WO2018086073A1 - 双面光伏发电装置 - Google Patents

双面光伏发电装置 Download PDF

Info

Publication number
WO2018086073A1
WO2018086073A1 PCT/CN2016/105503 CN2016105503W WO2018086073A1 WO 2018086073 A1 WO2018086073 A1 WO 2018086073A1 CN 2016105503 W CN2016105503 W CN 2016105503W WO 2018086073 A1 WO2018086073 A1 WO 2018086073A1
Authority
WO
WIPO (PCT)
Prior art keywords
double
power generation
sided photovoltaic
photovoltaic power
curve
Prior art date
Application number
PCT/CN2016/105503
Other languages
English (en)
French (fr)
Inventor
何春涛
尹立胜
刘志勇
马林
梁中堂
蒋邦友
徐庆
石其运
曲新春
Original Assignee
杭州品联科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州品联科技有限公司 filed Critical 杭州品联科技有限公司
Priority to PCT/CN2016/105503 priority Critical patent/WO2018086073A1/zh
Publication of WO2018086073A1 publication Critical patent/WO2018086073A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to the field of photovoltaic technology, and in particular to a double-sided photovoltaic power generation device.
  • the conventional photovoltaic power generation component is a single-sided crystalline silicon component, and can only generate electricity by receiving sunlight on one side, and the light utilization efficiency of the same installation area is low, and the power generation efficiency is low.
  • the double-sided photovoltaic power generation component can receive sunlight on the front and back to generate double-sided power generation.
  • the existing double-sided photovoltaic power generation component relies on the natural ground to reflect light to generate electricity, and the ground absorbs most of the light, and the light utilization efficiency. Low, poor power generation efficiency and poor economy.
  • the object of the present invention is to solve the above problems and to provide a double-sided photovoltaic power generation device, which improves the back light utilization efficiency of a double-sided photovoltaic power generation assembly, thereby improving power generation efficiency and economic efficiency.
  • the present invention provides a double-sided photovoltaic power generation device, comprising: a double-sided photovoltaic power generation component and a light-reflecting element, wherein a side of the double-sided photovoltaic power generation component facing the sunlight is a front side and the other side is a back surface, and the reflective component is provided.
  • the retroreflective element On the back side of the double-sided photovoltaic power generation assembly, the retroreflective element has a reflective surface to reflect solar light to the back side of the double-sided photovoltaic power generation assembly, and the reflective surface is a convex surface facing the double-sided photovoltaic power generation assembly.
  • the length direction of the double-sided photovoltaic power generation component is defined as an X-axis
  • the width direction is defined as a Z-axis
  • the thickness direction is defined as a Y-axis
  • the convex surface is obtained by translating a curve in a Z-axis direction.
  • the curve is located on a plane formed by the X-axis and the Y-axis, and the curve is defined by the following equation: among them, w is the arc length of the curve, s is the chord length of the curve, ⁇ is the pi, H 1 is the vertical distance of one end of the curve from the back side of the double-sided photovoltaic module, and e is the light reflected to the back side of the double-sided photovoltaic module at X The range of the axis direction, The angle between the chord corresponding to the curve and the X axis.
  • one end of the curve is directly below one side of the double-sided photovoltaic power generation assembly, and the other end of the curve is located outside the double-sided photovoltaic power generation assembly.
  • L 1 is the length of the double-sided photovoltaic power generation component.
  • the light reflecting element is disposed on one side or both sides of the double-sided photovoltaic power generation assembly in the X-axis direction.
  • the invention provides a light reflecting component on the back surface of the double-sided photovoltaic power generation component, and reflects the sunlight to the back surface of the double-sided photovoltaic power generation component by using the reflective surface of the reflective component, thereby improving light utilization efficiency, improving power generation efficiency, and further improving economic efficiency.
  • FIG. 1 is a cross-sectional structural view showing an embodiment of a double-sided photovoltaic power generation device of the present invention.
  • FIG. 2 is a schematic diagram of an optical path of the double-sided photovoltaic power generation apparatus of FIG. 1.
  • FIG. 3 is a cross-sectional structural view showing another embodiment of the double-sided photovoltaic power generation device of the present invention.
  • FIG. 4 is a schematic diagram of an optical path of the double-sided photovoltaic power generation device of FIG.
  • the present invention provides a double-sided photovoltaic power generation device, comprising: a double-sided photovoltaic power generation assembly 1 and a light-reflecting element 2.
  • the one side of the double-sided photovoltaic power generation unit 1 facing the sunlight is the front side 11 and the other side is the back side 12.
  • the light reflecting element 2 is disposed on the back surface 12 of the double-sided photovoltaic power generation assembly 1.
  • the retroreflective element 2 has a reflective surface 21 to reflect solar light to the back side 12 of the double-sided photovoltaic power generation assembly 1, which is a convex surface facing the double-sided photovoltaic power generation assembly 1.
  • the present invention provides a light-reflecting element 2 on the back surface 12 of the double-sided photovoltaic power generation module 1, and reflects the sunlight to the back surface 12 of the double-sided photovoltaic power generation unit 1 by the reflective surface 21 of the light-reflecting element 2, thereby improving light utilization efficiency and improving power generation efficiency. Thereby improving economic efficiency.
