WO2018086042A1 - 飞行器及其控制方法、装置和电子设备 - Google Patents

飞行器及其控制方法、装置和电子设备 Download PDF

Info

Publication number
WO2018086042A1
WO2018086042A1 PCT/CN2016/105356 CN2016105356W WO2018086042A1 WO 2018086042 A1 WO2018086042 A1 WO 2018086042A1 CN 2016105356 W CN2016105356 W CN 2016105356W WO 2018086042 A1 WO2018086042 A1 WO 2018086042A1
Authority
WO
WIPO (PCT)
Prior art keywords
location
communication
communicated
devices
aircraft
Prior art date
Application number
PCT/CN2016/105356
Other languages
English (en)
French (fr)
Inventor
骆磊
Original Assignee
深圳达闼科技控股有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳达闼科技控股有限公司 filed Critical 深圳达闼科技控股有限公司
Priority to PCT/CN2016/105356 priority Critical patent/WO2018086042A1/zh
Priority to CN201680002663.4A priority patent/CN106716872B/zh
Publication of WO2018086042A1 publication Critical patent/WO2018086042A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18504Aircraft used as relay or high altitude atmospheric platform
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the present invention relates to the field of aircraft technology, and in particular, to an aircraft and a control method, device and electronic device therefor.
  • the user base of remote-controlled aircraft is getting bigger and bigger, but it is basically applied in the two scenes of entertainment and high-altitude shooting.
  • Very few merchants use the automatic addressing and obstacle avoidance function delivery of the aircraft, but they are still in the initial stage.
  • Google has applied a hot air balloon as a large-area regional hotspot access, but this access is a point-to-multipoint application, and the hot air balloon is only used as a fixed access point.
  • the hot air balloon itself is not intelligent and cannot be intelligently networked. .
  • the technical problem to be solved by the embodiments of the present invention is that the prior art cannot meet the networking requirements of obstacles or unable to set up physical cables between communication points, and the technical problem of excessive cost when using satellite communication.
  • an embodiment of the present invention provides an aircraft, including:
  • a communication relay device disposed on the aircraft body; the communication relay device being adapted to cause the aircraft to communicate as a communication relay node between at least two devices to be communicated.
  • an embodiment of the present invention provides a method for controlling an aircraft, including:
  • An aircraft having a communication relay device is controlled to fly to a communication relay location such that the aircraft implements communication between the at least two devices to be communicated as a communication relay node at the communication relay location.
  • an embodiment of the present invention provides a control device for an aircraft, including:
  • a flight control module configured to control an aircraft having the communication relay device to fly to the communication relay position, so that the aircraft implements communication between the at least two devices to be communicated as the communication relay node at the communication relay position.
  • an embodiment of the present invention provides a computer readable storage medium, comprising instructions for executing a control method of an aircraft as described above.
  • an embodiment of the present invention provides an electronic device, including:
  • At least one or more processors are At least one or more processors.
  • the memory stores an instruction program executable by the at least one or more processors, the instruction program being configured to execute:
  • An aircraft having a communication relay device is controlled to fly to a communication relay location such that the aircraft implements communication between the at least two devices to be communicated as a communication relay node at the communication relay location.
  • the embodiment of the present invention relays the communication of the communication network between the devices to be communicated, so that the communication network between two or more points can be established by the aircraft, and the position of the aircraft is easily adjusted. It satisfies the networking requirements when there are obstacles between communication points or when the physical cable cannot be set up, and the networking cost is lower than that of satellite communication.
  • FIG. 1 is a schematic diagram of a communication network between mobile terminals formed by means of an aircraft flying off an obstacle as a signal relay according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a communication network between mobile terminals formed by means of an aircraft bypassing an obstacle on a horizontal plane as a signal relay in an embodiment of the present invention
  • FIG. 3 is a block diagram of an aircraft according to Embodiment 1 of the present invention.
  • FIG. 4 is a flow chart showing a method of controlling an aircraft according to Embodiment 2 of the present invention.
  • Figure 5 is a flow chart showing a method of controlling an aircraft according to Embodiment 3 of the present invention.
  • FIG. 6 is a detailed flowchart of step 220 in Embodiment 3 of the present invention.
  • Figure 7 is a flowchart of a method of controlling an aircraft according to Embodiment 4 of the present invention.
  • Figure 8 is a flow chart showing a control method of another aircraft according to Embodiment 4 of the present invention.
  • Figure 9 is a flowchart of a method of controlling an aircraft according to Embodiment 5 of the present invention.
  • Figure 10 is a flow chart showing a method of controlling an aircraft according to Embodiment 6 of the present invention.
  • Figure 11 is a flow chart showing a method of controlling an aircraft according to Embodiment 7 of the present invention.
  • Figure 12 is a block diagram of a control device for an aircraft according to Embodiment 8 of the present invention.
  • Figure 13 is a block diagram of a control device for an aircraft according to Embodiment 9 of the present invention.
  • Figure 15 is a block diagram of an electronic device of Embodiment 11 of the present invention.
  • the signal relay can be used to bypass the obstacle and relay and amplify the signal, for example, by flying the aircraft (such as a drone) to bypass the obstacle.
  • a communication network between mobile terminals is formed.
  • the aircraft does not have to rely on the rise to bypass the obstacle, or it can bypass the obstacle on the horizontal plane to relay the communication.
  • the position of the aircraft is easy to adjust, it is highly flexible through the aircraft as a signal relay network, which is convenient for real-time situations. Timely adjustment.
  • a flexible aircraft can be used as a core of a networking (for example, a star network) to connect various communication nodes (ie, devices to be communicated), and further, at a communication node location.
  • a networking for example, a star network
  • the position of the optimal relay point is calculated in real time and its position is adjusted in real time to avoid obstacles between the communication nodes and ensure the intelligent and efficient operation of the communication network.
  • an aircraft can be used as a relay for transmitting signals, and when there is an obstacle between any devices to be communicated, it is impossible to communicate through a point-to-point connection, or a remote dynamic group.
  • the aircraft calculates the optimal communication path that can bypass the obstacle between the communication nodes according to the three-dimensional map model of the current location and the location of each communication node, and then establishes a communication network between two or more points.
  • the aircraft also calculates the position of updating the optimal relay point in real time to ensure that the established communication network can continuously optimize the operation.
  • Embodiment 1 of the present invention provides an aircraft 100 including: an aircraft body 110 and a communication relay device 120 disposed on the aircraft body, the communication relay device 120 being adapted to use the aircraft as
  • the communication relay node implements communication between at least two devices to be communicated.
  • the communication relay device 120 may be a communication module having a communication relay function, and the communication module is disposed in the aircraft body 110, and is generally connected to a processor in the aircraft 100, in addition to realizing the original communication function of the aircraft. Realize the communication relay function, become the communication relay between other devices to be communicated, and then form a communication network.
  • the embodiment of the invention relays the communication of the communication network between the devices to be communicated, so that the communication network between the two or more points can be established by the aircraft, and the position of the aircraft is easily adjusted to meet obstacles between the communication points or The networking requirements when the physical cable cannot be set, and the networking cost is lower than the satellite communication.
  • Embodiment 2 of the present invention provides a method for controlling an aircraft, including:
  • Step 100 Control an aircraft having a communication relay device to fly to a communication relay location, so that the aircraft implements communication between at least two devices to be communicated as a communication relay node at the communication relay location.
  • the communication relay location can be manually selected (e.g., by the remote control of the aircraft) or by the intelligent calculation of the aircraft itself, as specifically set forth in the following embodiments.
  • the aircraft After determining a certain communication relay position, the aircraft is controlled to fly to the location by the present embodiment as a communication relay between the communication devices in the communication network, so that the communication devices cannot communicate directly or the direct communication is not effective. Good communication results are achieved by the aircraft as a relay.
  • the embodiment of the invention relays the communication of the communication network between the devices to be communicated, so that the communication network between the two or more points can be established by the aircraft, and the position of the aircraft is easily adjusted to meet obstacles between the communication points or The networking requirements when the physical cable cannot be set, and the networking cost is lower than the satellite communication.
  • Embodiment 3 of the present invention provides a method for controlling an aircraft, including:
  • Step 210 Obtain real-time location information of each device to be communicated.
  • each device to be communicated has its own specific identification code in the communication network.
  • the identification code is the International Mobile Equipment Identity (IMEI) of the mobile terminal.
  • the code is also an identification code when the mobile terminal communicates through the base station.
  • the embodiment of the present invention can also obtain the communication source by confirming the communication source when the aircraft is subsequently relayed as the communication between the to-be-communicated device and the other communication device, and confirm the communication transmission object. If the signal of a certain device has not been searched and the identification code and real-time location information cannot be obtained, the location information, the motion trajectory and the speed before the signal loss of the device are combined with the device to be communicated mentioned later. The three-dimensional map information of the area and the time at that time are used to infer the location range of the device.
  • IMEI International Mobile Equipment Identity
  • Step 220 Locating, according to the real-time location information of the device to be communicated, a three-dimensional map model of the area where the device to be communicated is located, according to the three-dimensional map model and the to-be-communicated device The real-time location information of the backup determines the communication relay location.
  • the three-dimensional map model of the region where the communication device is located may be acquired in the memory of the aircraft itself or the cloud service system to which the aircraft is connected, and then the communication relay location is further determined.
  • Step 230 Control an aircraft having a communication relay device to fly to a communication relay position, so that the aircraft implements communication between at least two devices to be communicated as a communication relay node at the communication relay position.
