WO2018086439A1 - 空调冷水机组控制方法、系统及其空调系统 - Google Patents

空调冷水机组控制方法、系统及其空调系统 Download PDF

Info

Publication number
WO2018086439A1
WO2018086439A1 PCT/CN2017/106313 CN2017106313W WO2018086439A1 WO 2018086439 A1 WO2018086439 A1 WO 2018086439A1 CN 2017106313 W CN2017106313 W CN 2017106313W WO 2018086439 A1 WO2018086439 A1 WO 2018086439A1
Authority
WO
WIPO (PCT)
Prior art keywords
standby
unit
request
standby request
units
Prior art date
Application number
PCT/CN2017/106313
Other languages
English (en)
French (fr)
Inventor
陈军平
唐政清
陈培生
吴甜
孙亚丽
陆贵生
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to EP17868927.9A priority Critical patent/EP3540321B1/en
Priority to US16/348,912 priority patent/US10899199B2/en
Publication of WO2018086439A1 publication Critical patent/WO2018086439A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3219Control means therefor for improving the response time of a vehicle refrigeration cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3216Control means therefor for improving a change in operation duty of a compressor in a vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/323Cooling devices using compression characterised by comprising auxiliary or multiple systems, e.g. plurality of evaporators, or by involving auxiliary cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/40Damper positions, e.g. open or closed