  • the length direction of the double-sided photovoltaic power generation module 1 is defined as an X-axis, the width direction is defined as a Z-axis, and the thickness direction is defined as a Y-axis.
  • Figure 1 shows the plane formed by the X and Y axes.
  • the convex surface is obtained by translation of the curve in the Z-axis direction.
  • Vertically incident on the front surface 11 of the double-sided photovoltaic power generation component 1 to the light reflecting element 2 The light is convexly reflected to the back surface 12 of the double-sided photovoltaic power generation assembly 1, thereby improving the utilization of light and improving the power generation efficiency of the double-sided photovoltaic power generation assembly 1.
  • the curve is located on a plane formed by the X and Y axes.
  • the setting of the curve satisfies the following equation:
  • H 1 is the vertical distance of one end of the curve from the back surface 12 of the double-sided photovoltaic power generation assembly 1
  • H 2 is the vertical distance from the other end of the curved line to the back surface 12 of the double-sided photovoltaic power generation assembly 1
  • e is reflected to the double-sided photovoltaic
  • the range of the light on the back side 12 of the component is in the range of the X-axis
  • ⁇ 1 and ⁇ 2 are the incident angles at which light is incident on both ends of the curve (the incident angle is determined by the following method: tangential at the end of the curve, and then perpendicular to the tangent Line, the angle between the incident ray and the normal is the incident angle)
  • L is the range of the light incident on the convex surface in the X-axis direction
  • s is the chord length of the string corresponding to the curve.
  • is the central angle of the curve
  • w
  • the length of the arc length w can be obtained.
  • one end of the curve is located directly below one side of the double-sided photovoltaic power generation assembly 1, and the other end of the curve is located outside the double-sided photovoltaic power generation assembly 1, and the illumination is doubled.
  • the light outside the front 11 area of the photovoltaic power generation component 1 can be fully utilized, and all are reflected to the double
  • the back surface 12 of the photovoltaic power generation unit 1 is used for power generation.
  • L 1 is the length of the double-sided photovoltaic power generation assembly 1. That is to say, the reflected light can illuminate half or more of the area of the back surface 12 of the double-sided photovoltaic power generation unit 1, and can illuminate the entire area of the back surface 12 of the double-sided photovoltaic power generation unit 1.
  • the reflective element 2 is disposed on both sides of the double-sided photovoltaic power generation assembly 1 in the X-axis direction, in order to make the back surface 12 of the double-sided photovoltaic power generation assembly 1
  • the area can be fully utilized for power generation and control when When the light is reflected by the two reflective elements 2, it can completely cover the back surface area of the double-sided photovoltaic power generation assembly 1; When the light is reflected by the two reflective elements 2, not only can the surface 12 of the double-sided photovoltaic power generation assembly 1 be completely covered, but the light will partially overlap, which greatly improves the utilization of the light on the back surface 12 of the double-sided photovoltaic power generation assembly 1. effectiveness. Referring to FIG. 3 and FIG.
  • the reflective element 2 is disposed on one side of the double-sided photovoltaic power generation assembly 1 in the X-axis direction, in order to make the back surface 12 of the double-sided photovoltaic power generation assembly 1
  • the power generation efficiency of the double-sided photovoltaic power generation assembly 1 is increased by about 100% with respect to the power generation efficiency of the single-sided photovoltaic module.
  • the retroreflective element 2 is a curved plate, and the convex outer surface is a reflective surface 21, the structure is very simple, easy to manufacture, and easy to install.
  • the reflective element 2 may be other structures as long as it has a light-emitting surface 21 that is convexly disposed facing the double-sided photovoltaic power generation unit 1, and light can also be reflected to the back surface of the double-sided photovoltaic power generation unit 1.
  • the length of the bifacial photovoltaic power generation module will usually 0.5m ⁇ L 1 ⁇ 2m, but not limited to, L 1 may take any value outside the range of 0.5m ⁇ 2m, the control s, H 1 of the reflective element 2, According to equations (10) and (11), the optimum position of the retroreflective element 2 can still be determined to maximize the power generation efficiency of the double-sided photovoltaic power generation assembly 1.
  • the value of s is preferably 0.2 m ⁇ s ⁇ 2 m.
  • the light is completely covered to cover the back surface 12 of the double-sided photovoltaic power generation component 1, and the control is 0.4m ⁇ H 1 ⁇ 1.2m. Within this range, optimum luminous efficiency can be obtained by adjusting the size and mounting position of the retroreflective element 2.
  • the reflecting surface 21 cannot reflect all the light irradiated onto the reflecting surface 21 to the back surface 11 of the double-sided photovoltaic power generation assembly 1, and the power generation efficiency is low, so that in order to make the double-sided
  • the photovoltaic power generation module 1 fully utilizes the power generation function of the back surface 11, The value of the satisfaction is:

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

一种双面光伏发电装置,包括:双面光伏发电组件(1)及反光元件(2),双面光伏发电组件(1)面向太阳光的一面为正面(11),另一面为背面(12),所述反光元件(2)设于双面光伏发电组件(1)的背面(12),所述反光元件(2)具有反光面(21)以反射太阳光线至双面光伏发电组件(1)的背面(12),该反光面(21)为面向双面光伏发电组件(1)的凸面。通过在双面光伏发电组件(1)的背面(12)设置反光元件(2),利用反光元件(2)的反光面(21)反射太阳光至双面光伏发电组件(1)的背面(12)从而提高光的利用效率,提高发电效率,进而提高经济效益。

Description

双面光伏发电装置 技术领域
本发明涉及光伏技术领域,尤其涉及一种双面光伏发电装置。
背景技术
常规光伏发电组件为单面晶硅组件,只能在一面接受太阳光照射进行发电,同等安装面积光利用效率低,发电效率低。双面光伏发电组件可正背面接收太阳光照射从而进行双面发电,但是现有的双面光伏发电组件其背面发电依靠的是自然地面反射光线进行发电,地面会吸收大部分光线,光利用效率低,发电效率差,经济性较差。
发明内容
本发明的目的是为了解决上述问题,提供一种双面光伏发电装置,提高双面光伏发电组件的背面光利用率,从而提高发电效率及经济效益。
为了达到上述目的,本发明提供一种双面光伏发电装置,包括:双面光伏发电组件及反光元件,双面光伏发电组件面向太阳光的一面为正面,另一面为背面,所述反光元件设于双面光伏发电组件的背面,所述反光元件具有反光面以反射太阳光线至双面光伏发电组件的背面,该反光面为面向双面光伏发电组件的凸面。
于本发明一实施例中,所述双面光伏发电组件的长度方向定义为X轴,宽度方向定义为Z轴,厚度方向定义为Y轴;所述凸面由曲线在Z轴方向平移得到。
于本发明一实施例中,曲线位于X轴和Y轴构成的平面上,曲线通过以下方程限定:
Figure PCTCN2016105503-appb-000001
其中,
Figure PCTCN2016105503-appb-000002
w为曲线的弧长,s为曲线的弦长,π为圆周率,H1为曲线的一端距离双面光伏发电组件的背面的垂直距离,e为反射到双面光伏组件的背面的光线在X轴方向的范围,
Figure PCTCN2016105503-appb-000003
为曲线对应的弦与X轴的夹角。
于本发明一实施例中,所述曲线的一端位于所述双面光伏发电组件的一侧边的正下方,曲线的另一端位于所述双面光伏发电组件的外侧。
于本发明一实施例中,0.2m≤s≤2m。
于本发明一实施例中,
Figure PCTCN2016105503-appb-000004
L1为双面光伏发电组件的长度。
于本发明一实施例中,0.5m≤L1≤2m。
于本发明一实施例中,0.4m≤H1≤1.2m。
于本发明一实施例中,
Figure PCTCN2016105503-appb-000005
于本发明一实施例中,所述双面光伏发电组件的X轴方向的一侧或两侧设置所述反光元件。
与现有技术相比,本技术方案的有益效果是:
本发明通过在双面光伏发电组件的背面设置反光元件,利用反光元件的反光面反射太阳光至双面光伏发电组件的背面从而提高光的利用效率,提高发电效率,进而提高经济效益。
附图说明
图1是本发明双面光伏发电装置的一实施例的剖面结构示意图。
图2是图1的双面光伏发电装置的光路原理图。
图3是本发明双面光伏发电装置的另一实施例的剖面结构示意图。
图4是图3的双面光伏发电装置的光路原理图。
具体实施方式
下面结合附图,通过具体实施例,对本发明的技术方案进行清楚、完整的描述。
请参考图1-4所示,本发明提供一种双面光伏发电装置,包括:双面光伏发电组件1及反光元件2。双面光伏发电组件1面向太阳光的一面为正面11,另一面为背面12。所述反光元件2设于双面光伏发电组件1的背面12。所述反光元件2具有反光面21以反射太阳光线至双面光伏发电组件1的背面12,该反光面21为面向双面光伏发电组件1的凸面。本发明通过在双面光伏发电组件1的背面12设置反光元件2,利用反光元件2的反光面21反射太阳光至双面光伏发电组件1的背面12从而提高光的利用效率,提高发电效率,进而提高经济效益。
所述双面光伏发电组件1的长度方向定义为X轴,宽度方向定义为Z轴,厚度方向定义为Y轴。图1所示为X轴和Y轴构成的平面。所述凸面由曲线在Z轴方向平移得到。垂直于双面光伏发电组件1正面11入射到反光元件2 的光线经过凸面反射至双面光伏发电组件1的背面12,从而可以提高光线的利用率,提高双面光伏发电组件1的发电效率。
曲线位于X轴和Y轴构成的平面上。为使得光线的利用率最大化,曲线的设置满足以下方程:
H1=e·cot2θ1            (1),
Figure PCTCN2016105503-appb-000006