  • the aircraft After determining the location of the communication relay, the aircraft can be controlled to fly to and stay at the location to form a communication network as a communication relay.
  • the embodiment of the present invention searches for the location where the aircraft is relayed as communication between the devices to be communicated according to the three-dimensional map model and the real-time location information of the device to be communicated, so that the found location is based on the location of the device to be communicated and its terrain, and conforms to the actual communication. Demand, to ensure that the communication network operates intelligently and efficiently.
  • a three-dimensional map model of an area where the device to be communicated is located is located according to the real-time location information of the device to be communicated, according to the three-dimensional map model.
  • the step of determining the communication relay location with the real-time location information of the device to be communicated includes:
  • Step 221 Determine an obstacle in the three-dimensional map model according to the three-dimensional map model.
  • Step 222 Find a communication line with each of the to-be communicated devices to avoid the location of the obstacle, and determine the found location as a communication relay location.
  • the three-dimensional map model of the area where the device to be communicated is located and its real-time location information it can be known which positions between the devices to be communicated have obstacles, thereby determining the location as the communication relay, and there is no right between the location and the device to be communicated.
  • the obstacles affected by communication, and the total communication distance is preferably the shortest in the case of obstacles.
  • the communication relay position can be manually selected (for example, by the remote control of the aircraft), or can be calculated by the aircraft itself (for example, the communication relay position calculation is completed in the air after the aircraft is lifted off, and the aircraft can be combined with the area.
  • the three-dimensional map model and real-time position information of multiple communication sources calculate the stop position of the aircraft itself as a signal relay in real time.
  • the calculation of the relay position can be based on two criteria. First, after the calculated position is used as the signal relay network, there is no obstacle on the communication link; second, after the calculated position is used as the signal relay network, Under the premise of no obstacles on the communication link, the communication distance is the shortest.
  • the location of the communication between the devices to be communicated is searched according to the three-dimensional map model and the real-time location information of the device to be communicated, the location avoids the obstacle between the communication sources, and the flexible mobile aircraft is used as the communication relay.
  • the optimal relay position in real time and adjust the position of the aircraft in real time to avoid obstacles and ensure the intelligent and efficient operation of the communication network, suitable for temporary long distances.
  • the communication relay location can also be determined by:
  • the communication relay location may be further tested for communication to determine whether the location is suitable as a communication relay location, for example, if the location is tested with the device to be communicated. If communication is not possible (for example, there is an obstacle between the location and the device to be communicated, or there are other factors affecting its communication), then the location is not suitable as a communication relay location, and another communication relay location needs to be re-selected until it is found. Suitable as a location for communication relay locations. Finally, the aircraft having the communication relay device is controlled to fly to the communication relay position, so that the aircraft implements communication between the at least two devices to be communicated as the communication relay node at the communication relay position.
  • the communication relay location can also be determined by other means, which are not enumerated here.
  • Embodiment 4 of the present invention provides a control method for an aircraft, which can realize control of an aircraft that relays communication of the aircraft as multipoint communication (for example, communication of three or more devices to be communicated).
  • multipoint communication for example, communication of three or more devices to be communicated.
  • Step C10 Obtain real-time location information of each device to be communicated.
  • Step C11 Locating a three-dimensional map model of an area where the device to be communicated is located according to real-time location information of the device to be communicated.
  • Step C12 Determine an obstacle in the three-dimensional map model according to the three-dimensional map model.
  • Step C2 Determine two devices to be communicated with the highest priority from all the devices to be communicated.
  • two devices to be communicated can be randomly selected.
  • Step C4 Find a communication line between the two devices to be communicated with the highest priority to avoid the position of the obstacle.
  • Step C6 selecting a communication line from the other locations to be communicated from the found locations to avoid the obstacle and determining the location as the communication relay location.
  • the aircraft having the communication relay device is controlled to fly to the communication relay position, so that the aircraft acts as a communication relay node on the communication relay position to implement communication between the devices to be communicated.
  • this step it is determined whether the communication line between the two devices to be communicated with the highest priority avoids whether the communication line between the position of the obstacle and other devices to be communicated avoids the obstacle, and if Then determining that the communication line between the two communication devices with the highest priority is avoiding the location of the obstacle as a communication relay location, otherwise returning to step C4 to find another and the highest priority The communication lines between the two devices to be communicated avoid the position of the obstacle.
  • the method further includes:
  • Step C5 The communication line between each of the two to-be-communicated devices with the highest priority found in the storage step C4 avoids the position of the obstacle to form a first location collection.
  • the communication line between each of the two randomly selected devices to be communicated found in step C4 may be stored to avoid the position of the obstacle to form a first location collection.
  • Step C8 when finally finding that the communication line with each of the to-be communicated devices avoids the location of the obstacle, selecting from the first location collection and the maximum number of devices to be communicated The position of the communication line avoiding the obstacle is determined as the communication relay position.
  • the above solution can establish the C point position of communication by storing each of the two highest priority points to ensure that the relatively optimal C point position of all previous calculation results can be used when the connection of n communication points cannot be established finally (eg, Find a location that guarantees n-1 point communication) as a signal relay.
  • the communication relay location in multipoint communication can also be determined by:
  • the preset rule may be customized by the user, for example, with each device to be communicated as a center, A certain distance determines a sphere range for the radius (the determination of the distance can be determined according to the signal communication distance capability of the communication network), and the sphere ranges of all the devices to be communicated are accumulated to form a summarized communication range;
  • a communication relay location is randomly determined; a communication test is performed on the communication relay location to determine whether the location is suitable as a communication relay location, for example, if the location and all devices to be communicated are tested and cannot communicate normally ( For example, if there is an obstacle between the location and all the devices to be communicated, or there are other factors affecting its communication), the location is not suitable as a communication relay location, and another communication relay location needs to be re-selected until it finds suitable communication.
  • the location of the relay location is randomly determined; a communication test is performed on the communication relay location to determine whether the location is suitable as a communication relay location, for example, if the location and all devices to be
  • the communication relay position in the multipoint communication can also be determined by other means, which are not enumerated here.
  • Embodiment 5 of the present invention provides a control method for an aircraft, which can realize an aircraft that relays communication of multiple aircrafts as multipoint communication (for example, communication of three or more devices to be communicated) Controls, including:
  • Step D10 Obtain real-time location information of each device to be communicated.
  • Step D11 Locating a three-dimensional map model of an area where the device to be communicated is located according to the real-time location information of the device to be communicated.
  • Step D12 Determine an obstacle in the three-dimensional map model according to the three-dimensional map model.
  • Step D2 Divide all devices to be communicated into any N groups, where N ⁇ 2.
  • Step D4 Find a communication line between each group and each device to be communicated in the group to avoid the position of the obstacle.
  • Step D6 determining whether the communication line between the positions respectively found in the N group avoids the obstacle, and if yes, determining that the separately found positions are N communication relay positions, otherwise storing the respective Finding the location, forming a second location collection, returning to performing step D2 and looping through the steps to complete the communication line between each group under all possible packets and each device to be communicated in the group avoids the obstacle Position determination and storage of the object, selecting a group of locations with the shortest total communication distance in the second location collection as N communication relay locations;
  • Step D8 Control N aircrafts having communication relay devices to fly to the N communication relay locations respectively.
  • an aircraft is first used to connect several communication sources, all possible C-point sets are determined, and the remaining communication sources are connected by another aircraft to determine all possible C' point sets, and then the C points are determined. Is there a barrier to the connection at point C?
  • By dividing all the devices to be communicated into any N groups first find the bits of communication relay between each group of devices to be communicated. If the location of each group can be communicated unobstructed, it is stored in the location point set, and the location of the relay between the communication devices of each group of all possible packets is searched, and then the communication is selected.
  • the location of the communication relay between the shortest set of devices to be communicated is used as the relay position for communication between the devices to be communicated, and two or more aircrafts that are flexible and maneuver are used as the core of the star network.
  • the optimal relay position can be calculated in real time and the position of the aircraft itself can be adjusted in real time to avoid obstacles between the communication sources, and the communication network can be operated intelligently and efficiently, and is suitable for temporary long distances.
  • Point to set up intranet communication dynamic long-distance multi-point set up intranet communication, and establish intranet communication in mountainous areas and multiple obstacle areas.
  • multiple aircraft may also be determined as communication relay locations in multipoint communication by:
  • All devices to be communicated are divided into any N groups, where N ⁇ 2, and the communication relay positions in each group are determined as follows:
  • the center of the circle determines the sphere range by a certain radius (the determination of the distance can be determined according to the signal communication distance capability of the communication network), and the sphere ranges of all the devices to be communicated in the group are accumulated to form a summary communication range.
  • determining a communication relay location within the aggregated communication range, randomly determining a communication relay location; performing a communication test on the communication relay location to determine whether the location is suitable as a communication relay location, for example, if the location is associated with all devices to be communicated After testing that communication is not possible (for example, there is an obstacle between the location and all devices to be communicated, or there are other factors affecting its communication), the location is not suitable as a communication relay location, and another communication relay location needs to be reselected. Until the location suitable for the communication relay location is found, N communication relay locations are determined. Finally, N aircraft with communication relays are controlled to fly to the determined N communication relay locations, respectively.
  • the communication relay position in the multipoint communication can also be determined by other means, which are not enumerated here.
  • Embodiment 6 of the present invention provides a method for controlling an aircraft, which is used to find a position of the communication line between each of the to-be communicated devices to avoid the obstacle by step calculation. ,include:
  • Step 310 Obtain real-time location information of each device to be communicated.
