WO2018086079A1 - 双面光伏发电装置 - Google Patents

双面光伏发电装置 Download PDF

Info

Publication number
WO2018086079A1
WO2018086079A1 PCT/CN2016/105530 CN2016105530W WO2018086079A1 WO 2018086079 A1 WO2018086079 A1 WO 2018086079A1 CN 2016105530 W CN2016105530 W CN 2016105530W WO 2018086079 A1 WO2018086079 A1 WO 2018086079A1
Authority
WO
WIPO (PCT)
Prior art keywords
double
power generation
sided photovoltaic
photovoltaic power
curve
Prior art date
Application number
PCT/CN2016/105530
Other languages
English (en)
French (fr)
Inventor
何春涛
尹立胜
刘志勇
马林
梁中堂
蒋邦友
徐庆
石其运
曲新春
Original Assignee
杭州品联科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州品联科技有限公司 filed Critical 杭州品联科技有限公司
Priority to PCT/CN2016/105530 priority Critical patent/WO2018086079A1/zh
Publication of WO2018086079A1 publication Critical patent/WO2018086079A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to the field of photovoltaic technology, and in particular to a double-sided photovoltaic power generation device.
  • the conventional photovoltaic power generation component is a single-sided crystalline silicon component, and can only generate electricity by receiving sunlight on one side, and the light utilization efficiency of the same installation area is low, and the power generation efficiency is low.
  • the double-sided photovoltaic power generation component can receive sunlight on the front and back to generate double-sided power generation.
  • the existing double-sided photovoltaic power generation component relies on the natural ground to reflect light to generate electricity, and the ground absorbs most of the light, and the light utilization efficiency. Low, poor power generation efficiency and poor economy.
  • the object of the present invention is to solve the above problems and to provide a double-sided photovoltaic power generation device, which improves the back light utilization efficiency of a double-sided photovoltaic power generation assembly, thereby improving power generation efficiency and economic efficiency.
  • the present invention provides a double-sided photovoltaic power generation device, comprising: a double-sided photovoltaic power generation component and a light-reflecting element, wherein a side of the double-sided photovoltaic power generation component facing the sunlight is a front side and the other side is a back surface, and the reflective component is provided.
  • the retroreflective element On the back side of the double-sided photovoltaic power generation assembly, the retroreflective element has a reflective surface to reflect solar light to the back side of the double-sided photovoltaic power generation assembly, the reflective surface being a concave surface facing the double-sided photovoltaic power generation assembly.
  • the length direction of the double-sided photovoltaic power generation component is defined as an X-axis
  • the width direction is defined as a Z-axis
  • the thickness direction is defined as a Y-axis
  • the concave surface is obtained by translating a curve in a Z-axis direction.
  • the curve is located on a plane formed by the X-axis and the Y-axis, and the curve is defined by the following equation: among them, S OA is the arc length of the curve, H is the vertical distance of one end of the curve from the back side of the double-sided photovoltaic power generation component, and e is the range of the light reflected to the back surface of the double-sided photovoltaic component in the X-axis direction.
  • one end of the curve is directly below one side of the double-sided photovoltaic power generation assembly, and the other end of the curve is located outside the double-sided photovoltaic power generation assembly.
  • L 1 is the length of the double-sided photovoltaic power generation component.
  • the light reflecting element is disposed on one side or both sides of the double-sided photovoltaic power generation assembly in the X-axis direction.
  • the invention provides a light reflecting component on the back surface of the double-sided photovoltaic power generation component, and reflects the sunlight to the back surface of the double-sided photovoltaic power generation component by using the reflective surface of the reflective component, thereby improving light utilization efficiency, improving power generation efficiency, and further improving economic efficiency.
  • FIG. 1 is a cross-sectional structural view showing an embodiment of a double-sided photovoltaic power generation device of the present invention.
  • FIG. 2 is a schematic diagram of an optical path of the double-sided photovoltaic power generation apparatus of FIG. 1.
  • FIG. 3 is a cross-sectional structural view showing another embodiment of the double-sided photovoltaic power generation device of the present invention.
  • FIG. 4 is a schematic diagram of an optical path of the double-sided photovoltaic power generation device of FIG.
  • the present invention provides a double-sided photovoltaic power generation device, comprising: a double-sided photovoltaic power generation assembly 1 and a light-reflecting element 2.
  • the one side of the double-sided photovoltaic power generation unit 1 facing the sunlight is the front side 11 and the other side is the back side 12.
  • the light reflecting element 2 is disposed on the back surface 12 of the double-sided photovoltaic power generation assembly 1.
  • the retroreflective element 2 has a reflective surface 21 to reflect solar light to the back side 12 of the double-sided photovoltaic power generation assembly 1, which is a concave surface facing the double-sided photovoltaic power generation assembly 1.
