WO2018088008A1 - 樹脂用炭酸カルシウム填料、及びそれを含有してなる樹脂組成物 - Google Patents

樹脂用炭酸カルシウム填料、及びそれを含有してなる樹脂組成物 Download PDF

Info

Publication number
WO2018088008A1
WO2018088008A1 PCT/JP2017/032195 JP2017032195W WO2018088008A1 WO 2018088008 A1 WO2018088008 A1 WO 2018088008A1 JP 2017032195 W JP2017032195 W JP 2017032195W WO 2018088008 A1 WO2018088008 A1 WO 2018088008A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcium carbonate
resin
filler
carbonate filler
particles
Prior art date
Application number
PCT/JP2017/032195
Other languages
English (en)
French (fr)
Inventor
山本和矢
笠原英充
Original Assignee
丸尾カルシウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丸尾カルシウム株式会社 filed Critical 丸尾カルシウム株式会社
Priority to US16/348,625 priority Critical patent/US11186699B2/en
Priority to CN201780069761.4A priority patent/CN109906250B/zh
Priority to KR1020197015864A priority patent/KR102358135B1/ko
Priority to JP2018550047A priority patent/JP7127833B2/ja
Publication of WO2018088008A1 publication Critical patent/WO2018088008A1/ja
Priority to JP2022073869A priority patent/JP7411262B2/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/185After-treatment, e.g. grinding, purification, conversion of crystal morphology
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • C09C1/021Calcium carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • C01P2006/37Stability against thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/04Polysulfides

