. By executing the display control, the main control unit 220 displays an icon for starting application software, a software key such as a scroll bar, or a window for creating an e-mail.
  • scroll bar refers to a software key for accepting an instruction to move the display portion of a large image that does not fit in the display area of the display panel 202.
  • the main control unit 220 detects a user operation through the operation unit 207, or accepts an operation on the icon or an input of a character string in the input field of the window through the operation panel 203. Or a display image scroll request through a scroll bar.
  • the main control unit 220 causes the operation position with respect to the operation panel 203 to overlap with the display panel 202 (display area) or other outer edge part (non-display area) that does not overlap with the display panel 202.
  • a touch panel control function for controlling the sensitive area of the operation panel 203 or the display position of the software key.
  • the main control unit 220 can also detect a gesture operation on the operation panel 203 and execute a preset function in accordance with the detected gesture operation.
  • Gesture operation is not a conventional simple touch operation, but an operation of drawing a trajectory with at least one of a plurality of positions by drawing a trajectory with a finger or the like, or simultaneously specifying a plurality of positions. means.
  • the camera unit 208 includes configurations other than the external memory control unit 20, the storage medium 21, and the operation unit 14 in the digital camera shown in FIGS.
  • the display driver 22 of the camera unit 208 drives the display panel 202 instead of the display unit 23.
  • the captured image data generated by the camera unit 208 can be stored in the storage unit 212 or output through the external input / output unit 213 or the wireless communication unit 210.
  • the camera unit 208 is mounted on the same surface as the display input unit 204, but the mounting position of the camera unit 208 is not limited thereto, and may be mounted on the back surface of the display input unit 204. .
  • the camera unit 208 can be used for various functions of the smartphone 200.
  • an image acquired by the camera unit 208 can be displayed on the display panel 202.
  • An image of the camera unit 208 can be used as one of operation inputs on the operation panel 203.
  • the position can also be detected with reference to an image from the camera unit 208.
  • the optical axis direction of the camera unit 208 of the smartphone 200 can be determined without using the triaxial acceleration sensor or in combination with the triaxial acceleration sensor. The current usage environment can also be judged.
  • the image from the camera unit 208 can also be used in the application software.
  • the posture information acquired by the motion sensor unit 215 can be added and stored in the storage unit 212, or can be output through the external input / output unit 213 or the wireless communication unit 210.
  • the imaging device 5 is a MOS type, but the same effect can be obtained even if the imaging device 5 is a CCD type.
  • a sensor unit including a light receiving surface in which a plurality of pixel rows composed of a plurality of pixels arranged in a row direction are arranged in a column direction perpendicular to the row direction, and all the above-described ones included in the plurality of pixel rows
  • a storage unit that stores an imaging signal read from the pixel, a first output terminal that outputs the imaging signal stored in the storage unit, and a second output terminal that outputs the imaging signal stored in the storage unit
  • an imaging control unit that performs a first imaging control that exposes a plurality of the pixels, reads an imaging signal from the pixels, and stores the imaging signal in the storage unit, and the first imaging control Of the captured image signals composed of the imaging signals read from the plurality of pixels stored in the storage unit,
  • N is a natural number of 2 or more, and the plurality of pixel rows are set to 1 in the column direction.
  • a first output control for outputting an imaging signal read from the pixels included in the pixel row to be output from the first output terminal; and the captured image signal, the light receiving surface in the row direction or the column.
  • the image signal read from the pixels in each divided area is divided into M groups each having an M of 2 or more, and the M groups are sequentially selected and selected.
  • An output control unit that performs second output control for outputting the imaging signals of the group from the second output terminal; and processing the imaging signals output from the first output terminal for display.
  • a first image processing unit for generating captured image data; and processing the imaging signals of the group output from the second output terminal to sequentially generate divided image data corresponding to the group;
  • An imaging device and a second image processing unit for generating image data for storage by combining the divided image data corresponding to each group.
  • the imaging apparatus further including a priority setting unit that sets a priority for each of the M groups, wherein the output control unit has a priority equal to or higher than a priority threshold value.
  • the imaging apparatus which outputs the said group from said 2nd output terminal before the said group from which the said priority becomes less than the said priority threshold value.
  • the imaging apparatus further including an attention area determination unit that determines an attention area of a subject being imaged based on the imaging signal output from the first output terminal,
  • the priority setting unit sets the priority equal to or higher than the priority threshold to the group read from the pixels of the divided area corresponding to the attention area among the M groups.
  • An image pickup apparatus that sets the priority lower than the priority threshold for a group.
  • the attention area determination unit performs a process of detecting a face area from the imaging signal output from the first output terminal, and detects the face area as the attention area.
  • An imaging device that is determined as a region.
  • the imaging apparatus wherein the imaging control unit exposes the plurality of pixels after the first imaging control, reads an imaging signal from the pixels, and stores the imaging signals in the storage unit.
  • the second imaging control is performed at least once, and the output control unit is stored in the storage unit by the second imaging control after the output of the imaging signal by the first output control is completed.
  • Third output control for outputting the imaging signal from the first output terminal is further performed, and the attention area determination unit is based on the plurality of imaging signals continuously output from the first output terminal.
  • An imaging apparatus that performs processing for detecting a moving body region included in the subject and determines the moving body region as the attention region.
  • the priority setting unit includes a plurality of focusing areas that are targets to be focused on the light receiving surface among the M groups.
  • the priority read from the pixels in the divided area that overlaps the selected focus area is set to the priority that is equal to or higher than the priority threshold, and the priority that is lower than the priority threshold is set to the other groups.
  • An imaging device that sets the degree.
  • the output control unit is configured to perform imaging when the internal temperature of the imaging apparatus is equal to or higher than a temperature threshold.
  • the second output control is stopped and output from the first output terminal by the first output control of the captured image signal.
  • An imaging apparatus that outputs an imaging signal excluding the imaging signal to be output from the second output terminal.
  • the output control unit is configured to detect a battery remaining in the imaging apparatus when the internal temperature of the imaging apparatus is equal to or higher than a temperature threshold.
  • the output speed of the group to be output from the second output terminal in the second output control is determined when the internal temperature is less than the temperature threshold or the remaining battery power.
  • a sensor unit including a light receiving surface in which a plurality of pixel rows composed of a plurality of pixels arranged in a row direction are arranged in a column direction orthogonal to the row direction, and all the above-described ones included in the plurality of pixel rows
  • a storage unit that stores an imaging signal read from the pixel, a first output terminal that outputs the imaging signal stored in the storage unit, and a second output terminal that outputs the imaging signal stored in the storage unit
  • the priority setting step sets the priority equal to or higher than the priority threshold to the group read from the pixels in the divided area corresponding to the attention area among the M groups,
  • the imaging control step after the first imaging control, the plurality of pixels are exposed, and imaging signals are read from the pixels and stored in the storage unit.
  • the second imaging control is performed at least once, and the output control step is stored in the storage unit by the second imaging control after the output of the imaging signal by the first output control is completed.
  • Third output control for outputting the imaging signal from the first output terminal is further performed, and the region of interest determination step is based on the plurality of imaging signals continuously output from the first output terminal.
  • the priority read from the pixels in the divided area that overlaps the selected focus area is set to the priority that is equal to or higher than the priority threshold, and the priority that is lower than the priority threshold is set to the other groups.
  • a sensor unit including a light receiving surface in which a plurality of pixel rows composed of a plurality of pixels arranged in a row direction are arranged in a column direction orthogonal to the row direction, and all the above-described ones included in the plurality of pixel rows
  • a storage unit that stores an imaging signal read from the pixel, a first output terminal that outputs the imaging signal stored in the storage unit, and a second output terminal that outputs the imaging signal stored in the storage unit
  • An imaging program that images a subject using an imaging device that exposes the plurality of pixels, reads an imaging signal from the pixels, and stores the imaging signal in the storage unit.
  • N is a natural number of 2 or more
  • the plurality Picture First output control for outputting an imaging signal read from the pixel included in the selected pixel row from the first output terminal when a row is selected one by one in the column direction.
  • M which is made up of the image signals read from the pixels in each divided area when the light receiving surface is divided into at least one of the row direction or the column direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Studio Devices (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

記憶用の撮像が行われてから記憶用の撮像画像データの生成が完了するまでの時間を短縮し、かつ、この記憶用の撮像画像データの確認を撮像後に素早く行うことのできる撮像装置、撮像方法、撮像プログラムを提供する。デジタルカメラは、画素行62が複数配列された受光面60を含むセンサ部51と、センサ部51から出力される信号を記憶する記憶部52とを有する撮像素子5によって撮像を行う。記憶部52に記憶された撮像画像信号のうちのフィールドF1から読み出された撮像信号が、第一の出力端子CH0から出力される。この撮像画像信号のうちの受光面60を水平分割した各分割エリアから読み出された撮像信号のグループが第二の出力端子CH1から順次出力される。