Definitions

  • the present disclosure relates to the field of air conditioning technology, and in particular, to an air conditioning chiller control method and system, and an air conditioning system thereof.
  • the temperature control of the air conditioning refrigeration system generally determines the difference between the unit's own water temperature and the control target water temperature by mechanically opening or standby.
  • a certain unit when multiple units share a waterway, due to the difference in installation position or the difference in the temperature sensing package itself, a certain unit always reaches the closing condition first than other units, resulting in short running time of the unit and other unit running time. Long, it is easy to cause some units to start and stop frequently, shorten the service life of the unit, and the overall balance control effect is poor.
  • One or more embodiments of the present disclosure provide an air conditioner chiller control method and system, and an air conditioning system thereof, which can avoid frequent start and stop of a unit when a plurality of units are used online, improve the service life of the unit, and improve overall balance control. effect.
  • Embodiments of the present disclosure provide an air conditioning chiller control method, applied to two or more units, including: a standby request generated by a receiver group based on a standby condition; determining whether two or more standby requests are received In the case that two or more standby requests are received, the standby number of the unit is generated according to the standby request; and the unit is shut down according to the preset rule based on the standby number.
  • the method further includes: determining whether the standby request includes a fault protection standby request; if the standby request does not include the fault protection standby request, determining that the currently activated Whether the number of units is greater than or equal to two; if the number of units currently open is greater than or equal to two, it is determined whether two or more standby requests are received.
  • the shutting down the unit according to the preset rule according to the preset rule includes: obtaining a month value of the current time; comparing the size of the standby sequence number, and when the month value is an odd number, sequentially shutting down the unit according to the standby sequence number from small to large.
  • the month value is an even number, the unit is sequentially turned off in descending order of the standby sequence number.
  • the standby request includes a fault protection standby request
  • a standby sequence number corresponding to the unit that sends the standby request is generated based on the standby request; and the unit that sends the standby request is closed based on the standby sequence number.
  • the generating a standby request based on the standby condition includes: acquiring a temperature parameter of the unit; determining whether the temperature parameter of the unit meets the first standby condition; and generating a unit when the temperature parameter of the unit meets the first standby condition Standby request; acquire the protection parameter of the unit; determine whether the protection parameter of the unit meets the fault protection standby condition; and generate a fault protection standby request when the protection parameter of the unit meets the fault protection standby condition.
  • Embodiments of the present disclosure provide an air conditioning chiller control system, which is applied to two or more units, including: a receiving module, a standby request generated by a receiver group based on a standby condition; and a first determining module for determining Whether two or more standby requests are received; a generating module, configured to generate a standby serial number of the unit according to the standby request when two or more standby requests are received; and a control module for The standby serial number is turned off according to a preset rule.
  • the second determining module is configured to determine whether the standby request includes a fault protection standby request
  • the third determining module is configured to determine, if the standby request does not include the fault protection standby request, Whether the value is greater than or equal to two
  • the first determining module is configured to determine whether two or more standby requests are received if the number of currently enabled units is greater than or equal to two.
  • the first obtaining unit is configured to obtain a month value of the current time; and the control unit is configured to: when the month value is an odd number, shut down the unit according to the standby sequence number from small to large, where the monthly value is In the even case, the unit is turned off in order of the standby number.
  • the generating module is further configured to: if the standby request includes a fault protection standby request, generate, according to the standby request, a standby sequence number corresponding to the unit that sends the standby request; the control module further A unit for turning off the transmission standby request based on the standby sequence number.
  • the generating module is further configured to: if the number of units currently being turned on is less than two, generate a standby sequence number corresponding to the unit that sends the standby request according to the standby request; and the control module is further used to: The unit that closes the transmission standby request based on the standby sequence number.
  • the receiving module includes: a second acquiring unit, configured to acquire a temperature parameter of the unit; and a first determining unit, configured to determine whether the temperature parameter of the unit meets the first standby condition; Generating a unit standby request when the temperature parameter of the unit meets the first standby condition; and acquiring a unit for acquiring the unit a protection parameter; a second determining unit, configured to determine whether the protection parameter of the unit meets a fault protection standby condition; and a second generating unit, configured to generate a fault protection standby request when the protection parameter of the unit meets a fault protection standby condition .
  • An embodiment of the present disclosure provides an air conditioning system comprising the air conditioning chiller control system of any of the above.
  • Embodiments of the present disclosure provide an air conditioning chiller control system including: a memory, and a processor coupled to the memory, the processor configured to perform any of the above, based on an instruction stored in the memory Methods.
  • An embodiment of the present disclosure provides a computer readable storage medium having stored thereon computer program instructions that, when executed by one or more processors, implement the steps of any of the methods described above.
  • the air conditioner chiller control method and system and the air conditioning system thereof are applied to two or more units.
  • the receiver group is first generated based on the standby condition. Standby request, and determine whether two or more standby requests are received.
  • the standby number of the unit is generated according to the standby request; finally, the preset number is based on the standby number. Shut down the unit.
  • the simple control based on the outlet water temperature can avoid frequent start and stop of the unit and improve the service life of the unit.
  • FIG. 1 is a flow chart of a method of an embodiment of an air conditioning chiller control method according to the present disclosure
  • FIG. 2 is a flow chart of a method of another embodiment of an air conditioning chiller control method according to the present disclosure
  • FIG. 3 is a flow chart of a method of another embodiment of an air conditioning chiller control method according to the present disclosure.
  • FIG. 4 is a flow chart of a method of still another embodiment of an air conditioner chiller control method according to the present disclosure
  • FIG. 5 is a flowchart of a method of still another embodiment of an air conditioner chiller control method according to the present disclosure
  • FIG. 6 is a schematic structural view of an embodiment of an air conditioning chiller control system provided by the present disclosure.
  • FIG. 7 is a schematic structural view of another embodiment of an air conditioning chiller control system provided by the present disclosure.
  • FIG. 8 is a schematic structural view of another embodiment of an air conditioning chiller control system provided by the public;
  • FIG. 9 is a schematic structural view of another embodiment of an air conditioning chiller control system provided by the public.
  • FIG. 10 is a schematic structural view of still another embodiment of the air conditioning chiller control system provided by the public.
  • FIG. 11 is a schematic structural view of still another embodiment of an air conditioning chiller control system provided.
  • FIG. 1 a flow chart of a method for controlling an air conditioning chiller according to an embodiment of the present disclosure is applied to two or more units, and the method includes the following steps:
  • the air conditioner chiller When the air conditioner chiller needs to be controlled, in the unit's power-on mode, when the unit issues a standby request, it first accepts the unit's standby request generated based on the standby condition.
  • the standby request may be that the inlet water temperature of the unit meets the standby condition.
  • the standby condition For example, in the cooling mode, when the detected inlet water temperature of the unit is less than the set target inlet water temperature, the standby condition is considered to be satisfied.
  • the unit encounters an emergency, such as when the unit's evaporation temperature is low but has not yet reached a fault, it is considered that the standby condition is met.
  • the standby request at this time does not include the fault protection standby request.
  • a corresponding standby sequence number is generated corresponding to each of the units that issued the standby request according to the received standby request.
  • the unit that issued the standby request is closed according to a preset rule.
  • the receiver group when it is required to control the air conditioner chiller, first, the receiver group generates a standby request based on the standby condition, and determines whether two or more standby requests are received, when received. When two or more standby requests are made, the standby number of the unit is generated according to the standby request; finally, the unit is shut down according to the preset rule based on the standby number.
  • the simple control based on the outlet water temperature can avoid frequent start and stop of the unit and improve the service life of the unit.
  • FIG. 2 a flowchart of a method for another embodiment of an air conditioning chiller control method provided by the present disclosure is applied to two or more units, and the method includes the following steps:
  • the air conditioner chiller When the air conditioner chiller needs to be controlled, in the unit's power-on mode, when the unit issues a standby request, it first accepts the unit's standby request generated based on the standby condition.
  • the standby request may be that the inlet water temperature of the unit meets the standby condition.
  • the standby condition For example, in the cooling mode, when the detected inlet water temperature of the unit is less than the set target inlet water temperature, the standby condition is considered to be satisfied.
  • the unit encounters an emergency, such as when the unit's evaporation temperature is low but has not yet reached a fault, it is considered that the standby condition is met.
  • the standby request generated by the unit After receiving the standby request generated by the unit based on the standby condition, it is further determined whether the received standby request includes a fault protection standby request, that is, a fault protection standby request generated by the unit in an emergency.
  • a fault protection standby request that is, a fault protection standby request generated by the unit in an emergency.
  • the number of units currently turned on is further determined to determine whether the number of units currently turned on is greater than or equal to two.
  • the standby request When it is judged that the number of units currently turned on is greater than or equal to two, it is further determined whether two or more units issue a standby request. It should be noted that the standby request at this time does not include the fault protection standby request.
  • a corresponding standby sequence number is generated corresponding to each of the units that issued the standby request according to the received standby request.
  • the unit that issued the standby request is closed according to a preset rule.
  • the receiver group when it is required to control the air conditioner chiller, first, the receiver group generates a standby request based on the standby condition, and determines whether the standby request includes the fault protection standby request, and does not include the fault protection standby. When requesting, further determine whether the number of units currently open is greater than or equal to two. When the number of units currently open is greater than or equal to two, further determine whether two or more standby requests are received; when two or two are received When more than one standby request is made, the standby number of the unit is generated according to the standby request; finally, the unit is shut down according to the preset rule according to the preset number.
  • the simple control based on the outlet water temperature can avoid frequent start and stop of the unit. Improve the life of the unit.
  • FIG. 3 a flowchart of a method for another embodiment of an air conditioning chiller control method provided by the present disclosure is applied to two or more units, and the method includes the following steps:
  • the air conditioner chiller When the air conditioner chiller needs to be controlled, in the unit's power-on mode, when the unit issues a standby request, it first accepts the unit's standby request generated based on the standby condition.
  • the standby request may be that the inlet water temperature of the unit meets the standby condition.
  • the standby condition For example, in the cooling mode, when the detected inlet water temperature of the unit is less than the set target inlet water temperature, the standby condition is considered to be satisfied.
  • the unit encounters an emergency, such as when the unit's evaporation temperature is low but has not yet reached a fault, it is considered that the standby condition is met.
  • the standby request generated by the unit After receiving the standby request generated by the unit based on the standby condition, it is further determined whether the received standby request includes a fault protection standby request, that is, a fault protection standby request generated by the unit in an emergency.
  • a fault protection standby request that is, a fault protection standby request generated by the unit in an emergency.
  • the number of units currently turned on is further determined to determine whether the number of units currently turned on is greater than or equal to two.
  • the standby request When it is judged that the number of units currently turned on is greater than or equal to two, it is further determined whether two or more units issue a standby request. It should be noted that the standby request at this time does not include the fault protection standby request.
  • a corresponding standby sequence number is generated corresponding to each of the units that issued the standby request according to the received standby request.
  • the monthly value of the current time is further obtained.
  • the receiver group when it is required to control the air conditioner chiller, first, the receiver group generates a standby request based on the standby condition, and determines whether the standby request includes the fault protection standby request, and does not include the fault protection standby. When requesting, further determine whether the number of units currently open is greater than or equal to two.
  • the simple control based on the outlet water temperature can avoid frequent start and stop of the unit and improve the service life of the unit.
  • FIG. 4 a flowchart of a method for controlling another embodiment of an air conditioning chiller control method according to the present disclosure is applied to two or more units, and the method includes the following steps:
  • the air conditioner chiller When the air conditioner chiller needs to be controlled, in the unit's power-on mode, when the unit issues a standby request, it first accepts the unit's standby request generated based on the standby condition.
  • the standby request may be that the inlet water temperature of the unit meets the standby condition.
  • the standby condition For example, in the cooling mode, when the detected inlet water temperature of the unit is less than the set target inlet water temperature, the standby condition is considered to be satisfied.
  • the unit encounters an emergency, such as when the unit's evaporation temperature is low but has not yet reached a fault, it is considered that the standby condition is met.
  • generating the standby request based on the standby condition may include: acquiring a temperature parameter of the unit; determining whether the temperature parameter of the unit meets the first standby condition; and generating a unit standby request when the temperature parameter of the unit meets the first standby condition; Obtaining the protection parameter of the unit; determining whether the protection parameter of the unit meets the fault protection standby condition; and generating a fault protection standby request when the protection parameter of the unit meets the fault protection standby condition.
  • the standby request generated by the unit After receiving the standby request generated by the unit based on the standby condition, it is further determined whether the received standby request includes a fault protection standby request, that is, a fault protection standby request generated by the unit in an emergency.
  • a fault protection standby request that is, a fault protection standby request generated by the unit in an emergency.
  • the standby request includes the fault protection standby request
  • the standby request includes the fault protection standby request, that is, the unit needs to be fault-protected at present, and a corresponding standby sequence number is generated corresponding to each unit that issues the standby request according to the received standby request.
  • the unit that issued the standby request is closed according to a preset rule.
  • the standby sequence corresponding to the unit that generates the standby request is further generated based on the standby request, and the sending is stopped based on the standby sequence number. Standby requesting unit.
  • FIG. 5 a flowchart of a method for controlling another embodiment of an air conditioning chiller control method according to the present disclosure is applied to two or more units, and the method includes the following steps:
  • the air conditioner chiller When the air conditioner chiller needs to be controlled, in the unit's power-on mode, when the unit issues a standby request, it first accepts the unit's standby request generated based on the standby condition.
  • the standby request may be that the inlet water temperature of the unit meets the standby condition.
  • the standby condition For example, in the cooling mode, when the detected inlet water temperature of the unit is less than the set target inlet water temperature, the standby condition is considered to be satisfied.
  • the unit encounters an emergency, such as when the unit's evaporation temperature is low but has not yet reached a fault, it is considered that the standby condition is met.
  • generating the standby request based on the standby condition may include: acquiring a temperature parameter of the unit; determining whether the temperature parameter of the unit meets the first standby condition; and generating a unit standby request when the temperature parameter of the unit meets the first standby condition; Obtaining the protection parameter of the unit; determining whether the protection parameter of the unit meets the fault protection standby condition; and generating a fault protection standby request when the protection parameter of the unit meets the fault protection standby condition.
  • the standby request generated by the unit After receiving the standby request generated by the unit based on the standby condition, it is further determined whether the received standby request includes a fault protection standby request, that is, a fault protection standby request generated by the unit in an emergency.
  • a fault protection standby request that is, a fault protection standby request generated by the unit in an emergency.
  • the number of units currently turned on is further determined to determine whether the number of units currently turned on is greater than or equal to two.
  • the unit that issued the standby request is closed according to a preset rule.
  • a standby number corresponding to the unit that transmits the standby request is generated based on the standby request, and the unit that transmits the standby request is turned off based on the standby number.