Figure PCTCN2016105503-appb-000007
同时,H2=L·cot2θ2      (4),
Δθ=θ12          (5),
Figure PCTCN2016105503-appb-000008
w=Δθ·π·r/180            (7),
其中,H1为曲线的一端距离双面光伏发电组件1的背面12的垂直距离,H2为曲线的另一端距离双面光伏发电组件1的背面12的垂直距离,e为反射到双面光伏组件的背面12的光线在X轴方向的范围,θ1和θ2为光入射到曲线的两端的入射角(入射角通过以下方法确定:在曲线的端点作切线,再作垂直于切线的法线,入射光线与法线的夹角即为入射角),L为入射到凸面上的光在X轴方向的范围,s为曲线对应的弦的弦长,
Figure PCTCN2016105503-appb-000009
为曲线对应的弦与X轴的夹角,Δθ为曲线对应的圆心角,w为曲线的弧长。
根据方程(1)可得,
Figure PCTCN2016105503-appb-000010
根据方程(2)、(3)、(4)可得,
Figure PCTCN2016105503-appb-000011
将方程(6)代入方程(7),可得,
Figure PCTCN2016105503-appb-000012
将方程(8)、(9)代入方程(5),可得,
Figure PCTCN2016105503-appb-000013
通过控制变量s、
Figure PCTCN2016105503-appb-000014
H1和e,可得到弧长w的长度。
在较优的实施例中,所述曲线的一端位于所述双面光伏发电组件1的一侧边的正下方,曲线的另一端位于所述双面光伏发电组件1的外侧,则照射到双面光伏发电组件1正面11区域之外的光线可以充分利用,全部反射至双 面光伏发电组件1的背面12,进行发电。
反射到双面光伏组件的背面12的光线在X轴方向的范围e满足以下条件:
Figure PCTCN2016105503-appb-000015
其中,L1为双面光伏发电组件1的长度。也就是说经反射后的光线可以照射双面光伏发电组件1的背面12区域的一半及以上,最大可照射双面光伏发电组件1的背面12区域的全部。请参考图1和图2所示,在一实施例中,所述双面光伏发电组件1的X轴方向的两侧均设置所述反光元件2,为了使得双面光伏发电组件1的背面12区域可以充分利用进行发电,控制
Figure PCTCN2016105503-appb-000016
Figure PCTCN2016105503-appb-000017
时,光线经过两个反光元件2的反射后可以完全覆盖双面光伏发电组件1的背面12区域;当
Figure PCTCN2016105503-appb-000018
时,光线经过两个反光元件2的反射后不仅可以完全覆盖双面光伏发电组件1的背面12区域,且光线会出现部分重叠,大大提高了双面光伏发电组件1的背面12对光的利用效率。请参考图3和图4所示,在另一实施例中,所述双面光伏发电组件1的X轴方向的一侧设置所述反光元件2,为了使得双面光伏发电组件1的背面12区域可以充分利用进行发电,控制e=L1,则光线经过反射后可以完全覆盖双面光伏发电组件1的背面12区域,光的利用效率最大。相对于单面光伏组件的发电效率,该双面光伏发电组件1的发电效率提升了100%左右。
在具体实施例中,反光元件2为弧形板,其外凸的外表面为反光面21,结构非常简单,容易制作,也容易安装。但不限于此,反光元件2也可以是其他结构,只要其具有面向双面光伏发电组件1凸出设置的发光面21即可,同样可以将光反射至双面光伏发电组件1的背面。
双面光伏发电组件1的长度根据产品的不同会有多种规格,通常0.5m≤L1≤2m,但不限于此,L1也可以取0.5m~2m范围外的任意值时,通过控制反光元件2的s、H1
Figure PCTCN2016105503-appb-000019
并根据方程(10)和(11)仍然可以确定反光元件2的最优位置,使双面光伏发电组件1的发电效率达到最大。
当0.5m≤L1≤2m,时,s的取值优选为:0.2m≤s≤2m。为控制光线的利用率最高,即使得光线经反射后完全覆盖双面光伏发电组件1的背面12区域,控制0.4m≤H1≤1.2m,
Figure PCTCN2016105503-appb-000020
在该范围内可以通过调整反光元件2的尺寸和安装位置获得最佳的发光效率。当θ=0°,或θ>45°时,反光面21不能把照射到反光面21上的光线全部反射至双面光伏发电组件1的背面11,发电效率较低,因此,为了使双面光伏发电组件1充分发挥背面11的发电作用,
Figure PCTCN2016105503-appb-000021
的取值满足:
Figure PCTCN2016105503-appb-000022
本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。