  • the present invention provides a light-reflecting element 2 on the back surface 12 of the double-sided photovoltaic power generation module 1, and reflects the sunlight to the back surface 12 of the double-sided photovoltaic power generation unit 1 by the reflective surface 21 of the light-reflecting element 2, thereby improving light utilization efficiency and improving power generation efficiency. Thereby improving economic efficiency.
  • the length direction of the double-sided photovoltaic power generation module 1 is defined as an X-axis, the width direction is defined as a Z-axis, and the thickness direction is defined as a Y-axis.
  • Figure 1 shows the plane formed by the X and Y axes. The curve is located on a plane formed by the X and Y axes. The concave surface is obtained by translation of the curve in the Z-axis direction.
  • the light incident on the front side 11 of the double-sided photovoltaic power generation unit 1 and incident on the light reflecting element 2 is reflected by the concave surface to the double-sided photovoltaic power generation unit
  • the back surface 12 of the member 1 can improve the utilization of light and improve the power generation efficiency of the double-sided photovoltaic power generation assembly 1.
  • the curve is an arc of a parabola, as shown in Figures 1 and 2, in a preferred embodiment, one end of the curve is located directly below one side of the double-sided photovoltaic power generation assembly 1, i.e., curved One end is the apex of the parabola, and the other end of the curve is located outside the double-sided photovoltaic power generation assembly 1.
  • the light that is irradiated to the outside of the front surface 11 of the double-sided photovoltaic power generation unit 1 can be fully utilized, and is totally reflected to the back surface 12 of the double-sided photovoltaic power generation unit 1 to generate electricity.
  • the vertices of the parabola are defined as the zero points of the X-axis and the Y-axis
  • the arc OA represents a curve forming a concave surface.
  • O is the zero point of the coordinate axis
  • A is the end point of the other end of the curve
  • F is the focus of the parabola
  • B is the position where the light reflected by the reflective surface 21 at point A reaches the back side of the double-sided photovoltaic power generation assembly 1, and is reflected.
  • the light reflected by the surface 21 passes through the focal point F of the parabola, that is, the A and B lines pass through the focal point F.
  • Fig. 1 is the focal point of the parabola
  • the coordinates of point O are (0, 0)
  • the coordinates of point A are (x 1 , y 1 )
  • the coordinates of point B are (e, H)
  • the coordinates of point F are
  • e is a range of light reflected to the back surface 12 of the double-sided photovoltaic module in the X-axis direction
  • H is a vertical distance from one end of the curved line to the back surface of the double-sided photovoltaic power generation assembly 1
  • the coordinate of the light reflected by the concave surface on the X-axis changes x ⁇ [0, e].
  • e and H are variables. After determining e and H, according to the above equations (7), (3) and (9), the arc length of the curve under the optimal reflection efficiency can be obtained.
  • the range e of the light reflected to the back side 12 of the double-sided photovoltaic module in the X-axis direction satisfies the following conditions:
  • L 1 is the length of the double-sided photovoltaic power generation assembly 1. That is to say, the reflected light can illuminate half or more of the area of the back surface 12 of the double-sided photovoltaic power generation unit 1, and can illuminate the entire area of the back surface 12 of the double-sided photovoltaic power generation unit 1.
  • the reflective element 2 is disposed on both sides of the double-sided photovoltaic power generation assembly 1 in the X-axis direction, in order to make the back surface 12 of the double-sided photovoltaic power generation assembly 1
  • the area can be fully utilized for power generation and control when When the light is reflected by the two reflective elements 2, it can completely cover the back surface area of the double-sided photovoltaic power generation assembly 1; When the light is reflected by the two reflective elements 2, not only can the surface 12 of the double-sided photovoltaic power generation assembly 1 be completely covered, but the light will partially overlap, which greatly improves the utilization of the light on the back surface 12 of the double-sided photovoltaic power generation assembly 1. effectiveness. Referring to FIG. 3 and FIG.
  • the reflective element 2 is disposed on one side of the double-sided photovoltaic power generation assembly 1 in the X-axis direction, in order to make the back surface 12 of the double-sided photovoltaic power generation assembly 1
  • the power generation efficiency of the double-sided photovoltaic power generation assembly 1 is increased by about 100% with respect to the power generation efficiency of the single-sided photovoltaic module.
  • the retroreflective element 2 is a curved plate, the concave surface of which is a reflective surface 21, the structure is very simple, easy to manufacture, and easy to install.
  • the reflective element 2 may be other structures as long as it has a light-emitting surface 21 that is recessed toward the double-sided photovoltaic power generation unit 1, and light can also be reflected to the back surface of the double-sided photovoltaic power generation unit 1.
  • the H of the retroreflective element 2 determines the mounting position of the retroreflective element 2, and according to equations (7), (3) and (9), the arc length of the curve under the optimal conditions can be obtained, so that the double-sided photovoltaic power generation assembly 1 Power generation efficiency is maximized.