  • FIG. 6 is a schematic structural diagram of an embodiment of an air conditioning chiller control system provided by the present disclosure.
  • the system is applied to two or more units, and the system may include:
  • the receiving module 601 is configured to: use, by the receiver group, a standby request generated based on a standby condition;
  • the air conditioner chiller When the air conditioner chiller needs to be controlled, in the unit's power-on mode, when the unit issues a standby request, it first accepts the unit's standby request generated based on the standby condition.
  • the standby request may be that the inlet water temperature of the unit meets the standby condition.
  • the standby condition For example, in the cooling mode, when the detected inlet water temperature of the unit is less than the set target inlet water temperature, the standby condition is considered to be satisfied.
  • the unit encounters an emergency, such as when the unit's evaporation temperature is low but has not yet reached a fault, it is considered that the standby condition is met.
  • the first determining module 602 determines whether two or more standby requests are received
  • the standby request at this time does not include the fault protection standby request.
  • a generating module 603, configured to generate a standby serial number of the unit according to the standby request when two or more standby requests are received;
  • a corresponding standby sequence number is generated corresponding to each of the units that issued the standby request according to the received standby request.
  • the control module 604 is configured to shut down the unit according to the preset rule according to the standby sequence number.
  • the unit that issued the standby request is closed according to a preset rule.
  • the receiver group when it is required to control the air conditioner chiller, first, the receiver group generates a standby request based on the standby condition, and determines whether two or more standby requests are received, when receiving When two or more standby requests are received, the standby number of the unit is generated according to the standby request; finally, the unit is shut down according to the preset rule based on the standby number.
  • the simple control based on the outlet water temperature can avoid frequent start and stop of the unit and improve the service life of the unit.
  • FIG. 7 is a schematic structural view of another embodiment of an air conditioning chiller control system provided by the present disclosure.
  • the system is applied to two or more units, and the system may include:
  • the receiving module 701 is configured to: use, by the receiver group, a standby request generated based on a standby condition;
  • the air conditioner chiller When the air conditioner chiller needs to be controlled, in the unit's power-on mode, when the unit issues a standby request, it first accepts the unit's standby request generated based on the standby condition.
  • the standby request may be that the inlet water temperature of the unit meets the standby condition, for example, in the cooling mode, when the detected inlet water temperature of the unit is less than the set target inlet water temperature At the time of the degree, it is considered that the standby condition is satisfied.
  • the unit encounters an emergency, such as when the unit's evaporation temperature is low but has not yet reached a fault, it is considered that the standby condition is met.
  • the second determining module 702 is configured to determine whether the fault protection standby request is included in the standby request.
  • the standby request generated by the unit After receiving the standby request generated by the unit based on the standby condition, it is further determined whether the received standby request includes a fault protection standby request, that is, a fault protection standby request generated by the unit in an emergency.
  • a fault protection standby request that is, a fault protection standby request generated by the unit in an emergency.
  • the third determining module 703 is configured to determine, when the standby request does not include the fault protection standby request, whether the number of currently turned on units is greater than or equal to two;
  • the number of units currently turned on is further determined to determine whether the number of units currently turned on is greater than or equal to two.
  • the first determining module 704 is configured to determine whether two or more standby requests are received when the number of currently enabled units is greater than or equal to two;
  • the standby request When it is judged that the number of units currently turned on is greater than or equal to two, it is further determined whether two or more units issue a standby request. It should be noted that the standby request at this time does not include the fault protection standby request.
  • a generating module 705, configured to generate a standby serial number of the unit according to the standby request when two or more standby requests are received;
  • a corresponding standby sequence number is generated corresponding to each of the units that issued the standby request according to the received standby request.
  • the control module 706 is configured to shut down the unit according to a preset rule based on the standby sequence number.
  • the unit that issued the standby request is closed according to a preset rule.
  • the receiver group when it is required to control the air conditioner chiller, first, the receiver group generates a standby request based on the standby condition, and determines whether the standby request includes the fault protection standby request, and does not include the fault protection standby. When requesting, further determine whether the number of units currently open is greater than or equal to two. When the number of units currently open is greater than or equal to two, further determine whether two or more standby requests are received; when two or two are received When more than one standby request is made, the standby number of the unit is generated according to the standby request; finally, the unit is shut down according to the preset rule according to the preset number.
  • the simple control based on the outlet water temperature can avoid frequent start and stop of the unit and improve the service life of the unit.
  • FIG. 8 a schematic structural view of another embodiment of an air conditioning chiller control system for use in the disclosure, the system is applied to two or more units, and the system may include:
  • the receiving module 801 is configured to: use, by the receiver group, a standby request generated based on a standby condition;
  • the standby request generated by the unit based on the standby condition is first accepted.
  • the standby request may be that the inlet water temperature of the unit meets the standby condition.
  • the standby condition is considered to be satisfied.
  • the unit encounters an emergency such as when the unit's evaporation temperature is low but has not yet reached a fault, it is considered that the standby condition is met.
  • the second determining module 802 is configured to determine whether the fault protection standby request is included in the standby request.
  • the standby request generated by the unit After receiving the standby request generated by the unit based on the standby condition, it is further determined whether the received standby request includes a fault protection standby request, that is, a fault protection standby request generated by the unit in an emergency.
  • a fault protection standby request that is, a fault protection standby request generated by the unit in an emergency.
  • the third determining module 803 is configured to determine, when the standby request does not include the fault protection standby request, whether the number of currently turned on units is greater than or equal to two;
  • the number of units currently turned on is further determined to determine whether the number of units currently turned on is greater than or equal to two.
  • the first determining module 804 is configured to determine whether two or more standby requests are received when the number of currently enabled units is greater than or equal to two;
  • the standby request When it is judged that the number of units currently turned on is greater than or equal to two, it is further determined whether two or more units issue a standby request. It should be noted that the standby request at this time does not include the fault protection standby request.
  • a generating module 805, configured to generate a standby serial number of the unit according to the standby request when two or more standby requests are received;
  • a corresponding standby sequence number is generated corresponding to each of the units that issued the standby request according to the received standby request.
  • a first obtaining unit 806, configured to acquire a current time month value
  • the monthly value of the current time is further obtained.
  • the control unit 807 is configured to compare the size of the standby serial number, turn off the unit with a small standby number when the odd number is closed, and turn off the unit with the large standby number when the number of months is even.
  • the size of the standby serial number is compared.
  • the unit with a small standby sequence number is turned off, and when the current current month value obtained is an even number of months, the unit with a large standby sequence number is turned off. It is also possible to turn off the unit according to the number of months and the sequence of the standby number. For example, when the month value is an odd number, the unit is sequentially turned off in the order of the standby number, that is, the unit with a small standby number is preferentially turned off. When the month value is an even number, the units are sequentially turned off in descending order of the standby sequence number, that is, the unit with a large standby number is preferentially turned off.
  • the receiver group when it is required to control the air conditioner chiller, the receiver group is first based on A standby request generated by the standby condition, and determining whether the standby request includes a fault protection standby request.
  • the fault protection standby request is not included, further determining whether the currently open number of units is greater than or equal to two, when the number of currently opened units is greater than or equal to two Further, it is further determined whether two or more standby requests are received; when two or more standby requests are received, the standby serial number of the generating unit is generated according to the standby request; finally, the current time month value is obtained, and the standby time is compared.
  • the serial number is small, and the unit with a small standby number is turned off in an odd number of months, and the unit with a large standby number is turned off in an even number of months.
  • the simple control based on the outlet water temperature can avoid frequent start and stop of the unit and improve the service life of the unit.
  • FIG. 9 a schematic structural view of another embodiment of an air conditioning chiller control system for use in the disclosure, the system being applied to two or more units, the system may include:
  • the receiving module 901 is configured to: use, by the receiver group, a standby request generated based on a standby condition;
  • the air conditioner chiller When the air conditioner chiller needs to be controlled, in the unit's power-on mode, when the unit issues a standby request, it first accepts the unit's standby request generated based on the standby condition.
  • the standby request may be that the inlet water temperature of the unit meets the standby condition.
  • the standby condition For example, in the cooling mode, when the detected inlet water temperature of the unit is less than the set target inlet water temperature, the standby condition is considered to be satisfied.
  • the unit encounters an emergency, such as when the unit's evaporation temperature is low but has not yet reached a fault, it is considered that the standby condition is met.
  • the generating the standby request based on the standby condition may include: a second acquiring unit, acquiring a temperature parameter of the unit; and a first determining unit, determining whether the temperature parameter of the unit meets the first standby condition; the first generating unit, when When the temperature parameter of the unit meets the first standby condition, the unit standby request is generated; the third obtaining unit acquires the protection parameter of the unit; and the second determining unit determines whether the protection parameter of the unit satisfies the fault protection standby condition; the second generating unit When the protection parameter of the unit meets the fault protection standby condition, a fault protection standby request is generated.
  • the second determining module 902 is configured to determine whether the fault protection standby request is included in the standby request.
  • the standby request generated by the unit After receiving the standby request generated by the unit based on the standby condition, it is further determined whether the received standby request includes a fault protection standby request, that is, a fault protection standby request generated by the unit in an emergency.
  • a fault protection standby request that is, a fault protection standby request generated by the unit in an emergency.
  • a generating module 903 configured to generate, when the standby request includes a fault protection standby request, a standby sequence number corresponding to the unit that sends the standby request according to the standby request;
  • the standby request includes the fault protection standby request, that is, the unit needs to be fault-protected at present, and a corresponding standby sequence number is generated corresponding to each unit that issues the standby request according to the received standby request.
  • the control module 904 is configured to close the unit that sends the standby request based on the standby sequence number.
  • the unit that issued the standby request is closed according to a preset rule.
  • the determination standby request includes a fault protection standby request
  • the standby number corresponding to the unit that transmitted the standby request is generated based on the standby request, and the unit that transmits the standby request is turned off based on the standby number.
  • FIG. 10 a structural schematic diagram of still another embodiment of an air conditioning chiller control system for use in the disclosure, the system is applied to two or more units, and the system may include:
  • the receiving module 1001 is configured to: use, by the receiver group, a standby request generated based on a standby condition;
  • the air conditioner chiller When the air conditioner chiller needs to be controlled, in the unit's power-on mode, when the unit issues a standby request, it first accepts the unit's standby request generated based on the standby condition.
  • the standby request may be that the inlet water temperature of the unit meets the standby condition.
  • the standby condition For example, in the cooling mode, when the detected inlet water temperature of the unit is less than the set target inlet water temperature, the standby condition is considered to be satisfied.
  • the unit encounters an emergency, such as when the unit's evaporation temperature is low but has not yet reached a fault, it is considered that the standby condition is met.
  • the generating the standby request based on the standby condition may include: a second acquiring unit, acquiring a temperature parameter of the unit; and a first determining unit, determining whether the temperature parameter of the unit meets the first standby condition; the first generating unit, when When the temperature parameter of the unit meets the first standby condition, the unit standby request is generated; the third obtaining unit acquires the protection parameter of the unit; and the second determining unit determines whether the protection parameter of the unit satisfies the fault protection standby condition; the second generating unit When the protection parameter of the unit meets the fault protection standby condition, a fault protection standby request is generated.
  • the second determining module 1002 is configured to determine whether a fault protection standby request is included in the standby request.
  • the standby request generated by the unit After receiving the standby request generated by the unit based on the standby condition, it is further determined whether the received standby request includes a fault protection standby request, that is, a fault protection standby request generated by the unit in an emergency.
  • a fault protection standby request that is, a fault protection standby request generated by the unit in an emergency.
  • the third determining module 1003 is configured to determine, when the standby request does not include the fault protection standby request, whether the number of currently turned on units is greater than or equal to two;
  • the number of units currently turned on is further determined to determine whether the number of units currently turned on is greater than or equal to two.
  • a generating module 1004 configured to generate, when the number of units currently turned on is less than two, a standby sequence number corresponding to the unit that sends the standby request based on the standby request;
  • the control module 1005 is configured to close the unit that sends the standby request based on the standby sequence number.
  • the unit that issued the standby request is closed according to a preset rule.
  • the standby number corresponding to the unit that generates the standby request is further generated based on the standby request, and the sending is stopped based on the standby sequence number.
  • the unit requested by the machine when it is determined that the number of units currently turned on is less than two, the standby number corresponding to the unit that generates the standby request is further generated based on the standby request, and the sending is stopped based on the standby sequence number. The unit requested by the machine.
  • the functional unit modules described above may be implemented as a general purpose processor, a Programmable Logic Controller (PLC), and a Digital Signal Processor (Digital Signal Processor) for performing the functions described in the present disclosure.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the present disclosure also provides an air conditioning system comprising the air conditioning chiller control system of any of the above embodiments.
  • a schematic structural diagram of still another embodiment of an air conditioning chiller control system provided by the public air conditioning chiller control system includes a memory 1101 and a processor 1102.
  • the memory 1101 is for storing instructions
  • the processor 1102 is coupled to the memory 1101
  • the processor 1102 is configured to perform the air conditioning chiller control method according to any of the above embodiments, based on the instructions stored in the memory.
  • the device further includes a communication interface 1103 for performing information interaction with other devices.
  • the device further includes a bus 1104, and the processor 1102, the communication interface 1103, and the memory 1101 complete communication with each other through the bus 1104.
  • the memory 1101 may include a high speed RAM memory, and may also include a non-volatile memory (Non-Volatile Memory, NVM for short), such as at least one disk memory.
  • the memory 1101 can also be a memory array.
  • the memory 1101 may also be partitioned, and the blocks may be combined into a virtual volume according to certain rules.
  • processor 1102 can be a central processing unit CPU, or can be an application specific integrated circuit ASIC, or one or more integrated circuits configured to implement embodiments of the present disclosure.
  • the present disclosure further provides a computer readable storage medium, wherein the computer readable storage medium stores computer instructions that, when executed by the processor, implement the air conditioning chiller control method of any of the above embodiments.
  • embodiments of the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware.
  • the present disclosure may take the form of a computer program product embodied on one or more computer-usable non-transitory storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code. .
  • the method and apparatus of the present invention may be implemented in a number of ways.
  • the methods and apparatus of the present invention can be implemented in software, hardware, firmware, or any combination of software, hardware, and firmware.
  • the above-described sequence of steps for the method is for illustrative purposes only, and the steps of the method of the present invention are not limited to the order specifically described above unless otherwise specifically stated.
  • the invention may also be embodied as a program recorded in a recording medium, the program comprising machine readable instructions for implementing the method according to the invention.
  • the invention also covers a recording medium storing a program for performing the method according to the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