Definitions

  • the present invention relates to a calcium carbonate filler for resin and a resin composition containing the same, and more specifically, by adjusting a specific specific surface area, a specific particle size characteristic, and a specific heat loss, the particles are uniformly dispersed.
  • the present invention relates to a calcium carbonate filler for resin and a resin composition comprising the same.
  • the calcium carbonate filler for resin of the present invention is not only used for conventional sealants, flooring materials, and adhesives blended in a high concentration, for example, general-purpose plastics such as polyethylene and polypropylene, polylactic acid (PLA), polycarbonate (PC), It is useful as an anti-blocking material excellent in slipperiness, drop-off resistance, etc. in resin film applications blended with polyesters such as polyethylene terephthalate (PET), engineering plastics with high processing temperatures such as polyphenylene sulfide (PPS).
  • PET polyethylene terephthalate
  • PPS polyphenylene sulfide
  • inorganic particles such as silica, titanium oxide and calcium carbonate, organic materials such as polystyrene and polyacrylate, etc. are used to develop the function of synthetic resin films for food packaging and industrial use (for optical use and magnetic recording use).
  • Anti-blocking materials are widely used for the purpose of preventing adhesion between films using particles.
  • a synthetic calcium carbonate having a specific particle size obtained by a wet reaction between calcium hydroxide and carbon dioxide gas is suspended in ethylene glycol (EG) and finely dispersed to a specific particle size by a wet pulverizer.
  • EG ethylene glycol
  • the obtained glycol-based dispersion of calcium carbonate is a polyethylene terephthalate (PET) film prepared by polymerization with terephthalic acid or dimethylterephthalic acid and film formation, and has excellent antiblocking performance.
  • PET polyethylene terephthalate
  • Patent Document 2 a carbonation reaction in an aqueous solution system of water-soluble calcium and a water-soluble carbonate, or carbonization in a system in which quick lime is digested (calcium hydroxide) in a mixed solvent of methanol and water.
  • quick lime is digested (calcium hydroxide) in a mixed solvent of methanol and water.
  • excellent anti-blocking performance is obtained by adjusting uniform vaterite-type calcium carbonate and calcite-type calcium carbonate.
  • the surface of the synthetic resin film has been remarkably smoothed.
  • a resin film for molding a ceramic sheet in a multilayer ceramic capacitor is desired to have a thinner ceramic sheet layer in order to reduce the size and increase the capacity.
  • the thickness of the ceramic sheet layer has been reduced from about 7 to 10 ⁇ m to about 3 to 5 ⁇ m at present, and further to about 1 to 2 ⁇ m or less than 1 ⁇ m.
  • the anti-blocking material to be used is not only required to improve the uniformity and dispersibility of the particles, but also to prevent the particles from dropping off due to the generation of voids and the deterioration of the anti-blocking properties in the resin film.
  • a feature of the present invention is a calcium carbonate filler for a resin comprising calcium carbonate particles and satisfying the following formulas (a) to (e).
  • (D) 0.8 ⁇ Dy / Dx ⁇ 3.5
  • E 0.1 ⁇ Tw ⁇ 0.8 (wt%)
  • Sw BET specific surface area (m 2 / g) measured with a BET specific surface area measuring device
  • Dy 50% diameter ( ⁇ m) accumulated from the small particle side in the volume particle size distribution actually measured with a laser diffraction particle size distribution analyzer
  • Tw Heat loss (weight%) at 100 to 300 ° C.
  • Another feature of the present invention is the above-described calcium carbonate filler for a resin in which a coating layer made of a surface treatment agent is formed on the surface of the calcium carbonate particles.
  • Another feature of the present invention is the calcium carbonate filler for a resin described above, wherein the surface treatment agent is a compound having a chelating ability to an alkaline earth metal and / or a surfactant.
  • Another feature of the present invention is a resin composition comprising a resin and the above-described calcium carbonate filler for a resin.
  • Another feature of the present invention is the above resin composition in which the resin is a film-based synthetic resin.
  • Another feature of the present invention is the above resin composition wherein the film-based synthetic resin is selected from polyester, polyphenylene sulfide, and polyolefin.
  • Another feature of the present invention is the above resin composition in which the calcium carbonate filler for a resin is for an anti-blocking material.
  • the calcium carbonate filler for resin of the present invention is composed of calcium carbonate particles having a uniform specific surface area, specific particle size characteristics, and specific heat loss, uniform particles, high dispersibility and heat stability, and high processing temperature. Even if it is blended in a synthetic resin film or the like, it is particularly useful as an anti-blocking material for a resin film because it is excellent in the slipperiness and affinity of the resin film and has a high effect of suppressing the dropout of particles.
  • the calcium carbonate filler for resin of the present invention (hereinafter simply referred to as calcium carbonate filler) is composed of calcium carbonate particles and needs to satisfy the following formulas (a) to (e).
  • (D) 0.8 ⁇ Dy / Dx ⁇ 3.5
  • E 0.1 ⁇ Tw ⁇ 0.8 (wt%)
  • Sw BET specific surface area (m 2 / g) measured with a BET specific surface area measuring device
  • Dy 50% diameter ( ⁇ m) accumulated from the small particle side in the volume particle size distribution actually measured with a laser diffraction particle size distribution analyzer
  • Tw Heat loss (weight%) at 100 to 300 ° C
  • each size of the calcium carbonate filler is expressed as a BET specific surface area (Sw), and it is necessary to be 1.0 to 12.0 m 2 / g.
  • Sw BET specific surface area
  • the BET specific surface area tends to be high.
  • the BET specific surface area is too high, it causes aggregation, so a range of 1.0 to 12.0 m 2 / g is appropriate.
  • Sw exceeds 12.0 m 2 / g, there is a problem that the primary particles of calcium carbonate are small and easily aggregated.
  • BET specific surface area measuring apparatus it measured by the following method using Macsorb made from Mountaintech. ⁇ Measurement method of BET specific surface area (Sw)> Set 0.2 to 0.3 g of calcium carbonate filler in the measuring device, and after 5 minutes of heat treatment at 200 ° C. in a mixed gas atmosphere of nitrogen and helium as a pretreatment, low temperature and low humidity in an environment of liquid nitrogen Physical adsorption was performed and the specific surface area was measured.
  • Dx the primary particle diameter
  • Dx the aggregation between primary particles is strong, so the cohesion between particles is strong and the dispersibility is high. Inadequate in terms.
  • the thickness is preferably 0.2 to 4.0 ⁇ m, more preferably 0.3 to 3.0 ⁇ m.
  • Formula (c) of the present invention is an actual measurement of 50% diameter (Dy) accumulated from the small particle side in a volume particle size distribution measured by a laser diffraction particle size distribution measuring device, and Dy is 0.1 to 5 It is necessary to be 0.0 ⁇ m.
  • Dy 50% diameter
  • the thickness is preferably 0.2 to 4.0 ⁇ m, more preferably 0.3 to 3.0 ⁇ m.
  • micro track MT-3300EX II was used as a laser diffraction type particle size distribution measuring apparatus, and the 50% diameter was measured by the following method. ⁇ Measurement method of 50% diameter (Dy)> Methanol is used as a medium, and 0.1-0.3 g of calcium carbonate filler and 50 ml of methanol solvent are added and suspended in a beaker (100 ml) as a pretreatment, and a chip type ultrasonic dispersion machine (US-300T; manufactured by Nippon Seiki Seisakusho) is suspended.
  • a chip type ultrasonic dispersion machine US-300T; manufactured by Nippon Seiki Seisakusho
  • the formula (d) of the present invention is obtained by dividing Dy (measured diameter) by Dx (theoretical diameter), and Dy / Dx needs to be in the range of 0.8 to 3.5.
  • Dy measured diameter
  • Dx theoretical diameter
  • Dy / Dx the closeness of the measured diameter of Dy and the theoretical diameter of Dx tends to affect the dispersibility in the resin film.
  • Dy / Dx is less than 0.8, the measured diameter is smaller than the theoretical diameter. Therefore, such a particle property means an aggregate of aggregated particles and is inappropriate for an anti-blocking material.
  • it exceeds 3.5 there is a problem in the uniformity of the particles, which is inappropriate for the anti-blocking material. Therefore, it is more preferably 0.8 to 3.0, and still more preferably 0.8 to 2.5.
  • the equation (e) of the present invention is a heat loss (Tw) of 100 to 300 ° C. measured with a differential thermobalance device, and Tw needs to be 0.1 to 0.8% by weight.
  • Tw heat loss
  • Tw exceeds 0.8% by weight
  • volatile substances attack the resin during kneading with the resin or film formation to induce resin deterioration and gas marks during film formation.
  • Tw is less than 0.1% by weight, there is no particular problem in terms of physical properties, but a large production load is required to increase the crystallinity of calcium carbonate. It is 6% by weight, more preferably 0.1 to 0.5% by weight.
  • the calcium carbonate used in the present invention is prepared by pulverizing natural white sugar crystalline limestone (heavy calcium carbonate) containing a large amount of fine particles and impurities from the viewpoint of dispersibility of calcium carbonate and foreign matters. And those prepared by a synthetic method of firing natural gray dense limestone are preferable. This is because the synthetic product (light / colloidal calcium carbonate) prepared by the synthesis method can control the particles uniformly and remove ore which is a hydrochloric acid insoluble matter which is the basis of relatively coarse particles.
  • examples of the crystal form of the synthetic product include water-based and thermodynamically most unstable vaterite crystals, metastable aragonite crystals, and stable calcite crystals. In terms of surface.
  • Calcium carbonate particles can be adjusted by either pulverizing and classifying natural calcium carbonate or by synthesizing and processing calcium carbonate.
  • the synthesis method of calcium carbonate is a carbon dioxide gas method in which lime milk obtained by adding water to quick lime obtained by calcining limestone and carbon dioxide gas discharged at the time of firing are conducted and reacted. From the calcium carbonate aqueous slurry reacted by the method, the particles can be adjusted to a desired BET specific surface area or particle diameter by an Ostwald ripening method or the like.
  • the method of fine-tuning the particle diameter to a desired range by a synthesis method is more preferable than pulverizing and classifying natural calcium carbonate. It can be said that it is preferable.
  • the calcium carbonate filler of the present invention may be surface treated (coated) with various surface treatment agents for the purpose of improving the dispersibility of the powder, alkali resistance, compatibility with the resin, and improving the properties of the calcium carbonate filler.
  • the surface treatment agent is not particularly limited, a compound (A) having a chelating ability to an alkaline earth metal (hereinafter sometimes referred to as a chelate compound (A)), which aims to improve the dispersibility of the calcium carbonate filler,
  • a surfactant (B) for the purpose of improving the alkali resistance and improving the stability and compatibility with the resin may be mentioned.
  • Examples of the chelate compound (A) include ethylenediaminetetraacetic acid, nitrilotriacetic acid, hydroxyethylethylenediaminetriacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraaminehexaacetic acid, and other aminocarboxylic acid-based chelating agents, hydroxyethylidene diacetylene Water treatment agent composed of organophosphorus such as phosphoric acid, nitrilotrismethylenephosphonic acid, aluminum compound such as polyaluminum chloride, polycarboxylic acid represented by polyacrylic acid, polymaleic acid, polyitaconic acid, polycrotonic acid, etc.
  • Examples thereof include salts and copolymers, or inorganic phosphorus compounds represented by polyphosphoric acids such as condensed phosphoric acids such as hexametaphosphoric acid and pyrophosphoric acid, and salts thereof. These may be used alone or in combination of two or more as required.
  • the amount of the chelate compound (A) used varies depending on the specific surface area of calcium carbonate, the resin used and the amount of the compound used, but it is difficult to define it in general.
  • the BET specific surface area Sw / 10 of calcium carbonate is The amount is preferably 0.03 to 3% by weight. If the amount used is less than 0.03% by weight, it is difficult to obtain a sufficient dispersion effect. On the other hand, even if the amount exceeds 3% by weight, further improvement in the effect is hardly recognized. Therefore, it is more preferably 0.05 to 2.5% by weight, and still more preferably 0.1 to 2.0% by weight.
  • surfactant (B) examples include saturated fatty acids, unsaturated fatty acids, alicyclic carboxylic acids, resin acids and their salts or esters, phosphate esters, alcohol surfactants, and sorbitan fatty acid esters.
  • Amide and amine surfactants, polyoxyalkylene alkyl ethers, polyoxyethylene nonyl phenyl ether, sodium alpha olefin sulfonate, long chain alkyl amino acids, amine oxides, alkyl amines, quaternary ammonium salts, coupling agents And oil are exemplified, and these are used alone or in combination of two or more as required.
  • saturated fatty acids include capric acid, lauric acid, myristic acid, palmitic acid, and stearic acid.
  • unsaturated fatty acids include oleic acid, linoleic acid, and linolenic acid.
  • alicyclic carboxylic acids include And naphthenic acid having a carboxyl group at the end of the cyclopentane ring or cyclohexane ring, and examples of the resin acid include abietic acid, pimaric acid, and neoabietic acid.
  • phosphate esters examples include orthophosphate esters whose functional groups are represented by trimethyl, triethyl, tributyl, triphenyl, etc., acidic phosphate esters whose functional groups are represented by methyl, ethyl, butyl, ethylhexyl, isodecyl, etc. And phosphite phosphites.
  • alcohol surfactants include sodium alkyl sulfates and sodium alkyl ether sulfates.
  • sorbitan fatty acid esters include sorbitan monolaurate and polyoxyethylene sorbitan monostearate.
  • amine surfactants include fatty acid alkanolamides and polyoxyethylene fatty acid amides.
  • polyoxyalkylene alkyl ethers include polyoxyethylene alkyl ethers and polyoxyethylene lauryl ethers. Include lauryl betaine, stearyl betaine, and the like.
  • Examples of amine oxides include alkylamine oxides, examples of alkylamine salts include stearylamine acetate, and examples of quaternary ammonium salts include stearyltrimethylammonium chloride and quaternary ammonium sulfate.
  • Coupling agents and oils include silane coupling agents represented by vinyltrimethoxysilane, N-2- (aminoethyl) -3- aminopropyltrimethoxysilane, and titanate cups represented by isopropyltriisostearoyl titanate. Examples thereof include a ring agent and a silicone oil represented by methyl hydrogen.
  • Examples of the salts of the various acids include alkali metal salts such as potassium and sodium. Specifically, potassium laurate, potassium myristate, potassium palmitate, sodium palmitate, potassium stearate, sodium stearate. And the like, unsaturated fatty acid salts such as potassium oleate and sodium oleate, alicyclic carboxylates such as lead naphthenate and lead cyclohexylbutyrate, and potassium and sodium abietate.
  • esters of the various acids include ethyl caproate, vinyl caproate, diisopropyl adipate, ethyl caprylate, allyl caprate, ethyl caprate, vinyl caprate, diethyl sebacate, diisopropyl sebacate, isooctane.
  • the phosphorus surfactant is particularly compatible with the calcium carbonate.
  • Trimethyl phosphate, triethyl phosphate, methyl acid phosphate, and ethyl acid phosphate having a relatively high content and high efficiency are preferred.
  • the amount of the surfactant (B) used varies depending on the specific surface area of the calcium carbonate, the resin used and the amount of the surfactant used, but is generally difficult to define, but is usually based on the BET specific surface area Sw / 10 of the calcium carbonate. 0.03 to 10% by weight is preferred. If the amount used is less than 0.03% by weight, it is difficult to obtain a sufficient dispersion effect. On the other hand, even if the amount added exceeds 10% by weight, it is difficult to further improve the effect. Therefore, it is more preferably 0.05 to 5% by weight, and still more preferably 0.1 to 4% by weight.
  • the surface treatment agent is directly mixed into the powder using a mixer such as a super mixer or a Henschel mixer.
  • a mixer such as a super mixer or a Henschel mixer.
  • it may be a method generally called dry treatment, where the surface treatment is performed by heating as necessary.For example, it is dissolved in water or hot water and added to a stirring water slurry of calcium carbonate, and after the surface treatment, dehydration,
  • the drying may be a method called wet processing, or a combination of the two, but wet processing is mainly preferred from the viewpoint of the degree of processing on the surface of the calcium carbonate particles and an economical viewpoint.
  • the calcium carbonate filler of the present invention further improves the dispersibility with the resin
  • various pulverizers can be used.
  • the pulverizer that can be used in the present invention is not particularly limited, but a pulverizer that uses pulverized media using glass, zirconia, titanium oxide, alumina, or the like, or an air flow instead of using pulverized media.
  • a medialess pulverizer using a liquid flow can be exemplified.
  • the media type pulverizer is useful for pulverizing in a wet system by suspending it in water or an organic solvent, for example, when breaking coarse particles of several ⁇ m or more mixed at a contamination level.
  • the medialess pulverizer is less affected by contamination, easily suppresses particle breakage, and is suitable for mild dispersion. Therefore, when used as an anti-blocking material for a thin film which is the intended application of the present invention, a medialess pulverizer is less affected by contamination than a media pulverizer, and is preferable in terms of uniform dispersion of particles.
  • the calcium carbonate filler for resin of the present invention can be selected from a wet system and a dry system depending on the final product packaging. That is, when the final product is a powder system, a dry system can be used. When the final product is a slurry system such as water or ethylene glycol, a wet system can be used. In particular, when the final product is a powder system, there is no need to worry about the packing and settling of the calcium carbonate filler, which is preferable in terms of versatility.
  • the resin used in the present invention is not particularly limited, but when the intended use is an anti-blocking material or the like, various resins having a low processing temperature may be used, but a resin having a relatively high processing temperature is useful.
  • general-purpose resins represented by acrylic resin (PMMA), polyvinyl alcohol (PVA), polyvinylidene chloride (PVDC), polybutadiene (PBD), polyethylene terephthalate (PET), polyacetal (POM), polyamide (PA), Polycarbonate (PC), modified polyphenylene ether (PPE), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), ultrahigh molecular weight polyethylene (UHPE), polysulfone (PSF), polyethersulfone (PES), polyphenylene sulfide (PPS), polyarylate (PAR), polyetheretherketone (PEEK), polyimide (PI), polyetherimide (PEI), fluororesin (FR), liquid crystal polymer (LCP), etc.