Abstract

一种双面光伏发电装置,包括:双面光伏发电组件(1)及反光元件(2),双面光伏发电组件(1)面向太阳光的一面为正面(11),另一面为背面(12),所述反光元件(2)设于双面光伏发电组件的背面(12),所述反光元件(2)具有反光面(21)以反射太阳光线至双面光伏发电组件(1)的背面(12),该反光面(21)为面向双面光伏发电组件(1)的凹面。通过在双面光伏发电组件(1)的背面(12)设置反光元件(2),利用反光元件(2)的反光面(21)反射太阳光至双面光伏发电组件(1)的背面(12)从而提高光的利用效率,提高发电效率,进而提高经济效益。

Description

双面光伏发电装置 技术领域
本发明涉及光伏技术领域,尤其涉及一种双面光伏发电装置。
背景技术
常规光伏发电组件为单面晶硅组件,只能在一面接受太阳光照射进行发电,同等安装面积光利用效率低,发电效率低。双面光伏发电组件可正背面接收太阳光照射从而进行双面发电,但是现有的双面光伏发电组件其背面发电依靠的是自然地面反射光线进行发电,地面会吸收大部分光线,光利用效率低,发电效率差,经济性较差。
发明内容
本发明的目的是为了解决上述问题,提供一种双面光伏发电装置,提高双面光伏发电组件的背面光利用率,从而提高发电效率及经济效益。
为了达到上述目的,本发明提供一种双面光伏发电装置,包括:双面光伏发电组件及反光元件,双面光伏发电组件面向太阳光的一面为正面,另一面为背面,所述反光元件设于双面光伏发电组件的背面,所述反光元件具有反光面以反射太阳光线至双面光伏发电组件的背面,该反光面为面向双面光伏发电组件的凹面。
于本发明一实施例中,所述双面光伏发电组件的长度方向定义为X轴,宽度方向定义为Z轴,厚度方向定义为Y轴;所述凹面由曲线在Z轴方向平移得到。
于本发明一实施例中,曲线位于X轴和Y轴构成的平面上,曲线通过以下方程限定:
Figure PCTCN2016105530-appb-000001
其中,
Figure PCTCN2016105530-appb-000002
Figure PCTCN2016105530-appb-000003
SOA为曲线的弧长,H为曲线的一端距离双面光伏发电组件的背面的垂直距离,e为反射到双面光伏组件的背面的光线在X轴方向的范围。
于本发明一实施例中,所述曲线的一端位于所述双面光伏发电组件的一侧边的正下方,曲线的另一端位于所述双面光伏发电组件的外侧。
于本发明一实施例中,0.4m≤H≤1.2m。
于本发明一实施例中,
Figure PCTCN2016105530-appb-000004
L1为双面光伏发电组件的长度。
于本发明一实施例中,0.5m≤L1≤2m。
于本发明一实施例中,所述双面光伏发电组件的X轴方向的一侧或两侧设置所述反光元件。
与现有技术相比,本技术方案的有益效果是:
本发明通过在双面光伏发电组件的背面设置反光元件,利用反光元件的反光面反射太阳光至双面光伏发电组件的背面从而提高光的利用效率,提高发电效率,进而提高经济效益。
附图说明
图1是本发明双面光伏发电装置的一实施例的剖面结构示意图。
图2是图1的双面光伏发电装置的光路原理图。
图3是本发明双面光伏发电装置的另一实施例的剖面结构示意图。
图4是图3的双面光伏发电装置的光路原理图。
具体实施方式
下面结合附图,通过具体实施例,对本发明的技术方案进行清楚、完整的描述。
请参考图1-4所示,本发明提供一种双面光伏发电装置,包括:双面光伏发电组件1及反光元件2。双面光伏发电组件1面向太阳光的一面为正面11,另一面为背面12。所述反光元件2设于双面光伏发电组件1的背面12。所述反光元件2具有反光面21以反射太阳光线至双面光伏发电组件1的背面12,该反光面21为面向双面光伏发电组件1的凹面。本发明通过在双面光伏发电组件1的背面12设置反光元件2,利用反光元件2的反光面21反射太阳光至双面光伏发电组件1的背面12从而提高光的利用效率,提高发电效率,进而提高经济效益。
所述双面光伏发电组件1的长度方向定义为X轴,宽度方向定义为Z轴,厚度方向定义为Y轴。图1所示为X轴和Y轴构成的平面。曲线位于X轴和Y轴构成的平面上。所述凹面由曲线在Z轴方向平移得到。垂直于双面光伏发电组件1正面11入射到反光元件2的光线经过凹面反射至双面光伏发电组 件1的背面12,从而可以提高光线的利用率,提高双面光伏发电组件1的发电效率。