提供一种空调冷水机组控制方法、系统及其空调系统,其中的方法应用于两个或两个以上的机组,包括:接收机组基于待机条件生成的待机请求(S101);判断是否接收到两个或两个以上的待机请求(S102);当接收到两个或两个以上的待机请求时,根据待机请求生成机组的待机序号(S103);基于待机序号按照预设规则关闭机组(S104)。该方法、系统及其空调系统在多个机组联机使用时,能够避免机组的频繁启停,提高机组的使用寿命,提高整体均衡控制效果。

Description

空调冷水机组控制方法、系统及其空调系统
本申请是以CN申请号为201611002861.9,申请日为2016年11月14日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及空调技术领域,尤其涉及一种空调冷水机组控制方法、系统及其空调系统。
背景技术
目前,空调制冷系统对温度的控制一般通过采集水温值,来判断机组自身的水温与控制目标水温的差值机械开启或者待机。但是,在多个机组共用水路时,由于存在因为安装位置偏差,或者感温包自身期间的差异,使得某个机组总比其它机组先达到关闭条件,导致该机组运行时间短,其它机组运行时间长,容易造成部分机组频繁启停,缩短机组的使用寿命,整体均衡控制效果差。
发明内容
本公开的一个或多个实施例提供一种空调冷水机组控制方法、系统及其空调系统,在多个机组联机使用时,能够避免机组的频繁启停,提高机组的使用寿命,提高整体均衡控制效果。
本公开的实施例提供一种空调冷水机组控制方法,应用于两个或两个以上的机组,包括:接收机组基于待机条件生成的待机请求;判断是否接收到两个或两个以上的待机请求;在接收到两个或两个以上的待机请求的情况下,根据待机请求生成机组的待机序号;基于所述待机序号按照预设规则关闭机组。
可选地,在所述接收机组基于待机条件生成的待机请求之后还包括:判断所述待机请求中是否包含故障保护待机请求;如果所述待机请求中不包含故障保护待机请求,判断当前开启的机组数量是否大于等于两个;如果当前开启的机组数量大于等于两个,判断是否接收到两个或两个以上的待机请求。
可选地,所述基于待机序号按照预设规则关闭机组包括:获取当前时间的月份值;比较待机序号大小,在所述月份值为奇数时,按照待机序号由小到大的顺序依次关闭机组,在所述月份值为偶数时,按照待机序号由大到小的顺序依次关闭机组。
可选地,如果所述待机请求中包含故障保护待机请求,基于所述待机请求生成与所述发送待机请求的机组相对应的待机序号;基于所述待机序号关闭所述发送待机请求的机组。
可选地,如果当前开启的机组数量小于两个,基于所述待机请求生成与所述发送待机请求的机组相对应的待机序号;基于所述待机序号关闭所述发送待机请求的机组。
可选地,所述基于待机条件生成待机请求包括:获取机组的温度参数;判断所述机组的温度参数是否满足第一待机条件;当所述机组的温度参数满足第一待机条件时,生成机组待机请求;获取机组的保护参数;判断所述机组的保护参数是否满足故障保护待机条件;当所述机组的保护参数满足故障保护待机条件时,生成故障保护待机请求。
本公开的实施例提供一种空调冷水机组控制系统,应用于两个或两个以上的机组,包括:接收模块,用于接收机组基于待机条件生成的待机请求;第一判断模块,用于判断是否接收到两个或两个以上的待机请求;生成模块,用于在接收到两个或两个以上的待机请求的情况下,根据待机请求生成机组的待机序号;控制模块,用于基于所述待机序号按照预设规则关闭机组。
可选地,第二判断模块,用于判断所述待机请求中是否包含故障保护待机请求;第三判断模块,用于如果所述待机请求中不包含故障保护待机请求,判断当前开启的机组数量是否大于等于两个;所述第一判断模块,用于如果当前开启的机组数量大于等于两个,判断是否接收到两个或两个以上的待机请求。
可选地,第一获取单元,用于获取当前时间的月份值;控制单元,用于在所述月份值为奇数时,按照待机序号由小到大的顺序关闭机组,在所述月份值为偶数时,按照待机序号由大到小的顺序关闭机组。
可选地,所述生成模块还用于:如果所述待机请求中包含故障保护待机请求,基于所述待机请求生成与所述发送待机请求的机组相对应的待机序号;所述控制模块,还用于基于所述待机序号关闭所述发送待机请求的机组。
可选地,所述生成模块还用于:如果当前开启的机组数量小于两个,基于所述待机请求生成与所述发送待机请求的机组相对应的待机序号;所述控制模块,还用于基于所述待机序号关闭所述发送待机请求的机组。
可选地,所述接收模块包括:第二获取单元,用于获取机组的温度参数;第一判断单元,用于判断所述机组的温度参数是否满足第一待机条件;第一生成单元,用于当所述机组的温度参数满足第一待机条件时,生成机组待机请求;第三获取单元,用于获取机组的 保护参数;第二判断单元,用于判断所述机组的保护参数是否满足故障保护待机条件;第二生成单元,用于当所述机组的保护参数满足故障保护待机条件时,生成故障保护待机请求。
本公开的实施例提供一种空调系统,包括如上任一所述的空调冷水机组控制系统。
本公开的实施例提供一种空调冷水机组控制系统,包括:存储器,以及耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器的指令执行如上任意一所述的方法。
本公开实施例提供一种计算机可读存储介质,其上存储有计算机程序指令,该指令被一个或多个处理器执行时实现如上任意一所述的方法的步骤。
由上述方案可知,本公开提供的空调冷水机组控制方法、系统及其空调系统,应用于两个或两个以上的机组,当需要对空调冷水机组进行控制时,首先接收机组基于待机条件生成的待机请求,并判断判断是否接收到两个或两个以上的待机请求,当接收到两个或两个以上的待机请求时,根据待机请求生成机组的待机序号;最后基于待机序号按照预设规则关闭机组。相对于现有技术单纯的基于出水温度来控制能够避免机组的频繁启停,提高了机组的使用寿命。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开提供的空调冷水机组控制方法的一个实施例的方法流程图;
图2为本公开提供的空调冷水机组控制方法的另一个实施例的方法流程图;
图3为本公开提供的空调冷水机组控制方法的另一个实施例的方法流程图;
图4为本公开提供的空调冷水机组控制方法的又一个实施例的方法流程图;
图5为本公开提供的空调冷水机组控制方法的再一个实施例的方法流程图;
图6为本公开提供的空调冷水机组控制系统的一个实施例的结构示意图;
图7为本公开提供的空调冷水机组控制系统的另一个实施例的结构示意图;
图8为公开提供的空调冷水机组控制系统的另一个实施例的结构示意图;
图9为公开提供的空调冷水机组控制系统的另一个实施例的结构示意图;
图10为公开提供的空调冷水机组控制系统的又一个实施例的结构示意图。
图11为公开提供的空调冷水机组控制系统的再一个实施例的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
如图1所示,为本公开提供的空调冷水机组控制方法的一个实施例的方法流程图,应用于两个或两个以上的机组,所述方法包括以下步骤:
S101、接收机组基于待机条件生成的待机请求;
当需要对空调冷水机组进行控制时,在机组的开机模式下,当机组发出待机请求时,首先接受机组基于待机条件生成的待机请求。其中,所述的待机请求可以为机组的进水温度满足待机条件,例如,在制冷模式时,当检测的机组的进水温度小于设定的目标进水温度时,则认为满足待机条件。或者,当机组遇到紧急情况,如机组的蒸发温度低但还未到故障时,则认为满足待机条件。
S102、判断是否接收到两个或两个以上的待机请求;
然后进一步判断是否有两个或两个以上的机组发出待机请求,需要说明的是,此时的待机请求不包含故障保护待机请求。
S103、当接收到两个或两个以上的待机请求时,根据待机请求生成机组的待机序号;
当接收到两个或两个以上的待机请求时,根据接收到的待机请求对应每个发出待机请求的机组生成一个相应的待机序号。
S104、基于待机序号按照预设规则关闭机组。
最后根据生成的待机序号按照预设的规则对发出待机请求的机组进行关闭。
综上所述,在上述实施例中,当需要对空调冷水机组进行控制时,首先接收机组基于待机条件生成的待机请求,并判断是否接收到两个或两个以上的待机请求,当接收到两个或两个以上的待机请求时,根据待机请求生成机组的待机序号;最后基于待机序号按照预设规则关闭机组。相对于现有技术单纯的基于出水温度来控制能够避免机组的频繁启停,提高了机组的使用寿命。
如图2所示,为本公开提供的空调冷水机组控制方法的另一个实施例的方法流程图,应用于两个或两个以上的机组,所述方法包括以下步骤:
S201、接收机组基于待机条件生成的待机请求;
当需要对空调冷水机组进行控制时,在机组的开机模式下,当机组发出待机请求时,首先接受机组基于待机条件生成的待机请求。其中,所述的待机请求可以为机组的进水温度满足待机条件,例如,在制冷模式时,当检测的机组的进水温度小于设定的目标进水温度时,则认为满足待机条件。或者,当机组遇到紧急情况,如机组的蒸发温度低但还未到故障时,则认为满足待机条件。
S202、判断待机请求中是否包含故障保护待机请求;
当接受到机组基于待机条件生成的待机请求后,进一步判断接收到的待机请求中是否包含故障保护待机请求,即机组在紧急情况下生成的故障保护待机请求。
S203、当待机请求中不包含故障保护待机请求时,判断当前开启的机组数量是否大于等于两个;
当判断待机请求中不包含故障保护待机请求时,进一步对当前开启的机组数量进行判断,判断当前开启的机组数量是否大于等于两个。
S204、当当前开启的机组数量大于等于两个时,判断是否接收到两个或两个以上的待机请求;
当判断当前开启的机组数量大于等于两个时,进一步判断是否有两个或两个以上的机组发出待机请求,需要说明的是,此时的待机请求不包含故障保护待机请求。
S205、当接收到两个或两个以上的待机请求时,根据待机请求生成机组的待机序号;
当接收到两个或两个以上的待机请求时,根据接收到的待机请求对应每个发出待机请求的机组生成一个相应的待机序号。
S206、基于待机序号按照预设规则关闭机组。
最后根据生成的待机序号按照预设的规则对发出待机请求的机组进行关闭。
综上所述,在上述实施例中,当需要对空调冷水机组进行控制时,首先接收机组基于待机条件生成的待机请求,并判断待机请求中是否包含故障保护待机请求,当不包含故障保护待机请求时,进一步判断当前开启的机组数量是否大于等于两个,当当前开启的机组数量大于等于两个时,进一步判断是否接收到两个或两个以上的待机请求;当接收到两个或两个以上的待机请求时,根据待机请求生成机组的待机序号;最后基于待机序号按照预设规则关闭机组。相对于现有技术单纯的基于出水温度来控制能够避免机组的频繁启停, 提高了机组的使用寿命。