  • acrylic resin PMMA
  • PVA polyvinyl alcohol
  • PVDC polyvinylidene chloride
  • PPD polybutadiene
  • PET polyethylene terephthalate
  • POM polyacetal
  • thermosetting resins such as geniering plastic, phenol, urea, melamine, alkyd, unsaturated polyester, epoxy, diallyl phthalate, polyurethane, modified silicone, polysulfide, reactive acrylic, polyisobutylene, silylated urethane, and modified epoxy.
  • biodegradable plastics such as polylactic acid resin, polybutylene succinate, polyamide 11 and polyhydroxybutyric acid and biomass plastics can also be used.
  • polyester resins having ester bonds such as PET, PBT, PEN, PC, and LCP have high versatility as sheet / film processed products, and particularly PET is suitable for the intended use of the present invention.
  • the blending ratio of the calcium carbonate filler for a resin of the present invention and the resin varies greatly depending on the type and use of the resin, desired physical properties and costs, and may be appropriately determined according to them.
  • the amount is usually 0.05 to 30 parts by weight, more preferably 0.1 to 15 parts by weight, and still more preferably 0.3 to 10 parts by weight with respect to 100 parts by weight of the resin.
  • the calcium carbonate filler exceeds 30 parts by weight, the hue (whiteness) tends to decrease due to a decrease in kneadability with the resin or resin deterioration, and when it is less than 0.05 parts by weight, sufficient anti-blocking properties are obtained. There may not be.
  • a lubricant such as fatty acid amide, ethylenebisstearic acid amide, sorbitan fatty acid ester, a plasticizer, and Stabilizers, antioxidants and the like may be added.
  • additives generally used in resin compositions for films such as lubricants, antioxidants, fluorescent brighteners, heat stabilizers, light stabilizers, UV absorbers, neutralizers, antifogging agents, antiblocking agents.
  • an antistatic agent, a slip agent, a colorant and the like may be blended.
  • the calcium carbonate filler of the present invention and various additives are blended in the resin, they are mixed using a known mixer such as a super mixer, a Henschel mixer, a tumbler mixer, or a ribbon blender.
  • the resin composition is mixed with a mixer and then kneaded with a single or twin screw extruder, a kneader mixer, a Banbury mixer, etc., and once added, various additives including the calcium carbonate filler of the present invention called a master batch
  • a pellet containing the agent is prepared, and melted and formed into a film using a known molding machine such as T-die extrusion or inflation molding.
  • the surface of the film is subjected to a surface treatment such as plasma discharge to coat an ink receiving layer, or an aromatic para-aramid or aromatic meta is used as a protective layer on at least one side of the film.
  • a surface treatment such as plasma discharge to coat an ink receiving layer, or an aromatic para-aramid or aromatic meta is used as a protective layer on at least one side of the film.
  • An organic solvent solution of a heat-resistant resin such as an aramid, polyphenylene sulfide (PPS), or polyether ether ketone (PEEK) resin may be applied as a coating solution.
  • Example 1 Carbonate was synthesized by carbonizing 3 m 3 of lime milk having a specific gravity of 1.070 with a furnace gas having a CO 2 concentration of 25% at a flow rate of 12 m 3 / min.
  • the synthetic calcium carbonate slurry is subjected to Ostwald ripening to grow particles to a BET specific surface area of 9 m 2 / g, dehydrated to a solid content of 60% by weight with a filter press, and then sodium polyacrylate as a surface treatment agent for the dehydrated cake.
  • triethyl phosphate (TEP) were each added in 0.9 wt% as a pure component with respect to the solid content of calcium carbonate to prepare a highly concentrated water slurry having a solid content of 50 wt% or more.
  • the water slurry is pulverized at a flow rate of 500 ml / min with a wet pulverizer (Starburst Lab type manufactured by Sugino Machine Co., Ltd .; pulverization pressure condition: 245 MPa), and then powdered with a spray dryer to prepare a calcium carbonate filler. did.
  • Table 1 shows the properties of the filler.
  • Example 2 Calcium carbonate filler in the same manner as in Example 1 except that the BET specific surface area was aged to 5 m 2 / g by Ostwald ripening in Example 1 and the addition amount of the surface treatment agent was changed to 0.5% by weight. Adjusted. Table 1 shows the properties of the filler.
  • Example 3 While the aged product of Example 2 was further added dropwise with a flow rate of 0.1 m 3 / hour of lime milk having a specific gravity of 1.070, a furnace gas with a CO 2 concentration of 25% was simultaneously passed, and the pH of the system was 10.0 ⁇ 0. The carbonation reaction was carried out under a stirring condition of .5. The total amount of lime milk dropped was 2.5 m 3 . Next, a calcium carbonate filler was prepared in the same manner as in Example 1 except that the addition amount of the surface treatment agent was changed to 0.3% by weight. Table 1 shows the properties of the filler.
  • Example 4 A calcium carbonate filler was prepared in the same manner as in Example 3, except that the total amount of lime milk dropped in Example 3 was changed to 4 m 3 and the addition amount of the surface treatment agent was changed to 0.2% by weight. Table 1 shows the properties of the filler.
  • Example 5 A calcium carbonate filler was prepared in the same manner as in Example 3 except that the total amount of lime milk dropped in Example 3 was changed to 10 m 3 and the addition amount of the surface treatment agent was changed to 0.1% by weight. Table 1 shows the properties of the filler.
  • Example 6 In Example 2, after preparing a high-concentration water slurry having a solid content of 50% by weight or more, it was pulverized by spray drying, and then pulverized by a dry pulverizer (CGS50 type manufactured by NETZSCH; pulverization pressure 0.3 MPa). Except for the above, a calcium carbonate filler was prepared in the same manner as in Example 2. Table 1 shows the properties of the filler.
  • Example 7 The high-concentration water slurry having a solid content of 50% by weight or more prepared in Example 2 was pulverized by spray drying without passing through a pulverizer to prepare a calcium carbonate filler. Next, 50 kg of the filler and 50 kg of ethylene glycol are mixed into a slurry, and pulverized with a wet pulverizer (Starburst Lab type manufactured by Sugino Machine Co., Ltd .; pulverization condition 245 MPa) at a flow rate of 500 ml / min to disperse calcium carbonate in ethylene glycol. Got the body. Table 1 shows the properties of the filler.
  • Example 8 As a surface treatment agent of Example 6, a calcium carbonate filler was prepared in the same manner as in Example 6 except that sodium polyacrylate was changed to sodium hexametaphosphate and triethyl phosphate (TEP) was changed to lauric acid. . Table 1 shows the properties of the filler.
  • Example 9 A calcium carbonate filler was prepared in the same manner as in Example 6 except that triethyl phosphate (TEP) was changed to N-phenyl-3-aminopropyltrimethoxysilane (silane coupling agent) as the surface treatment agent in Example 6. Adjusted. Table 1 shows the properties of the filler.
  • TEP triethyl phosphate
  • silane coupling agent N-phenyl-3-aminopropyltrimethoxysilane
  • Example 10 A calcium carbonate filler was prepared in the same manner as in Example 6 except that triethyl phosphate (TEP) was changed to trimethyl phosphate (TMP) as the surface treatment agent of Example 6. Table 1 shows the properties of the filler.
  • TEP triethyl phosphate
  • TMP trimethyl phosphate
  • Example 11 A calcium carbonate filler was prepared in the same manner as in Example 6 except that the surface treatment agent in Example 6 was changed to only sodium polyacrylate. Table 1 shows the properties of the filler.
  • Example 12 A calcium carbonate filler was prepared in the same manner as in Example 9, except that the surface treatment agent in Example 9 was changed to only trimethyl phosphate (TMP). Table 1 shows the properties of the filler.
  • Example 13 A calcium carbonate filler was prepared in the same manner as in Example 6 except that the surface treating agent of Example 6 was not added. Table 1 shows the properties of the filler.
  • Comparative Example 1 A calcium carbonate dough slurry having a BET specific surface area of 4.86 m 2 / g is prepared by performing a carbonation reaction between lime milk and carbon dioxide gas in a similar manner as in Example 3 of Japanese Patent Publication No. 1-4240. did.
  • the synthetic calcium carbonate aqueous slurry is dehydrated using a filter press, and the resulting press cake (solid content: 60% by weight) is put into a temperature-controlled treatment tank, and as a pure component as a surface treatment agent for the calcium carbonate solid content.
  • the mixture was vigorously stirred to prepare a high-concentration water slurry.
  • the water slurry was pulverized with a spray dryer to prepare a calcium carbonate filler.
  • ethylene glycol slurry As a wet pulverized raw material.
  • the ethylene glycol slurry was treated at a flow rate of 250 ml / min with a wet pulverizer (WAB DYNOMILL Pilot type; pulverization condition media 0.6 to 0.9 mm ⁇ glass beads, media filling rate 80%, rotation speed 1500 rpm). Grinding was performed to prepare an ethylene glycol dispersion. Table 1 shows the properties of the filler.
  • Comparative Example 2 As in Example 8 of JP-A-7-196316, a 1.0 mol / L sodium carbonate solution, a 0.6 mol / L calcium chloride solution, and a 0.03 mol / L sodium hydroxide solution ( The reaction buffer was adjusted to 100 L each. The sodium hydroxide solution and the sodium carbonate solution were mixed to prepare a mixed solution, and the liquid temperature of the mixed solution and the sodium chloride solution were both adjusted to 17 ° C. Next, 100 L of a sodium chloride solution was added dropwise to 200 L of a mixed solution of a sodium hydroxide solution and a sodium carbonate solution, a carbonation reaction was performed under stirring conditions, and the dropping supply was completed 270 seconds after the start of dropping.
  • Comparative Example 3 As in Example 7 of Japanese Patent Laid-Open No. 5-117443, after adjusting a mixed slurry of methanol and water having a quick lime concentration of 3.0% by weight to 42 ° C., carbon dioxide having a purity of 99% or more is passed through 0.082 mol / min. The carbonation reaction was carried out until the conductivity reached 100 ⁇ S / cm at a rate. After adding a predetermined amount of ethylene glycol to the obtained slurry of calcium carbonate methanol and water without adding surface treatment, methanol and water are removed by flushing with a rotary evaporator, and ethylene glycol with a concentration of 20% by weight is obtained. The dispersion was adjusted. Table 1 shows the properties of the filler.
  • Comparative Example 4 While adding 1.0% by weight and water of sodium polyacrylate as a surface treatment agent to a solid calcium carbonate powder as a surface treatment agent to heavy calcium carbonate (Maruo Calcium Co., Ltd .; trade name 7) manufactured by pulverization and classification A calcium carbonate slurry having a solid content of 50% by weight was prepared and dried with a spray dryer to prepare a calcium carbonate filler. Table 1 shows the properties of the filler.
  • Application example 1 (polyester resin film) Application Examples 1-12, Application Comparison Examples 1-4 Using the ethylene glycol dispersions of Example 7 and Comparative Examples 1 and 3, a polyester resin film was prepared based on the following formulation. Table 2 shows the evaluation results of the obtained polyester resin film.
  • (Formulation example 1) Preparation of Filler-Containing Polyester Master Pellet A and Non-Filler-Containing Polyester Homopellet B Using the ethylene glycol dispersions of Example 7 and Comparative Examples 1 and 3, master pellet A was prepared based on the following procedure.
  • Dimethyl terephthalate is heated by adding 1.9 moles of ethylene glycol and magnesium acetate tetrahydrate to 100 parts by weight of DMT and 0.015 parts by weight of phosphoric acid with respect to 1 mole of DMT.
  • 0.5 parts by weight of the ethylene glycol dispersion of Example 7, Comparative Examples 1 and 3 was added as a calcium carbonate filler to DMT, and subsequently 0.025 parts by weight of antimony trioxide was added to DMT, A polycondensation reaction was carried out under heating and under vacuum to obtain a filler-containing polyester master pellet A having an intrinsic viscosity of 0.62 dl / g.
  • a filler-free polyester homopellet B having an intrinsic viscosity of 0.62 dl / g was obtained in the same manner as described above except that the ethylene glycol dispersion was not contained.
  • (Formulation example 2) Preparation of Filler-Containing Polyester Master Pellet C Using the calcium carbonate fillers of Examples 1 to 6, 9 to 13, and Comparative Examples 2 and 4, filler-containing polyester master pellets C were prepared according to the following procedure. 0.5 to 5 parts by weight of the calcium carbonate fillers of Examples 1 to 6, 9 to 13 and Comparative Examples 2 and 4, and 99.5 parts by weight of the above filler-free polyester homopellet B having an intrinsic viscosity of 0.62 dl / g. After mixing with a super mixer, the mixture was supplied to a vent extruder having a 30 mm diameter twin screw and melted at a temperature of 290 ° C.
  • This melt was filtered through a filter made of metal fibers with a 95% cut hole diameter of 10 ⁇ m, and then extruded from a 2 mm hole diameter die to obtain a gut-like resin composition. Further, the composition was cut into a length of about 3 mm to obtain a filler-containing polyester master pellet C having an intrinsic viscosity of 0.62 dl / g and containing 0.5% by weight of a calcium carbonate filler.
  • Example of film formation For Application Example 7 and Application Comparative Examples 1 and 3, the filler-containing polyester master pellet A and the filler-free polyester homopellet B described above were used, and Application Examples 1 to 6, 8 to 12 and Application Comparative Example 2, For No. 4, the above-mentioned filler-containing polyester master pellets C and non-filler-containing polyester homopellets B were each dried under reduced pressure at 160 ° C. for 8 hours, then supplied to separate extruders, melt extruded at 275 ° C., and subjected to high-precision filtration.
  • the film was wound around a casting drum having a surface temperature of 25 ° C. on a cooling roll through a slit die maintained at 285 ° C. by using an electrostatic application casting method, and solidified by cooling to obtain an unstretched laminated film.
  • This unstretched laminated film was stretched 3.8 times in the longitudinal direction, then stretched 3.9 times in the transverse direction under hot air at 110 ° C. with a stenter, and heat treated at 230 ° C.
  • polyester resin films of the examples are useful as release films for thin film ceramic sheets and the like because the surface is highly smooth, has few defects, and is excellent in slitting properties.
  • polyester resin film was stacked and held at 100 ° C. for 1 day under a load of 100 kg / cm 2 .
  • peel strength was determined under the condition of tensile strength of 200 mN / min using a tensile strength measuring instrument (Strograph VE1D manufactured by Toyo Seiki Co., Ltd.), and evaluated according to the following criteria.
  • The peel strength is less than 200 mN / 10 cm width.
  • Peel strength is 200 mN / 10 cm width or more and less than 400 mN / 10 cm width.
  • X Peel strength is 400 mN / 10 cm width or more.
  • PPS resin film Application Examples 13 to 24, Application Comparative Examples 5 and 6 Using the calcium carbonate fillers of Examples 1 to 7, 9 to 13, and Comparative Examples 2 and 4, PPS resin films were prepared based on the following formulation. Table 3 shows the evaluation results of the obtained PPS resin film.
  • (Formulation example) Preparation of filler-containing PPS master pellet A and filler-free PPS homopellet B The calcium carbonate fillers of Examples 1 to 7, 9 to 13 and Comparative Examples 2 and 4 were added to PPS resin pellets using a super mixer, and the calcium carbonate filler The content of was mixed so as to be 0.5% by weight.
  • the obtained mixture was supplied to a vent extruder having a 30 mm diameter biaxial screw and melted at a temperature of 320 ° C. This melt was filtered through a filter made of metal fibers with a 95% cut hole diameter of 10 ⁇ m, and then extruded from a 2 mm hole diameter die to obtain a gut-like resin composition. Further, the composition was cut into a length of about 3 mm to obtain a filler-containing PPS master pellet A having a calcium carbonate filler content of 0.5% by weight. A filler-free PPS homopellet B was obtained in the same manner as described above except that the calcium carbonate filler was not contained.
  • the filler-containing PPS master pellet A and the filler-free PPS homopellet B were each dried under reduced pressure at 160 ° C. for 8 hours, then supplied to separate extruders, melt-extruded at 310 ° C., filtered with high precision, and then rectangular.
  • the three-layer confluence block was joined and laminated to form a three-layer laminate composed of PPS A layer / PPS B layer / PPS A layer.
  • the film was wound around a casting drum having a surface temperature of 25 ° C. by using an electrostatic application casting method on a cooling roll through a slit die maintained at 320 ° C., and solidified by cooling to obtain an unstretched laminated film.
  • This unstretched film was stretched 3.3 times in the machine direction, then stretched 3.6 times in the transverse direction under hot air at 110 ° C. with a stenter, and heat treated at 240 ° C. with the stenter to obtain a thickness of 23 ⁇ m, A biaxially oriented PPS resin film (three layers) having a PPS A layer thickness of 1.5 ⁇ m and a PPS B layer thickness of 20 ⁇ m was obtained.
  • This melt was filtered through a filter made of metal fibers with a 95% cut hole diameter of 10 ⁇ m, and then extruded from a 2 mm hole diameter die to obtain a gut-like resin composition. Further, the composition was cut into a length of about 3 mm to obtain a polypropylene-based master pellet A for filler-containing inner layer having a calcium carbonate particle content of 0.5% by weight. Further, B was obtained as a filler-free polypropylene pellet for the outer layer made of a propylene-ethylene block copolymer containing no calcium carbonate filler. Next, the polypropylene master pellet A for the filler-containing inner layer and the polypropylene pellet B for the filler-free outer layer are each dried under reduced pressure at 60 ° C.
  • the films were merged and laminated with a rectangular two-layer merge block to form a two-layer laminate comprising a polypropylene-based inner layer A / polypropylene-based outer layer B.
  • the film was wound around a casting drum having a surface temperature of 25 ° C. by using an electrostatic application casting method on a cooling roll through a slit die maintained at 200 ° C., and solidified by cooling to obtain an unstretched laminated film.
  • This unstretched film was stretched 5.0 times in the longitudinal direction, then stretched 10 times in the transverse direction under hot air at 110 ° C.
  • the calcium carbonate filler for resin of the present invention is used not only for conventional sealants, flooring materials, and adhesives blended in high concentrations, but for example, general-purpose plastics such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate (PET), and polyphenylene sulfide. It is useful as an anti-blocking material excellent in smoothness, peelability, drop-off resistance, etc. in resin film applications blended in engineering plastics having a high processing temperature such as (PPS).
  • PPS processing temperature