所述曲线是抛物线的一段弧线,请参考图1和图2所示,在优选实施例中,曲线的一端位于所述双面光伏发电组件1的一侧边的正下方,也就是曲线的一端为抛物线的顶点,曲线的另一端位于所述双面光伏发电组件1的外侧。照射到双面光伏发电组件1正面11区域之外的光线可以充分利用,全部反射至双面光伏发电组件1的背面12,进行发电。本实施例中,抛物线的顶点定义为X轴和Y轴的零点,则弧线OA代表形成凹面的曲线。图2中,O为坐标轴的零点,A为曲线的另一端的端点,F为抛物线的焦点,B为反光面21在A点反射的光线到达双面光伏发电组件1的背面的位置,反光面21反射的光线全部经过抛物线的焦点F,也就是,A、B连线经过焦点F。图2中,O点的坐标为(0,0),A点的坐标为(x1,y1),B点坐标为(e,H),F点坐标为
Figure PCTCN2016105530-appb-000005
其中,e为反射到双面光伏组件的背面12的光线在X轴方向的范围,H为曲线的一端距离双面光伏发电组件1的背面的垂直距离,
图2中,抛物线方程为:
x2=2py              (1),
焦点方程为:
Figure PCTCN2016105530-appb-000006
经凹面反射的光线在X轴上的坐标变化x∈[0,e]。
将B点代入方程(1),可得:
Figure PCTCN2016105530-appb-000007
将B点和方程(3)代入方程(2),可得:
Figure PCTCN2016105530-appb-000008
根据方程(1)和(2),可求A点坐标(x1,y1),得:
Figure PCTCN2016105530-appb-000009
Figure PCTCN2016105530-appb-000010
曲线的弧长SOA满足公式:
Figure PCTCN2016105530-appb-000011
方程(7)中,y的值符合方程(6),则
Figure PCTCN2016105530-appb-000012
将方程(3)代入方程(8),可得:
Figure PCTCN2016105530-appb-000013
上述方程中,e和H是变量,确定e和H后,根据上述方程(7)、(3)和(9),可得到最优反射效率下曲线的弧长。
在较优的实施例中,反射到双面光伏组件的背面12的光线在X轴方向的范围e满足以下条件:
Figure PCTCN2016105530-appb-000014
其中,L1为双面光伏发电组件1的长度。也就是说经反射后的光线可以照射双面光伏发电组件1的背面12区域的一半及以上,最大可照射双面光伏发电组件1的背面12区域的全部。请参考图1和图2所示,在一实施例中,所述双面光伏发电组件1的X轴方向的两侧均设置所述反光元件2,为了使得双面光伏发电组件1的背面12区域可以充分利用进行发电,控制
Figure PCTCN2016105530-appb-000015
Figure PCTCN2016105530-appb-000016
时,光线经过两个反光元件2的反射后可以完全覆盖双面光伏发电组件1的背面12区域;当
Figure PCTCN2016105530-appb-000017
时,光线经过两个反光元件2的反射后不仅可以完全覆盖双面光伏发电组件1的背面12区域,且光线会出现部分重叠,大大提高了双面光伏发电组件1的背面12对光的利用效率。请参考图3和图4所示,在另一实施例中,所述双面光伏发电组件1的X轴方向的一侧设置所述反光元件2,为了使得双面光伏发电组件1的背面12区域可以充分利用进行发电,控制e=L1,则光线经过反射后可以完全覆盖双面光伏发电组件1的背面12区域,光的利用效率最大。相对于单面光伏组件的发电效率,该双面光伏发电组件1的发电效率提升了100%左右。
在具体实施例中,反光元件2为弧形板,其内凹的表面为反光面21,结构非常简单,容易制作,也容易安装。但不限于此,反光元件2也可以是其他结构,只要其具有面向双面光伏发电组件1凹陷设置的发光面21即可,同样可以将光反射至双面光伏发电组件1的背面。
双面光伏发电组件1的长度根据产品的不同会有多种规格,通常0.5m≤L1≤2m,但不限于此,L1也可以取0.5m~2m范围外的任意值时,通过控制反光元件2的H,即确定了反光元件2的安装位置,并根据方程(7)、(3)和(9),可得到最优条件下曲线的弧长,使双面光伏发电组件1的发电效率达到最大。
本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的 方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。