Description

撮像装置、撮像方法、及び、撮像プログラム
 本発明は、撮像装置、撮像方法、及び、撮像プログラムに関する。
 近年、CCD(Charge Coupled Device)イメージセンサ、又は、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等の撮像素子の高解像度化に伴い、電子内視鏡、デジタルスチルカメラ、デジタルビデオカメラ、タブレット型端末、パーソナルコンピュータ、又は、スマートフォンに代表されるカメラ付きの携帯電話機等の撮像機能を有する情報機器の需要が急増している。なお、以上のような撮像機能を有する情報機器を撮像装置と称する。
 これら撮像装置は、撮像モードに設定されると、表示部においてライブビュー画像を表示することが行われる。ライブビュー画像の表示は解像度よりも速度が優先される。このため、ライブビュー画像表示用の撮像時には、撮像素子の全画素のうちの一部から信号を読み出す、間引き読み出しが行われる。
 一方、記憶用の静止画撮像時には、撮像素子の全画素から信号を読み出した後、読み出した信号を処理して、撮像画像データを生成することが行われる(特許文献1,2参照)。
 特許文献1には、全画素の信号を2つの出力端子から出力可能な撮像素子を搭載する撮像装置が記載されている。
 特許文献1に記載の撮像装置は、全画素がフィールド分割されており、第一の出力端子からは各フィールドの信号が順次出力され、この出力された全フィールドの信号に基づいて撮像画像データが生成される。
 また、第二の出力端子からは任意のフィールドの信号が出力されて、この任意のフィールドの信号に基づいてライブビュー画像表示用の画像データが生成され、この画像データに基づいてライブビュー画像が表示される。
 特許文献2には、静止画撮像によって撮像素子から出力された撮像画像信号をメモリに一時記憶し、この撮像画像信号を水平方向に分割し、分割された撮像画像信号毎に信号処理を行って撮像画像データを生成する撮像装置が記載されている。
 また、特許文献2に記載の撮像装置は、メモリに記憶した撮像画像信号をリサイズしてライブビュー画像表示用の画像データを生成し、この画像データに基づいてライブビュー画像を表示している。
日本国特開2012-151596号公報 日本国特開2006-005596号公報
 特許文献1に記載の撮像装置によれば、撮像画像データを生成している間に、この撮像画像データの確認用のポストビュー画像の表示と、撮像素子によって撮像されているライブビュー画像の表示とを行うことが可能である。
 しかし、特許文献1に記載の撮像装置は、撮像画像データを生成するためには、撮像素子から全画素の信号が出力されるのを待つ必要があり、撮像が行われてから撮像画像データの生成が完了するまでの時間が長くなる。
 同様に、特許文献2に記載の撮像装置は、撮像画像データを生成するためには、撮像素子から全画素の信号が出力されるのを待つ必要があり、撮像が行われてから撮像画像データの生成が完了するまでの時間が長くなる。
 また、特許文献2に記載の撮像装置は、撮像画像データの生成中にはポストビュー画像又はライブビュー画像を表示することができない。
 本発明は、上記事情に鑑みてなされたものであり、記憶用の撮像が行われてから記憶用の撮像画像データの生成が完了するまでの時間を短縮し、かつ、この記憶用の撮像画像データの確認を撮像後に素早く行うことのできる撮像装置、撮像方法、及び、撮像プログラムを提供することを目的とする。
 本発明の撮像装置は、行方向に配列された複数の画素からなる複数の画素行が上記行方向と直交する列方向に配列された受光面を含むセンサ部と、上記複数の画素行に含まれる全ての上記画素から読み出される撮像信号が記憶される記憶部と、上記記憶部に記憶された撮像信号を出力する第一の出力端子と、上記記憶部に記憶された撮像信号を出力する第二の出力端子と、を有する撮像素子と、上記全ての上記画素を露光し、その画素から撮像信号を読み出して上記記憶部に記憶する第一の撮像制御を行う撮像制御部と、上記第一の撮像制御によって上記記憶部に記憶された上記全ての上記画素から読み出された上記撮像信号で構成される撮像画像信号のうち、Nを2以上の自然数として上記複数の画素行を上記列方向にN個に1つずつ選択した場合の上記選択された上記画素行に含まれる上記画素から読み出された撮像信号を上記第一の出力端子から出力させる第一の出力制御と、上記撮像画像信号を、上記受光面を上記行方向又は上記列方向の少なくとも一方に分割した場合の各分割エリアにある上記画素から読み出された撮像信号からなるMを2以上とするM個のグループに分け、上記M個のグループを順次選択して、選択した上記グループの上記撮像信号を上記第二の出力端子から出力させる第二の出力制御とを行う出力制御部と、上記第一の出力端子から出力される上記撮像信号を処理して表示用の撮像画像データを生成する第一の画像処理部と、上記第二の出力端子から出力される上記グループの上記撮像信号を処理してそのグループに対応する分割画像データを順次生成し、上記M個のグループの各々に対応する上記分割画像データを合成して記憶用の撮像画像データを生成する第二の画像処理部と、を備えるものである。
 本発明の撮像方法は、行方向に配列された複数の画素からなる複数の画素行が上記行方向と直交する列方向に配列された受光面を含むセンサ部と、上記複数の画素行に含まれる全ての上記画素から読み出される撮像信号が記憶される記憶部と、上記記憶部に記憶された撮像信号を出力する第一の出力端子と、上記記憶部に記憶された撮像信号を出力する第二の出力端子と、を有する撮像素子を用いて被写体を撮像する撮像方法であって、上記全ての上記画素を露光し、その画素から撮像信号を読み出して上記記憶部に記憶する第一の撮像制御を行う撮像制御ステップと、上記第一の撮像制御によって上記記憶部に記憶された上記全ての上記画素から読み出された上記撮像信号で構成される撮像画像信号のうち、Nを2以上の自然数として上記複数の画素行を上記列方向にN個に1つずつ選択した場合の上記選択された上記画素行に含まれる上記画素から読み出された撮像信号を上記第一の出力端子から出力させる第一の出力制御と、上記撮像画像信号を、上記受光面を上記行方向又は上記列方向の少なくとも一方に分割した場合の各分割エリアにある上記画素から読み出された撮像信号からなるMを2以上とするM個のグループに分け、上記M個のグループを順次選択して、選択した上記グループの上記撮像信号を上記第二の出力端子から出力させる第二の出力制御とを行う出力制御ステップと、上記第一の出力端子から出力される上記撮像信号を処理して表示用の撮像画像データを生成する第一の画像処理ステップと、上記第二の出力端子から出力される上記グループの上記撮像信号を順次処理してそのグループに対応する分割画像データを生成し、上記M個のグループの各々に対応する上記分割画像データを合成して記憶用の撮像画像データを生成する第二の画像処理ステップと、を備えるものである。
 本発明の撮像プログラムは、行方向に配列された複数の画素からなる複数の画素行が上記行方向と直交する列方向に配列された受光面を含むセンサ部と、上記複数の画素行に含まれる全ての上記画素から読み出される撮像信号が記憶される記憶部と、上記記憶部に記憶された撮像信号を出力する第一の出力端子と、上記記憶部に記憶された撮像信号を出力する第二の出力端子と、を有する撮像素子を用いて被写体を撮像する撮像プログラムであって、上記全ての上記画素を露光し、その画素から撮像信号を読み出して上記記憶部に記憶する第一の撮像制御を行う撮像制御ステップと、上記第一の撮像制御によって上記記憶部に記憶された上記全ての上記画素から読み出された上記撮像信号で構成される撮像画像信号のうち、Nを2以上の自然数として上記複数の画素行を上記列方向にN個に1つずつ選択した場合の上記選択された上記画素行に含まれる上記画素から読み出された撮像信号を上記第一の出力端子から出力させる第一の出力制御と、上記撮像画像信号を、上記受光面を上記行方向又は上記列方向の少なくとも一方に分割した場合の各分割エリアにある上記画素から読み出された撮像信号からなるMを2以上とするM個のグループに分け、上記M個のグループを順次選択して、選択した上記グループの上記撮像信号を上記第二の出力端子から出力させる第二の出力制御とを行う出力制御ステップと、上記第一の出力端子から出力される上記撮像信号を処理して表示用の撮像画像データを生成する第一の画像処理ステップと、上記第二の出力端子から出力される上記グループの上記撮像信号を順次処理してそのグループに対応する分割画像データを生成し、上記M個のグループの各々に対応する上記分割画像データを合成して記憶用の撮像画像データを生成する第二の画像処理ステップと、をコンピュータに実行させるためのものである。
 本発明によれば、記憶用の撮像が行われてから記憶用の撮像画像データの生成が完了するまでの時間を短縮し、かつ、この記憶用の撮像画像データの確認を撮像後に素早く行うことのできる撮像装置、撮像方法、及び、撮像プログラムを提供することができる。
本発明の一実施形態である撮像装置としてのデジタルカメラ100の概略構成を示す図である。 図1に示すデジタルカメラ100に搭載される撮像素子5の概略構成を示す模式図である。 図2に示す撮像素子5のセンサ部51の構成を示す平面模式図である。 図1に示すシステム制御部11の機能ブロックを示す図である。 センサ部51の受光面60を行方向Xに均等に4分割した構成を示す模式図である。 図1のデジタルカメラ100のデジタル信号処理部17の機能ブロックを示す図である。 図1に示すデジタルカメラ100の連写モード時の動作を模式的に示すタイミングチャートである。 図1に示したデジタルカメラ100のシステム制御部11の機能ブロックの変形例を示す図である。 注目領域の配置の一例を示す図である。 図1に示すデジタルカメラ100の連写モード時の変形例の動作を説明するためのフローチャートである。 図1に示すデジタルカメラ100の連写モード時の変形例の動作を模式的に示すタイミングチャートである。 図1に示したデジタルカメラ100の変形例であるデジタルカメラ100Aの概略構成を示す図である。 図12に示すデジタルカメラ100Aの転送モードの設定動作を説明するためのフローチャートである。 図12に示すデジタルカメラ100Aの連写モードかつフィールド転送モードに設定された場合の動作を模式的に示すタイミングチャートである。 図12に示すデジタルカメラ100Aの動作の変形例を説明するためのフローチャートである。 センサ部51の受光面60の分割例を示す模式図である。 センサ部51の受光面60の別の分割例を示す模式図である。 本発明の撮影装置の一実施形態であるスマートフォン200の外観を示すものである。 図18に示すスマートフォン200の構成を示すブロック図である。
 以下、本発明の実施形態について図面を参照して説明する。
 図1は、本発明の一実施形態である撮像装置としてのデジタルカメラ100の概略構成を示す図である。
 図1に示すデジタルカメラ100は、撮像レンズ1と、絞り2と、レンズ制御部4と、レンズ駆動部8と、絞り駆動部9と、を有するレンズ装置40を備える。
 本実施形態において、レンズ装置40はデジタルカメラ100の本体に着脱可能なものとして説明するが、デジタルカメラ100の本体と一体化されたものであってもよい。
 撮像レンズ1と絞り2は撮像光学系を構成し、撮像光学系はフォーカスレンズを含む。
 このフォーカスレンズは、撮像光学系の焦点を調節するためのレンズであり、単一のレンズ又は複数のレンズで構成される。フォーカスレンズが撮像光学系の光軸方向に移動することで焦点調節が行われる。
 なお、フォーカスレンズとしては、レンズの曲面を可変制御して焦点位置を変えることのできる液体レンズを用いてもよい。
 レンズ装置40のレンズ制御部4は、デジタルカメラ100の本体のシステム制御部11と有線又は無線によって通信可能に構成される。
 レンズ制御部4は、システム制御部11からの指令にしたがい、レンズ駆動部8を介して撮像レンズ1に含まれるフォーカスレンズを駆動したり、絞り駆動部9を介して絞り2を駆動したりする。
 デジタルカメラ100の本体は、撮像光学系を通して被写体を撮像するCMOSイメージセンサ等のMOS型の撮像素子5と、撮像素子5を駆動するセンサ駆動部10と、デジタルカメラ100の電気制御系全体を統括制御するシステム制御部11と、操作部14と、デジタル信号処理部17と、着脱自在の記憶媒体21が接続される外部メモリ制御部20と、有機EL(Electro Luminescence)ディスプレイ又はLCD(Liquid Crystal Display)等の表示部23と、表示部23を駆動する表示ドライバ22と、を備える。
 システム制御部11は、各種のプロセッサとRAM(Ramdom Access Memory)とROM(Read Only Memory)と含んで構成され、デジタルカメラ100全体を統括制御する。
 システム制御部11は、内蔵のROMに格納された撮像プログラムを含むプログラムをプロセッサが実行することで、後述する各機能を実現する。
 デジタル信号処理部17は、各種のプロセッサとRAMとROMを含み、このROMに格納された撮像プログラムを含むプログラムをこのプロセッサが実行することで各種処理を行う。
 各種のプロセッサとしては、プログラムを実行して各種処理を行う汎用的なプロセッサであるCPU(Central Prosessing Unit)、FPGA(Field Programmable Gate Array)等の製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、又はASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が含まれる。
 これら各種のプロセッサの構造は、より具体的には、半導体素子等の回路素子を組み合わせた電気回路である。
 システム制御部11のプロセッサとデジタル信号処理部17のプロセッサは、それぞれ、各種のプロセッサのうちの1つで構成されてもよいし、同種又は異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGAの組み合わせ又はCPUとFPGAの組み合わせ)で構成されてもよい。
 デジタル信号処理部17、外部メモリ制御部20、及び、表示ドライバ22は、制御バス24及びデータバス25によって相互に接続され、システム制御部11からの指令に基づいて動作する。
 図2は、図1に示すデジタルカメラ100に搭載される撮像素子5の概略構成を示す模式図である。
 撮像素子5は、センサ部51と、記憶部52と、を備える。
 センサ部51は、複数の画素によって被写体を撮像し、この撮像によって各画素から読み出された撮像信号を出力する。センサ部51はセンサ駆動部10によって駆動される。
 記憶部52は、センサ部51から出力された撮像信号を記憶するものであり、データを記憶するためのコンデンサ又はフリップフロップ等の多数の記憶素子と、この多数の記憶素子のデータの記憶及び読み出しを制御する図示省略の制御回路とを含む。この制御回路は、システム制御部11によって制御される。
 記憶部52は、書き換え可能な記憶素子を含むものであれば何でも良く、半導体メモリ又は強誘電体メモリ等を用いることができる。
 記憶部52には、例えば、SRAM(Static Random Access Memory)、DRAM(Dynamic Random Access Memory)、FRAM(Ferroelectric Random Access Memory)(登録商標)、又は、フラッシュメモリ等を用いることができる。
 記憶部52には、記憶された撮像信号をデータバス25に出力する第一の出力端子CH0及び第二の出力端子CH1が設けられている。
 撮像素子5は、図示省略のSLVS(Scalable Low Voltage Signaling)等の規格に準拠するインタフェースを含む。記憶部52に記憶された撮像信号は、このインタフェースによって、第一の出力端子CH0又は第二の出力端子CH1からデータバス25に出力される。