如图3所示,为本公开提供的空调冷水机组控制方法的另一个实施例的方法流程图,应用于两个或两个以上的机组,所述方法包括以下步骤:
S301、接收机组基于待机条件生成的待机请求;
当需要对空调冷水机组进行控制时,在机组的开机模式下,当机组发出待机请求时,首先接受机组基于待机条件生成的待机请求。其中,所述的待机请求可以为机组的进水温度满足待机条件,例如,在制冷模式时,当检测的机组的进水温度小于设定的目标进水温度时,则认为满足待机条件。或者,当机组遇到紧急情况,如机组的蒸发温度低但还未到故障时,则认为满足待机条件。
S302、判断待机请求中是否包含故障保护待机请求;
当接受到机组基于待机条件生成的待机请求后,进一步判断接收到的待机请求中是否包含故障保护待机请求,即机组在紧急情况下生成的故障保护待机请求。
S303、当待机请求中不包含故障保护待机请求时,判断当前开启的机组数量是否大于等于两个;
当判断待机请求中不包含故障保护待机请求时,进一步对当前开启的机组数量进行判断,判断当前开启的机组数量是否大于等于两个。
S304、当当前开启的机组数量大于等于两个时,判断是否接收到两个或两个以上的待机请求;
当判断当前开启的机组数量大于等于两个时,进一步判断是否有两个或两个以上的机组发出待机请求,需要说明的是,此时的待机请求不包含故障保护待机请求。
S305、当接收到两个或两个以上的待机请求时,根据待机请求生成机组的待机序号;
当接收到两个或两个以上的待机请求时,根据接收到的待机请求对应每个发出待机请求的机组生成一个相应的待机序号。
S306、获取当前时间月份值;
当接收到两个或两个以上的待机请求,并根据待机请求生成机组的待机序号后,进一步获取当前时间的月份值。
S307、比较待机序号大小,奇数月份时关闭待机序号小的机组,偶数月份时关闭待机序号大的机组。对待机序号的大小进行比较,当获取的当前时间月份值为奇数月份时,关闭待机序号小的机组,当获取的当前时间月份值为偶数月份时,关闭待机序号大的机组。也可以根据月份数以及待机序号的顺序关闭机组,例如,在所述月份值为奇数时,按照待 机序号由小到大的顺序依次关闭机组,即优先关闭待机序号小的机组。在所述月份值为偶数时,按照待机序号由大到小的顺序依次关闭机组,即优先关闭待机序号大的机组。
综上所述,在上述实施例中,当需要对空调冷水机组进行控制时,首先接收机组基于待机条件生成的待机请求,并判断待机请求中是否包含故障保护待机请求,当不包含故障保护待机请求时,进一步判断当前开启的机组数量是否大于等于两个,当当前开启的机组数量大于等于两个时,进一步判断是否接收到两个或两个以上的待机请求;当接收到两个或两个以上的待机请求时,根据待机请求生成机组的待机序号;最后获取当前时间月份值,比较待机序号大小,奇数月份时关闭待机序号小的机组,偶数月份时关闭待机序号大的机组。相对于现有技术单纯的基于出水温度来控制能够避免机组的频繁启停,提高了机组的使用寿命。
如图4所示,为本公开提供的空调冷水机组控制方法的又一个实施例的方法流程图,应用于两个或两个以上的机组,所述方法包括以下步骤:
S401、接收机组基于待机条件生成的待机请求;
当需要对空调冷水机组进行控制时,在机组的开机模式下,当机组发出待机请求时,首先接受机组基于待机条件生成的待机请求。其中,所述的待机请求可以为机组的进水温度满足待机条件,如,在制冷模式时,当检测的机组的进水温度小于设定的目标进水温度时,则认为满足待机条件。或者,当机组遇到紧急情况,如机组的蒸发温度低但还未到故障时,则认为满足待机条件。
具体的,基于待机条件生成待机请求可以包括:获取机组的温度参数;判断所述机组的温度参数是否满足第一待机条件;当所述机组的温度参数满足第一待机条件时,生成机组待机请求;获取机组的保护参数;判断所述机组的保护参数是否满足故障保护待机条件;当所述机组的保护参数满足故障保护待机条件时,生成故障保护待机请求。
S402、判断待机请求中是否包含故障保护待机请求;
当接受到机组基于待机条件生成的待机请求后,进一步判断接收到的待机请求中是否包含故障保护待机请求,即机组在紧急情况下生成的故障保护待机请求。
S403、当待机请求中包含故障保护待机请求时,基于待机请求生成与所述发送待机请求的机组相对应的待机序号;
当判断待机请求中包含故障保护待机请求时,即当前需要对机组进行故障保护,此时根据接收到的待机请求对应每个发出待机请求的机组生成一个相应的待机序号。
S404、基于所述待机序号关闭所述发送待机请求的机组。
最后根据生成的待机序号按照预设的规则对发出待机请求的机组进行关闭。
综上所述,在上述实施例中,进一步实现了当判断待机请求中包含故障保护待机请求时,进一步实现了基于待机请求生成与发送待机请求的机组相对应的待机序号,基于待机序号关闭发送待机请求的机组。
如图5所示,为本公开提供的空调冷水机组控制方法的再一个实施例的方法流程图,应用于两个或两个以上的机组,所述方法包括以下步骤:
S501、接收机组基于待机条件生成的待机请求;
当需要对空调冷水机组进行控制时,在机组的开机模式下,当机组发出待机请求时,首先接受机组基于待机条件生成的待机请求。其中,所述的待机请求可以为机组的进水温度满足待机条件,例如,在制冷模式时,当检测的机组的进水温度小于设定的目标进水温度时,则认为满足待机条件。或者,当机组遇到紧急情况,如机组的蒸发温度低但还未到故障时,则认为满足待机条件。
具体的,基于待机条件生成待机请求可以包括:获取机组的温度参数;判断所述机组的温度参数是否满足第一待机条件;当所述机组的温度参数满足第一待机条件时,生成机组待机请求;获取机组的保护参数;判断所述机组的保护参数是否满足故障保护待机条件;当所述机组的保护参数满足故障保护待机条件时,生成故障保护待机请求。
S502、判断待机请求中是否包含故障保护待机请求;
当接受到机组基于待机条件生成的待机请求后,进一步判断接收到的待机请求中是否包含故障保护待机请求,即机组在紧急情况下生成的故障保护待机请求。
S503、当待机请求中不包含故障保护待机请求时,判断当前开启的机组数量是否大于等于两个;
当判断待机请求中不包含故障保护待机请求时,进一步对当前开启的机组数量进行判断,判断当前开启的机组数量是否大于等于两个。
S504、当当前开启的机组数量小于两个时,基于待机请求生成与发送待机请求的机组相对应的待机序号;
当判断当前开启的机组数量小于两个时,此时根据接收到的待机请求对应每个发出待机请求的机组生成一个相应的待机序号。
S505、基于待机序号关闭发送待机请求的机组。
最后根据生成的待机序号按照预设的规则对发出待机请求的机组进行关闭。
综上所述,在上述实施例中,进一步实现了当判断当前开启的机组数量小于两个时, 进一步实现了基于待机请求生成与发送待机请求的机组相对应的待机序号,基于待机序号关闭发送待机请求的机组。
如图6所示,为本公开提供的空调冷水机组控制系统的一个实施例的结构示意图,该系统应用于两个或两个以上的机组,所述系统可以包括:
接收模块601,用于接收机组基于待机条件生成的待机请求;
当需要对空调冷水机组进行控制时,在机组的开机模式下,当机组发出待机请求时,首先接受机组基于待机条件生成的待机请求。其中,所述的待机请求可以为机组的进水温度满足待机条件,例如,在制冷模式时,当检测的机组的进水温度小于设定的目标进水温度时,则认为满足待机条件。或者,当机组遇到紧急情况,如机组的蒸发温度低但还未到故障时,则认为满足待机条件。
第一判断模块602,判断是否接收到两个或两个以上的待机请求;
然后进一步判断是否有两个或两个以上的机组发出待机请求,需要说明的是,此时的待机请求不包含故障保护待机请求。
生成模块603,用于当接收到两个或两个以上的待机请求时,根据待机请求生成机组的待机序号;
当接收到两个或两个以上的待机请求时,根据接收到的待机请求对应每个发出待机请求的机组生成一个相应的待机序号。
控制模块604,用于基于待机序号按照预设规则关闭机组。
最后根据生成的待机序号按照预设的规则对发出待机请求的机组进行关闭。
综上所述,在上述实施例中,当需要对空调冷水机组进行控制时,首先接收机组基于待机条件生成的待机请求,并判断判断是否接收到两个或两个以上的待机请求,当接收到两个或两个以上的待机请求时,根据待机请求生成机组的待机序号;最后基于待机序号按照预设规则关闭机组。相对于现有技术单纯的基于出水温度来控制能够避免机组的频繁启停,提高了机组的使用寿命。
如图7所示,为本公开提供的空调冷水机组控制系统的另一个实施例的结构示意图,该系统应用于两个或两个以上的机组,所述系统可以包括:
接收模块701,用于接收机组基于待机条件生成的待机请求;
当需要对空调冷水机组进行控制时,在机组的开机模式下,当机组发出待机请求时,首先接受机组基于待机条件生成的待机请求。其中,所述的待机请求可以为机组的进水温度满足待机条件,例如,在制冷模式时,当检测的机组的进水温度小于设定的目标进水温 度时,则认为满足待机条件。或者,当机组遇到紧急情况,如机组的蒸发温度低但还未到故障时,则认为满足待机条件。
第二判断模块702,用于判断待机请求中是否包含故障保护待机请求;
当接受到机组基于待机条件生成的待机请求后,进一步判断接收到的待机请求中是否包含故障保护待机请求,即机组在紧急情况下生成的故障保护待机请求。
第三判断模块703,用于当待机请求中不包含故障保护待机请求时,判断当前开启的机组数量是否大于等于两个;
当判断待机请求中不包含故障保护待机请求时,进一步对当前开启的机组数量进行判断,判断当前开启的机组数量是否大于等于两个。
第一判断模块704,用于当当前开启的机组数量大于等于两个时,判断是否接收到两个或两个以上的待机请求;
当判断当前开启的机组数量大于等于两个时,进一步判断是否有两个或两个以上的机组发出待机请求,需要说明的是,此时的待机请求不包含故障保护待机请求。
生成模块705,用于当接收到两个或两个以上的待机请求时,根据待机请求生成机组的待机序号;
当接收到两个或两个以上的待机请求时,根据接收到的待机请求对应每个发出待机请求的机组生成一个相应的待机序号。
控制模块706,用于基于待机序号按照预设规则关闭机组。
最后根据生成的待机序号按照预设的规则对发出待机请求的机组进行关闭。
综上所述,在上述实施例中,当需要对空调冷水机组进行控制时,首先接收机组基于待机条件生成的待机请求,并判断待机请求中是否包含故障保护待机请求,当不包含故障保护待机请求时,进一步判断当前开启的机组数量是否大于等于两个,当当前开启的机组数量大于等于两个时,进一步判断是否接收到两个或两个以上的待机请求;当接收到两个或两个以上的待机请求时,根据待机请求生成机组的待机序号;最后基于待机序号按照预设规则关闭机组。相对于现有技术单纯的基于出水温度来控制能够避免机组的频繁启停,提高了机组的使用寿命。