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

粒子が均一で、分散性や熱安定性が高く、特に平滑性、剥離性や耐脱落性等に優れたアンチブロッキング材として有用な樹脂用炭酸カルシウム填料を提供する。 炭酸カルシウム粒子からなり、下記の式(a)~(e)を満足することを特徴する樹脂用炭酸カルシウム填料。 (a)1.0≦Sw≦12.0(m2/g ) (b)0.1≦Dx≦5.0(μm) (c)0.1≦Dy≦5.0(μm) (d)0.8≦Dy/Dx=≦3.5 (e)0.1≦Tw≦0.8(重量%) Sw:BET比表面積測定装置にて測定したBET比表面積(m2/g )、Dx:算出式=6/(2.7・Sw)で表されるBET比表面積Swから算出される1次粒子直径(μm)、Dy:レーザー回折式粒度分布測定装置にて実測した体積粒度分布において、小さな粒子側から累積した50%直径(μm)、Tw:示差熱天秤装置にて測定した100~300℃の熱減量(重量%)。

Description

樹脂用炭酸カルシウム填料、及びそれを含有してなる樹脂組成物
 本発明は、樹脂用炭酸カルシウム填料及びそれを含有してなる樹脂組成物に関し、更に詳しくは、特定の比表面積と特定の粒度特性と特定の熱減量に調整することにより、粒子が均一で分散性や熱安定性が高い、樹脂用炭酸カルシウム填料及びそれを配合してなる樹脂組成物に関する。
 本発明の樹脂用炭酸カルシウム填料は、高濃度配合される従来のシーラント、床材、接着剤用途はもちろん、例えば、ポリエチレンやポリプロピレン等の汎用プラスチックや、ポリ乳酸(PLA)、ポリカーボネート(PC)やポリエチレンテレフタレート(PET)等のポリエステル、ポリフェニレンサルファイド(PPS)等の加工温度が高いエンジニアリングプラスチック等へ配合した樹脂フィルム用途において、滑り性や耐脱落性等に優れたアンチブロッキング材として有用である。
 従来から、食品包装用及び工業用(光学用、磁気記録用)等の合成樹脂フィルム機能を発現するために、シリカや、酸化チタン、炭酸カルシウム等の無機粒子や、ポリスチレンやポリアクリレート等の有機粒子を用いてフィルム同士の密着を防止する目的で、アンチブロッキング材が広く使われている。
 例えば、特許文献1では、水酸化カルシウムと炭酸ガスとの湿式反応で得た特定粒度の合成炭酸カルシウムをエチレングリコール(EG)と懸濁させ、湿式粉砕機で特定粒度になるよう微分散化して得た炭酸カルシウムのグリコール系分散体は、テレフタル酸やジメチルテレフタル酸との重合及び製膜で調整したポリエチレンテレフタレート(PET)フィルムとされ、優れたアンチブロッキング性能を得ている。
 また、特許文献2では、水溶性カルシウムと水溶性炭酸塩との水溶液系での炭酸化反応や、メタノールと水との混合溶媒中で生石灰を消化(水酸化カルシウム化)させた系での炭酸ガス反応において、均一なバテライト型炭酸カルシウムや、カルサイト型炭酸カルシウムを調整して、優れたアンチブロッキング性能を得ている。
特開平1-4240号公報 特開平5-117443号公報
 しかしながら、近年、合成樹脂フィルム表面の平滑化は目覚ましく、例えば積層セラミックコンデンサーにおけるセラミックシート成型用樹脂フィルムは、小型・高容量化のために、セラミックシート層の厚さをより薄膜化することが要望されている。セラミックシート層の厚みは、従来の7~10μm程度から、現在では3~5μm程度まで薄くなってきており、さらには1~2μm程度の厚みのものや1μm未満の厚みにまで、セラミックシートの薄膜化が進んできている。
 そのため、用いるアンチブロッキング材も、粒子の均一性や分散性の向上が求められるのはもちろん、樹脂フィルム中でボイド発生による粒子の脱落やアンチブロッキング性の低下が起こらないよう、従来以上に樹脂フィルムとアンチブロッキング材の密着性(耐脱落性)を向上させる必要があり、ボイドの発生要因の一つである熱安定性が高い粒子が求められている。
 本発明者らは、上記課題の解決のため鋭意検討した結果、特定のBET比表面積、特定の粒度特性及び特定の熱減量に調整した熱安定性の高い炭酸カルシウム填料は、樹脂フィルムの平滑性に有効なアンチブロッキング性を発揮できることを見い出し、本発明を完成するに至った。
 上記目的を達成するために、本発明の特徴は、炭酸カルシウム粒子からなり、下記の式(a)~(e)を満足することを特徴とする樹脂用炭酸カルシウム填料である。
(a)1.0≦Sw≦12.0(m2/g )
(b)0.1≦Dx≦5.0(μm)
(c)0.1≦Dy≦5.0(μm)
(d)0.8≦Dy/Dx=≦3.5
(e)0.1≦Tw≦0.8(重量%)
但し、
Sw:BET比表面積測定装置にて測定したBET比表面積(m2/g )、
Dx:算出式=6/(2.7・Sw)で表されるBET比表面積Swから算出される1次粒子直径(μm)、
Dy:レーザー回折式粒度分布測定装置にて実測した体積粒度分布において、小さな粒子側から累積した50%直径(μm)、
Tw:示差熱天秤装置にて測定した100~300℃の熱減量(重量%)。
 本発明の他の特徴は、炭酸カルシウム粒子の表面に、表面処理剤からなる被覆層が形成されている上記の樹脂用炭酸カルシウム填料である。
 本発明の他の特徴は、表面処理剤が、アルカリ土類金属にキレート能を有する化合物及び/又は界面活性剤である上記の樹脂用炭酸カルシウム填料である。
 本発明の他の特徴は、樹脂と、上記の樹脂用炭酸カルシウム填料とからなる樹脂組成物である。
 本発明の他の特徴は、樹脂がフィルム系合成樹脂である上記の樹脂組成物である。
 本発明の他の特徴は、フィルム系合成樹脂がポリエステル、ポリフェニレンサルファイド、ポリオレフィンから選ばれる上記樹脂組成物である。
 本発明の他の特徴は、樹脂用炭酸カルシウム填料が、アンチブロッキング材用である上記の樹脂組成物である。
 本発明の樹脂用炭酸カルシウム填料は、特定の比表面積、特定の粒度特性、特定の熱減量に調整した、粒子が均一で分散性及び熱安定性の高い炭酸カルシウム粒子からなり、加工温度が高い合成樹脂フィルム等に配合されても、樹脂フィルムの滑り性や親和性に優れており、粒子の脱落を抑制する効果が高いことから、特に、樹脂フィルムのアンチブロッキング材として有用である。
 本発明の樹脂用炭酸カルシウム填料(以下、単に炭酸カルシウム填料と記す)は、炭酸カルシウム粒子からなり、下記の式(a)~(e)を満足することが必要である。
(a)1.0≦Sw≦12.0(m2/g )
(b)0.1≦Dx≦5.0(μm)
(c)0.1≦Dy≦5.0(μm)
(d)0.8≦Dy/Dx=≦3.5
(e)0.1≦Tw≦0.8(重量%)
但し、
Sw:BET比表面積測定装置にて測定したBET比表面積(m2/g )、
Dx:算出式=6/(2.7・Sw)で表されるBET比表面積Swから算出される1次粒子直径(μm)、
Dy:レーザー回折式粒度分布測定装置にて実測した体積粒度分布において、小さな粒子側から累積した50%直径(μm)、
Tw:示差熱天秤装置にて測定した100~300℃の熱減量(重量%)。
 本発明の(a)式は、炭酸カルシウム填料の個々の大きさをBET比表面積(Sw)として表しており、1.0~12.0m/g であることが必要である。一般的に樹脂用アンチブロッキング材で使用される炭酸カルシウムの場合、粒子径は比較的小さく、より分散性の高い粒子が使われるため、BET比表面積も高くなりがちである。しかしながら、BET比表面積値が高すぎると、凝集の原因になるため、1.0~12.0m/g の範囲が適当である。Swが12.0m/g を超えると、炭酸カルシウム一次粒子が小さく凝集しやすいという問題があり、また、樹脂フィルム用アンチブロッキング材として使用する際、適正のアンチブロッキング性を得るには、炭酸カルシウムを多量に添加する必要が生じ、炭酸カルシウム中に含有する揮発成分が樹脂を劣化させる等の問題がある。一方、Swが1.0m/g 未満の場合、一次粒子が大き過ぎるため、粗大粒子や樹脂フィルムから粒子が脱落したり、適正なアンチブロッキング性が得られない問題がある。従って、より好ましくは1.5~10.0m/g 、さらに好ましく2.0~8.0m/g である。
 なお、BET比表面積測定装置としてはMountech社製Macsorb を用い、下記の方法で測定した。
<BET比表面積(Sw)の測定方法>
 炭酸カルシウム填料0.2~0.3gを測定装置にセットし、前処理として窒素とヘリウムの混合ガス雰囲気下で200℃で5分間の加熱処理を行った後、液体窒素の環境下で低温低湿物理吸着を行い、比表面積を測定した。
 本発明の(b)式は、Kozeny-Carman の算出式=6/真比重・Swで表される炭酸カルシウムの真比重2.7と炭酸カルシウムのBET比表面積(Sw)から理論的に求められる球体換算の1次粒子直径(Dx)を表したもので、Dxは0.1~5.0μmであることが必要である。一般的に樹脂用アンチブロッキング材で使用される炭酸カルシウムの填料の場合、Dxが0.1μm未満の場合、1次粒子間の凝集が強固であるため粒子間の凝集力が強く、分散性の面で不適当である。一方、5.0μmを超えると、前記したように、粗大粒子やフィルムから粒子が脱落する問題があり、適正なアンチブロッキング性が得られない。従って、好ましくは0.2~4.0μm、さらに好ましくは0.3~3.0μmである。
 本発明の(c)式は、レーザー回折式粒度分布測定装置にて実測した体積粒度分布において、小さな粒子側から累積した50%直径(Dy)を実測したもので、Dyは0.1~5.0μmであることが必要である。Dyが0.1μm未満の場合、1次粒子間の凝集力が強固であるため、アンチブロッキング材には不適当である。一方、5.0μmを超えると、粗大粒子や樹脂フィルムから粒子が脱落する問題があり、適正なアンチブロッキング性が得られない問題がある。従って、好ましくは0.2~4.0μm、さらに好ましくは0.3~3.0μmである。
 上記のDx、Dyで表される粒子は、0.1~5.0μmの範囲内であれば、粒子径の異なる粒子を2種以上組み合わせてよい。
 なお、レーザー回折式粒度分布測定装置としては日機装社製マイクロトラックMT-3300EX IIを用い、50%直径は下記方法で測定した。
<50%直径(Dy)の測定方法>
 媒体としてメタノールを用い、前処理としてビーカー(100ml)に炭酸カルシウム填料0.1~0.3gとメタノール溶媒50mlを加え懸濁させ、チップ式超音波分散機(US-300T;日本精機製作所製)を使用し、300μA-1分間の一定条件で予備分散した後に測定した。
 本発明の(d)式は、前記したDy(実測径)をDx(理論径)で除したもので、Dy/Dxは0.8~3.5の範囲である必要がある。一般的に樹脂用アンチブロッキング材で使用される炭酸カルシウムの場合、Dyの実測径とDxの理論径が近い値になることが、樹脂フィルム中での分散性に影響しやすい。Dy/Dxが0.8未満の場合、実測径が理論径より小さいことになるため、そのような粒子性状は凝集粒子の集合体を意味し、アンチブロッキング材には不適当である。一方、3.5を超えると、粒子の均一性に問題があり、アンチブロッキング材には不適当である。従って、より好ましくは0.8~3.0、さらに好ましくは0.8~2.5である。
 本発明の(e)式は、示差熱天秤装置にて測定した100~300℃の熱減量(Tw)で、Twは0.1~0.8重量%である必要がある。一般的に樹脂用アンチブロッキング材で使用される炭酸カルシウムの場合は、熱減量があまりに高いと、炭酸カルシウムと樹脂とを混練する際や、混練物をフィルムに製膜する際に、炭酸カルシウムの水分等の揮発物と樹脂が反応して黄変劣化や、空孔ボイド形成により粒子自体が脱落する問題がある。従って、Twが0.8重量%を超えると、樹脂との混練や製膜において揮発物が樹脂を攻撃して樹脂劣化や製膜時のガスマークを誘発する問題がある。一方、Twが0.1重量%未満の場合、物性上は特に問題はないが、炭酸カルシウムの結晶度を引き上げるのに多大な生産負荷が必要となるため、より好ましくは0.1~0.6重量%、さらに好ましくは0.1~0.5重量%である。
 なお、示差熱天秤装置としては島津製作所製DTG-60A を用い、下記の方法で測定した。
<熱減量(Tw)の測定方法>
 炭酸カルシウム填料30mgを直径5mmの白金パンに秤量し、示差熱天秤装置にセットし、30℃/分の昇温速度で昇温し100~300℃の熱減量を測定した。