 図3は、図2に示す撮像素子5のセンサ部51の構成を示す平面模式図である。
 センサ部51は、一方向である行方向Xに配列された複数の画素61からなる画素行62が、行方向Xと直交する列方向Yに複数配列された受光面60と、受光面60に配列された画素61を駆動する駆動回路63と、受光面60に配列された画素行62の各画素61から読み出される撮像信号を処理する信号処理回路64と、を備える。
 以下では、図3において受光面60の列方向Yの上方向の端部を上端といい、受光面60の列方向Yの下方向の端部を下端という。
 画素61は、レンズ装置40の撮像光学系を通った光を受光し受光量に応じた電荷を発生して蓄積する光電変換部と、この光電変換部に蓄積された電荷を電圧信号に変換して信号線に読み出す読み出し回路と、を含む。読み出し回路は、周知の構成を採用可能である。
 読み出し回路は、例えば、光電変換部に蓄積された電荷をフローティングディフュージョンに転送するための転送トランジスタと、フローティングディフュージョンの電位をリセットするためのリセットトランジスタと、フローティングディフュージョンの電位に応じた電圧信号を出力する出力トランジスタと、出力トランジスタから出力される電圧信号を選択的に信号線に読み出すための選択トランジスタと、を含む。なお、読み出し回路は、複数の光電変換部で共用される場合もある。
 受光面60に配列された全ての画素行62のうち、nを0以上の整数として受光面60の上端側から数えて(4n+1)番目にある画素行62が配置される受光面60の領域をフィールドF1という。
 受光面60に配列された全ての画素行62のうち受光面60の上端側から数えて(4n+2)番目にある画素行62が配置される受光面60の領域をフィールドF2という。
 受光面60に配列された全ての画素行62のうち受光面60の上端側から数えて(4n+3)番目にある画素行62が配置される受光面60の領域をフィールドF3という。
 受光面60に配列された全ての画素行62のうち受光面60の上端側から数えて(4n+4)番目にある画素行62が配置される受光面60の領域をフィールドF4という。
 フィールドF1~フィールドF4のいずれか(以下ではフィールドF1とする)にある画素行62を構成する画素61には、位相差検出用画素が含まれている。
 位相差検出用画素は、レンズ装置40の撮像光学系の瞳領域の行方向Xに並ぶ異なる2つの部分を通過した一対の光束に基づく2つの像の位相差を検出するための画素である。
 位相差検出用画素には、上記の一対の光束の一方を受光し受光量に応じた電荷を蓄積する第一の光電変換部を含む第一画素と、上記の一対の光束の他方を受光し受光量に応じた電荷を蓄積する第二の光電変換部を含む第二画素とがある。
 フィールドF1には、この第一画素と第二画素のペアが複数配置されており、このペアから読み出される信号に基づいて位相差の算出が可能となっている。
 なお、位相差検出用画素は、第一の光電変換部と第二の光電変換部の両方を含む画素で構成される場合もある。
 駆動回路63は、各画素61の光電変換部に接続される読み出し回路を画素行62単位で駆動して、画素行62毎に、この画素行62に含まれる各光電変換部のリセット、この各光電変換部に蓄積された電荷に応じた電圧信号の信号線への読み出し等を行う。
 信号処理回路64は、画素行62の各画素61から信号線に読み出された電圧信号に対し相関二重サンプリング処理を行い、相関二重サンプリング処理後の電圧信号をデジタル信号に変換して記憶部52に出力する。
 任意の画素61から信号線に読み出されて信号処理回路64で処理されて得られたデジタル信号は、この任意の画素61から読み出された撮像信号となる。
 図4は、図1に示すシステム制御部11の機能ブロックを示す図である。
 システム制御部11は、プロセッサが上記の撮像プログラムを含むプログラムを実行することで撮像制御部11A及び出力制御部11Bとして機能する。
 撮像制御部11Aは、静止画記憶用の撮像制御(第一の撮像制御)と、ライブビュー用の撮像制御(第二の撮像制御)とを行う。
 静止画記憶用の撮像制御とライブビュー用の撮像制御は、それぞれ、受光面60に形成された全ての画素61を露光し、この露光によって各画素61の光電変換部に蓄積された電荷に応じた撮像信号を読み出して記憶部52に記憶する制御である。
 出力制御部11Bは、第一の出力制御と、第二の出力制御と、第三の出力制御と、を行う。
 第一の出力制御は、静止画記憶用の撮像制御によって記憶部52に記憶された全ての画素61から読み出された撮像信号で構成される撮像画像信号のうち、センサ部51の受光面60において全ての画素行62を列方向YにN個(Nは2以上の自然数)に1つずつ選択した場合の選択された画素行62に含まれる画素61から読み出された撮像信号を、第一の出力端子CH0から出力させる制御である。
 以下では、N=4として説明し、第一の出力制御が行われると、フィールドF1にある画素61から読み出されて記憶部52に記憶された撮像信号が第一の出力端子CH0から出力される。
 第二の出力制御は、静止画記憶用の撮像制御によって記憶部52に記憶された撮像画像信号を、センサ部51の受光面60を行方向Xに分割した場合の各分割エリアにある画素61から読み出された撮像信号からなるM個(Mは2以上の自然数)のグループに分け、このM個のグループを順次選択して、選択したグループの撮像信号を第二の出力端子CH1から出力させる制御である。
 以下ではM=4として説明し、第二の出力制御が行われると、4個のグループの撮像信号が第二の出力端子CH1から順次出力される。
 撮像制御部11Aは、静止画記憶用の撮像制御を行った後に、ライブビュー用の撮像制御を少なくとも1回行う。第三の出力制御は、第一の出力制御による撮像信号の出力が完了した後に、ライブビュー用の撮像制御によって記憶部52に記憶された撮像信号のうちのフィールドF1にある画素61から読み出された撮像信号を第一の出力端子CH0から出力させる制御である。
 図5は、センサ部51の受光面60を行方向Xに均等に4分割した構成を示す模式図である。
 図5中の左端から数えて1番目にある分割エリアにある画素61から読み出される撮像信号からなるグループが、以下ではグループAとされる。
 図5中の左端から数えて2番目にある分割エリアにある画素61から読み出される撮像信号からなるグループが、以下ではグループBとされる。
 図5中の左端から数えて3番目にある分割エリアにある画素61から読み出される撮像信号からなるグループが、以下ではグループCとされる。
 図5中の左端から数えて4番目にある分割エリアにある画素61から読み出される撮像信号からなるグループが、以下ではグループDとされる。
 図6は、図1のデジタルカメラ100のデジタル信号処理部17の機能ブロックを示す図である。
 デジタル信号処理部17は、プロセッサが上記の撮像プログラムを含むプログラムを実行することで第一の画像処理部17A及び第二の画像処理部17Bとして機能する。
 第一の画像処理部17Aは、第一の出力制御及び第三の出力制御によって第一の出力端子CH0から出力される撮像信号(以下、フィールドデータともいう)を処理して表示用の撮像画像データを生成する。
 第二の画像処理部17Bは、第二の出力制御によって第二の出力端子CH1から出力される各グループの撮像信号を処理してこのグループに対応する分割画像データを生成し、M個のグループの各々に対応する分割画像データを合成して記憶用の撮像画像データを生成する。
 図7は、図1に示すデジタルカメラ100の連写モード時の動作を模式的に示すタイミングチャートである。
 連写モードとは、記憶媒体21に記憶する撮像画像データを生成するための静止画撮像を複数回連続して行う撮像モードである。
 具体的には、連写モードでは、ユーザの撮像指示に応じて、システム制御部11により静止画記憶用の撮像制御が複数回行われ、この複数の静止画記憶用の撮像制御同士の間において、ライブビュー用の撮像制御が複数回行われる。
 図7において横軸は時間を示している。図7の1段目には、垂直同期信号VDが示されている。
 図7の2段目には、撮像素子5の受光面60にある各画素行62の駆動タイミングが示されている。図7の2段目において、縦軸は画素行62の列方向Yの位置を示している。
 直線RSは、画素行62に含まれる各画素行62において画素61の光電変換部のリセットが行われるタイミングを示している。直線ROは、各画素行62において画素61の光電変換部から撮像信号の読み出しが行われて記憶部52に記憶されるタイミングを示している。
 直線RSと直線ROとで挟まれる期間Pが、静止画記憶用の撮像制御が行われる期間を示している。また、直線RSと直線ROとで挟まれる期間Lが、ライブビュー用の撮像制御が行われる期間を示している。
 図7の3段目において、“撮像素子出力 CH0”の横には、記憶部52の第一の出力端子CH0からの撮像信号の出力状態が示されている。
 直線Pf1は、期間Pの静止画記憶用の撮像制御によって記憶部52に記憶された撮像画像信号のうちのフィールドF1から読み出された撮像信号(フィールドデータ)が第一の出力端子CH0からデータバス25に出力される状態を示している。
 直線Lf1は、期間Lのライブビュー用の撮像制御によって記憶部52に記憶されたフィールドF1から読み出された撮像信号(フィールドデータ)が第一の出力端子CH0からデータバス25に出力される状態を示している。
 図7の4段目において、“表示画像処理”の横には、表示部23の描画状態が示されている。図7の4段目において、縦軸は表示部23の表示画素行の位置を示しており、各直線はフィールドデータに基づいて表示部23の表示画素行に描画が行われるタイミングを示している。
 図7の5段目において、“AF演算処理”の横には、システム制御部11で行われるAF(Auto Focus)用の演算処理のタイミングが示されている。
 AF用の演算処理は、具体的には、フィールドデータに含まれる位相差検出用画素から読み出された撮像信号に基づいて位相差を算出する処理と、この位相差に基づいてデフォーカス量を算出する処理とを含む。
 図7の6段目において、“フォーカス駆動”の横には、フォーカスレンズの駆動が行われる期間が示されている。
 図7の7段目において、“撮像素子出力 CH1”の横には、撮像素子5の記憶部52の第二の出力端子CH1からの撮像信号の出力状態が示されている。
 直線GAは、期間Pの静止画記憶用の撮像制御によって記憶部52に記憶された撮像画像信号のうちのグループAの撮像信号が、第二の出力端子CH1からデータバス25に出力される状態を示している。
 直線GBは、期間Pの静止画記憶用の撮像制御によって記憶部52に記憶された撮像画像信号のうちのグループBの撮像信号が、第二の出力端子CH1からデータバス25に出力される状態を示している。
 直線GCは、期間Pの静止画記憶用の撮像制御によって記憶部52に記憶された撮像画像信号のうちのグループCの撮像信号が、第二の出力端子CH1からデータバス25に出力される状態を示している。
 直線GDは、期間Pの静止画記憶用の撮像制御によって記憶部52に記憶された撮像画像信号のうちのグループDの撮像信号が、第二の出力端子CH1からデータバス25に出力される状態を示している。
 図7の8段目において、“記憶画像処理”の横には、デジタル信号処理部17で行われる撮像画像データの生成状況が示されている。
 撮像指示が行われると、システム制御部11は、静止画記憶用の撮像制御を行う。この撮像制御によって画素61から読み出された撮像信号の記憶部52への記憶が開始して少し経過すると、システム制御部11は、静止画記憶用の撮像制御によって記憶部52に記憶されたフィールドF1にある画素61から読みだされた撮像信号を第一の出力端子CH0からデータバス25に順次出力させる第一の出力制御を行う(図7の直線Pf1)。
 デジタル信号処理部17は、直線Pf1でデータバス25に順次出力される撮像信号を処理して表示用画像データを生成し、これを表示ドライバ22に送信する。表示ドライバ22は、受信した表示用画像データに基づくポストビュー画像を表示部23に表示させる。
 システム制御部11は、直線Pf1によってフィールドデータの出力が完了すると、このフィールドデータに含まれる位相差検出用画素から読み出された撮像信号に基づいて位相差を算出する(図中の“AF演算”)。
 静止画記憶用の撮像制御が終了すると、システム制御部11は、この静止画記憶用の撮像制御によって記憶部52に記憶された撮像画像信号のうち、グループAの撮像信号を第二の出力端子CH1からデータバス25に出力させる第二の出力制御を行う(図7の直線GA)。
 デジタル信号処理部17は、直線GAでデータバス25に出力された撮像信号を処理して分割画像データgaを生成する。
 直線GAによる第二の出力端子CH1からの撮像信号の出力が完了すると、システム制御部11は、静止画記憶用の撮像制御によって記憶部52に記憶された撮像画像信号のうち、グループBの撮像信号を第二の出力端子CH1からデータバス25に出力させる第二の出力制御を行う(図7の直線GB)。
 デジタル信号処理部17は、直線GBでデータバス25に出力された撮像信号を処理して分割画像データgbを生成する。
 直線GBによる第二の出力端子CH1からの撮像信号の出力が完了すると、システム制御部11は、静止画記憶用の撮像制御によって記憶部52に記憶された撮像画像信号のうち、グループCの撮像信号を第二の出力端子CH1からデータバス25に出力させる第二の出力制御を行う(図7の直線GC)。
 デジタル信号処理部17は、直線GCでデータバス25に出力された撮像信号を処理して分割画像データgcを生成する。
 直線GCによる第二の出力端子CH1からの撮像信号の出力が完了すると、システム制御部11は、静止画記憶用の撮像制御によって記憶部52に記憶された撮像画像信号のうち、グループDの撮像信号を第二の出力端子CH1からデータバス25に出力させる第二の出力制御を行う(図7の直線GD)。
 デジタル信号処理部17は、直線GDでデータバス25に出力された撮像信号を処理して分割画像データgdを生成する。
 そして、デジタル信号処理部17は、グループA~Dの各々に対応する分割画像データga~gdを合成して記憶用の撮像画像データを生成し、外部メモリ制御部20を介して記憶媒体21に記憶する。
 なお、分割画像データgaと分割画像データgb、分割画像データgbと分割画像データgc、分割画像データgcと分割画像データgdの境界付近を信号処理することを考慮すると、デジタル信号処理部17は、データバス25に出力されたグループA~Dの行方向Xの幅よりも狭い幅を信号処理範囲としてグループA~Dに信号処理を行って分割画像データga~gdを生成することが好ましい。このような処理を行うことで、処理効率を向上せることができる。
 システム制御部11は、静止画記憶用の撮像制御を行った後、ライブビュー用の撮像制御を図7の例では3回続けて行う。
 この3回の各撮像制御によってセンサ部51から読み出される撮像信号は、記憶部52に上書き記憶される。そして、システム制御部11は、ライブビュー用の撮像制御によって記憶部52に記憶されたフィールドF1にある画素61から読みだされた撮像信号を第一の出力端子CH0からデータバス25に出力させる第三の出力制御を行う(図7の直線Lf1)。
 デジタル信号処理部17は、直線Lf1でデータバス25に出力される撮像信号を処理して表示用画像データを生成し、これを表示ドライバ22に送信する。表示ドライバ22は、受信した表示用画像データに基づくライブビュー画像を表示部23に表示させる。
 システム制御部11は、直線Lf1によるフィールドデータの出力が完了すると、このフィールドデータに含まれる位相差検出用画素から読み出された撮像信号に基づいて位相差を算出するAF演算処理を行う。