  • Step 320 Locating a three-dimensional map model of an area where the device to be communicated is located according to the real-time location information of the device to be communicated.
  • Step 330 Determine an obstacle in the three-dimensional map model according to the three-dimensional map model.
  • Step 340 Search for a position of the communication line between each of the to-be-communicated devices to avoid the obstacle by step calculation.
  • Step 350 Determine the location that is first found as a communication relay location.
  • Step 360 Control an aircraft having a communication relay device to fly to a communication relay position, so that the aircraft implements communication between at least two devices to be communicated as a communication relay node at the communication relay position.
  • step 340 includes:
  • the r value is constant, the a value step or the a value is constant, and the r value is stepped, the communication line between each of the devices to be communicated is found. Avoiding the location of the obstacle, where r represents the vertical distance of the line between the location to be sought and the real-time location of the two devices to be communicated, a represents the location to be sought from the real-time location through the two devices to be communicated The midpoint between the lines and the distance perpendicular to the plane of the line between the real-time positions of the two devices to be communicated.
  • Step A2 Find a communication line with each of the to-be communicated devices to avoid the location of the obstacle, and if the location exists, determine the location as a communication relay bit. Set, otherwise go to step A3.
  • step A3 a is added to a preset step, if a ⁇ first preset threshold after the preset step is increased and the position to be sought is the real-time position of the device to be communicated that is farthest from the position to be searched. If the distance between ⁇ ⁇ the second preset threshold, return to step A2, otherwise step A4 is performed, wherein the first preset threshold is a distance between the real-time position of the device to be communicated and a signal communication distance of the communication network.
  • the preset value of the capability, the second preset threshold being the maximum signal transmission distance of the aircraft.
  • Step A4 adding r to a preset step, a is reset to 0, if the r ⁇ third preset threshold after the preset step is increased and the position to be sought is farthest from the position to be searched for. If the distance between the real-time positions of the communication device is ⁇ the second preset threshold, the process returns to step A2, otherwise, the location to be sought does not exist in the area where the device to be communicated is located, wherein the third preset The threshold is a value preset according to the communication technology implementation and the signal communication distance capability of the communication network.
  • the straight line between the two points is the shortest, the shorter the distance between the position of the aircraft and the connection between the two communication sources, the shorter the distance between the two points through the relay communication (the communication distance is shorter, the transmission is more stable, and the bit error rate is low. A higher transfer rate can be achieved).
  • the analysis is performed with obstacles between communication sources. As shown in Figure 14, it is assumed that the two communication sources are point A and point B, the distance of the AB connection is L, the midpoint of the AB connection is the point Y, and the position of the aircraft is C. Point, the vertical distance between the aircraft and the AB line is d. According to mathematical theory, the smaller the d is, the smaller the AC+BC is.
  • the radius r of the cylinder in Fig. 14 is d as described above. Assume that the aircraft's set maximum signal transmission distance is d max .
  • the three-dimensional composition calculation is as follows:
  • Step 2 Connect the set of point A and point C (the point of the C point is initially a point, followed by two circles, that is, the distance between the plane passing through the Y point and perpendicular to the line of the AB is a on both sides of the point Y.
  • the step C of r and a is used to calculate the point C.
  • the first point C found is the most Excellent or near optimal communication relay point.
  • step 2 determines whether there is a C point position after step m is increased by step 2, so that AC and BC are connected. Do not pass through the three-dimensional graphics of the obstacle; otherwise skip to step four.
  • step 2 determines whether there is a C point position after step m is increased by step 2, so that the AC and BC connections do not pass through the obstacle.
  • r>r max it means that there is no such a C point in the setting range as a signal relay, telling the user that the connection cannot be established in the current situation, and the aircraft cannot fly.
  • Step B2 Find a communication line with each of the to-be communicated devices to avoid the location of the obstacle. If the location exists, determine the location as a communication relay location, otherwise perform step B3.
  • Step B3 adding r to a preset step, if the r ⁇ third preset threshold after the preset step is increased, and the position to be sought is the real-time position of the device to be communicated that is farthest from the position to be searched. If the distance between the two is less than the second preset threshold, the process returns to step B2, otherwise step B4 is performed, wherein the second preset threshold is the maximum signal transmission distance of the aircraft, and the third preset threshold is according to the communication network.
  • the communication technology implementation and the signal communication distance capability are preset values.
  • Step B4 adding a to a preset step, r is reset to 0, if a ⁇ first preset threshold after adding the preset step and the position to be sought is farthest from the position to be found If the distance between the real-time positions of the communication device is ⁇ the second preset threshold, the process returns to step B2, otherwise, the location to be sought does not exist in the area where the device to be communicated is located, wherein the first preset The threshold is a value preset according to the distance between the real-time location of the device to be communicated and the signal communication distance capability of the communication network.
  • the step calculation method of this embodiment is also applicable to the solutions of Embodiment 4 and Embodiment 5.
  • Embodiment 7 of the present invention provides a method for controlling an aircraft, which seeks to avoid the position of the obstacle by using a corpus search method to find a communication line with each of the to-be-communicated devices.
  • Step 410 Obtain real-time location information of each device to be communicated.
  • Step 420 Locating a three-dimensional map model of an area where the device to be communicated is located according to the real-time location information of the device to be communicated.
  • Step 430 Determine an obstacle in the three-dimensional map model according to the three-dimensional map model.
  • Step 440 Search for a location of the communication line between each of the to-be-communicated devices to avoid the obstacle by using a corpus search mode.
  • Step 450 Determine a location that is the shortest total communication distance between all devices to be communicated as a communication relay location.
  • Step 460 Control an aircraft having a communication relay device to fly to a communication relay position, so that the aircraft implements communication between at least two devices to be communicated as a communication relay node at the communication relay position.
  • a corpus search method is adopted, r is from 0 to r max , a is from 0 to a max , and a second-order matrix search is performed to find all feasible relay point sets, and the minimum value of AC+BC is selected as the best.
  • a corpus search method is adopted, r is from 0 to r max , a is from 0 to a max , and a second-order matrix search is performed to find all feasible relay point sets, and the minimum value of AC+BC is selected as the best.
  • This method ensures that the resulting relay point must be the best location.
  • the corpus search method of this embodiment is also applicable to the solutions of Embodiment 4 and Embodiment 5.
  • each communication source after the aircraft relays the communication as the communication network between the two or more communication devices at the communication relay position, each communication source still uploads its own location in real time. If there is one or more mobile communication sources in each communication source, the calculation of the optimal relay point position by the aircraft should be real-time to ensure the optimization of the C point at any time, thereby ensuring the optimization of the networking. If the location information of the communication source does not change, the calculation is stopped, and the current C point is hovered, and the data is relayed.
  • Embodiment 8 of the present invention provides a control device 200 for an aircraft, including:
  • a flight control module 210 configured to control an aircraft having a communication relay device to fly to a communication relay position, so that the aircraft implements communication between at least two devices to be communicated as a communication relay node at the communication relay position .
  • the embodiment of the invention relays the communication of the communication network between the devices to be communicated, so that the communication network between the two or more points can be established by the aircraft, and the position of the aircraft is easily adjusted to meet obstacles between the communication points or The networking requirements when the physical cable cannot be set, and the networking cost is lower than the satellite communication.
  • Embodiment 9 of the present invention provides an aircraft control device 300, including:
  • a flight control module 310 configured to control an aircraft having a communication relay device to fly to a communication relay position, so that the aircraft implements communication between at least two devices to be communicated as a communication relay node at the communication relay position .
  • the information obtaining module 320 is configured to acquire real-time location information of each device to be communicated.
  • a location determining module 330 configured to locate, according to real-time location information of the device to be communicated, a three-dimensional map model of an area where the device to be communicated is located, according to the three-dimensional map module
  • the type and the real-time location information of the device to be communicated determine the communication relay location.
  • the embodiment of the invention relays the communication of the communication network between the devices to be communicated, so that the communication network between the two or more points can be established by the aircraft, and the position of the aircraft is easily adjusted to meet obstacles between the communication points or The networking requirements when the physical cable cannot be set, and the networking cost is lower than the satellite communication.
  • the location determining module 230 includes:
  • An obstacle determining unit configured to determine an obstacle in the three-dimensional map model according to the three-dimensional map model.
  • the location determining unit is configured to find a location where the communication line between each of the to-be communicated devices avoids the obstacle, and determine the found location as a communication relay location.
  • the location determining unit includes:
  • the priority device determining subunit is configured to determine the two devices to be communicated with the highest priority from among all the devices to be communicated.
  • the priority location finding subunit is configured to find a location where the communication line between the two devices to be communicated with the highest priority avoids the obstacle.
  • a position determining subunit configured to select the communication line from the other devices to be communicated from the found locations to avoid the obstacle and determine the position as the communication relay position.
  • control device of the aircraft further includes:
  • a first location collection storage subunit configured to store a location of each of the two communication devices to be communicated by the priority location finding subunit to avoid the location of the obstacle, forming a location
  • the first location is a collection.
  • a location selection subunit configured to select and the maximum number of to-bes from the first location collection when a location that does not find a communication line with each of the to-be communicated devices avoids the obstacle
  • the position where the communication line between the communication devices avoids the obstacle is determined as the communication relay position.
  • control device of the aircraft further includes:
  • the location determining unit includes:
  • the grouping location determining subunit is configured to find a location in each group that avoids the obstacle with a communication line between each device to be communicated in the group.