 本発明で用いる炭酸カルシウムは、炭酸カルシウムの分散性や異物の観点から、微粉粒子や不純物を多く含有している天然の白色糖晶質石灰石(重質炭酸カルシウム)を粉砕法で調整したものではなく、天然の灰色緻密質石灰石を焼成する合成法で調整したものが好ましい。合成法で調整した合成品(軽質・コロイド炭酸カルシウム)は、粒子を均一に制御でき、比較的粗大粒子の元となる塩酸不溶物である鉱石を取り除くことができるためである。また、合成品の結晶形態は、水系や熱力学的に最も不安定なバテライト結晶、準安定なアラゴナイト結晶、安定なカルサイト結晶の3 結晶が例示できるが、カルサイト結晶が熱安定性等の面で好ましい。
 炭酸カルシウム粒子の調整方法は、天然の炭酸カルシウムを粉砕分級するか、炭酸カルシウムを合成して加工するか、どちらでも良い。炭酸カルシウムの合成法は、一般的に石灰石を焼成して得た生石灰に水を加えて得た石灰乳と、焼成時に排出される炭酸ガスを導通して反応させる炭酸ガス法であり、炭酸ガス法で反応した炭酸カルシウム水スラリーを、オストワルド熟成方法等で粒子を所望のBET比表面積や粒子径に調整することができる。本発明の目的用途においては、粒子の均一性や分散性が重要であることから、天然の炭酸カルシウムを粉砕分級するよりは、合成法で粒子径を所望の範囲に微調整する手法の方が好ましいと言える。
 本発明の炭酸カルシウム填料は、粉体の分散性、耐アルカリ性、樹脂との相溶性の改善や、炭酸カルシウム填料の特性を向上させる目的で、各種表面処理剤で表面処理(被覆)することができる。
 表面処理剤は特に限定されないが、炭酸カルシウム填料の分散性を改善する目的とする、アルカリ土類金属にキレート能を有する化合物(A)(以下、キレート化合物(A)と記す場合がある)や、耐アルカリ性の改善や樹脂との安定性や相溶性の改善を目的とする界面活性剤(B)のどちらか一方、あるいは両方が挙げられる。
 キレート化合物(A)としては、例えば、エチレンジアミン四酢酸やニトリロ三酢酸、ヒドロキシエチルエチレンジアミン三酢酸、ジエチレントリアミン五酢酸、トリエチレンテトラアミン六酢酸等に代表されるアミノカルボン酸系キレート剤、ヒドロキシエチリデン二亜リン酸、ニトリロトリスメチレンホスホン酸等の有機リン系、ポリ塩化アルミ等のアルミニウム化合物からなる水処理剤、ポリアクリル酸、ポリマレイン酸、ポリイタコン酸、ポリクロトン酸等で代表される多価カルボン酸やその塩類や共重合体、あるいは、ヘキサメタリン酸やピロリン酸等の縮合リン酸等のポリリン酸類に代表される無機リン系やその塩類等が例示できる。これらは、単独で又は必要に応じ2種以上組み合わせて用いられる。
 上記キレート化合物(A)の中では、本発明の目的用途である合成樹脂用アンチブロッキング材としては、樹脂との親和性や分散性の観点からは、縮合リン酸系、及び多価カルボン酸系が特に好ましく、中でもポリアクリル酸塩系が最適である。
 また、上記キレート化合物(A)の使用量は、炭酸カルシウムの比表面積や用いる樹脂やその配合量に応じて変わるので一概には規定し難いが、通常、炭酸カルシウムのBET比表面積Sw/10を基準に0.03~3重量%が好ましい。使用量が0.03重量%未満では充分な分散効果が得られ難く、一方、3重量%を越えて添加しても効果の更なる向上が認められ難い。従って、より好ましくは0.05~2.5重量%、さらに好ましくは0.1~2.0重量%である。
 本発明で使用できる界面活性剤(B)としては、飽和脂肪酸、不飽和脂肪酸、脂環族カルボン酸、樹脂酸やそれらの塩又はエステル、リン酸エステル、アルコール系界面活性剤、ソルビタン脂肪酸エステル類、アミド系やアミン系界面活性剤、ポリオキシアルキレンアルキルエーテル類、ポリオキシエチレンノニルフェニルエーテル、アルファオレフィンスルフォン酸ナトリウム、長鎖アルキルアミノ酸、アミンオキサイド、アルキルアミン、第四級アンモニウム塩、カップリング剤やオイル等が例示され、これらは単独で又は必要に応じ2種以上組み合わせて用いられる。
 飽和脂肪酸としては、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸等が挙げられ、不飽和脂肪酸としては、オレイン酸、リノール酸、リノレン酸等が挙げられ、脂環族カルボン酸としては、シクロペンタン環やシクロヘキサン環の末端にカルボキシル基を持つナフテン酸等が挙げられ、樹脂酸としてアビエチン酸、ピマル酸、ネオアビエチン酸等が挙げられる。
 リン酸エステルとしては、官能基がトリメチル、トリエチル、トリブチル、トリフェニル等で代表される正リン酸エステルや、官能基がメチル、エチル、ブチル、エチルヘキシル、イソデシル等で代表される酸性リン酸エステルや、フォスファイト系亜リン酸エステル等が挙げられる。
 アルコール系界面活性剤としては、アルキル硫酸エステルナトリウム、アルキルエーテル硫酸エステルナトリウム等が挙げられ、ソルビタン脂肪酸エステル類としては、ソルビタンモノラウレートやポリオキシエチレンソルビタンモノステアレート等が挙げられ、アミド系やアミン系界面活性剤としては、脂肪酸アルカノールアミド、ポリオキシエチレン脂肪酸アミド等が挙げられ、ポリオキシアルキレンアルキルエーテル類としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンラウリルエーテル等が挙げられ、ベタイン系としては、ラウリルベタイン、ステアリルベタイン等が挙げられる。
 アミンオキサイドとしては、アルキルアミンオキサイド等が挙げられ、アルキルアミン塩としては、ステアリルアミンアセテート等が挙げられ、第四級アンモニウム塩としては、ステアリルトリメチルアンモニウムクロライドや第四級アンモニウムサルフェート等が挙げられる。
 カップリング剤やオイルとしては、ビニルトリメトキシシラン、N-2-(アミノエチル)-3- アミノプロピルトリメトキシシラン等で代表されるシランカップリング剤、イソプロピルトリイソステアロイルチタネートで代表されるチタネートカップリング剤、メチルハイドロジェンで代表されるシリコーン系オイル等が挙げられる。
 上記の各種酸の塩としては、例えば、カリウム、ナトリウム等のアルカリ金属塩が挙げられ、具体的にはラウリン酸カリウム、ミリスチン酸カリウム、パルミチン酸カリウム、パルミチン酸ナトリウム、ステアリン酸カリウム、ステアリン酸ナトリウム等の飽和脂肪酸塩、オレイン酸カリウム、オレイン酸ナトリウム等の不飽和脂肪酸塩、ナフテン酸鉛、シクロヘキシル酪酸鉛等の脂環族カルボン酸塩、アビエチン酸カリウムやナトリウムが挙げられる。
 また、上記の各種酸のエステルとしては、例えば、カプロン酸エチル、カプロン酸ビニル、アジピン酸ジイソプロピル、カプリル酸エチル、カプリン酸アリル、カプリン酸エチル、カプリン酸ビニル、セバシン酸ジエチル、セバシン酸ジイソプロピル、イソオクタン酸セチル、ジメチルオクタン酸オクチルドデシル、ラウリン酸メチル、ラウリン酸ブチル、ラウリン酸ラウリル、ミリスチン酸メチル、ミリスチン酸イソプロピル、ミリスチン酸セチル、ミリスチン酸ミリスチル、ミリスチン酸イソセチル、ミリスチン酸オクチルドデシル、ミリスチン酸イソトリデシル、パルミチン酸メチル、パルミチン酸イソプロピル、パルミチン酸オクチル、パルミチン酸セチル、パルミチン酸イソステアリル、ステアリン酸メチル、ステアリン酸ブチル、ステアリン酸オクチル、ステアリン酸ステアリル、ステアリン酸コレステリル、イソステアリン酸イソセチル、ベヘニン酸メチル、ベヘニン酸ベヘニル等の飽和脂肪酸エステル、オレイン酸メチル、リノール酸エチル、リノール酸イソプロピル、オリーブオレイン酸エチル、エルカ酸メチル等の不飽和脂肪酸エステルが挙げられ、他に長鎖脂肪酸高級アルコールエステル、ネオペンチルポリオール( 長鎖・中鎖を含む) 脂肪酸系エステルおよび部分エステル化合物、ジペンタエリスリトール長鎖脂肪酸エステル、コンプレックス中鎖脂肪酸エステル、12-ステアロイルステアリン酸イソセチル、12- ステアロイルステアリン酸イソステアリル、12-ステアロイルステアリン酸ステアリル、牛脂脂肪酸オクチルエステル、多価アルコール脂肪酸アルキルグリセリルエーテルの脂肪酸エステル等の耐熱性特殊脂肪酸エステル、安息香酸エステル系に代表される芳香族エステルが挙げられる。
 これらの界面活性剤(B)については、合成樹脂用アンチブロッキング材用の樹脂との安定性や相溶性の改善の面からは、特にリン系界面活性剤が炭酸カルシウムとの相性が良く、リン含有量が比較的多く効率の良いトリメチルホスフェートやトリエチルホスフェートや、メチルアシッドホスフェートやエチルアシッドホスフェートが好ましい。
 界面活性剤(B)の使用量は、炭酸カルシウムの比表面積や用いる樹脂やその配合量に応じて変わるので一概には規定し難いが、通常、炭酸カルシウムのBET比表面積Sw/10を基準に0.03~10重量%が好ましい。使用量が0.03重量%未満では充分な分散効果が得られ難く、一方、10重量%を越えて添加しても効果の更なる向上が認められ難い。従って、より好ましくは0.05~5重量%、さらに好ましくは0.1~4重量%である。
 次に、表面処理方法としては、キレート化合物(A)や界面活性剤(B)を用いた表面処理方法において、例えばスーパーミキサーやヘンシェルミキサー等のミキサーを用い、粉体に直接表面処理剤を混合し、必要に応じて加熱して表面処理する一般に乾式処理と呼ばれる方法でもよく、また例えば、水または湯に溶解し、攪拌している炭酸カルシウムの水スラリーに添加して表面処理後、脱水、乾燥する一般に湿式処理と呼ばれる方法でもよく、その両者の複合でもよいが、炭酸カルシウム粒子表面への処理の度合いと経済的な観点から、主として湿式処理が好ましい。
 本発明の炭酸カルシウム填料は、樹脂との分散性をさらに改善するため、各種粉砕機を使用することができる。本発明で使用することができる粉砕機は特に限定するものでないが、ガラスやジルコニア、酸化チタン、アルミナ等を利用して粉砕メディアを利用した粉砕機や、粉砕メディアを利用するのではなく、気流もしくは液流を利用したメディアレス粉砕機などが例示できる。また前記メディア式粉砕機は、例えばコンタミネーションレベルで混在する数μm 以上の粗大な粒子を破壊させる際に、水や有機溶媒に懸濁させて湿式系にて粉砕するのに有用である。一方、メディアレス粉砕機はコンタミネーションの影響が少なく、粒子破壊を抑制し易くマイルド分散に適している。
 従って、本発明の目的用途である薄膜フィルム用アンチブロッキング材として使用する際は、メディア式粉砕機よりはメディアレス粉砕機の方がコンタミネーションの影響が少なく、粒子の均一分散の点で好ましい。
 本発明の樹脂用炭酸カルシウム填料は、最終製品の荷姿により、湿式系か乾式系かを選択することができる。即ち、最終製品が粉末系の場合は乾式系が、水やエチレングリコールのようなスラリー系の場合は、湿式系を使用することができる。特に最終製品が粉末系の場合は、炭酸カルシウム填料の荷姿や沈降を気にする必要がなく、汎用性の面で好ましい。
 次に、本発明の樹脂組成物について説明をする。
 本発明で使用される樹脂は、特に限定するものではないが、目的用途がアンチブロッキング材等の場合、加工温度の低い各種樹脂でもよいが、加工温度が比較的高い樹脂が有用である。
 例えば、アクリル樹脂(PMMA)、ポリビニルアルコール(PVA)、ポリ塩化ビニリデン(PVDC)、ポリブタジエン(PBD)、ポリエチレンテレフタレート(PET)等で代表される汎用樹脂や、ポリアセタール(POM)、ポリアミド(PA)、ポリカーボネート(PC)、変性ポリフェニレンエーテル(PPE)、ポリブチレンテレフタレート( PBT) 、ポリエチレンナフタレート(PEN)、超高分子量ポリエチレン(UHPE)、ポリスルホン(PSF)、ポリエーテルサルフォン(PES)、ポリフェニレンスルファイド(PPS)、ポリアリレート(PAR)、ポリエーテルエーテルケトン(PEEK)、ポリイミド(PI)、ポリエーテルイミド(PEI)、フッ素樹脂(FR)、液晶ポリマー(LCP)等のエンジニアリングプラスチック、フェノール、尿素、メラミン、アルキッド、不飽和ポリエステル、エポキシ、ジアリルフタレート、ポリウレタン、変性シリコーン、ポリサルファイド、反応アクリル、ポリイソブチレン、シリル化ウレタン、変性エポキシ等の熱硬化樹脂が例示できる。更に、ポリ乳酸樹脂、ポリブチレンサクシネート、ポリアミド11、ポリヒドロキシ酪酸等の生分解性プラスチックやバイオマスプラスチックも使用可能である。
 これらの中でも、PET、PBT、PEN、PC、LCP等のエステル結合を有するポリエステル系樹脂は、シート・フィルム加工製品として汎用性が高く、特にPETは本発明の目的用途に好適である。