 システム制御部11は、例えば、図7の垂直同期信号VDの2つ目の立下りタイミングと、図7の垂直同期信号VDの3つ目の立下りタイミングと、図7の垂直同期信号VDの4つ目の立下りタイミングとで算出された位相差に基づいてデフォーカス量を算出し、このデフォーカス量に基づいてフォーカスレンズを駆動して合焦制御を行う。システム制御部11は、位相差が算出される毎に、この位相差に基づいてフォーカスレンズを駆動して合焦制御を行ってもよい。
 3回目のライブビュー用の撮像制御が行われた後、システム制御部11は、2枚目の静止画撮像のために、静止画記憶用の撮像制御を行う。以上の処理が連写枚数に応じて繰り返し行われる。
 以上のように、図1のデジタルカメラ100によれば、静止画記憶用の撮像制御によって記憶部52に記憶された撮像画像信号のうち、フィールドF1にある画素から読み出された撮像信号が第一の出力端子CH0からデジタル信号処理部17に転送されるため、ポストビュー画像の表示を高速に行うことができる。
 また、第一の出力端子CH0から出力される撮像信号は、位相差検出用画素から読み出された撮像信号を含むため、この撮像信号に基づいて合焦制御を行うことができ、被写体に追従した合焦制御が可能となる。
 また、静止画記憶用の撮像制御によって記憶部52に記憶された撮像画像信号はグループ単位で第二の出力端子CH1からデジタル信号処理部17に転送される。
 このため、デジタル信号処理部17では、撮像画像信号が全て揃うのを待つことなく画像データの生成を開始することができる。したがって、静止画記憶用の撮像制御が開始されてから撮像画像データの生成が完了するまでの時間を短縮することができる。
 デジタルカメラ100では、静止画記憶用の撮像制御とその次に行う静止画記憶用の撮像制御との間においてライブビュー用の撮像制御を行っているが、このライブビュー用の撮像制御は必須ではない。ライブビュー用の撮像制御が行われることで、撮像中の被写体の状態を詳細に確認することが可能になる。
 ライブビュー用の撮像制御を省略する場合には、記憶部52の記憶容量を減らすことができ、デジタルカメラ100の製造コストを下げることができる。
 また、デジタルカメラ100によれば、受光面60に設定されるフィールドの数“N”と、出力制御部11Bによって設定されるグループの数“M”を同じ値にすることで、1垂直同期期間において、第一の出力端子CH0から出力される撮像信号数と、第二の出力端子CH1から出力される撮像信号数とを同じにすることができる。
 この構成によれば、撮像素子5からデータバス25への撮像信号の転送レートを共通化でき、駆動及び信号処理を簡略化することができる。
 図8は、図1に示したデジタルカメラ100のシステム制御部11の機能ブロックの変形例を示す図である。
 図8に示すシステム制御部11は、注目領域決定部11C及び優先度設定部11Dが追加された点を除いては、図6と同じ構成である。
 注目領域決定部11Cは、第一の出力制御によって第一の出力端子CH0から出力されるフィールドデータに基づいて、撮像中の被写体の注目領域を決定する。
 注目領域決定部11Cは、例えば、フィールドデータから公知の顔検出技術を用いて、顔領域を検出する処理を行い、検出した顔領域を注目領域(ROI:Region of Interest)として決定する。
 優先度設定部11Dは、静止画記憶用の撮像制御によって記憶部52に記憶された撮像画像信号をM個のグループに分ける場合の各グループに優先度を設定する。
 具体的には、優先度設定部11Dは、M個のグループのうち、注目領域決定部11Cが決定した注目領域に対応する分割エリアの画素61から読み出された撮像信号を含むグループには、優先閾値以上の優先度を設定し、その他のグループには優先閾値未満の優先度を設定する。
 フィールドデータに基づく画像と受光面60とは対応しており、この画像における注目領域の位置が分かれば、この注目領域に対応する受光面60上の位置も分かる。
 例えば、受光面60において、注目領域と対応する領域ROIが図9に示すような位置にある場合には、4つの分割エリアのうち真ん中の2つの分割エリアが注目領域に対応する分割エリアとなる。
 図10は、図1に示すデジタルカメラ100の連写モード時の変形例の動作を説明するためのフローチャートである。図11は、図1に示すデジタルカメラ100の連写モード時の変形例の動作を模式的に示すタイミングチャートである。図11において図7と同じ構成には同一符号を付して説明を省略する。
 連写モードに設定され、撮像指示が行われると、システム制御部11は、静止画記憶用の撮像制御を行う。この撮像制御によって画素61から読み出された撮像信号の記憶部52への記憶が開始して少し経過すると、システム制御部11は、静止画記憶用の撮像制御によって記憶部52に記憶されたフィールドF1にある画素61から読みだされた撮像信号を第一の出力端子CH0からデータバス25に出力させる(図11の直線Pf1)。
 システム制御部11は、図11の直線Pf1でフィールドデータの出力が完了すると、このフィールドデータから公知の顔検出技術に基づいて顔検出を行う(ステップS1)。
 次に、システム制御部11は、ステップS1の顔検出結果から、顔を含む領域を被写体の注目領域に設定し、注目領域に対応する分割エリアを決定する(ステップS2)。
 次に、システム制御部11は、静止画記憶用の撮像制御によって記憶部52に記憶された撮像画像信号を4個のグループに分け、ステップS2で決定した分割エリアにある画素61から読み出された撮像信号を含むグループには優先閾値以上の優先度を設定し、その他のグループには優先閾値未満の優先度を設定する(ステップS3)。
 図11の例では、グループBとグループCの優先度が優先閾値以上に設定され、グループAとグループDの優先度が優先閾値未満に設定される。
 ステップS3の後、システム制御部11は、ステップS3で設定した優先度にしたがって第二の出力制御を開始する(ステップS4)。
 具体的には、図11に示すように、システム制御部11は、静止画記憶用の撮像制御によって記憶部52に記憶された撮像画像信号のうち、グループBの撮像信号を第二の出力端子CH1からデータバス25に出力させる(直線GB)。デジタル信号処理部17は、直線GBで出力された撮像信号に基づいて分割画像データgbを生成する。
 直線GBによる第二の出力端子CH1からの撮像信号の出力が完了すると、システム制御部11は、静止画記憶用の撮像制御によって記憶部52に記憶された撮像画像信号のうち、グループCの撮像信号を第二の出力端子CH1からデータバス25に出力させる(直線GC)。
 デジタル信号処理部17は、直線GCでデータバス25に出力された撮像信号を処理して分割画像データgcを生成する。
 デジタル信号処理部17は、分割画像データgbと分割画像データgcを生成すると、これらに含まれる顔領域の解析を行う。ここでの解析結果は、例えば、撮像画像データの加工(例えば顔を明るくする補正等)又は撮像画像データの分類(顔から判別される人物による分類)等に用いられる。
 直線GCによる第二の出力端子CH1からの撮像信号の出力が完了すると、システム制御部11は、静止画記憶用の撮像制御によって記憶部52に記憶された撮像画像信号のうち、グループAの撮像信号を第二の出力端子CH1からデータバス25に出力させる(直線GA)。
 デジタル信号処理部17は、直線GAでデータバス25に出力された撮像信号を処理して分割画像データgaを生成する。
 直線GAによる第二の出力端子CH1からの撮像信号の出力が完了すると、システム制御部11は、静止画記憶用の撮像制御によって記憶部52に記憶された撮像画像信号のうち、グループDの撮像信号を第二の出力端子CH1からデータバス25に出力させる(直線GD)。
 デジタル信号処理部17は、直線GDでデータバス25に出力された撮像信号を処理して分割画像データgdを生成する。
 そして、デジタル信号処理部17は、グループA~Dの各々に対応する分割画像データga~gdを合成して記憶用の撮像画像データを生成し、外部メモリ制御部20を介して記憶媒体21に記憶する。
 以上のように、図8に示すシステム制御部11を有するデジタルカメラ100によれば、第一の出力制御によって第一の出力端子CH0から出力されるフィールドデータに基づいて、静止画記憶用の撮像制御によって記憶部52に記憶された撮像画像信号のうち、注目領域を含むグループを優先的に第二の出力端子CH1から出力させることができる。
 このため、注目領域の詳細な解析を早い段階で終了させることができ、解析結果を利用した後段での処理を効率的に行うことができる。
 以上では、注目領域決定部11Cが、フィールドデータから顔領域を検出する処理を行い、顔領域を注目領域として決定したが、これに限らない。
 例えば、第一の出力制御と第三の出力制御によって第一の出力端子CH0から連続して出力される複数のフィールドデータに基づいて、撮像中の被写体に含まれる動体領域を検出する処理を行い、この動体領域を注目領域として決定するようにしてもよい。
 この構成によれば、動体を含むグループを第二の出力端子CH1から優先的に出力させることができるため、動体の詳細な解析を素早く開始することができ、解析結果を利用した後段での処理を効率的に行うことができる。
 優先度設定部11Dは、M個のグループのうち、受光面60に設定されている焦点を合わせる対象となる複数の合焦エリアのうちのユーザにより選択された合焦エリアと重なる分割エリアにある画素61から読み出された撮像信号のグループには、優先閾値以上の優先度を設定するようにし、その他のグループには優先閾値未満の優先度を設定するようにしてもよい。
 このような構成により、合焦エリア内の被写体の詳細解析を素早く開始することができ、解析結果を利用した後段での処理を効率的に行うことができる。
 図12は、図1に示したデジタルカメラ100の変形例であるデジタルカメラ100Aの概略構成を示す図である。
 図12に示したデジタルカメラ100Aは、温度センサ70とバッテリ容量センサ71が追加された点を除いては、図1に示すデジタルカメラ100と同じ構成である。
 温度センサ70は、デジタルカメラ100A内部の温度を検出する。検出された温度情報は、システム制御部11に入力される。
 バッテリ容量センサ71は、デジタルカメラ100Aに搭載されるバッテリの容量を検出する。検出されたバッテリ情報はシステム制御部11に入力される。
 システム制御部11の撮像制御部11Aは、温度センサ70から取得した温度情報に基づくデジタルカメラ100A内部の温度が温度閾値以上となっている場合、又は、バッテリ容量センサ71から取得したバッテリ情報に基づくバッテリ残容量が残量閾値以下になっている場合には、第二の出力端子CH1からデータバス25に撮像信号を転送する際の転送モードをフィールド転送モードに設定する。
 撮像制御部11Aは、デジタルカメラ100A内部の温度が温度閾値未満となっている場合、又は、バッテリ残容量が残量閾値を超えている場合には、第二の出力端子CH1からデータバス25に撮像信号を転送する際の転送モードをグループ転送モードに設定する。
 フィールド転送モードとは、第二の出力制御を停止し、静止画記憶用の撮像制御によって記憶部52に記憶された撮像画像信号のうちの第一の出力制御によって第一の出力端子CH0から出力される撮像信号を除く撮像信号を第二の出力端子CH1からフィールド単位で出力させるモードである。
 グループ転送モードとは、上述してきた第二の出力制御を行って、静止画記憶用の撮像制御によって記憶部52に記憶された撮像画像信号をグループ単位で第二の出力端子CH1から出力させるモードである。
 図13は、図12に示すデジタルカメラ100Aの転送モードの設定動作を説明するためのフローチャートである。
 システム制御部11は、静止画記憶用の撮像制御を開始する直前に、温度センサ70から取得した温度情報からデジタルカメラ100A内部の温度が温度閾値以上であるか否かを判定する(ステップS11)。
 システム制御部11は、温度が温度閾値未満であると判定した場合(ステップS11:NO)には、バッテリ容量センサ71から取得したバッテリ情報からバッテリ残容量が残量閾値以下であるか否かを判定する(ステップS12)。
 システム制御部11は、バッテリ残容量が残量閾値を超えると判定した場合(ステップS12:NO)には、転送モードをグループ転送モードに設定する(ステップS13)。グループ転送モード時の動作は、図7のタイミングチャートを用いて説明したので、ここでは省略する。
 システム制御部11は、デジタルカメラ100A内部の温度が温度閾値以上であると判定した場合(ステップS11:YES)、又は、バッテリ残容量が残量閾値以下であると判定した場合(ステップS12:YES)には、転送モードをフィールド転送モードに設定する(ステップS14)。
 図14は、図12に示すデジタルカメラ100Aの連写モードかつフィールド転送モードに設定された場合の動作を模式的に示すタイミングチャートである。
 図14に示すタイミングチャートは、“撮像素子出力 CH1”と“記憶画像処理”の状態が異なる点を除いては図7に示すタイミングチャートと同じである。
 撮像指示が行われると、システム制御部11は、静止画記憶用の撮像制御を行う。この撮像制御によって画素61から読み出された撮像信号の記憶部52への記憶が開始して少し経過すると、システム制御部11は、静止画記憶用の撮像制御によって記憶部52に記憶されたフィールドF1にある画素61から読みだされた撮像信号を第一の出力端子CH0からデータバス25に出力させる第一の出力制御を行う(図14の直線Pf1)。
 直線Pf1によるフィールドデータの出力が開始されてから少し経過すると、システム制御部11は、静止画記憶用の撮像制御によって記憶部52に記憶されたフィールドF2にある画素61から読みだされた撮像信号を第二の出力端子CH1からデータバス25に出力させる(図14の直線Pf2)。
 直線Pf2による撮像信号の出力が終了すると、システム制御部11は、静止画記憶用の撮像制御によって記憶部52に記憶されたフィールドF3にある画素61から読みだされた撮像信号を第二の出力端子CH1からデータバス25に出力させる(図14の直線Pf3)。
 直線Pf3による撮像信号の出力が終了すると、システム制御部11は、静止画記憶用の撮像制御によって記憶部52に記憶されたフィールドF4にある画素61から読みだされた撮像信号を第二の出力端子CH1からデータバス25に出力させる(図14の直線Pf4)。
 そして、デジタル信号処理部17は、直線Pf1、直線Pf2、直線Pf3、及び、直線Pf4の各々で出力された撮像信号を処理して記憶用の撮像画像データを生成し、外部メモリ制御部20を介して記憶媒体21に記憶する。
 以上のように、デジタルカメラ100Aによれば、連写モード時に、内部の温度とバッテリ残量に基づいて、図7に示す動作と図14に示す動作とを切り替えることができる。
 図14に示す動作では、図7に示す動作と比較して、撮像素子5から出力される撮像信号数を減らすことができる。このため、撮像素子5からの信号転送に要する消費電力を削減することができ、発熱抑制又は稼働時間の延長が可能となる。
 なお、システム制御部11は、フィールド転送モードにおいて、第二の出力端子CH1からの撮像信号の出力速度を、第一の出力制御による第一の出力端子CH0からの撮像信号の出力速度よりも低速にすることが好ましい。
 この構成によれば、第二の出力端子CH1からの撮像信号の出力速度が低速になることで、撮像信号の転送に要する消費電力を更に低減することができる。
 デジタルカメラ100Aでは、システム制御部11が、内部の温度とバッテリ残量に基づいて、グループ転送モードとフィールド転送モードを切り替えるものとしたが、内部の温度とバッテリ残量によらずに転送モードはグループ転送モードに固定とし、内部の温度とバッテリ残量に基づいて、第二の出力制御を行うときの第二の出力端子CH1からの撮像信号の出力速度を変更してもよい。