Claims (8)

  1. 一种双面光伏发电装置,其特征在于,包括:双面光伏发电组件及反光元件,双面光伏发电组件面向太阳光的一面为正面,另一面为背面,所述反光元件设于双面光伏发电组件的背面,所述反光元件具有反光面以反射太阳光线至双面光伏发电组件的背面,该反光面为面向双面光伏发电组件的凹面。
  2. 根据权利要求1所述的双面光伏发电装置,其特征在于,所述双面光伏发电组件的长度方向定义为X轴,宽度方向定义为Z轴,厚度方向定义为Y轴;所述凹面由曲线在Z轴方向平移得到。
  3. 根据权利要求2所述的双面光伏发电装置,其特征在于,曲线位于X轴和Y轴构成的平面上,曲线通过以下方程限定:
    Figure PCTCN2016105530-appb-100001
    其中,
    Figure PCTCN2016105530-appb-100002
    SOA为曲线的弧长,H为曲线的一端距离双面光伏发电组件的背面的垂直距离,e为反射到双面光伏组件的背面的光线在X轴方向的范围,曲线的另一端位于所述双面光伏发电组件的外侧。
  4. 根据权利要求3所述的双面光伏发电装置,其特征在于,所述曲线的一端位于所述双面光伏发电组件的一侧边的正下方。
  5. 根据权利要求3所述的双面光伏发电装置,其特征在于,0.4m≤H≤1.2m。
  6. 根据权利要求3所述的双面光伏发电装置,其特征在于,
    Figure PCTCN2016105530-appb-100003
    L1为双面光伏发电组件的长度。
  7. 根据权利要求6所述的双面光伏发电装置,其特征在于,0.5m≤L1≤2m。
  8. 根据权利要求2所述的双面光伏发电装置,其特征在于,所述双面光伏发电组件的X轴方向的一侧或两侧设置所述反光元件。
PCT/CN2016/105530 2016-11-11 2016-11-11 双面光伏发电装置 WO2018086079A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/105530 WO2018086079A1 (zh) 2016-11-11 2016-11-11 双面光伏发电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/105530 WO2018086079A1 (zh) 2016-11-11 2016-11-11 双面光伏发电装置