 本発明の樹脂用炭酸カルシウム填料と樹脂との配合割合は、樹脂の種類や用途、所望する物性やコストによって大きく異なり、それらに応じて適宜決定すればよいが、例えばアンチブロッキング材を目的とした場合、通常、樹脂100重量部に対して0.05~30重量部であり、より好ましくは0.1~15重量部、さらに好ましくは0.3~10重量部である。炭酸カルシウム填料が30重量部を超えると、樹脂との混練性の低下や樹脂劣化により色相(白色度)の低下が起こり易く、0.05重量部未満の場合、十分なアンチブロッキング性が得られない場合がある。
 また、本発明の樹脂組成物の効能を阻害しない範囲で、必要に応じて、樹脂組成物の特性を向上させるため、脂肪酸アミド、エチレンビスステアリン酸アミド、ソルビタン脂肪酸エステル等の滑剤、可塑剤及び安定剤、酸化防止剤等を添加してもよい。さらには、一般にフィルム用樹脂組成物に用いられる添加物、例えば滑剤、酸化防止剤、蛍光増白剤、熱安定剤、光安定剤、紫外線吸収剤、中和剤、防曇剤、アンチブロッキング剤、帯電防止剤、スリップ剤、着色剤等を配合してもよい。
 本発明の炭酸カルシウム填料と各種添加剤を樹脂に配合する場合は、スーパーミキサー、ヘンシェルミキサー、タンブラーミキサー、リボンブレンダー等の公知の混合機を用いて混合される。樹脂組成物は混合機で混合した後、一軸あるいは二軸押出機、ニーダーミキサー、バンバリーミキサー等で加熱混練し、一旦、マスターバッチと称される、本発明の炭酸カルシウム填料を始めとする各種添加剤を含有するペレットを作製し、Tダイ押出、あるいはインフレーション成形等の公知の成形機を用いて、溶融、製膜する。その後、必要に応じて一軸または二軸に延伸して均一な微孔径を有するフィルム製品としてもよい。
 さらに、必要に応じて、上記工程中のTダイ押出までの工程を複数組み、押出時にフィルムを多層構造にしたり、あるいは、延伸時に貼り合わせて再度延伸するような工程を導入して多層フィルムにしたり、常温より高温でかつ樹脂の溶融温度より低い温度条件でフィルム養生することも可能である。
 また、上記フィルムに印刷適性を付与する目的で、フィルム表面にプラズマ放電等の表面処理を施しインク受理層をコートさせたり、フィルムの少なくとも片面に保護層として、芳香族パラ系アラミド、芳香族メタ系アラミド、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)樹脂などの耐熱樹脂の有機溶媒液を塗工液として塗布しても差し支えない。
 以下、実施例及び比較例を挙げて本発明を更に詳細に説明するが、本発明はこれらにより何ら制限されるものではない。
実施例1
 比重1.070の石灰乳3mにCO濃度25%の炉ガスを12m/分の流速で炭酸化反応を行い、炭酸カルシウムを合成した。該合成炭酸カルシウム水スラリーをオストワルド熟成によりBET比表面積9m/gまで粒子成長を行った後、フィルタープレスで固形分60重量%に脱水後、脱水ケーキに対して表面処理剤としてポリアクリル酸ナトリウムとリン酸トリエチル(TEP)を炭酸カルシウム固形分に対し純分として各々0.9重量%添加し、固形分50重量%以上の高濃度水スラリーを調整した。
  次に、該水スラリーを500ml/minの流量で湿式粉砕機(スギノマシン社製スターバーストラボ型;粉砕圧力条件245MPa)で粉砕を行った後、スプレー乾燥機で粉末化して炭酸カルシウム填料を調整した。表1に該填料の特性を示す。
実施例2
 実施例1のオストワルド熟成でBET比表面積を5m/gまで熟成を行い、表面処理剤の添加量を各々0.5重量%に変更した以外は、実施例1 と同様の方法で炭酸カルシウム填料を調整した。表1に該填料の特性を示す。
実施例3
 実施例2の熟成品を、さらに比重1.070の石灰乳を0.1m/時間の流量を滴下しながら、同時にCO濃度25%の炉ガスを同通し、系のpH10.0±0.5の撹拌条件下炭酸化反応を行った。石灰乳の滴下総量が2.5mであった。次に、表面処理剤の添加量を各々0.3重量%に変更した以外は、実施例1と同様の方法で炭酸カルシウム填料を調整した。表1に該填料の特性を示す。
実施例4
 実施例3で石灰乳滴下の総量を4mに変更し、表面処理剤の添加量を各々0.2重量%に変更した以外は、実施例3と同様の方法で炭酸カルシウム填料を調整した。表1に該填料の特性を示す。
実施例5
 実施例3の石灰乳滴下の総量を10mに変更し、表面処理剤の添加量を各々0.1重量%に変更した以外は、実施例3と同様の方法で炭酸カルシウム填料を調整した。表1に該填料の特性を示す。
実施例6
 実施例2で、固形分50重量%以上の高濃度水スラリーを調整した後、スプレー乾燥で粉末化してから、乾式粉砕機(NETZSCH 社製CGS50 型;粉砕圧力0.3MPa)で粉砕を行った以外は、実施例2と同様の方法で炭酸カルシウム填料を調整した。表1に該填料の特性を示す。
実施例7
 実施例2で調整した固形分50重量%以上の高濃度水スラリーを、粉砕機を通すことなくスプレー乾燥にて粉末化し炭酸カルシウム填料を調整した。次に該填料50kgと、エチレングリコール50kgを混合スラリー化させ、500ml/minの流量で湿式粉砕機(スギノマシン社製スターバーストラボ型;粉砕条件245MPa)で粉砕を行い、炭酸カルシウムのエチレングリコール分散体を得た。表1に該填料の特性を示す。
実施例8
 実施例6の表面処理剤として、ポリアクリル酸ナトリウムをヘキサメタリン酸ナトリウムに変更し、リン酸トリエチル(TEP)をラウリン酸に変更した以外は、実施例6と同様の方法で炭酸カルシウム填料を調整した。表1に該填料の特性を示す。
実施例9
 実施例6の表面処理剤として、リン酸トリエチル(TEP)をN-フェニル-3-アミノプロピルトリメトキシシラン(シランカップリング剤)に変更した以外は、実施例6と同様の方法で炭酸カルシウム填料を調整した。表1に該填料の特性を示す。
実施例10
 実施例6の表面処理剤として、リン酸トリエチル(TEP)をリン酸トリメチル(TMP)に変更した以外は、実施例6と同様の方法で炭酸カルシウム填料を調整した。表1に該填料の特性を示す。
実施例11
 実施例6の表面処理剤をポリアクリル酸ナトリウムのみに変更した以外は、実施例6と同様の方法で炭酸カルシウム填料を調整した。表1に該填料の特性を示す。
実施例12
 実施例9の表面処理剤をリン酸トリメチル(TMP)のみに変更した以外は、実施例9 と同様の方法で炭酸カルシウム填料を調整した。表1に該填料の特性を示す。
実施例13
 実施例6の表面処理剤を添加しなかった以外は、実施例6と同様の方法で炭酸カルシウム填料を調整した。表1に該填料の特性を示す。
比較例1
 特公平1-4240号公報の実施例3と同様の手法で、石灰乳と炭酸ガスとの炭酸化反応及を行い滴下化合により、BET比表面積4.86m/gの炭酸カルシウム生地スラリーを作製した。
 該合成炭酸カルシウム水スラリーを、フィルタープレスを用いて脱水し、得られるプレスケーキ(固形分60重量%)を温調付処理槽に投入し、炭酸カルシウム固形分に対し表面処理剤として純分として1.0重量%のポリアクリル酸ナトリウムを添加しながら強力に撹拌し、高濃度水スラリーを調整した。
 該水スラリーをスプレー乾燥機で粉末化し炭酸カルシウム填料を調整した。次に、該填料50kgとエチレングリコール50kgを投入撹拌し、湿式粉砕原料のエチレングリコールスラリーを調整した。
 次に、該エチレングリコールスラリーを250ml/minの流量で湿式粉砕機(WAB 社製ダイノーミルPilot 型;粉砕条件メディア0.6~0.9mmφのガラスビーズ、メディア充填率80%、回転数1500rpm)で粉砕を行い、エチレングリコール分散体を調整した。表1に該填料の特性を示す。
比較例2
 特開平7-196316号公報の実施例8の如く、1.0mol/Lの濃度の炭酸ナトリウム溶液、0.6mol/Lの濃度の塩化カルシウム溶液、及び0.03mol/Lの水酸化ナトリウム溶液(反応緩衝剤)を各々100L調整した。該水酸化ナトリウム溶液と炭酸ナトリウム溶液を混合し混合液を調整し、該混合液と塩化ナトリウム溶液の液温を共に17℃に調整した。次に塩化ナトリウム溶液100Lを、水酸化ナトリウム溶液と炭酸ナトリウム溶液の混合液200Lに滴下し、撹拌条件下で炭酸化反応を行い、滴下開始270秒後に滴下供給を終了した。滴下終了180秒後、反応系内に存在する炭酸カルシウム理論生成量の0.3重量%相当量のヘキサメタ燐酸ナトリウムを添加し、さらに5分間撹拌した。以上のようにして調整された炭酸カルシウムの水スラリーを、遠心脱水機を用いて蒸留水を用いて脱水濾液が電気電導度30μS/cmになるまで洗浄した。脱水ケーキ(固形分60重量%)を、表面処理剤としてポリアクリル酸ナトリウムとリン酸トリエチル(TEP)を炭酸カルシウム固形分に対し純分として1.0重量%添加し、固形分50重量%以上の高濃度水スラリーを調整後、スプレー乾燥機で乾燥粉末化させ炭酸カルシウム填料を調整した。表1に該填料の特性を示す。
比較例3
 特開平5-117443号公報の実施例7の如く、生石灰濃度3.0重量%のメタノールと水の混合スラリーを42℃に調整後、純度99%以上の炭酸ガスを0.082mol/分の導通速度で導電率100μS/cmに達するまで炭酸化反応を行った。
  得られた炭酸カルシウムメタノールと水の混合スラリーに、表面処理を添加することなく、エチレングリコールを所定量加えた後、ロータリーエバポレーターでフラッシングによるメタノールと水の除去を行い、20重量%濃度のエチレングリコール分散体を調整した。表1に該填料の特性を示す。
比較例4
 粉砕分級された重質炭酸カルシウム(丸尾カルシウム社製;商品名カルテックス7 )粉末に、表面処理剤としてポリアクリル酸ナトリウムを炭酸カルシウム固形分に対し純分として1.0重量%と水を加えながら固形分50重量%濃度の炭酸カルシウムスラリーを調整し、スプレー乾燥機で乾燥粉末化し炭酸カルシウム填料を調整した。表1に該填料の特性を示す。
Figure JPOXMLDOC01-appb-T000001
応用例1(ポリエステル樹脂フィルム)
応用実施例1~12、応用比較例1~4
 実施例7、比較例1と3のエチレングリコール分散体を用い、下記の配合に基づき、ポリエステル樹脂フィルムを調整した。
 得られたポリエステル樹脂フィルムの評価結果を表2に示す。
(配合例1)
填料含有ポリエステルマスターペレットA及び填料非含有ポリエステルホモペレットBの作製
 実施例7、比較例1と3のエチレングリコール分散体を用い、下記の手順に基づき、マスターペレットAを調整した。
 ジメチルテレフタレート(DMT)に、1モルのDMTに対し1.9モルのエチレングリコールおよび酢酸マグネシウム・4水塩をDMT100重量部に対し0.05重量部、リン酸を0.015重量部加え加熱エステル交換後、実施例7、比較例1と3のエチレングリコール分散体をDMTに対し炭酸カルシウム填料として0.5重量部を添加し、引き続き三酸化アンチモンをDMTに対し0.025重量部を加え、加熱昇温し真空下で重縮合反応を行い、固有粘度0.62dl/gの填料含有ポリエステルマスターペレットAを得た。
 次に、エチレングリコール分散体を含有させない以外は、上記と全く同様の方法で、固有粘度0.62dl/gの填料非含有ポリエステルホモペレットBを得た。
(配合例2)
填料含有ポリエステルマスターペレットCの作製
 実施例1~6、9~13、比較例2と4の炭酸カルシウム填料を用い、下記の手順に基づき、填料含有ポリエステルマスターペレットCを調整した。
 実施例1~6、9~13及び比較例2と4の炭酸カルシウム填料0.5重量部と前記した固有粘度0.62dl/gの上記填料非含有ポリエステルホモペレットBを99.5重量部とをスーパーミキサーで混合した後、30mm径の二軸のスクリューを有するベント押出機に供給し、温度290℃で溶融した。この溶融物を金属繊維からなる95%カット孔径10μmのフィルタに通して瀘過した後、2mm孔径ダイから押し出し、ガット状の樹脂組成物を得た。さらに該組成物を約3mm長に裁断し、炭酸カルシウム填料を0.5重量%含有する固有粘度0.62dl/gの填料含有ポリエステルマスターペレットCを得た。
(製膜例)
 応用実施例7及び応用比較例1、3については、前記した填料含有ポリエステルマスターペレットAと填料非含有ポリエステルホモペレットBを、また、応用実施例1~6、8~12及び応用比較例2、4については、前記した填料含有ポリエステルマスターペレットCと填料非含有ポリエステルホモペレットBを、それぞれ160℃で8時間減圧乾燥した後、別々の押出機に供給し、275℃で溶融押出して高精度濾過した後、矩形の3層用合流ブロックで合流積層し、ポリエステルA層/ポリエステルB層/ポリエステルA層、または、ポリエステルC層/ポリエステルB層/ポリエステルC層からなる3層積層体とした。その後、285℃に保ったスリットダイを介し冷却ロール上に静電印可キャスト法を用いて表面温度25℃のキャスティングドラムに巻き付け冷却固化して未延伸積層フィルムを得た。