 図15は、図12に示すデジタルカメラ100Aの動作の変形例を説明するためのフローチャートである。図15において図13に示した処理と同じものには同一符号を付して説明を省略する。
 システム制御部11は、バッテリ残容量が残量閾値を超えると判定した場合(ステップS12:NO)には、第二の出力制御を行うときの第二の出力端子CH1からの撮像信号の出力速度を第一の値(高速)に設定する(ステップS21)。
 システム制御部11は、デジタルカメラ100A内部の温度が温度閾値以上であると判定した場合(ステップS11:NO)、又は、バッテリ残容量が残量閾値以下であると判定した場合(ステップS12:NO)には、第二の出力制御を行うときの第二の出力端子CH1からの撮像信号の出力速度を第一の値よりも小さい第二の値(低速)に設定する(ステップS22)。
 以上のように、図15に示す動作によれば、デジタルカメラ100A内部の温度が高い場合、又は、バッテリ残容量が少ない場合には、第二の出力端子CH1からの撮像信号の出力速度が低速になるため、発熱と消費電力を低減することができる。
 なお、図13及び図15のフローチャートにおいて、ステップS11とステップS12のいずれかを省略してもよい。この場合でも、発熱と消費電力を低減する効果を得ることができる。
 ここまでは、システム制御部11が、記憶部52に記憶される撮像画像信号を行方向Xに分割してグループ分けするものとしたが、撮像画像信号の分割方法はこれに限られるものではない。
 図16及び図17は、センサ部51の受光面60を複数に分割する例を示す模式図である。
 図16は、センサ部51の受光面60を列方向Yに均等に4つに分割した場合の構成を示している。
 図16の分割例では、例えば、上端から数えて1番目にある分割エリアにある画素61から読み出される撮像信号からなるグループが上記のグループAとされ、上端から数えて2番目にある分割エリアにある画素61から読み出される撮像信号からなるグループが上記のグループBとされる。
 また、上端から数えて3番目にある分割エリアにある画素61から読み出される撮像信号からなるグループが上記のグループCとされ、上端から数えて4番目にある分割エリアにある画素61から読み出される撮像信号からなるグループが上記のグループDとされる。
 図17は、センサ部51の受光面60を行方向Xに均等に2分割し、更に、列方向Yに均等に2分割した場合の構成を示している。
 図17の分割例では、例えば、左上の分割エリアにある画素61から読み出される撮像信号からなるグループが上記のグループAとされ、右上にある分割エリアにある画素61から読み出される撮像信号からなるグループが上記のグループBとされる。
 また、左下の分割エリアにある画素61から読み出される撮像信号からなるグループが上記のグループCとされ、右下の分割エリアにある画素61から読み出される撮像信号からなるグループが上記のグループDとされる。
 図17に示す分割例と図5に示す分割例によれば、各グループの行方向Xの幅を小さくすることができる。このため、デジタル信号処理部17が画像データの生成に用いるラインメモリ容量を減らすことができ、デジタルカメラの製造コストを下げることができる。
 ここまでは撮像装置としてデジタルカメラを例にしたが、以下では、撮像装置としてカメラ付のスマートフォンの実施形態について説明する。
 図18は、本発明の撮影装置の一実施形態であるスマートフォン200の外観を示すものである。
 図18に示すスマートフォン200は、平板状の筐体201を有し、筐体201の一方の面に表示部としての表示パネル202と、入力部としての操作パネル203とが一体となった表示入力部204を備えている。
 また、この様な筐体201は、スピーカ205と、マイクロホン206と、操作部207と、カメラ部208とを備えている。
 なお、筐体201の構成はこれに限定されず、例えば、表示部と入力部とが独立した構成を採用したり、折り畳み構造又はスライド機構を有する構成を採用したりすることもできる。
 図19は、図18に示すスマートフォン200の構成を示すブロック図である。
 図19に示すように、スマートフォンの主たる構成要素として、無線通信部210と、表示入力部204と、通話部211と、操作部207と、カメラ部208と、記憶部212と、外部入出力部213と、GPS(Global Positioning System)受信部214と、モーションセンサ部215と、電源部216と、主制御部220とを備える。
 また、スマートフォン200の主たる機能として、図示省略の基地局装置BSと図示省略の移動通信網NWとを介した移動無線通信を行う無線通信機能を備える。
 無線通信部210は、主制御部220の指示にしたがって、移動通信網NWに収容された基地局装置BSに対し無線通信を行うものである。この無線通信を使用して、音声データ、画像データ等の各種ファイルデータ、電子メールデータ等の送受信、又は、Webデータ又はストリーミングデータ等の受信を行う。
 表示入力部204は、主制御部220の制御により、画像(静止画像および動画像)又は文字情報等を表示して視覚的にユーザに情報を伝達するとともに、表示した情報に対するユーザ操作を検出する、いわゆるタッチパネルであって、表示パネル202と、操作パネル203とを備える。
 表示パネル202は、LCD(Liquid Crystal Display)、OELD(Organic Electro-Luminescence Display)等を表示デバイスとして用いたものである。
 操作パネル203は、表示パネル202の表示面上に表示される画像を視認可能に載置され、ユーザの指又は尖筆によって操作される一又は複数の座標を検出するデバイスである。このデバイスをユーザの指又は尖筆によって操作すると、操作に起因して発生する検出信号を主制御部220に出力する。次いで、主制御部220は、受信した検出信号に基づいて、表示パネル202上の操作位置(座標)を検出する。
 図18に示すように、本発明の撮影装置の一実施形態として例示しているスマートフォン200の表示パネル202と操作パネル203とは一体となって表示入力部204を構成しているが、操作パネル203が表示パネル202を完全に覆うような配置となっている。
 係る配置を採用した場合、操作パネル203は、表示パネル202外の領域についても、ユーザ操作を検出する機能を備えてもよい。換言すると、操作パネル203は、表示パネル202に重なる重畳部分についての検出領域(以下、表示領域と称する)と、それ以外の表示パネル202に重ならない外縁部分についての検出領域(以下、非表示領域と称する)とを備えていてもよい。
 なお、表示領域の大きさと表示パネル202の大きさとを完全に一致させても良いが、両者を必ずしも一致させる必要は無い。また、操作パネル203が、外縁部分と、それ以外の内側部分の2つの感応領域を備えていてもよい。更に、外縁部分の幅は、筐体201の大きさ等に応じて適宜設計されるものである。
 更にまた、操作パネル203で採用される位置検出方式としては、マトリクススイッチ方式、抵抗膜方式、表面弾性波方式、赤外線方式、電磁誘導方式、又は、静電容量方式等が挙げられ、いずれの方式を採用することもできる。
 通話部211は、スピーカ205又はマイクロホン206を備え、マイクロホン206を通じて入力されたユーザの音声を主制御部220にて処理可能な音声データに変換して主制御部220に出力したり、無線通信部210あるいは外部入出力部213により受信された音声データを復号してスピーカ205から出力させたりするものである。
 また、図18に示すように、例えば、スピーカ205を表示入力部204が設けられた面と同じ面に搭載し、マイクロホン206を筐体201の側面に搭載することができる。
 操作部207は、キースイッチ等を用いたハードウェアキーであって、ユーザからの指示を受け付けるものである。例えば、図18に示すように、操作部207は、スマートフォン200の筐体201の側面に搭載され、指等で押下されるとオンとなり、指を離すとバネ等の復元力によってオフ状態となる押しボタン式のスイッチである。
 記憶部212は、主制御部220の制御プログラム又は制御データ、アプリケーションソフトウェア、通信相手の名称又は電話番号等を対応づけたアドレスデータ、送受信した電子メールのデータ、WebブラウジングによりダウンロードしたWebデータ又は、ダウンロードしたコンテンツデータを記憶し、またストリーミングデータ等を一時的に記憶するものである。また、記憶部212は、スマートフォン内蔵の内部記憶部217と着脱自在な外部メモリスロットを有する外部記憶部218により構成される。
 なお、記憶部212を構成するそれぞれの内部記憶部217と外部記憶部218は、フラッシュメモリタイプ(flash memory type)、ハードディスクタイプ(hard disk type)、マルチメディアカードマイクロタイプ(multimedia card micro type)、カードタイプのメモリ(例えば、MicroSD(登録商標)メモリ等)、RAM(Random Access Memory)、ROM(Read Only Memory)等の格納媒体を用いて実現される。
 外部入出力部213は、スマートフォン200に連結される全ての外部機器とのインタフェースの役割を果たすものであり、他の外部機器に通信等(例えば、ユニバーサルシリアルバス(USB)、IEEE1394等)又はネットワーク(例えば、インターネット、無線LAN、ブルートゥース(Bluetooth)(登録商標)、RFID(Radio Frequency Identification)、赤外線通信(Infrared Data Association:IrDA)(登録商標)、UWB(Ultra Wideband)(登録商標)、ジグビー(ZigBee)(登録商標)等)により直接的又は間接的に接続するためのものである。
 スマートフォン200に連結される外部機器としては、例えば、有/無線ヘッドセット、有/無線外部充電器、有/無線データポート、カードソケットを介して接続されるメモリカード(Memory card)又はSIM(Subscriber Identity Module Card)/UIM(User Identity Module
 Card)カード、オーディオ・ビデオI/O(Input/Output)端子を介して接続される外部オーディオ・ビデオ機器、無線接続される外部オーディオ・ビデオ機器、有/無線接続されるスマートフォン、有/無線接続されるパーソナルコンピュータ、有/無線接続されるPDA、有/無線接続されるパーソナルコンピュータ、イヤホン等がある。
 外部入出力部213は、このような外部機器から伝送を受けたデータをスマートフォン200の内部の各構成要素に伝達したり、スマートフォン200の内部のデータを外部機器に伝送したりする。
 GPS受信部214は、主制御部220の指示にしたがって、GPS衛星ST1~STnから送信されるGPS信号を受信し、受信した複数のGPS信号に基づく測位演算処理を実行し、スマートフォン200の緯度、経度、高度からなる位置を検出する。
 GPS受信部214は、無線通信部210又は外部入出力部213(例えば、無線LAN)から位置情報を取得できる時には、その位置情報を用いて位置を検出することもできる。
 モーションセンサ部215は、例えば、3軸の加速度センサ等を備え、主制御部220の指示にしたがって、スマートフォン200の物理的な動きを検出する。スマートフォン200の物理的な動きを検出することにより、スマートフォン200の動く方向又は加速度が検出される。係る検出結果は、主制御部220に出力されるものである。
 電源部216は、主制御部220の指示にしたがって、スマートフォン200の各部に、バッテリ(図示しない)に蓄えられる電力を供給するものである。
 主制御部220は、マイクロプロセッサを備え、記憶部212が記憶する制御プログラム又は制御データにしたがって動作し、スマートフォン200の各部を統括して制御するものである。
 また、主制御部220は、無線通信部210を通じて、音声通信又はデータ通信を行うために、通信系の各部を制御する移動通信制御機能と、アプリケーション処理機能を備える。
 アプリケーション処理機能は、記憶部212が記憶するアプリケーションソフトウェアにしたがって主制御部220が動作することにより実現するものである。
 アプリケーション処理機能としては、例えば、外部入出力部213を制御して対向機器とデータ通信を行う赤外線通信機能、電子メールの送受信を行う電子メール機能、又は、ウェブページを閲覧するウェブブラウジング機能等がある。
 また、主制御部220は、受信データ又はダウンロードしたストリーミングデータ等の画像データ(静止画像又は動画像のデータ)に基づいて、映像を表示入力部204に表示する等の画像処理機能を備える。
 画像処理機能とは、主制御部220が、上記画像データを復号し、この復号結果に画像処理を施して、画像を表示入力部204に表示する機能のことをいう。
 更に、主制御部220は、表示パネル202に対する表示制御と、操作部207、操作パネル203を通じたユーザ操作を検出する操作検出制御を実行する。表示制御の実行により、主制御部220は、アプリケーションソフトウェアを起動するためのアイコン又はスクロールバー等のソフトウェアキーを表示したり、あるいは電子メールを作成したりするためのウィンドウを表示する。
 なお、スクロールバーとは、表示パネル202の表示領域に収まりきれない大きな画像等について、画像の表示部分を移動する指示を受け付けるためのソフトウェアキーのことをいう。
 また、操作検出制御の実行により、主制御部220は、操作部207を通じたユーザ操作を検出したり、操作パネル203を通じて、上記アイコンに対する操作又は、上記ウィンドウの入力欄に対する文字列の入力を受け付けたり、あるいは、スクロールバーを通じた表示画像のスクロール要求を受け付ける。
 更に、操作検出制御の実行により主制御部220は、操作パネル203に対する操作位置が、表示パネル202に重なる重畳部分(表示領域)か、それ以外の表示パネル202に重ならない外縁部分(非表示領域)かを判定し、操作パネル203の感応領域又はソフトウェアキーの表示位置を制御するタッチパネル制御機能を備える。
 また、主制御部220は、操作パネル203に対するジェスチャ操作を検出し、検出したジェスチャ操作に応じて、予め設定された機能を実行することもできる。ジェスチャ操作とは、従来の単純なタッチ操作ではなく、指等によって軌跡を描いたり、複数の位置を同時に指定したり、あるいはこれらを組み合わせて、複数の位置から少なくとも1つについて軌跡を描く操作を意味する。
 カメラ部208は、図1及び図12に示したデジタルカメラにおける外部メモリ制御部20、記憶媒体21、及び、操作部14以外の構成を含む。カメラ部208の表示ドライバ22は、表示部23の代わりに表示パネル202を駆動する。
 カメラ部208によって生成された撮像画像データは、記憶部212に記憶したり、外部入出力部213又は無線通信部210を通じて出力したりすることができる。
 図18に示すスマートフォン200において、カメラ部208は表示入力部204と同じ面に搭載されているが、カメラ部208の搭載位置はこれに限らず、表示入力部204の背面に搭載されてもよい。
 また、カメラ部208はスマートフォン200の各種機能に利用することができる。例えば、表示パネル202にカメラ部208で取得した画像を表示することができる。操作パネル203の操作入力のひとつとして、カメラ部208の画像を利用することができる。
 また、GPS受信部214が位置を検出する際に、カメラ部208からの画像を参照して位置を検出することもできる。更には、カメラ部208からの画像を参照して、3軸の加速度センサを用いずに、或いは、3軸の加速度センサと併用して、スマートフォン200のカメラ部208の光軸方向を判断したり現在の使用環境を判断したりすることもできる。勿論、カメラ部208からの画像をアプリケーションソフトウェア内で利用することもできる。