  • a group location determining sub-unit configured to determine whether a communication line between the locations respectively found in the N group avoids the obstacle, and if yes, determining that the respectively found location is N communication relay locations, Otherwise storing the separately found locations to form a second location collection, and the grouping subunits and the grouping location determining subunits cyclically perform their functions to complete each of the possible groups and each of the groups to be communicated
  • the communication lines between the two avoid the location determination and storage of the obstacle, and select a group of locations with the shortest total communication distance in the second location collection as the N communication relay locations;
  • the flight control module is configured to control N aircraft having communication relays to fly to the N communication relay locations, respectively.
  • the location determining unit includes:
  • the step calculation subunit is configured to find a position of the communication line between each of the to-be communicated devices to avoid the obstacle by step calculation.
  • the first location determining subunit is configured to determine the location that was first found as a communication relay location.
  • the step calculation subunit includes:
  • the ra step calculation sub-unit is used to find and describe each of r and a from the value 0, the r value is constant, the a value step or the a value is constant, and the r value step is calculated.
  • the communication line between the devices to be communicated avoids the position of the obstacle, where r represents the vertical distance of the line between the position to be sought and the real-time position of the two devices to be communicated, and a represents the position to be sought The distance through the midpoint of the line between the real-time positions of the two devices to be communicated and perpendicular to the plane of the line between the real-time positions of the two devices to be communicated.
  • the location determining unit includes:
  • the first location finding unit is configured to find a location of the communication line with each of the to-be communicated devices to avoid the obstacle, and if the location exists, determine the location as a communication relay location.
  • a first step and judging unit configured to increase a by a preset step, if a ⁇ a first preset threshold is added after the preset step is increased, and the position to be sought is farthest from the position to be searched for
  • the distance between the real-time positions of the to-be-communicated devices is ⁇ the second preset threshold, and the function is performed by the first location finding unit, wherein the first preset threshold is a distance between the real-time locations of the devices to be communicated and
  • the signal communication distance capability of the communication network is a preset value, and the second preset threshold is a maximum signal transmission distance of the aircraft.
  • the first r stepping and determining unit is configured to increase r by a preset step, a is reset to 0, and if the preset step is r ⁇ third preset threshold and the position and distance to be sought are If the distance between the real-time positions of the devices to be communicated that are the farthest to be located is ⁇ the second preset threshold, the function is performed by the first a step and the determining unit, otherwise, the area where the device to be communicated is located is There is no location to be found, wherein the third preset threshold is a value preset according to a communication technology implementation and a signal communication distance capability of the communication network.
  • the location determining unit includes:
  • a second location searching unit configured to find a location of the communication line with each of the to-be communicated devices to avoid the obstacle, and if the location exists, determine the location as a communication relay location.
  • a second r stepping and judging unit configured to increase r by a preset step, if the r ⁇ third preset threshold after the preset step is increased, and the position to be sought is farthest from the position to be searched for
  • the distance between the real-time positions of the to-be-communicated devices is ⁇ the second predetermined threshold, and the second position finding unit performs its function, wherein the second preset threshold is the most A large signal transmission distance, the third preset threshold being a value preset according to a communication technology implementation manner and a signal communication distance capability of the communication network.
  • a second a stepping and judging unit configured to add a to a preset step, r is reset to 0, if a ⁇ first preset threshold after adding the preset step and the position and distance to be sought are If the distance between the real-time positions of the devices to be communicated that are the farthest to be located is ⁇ the second preset threshold, the second r step and the determining unit perform its function, otherwise, the area where the device to be communicated is located is There is no such location to be sought, wherein the first predetermined threshold is a value preset according to a distance between real-time locations of the devices to be communicated and a signal communication distance capability of the communication network.