Publications (1)

Publication Number Publication Date
WO2018086079A1 true WO2018086079A1 (zh) 2018-05-17

Family

ID=62109015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105530 WO2018086079A1 (zh) 2016-11-11 2016-11-11 双面光伏发电装置

Country Status (1)

Country Link
WO (1) WO2018086079A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114856045A (zh) * 2022-04-21 2022-08-05 浙江合特光电有限公司 一种可控透光强度的光伏幕墙

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001127331A (ja) * 1999-10-29 2001-05-11 Sanyo Electric Co Ltd 太陽電池モジュール
CN101656495A (zh) * 2008-08-21 2010-02-24 欧阳晓平 一种全覆盖反射式高倍完全均匀集光光伏发电装置
CN101667604A (zh) * 2009-09-30 2010-03-10 中国科学技术大学 太阳能均匀光叠加反射聚光镜的设计方法
CN202150471U (zh) * 2011-07-18 2012-02-22 矽明科技股份有限公司 一种增加太阳能电池光电转换效率的结构
CN104993002A (zh) * 2015-07-31 2015-10-21 中信博新能源科技(苏州)有限公司 一种双面光伏电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001127331A (ja) * 1999-10-29 2001-05-11 Sanyo Electric Co Ltd 太陽電池モジュール
CN101656495A (zh) * 2008-08-21 2010-02-24 欧阳晓平 一种全覆盖反射式高倍完全均匀集光光伏发电装置
CN101667604A (zh) * 2009-09-30 2010-03-10 中国科学技术大学 太阳能均匀光叠加反射聚光镜的设计方法
CN202150471U (zh) * 2011-07-18 2012-02-22 矽明科技股份有限公司 一种增加太阳能电池光电转换效率的结构
CN104993002A (zh) * 2015-07-31 2015-10-21 中信博新能源科技(苏州)有限公司 一种双面光伏电池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114856045A (zh) * 2022-04-21 2022-08-05 浙江合特光电有限公司 一种可控透光强度的光伏幕墙

Similar Documents

Publication Publication Date Title
TWI359961B (en) Light-concentrating panel
CN201974572U (zh) 平面反射聚光板
WO2020034273A1 (zh) 一种基于双轴太阳跟踪器的双面光伏组件系统以及双面光伏组件背面利用方法
KR102120923B1 (ko) 굴곡형 반사판을 이용한 양면형 태양광 집광장치
CN106656015A (zh) 双面光伏发电装置
WO2018086079A1 (zh) 双面光伏发电装置
CN103855231A (zh) 一种太阳能电池的栅线电极及带有该栅线电极的太阳能电池板
CN103941394A (zh) 一种平板接收型复合抛物面聚光器的截取方法
CN201498523U (zh) 波形瓦聚光电池组件
CN201547966U (zh) 一种二维复合抛物面聚光器
CN203536455U (zh) 太阳能电池板
WO2018086078A1 (zh) 双面光伏发电装置
WO2018086073A1 (zh) 双面光伏发电装置
CN205142110U (zh) 一种提高光伏组件背光吸收效率的装置
CN203786379U (zh) 焦点位置可调节的菲涅尔透镜系统
CN203433180U (zh) 局部镀膜实体复合抛物面型聚光器
CN208597059U (zh) 一种基于双轴太阳跟踪器的双面光伏组件结构
CN208597058U (zh) 一种基于双轴太阳跟踪器的双面光伏组件聚光系统
CN106449839B (zh) 双面光伏发电装置
CN102255567A (zh) 一种具有多折反射面的太阳能聚光发电装置
CN109039268B (zh) 一种基于双轴太阳跟踪器的双面光伏组件系统以及增加该系统发电量的方法
CN204068849U (zh) 一种适用于太阳能光伏和光热的新型免跟踪式聚光器
JP3172797U (ja) 太陽光線集光装置
CN102081223B (zh) 太阳能光伏l型聚光器
KR20140114529A (ko) 리본 반사체를 구비한 태양전지 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921131

Country of ref document: EP

Kind code of ref document: A1