Claims (10)

  1. 一种双面光伏发电装置,其特征在于,包括:双面光伏发电组件及反光元件,双面光伏发电组件面向太阳光的一面为正面,另一面为背面,所述反光元件设于双面光伏发电组件的背面,所述反光元件具有反光面以反射太阳光线至双面光伏发电组件的背面,该反光面为面向双面光伏发电组件的凸面。
  2. 根据权利要求1所述的双面光伏发电装置,其特征在于,所述双面光伏发电组件的长度方向定义为X轴,宽度方向定义为Z轴,厚度方向定义为Y轴;所述凸面由曲线在Z轴方向平移得到。
  3. 根据权利要求2所述的双面光伏发电装置,其特征在于,曲线位于X轴和Y轴构成的平面上,曲线通过以下方程限定:
    Figure PCTCN2016105503-appb-100001
    其中,
    Figure PCTCN2016105503-appb-100002
    w为曲线的弧长,s为曲线的弦长,π为圆周率,H1为曲线的一端距离双面光伏发电组件的背面的垂直距离,e为反射到双面光伏组件的背面的光线在X轴方向的范围,
    Figure PCTCN2016105503-appb-100003
    为曲线对应的弦与X轴的夹角。
  4. 根据权利要求3所述的双面光伏发电装置,其特征在于,所述曲线的一端位于所述双面光伏发电组件的一侧边的正下方,曲线的另一端位于所述双面光伏发电组件的外侧。
  5. 根据权利要求3所述的双面光伏发电装置,其特征在于,0.2m≤s≤2m。
  6. 根据权利要求5所述的双面光伏发电装置,其特征在于,
    Figure PCTCN2016105503-appb-100004
    L1为双面光伏发电组件的长度。
  7. 根据权利要求6所述的双面光伏发电装置,其特征在于,0.5m≤L1≤2m。
  8. 根据权利要求5所述的双面光伏发电装置,其特征在于,0.4m≤H1≤1.2m。
  9. 根据权利要求5所述的双面光伏发电装置,其特征在于,
    Figure PCTCN2016105503-appb-100005
  10. 根据权利要求1所述的双面光伏发电装置,其特征在于,所述双面光伏发电组件的X轴方向的一侧或两侧设置所述反光元件。
PCT/CN2016/105503 2016-11-11 2016-11-11 双面光伏发电装置 WO2018086073A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/105503 WO2018086073A1 (zh) 2016-11-11 2016-11-11 双面光伏发电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/105503 WO2018086073A1 (zh) 2016-11-11 2016-11-11 双面光伏发电装置