  • the location determining unit includes:
  • the ensemble search subunit is configured to search for a location of the communication line with each of the to-be communicated devices to avoid the obstacle by the ensemble search mode.
  • the shortest position determining subunit is configured to determine a position where the total communication distance between all the devices to be communicated is the shortest as a communication relay position.
  • a set of location points of the obstacle where r represents the vertical distance of the line between the location to be sought and the real-time location of the two devices to be communicated, a represents the location to be sought from the real time through the two devices to be communicated a distance between a midpoint of the line between the positions and a plane perpendicular to a line between the real-time positions of the two devices to be communicated, a ⁇ a first predetermined threshold, r ⁇ a third predetermined threshold,
  • the first preset threshold is a value preset according to a distance between a real-time location of the device to be communicated and a signal communication distance capability of the communication network
  • the third preset threshold is implemented according to a communication technology of the communication network. Mode and signal communication distance capabilities are preset values.
  • Embodiment 10 of the present invention provides a computer readable storage medium comprising instructions for performing the control method of the aircraft of any of Embodiments 2-7.
  • Said storage The medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).
  • the embodiment 11 of the present invention provides an electronic device 400, including:
  • the memory 420 is a non-volatile computer readable storage medium, and can be used for storing a non-volatile software program, a non-volatile computer-executable program, and a module, such as a program corresponding to the control method of the aircraft in the embodiment of the present application. Instructions/modules (eg, the modules shown in Figures 12 and 13).
  • the processor 410 executes various functional applications of the server and data processing by executing non-volatile software programs, instructions, and modules stored in the memory 420, that is, implementing the control method of the aircraft of the above method embodiment.
  • the memory 420 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store data created according to usage of the control device of the aircraft, and the like.
  • memory 420 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • memory 420 can optionally include memory remotely located relative to processor 410, which can be connected to the aircraft's control device over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the one or more modules are stored in the memory 420, and when executed by the one or more processors 410, perform the control method of the aircraft in any of the above method embodiments.
  • the electronic device of the embodiment of the present invention can relay the communication between the two or one point by using the aircraft as a communication network of the communication network between the devices to be communicated, and the position of the aircraft can be easily adjusted to meet the communication point.
  • the networking requirements when there are obstacles or the inability to erect physical cables, and the networking cost is lower than satellite communication.
  • Embodiment 12 of the present invention provides an aircraft, the aircraft comprising:
  • the relay is relayed by the relay communication node as a communication network between two or more communication devices to be communicated.
  • the communication relay node may be a communication module having a communication relay function.
  • the communication module is disposed in the aircraft body, and is generally connected to a processor in the aircraft. In addition to realizing the original communication function of the aircraft, the communication module can also implement communication. Following the function, it becomes a communication relay between other devices to be communicated, and then forms a communication network.

Abstract

一种飞行器及其控制方法、装置和电子设备。其中飞行器(100)包括飞行器本体(110);以及设置在所述飞行器本体(110)上的通信中继装置(120);所述通信中继装置(120)适于使飞行器(100)作为通信中继节点实现至少两个待通信设备之间的通信。通过将飞行器(100)作为待通信设备之间通信网络的通信中继,可以通过飞行器(100)组建两点或多点间的通信网络,飞行器(100)的位置便于调整,满足了通信点间有障碍物或者无法架设实体线缆时的组网需求,且组网成本相比卫星通信较低。

Description

飞行器及其控制方法、装置和电子设备 技术领域
本发明涉及飞行器技术领域,特别是涉及一种飞行器及其控制方法、装置和电子设备。
背景技术
目前遥控飞行器的用户群越来越大,但基本还是应用在娱乐和高空拍摄这两个场景,极少数商家应用了飞行器的自动寻址和避障功能送货,但也还处在初级阶段。Google应用了热气球作为大面积的区域热点接入,但此接入为一点对多点的应用,且热气球只是作为一个固定接入点,热气球自身并没有智能性,无法实现智能组网。
在两点或多点组网技术领域,目前固定的组网技术很成熟,不管用光纤、网线、还是WiFi等等,都能方便快捷地进行两点或多点通信。然而,针对部分场景,这些组网方式可能并不适用或者智能性不够。比如,在山地地区移动过程中的两点或多点内网通信,架实体线缆不现实,而当前无线技术又会受到两点间障碍物的影响大幅衰减,甚至接收不到信号。而通过卫星通信的方式虽然智能,但成本过高。
鉴于此,克服上述现有技术所存在的缺陷是本技术领域亟待解决的问题。
发明内容
本发明实施例要解决的技术问题是现有技术无法满足通信点间有障碍物或者无法架设实体线缆的组网需求,当采用卫星通信时成本过高的技术问题。