如图8所示,为公开提供的空调冷水机组控制系统的另一个实施例的结构示意图,该系统应用于两个或两个以上的机组,所述系统可以包括:
接收模块801,用于接收机组基于待机条件生成的待机请求;
当需要对空调冷水机组进行控制时,在机组的开机模式下,当机组发出待机请求时, 首先接受机组基于待机条件生成的待机请求。其中,所述的待机请求可以为机组的进水温度满足待机条件,如,在制冷模式时,当检测的机组的进水温度小于设定的目标进水温度时,则认为满足待机条件。或者,当机组遇到紧急情况,如机组的蒸发温度低但还未到故障时,则认为满足待机条件。
第二判断模块802,用于判断待机请求中是否包含故障保护待机请求;
当接受到机组基于待机条件生成的待机请求后,进一步判断接收到的待机请求中是否包含故障保护待机请求,即机组在紧急情况下生成的故障保护待机请求。
第三判断模块803,用于当待机请求中不包含故障保护待机请求时,判断当前开启的机组数量是否大于等于两个;
当判断待机请求中不包含故障保护待机请求时,进一步对当前开启的机组数量进行判断,判断当前开启的机组数量是否大于等于两个。
第一判断模块804,用于当当前开启的机组数量大于等于两个时,判断是否接收到两个或两个以上的待机请求;
当判断当前开启的机组数量大于等于两个时,进一步判断是否有两个或两个以上的机组发出待机请求,需要说明的是,此时的待机请求不包含故障保护待机请求。
生成模块805,用于当接收到两个或两个以上的待机请求时,根据待机请求生成机组的待机序号;
当接收到两个或两个以上的待机请求时,根据接收到的待机请求对应每个发出待机请求的机组生成一个相应的待机序号。
第一获取单元806,用于获取当前时间月份值;
当接收到两个或两个以上的待机请求,并根据待机请求生成机组的待机序号后,进一步获取当前时间的月份值。
控制单元807,用于比较待机序号大小,奇数月份时关闭待机序号小的机组,偶数月份时关闭待机序号大的机组。
对待机序号的大小进行比较,当获取的当前时间月份值为奇数月份时,关闭待机序号小的机组,当获取的当前时间月份值为偶数月份时,关闭待机序号大的机组。也可以根据月份数以及待机序号的顺序关闭机组,例如,在所述月份值为奇数时,按照待机序号由小到大的顺序依次关闭机组,即优先关闭待机序号小的机组。在所述月份值为偶数时,按照待机序号由大到小的顺序依次关闭机组,即优先关闭待机序号大的机组。
综上所述,在上述实施例中,当需要对空调冷水机组进行控制时,首先接收机组基于 待机条件生成的待机请求,并判断待机请求中是否包含故障保护待机请求,当不包含故障保护待机请求时,进一步判断当前开启的机组数量是否大于等于两个,当当前开启的机组数量大于等于两个时,进一步判断是否接收到两个或两个以上的待机请求;当接收到两个或两个以上的待机请求时,根据待机请求生成机组的待机序号;最后获取当前时间月份值,比较待机序号大小,奇数月份时关闭待机序号小的机组,偶数月份时关闭待机序号大的机组。相对于现有技术单纯的基于出水温度来控制能够避免机组的频繁启停,提高了机组的使用寿命。
如图9所示,为公开提供的空调冷水机组控制系统的另一个实施例的结构示意图,该系统应用于两个或两个以上的机组,所述系统可以包括:
接收模块901,用于接收机组基于待机条件生成的待机请求;
当需要对空调冷水机组进行控制时,在机组的开机模式下,当机组发出待机请求时,首先接受机组基于待机条件生成的待机请求。其中,所述的待机请求可以为机组的进水温度满足待机条件,例如,在制冷模式时,当检测的机组的进水温度小于设定的目标进水温度时,则认为满足待机条件。或者,当机组遇到紧急情况,如机组的蒸发温度低但还未到故障时,则认为满足待机条件。
具体的,基于待机条件生成待机请求可以包括:第二获取单元,获取机组的温度参数;第一判断单元,判断所述机组的温度参数是否满足第一待机条件;第一生成单元,当所述机组的温度参数满足第一待机条件时,生成机组待机请求;第三获取单元,获取机组的保护参数;第二判断单元,判断所述机组的保护参数是否满足故障保护待机条件;第二生成单元,当所述机组的保护参数满足故障保护待机条件时,生成故障保护待机请求。
第二判断模块902,用于判断待机请求中是否包含故障保护待机请求;
当接受到机组基于待机条件生成的待机请求后,进一步判断接收到的待机请求中是否包含故障保护待机请求,即机组在紧急情况下生成的故障保护待机请求。
生成模块903,用于当待机请求中包含故障保护待机请求时,基于待机请求生成与所述发送待机请求的机组相对应的待机序号;
当判断待机请求中包含故障保护待机请求时,即当前需要对机组进行故障保护,此时根据接收到的待机请求对应每个发出待机请求的机组生成一个相应的待机序号。
控制模块904,用于基于所述待机序号关闭所述发送待机请求的机组。
最后根据生成的待机序号按照预设的规则对发出待机请求的机组进行关闭。
综上所述,在上述实施例中,进一步实现了当判断待机请求中包含故障保护待机请求 时,进一步实现了基于待机请求生成与发送待机请求的机组相对应的待机序号,基于待机序号关闭发送待机请求的机组。
如图10所示,为公开提供的空调冷水机组控制系统的又一个实施例的结构示意图,该系统应用于两个或两个以上的机组,所述系统可以包括:
接收模块1001,用于接收机组基于待机条件生成的待机请求;
当需要对空调冷水机组进行控制时,在机组的开机模式下,当机组发出待机请求时,首先接受机组基于待机条件生成的待机请求。其中,所述的待机请求可以为机组的进水温度满足待机条件,例如,在制冷模式时,当检测的机组的进水温度小于设定的目标进水温度时,则认为满足待机条件。或者,当机组遇到紧急情况,如机组的蒸发温度低但还未到故障时,则认为满足待机条件。
具体的,基于待机条件生成待机请求可以包括:第二获取单元,获取机组的温度参数;第一判断单元,判断所述机组的温度参数是否满足第一待机条件;第一生成单元,当所述机组的温度参数满足第一待机条件时,生成机组待机请求;第三获取单元,获取机组的保护参数;第二判断单元,判断所述机组的保护参数是否满足故障保护待机条件;第二生成单元,当所述机组的保护参数满足故障保护待机条件时,生成故障保护待机请求。
第二判断模块1002,用于判断待机请求中是否包含故障保护待机请求;
当接受到机组基于待机条件生成的待机请求后,进一步判断接收到的待机请求中是否包含故障保护待机请求,即机组在紧急情况下生成的故障保护待机请求。
第三判断模块1003,用于当待机请求中不包含故障保护待机请求时,判断当前开启的机组数量是否大于等于两个;
当判断待机请求中不包含故障保护待机请求时,进一步对当前开启的机组数量进行判断,判断当前开启的机组数量是否大于等于两个。
生成模块1004,用于当当前开启的机组数量小于两个时,基于待机请求生成与发送待机请求的机组相对应的待机序号;
当判断当前开启的机组数量小于两个时,此时根据接收到的待机请求对应每个发出待机请求的机组生成一个相应的待机序号。
控制模块1005,用于基于待机序号关闭发送待机请求的机组。
最后根据生成的待机序号按照预设的规则对发出待机请求的机组进行关闭。
在上述实施例中,进一步实现了当判断当前开启的机组数量小于两个时,进一步实现了基于待机请求生成与发送待机请求的机组相对应的待机序号,基于待机序号关闭发送待 机请求的机组。
在上面所描述的功能单元模块可以实现为用于执行本公开所描述功能的通用处理器、可编程逻辑控制器(Programmable Logic Controller,简称:PLC)、数字信号处理器(Digital Signal Processor,简称:DSP)、专用集成电路(Application Specific Integrated Circuit,简称:ASIC)、现场可编程门阵列(Field-Programmable Gate Array,简称:FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。
本公开还提供一种空调系统,空调系统包括如上任一实施例涉及的空调冷水机组控制系统。
如图11所示,为公开提供的空调冷水机组控制系统的再一个实施例的结构示意图,空调冷水机组控制系统包括存储器1101和处理器1102。其中:存储器1101用于存储指令,处理器1102耦合到存储器1101,处理器1102被配置为基于存储器存储的指令执行实现如上任一实施例涉及的空调冷水机组控制方法。
如图11所示,该装置还包括通信接口1103,用于与其它设备进行信息交互。同时,该装置还包括总线1104,处理器1102、通信接口1103、以及存储器1101通过总线1104完成相互间的通信。
存储器1101可以包含高速RAM存储器,也可还包括非易失性存储器(Non-Volatile Memory,简称:NVM),例如至少一个磁盘存储器。存储器1101也可以是存储器阵列。存储器1101还可能被分块,并且块可按一定的规则组合成虚拟卷。此外,处理器1102可以是一个中央处理器CPU,或者可以是专用集成电路ASIC,或者是被配置成实施本公开实施例的一个或多个集成电路。
在一个实施例中,本公开还提供一种计算机可读存储介质,其中计算机可读存储介质存储有计算机指令,指令被处理器执行时实现如上任一实施例涉及的空调冷水机组控制方法。
本领域内的技术人员应明白,本公开的实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用非瞬时性存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体 或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
至此,已经详细描述了本发明。为了避免遮蔽本发明的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
可能以许多方式来实现本发明的方法以及装置。例如,可通过软件、硬件、固件或者软件、硬件、固件的任何组合来实现本发明的方法以及装置。用于所述方法的步骤的上述顺序仅是为了进行说明,本发明的方法的步骤不限于以上具体描述的顺序,除非以其它方式特别说明。此外,在一些实施例中,还可将本发明实施为记录在记录介质中的程序,这些程序包括用于实现根据本发明的方法的机器可读指令。因而,本发明还覆盖存储用于执行根据本发明的方法的程序的记录介质。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制;尽管参照较佳实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本发明技术方案的精神,其均应涵盖在本发明请求保护的技术方案范围当中。