 この未延伸積層フィルムを縦方向に3.8倍延伸し、続いてステンタにて110℃の熱風下で横方向に3.9倍延伸し、該ステンタにて230℃で熱処理を行い、厚み23μm(ポリエステルA層またはC層の厚みが1.5μm、ポリエステルB層の厚みが20μm)の二軸配向ポリエステル樹脂フィルム(3層)を得た。
 下記表に示されるように、実施例のポリエステル樹脂フィルムは表面が高平滑性で欠陥が少なく、スリット性にも優れることから薄膜セラミックシート等の離型フィルムとして有用である。
ポリエステル樹脂フィルムの評価
(1)アンチブロッキング性
 ポリエステル樹脂フィルムを重ね、100kg/cmの荷重をかけた状態で100℃×1日保持した。
 JIS-K6732に準じ、引張強度測定器(東洋精機社製ストログラフVE1D)を用いて引張強度200mN/分の条件で剥離強度を求め、以下の基準で評価した。
○:剥離強度は200mN/10cm幅未満である。
△:剥離強度は200mN/10cm幅以上で400mN/10cm幅未満である。
×:剥離強度は400mN/10cm幅以上である。
(2)表面粗度(SRa、SRz)
 ポリエステル樹脂フィルムの平滑性を確認するのに、三次元表面粗さ測定器(小坂研究所製ET-359K)を用いて測定し、得られる表面のプロファイル曲線より、JIS-BO601に準じ、算術平均粗さSRa値、十点平均面粗さSRz値を求め、以下の基準で評価した。
○:SRa=50nm未満、SRz=500nm未満である。
△:SRa=50nm以上100nm未満、SRz=500nm未満である。
×:SRa=100nm以上、SRz=500nm以上である。
(3)粗大突起数
 10cm四方の大きさのポリエステル樹脂フィルムを測定する面同士を2枚重ね合わせて、印可電圧をかけて静電気力で密着し、フィルム表面の粗大突起により発生する干渉縞から高さを測定する。干渉縞が1重環で0.270μmであり、2重環で0.540μm及び3重環で0.810μm以上の粗大突起数(個/cm)を測定して、以下の基準で評価した。
 なお、光源は、ハロゲンランプに564nmのバンドパルスフィルターをかけたものを用いた。
○:粗大突起は5(個/cm)未満である。
△:粗大突起は5又は6(個/cm)である。
×:粗大突起は7(個/cm)以上である。
(4)セラミックシートのピンホール
 溶媒(トルエン)、セラミック原料(BaTiO、堺化学社製)、結合剤(エチルセルロース)、可塑剤(フタル酸ジオクチル)などを混合し、ペースト状にした後、ボールミルで分散させ、セラミックスラリーを得た。
 次に、ポリエステル樹脂フィルムの表面にドクターブレード法にて、上記セラミック厚みが乾燥時1μmとなるようにコートし、100℃の雰囲気温度のオーブン中に5分間で乾燥し、セラミックシートを得た。このシート10cmの面積の範囲にシートの反対面から光をあて、ピンホールの発生状況を目視観察し、下記基準により評価した。
○:ピンホールが観察されない。
△:ピンホールが僅かに観察される。
×:ピンホールが多数観察される。
Figure JPOXMLDOC01-appb-T000002
 表2の結果より、実施例1~7、9~13の炭酸カルシウム填料をアンチブロッキング材としてポリエステル樹脂フィルムに使用した場合、フィルムの平滑性や剥離性が高いことから、各種離型材用の剥離フィルム、電気絶縁フィルム等に有用である。
応用例2(PPS樹脂フィルム)
応用実施例13~24、応用比較例5、6
 実施例1~7、9~13、比較例2と4の炭酸カルシウム填料を用い、下記の配合に基づき、PPS樹脂フィルムを調整した。得られたPPS樹脂フィルムの評価結果を表3に示す。
(配合例)
填料含有PPSマスターペレットA及び填料非含有PPSホモペレットBの作製
 実施例1~7、9~13、比較例2と4の炭酸カルシウム填料を、スーパーミキサーを用いてPPS樹脂ペレットに、炭酸カルシウム填料の含有量が0.5重量%となるよう混合した。得られた混合物を、30mm径の二軸のスクリューを有するベント押出機に供給し、温度320℃で溶融した。この溶融物を金属繊維からなる95%カット孔径10μmのフィルタに通して瀘過した後、2mm孔径ダイから押し出し、ガット状の樹脂組成物を得た。さらに該組成物を約3mm長に裁断し、炭酸カルシウム填料含有量0.5重量%の填料含有PPSマスターペレットAを得た。
 上記した炭酸カルシウム填料を含有させない以外は、上記と同様の方法で填料非含有PPSホモペレットBを得た。
 次に、填料含有PPSマスターペレットA、填料非含有PPSホモペレットBをそれぞれ160℃で8時間減圧乾燥した後、別々の押出機に供給し、310℃で溶融押出して高精度濾過した後、矩形の3層用合流ブロックで合流積層し、PPSのA層/PPSのB層/PPSのA層からなる3層積層とした。その後、320℃に保ったスリットダイを介し冷却ロール上に静電印可キャスト法を用いて表面温度25℃のキャスティングドラムに巻き付け冷却固化して未延伸積層フィルムを得た。
  この未延伸フィルムを縦方向に3.3倍延伸し、続いてステンタにて110℃の熱風下で横方向に3.6倍延伸し、該ステンタにて240℃で熱処理を行い、厚み23μm、PPSのA層の厚みが1.5μm、PPSのB層の厚みが20μmの二軸配向PPS樹脂フィルム(3層)を得た。
(PPS樹脂フィルムの評価)
(1)アンチブロッキング性
 PPS樹脂フィルムを重ね、100kg/cmの荷重をかけた状態で60℃×1日保持した。
 JIS-K6732に準じ、引張強度測定器(東洋精機社製ストログラフVE1D)を用いて引張強度200mN/分の条件で剥離強度を求め、以下の基準で評価した。
○:剥離強度は200mN/10cm幅未満である。
△:剥離強度は200mN/10cm幅以上400mN/10cm幅未満である。
×:剥離強度は400mN/10cm幅以上である。
(2)表面粗度(SRa、SRz)
 PPS樹脂フィルムの平滑性を確認するのに、三次元表面粗さ測定器(小坂研究所製ET-359K)を用いて測定し、得られる表面のプロファイル曲線より、JIS-BO601に準じ、算術平均粗さSRa値、十点平均面粗さSRz値を求め、以下の基準で評価した。
○:SRa=50nm未満、SRz=500nm未満である。
△:SRa=50nm以上100nm未満、SRz=500nm未満である。
×:SRa=100nm以上、SRz=500nm以上である。
(3)粗大突起数
 10cm四方の大きさのPPS樹脂フィルムを測定する面同士を2枚重ね合わせて、印可電圧をかけて静電気力で密着し、フィルム表面の粗大突起により発生する干渉縞から高さを測定して、干渉縞が1重環で0.270μmであり、2重環で0.540μm及び3重環で0.810μm以上の粗大突起数(個/cm)を測定して、以下の基準で評価した。
 なお、光源は、ハロゲンランプに564nmのバンドパルスフィルターをかけたものを用いた。
○:粗大突起は5(個/cm)未満である。
△:粗大突起は5又は6(個/cm)である。
×:粗大突起は7(個/cm)以上である。
(4)セラミックシートのピンホール
 溶媒(トルエン)、セラミック原料(BaTiO、堺化学社製)、結合剤(エチルセルロース)、可塑剤(フタル酸ジオクチル)などを混合し、ペースト状にした後、ボールミルで分散させ、セラミックスラリーを得た。
 次に、PPS樹脂フィルム表面にドクターブレード法にて、上記セラミック厚みが乾燥時1μmとなるようにコートし、100℃の雰囲気温度のオーブン中に5分間で乾燥し、セラミックシートを得た。このシート10cmの面積の範囲にシートの反対面から光をあて、ピンホールの発生状況を目視観察し、下記基準により評価した。
○:ピンホールが観察されない。
△:ピンホールが僅かに観察される。
×:ピンホールが多数観察される。
Figure JPOXMLDOC01-appb-T000003
 表3の結果より、実施例1~7、9~13の炭酸カルシウム填料をアンチブロッキング材としてPPS樹脂フィルムに使用した場合、フィルムの平滑性や剥離性が高いことから、各種離型材用の剥離フィルム、電気絶縁フィルム等に有用である。
応用例3(ポリプロピレン系樹脂フィルム)
応用実施例25~28、応用比較例7、8
 実施例3~5、8、比較例2、4の炭酸カルシウム填料を用い、下記の配合に基づき、ポリプロピレン系樹脂フィルムを調整した。得られたポリプロピレン系樹脂フィルムの評価結果を表4に示す。
  内層用ポリプロピレン系マスターペレットA及び外層用ポリプロピレン系ホモペレットBの作製
 実施例3~5、8、比較例2、4の炭酸カルシウム填料を、スーパーミキサーを用いてプロピレン-エチレンランダム共重合体と、エチレン・ヘキセン-1共重合体が60/40の重量比で配合したものに、炭酸カルシウム填料の含有量が0.5重量%となるよう混合した。得られた混合物を、30mm径の二軸のスクリューを有するベント押出機に供給し、温度170℃で溶融した。この溶融物を金属繊維からなる95%カット孔径10μmのフィルタに通して瀘過した後、2mm孔径ダイから押し出し、ガット状の樹脂組成物を得た。さらに該組成物を約3mm長に裁断し、炭酸カルシウム粒子含有量0.5重量%の填料含有内層用ポリプロピレン系マスターペレットAを得た。
 また、上記した炭酸カルシウム填料を含有させないプロピレン-エチレンブロック共重合体からなる填料非含有外層用ポリプロピレン系ペレットをBを得た。
 次に、填料含有内層用ポリプロピレン系マスターペレットA、填料非含有外層用ポリプロピレン系ペレットBをそれぞれ60℃で8時間減圧乾燥した後、別々の押出機に供給し、200℃で溶融押出して高精度濾過した後、矩形の2層用合流ブロックで合流積層し、ポリプロピレン系内層A/ポリプロピレン系外層Bからなる2層積層とした。
 その後、200℃に保ったスリットダイを介し冷却ロール上に静電印可キャスト法を用いて表面温度25℃のキャスティングドラムに巻き付け冷却固化して未延伸積層フィルムを得た。
 この未延伸フィルムを縦方向に5.0倍延伸し、続いてステンタにて110℃の熱風下で横方向に10倍延伸し、該ステンタにて140℃で熱処理を行い、厚み30μm(ポリプレピレン系内層Aの厚みが9μm、ポリプロピレン系外層Bの厚みが21μm)の二軸配向ポリプロピレン樹脂フィルム(2層)を得た。
(ポリプロピレン系樹脂フィルムの評価)
(1)アンチブロッキング性
 ポリプロピレン系樹脂フィルムを重ね50kg/cmの荷重をかけた状態で60日×1日保持した。JIS-K6732に準じ、引張強度測定器(東洋精機社製ストログラフVE1D)を用いて引張強度200mN/分の条件で剥離強度を求め、以下の基準で評価した。
○:剥離強度は200mN/10cm幅未満である。
△:剥離強度は200mN/10cm幅以上400mN/10cm幅未満である。
×:剥離強度は400mN/10cm幅以上である。
(2)シールバーへの融着
 ヒートシール強度測定のためのヒートシール時に、シールバーを観察してシールバーへの融着の有無を目視観察し、下記基準により評価した。
○:シールバーへの融着が観察されない。
△:シールバーへの融着が僅かに観察される。
×:シールバーへの融着が多数観察される。
(3)ヒートシール部再シール性
 ヒートシール強度測定のためのヒートシールと同様の方法でヒートシールを85℃で行った後、剥離するために2枚のフィルムの両端部を互いに反対方向へ引っ張り、次の基準で判定した。
○:フィルムを破損せずに剥離することができ、再度ヒートシールができる。
△:フィルムを破損せずに剥離することができ、再度ヒートシールができるが、シール跡が残る。
×:フィルムを剥離する際、破損しやすく、再度ヒートシールができない。
Figure JPOXMLDOC01-appb-T000004
 表4の結果より、本願実施例3~5、8の炭酸カルシウム填料をアンチブロッキング材としてポリプロピレン系樹脂フィルムに使用した場合、フィルムの平滑性や剥離性が高いことから、各種包装材用のヒートシールフィルム等に有用である。
 本発明の樹脂用炭酸カルシウム填料は、高濃度配合される従来のシーラント、床材、接着剤用途はもちろん、例えば、ポリエチレンやポリプロピレン等の汎用プラスチックや、ポリエチレンテレフタレート(PET)等のポリエステル、ポリフェニレンサルファイド(PPS)等の加工温度が高いエンジニアリングプラスチックス等へ配合した樹脂フィルム用途において、平滑性、剥離性や耐脱落性等に優れたアンチブロッキング材として有用である。