 その他、静止画又は動画の画像データにGPS受信部214により取得した位置情報、マイクロホン206により取得した音声情報(主制御部等により、音声テキスト変換を行ってテキスト情報となっていてもよい)、モーションセンサ部215により取得した姿勢情報等を付加して記憶部212に記憶したり、外部入出力部213又は無線通信部210を通じて出力したりすることもできる。
 以上の説明では撮像素子5がMOS型としたが、撮像素子5はCCD型であっても同様の効果を得ることができる。
 以上のように、本明細書には以下の事項が開示されている。
(1) 行方向に配列された複数の画素からなる複数の画素行が上記行方向と直交する列方向に配列された受光面を含むセンサ部と、上記複数の画素行に含まれる全ての上記画素から読み出される撮像信号が記憶される記憶部と、上記記憶部に記憶された撮像信号を出力する第一の出力端子と、上記記憶部に記憶された撮像信号を出力する第二の出力端子と、を有する撮像素子と、複数の上記画素を露光し、その画素から撮像信号を読み出して上記記憶部に記憶する第一の撮像制御を行う撮像制御部と、上記第一の撮像制御によって上記記憶部に記憶された上記複数の上記画素から読み出された上記撮像信号で構成される撮像画像信号のうち、Nを2以上の自然数として上記複数の画素行を上記列方向にN個に1つずつ選択した場合の上記選択された上記画素行に含まれる上記画素から読み出された撮像信号を上記第一の出力端子から出力させる第一の出力制御と、上記撮像画像信号を、上記受光面を上記行方向又は上記列方向の少なくとも一方に分割した場合の各分割エリアにある上記画素から読み出された撮像信号からなるMを2以上とするM個のグループに分け、上記M個のグループを順次選択して、選択した上記グループの上記撮像信号を上記第二の出力端子から出力させる第二の出力制御とを行う出力制御部と、上記第一の出力端子から出力される上記撮像信号を処理して表示用の撮像画像データを生成する第一の画像処理部と、上記第二の出力端子から出力される上記グループの上記撮像信号を処理してそのグループに対応する分割画像データを順次生成し、上記M個のグループの各々に対応する上記分割画像データを合成して記憶用の撮像画像データを生成する第二の画像処理部と、を備える撮像装置。
(2) (1)記載の撮像装置であって、上記M個のグループの各々に優先度を設定する優先度設定部を更に備え、上記出力制御部は、上記優先度が優先閾値以上となる上記グループを、上記優先度が上記優先閾値未満となる上記グループよりも先に上記第二の出力端子から出力させる撮像装置。
(3) (2)記載の撮像装置であって、上記第一の出力端子から出力される上記撮像信号に基づいて、撮像中の被写体の注目領域を決定する注目領域決定部を更に備え、上記優先度設定部は、上記M個のグループのうち、上記注目領域に対応する上記分割エリアの上記画素から読み出された上記グループには上記優先閾値以上の上記優先度を設定し、その他の上記グループには上記優先閾値未満の上記優先度を設定する撮像装置。
(4) (3)記載の撮像装置であって、上記注目領域決定部は、上記第一の出力端子から出力される上記撮像信号から顔領域を検出する処理を行い、上記顔領域を上記注目領域として決定する撮像装置。
(5) (3)記載の撮像装置であって、上記撮像制御部は、上記第一の撮像制御の後に、複数の上記画素を露光し、その画素から撮像信号を読み出して上記記憶部に記憶する第二の撮像制御を少なくとも1回行い、上記出力制御部は、上記第一の出力制御による上記撮像信号の出力が完了した後は、上記第二の撮像制御によって上記記憶部に記憶される上記撮像信号を上記第一の出力端子から出力させる第三の出力制御を更に行い、上記注目領域決定部は、上記第一の出力端子から連続して出力される複数の上記撮像信号に基づいて、上記被写体に含まれる動体領域を検出する処理を行い、上記動体領域を上記注目領域として決定する撮像装置。
(6) (2)記載の撮像装置であって、上記優先度設定部は、上記M個のグループのうち、上記受光面上に設定されている焦点を合わせる対象となる複数の合焦エリアのうちの選択された合焦エリアと重なる上記分割エリアの上記画素から読み出された上記グループには上記優先閾値以上の上記優先度を設定し、その他の上記グループには上記優先閾値未満の上記優先度を設定する撮像装置。
(7) (1)~(6)のいずれか1つに記載の撮像装置であって、上記Nと上記Mが同じ値である撮像装置。
(8) (1)~(7)のいずれか1つに記載の撮像装置であって、上記出力制御部は、上記撮像装置の内部温度が温度閾値以上になっている場合、又は、上記撮像装置のバッテリ残量が残量閾値以下になっている場合には、上記第二の出力制御を停止し、上記撮像画像信号のうちの上記第一の出力制御によって上記第一の出力端子から出力される撮像信号を除く撮像信号を、上記第二の出力端子から出力させる撮像装置。
(9) (8)記載の撮像装置であって、上記出力制御部は、上記第二の出力制御を停止した場合に、上記第一の出力制御によって上記第一の出力端子から出力される撮像信号を除く上記撮像信号を複数回に分けて上記第二の出力端子から出力させ、上記第二の出力端子からのその撮像信号の出力速度を、上記第一の出力制御による上記第一の出力端子からの撮像信号の出力速度よりも低速にする撮像装置。
(10) (1)~(7)のいずれか1つに記載の撮像装置であって、上記出力制御部は、上記撮像装置の内部温度が温度閾値以上である場合又は上記撮像装置のバッテリ残量が残量閾値以下である場合には、上記第二の出力制御で上記第二の出力端子から出力させる上記グループの出力速度を、上記内部温度が上記温度閾値未満である場合又は上記バッテリ残量が上記残量閾値を超える場合よりも低速にする撮像装置。
(11) (1)~(10)のいずれか1つに記載の撮像装置であって、上記選択された上記画素行には、位相差検出用画素が含まれている撮像装置。
(12) (1)~(11)のいずれか1つに記載の撮像装置であって、上記分割エリアは、上記受光面を上記行方向に分割した場合のものである撮像装置。
(13) (1)~(11)のいずれか1つに記載の撮像装置であって、上記分割エリアは、上記受光面を上記列方向に分割した場合のものである撮像装置。
(14) 行方向に配列された複数の画素からなる複数の画素行が上記行方向と直交する列方向に配列された受光面を含むセンサ部と、上記複数の画素行に含まれる全ての上記画素から読み出される撮像信号が記憶される記憶部と、上記記憶部に記憶された撮像信号を出力する第一の出力端子と、上記記憶部に記憶された撮像信号を出力する第二の出力端子と、を有する撮像素子を用いて被写体を撮像する撮像方法であって、複数の上記画素を露光し、その画素から撮像信号を読み出して上記記憶部に記憶する第一の撮像制御を行う撮像制御ステップと、上記第一の撮像制御によって上記記憶部に記憶された上記複数の上記画素から読み出された上記撮像信号で構成される撮像画像信号のうち、Nを2以上の自然数として上記複数の画素行を上記列方向にN個に1つずつ選択した場合の上記選択された上記画素行に含まれる上記画素から読み出された撮像信号を上記第一の出力端子から出力させる第一の出力制御と、上記撮像画像信号を、上記受光面を上記行方向又は上記列方向の少なくとも一方に分割した場合の各分割エリアにある上記画素から読み出された撮像信号からなるMを2以上とするM個のグループに分け、上記M個のグループを順次選択して、選択した上記グループの上記撮像信号を上記第二の出力端子から出力させる第二の出力制御とを行う出力制御ステップと、上記第一の出力端子から出力される上記撮像信号を処理して表示用の撮像画像データを生成する第一の画像処理ステップと、上記第二の出力端子から出力される上記グループの上記撮像信号を順次処理してそのグループに対応する分割画像データを生成し、上記M個のグループの各々に対応する上記分割画像データを合成して記憶用の撮像画像データを生成する第二の画像処理ステップと、を備える撮像方法。
(15) (14)記載の撮像方法であって、上記M個のグループの各々に優先度を設定する優先度設定ステップを更に備え、上記出力制御ステップは、上記優先度が優先閾値以上となる上記グループを、上記優先度が上記優先閾値未満となる上記グループよりも先に上記第二の出力端子から出力させる撮像方法。
(16) (15)記載の撮像方法であって、上記第一の出力端子から出力される上記撮像信号に基づいて、撮像中の被写体の注目領域を決定する注目領域決定ステップを更に備え、上記優先度設定ステップは、上記M個のグループのうち、上記注目領域に対応する上記分割エリアの上記画素から読み出された上記グループには上記優先閾値以上の上記優先度を設定し、その他の上記グループには上記優先閾値未満の上記優先度を設定する撮像方法。
(17) (16)記載の撮像方法であって、上記注目領域決定ステップは、上記第一の出力端子から出力される上記撮像信号から顔領域を検出する処理を行い、上記顔領域を上記注目領域として決定する撮像方法。
(18) (16)記載の撮像方法であって、上記撮像制御ステップは、上記第一の撮像制御の後に、複数の上記画素を露光し、その画素から撮像信号を読み出して上記記憶部に記憶する第二の撮像制御を少なくとも1回行い、上記出力制御ステップは、上記第一の出力制御による上記撮像信号の出力が完了した後は、上記第二の撮像制御によって上記記憶部に記憶される上記撮像信号を上記第一の出力端子から出力させる第三の出力制御を更に行い、上記注目領域決定ステップは、上記第一の出力端子から連続して出力される複数の上記撮像信号に基づいて、上記被写体に含まれる動体領域を検出する処理を行い、上記動体領域を上記注目領域として決定する撮像方法。
(19) (15)記載の撮像方法であって、上記優先度設定ステップは、上記M個のグループのうち、上記受光面上に設定されている焦点を合わせる対象となる複数の合焦エリアのうちの選択された合焦エリアと重なる上記分割エリアの上記画素から読み出された上記グループには上記優先閾値以上の上記優先度を設定し、その他の上記グループには上記優先閾値未満の上記優先度を設定する撮像方法。
(20) (14)~(19)のいずれか1つに記載の撮像方法であって、上記Nと上記Mが同じ値である撮像方法。
(21) (14)~(20)のいずれか1つに記載の撮像方法であって、上記出力制御ステップは、上記撮像素子を搭載する撮像装置の内部温度が温度閾値以上になっている場合、又は、上記撮像装置のバッテリ残量が残量閾値以下になっている場合には、上記第二の出力制御を停止し、上記撮像画像信号のうちの上記第一の出力制御によって上記第一の出力端子から出力される撮像信号を除く撮像信号を、上記第二の出力端子から出力させる撮像方法。
(22) (21)記載の撮像方法であって、上記出力制御ステップは、上記第二の出力制御を停止した場合に、上記第一の出力制御によって上記第一の出力端子から出力される撮像信号を除く上記撮像信号を複数回に分けて上記第二の出力端子から出力させ、上記第二の出力端子からのその撮像信号の出力速度を、上記第一の出力制御による上記第一の出力端子からの撮像信号の出力速度よりも低速にする撮像方法。
(23) (14)~(20)のいずれか1つに記載の撮像方法であって、上記出力制御ステップは、上記撮像素子を搭載する撮像装置の内部温度が温度閾値以上である場合又は上記撮像装置のバッテリ残量が残量閾値以下である場合には、上記第二の出力制御で上記第二の出力端子から出力させる上記グループの出力速度を、上記内部温度が上記温度閾値未満である場合又は上記バッテリ残量が上記残量閾値を超える場合よりも低速にする撮像方法。
(24) (14)~(23)のいずれか1つに記載の撮像方法であって、上記選択された上記画素行には、位相差検出用画素が含まれている撮像方法。
(25) (14)~(24)のいずれか1つに記載の撮像方法であって、上記分割エリアは、上記受光面を上記行方向に分割した場合のものである撮像方法。
(26) (14)~(24)のいずれか1つに記載の撮像方法であって、上記分割エリアは、上記受光面を上記列方向に分割した場合のものである撮像方法。
(27) 行方向に配列された複数の画素からなる複数の画素行が上記行方向と直交する列方向に配列された受光面を含むセンサ部と、上記複数の画素行に含まれる全ての上記画素から読み出される撮像信号が記憶される記憶部と、上記記憶部に記憶された撮像信号を出力する第一の出力端子と、上記記憶部に記憶された撮像信号を出力する第二の出力端子と、を有する撮像素子を用いて被写体を撮像する撮像プログラムであって、複数の上記画素を露光し、その画素から撮像信号を読み出して上記記憶部に記憶する第一の撮像制御を行う撮像制御ステップと、上記第一の撮像制御によって上記記憶部に記憶された上記複数の上記画素から読み出された上記撮像信号で構成される撮像画像信号のうち、Nを2以上の自然数として上記複数の画素行を上記列方向にN個に1つずつ選択した場合の上記選択された上記画素行に含まれる上記画素から読み出された撮像信号を上記第一の出力端子から出力させる第一の出力制御と、上記撮像画像信号を、上記受光面を上記行方向又は上記列方向の少なくとも一方に分割した場合の各分割エリアにある上記画素から読み出された撮像信号からなるMを2以上とするM個のグループに分け、上記M個のグループを順次選択して、選択した上記グループの上記撮像信号を上記第二の出力端子から出力させる第二の出力制御とを行う出力制御ステップと、上記第一の出力端子から出力される上記撮像信号を処理して表示用の撮像画像データを生成する第一の画像処理ステップと、上記第二の出力端子から出力される上記グループの上記撮像信号を順次処理してそのグループに対応する分割画像データを生成し、上記M個のグループの各々に対応する上記分割画像データを合成して記憶用の撮像画像データを生成する第二の画像処理ステップと、をコンピュータに実行させるための撮像プログラム。
 本発明によれば、記憶用の撮像が行われてから記憶用の撮像画像データの生成が完了するまでの時間を短縮し、かつ、この記憶用の撮像画像データの確認を撮像後に素早く行うことができる。
 以上、本発明を特定の実施形態によって説明したが、本発明はこの実施形態に限定されるものではなく、開示された発明の技術思想を逸脱しない範囲で種々の変更が可能である。
 本出願は、2016年11月14日出願の日本特許出願(特願2016-221762)に基づくものであり、その内容はここに取り込まれる。
100、100A デジタルカメラ
1 撮像レンズ
2 絞り
4 レンズ制御部
5 撮像素子
8 レンズ駆動部
9 絞り駆動部
10 センサ駆動部
11 システム制御部
11A 撮像制御部
11B 出力制御部
11C 注目領域決定部
11D 優先度設定部
14 操作部
17 デジタル信号処理部
17A 第一の画像処理部
17B 第二の画像処理部
20 外部メモリ制御部
21 記憶媒体
22 表示ドライバ
23 表示部
24 制御バス
25 データバス
40 レンズ装置
51 センサ部
52 記憶部
60 受光面
61 画素
62 画素行
63 駆動回路
64 信号処理回路
70 温度センサ
71 バッテリ容量センサ
X 行方向
Y 列方向
F1~F4 フィールド
P 静止画記憶用の撮像制御が行われる期間
L ライブビュー用の撮像制御が行われる期間
RS リセットタイミングを示す直線
RO 撮像信号の読み出しタイミングを示す直線
Pf1~Pf4、Lf1 第一の出力端子CH0からの信号出力タイミングを示す直線
GA、GB、GC、GD 第二の出力端子CH1からの信号出力タイミングを示す直線
200 スマートフォン
201 筐体
202 表示パネル
203 操作パネル
204 表示入力部
205 スピーカ
206 マイクロホン
207 操作部
208 カメラ部
210 無線通信部
211 通話部
212 記憶部
213 外部入出力部
214 GPS受信部
215 モーションセンサ部
216 電源部
217 内部記憶部
218 外部記憶部
220 主制御部
ST1~STn GPS衛星