Claims (15)

  1. 一种空调冷水机组控制方法,应用于两个或两个以上的机组,包括:
    接收机组基于待机条件生成的待机请求;
    判断是否接收到两个或两个以上的待机请求;
    在接收到两个或两个以上的待机请求的情况下,根据待机请求生成机组的待机序号;
    基于所述待机序号按照预设规则关闭机组。
  2. 根据权利要求1所述的方法,在所述接收机组基于待机条件生成的待机请求之后还包括:
    判断所述待机请求中是否包含故障保护待机请求;
    如果所述待机请求中不包含故障保护待机请求,判断当前开启的机组数量是否大于等于两个;
    如果当前开启的机组数量大于等于两个,判断是否接收到两个或两个以上的待机请求。
  3. 根据权利要求2所述的方法,所述基于待机序号按照预设规则关闭机组包括:
    获取当前时间的月份值;
    比较待机序号大小,在所述月份值为奇数时,按照待机序号由小到大的顺序依次关闭机组,在所述月份值为偶数时,按照待机序号由大到小的顺序依次关闭机组。
  4. 根据权利要求2或3所述的方法,还包括:
    如果所述待机请求中包含故障保护待机请求,基于所述待机请求生成与所述发送待机请求的机组相对应的待机序号;
    基于所述待机序号关闭所述发送待机请求的机组。
  5. 根据权利要求4所述的方法,还包括:
    如果当前开启的机组数量小于两个,基于所述待机请求生成与所述发送待机请求的机组相对应的待机序号;
    基于所述待机序号关闭所述发送待机请求的机组。
  6. 根据权利要求5所述的方法,所述基于待机条件生成待机请求包括:
    获取机组的温度参数;
    判断所述机组的温度参数是否满足第一待机条件;
    当所述机组的温度参数满足第一待机条件时,生成机组待机请求;
    获取机组的保护参数;
    判断所述机组的保护参数是否满足故障保护待机条件;
    当所述机组的保护参数满足故障保护待机条件时,生成故障保护待机请求。
  7. 一种空调冷水机组控制系统,应用于两个或两个以上的机组,包括:
    接收模块,用于接收机组基于待机条件生成的待机请求;
    第一判断模块,用于判断是否接收到两个或两个以上的待机请求;
    生成模块,用于在接收到两个或两个以上的待机请求的情况下,根据待机请求生成机组的待机序号;
    控制模块,用于基于所述待机序号按照预设规则关闭机组。
  8. 根据权利要求7所述的系统,其特征在于,还包括
    第二判断模块,用于判断所述待机请求中是否包含故障保护待机请求;
    第三判断模块,用于如果所述待机请求中不包含故障保护待机请求,判断当前开启的机组数量是否大于等于两个;
    所述第一判断模块,用于如果当前开启的机组数量大于等于两个,判断是否接收到两个或两个以上的待机请求。
  9. 根据权利要求8所述的系统,所述控制模块包括:
    第一获取单元,用于获取当前时间的月份值;
    控制单元,用于比较待机序号大小,在所述月份值为奇数时,按照待机序号由小到大的顺序关闭机组,在所述月份值为偶数时,按照待机序号由大到小的顺序关闭机组。
  10. 根据权利要求8或9所述的系统,所述生成模块还用于:如果所述待机请求中包含故障保护待机请求,基于所述待机请求生成与所述发送待机请求的机组相对应的待机序号;
    所述控制模块,还用于基于所述待机序号关闭所述发送待机请求的机组。
  11. 根据权利要求10所述的系统,其中,所述生成模块还用于:如果当前开启的机组数量小于两个,基于所述待机请求生成与所述发送待机请求的机组相对应的待机序号;
    所述控制模块,还用于基于所述待机序号关闭所述发送待机请求的机组。
  12. 根据权利要求11所述的系统,其中,所述接收模块包括:
    第二获取单元,用于获取机组的温度参数;
    第一判断单元,用于判断所述机组的温度参数是否满足第一待机条件;
    第一生成单元,用于当所述机组的温度参数满足第一待机条件时,生成机组待机请求;
    第三获取单元,用于获取机组的保护参数;
    第二判断单元,用于判断所述机组的保护参数是否满足故障保护待机条件;
    第二生成单元,用于当所述机组的保护参数满足故障保护待机条件时,生成故障保护待机请求。
  13. 一种空调系统,其特征在于,包括:
    如权利要求7至12任一项所述的空调冷水机组控制系统。
  14. 一种空调冷水机组控制系统,包括:
    存储器,以及耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器的指令执行如权利要求1至6任意一项所述的方法。
  15. 一种计算机可读存储介质,其上存储有计算机程序指令,该指令被一个或多个处理器执行时实现权利要求1至6任意一项所述的方法的步骤。
PCT/CN2017/106313 2016-11-14 2017-10-16 空调冷水机组控制方法、系统及其空调系统 WO2018086439A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17868927.9A EP3540321B1 (en) 2016-11-14 2017-10-16 Method and system for controlling air conditioner water-chilling unit, and air conditioning system thereof
US16/348,912 US10899199B2 (en) 2016-11-14 2017-10-16 Control method and system for air-conditioner water chilling units and air conditioning system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611002861.9 2016-11-14
CN201611002861.9A CN106765867B (zh) 2016-11-14 2016-11-14 一种空调冷水机组控制方法及系统