Claims (7)

  1.   炭酸カルシウム粒子からなり、下記の式(a)~(e)を満足することを特徴する樹脂用炭酸カルシウム填料。
    (a)1.0≦Sw≦12.0(m2/g )
    (b)0.1≦Dx≦5.0(μm)
    (c)0.1≦Dy≦5.0(μm)
    (d)0.8≦Dy/Dx=≦3.5
    (e)0.1≦Tw≦0.8(重量%)
    但し、
    Sw:BET比表面積測定装置にて測定したBET比表面積(m2/g )、
    Dx:算出式=6/(2.7・Sw)で表されるBET比表面積Swから算出される1次粒子直径(μm)、
    Dy:レーザー回折式粒度分布測定装置にて実測した体積粒度分布において、小さな粒子側から累積した50%直径(μm)、
    Tw:示差熱天秤装置にて測定した100~300℃の熱減量(重量%)。
  2.  炭酸カルシウム粒子の表面に、表面処理剤からなる被覆層が形成されていることを特徴とする請求項1記載の樹脂用炭酸カルシウム填料。
  3.  表面処理剤が、アルカリ土類金属にキレート能を有する化合物及び/又は界面活性剤であることを特徴とする請求項1又は2記載の樹脂用炭酸カルシウム填料。
  4.  樹脂と、請求項1~3のいずれか1項に記載の樹脂用炭酸カルシウム填料とからなることを特徴とする樹脂組成物。
  5.  樹脂がフィルム系合成樹脂であることを特徴とする請求項4記載の樹脂組成物。
  6.  フィルム系合成樹脂がポリエステル、ポリフェニレンサルファイド、ポリオレフィンから選ばれる請求項5記載の樹脂組成物。
  7.  樹脂用炭酸カルシウム填料が、アンチブロッキング材用であることを特徴とする請求項5記載の樹脂組成物。
PCT/JP2017/032195 2016-11-10 2017-09-07 樹脂用炭酸カルシウム填料、及びそれを含有してなる樹脂組成物 WO2018088008A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/348,625 US11186699B2 (en) 2016-11-10 2017-09-07 Calcium carbonate filler for resins, and resin composition containing same
CN201780069761.4A CN109906250B (zh) 2016-11-10 2017-09-07 树脂用碳酸钙填料和含有其的树脂组合物
KR1020197015864A KR102358135B1 (ko) 2016-11-10 2017-09-07 수지용 탄산칼슘 전료 및 그것을 함유하여 이루어지는 수지 조성물
JP2018550047A JP7127833B2 (ja) 2016-11-10 2017-09-07 樹脂用炭酸カルシウム填料、及びそれを含有してなる樹脂組成物
JP2022073869A JP7411262B2 (ja) 2016-11-10 2022-04-27 樹脂用炭酸カルシウム填料、及びそれを含有してなる樹脂組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016219422 2016-11-10
JP2016-219422 2016-11-10

Publications (1)

Publication Number Publication Date
WO2018088008A1 true WO2018088008A1 (ja) 2018-05-17

Family

ID=62109524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032195 WO2018088008A1 (ja) 2016-11-10 2017-09-07 樹脂用炭酸カルシウム填料、及びそれを含有してなる樹脂組成物

Country Status (6)

Country Link
US (1) US11186699B2 (ja)
JP (2) JP7127833B2 (ja)
KR (1) KR102358135B1 (ja)
CN (1) CN109906250B (ja)
TW (1) TWI751195B (ja)
WO (1) WO2018088008A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7473263B1 (ja) 2023-08-10 2024-04-23 丸尾カルシウム株式会社 表面処理炭酸カルシウム填料、ならびにそれを用いた樹脂組成物および成形品

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102358135B1 (ko) * 2016-11-10 2022-02-04 마루오 칼슘 가부시키가이샤 수지용 탄산칼슘 전료 및 그것을 함유하여 이루어지는 수지 조성물
KR20210132106A (ko) * 2019-02-27 2021-11-03 도요보 가부시키가이샤 실란트용 필름
CN116040671B (zh) * 2022-12-28 2024-05-03 广西华纳新材料股份有限公司 一种片状碳酸钙的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263238A (ja) * 1986-05-09 1987-11-16 Mitsui Toatsu Chem Inc 充填材用炭酸カルシウム及びその製造方法
JPS644240A (en) * 1987-06-24 1989-01-09 Maruo Calcium Glycol dispersion of calcium carbonate
JPH10101844A (ja) * 1996-10-03 1998-04-21 Maruo Calcium Co Ltd 重質炭酸カルシウム充填剤及びその製造方法
JP2001072890A (ja) * 1999-09-06 2001-03-21 Maruo Calcium Co Ltd 表面処理炭酸カルシウム、及び多孔性フィルム用樹脂組成物、並びに多孔性フィルムの製造方法
JP2008156204A (ja) * 2006-11-30 2008-07-10 Okutama Kogyo Co Ltd 軽質炭酸カルシウム、その製造方法およびそれを用いた印刷用紙
JP2013060692A (ja) * 2011-08-23 2013-04-04 Oji Holdings Corp 填料用軽質炭酸カルシウムおよびその内填紙
JP2013203851A (ja) * 2012-03-28 2013-10-07 Shiraishi Chuo Kenkyusho:Kk 表面処理炭酸カルシウム及びそれを含むポリマー組成物
JP2014019605A (ja) * 2012-07-18 2014-02-03 Maruo Calcium Co Ltd 合成樹脂用重質炭酸カルシウム、その製造方法、及び該炭酸カルシウムを含有した樹脂組成物
JP2014524876A (ja) * 2011-06-21 2014-09-25 オムヤ インターナショナル アーゲー 沈降炭酸カルシウムの製造方法、沈降炭酸カルシウムおよびこの使用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111993A (en) 1980-02-07 1981-09-04 Meisei Electric Co Ltd Abnormality detector for pressure in tire
US5000871A (en) * 1987-06-24 1991-03-19 Maruo Calcium Company Limited Gycol dispersion of calcium carbonate
JP3040564B2 (ja) 1991-10-30 2000-05-15 丸尾カルシウム株式会社 ブロッキング防止剤
KR101380184B1 (ko) * 2006-02-01 2014-04-01 스미또모 가가꾸 가부시키가이샤 다공질 수지 필름용 미공 형성제 및 이것을 배합하여 이루어지는 다공질 수지 필름용 조성물
CN104844734B (zh) * 2008-03-14 2019-06-14 忠诚股份有限公司 水基树脂组合物以及由其制得的制品
US9018278B2 (en) * 2010-01-29 2015-04-28 Maruo Calcium Co., Ltd. Surface treated calcium carbonate filler for resin and resin composition containing the filler
CN104619762B (zh) * 2012-07-18 2019-08-23 丸尾钙株式会社 重质碳酸钙、其制备方法及含有该碳酸钙的树脂组合物
US9815953B2 (en) * 2012-10-12 2017-11-14 Maruo Calcium Co., Ltd. Calcium carbonate filler for resin, and resin composition containing said filler
JP6474137B2 (ja) * 2014-02-28 2019-02-27 丸尾カルシウム株式会社 樹脂用炭酸カルシウム填料及び該填料を含む樹脂組成物
KR102358135B1 (ko) * 2016-11-10 2022-02-04 마루오 칼슘 가부시키가이샤 수지용 탄산칼슘 전료 및 그것을 함유하여 이루어지는 수지 조성물

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263238A (ja) * 1986-05-09 1987-11-16 Mitsui Toatsu Chem Inc 充填材用炭酸カルシウム及びその製造方法
JPS644240A (en) * 1987-06-24 1989-01-09 Maruo Calcium Glycol dispersion of calcium carbonate
JPH10101844A (ja) * 1996-10-03 1998-04-21 Maruo Calcium Co Ltd 重質炭酸カルシウム充填剤及びその製造方法
JP2001072890A (ja) * 1999-09-06 2001-03-21 Maruo Calcium Co Ltd 表面処理炭酸カルシウム、及び多孔性フィルム用樹脂組成物、並びに多孔性フィルムの製造方法
JP2008156204A (ja) * 2006-11-30 2008-07-10 Okutama Kogyo Co Ltd 軽質炭酸カルシウム、その製造方法およびそれを用いた印刷用紙
JP2014524876A (ja) * 2011-06-21 2014-09-25 オムヤ インターナショナル アーゲー 沈降炭酸カルシウムの製造方法、沈降炭酸カルシウムおよびこの使用
JP2013060692A (ja) * 2011-08-23 2013-04-04 Oji Holdings Corp 填料用軽質炭酸カルシウムおよびその内填紙
JP2013203851A (ja) * 2012-03-28 2013-10-07 Shiraishi Chuo Kenkyusho:Kk 表面処理炭酸カルシウム及びそれを含むポリマー組成物
JP2014019605A (ja) * 2012-07-18 2014-02-03 Maruo Calcium Co Ltd 合成樹脂用重質炭酸カルシウム、その製造方法、及び該炭酸カルシウムを含有した樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHOJI FUKUSHIMA: "Specific Surface Area of Powders by Permeametry", SHIKIZAI, vol. 44, no. 8, 1971, pages 382 - 387 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7473263B1 (ja) 2023-08-10 2024-04-23 丸尾カルシウム株式会社 表面処理炭酸カルシウム填料、ならびにそれを用いた樹脂組成物および成形品

Also Published As

Publication number Publication date
US11186699B2 (en) 2021-11-30
US20190352485A1 (en) 2019-11-21
JP2022103216A (ja) 2022-07-07
JP7127833B2 (ja) 2022-08-30
KR20190077492A (ko) 2019-07-03
KR102358135B1 (ko) 2022-02-04
TWI751195B (zh) 2022-01-01
CN109906250A (zh) 2019-06-18
JPWO2018088008A1 (ja) 2019-09-26
TW201817790A (zh) 2018-05-16
JP7411262B2 (ja) 2024-01-11
CN109906250B (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
JP7411262B2 (ja) 樹脂用炭酸カルシウム填料、及びそれを含有してなる樹脂組成物
KR101831979B1 (ko) 수지용 탄산칼슘 충전재, 그 제조 방법, 및 이 충전재를 포함하는 수지 조성물
KR102450777B1 (ko) 이축 배향 폴리에스테르 필름을 위한 표면-처리된 충전제
EP3797134B1 (en) Surface-treated fillers for polyester films
JP6200426B2 (ja) 樹脂用炭酸カルシウム填料及び該填料を含む樹脂組成物
CA3044338A1 (en) Surface-treated fillers for polyester films
JP5577773B2 (ja) ポリエステル組成物の製造方法およびそれを用いたフィルム
JP6474137B2 (ja) 樹脂用炭酸カルシウム填料及び該填料を含む樹脂組成物
ES2887934T3 (es) Composiciones biodegradables
JPWO2004035476A1 (ja) 凝集粒子及びそれを配合してなる樹脂組成物
JP2016084468A (ja) インフレーションフィルム組成物
JP2007268952A (ja) 積層フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868773

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018550047

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197015864

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17868773

Country of ref document: EP

Kind code of ref document: A1