Claims (27)

  1.  行方向に配列された複数の画素からなる複数の画素行が前記行方向と直交する列方向に配列された受光面を含むセンサ部と、前記複数の画素行に含まれる全ての前記画素から読み出される撮像信号が記憶される記憶部と、前記記憶部に記憶された撮像信号を出力する第一の出力端子と、前記記憶部に記憶された撮像信号を出力する第二の出力端子と、を有する撮像素子と、
     複数の前記画素を露光し、当該画素から撮像信号を読み出して前記記憶部に記憶する第一の撮像制御を行う撮像制御部と、
     前記第一の撮像制御によって前記記憶部に記憶された前記複数の前記画素から読み出された前記撮像信号で構成される撮像画像信号のうち、Nを2以上の自然数として前記複数の画素行を前記列方向にN個に1つずつ選択した場合の前記選択された前記画素行に含まれる前記画素から読み出された撮像信号を前記第一の出力端子から出力させる第一の出力制御と、
     前記撮像画像信号を、前記受光面を前記行方向又は前記列方向の少なくとも一方に分割した場合の各分割エリアにある前記画素から読み出された撮像信号からなるMを2以上とするM個のグループに分け、前記M個のグループを順次選択して、選択した前記グループの前記撮像信号を前記第二の出力端子から出力させる第二の出力制御とを行う出力制御部と、
     前記第一の出力端子から出力される前記撮像信号を処理して表示用の撮像画像データを生成する第一の画像処理部と、
     前記第二の出力端子から出力される前記グループの前記撮像信号を処理して当該グループに対応する分割画像データを順次生成し、前記M個のグループの各々に対応する前記分割画像データを合成して記憶用の撮像画像データを生成する第二の画像処理部と、を備える撮像装置。
  2.  請求項1記載の撮像装置であって、
     前記M個のグループの各々に優先度を設定する優先度設定部を更に備え、
     前記出力制御部は、前記優先度が優先閾値以上となる前記グループを、前記優先度が前記優先閾値未満となる前記グループよりも先に前記第二の出力端子から出力させる撮像装置。
  3.  請求項2記載の撮像装置であって、
     前記第一の出力端子から出力される前記撮像信号に基づいて、撮像中の被写体の注目領域を決定する注目領域決定部を更に備え、
     前記優先度設定部は、前記M個のグループのうち、前記注目領域に対応する前記分割エリアの前記画素から読み出された前記グループには前記優先閾値以上の前記優先度を設定し、その他の前記グループには前記優先閾値未満の前記優先度を設定する撮像装置。
  4.  請求項3記載の撮像装置であって、
     前記注目領域決定部は、前記第一の出力端子から出力される前記撮像信号から顔領域を検出する処理を行い、前記顔領域を前記注目領域として決定する撮像装置。
  5.  請求項3記載の撮像装置であって、
     前記撮像制御部は、前記第一の撮像制御の後に、複数の前記画素を露光し、当該画素から撮像信号を読み出して前記記憶部に記憶する第二の撮像制御を少なくとも1回行い、
     前記出力制御部は、前記第一の出力制御による前記撮像信号の出力が完了した後は、前記第二の撮像制御によって前記記憶部に記憶される前記撮像信号を前記第一の出力端子から出力させる第三の出力制御を更に行い、
     前記注目領域決定部は、前記第一の出力端子から連続して出力される複数の前記撮像信号に基づいて、前記被写体に含まれる動体領域を検出する処理を行い、前記動体領域を前記注目領域として決定する撮像装置。
  6.  請求項2記載の撮像装置であって、
     前記優先度設定部は、前記M個のグループのうち、前記受光面上に設定されている焦点を合わせる対象となる複数の合焦エリアのうちの選択された合焦エリアと重なる前記分割エリアの前記画素から読み出された前記グループには前記優先閾値以上の前記優先度を設定し、その他の前記グループには前記優先閾値未満の前記優先度を設定する撮像装置。
  7.  請求項1~6のいずれか1項記載の撮像装置であって、
     前記Nと前記Mが同じ値である撮像装置。
  8.  請求項1~7のいずれか1項記載の撮像装置であって、
     前記出力制御部は、前記撮像装置の内部温度が温度閾値以上になっている場合、又は、前記撮像装置のバッテリ残量が残量閾値以下になっている場合には、前記第二の出力制御を停止し、前記撮像画像信号のうちの前記第一の出力制御によって前記第一の出力端子から出力される撮像信号を除く撮像信号を、前記第二の出力端子から出力させる撮像装置。
  9.  請求項8記載の撮像装置であって、
     前記出力制御部は、前記第二の出力制御を停止した場合に、前記第一の出力制御によって前記第一の出力端子から出力される撮像信号を除く前記撮像信号を複数回に分けて前記第二の出力端子から出力させ、前記第二の出力端子からの当該撮像信号の出力速度を、前記第一の出力制御による前記第一の出力端子からの撮像信号の出力速度よりも低速にする撮像装置。
  10.  請求項1~7のいずれか1項記載の撮像装置であって、
     前記出力制御部は、前記撮像装置の内部温度が温度閾値以上である場合又は前記撮像装置のバッテリ残量が残量閾値以下である場合には、前記第二の出力制御で前記第二の出力端子から出力させる前記グループの出力速度を、前記内部温度が前記温度閾値未満である場合又は前記バッテリ残量が前記残量閾値を超える場合よりも低速にする撮像装置。
  11.  請求項1~10のいずれか1項記載の撮像装置であって、
     前記選択された前記画素行には、位相差検出用画素が含まれている撮像装置。
  12.  請求項1~11のいずれか1項記載の撮像装置であって、
     前記分割エリアは、前記受光面を前記行方向に分割した場合のものである撮像装置。
  13.  請求項1~11のいずれか1項記載の撮像装置であって、
     前記分割エリアは、前記受光面を前記列方向に分割した場合のものである撮像装置。
  14.  行方向に配列された複数の画素からなる複数の画素行が前記行方向と直交する列方向に配列された受光面を含むセンサ部と、前記複数の画素行に含まれる全ての前記画素から読み出される撮像信号が記憶される記憶部と、前記記憶部に記憶された撮像信号を出力する第一の出力端子と、前記記憶部に記憶された撮像信号を出力する第二の出力端子と、を有する撮像素子を用いて被写体を撮像する撮像方法であって、
     複数の前記画素を露光し、当該画素から撮像信号を読み出して前記記憶部に記憶する第一の撮像制御を行う撮像制御ステップと、
     前記第一の撮像制御によって前記記憶部に記憶された前記複数の前記画素から読み出された前記撮像信号で構成される撮像画像信号のうち、Nを2以上の自然数として前記複数の画素行を前記列方向にN個に1つずつ選択した場合の前記選択された前記画素行に含まれる前記画素から読み出された撮像信号を前記第一の出力端子から出力させる第一の出力制御と、
     前記撮像画像信号を、前記受光面を前記行方向又は前記列方向の少なくとも一方に分割した場合の各分割エリアにある前記画素から読み出された撮像信号からなるMを2以上とするM個のグループに分け、前記M個のグループを順次選択して、選択した前記グループの前記撮像信号を前記第二の出力端子から出力させる第二の出力制御とを行う出力制御ステップと、
     前記第一の出力端子から出力される前記撮像信号を処理して表示用の撮像画像データを生成する第一の画像処理ステップと、
     前記第二の出力端子から出力される前記グループの前記撮像信号を順次処理して当該グループに対応する分割画像データを生成し、前記M個のグループの各々に対応する前記分割画像データを合成して記憶用の撮像画像データを生成する第二の画像処理ステップと、を備える撮像方法。
  15.  請求項14記載の撮像方法であって、
     前記M個のグループの各々に優先度を設定する優先度設定ステップを更に備え、
     前記出力制御ステップは、前記優先度が優先閾値以上となる前記グループを、前記優先度が前記優先閾値未満となる前記グループよりも先に前記第二の出力端子から出力させる撮像方法。
  16.  請求項15記載の撮像方法であって、
     前記第一の出力端子から出力される前記撮像信号に基づいて、撮像中の被写体の注目領域を決定する注目領域決定ステップを更に備え、
     前記優先度設定ステップは、前記M個のグループのうち、前記注目領域に対応する前記分割エリアの前記画素から読み出された前記グループには前記優先閾値以上の前記優先度を設定し、その他の前記グループには前記優先閾値未満の前記優先度を設定する撮像方法。
  17.  請求項16記載の撮像方法であって、
     前記注目領域決定ステップは、前記第一の出力端子から出力される前記撮像信号から顔領域を検出する処理を行い、前記顔領域を前記注目領域として決定する撮像方法。
  18.  請求項16記載の撮像方法であって、
     前記撮像制御ステップは、前記第一の撮像制御の後に、複数の前記画素を露光し、当該画素から撮像信号を読み出して前記記憶部に記憶する第二の撮像制御を少なくとも1回行い、
     前記出力制御ステップは、前記第一の出力制御による前記撮像信号の出力が完了した後は、前記第二の撮像制御によって前記記憶部に記憶される前記撮像信号を前記第一の出力端子から出力させる第三の出力制御を更に行い、
     前記注目領域決定ステップは、前記第一の出力端子から連続して出力される複数の前記撮像信号に基づいて、前記被写体に含まれる動体領域を検出する処理を行い、前記動体領域を前記注目領域として決定する撮像方法。
  19.  請求項15記載の撮像方法であって、
     前記優先度設定ステップは、前記M個のグループのうち、前記受光面上に設定されている焦点を合わせる対象となる複数の合焦エリアのうちの選択された合焦エリアと重なる前記分割エリアの前記画素から読み出された前記グループには前記優先閾値以上の前記優先度を設定し、その他の前記グループには前記優先閾値未満の前記優先度を設定する撮像方法。
  20.  請求項14~19のいずれか1項記載の撮像方法であって、
     前記Nと前記Mが同じ値である撮像方法。
  21.  請求項14~20のいずれか1項記載の撮像方法であって、
     前記出力制御ステップは、前記撮像素子を搭載する撮像装置の内部温度が温度閾値以上になっている場合、又は、前記撮像装置のバッテリ残量が残量閾値以下になっている場合には、前記第二の出力制御を停止し、前記撮像画像信号のうちの前記第一の出力制御によって前記第一の出力端子から出力される撮像信号を除く撮像信号を、前記第二の出力端子から出力させる撮像方法。
  22.  請求項21記載の撮像方法であって、
     前記出力制御ステップは、前記第二の出力制御を停止した場合に、前記第一の出力制御によって前記第一の出力端子から出力される撮像信号を除く前記撮像信号を複数回に分けて前記第二の出力端子から出力させ、前記第二の出力端子からの当該撮像信号の出力速度を、前記第一の出力制御による前記第一の出力端子からの撮像信号の出力速度よりも低速にする撮像方法。
  23.  請求項14~20のいずれか1項記載の撮像方法であって、
     前記出力制御ステップは、前記撮像素子を搭載する撮像装置の内部温度が温度閾値以上である場合又は前記撮像装置のバッテリ残量が残量閾値以下である場合には、前記第二の出力制御で前記第二の出力端子から出力させる前記グループの出力速度を、前記内部温度が前記温度閾値未満である場合又は前記バッテリ残量が前記残量閾値を超える場合よりも低速にする撮像方法。
  24.  請求項14~23のいずれか1項記載の撮像方法であって、
     前記選択された前記画素行には、位相差検出用画素が含まれている撮像方法。
  25.  請求項14~24のいずれか1項記載の撮像方法であって、
     前記分割エリアは、前記受光面を前記行方向に分割した場合のものである撮像方法。
  26.  請求項14~24のいずれか1項記載の撮像方法であって、
     前記分割エリアは、前記受光面を前記列方向に分割した場合のものである撮像方法。
  27.  行方向に配列された複数の画素からなる複数の画素行が前記行方向と直交する列方向に配列された受光面を含むセンサ部と、前記複数の画素行に含まれる全ての前記画素から読み出される撮像信号が記憶される記憶部と、前記記憶部に記憶された撮像信号を出力する第一の出力端子と、前記記憶部に記憶された撮像信号を出力する第二の出力端子と、を有する撮像素子を用いて被写体を撮像する撮像プログラムであって、
     複数の前記画素を露光し、当該画素から撮像信号を読み出して前記記憶部に記憶する第一の撮像制御を行う撮像制御ステップと、
     前記第一の撮像制御によって前記記憶部に記憶された前記複数の前記画素から読み出された前記撮像信号で構成される撮像画像信号のうち、Nを2以上の自然数として前記複数の画素行を前記列方向にN個に1つずつ選択した場合の前記選択された前記画素行に含まれる前記画素から読み出された撮像信号を前記第一の出力端子から出力させる第一の出力制御と、
     前記撮像画像信号を、前記受光面を前記行方向又は前記列方向の少なくとも一方に分割した場合の各分割エリアにある前記画素から読み出された撮像信号からなるMを2以上とするM個のグループに分け、前記M個のグループを順次選択して、選択した前記グループの前記撮像信号を前記第二の出力端子から出力させる第二の出力制御とを行う出力制御ステップと、
     前記第一の出力端子から出力される前記撮像信号を処理して表示用の撮像画像データを生成する第一の画像処理ステップと、
     前記第二の出力端子から出力される前記グループの前記撮像信号を順次処理して当該グループに対応する分割画像データを生成し、前記M個のグループの各々に対応する前記分割画像データを合成して記憶用の撮像画像データを生成する第二の画像処理ステップと、をコンピュータに実行させるための撮像プログラム。
PCT/JP2017/037247 2016-11-14 2017-10-13 撮像装置、撮像方法、及び、撮像プログラム WO2018088121A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018550087A JP6569015B2 (ja) 2016-11-14 2017-10-13 撮像装置、撮像方法、及び、撮像プログラム
CN201780070271.6A CN110024373B (zh) 2016-11-14 2017-10-13 摄像装置、摄像方法及存储介质
US16/411,711 US10742876B2 (en) 2016-11-14 2019-05-14 Imaging device, imaging method, and imaging program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016221762 2016-11-14
JP2016-221762 2016-11-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/411,711 Continuation US10742876B2 (en) 2016-11-14 2019-05-14 Imaging device, imaging method, and imaging program