本发明实施例采用如下技术方案:
第一方面,本发明实施例提供了一种飞行器,包括:
飞行器本体;以及
设置在所述飞行器本体上的通信中继装置;所述通信中继装置适于使飞行器作为通信中继节点实现至少两个待通信设备之间的通信。
第二方面,本发明实施例提供了一种飞行器的控制方法,包括:
控制具有通信中继装置的飞行器飞往通信中继位置,使所述飞行器在所述通信中继位置上作为通信中继节点实现至少两个待通信设备之间的通信。
第三方面,本发明实施例提供了一种飞行器的控制装置,包括:
飞行控制模块,用于控制具有通信中继装置的飞行器飞往通信中继位置,使所述飞行器在所述通信中继位置上作为通信中继节点实现至少两个待通信设备之间的通信。
第四方面,本发明实施例提供了一种计算机可读存储介质,包括用于执行如上所述的飞行器的控制方法的指令。
第五方面,本发明实施例提供了一种电子设备,包括:
至少一个或多个处理器;以及,
存储器;其中,
所述存储器存储有可被所述至少一个或多个处理器执行的指令程序,所述指令程序被设置为执行:
控制具有通信中继装置的飞行器飞往通信中继位置,使所述飞行器在所述通信中继位置上作为通信中继节点实现至少两个待通信设备之间的通信。
本发明实施例的有益效果在于:本发明实施例通过将飞行器作为待通信设备之间通信网络的通信中继,从而可以通过飞行器组建两点或多点间的通信网络,飞行器的位置便于调整,满足了通信点间有障碍物或者无法架设实体线缆时的组网需求,且组网成本相比卫星通信较低。
附图说明
图1是本发明实施例通过飞行器升空绕过障碍物作为信号中继组建移动终端之间的通信网络的示意图;
图2是本发明实施例通过飞行器在水平面上绕过障碍物作为信号中继组建移动终端之间的通信网络的示意图;
图3是是本发明实施例1的飞行器的框图;
图4是本发明实施例2的飞行器的控制方法的流程图;
图5是本发明实施例3的飞行器的控制方法的流程图;
图6是本发明实施例3中步骤220的详细流程图;
图7是本发明实施例4的飞行器的控制方法的流程图;
图8是本发明实施例4的另一飞行器的控制方法的流程图;
图9是本发明实施例5的飞行器的控制方法的流程图;
图10是本发明实施例6的飞行器的控制方法的流程图;
图11是本发明实施例7的飞行器的控制方法的流程图;
图12是本发明实施例8的飞行器的控制装置的框图;
图13是本发明实施例9的飞行器的控制装置的框图;
图14是步进计算方案的原理示意图;
图15是本发明实施例11的电子设备的框图。
具体实施例
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明如下实施例中,如图1所示,假设两个或多个移动终端(移动终端作为待通信设备)进行点对点通信或多点通信时,因为移动终端之间的距离或障碍物的原因,有可能导致信号强度降低或者中断,此时可通过信号中继的通信方式来绕过障碍物并进行信号中继及放大,例如通过飞行器(如无人机)升空来绕过障碍物作为信号中继组建移动终端之间的通信网络。
如图2所示,飞行器并不一定要靠升高来绕过障碍物,也可以在水平面上绕过障碍物,进行通信中继。总之,由于飞行器的位置便于调整,通过飞行器作为信号中继组网其灵活性高,便于根据实时情况 及时调整。
借助本发明下述实施例的各个方案,可采用灵活机动的飞行器作为组网(例如星形组网)的核心来连接各个通信节点(即待通信设备),进一步地,还可在通信节点位置动态变化时实时计算最佳中继点的位置并实时调整自身位置,以避开通信节点间的障碍物,保证通信网络智能高效的运行。
具体地,可通过一台飞行器(根据网络复杂程度和距离也可采用多台飞行器)作为传输信号的中继,在任何待通信设备间有障碍造成无法通过点对点连接通信时,或者远距离动态组网时,飞行器根据自身存储的当前位置三维地图模型和各个通信节点的位置,计算出可绕过通信节点间障碍物的最优通信路径,继而组建两点或多点间的通信网络。在通信节点位置变化时,飞行器也会实时计算更新最佳中继点的位置,以保证组建的通信网络能连续最优化运行。
实施例1
如图3所示,本发明实施例1提供了一种飞行器100,包括:飞行器本体110以及设置在所述飞行器本体上的通信中继装置120,所述通信中继装置120适于使飞行器作为通信中继节点实现至少两个待通信设备之间的通信。该通信中继装置120可以是具备通信中继功能的通信模块,该通信模块设置于飞行器本体110中,一般与飞行器100中的处理器连接,除了能实现飞行器原有的通信功能外,还能实现通信中继功能,成为其他待通信设备之间的通信中继,进而组建通信网络。
本发明实施例通过将飞行器作为待通信设备之间通信网络的通信中继,从而可以通过飞行器组建两点或多点间的通信网络,飞行器的位置便于调整,满足了通信点间有障碍物或者无法架设实体线缆时的组网需求,且组网成本相比卫星通信较低。
实施例2
如图4所示,本发明实施例2提供了一种飞行器的控制方法,包括:
步骤100、控制具有通信中继装置的飞行器飞往通信中继位置,使所述飞行器在所述通信中继位置上作为通信中继节点实现至少两个待通信设备之间的通信。
该通信中继位置可通过人为选择(例如通过飞行器的遥控器选择),也可通过飞行器自身的智能计算得出,具体在下述实施例中详细阐述。确定好某一通信中继位置后,通过本实施例控制飞行器飞往该位置,作为通信网络中待通信设备之间的通信中继,使待通信设备之间无法直接通信或者直接通信效果不佳时通过飞行器作为中继实现良好的通信效果。
本发明实施例通过将飞行器作为待通信设备之间通信网络的通信中继,从而可以通过飞行器组建两点或多点间的通信网络,飞行器的位置便于调整,满足了通信点间有障碍物或者无法架设实体线缆时的组网需求,且组网成本相比卫星通信较低。
实施例3
如图5所示,本发明实施例3提供了一种飞行器的控制方法,包括:
步骤210、获取各个待通信设备的实时位置信息。
获取实时位置信息可以进行待通信设备所处区域的定位。
此外,每个待通信设备在通信网络中都有其特定的识别码,例如当待通信设备为移动终端时,该识别码就是移动终端的移动设备国际识别码(International Mobile Equipment Identity,IMEI),该码也是移动终端通过基站进行通信时的识别码。本发明实施例还可以通过获取该码,使飞行器后续作为该待通信设备与其他通信设备的通信中继时辨别通信源,确认通信传输对象。如果已经搜索不到某台设备的信号,无法获取其识别码和实时位置信息,则以该台设备信号丢失前的位置信息、运动轨迹、速度,结合后文提及的所述待通信设备所处区域的三维地图信息和当时的时间进行该设备位置范围的推断。
步骤220、根据所述待通信设备的实时位置信息定位到所述待通信设备所处区域的三维地图模型,根据所述三维地图模型和待通信设 备的实时位置信息确定通信中继位置。
获取到待通信设备的实时位置信息后,可在飞行器本身的存储器或者飞行器所连接的云服务系统中获取到该通信设备所处区域的三维地图模型,然后进一步确定通信中继位置。
步骤230、控制具有通信中继装置的飞行器飞往通信中继位置,使所述飞行器在所述通信中继位置上作为通信中继节点实现至少两个待通信设备之间的通信。
确定该通信中继的位置后,可以控制飞行器飞往并停留于该位置,作为通信中继组建通信网络。
本发明实施例根据三维地图模型和待通信设备的实时位置信息寻找将飞行器作为待通信设备间通信中继的位置,这样寻找到的位置基于待通信设备自身位置和其所处地形,符合实际通信需求,保证通信网络智能高效地运行。
具体地,如图6所示,在另一实施例中,步骤220中根据所述待通信设备的实时位置信息定位到所述待通信设备所处区域的三维地图模型,根据所述三维地图模型和待通信设备的实时位置信息确定通信中继位置的步骤包括:
步骤221、根据所述三维地图模型确定所述三维地图模型中的障碍物。
步骤222、寻找与每一所述待通信设备之间的通信线路均避开所述障碍物的位置,将寻找到的所述位置确定为通信中继位置。
可以根据该待通信设备所处区域的三维地图模型和其实时位置信息了解到待通信设备之间哪些位置有障碍物,从而确定作为通信中继的位置,该位置与待通信设备之间没有对通信造成影响的障碍物,同时总的通信距离最好是在无障碍物的情况下最短的。该通信中继位置可通过人为选择(例如通过飞行器的遥控器选择),也可通过飞行器自身的智能计算得出(例如飞行器升空后在空中完成通信中继位置计算,飞行器可结合本区域的三维地图模型和多个通信源的实时位置信息实时计算飞行器自身作为信号中继的停留位置)。具体地,通信 中继位置的计算可基于两条准则,一是通过计算出的位置作为信号中继组网后,通信链路上不存在障碍物;二是通过计算出的位置作为信号中继组网后,在通信链路上无障碍物的前提下,通信距离最短。
本发明实施例根据三维地图模型和待通信设备的实时位置信息寻找将飞行器作为待通信设备间通信中继的位置,该位置避开了通信源间的障碍,采用灵活机动的飞行器作为通信中继来连接各个节点,并可在待通信设备位置动态变化时,实时计算最佳中继位置并实时调整飞行器自身位置,以避开障碍,保证通信网络智能高效地运行,适用于对临时的长距离两点组建内网通信、动态长距离两点组建内网通信、以及在山区和多障碍地区组建内网通信。
在一些实施例中,还可以通过如下方式确定通信中继位置:
获取各个待通信设备的实时位置信息;根据所述实时位置信息,并根据预设规则划定一通信范围,该预设规则可以由用户自定义设置,例如以每一待通信设备为圆心,以某一距离为半径确定一球体范围(该距离的確定可以根据通信网络的信号通信距离能力而确定),将所有的待通信设备的球体范围累加,形成一汇总的通信范围,在该汇总的通信范围内,确定通信中继位置。最后控制具有通信中继装置的飞行器飞往该通信中继位置,使所述飞行器在所述通信中继位置上作为通信中继节点实现至少两个待通信设备之间的通信。
在一些实施例中,确定通信中继位置后,还可以进一步对该通信中继位置进行通信测试,以判断该位置是否适合作为通信中继位置,例如,若该位置与待通信设备间经测试不能正常通信(例如该位置与待通信设备之间存在障碍物,或者存在影响其通信的其他因素),则该位置不适合作为通信中继位置,需要重新选择另一通信中继位置,直至找到适合作为通信中继位置的位置。最后控制具有通信中继装置的飞行器飞往该通信中继位置,使所述飞行器在所述通信中继位置上作为通信中继节点实现至少两个待通信设备之间的通信。
当然,还可以通过其他方式确定通信中继位置,此处不一一列举。
实施例4
如图7所示,本发明实施例4提供了一种飞行器的控制方法,该方法可以实现将飞行器作为多点通信(例如3个及以上待通信设备的通信)的通信中继的飞行器的控制,包括:
步骤C10、获取各个待通信设备的实时位置信息。
步骤C11、根据所述待通信设备的实时位置信息定位到所述待通信设备所处区域的三维地图模型。
步骤C12、根据所述三维地图模型确定所述三维地图模型中的障碍物。
步骤C2、从所有待通信设备中确定优先级最高的两个待通信设备。
在一些实施例中,可以随机选择两个待通信设备。
步骤C4、寻找与所述优先级最高的两个待通信设备之间的通信线路均避开所述障碍物的位置。
在一些实施例中,可以寻找与随机选择的两个待通信设备之间的通信线路均避开所述障碍物的位置。
步骤C6、从寻找到的所述位置中选择与其他待通信设备之间的通信线路均避开所述障碍物且与所述的位置确定为通信中继位置。
最后,控制具有通信中继装置的飞行器飞往通信中继位置,使所述飞行器在所述通信中继位置上作为通信中继节点实现待通信设备之间的通信。
本步骤中,判断与所述优先级最高的两个待通信设备之间的通信线路均避开所述障碍物的位置与其他待通信设备之间的通信线路是否避开所述障碍物,若是则确定所述与所述优先级最高的两个待通信设备之间的通信线路均避开所述障碍物的位置为通信中继位置,否则返回执行步骤C4寻找另一个与所述优先级最高的两个待通信设备之间的通信线路均避开所述障碍物的位置。
本实施例通过先确定优先级最高的两点,再找到此两点的通信中继C点,之后进一步验证此C点到其他通信点的连线间是否有障碍物,如果都没有则C点确立,如果有障碍物则回到上面的步骤中继续确定 C点位置,从而实现多点通信中作为通信中继的飞行器的飞行控制。
在另一实施例中,如图8所示,该方法还包括:
步骤C5、存储步骤C4中寻找到的每一与所述优先级最高的两个待通信设备之间的通信线路均避开所述障碍物的位置,形成第一位置合集。
在一些实施例中,可以存储步骤C4中寻找到的每一与随机选择的两个待通信设备之间的通信线路均避开所述障碍物的位置,形成第一位置合集。