Publications (1)

Publication Number Publication Date
WO2018086073A1 true WO2018086073A1 (zh) 2018-05-17

Family

ID=62110069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105503 WO2018086073A1 (zh) 2016-11-11 2016-11-11 双面光伏发电装置

Country Status (1)

Country Link
WO (1) WO2018086073A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114856045A (zh) * 2022-04-21 2022-08-05 浙江合特光电有限公司 一种可控透光强度的光伏幕墙

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101656495A (zh) * 2008-08-21 2010-02-24 欧阳晓平 一种全覆盖反射式高倍完全均匀集光光伏发电装置
CN101667604A (zh) * 2009-09-30 2010-03-10 中国科学技术大学 太阳能均匀光叠加反射聚光镜的设计方法
CN202150471U (zh) * 2011-07-18 2012-02-22 矽明科技股份有限公司 一种增加太阳能电池光电转换效率的结构
CN204857745U (zh) * 2015-07-31 2015-12-09 中信博新能源科技(苏州)有限公司 一种双面匀光的双面电池组件
CN106330086A (zh) * 2016-11-11 2017-01-11 杭州品联科技有限公司 双面光伏发电装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101656495A (zh) * 2008-08-21 2010-02-24 欧阳晓平 一种全覆盖反射式高倍完全均匀集光光伏发电装置
CN101667604A (zh) * 2009-09-30 2010-03-10 中国科学技术大学 太阳能均匀光叠加反射聚光镜的设计方法
CN202150471U (zh) * 2011-07-18 2012-02-22 矽明科技股份有限公司 一种增加太阳能电池光电转换效率的结构
CN204857745U (zh) * 2015-07-31 2015-12-09 中信博新能源科技(苏州)有限公司 一种双面匀光的双面电池组件
CN106330086A (zh) * 2016-11-11 2017-01-11 杭州品联科技有限公司 双面光伏发电装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114856045A (zh) * 2022-04-21 2022-08-05 浙江合特光电有限公司 一种可控透光强度的光伏幕墙

Similar Documents

Publication Publication Date Title
WO2020034273A1 (zh) 一种基于双轴太阳跟踪器的双面光伏组件系统以及双面光伏组件背面利用方法
CN201974572U (zh) 平面反射聚光板
CN202601674U (zh) 一种强吸光性双玻组件
CN106656015A (zh) 双面光伏发电装置
CN111129195A (zh) 一种光伏组件散热结构、背板玻璃及光伏组件
WO2018086073A1 (zh) 双面光伏发电装置
CN201547966U (zh) 一种二维复合抛物面聚光器
CN104143954A (zh) 一种适用于太阳能光伏和光热的新型免跟踪式聚光器
WO2018086078A1 (zh) 双面光伏发电装置
CN206388718U (zh) 双面光伏发电装置
CN202695508U (zh) 太阳电池组件
WO2018086079A1 (zh) 双面光伏发电装置
CN205142110U (zh) 一种提高光伏组件背光吸收效率的装置
CN105577093B (zh) 新洁净光伏板
CN209232801U (zh) 一种双玻光伏组件
JP2023107850A (ja) ガラス建材
CN206442342U (zh) 双面光伏发电装置
CN208597059U (zh) 一种基于双轴太阳跟踪器的双面光伏组件结构
CN208028077U (zh) 一种兼具减反射和高反射的双面发电双玻组件背板玻璃
CN208597058U (zh) 一种基于双轴太阳跟踪器的双面光伏组件聚光系统
CN204068849U (zh) 一种适用于太阳能光伏和光热的新型免跟踪式聚光器
CN203433180U (zh) 局部镀膜实体复合抛物面型聚光器
CN205159342U (zh) 一种太阳能双玻组件
CN106449839B (zh) 双面光伏发电装置
WO2016206124A1 (zh) 透反式液晶显示面板和透反式液晶显示器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921128

Country of ref document: EP

Kind code of ref document: A1