Publications (1)

Publication Number Publication Date
WO2018086439A1 true WO2018086439A1 (zh) 2018-05-17

Family

ID=58968343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106313 WO2018086439A1 (zh) 2016-11-14 2017-10-16 空调冷水机组控制方法、系统及其空调系统

Country Status (4)

Country Link
US (1) US10899199B2 (zh)
EP (1) EP3540321B1 (zh)
CN (1) CN106765867B (zh)
WO (1) WO2018086439A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106765867B (zh) 2016-11-14 2018-12-07 珠海格力电器股份有限公司 一种空调冷水机组控制方法及系统
CN115479358A (zh) * 2022-09-14 2022-12-16 小米科技(武汉)有限公司 空调控制方法及装置、电子设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060058203A (ko) * 2004-11-24 2006-05-30 삼성전자주식회사 공기조화기의 운전지연 제어방법
US20060191275A1 (en) * 2005-02-25 2006-08-31 Lg Electronics Inc. Multi-air conditioner central control system and power control method thereof
CN101403556A (zh) * 2008-11-13 2009-04-08 四川长虹电器股份有限公司 双系统螺杆式冷水机组能量调节控制方法
WO2014203828A1 (ja) * 2013-06-20 2014-12-24 三菱重工業株式会社 空気調和機及び空気調和機の制御方法
CN104697128A (zh) * 2015-03-05 2015-06-10 美的集团股份有限公司 空调器及其故障检测方法
CN104807136A (zh) * 2014-01-27 2015-07-29 珠海格力电器股份有限公司 压缩机运行调度方法、系统及空调机组
CN106765867A (zh) * 2016-11-14 2017-05-31 珠海格力电器股份有限公司 一种空调冷水机组控制方法及系统

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08247565A (ja) * 1995-03-07 1996-09-27 Daikin Ind Ltd ヒートポンプマルチシステム
JP4177045B2 (ja) * 2002-08-23 2008-11-05 三菱電機株式会社 エレベータの制御装置
CN1677956A (zh) * 2004-03-31 2005-10-05 松下电器产业株式会社 资源管理装置、资源管理系统以及资源管理方法
JP2009145005A (ja) * 2007-12-17 2009-07-02 Panasonic Corp 多室形空気調和機の制御方法
CN101315560A (zh) * 2008-07-10 2008-12-03 四川长虹电器股份有限公司 提高冷水机组系统运行寿命的控制方法
JP4410295B1 (ja) * 2008-12-26 2010-02-03 パナソニック株式会社 空気調和機
US9172561B2 (en) * 2009-07-29 2015-10-27 Qualcomm Incorporated Adaptive transmissions in coordinated multiple point communications
CN102003748A (zh) 2009-09-01 2011-04-06 珠海格力电器股份有限公司 模块化冷水机组及其智能控制方法
CN102147143B (zh) * 2011-04-06 2013-06-12 深圳达实智能股份有限公司 一种中央空调系统启停优化控制方法及装置
JP5413480B2 (ja) * 2012-04-09 2014-02-12 ダイキン工業株式会社 空気調和装置
JP2014070827A (ja) * 2012-09-28 2014-04-21 Daikin Ind Ltd 換気装置のコントローラ
JP2013083437A (ja) * 2012-12-26 2013-05-09 Mitsubishi Electric Corp 空気調和装置、空気調和装置の安全管理方法
CN103940023B (zh) * 2013-01-21 2018-05-25 山东朗进科技股份有限公司 一种一拖多空调膨胀阀智能控制方法
US10061288B2 (en) * 2013-12-05 2018-08-28 Wallflower Labs Inc. Monitoring and controlling of appliances
CN103795233B (zh) * 2014-02-21 2016-08-24 南京冠亚电源设备有限公司 一种智能启停轮询机制的模块化逆变器电源控制方法
JP6290724B2 (ja) * 2014-06-24 2018-03-07 ヤンマー株式会社 チラーシステム
US9753766B2 (en) 2014-11-25 2017-09-05 Raytheon Company Apparatus and method for allocating resources using prioritization of requests and updating of requests
CN106322668B (zh) * 2016-08-29 2019-01-18 珠海格力电器股份有限公司 控制多个空调机组开启/关闭的方法、装置及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060058203A (ko) * 2004-11-24 2006-05-30 삼성전자주식회사 공기조화기의 운전지연 제어방법
US20060191275A1 (en) * 2005-02-25 2006-08-31 Lg Electronics Inc. Multi-air conditioner central control system and power control method thereof
CN101403556A (zh) * 2008-11-13 2009-04-08 四川长虹电器股份有限公司 双系统螺杆式冷水机组能量调节控制方法
WO2014203828A1 (ja) * 2013-06-20 2014-12-24 三菱重工業株式会社 空気調和機及び空気調和機の制御方法
CN104807136A (zh) * 2014-01-27 2015-07-29 珠海格力电器股份有限公司 压缩机运行调度方法、系统及空调机组
CN104697128A (zh) * 2015-03-05 2015-06-10 美的集团股份有限公司 空调器及其故障检测方法
CN106765867A (zh) * 2016-11-14 2017-05-31 珠海格力电器股份有限公司 一种空调冷水机组控制方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3540321A4 *

Also Published As

Publication number Publication date
EP3540321A1 (en) 2019-09-18
EP3540321A4 (en) 2019-11-20
US10899199B2 (en) 2021-01-26
US20190275865A1 (en) 2019-09-12
CN106765867A (zh) 2017-05-31
EP3540321B1 (en) 2022-05-18
CN106765867B (zh) 2018-12-07

Similar Documents

Publication Publication Date Title
US9734887B1 (en) Per-die based memory refresh control based on a master controller
KR101534450B1 (ko) 누설 전류 측정으로부터 열 관리 폴리시를 결정하는 시스템 및 방법
CN106557135B (zh) 处理器温度调控方法及装置
WO2019196481A1 (zh) 多联机系统通讯匹配方法和装置
EP3242170A1 (en) Prompt information sending method and device
KR102254440B1 (ko) 보일러 내의 스케일링을 결정하기 위한 시스템
WO2018086439A1 (zh) 空调冷水机组控制方法、系统及其空调系统
WO2023024510A1 (zh) 阀门开度的控制方法、装置、非易失性存储介质及处理器
TWI564684B (zh) 一般主機控制器延遲方法及設備
US10055366B2 (en) Method for data transmission and server for implementing the method
US20160041019A1 (en) Fluid control system
WO2019019713A1 (zh) 检测应用程序内存泄露的方法、终端及可读存储介质
WO2020164331A1 (zh) 理赔业务的处理方法及装置
WO2019137568A3 (en) Methods and devices for managing access to account in blockchain system
WO2021174690A1 (zh) 用于控制多联机空调的方法、装置和空调
US9823905B2 (en) Event based code generation
TWI479310B (zh) 伺服器及其控制通道開關的方法
CN109891425A (zh) 序列验证
JP2007317386A5 (zh)
US9256278B2 (en) Devices and methods for multi-core memory
TW201501494A (zh) 網路流量分配系統及方法
TW201935341A (zh) 針對風控指令的處理方法、裝置及設備
CN108733421A (zh) 计算机装置及其数据保护方法
US10145090B2 (en) Automated drip flow valve for freeze protection
TW201931135A (zh) 用於整合保護記憶體之動態管理之方法、設備及系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017868927

Country of ref document: EP