步骤C8、当最终没有寻找到与每一所述待通信设备之间的通信线路均避开所述障碍物的位置时,从所述第一位置合集中选择与最多数量的待通信设备之间的通信线路均避开所述障碍物的位置确定为通信中继位置。
上述方案通过存储每一次优先级最高的两点可建立通信的C点位置,以保证在最终无法建立n个通信点的连接时,可采用之前所有计算结果中相对最优的C点位置(如找到一个可保证n-1个点通信的位置)作为信号中继。
在一些实施例中,还可以通过如下方式确定多点通信中的通信中继位置:
获取所有待通信设备的实时位置信息;根据所述实时位置信息,并根据预设规则划定一通信范围,该预设规则可以由用户自定义设置,例如以每一待通信设备为圆心,以某一距离为半径确定一球体范围(该距离的確定可以根据通信网络的信号通信距离能力而确定),将所有的待通信设备的球体范围累加,形成一汇总的通信范围;在该汇总的通信范围内,随机确定一通信中继位置;对该通信中继位置进行通信测试,以判断该位置是否适合作为通信中继位置,例如,若该位置与所有待通信设备间经测试不能正常通信(例如该位置与所有待通信设备之间存在障碍物,或者存在影响其通信的其他因素),则该位置不适合作为通信中继位置,需要重新选择另一通信中继位置,直至找到适合作为通信中继位置的位置。最后控制具有通信中继装置的飞 行器飞往该通信中继位置,使所述飞行器在所述通信中继位置上作为通信中继节点实现待通信设备之间的通信。
当然,还可以通过其他方式确定多点通信中的通信中继位置,此处不一一列举。
实施例5
如图9所示,本发明实施例5提供了一种飞行器的控制方法,该方法可以实现将多个飞行器作为多点通信(例如3个及以上待通信设备的通信)的通信中继的飞行器的控制,包括:
步骤D10、获取各个待通信设备的实时位置信息。
步骤D11、根据所述待通信设备的实时位置信息定位到所述待通信设备所处区域的三维地图模型。
步骤D12、根据所述三维地图模型确定所述三维地图模型中的障碍物。
步骤D2、将所有待通信设备分成任意的N组,其中N≥2。
步骤D4、寻找每组中与该组中每一待通信设备之间的通信线路均避开所述障碍物的位置。
步骤D6、判断N组中分别寻找到的所述位置之间的通信线路是否避开所述障碍物,若是则确定所述分别寻找到的位置为N个通信中继位置,否则存储所述分别寻找到的位置,形成第二位置合集,返回执行步骤D2并循环执行步骤至完成所有可能的分组下的每组中与该组中每一待通信设备之间的通信线路均避开所述障碍物的位置确定和存储,选择第二位置合集中总通信距离最短的一组位置作为N个通信中继位置;
步骤D8、控制具有通信中继装置的N个飞行器分别飞往所述N个通信中继位置。
本实施例先用一台飞行器连接几个通信源,确定所有可能的C点集,用另一台飞行器连接剩下的几个通信源,确定所有可能的C’点集,再判断C点与C’点的连线是否有障碍。通过将所有待通信设备分成任意的N组,先分别寻找到每组待通信设备之间的通信中继的位 置,若每组的该位置之间都可以无障碍通信,则存储到位置点集中,将所有可能的分组的每组待通信设备之间的通信中继的位置都搜索到之后,从中选择通信距离最短的一组待通信设备之间的通信中继的位置作为待通信设备之间的通信中继的位置,并采用灵活机动的两台或两台以上飞行器作为星形组网的核心,适用于待通信设备较多、且通信距离较远的通信网络的组建。还可在待通信设备位置动态变化时,实时计算最佳中继位置并实时调整飞行器自身位置,以避开通信源间的障碍,保证通信网络智能高效地运行,适用于对临时的长距离多点组建内网通信、动态长距离多点组建内网通信、以及在山区和多障碍地区组建内网通信。
在一些实施例中,还可以通过如下方式确定多个飞行器作为多点通信中的通信中继位置:
将所有待通信设备分成任意的N组,其中N≥2,并通过如下方式确定每一组中的通信中继位置:
获取该组中所有待通信设备的实时位置信息;根据所述实时位置信息,并根据预设规则划定一通信范围,该预设规则可以由用户自定义设置,例如以每一待通信设备为圆心,以某一距离为半径确定一球体范围(该距离的確定可以根据通信网络的信号通信距离能力而确定),将该组中所有的待通信设备的球体范围累加,形成一汇总的通信范围;在该汇总的通信范围内,随机确定一通信中继位置;对该通信中继位置进行通信测试,以判断该位置是否适合作为通信中继位置,例如,若该位置与所有待通信设备间经测试不能正常通信(例如该位置与所有待通信设备之间存在障碍物,或者存在影响其通信的其他因素),则该位置不适合作为通信中继位置,需要重新选择另一通信中继位置,直至找到适合作为通信中继位置的位置,确定出N个通信中继位置。最后控制具有通信中继装置的N个飞行器分别飞往确定的N个通信中继位置。
当然,还可以通过其他方式确定多点通信中的通信中继位置,此处不一一列举。
实施例6
如图10所示,本发明实施例6提供了一种飞行器的控制方法,该方法通过步进计算方式寻找与每一所述待通信设备之间的通信线路均避开所述障碍物的位置,包括:
步骤310、获取各个待通信设备的实时位置信息。
步骤320、根据所述待通信设备的实时位置信息定位到所述待通信设备所处区域的三维地图模型。
步骤330、根据所述三维地图模型确定所述三维地图模型中的障碍物。
步骤340、通过步进计算方式,寻找与每一所述待通信设备之间的通信线路均避开所述障碍物的位置。
步骤350、将最先寻找到的所述位置确定为通信中继位置。
步骤360、控制具有通信中继装置的飞行器飞往通信中继位置,使所述飞行器在所述通信中继位置上作为通信中继节点实现至少两个待通信设备之间的通信。
其中,步进计算的方式可通过如下方式,也即步骤340包括:
通过对r和a分别从取值0开始,r值不变、a值步进或者a值不变、r值步进的计算方式,寻找与每一所述待通信设备之间的通信线路均避开所述障碍物的位置,其中r表示所要寻找的位置与两个待通信设备的实时位置之间的连线的垂直距离,a表示所要寻找的位置离通过两个待通信设备的实时位置之间的连线的中点且垂直于所述两个待通信设备的实时位置之间的连线的平面的距离。
例如:
步骤A1、初始取r=0,a=0,其中r表示所要寻找的位置与两个待通信设备的实时位置之间的连线的垂直距离,a表示所要寻找的位置离通过两个待通信设备的实时位置之间的连线的中点且垂直于所述两个待通信设备的实时位置之间的连线的平面的距离。
步骤A2、寻找与每一所述待通信设备之间的通信线路均避开所述障碍物的位置,若存在所述位置,则将所述位置确定为通信中继位 置,否则执行步骤A3。
步骤A3、将a增加一预设步进,若增加预设步进后的a≤第一预设阈值且所要寻找的位置与距离所述所要寻找的位置最远的待通信设备的实时位置之间的距离≤第二预设阈值,则返回执行步骤A2,否则执行步骤A4,其中所述第一预设阈值为根据待通信设备的实时位置之间的距离和所述通信网络的信号通信距离能力所预设的值,所述第二预设阈值为飞行器的最大信号传输距离。
步骤A4、将r增加一预设步进,a重置为0,若增加预设步进后的r≤第三预设阈值且所要寻找的位置与距离所述所要寻找的位置最远的待通信设备的实时位置之间的距离≤第二预设阈值,则返回执行步骤A2,否则说明在所述待通信设备所处区域内不存在所述所要寻找的位置,其中所述第三预设阈值为根据所述通信网络的通信技术实现方式和信号通信距离能力所预设的值。
下面结合具体实施例对上述步进计算方案进行解释说明:
由于两点之间直线最短,因此飞行器的位置偏离两个通信源间连线的距离越短则此两点通过中继通信的距离越短(通信距离短则传输更稳定、误码率低,可以达到更高的传输速率)。以通信源间有障碍进行分析,如图14所示,假设两个通信源分别为A点和B点,AB连线的距离为L,AB连线的中点为Y点,飞行器位置为C点,飞行器与AB连线的垂直距离为d。根据数学理论可知,d越小则AC+BC越小,C点离通过Y点且垂直于AB连线的平面距离为a,则a越小,AC+BC越小。图14中圆柱体的半径r就是如上所述的d。假设飞行器的设定最大信号传输距离为dmax。三维构图计算如下:
步骤一:初始取r=0;a=0。
步骤二:连接A点与C点的集合(C点集合初始为一个点,后续为两个圆,也即通过Y点且垂直于AB连线的平面距离为a的分别位于Y点两侧的两个圆),也连接B点与C点的集合(具体构图方式可采用点连接方式,也可构建A点与C点集合的圆锥体,以及B点与C点集合的圆锥体,来确定与地图中的三维障碍模型是否重叠),如果 存在一个C点位置,使得AC与BC连线均不穿过障碍物的三维图形,则C点确定,飞行器飞往C点作为信号中继,流程结束,当r=0;a=0时C点就是Y点,此时相当于AB间没障碍,C点取在AB中点Y即可。若不存在这样的C点位置,则跳到步骤三。
需要说明的是,当r≠0,a≠0的情况下,C点可能很多,本实施例采用r和a的步进方式来计算出C点,实际上第一个找到的C点就是最优的或者近似最优的通信中继点。
步骤三:a增加一个步进m,a=a+m(此m为步进,如果设置过小则计算量大,如果设置过大则计算出的C点可能并非最佳位置。根据无线信号的技术实现方式和通信距离能力,可采取如m=1米、5米、10米等数值,m的取值根据经验和实验确定),如果a≤amax(amax为一个设定阈值,与AB两点的距离L以及信号的通信距离能力有直接关系,可取amax=0.5l、0.7l等数值,amax过大会造成不必要的计算,过小会降低在部分特殊地形时通信建立的成功率,amax的取值根据实验确定最优数值),并且
Figure PCTCN2016105356-appb-000001
(AC和BC中较长的一个距离需要小于等于飞行器的设定最大信号传输距离),则回到步骤二(由步骤二判断增加步进m后是否存在C点位置,使得AC与BC连线均不穿过障碍物的三维图形);否则跳到步骤四。
步骤四:r增加一个步进n,r=r+n(此n为步进,如果设置过小则计算量大,如果设置过大则计算出的C点可能并非最佳位置。根据无线信号的技术实现方式和通信距离能力,可采取如n=1米、5米、10米等数值,n的取值根据经验和实验确定),a重置为0(也即从中心位置重新开始寻找C点);如果r≤rmax(rmax为一个设定阈值,也就是飞行器可偏离AB连线的最大距离,需要考虑信号通信距离能力dmax,根据三角形原理,rmax必然小于dmax,可取rmax=100米、150米等数值,最大可取到dmax,如果过小会降低在部分特殊地形时通信建立的成功率,rmax的取值根据实验确定最优数值),并且
Figure PCTCN2016105356-appb-000002
(r步进后不会使通信距离超出dmax),则回到步骤二(由步骤二判断增加步进m后是否存在C点位置,使得AC与BC连线均不穿过障碍物 的三维图形);如果r>rmax,则说明在设定范围内不存在这样一个C点可作为信号中继,告知用户当前情况连接无法建立,飞行器不起飞。
上述方案的总体计算思路是:r先不变,增加a的步进,每次去步骤二判断有没有C点,一直到a超出设定值了,再把a归0,然后增加r的步进,然后a再一次次增加步进去寻找,直到r也超出设定值,则说明找不到符合要求的C点。
又例如,可以采用a先不变,增加r的步进,每次去步骤二判断有没有C点,一直到r超出设定值了,再把r归0,然后增加a的步进,然后r再一次次增加步进去寻找,直到a也超出设定值,则说明找不到符合要求的C点:
步骤B1、初始取r=0,a=0,其中r表示所要寻找的位置与两个待通信设备的实时位置之间的连线的垂直距离,a表示所要寻找的位置离通过两个待通信设备的实时位置之间的连线的中点且垂直于所述两个待通信设备的实时位置之间的连线的平面的距离。
步骤B2、寻找与每一所述待通信设备之间的通信线路均避开所述障碍物的位置,若存在所述位置,则将所述位置确定为通信中继位置,否则执行步骤B3。
步骤B3、将r增加一预设步进,若增加预设步进后的r≤第三预设阈值且所要寻找的位置与距离所述所要寻找的位置最远的待通信设备的实时位置之间的距离≤第二预设阈值,则返回执行步骤B2,否则执行步骤B4,其中所述第二预设阈值为飞行器的最大信号传输距离,所述第三预设阈值为根据所述通信网络的通信技术实现方式和信号通信距离能力所预设的值。
步骤B4、将a增加一预设步进,r重置为0,若增加预设步进后的a≤第一预设阈值且所要寻找的位置与距离所述所要寻找的位置最远的待通信设备的实时位置之间的距离≤第二预设阈值,则返回执行步骤B2,否则说明在所述待通信设备所处区域内不存在所述所要寻找的位置,其中所述第一预设阈值为根据待通信设备的实时位置之间的距离和所述通信网络的信号通信距离能力所预设的值。
本实施例的步进计算方式也适用于实施例4和实施例5的方案。
实施例7