Publications (1)

Publication Number Publication Date
WO2018088121A1 true WO2018088121A1 (ja) 2018-05-17

Family

ID=62109232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037247 WO2018088121A1 (ja) 2016-11-14 2017-10-13 撮像装置、撮像方法、及び、撮像プログラム

Country Status (4)

Country Link
US (1) US10742876B2 (ja)
JP (1) JP6569015B2 (ja)
CN (1) CN110024373B (ja)
WO (1) WO2018088121A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12035036B2 (en) * 2020-11-24 2024-07-09 Motorola Mobility Llc System and method to manage multi-mode camera previews on an image-receiving device
US11765450B2 (en) 2020-11-24 2023-09-19 Motorola Mobility Llc System and method to manage multi-mode camera previews on an image-originating device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010206769A (ja) * 2009-02-03 2010-09-16 Olympus Imaging Corp 撮像装置
JP2012023663A (ja) * 2010-07-16 2012-02-02 Olympus Corp 読出し制御装置、読出し制御方法、プログラム、固体撮像装置、および撮像装置
JP2014178603A (ja) * 2013-03-15 2014-09-25 Nikon Corp 撮像装置
JP2014207503A (ja) * 2013-04-10 2014-10-30 キヤノン株式会社 撮像装置及びその制御方法
JP2016136660A (ja) * 2015-01-23 2016-07-28 株式会社ソシオネクスト 集積回路および集積回路による画像処理方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006005596A (ja) 2004-06-17 2006-01-05 Renesas Technology Corp 半導体集積回路装置及び撮像装置
JP4478599B2 (ja) * 2005-03-22 2010-06-09 キヤノン株式会社 撮像装置
US7969490B2 (en) * 2006-08-25 2011-06-28 Micron Technology, Inc. Method, apparatus, and system providing an imager with pixels having extended dynamic range
JP2008187615A (ja) * 2007-01-31 2008-08-14 Canon Inc 撮像素子、撮像装置、制御方法、及びプログラム
JP2009177472A (ja) * 2008-01-24 2009-08-06 Panasonic Corp 画像処理方法、画像処理装置及び撮像装置
JP5319347B2 (ja) * 2009-03-17 2013-10-16 キヤノン株式会社 撮像装置及びその制御方法
US8526725B2 (en) * 2010-12-13 2013-09-03 Fuji Xerox Co., Ltd. Image processing apparatus including a division-conversion unit and a composing unit, image processing method, computer readable medium
JP5718069B2 (ja) * 2011-01-18 2015-05-13 オリンパス株式会社 固体撮像装置および撮像装置
JP5984018B2 (ja) * 2013-02-21 2016-09-06 ソニー株式会社 固体撮像素子、および撮像装置
KR102226707B1 (ko) * 2013-05-02 2021-03-11 주식회사 레이언스 이미지센서와 이의 구동방법
JP6294626B2 (ja) * 2013-10-08 2018-03-14 キヤノン株式会社 撮像素子、撮像装置、携帯電話機
CN106331540B (zh) * 2016-09-13 2019-09-13 首都师范大学 一种多模式cmos图像传感器及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010206769A (ja) * 2009-02-03 2010-09-16 Olympus Imaging Corp 撮像装置
JP2012023663A (ja) * 2010-07-16 2012-02-02 Olympus Corp 読出し制御装置、読出し制御方法、プログラム、固体撮像装置、および撮像装置
JP2014178603A (ja) * 2013-03-15 2014-09-25 Nikon Corp 撮像装置
JP2014207503A (ja) * 2013-04-10 2014-10-30 キヤノン株式会社 撮像装置及びその制御方法
JP2016136660A (ja) * 2015-01-23 2016-07-28 株式会社ソシオネクスト 集積回路および集積回路による画像処理方法

Also Published As

Publication number Publication date
JPWO2018088121A1 (ja) 2019-08-08
US20190273861A1 (en) 2019-09-05
JP6569015B2 (ja) 2019-08-28
US10742876B2 (en) 2020-08-11
CN110024373A (zh) 2019-07-16
CN110024373B (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
JP5690974B2 (ja) 撮像装置及び合焦制御方法
US9380204B2 (en) Imaging device and focus control method
EP2961153B1 (en) Image pickup device
JP6569022B2 (ja) 撮像装置、撮像方法、及び撮像プログラム
JPWO2014038258A1 (ja) 撮像装置及び合焦制御方法
JPWO2015045704A1 (ja) 撮像装置及び合焦制御方法
JP7112529B2 (ja) 撮像装置、撮像方法、及びプログラム
US10848692B2 (en) Global shutter and rolling shutter drive start timings for imaging apparatus, imaging method, and imaging program
JP6582153B2 (ja) 撮像装置、撮像方法、及び撮像プログラム
JP6569015B2 (ja) 撮像装置、撮像方法、及び、撮像プログラム
US10939056B2 (en) Imaging apparatus, imaging method, imaging program
JP6539788B2 (ja) 撮像装置、静止画撮像方法、及び、静止画撮像プログラム
US10778880B2 (en) Imaging device, imaging method, and imaging program
WO2019058691A1 (ja) 撮像制御装置、撮像装置、撮像制御方法、及び撮像制御プログラム
JPWO2018173725A1 (ja) 撮像装置、撮像方法、及び撮像プログラム
JP6236580B2 (ja) 合焦制御装置、合焦制御方法、合焦制御プログラム、レンズ装置、撮像装置
JP2023051391A (ja) 撮像装置、撮像制御方法、及び撮像制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869417

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018550087

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17869417

Country of ref document: EP

Kind code of ref document: A1