如图11所示,本发明实施例7提供了一种飞行器的控制方法,该方法通过全集搜索方式寻找与每一所述待通信设备之间的通信线路均避开所述障碍物的位置,包括:
步骤410、获取各个待通信设备的实时位置信息。
步骤420、根据所述待通信设备的实时位置信息定位到所述待通信设备所处区域的三维地图模型。
步骤430、根据所述三维地图模型确定所述三维地图模型中的障碍物。
步骤440、通过全集搜索模式,寻找与每一所述待通信设备之间的通信线路均避开所述障碍物的位置。
本步骤中,通过全集搜索模式,初始取r=0,a=0,进行二阶矩阵式搜索,寻找与每一所述待通信设备之间的通信线路均避开所述障碍物的位置点的集合,其中r表示所要寻找的位置与两个待通信设备的实时位置之间的连线的垂直距离,a表示所要寻找的位置离通过两个待通信设备的实时位置之间的连线的中点且垂直于所述两个待通信设备的实时位置之间的连线的平面的距离,a≤第一预设阈值,r≤第三预设阈值,所述第一预设阈值为根据待通信设备的实时位置之间的距离和所述通信网络的信号通信距离能力所预设的值,所述第三预设阈值为根据所述通信网络的通信技术实现方式和信号通信距离能力所预设的值。
步骤450、将与所有待通信设备之间总通信距离最短的位置确定为通信中继位置。
步骤460、控制具有通信中继装置的飞行器飞往通信中继位置,使所述飞行器在所述通信中继位置上作为通信中继节点实现至少两个待通信设备之间的通信。
本实施例采用全集搜索方式,r从0~rmax,a从0~amax,进行二阶矩阵式搜索,找到所有可行的中继点集合,并选择AC+BC的最小值作 为最佳中继点C点。此方法能确保得到的中继点一定是最佳位置。
本实施例的全集搜索方式也适用于实施例4和实施例5的方案。
需要说明的是,在实施例3-7中,飞行器在通信中继位置上作为两个以上待通信设备之间通信网络的通信中继后,各通信源依然会实时上传自身位置。如果各通信源中存在一个或多个移动中的通信源,则飞行器对最佳中继点位置的计算应为实时的,以随时保证C点的最优化,从而保证组网的最优化。如果通信源的位置信息没有变化,则停止计算,在当前的C点悬停,进行数据的中继传输。
实施例8
如图12所示,本发明实施例8提供了一种飞行器的控制装置200,包括:
飞行控制模块210,用于控制具有通信中继装置的飞行器飞往通信中继位置,使所述飞行器在所述通信中继位置上作为通信中继节点实现至少两个待通信设备之间的通信。
本实施例的具体实现方式和工作原理,和实施例2相同,可参考实施例2的描述,此处不赘述。
本发明实施例通过将飞行器作为待通信设备之间通信网络的通信中继,从而可以通过飞行器组建两点或多点间的通信网络,飞行器的位置便于调整,满足了通信点间有障碍物或者无法架设实体线缆时的组网需求,且组网成本相比卫星通信较低。
实施例9
如图13所示,本发明实施例9提供了一种飞行器的控制装置300,包括:
飞行控制模块310,用于控制具有通信中继装置的飞行器飞往通信中继位置,使所述飞行器在所述通信中继位置上作为通信中继节点实现至少两个待通信设备之间的通信。
信息获取模块320,用于获取各个待通信设备的实时位置信息。
位置确定模块330,用于根据所述待通信设备的实时位置信息定位到所述待通信设备所处区域的三维地图模型,根据所述三维地图模 型和待通信设备的实时位置信息确定通信中继位置。
本发明实施例通过将飞行器作为待通信设备之间通信网络的通信中继,从而可以通过飞行器组建两点或多点间的通信网络,飞行器的位置便于调整,满足了通信点间有障碍物或者无法架设实体线缆时的组网需求,且组网成本相比卫星通信较低。
在另一实施例中,所述位置确定模块230包括:
障碍物确定单元,用于根据所述三维地图模型确定所述三维地图模型中的障碍物。
位置确定单元,用于寻找与每一所述待通信设备之间的通信线路均避开所述障碍物的位置,将寻找到的所述位置确定为通信中继位置。
在又一实施例中,所述位置确定单元包括:
优先级设备确定子单元,用于从所有待通信设备中确定优先级最高的两个待通信设备。
优先级位置寻找子单元,用于寻找与所述优先级最高的两个待通信设备之间的通信线路均避开所述障碍物的位置。
位置确定子单元,用于从寻找到的所述位置中选择与其他待通信设备之间的通信线路均避开所述障碍物且与所述的位置确定为通信中继位置。
在再一实施例中,所述飞行器的控制装置还包括:
第一位置合集存储子单元,用于存储优先级位置寻找子单元寻找到的每一与所述优先级最高的两个待通信设备之间的通信线路均避开所述障碍物的位置,形成第一位置合集。
位置选择子单元,用于当最终没有寻找到与每一所述待通信设备之间的通信线路均避开所述障碍物的位置时,从所述第一位置合集中选择与最多数量的待通信设备之间的通信线路均避开所述障碍物的位置确定为通信中继位置。
在另一实施例中,所述飞行器的控制装置还包括:
分组子单元,用于将所有待通信设备分成任意的N组,其中N≥2;
所述位置确定单元包括:
分组位置确定子单元,用于寻找每组中与该组中每一待通信设备之间的通信线路均避开所述障碍物的位置。
分组位置判断子单元,用于判断N组中分别寻找到的所述位置之间的通信线路是否避开所述障碍物,若是则确定所述分别寻找到的位置为N个通信中继位置,否则存储所述分别寻找到的位置,形成第二位置合集,由分组子单元和分组位置确定子单元循环执行其功能至完成所有可能的分组下的每组中与该组中每一待通信设备之间的通信线路均避开所述障碍物的位置确定和存储,选择第二位置合集中总通信距离最短的一组位置作为N个通信中继位置;
所述飞行控制模块用于控制具有通信中继装置的N个飞行器分别飞往所述N个通信中继位置。
在又一实施例中,所述位置确定单元包括:
步进计算子单元,用于通过步进计算方式,寻找与每一所述待通信设备之间的通信线路均避开所述障碍物的位置。
最先位置确定子单元,用于将最先寻找到的所述位置确定为通信中继位置。
具体地,所述步进计算子单元包括:
r-a步进计算子单元,用于通过对r和a分别从取值0开始,r值不变、a值步进或者a值不变、r值步进的计算方式,寻找与每一所述待通信设备之间的通信线路均避开所述障碍物的位置,其中r表示所要寻找的位置与两个待通信设备的实时位置之间的连线的垂直距离,a表示所要寻找的位置离通过两个待通信设备的实时位置之间的连线的中点且垂直于所述两个待通信设备的实时位置之间的连线的平面的距离。
例如,所述位置确定单元包括:
第一初始单元,用于初始取r=0,a=0,其中r表示所要寻找的位置与两个待通信设备的实时位置之间的连线的垂直距离,a表示所要寻找的位置离通过两个待通信设备的实时位置之间的连线的中点 且垂直于所述两个待通信设备的实时位置之间的连线的平面的距离。
第一位置寻找单元,用于寻找与每一所述待通信设备之间的通信线路均避开所述障碍物的位置,若存在所述位置,则将所述位置确定为通信中继位置。
第一a步进及判断单元,用于将a增加一预设步进,若增加预设步进后的a≤第一预设阈值且所要寻找的位置与距离所述所要寻找的位置最远的待通信设备的实时位置之间的距离≤第二预设阈值,则由第一位置寻找单元执行其功能,其中所述第一预设阈值为根据待通信设备的实时位置之间的距离和所述通信网络的信号通信距离能力所预设的值,所述第二预设阈值为飞行器的最大信号传输距离。
第一r步进及判断单元,用于将r增加一预设步进,a重置为0,若增加预设步进后的r≤第三预设阈值且所要寻找的位置与距离所述所要寻找的位置最远的待通信设备的实时位置之间的距离≤第二预设阈值,则由第一a步进及判断单元执行其功能,否则说明在所述待通信设备所处区域内不存在所述所要寻找的位置,其中所述第三预设阈值为根据所述通信网络的通信技术实现方式和信号通信距离能力所预设的值。
或者,所述位置确定单元包括:
第二初始单元,用于初始取r=0,a=0,其中r表示所要寻找的位置与两个待通信设备的实时位置之间的连线的垂直距离,a表示所要寻找的位置离通过两个待通信设备的实时位置之间的连线的中点且垂直于所述两个待通信设备的实时位置之间的连线的平面的距离。
第二位置寻找单元,用于寻找与每一所述待通信设备之间的通信线路均避开所述障碍物的位置,若存在所述位置,则将所述位置确定为通信中继位置。
第二r步进及判断单元,用于将r增加一预设步进,若增加预设步进后的r≤第三预设阈值且所要寻找的位置与距离所述所要寻找的位置最远的待通信设备的实时位置之间的距离≤第二预设阈值,则由第二位置寻找单元执行其功能,其中所述第二预设阈值为飞行器的最 大信号传输距离,所述第三预设阈值为根据所述通信网络的通信技术实现方式和信号通信距离能力所预设的值。
第二a步进及判断单元,用于将a增加一预设步进,r重置为0,若增加预设步进后的a≤第一预设阈值且所要寻找的位置与距离所述所要寻找的位置最远的待通信设备的实时位置之间的距离≤第二预设阈值,则由第二r步进及判断单元执行其功能,否则说明在所述待通信设备所处区域内不存在所述所要寻找的位置,其中所述第一预设阈值为根据待通信设备的实时位置之间的距离和所述通信网络的信号通信距离能力所预设的值。
在再一实施例中,在所述位置确定单元包括:
全集搜索子单元,用于通过全集搜索模式,寻找与每一所述待通信设备之间的通信线路均避开所述障碍物的位置。
距离最短位置确定子单元,用于将与所有待通信设备之间总通信距离最短的位置确定为通信中继位置。
具体地,所述全集搜索子单元用于通过全集搜索模式,初始取r=0,a=0,进行二阶矩阵式搜索,寻找与每一所述待通信设备之间的通信线路均避开所述障碍物的位置点的集合,其中r表示所要寻找的位置与两个待通信设备的实时位置之间的连线的垂直距离,a表示所要寻找的位置离通过两个待通信设备的实时位置之间的连线的中点且垂直于所述两个待通信设备的实时位置之间的连线的平面的距离,a≤第一预设阈值,r≤第三预设阈值,所述第一预设阈值为根据待通信设备的实时位置之间的距离和所述通信网络的信号通信距离能力所预设的值,所述第三预设阈值为根据所述通信网络的通信技术实现方式和信号通信距离能力所预设的值。
本实施例的具体实现方式和工作原理,和实施例3-7相同,可参考实施例3-7的描述,此处不赘述。
实施例10
本发明实施例10提供了一种计算机可读存储介质,其包括用于执行实施例2-7任一项所述的飞行器的控制方法的指令。所述的存储 介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
实施例11
如图15所示,本发明实施例11提供了一种电子设备400,包括:
至少一个或多个处理器410以及存储器420;处理器410、存储器420可以通过总线或者其他方式连接,图15中以通过总线连接为例。
存储器420作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本申请实施例中的飞行器的控制方法对应的程序指令/模块(例如,附图12和附图13所示的模块)。处理器410通过运行存储在存储器420中的非易失性软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例飞行器的控制方法。
存储器420可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据飞行器的控制装置的使用所创建的数据等。此外,存储器420可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器420可选包括相对于处理器410远程设置的存储器,这些远程存储器可以通过网络连接至飞行器的控制装置。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述一个或者多个模块存储在所述存储器420中,当被所述一个或者多个处理器410执行时,执行上述任意方法实施例中的飞行器的控制方法。
本发明实施例的电子设备,通过将飞行器作为待通信设备之间通信网络的通信中继,从而可以通过飞行器组建两点或多点间的通信网络,飞行器的位置便于调整,满足了通信点间有障碍物或者无法架设实体线缆时的组网需求,且组网成本相比卫星通信较低。
上述产品可执行本申请实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本申请实施例所提供的方法。
实施例12
本发明实施例12提供了一种飞行器,所述飞行器包括:
飞行器本体、通信中继装置和实施例11所述的电子设备。其中通过所述中继通信节点使所述飞行器作为两个以上待通信设备之间通信网络的通信中继。该通信中继节点可以是具备通信中继功能的通信模块,该通信模块设置于飞行器本体中,一般与飞行器中的处理器连接,除了能实现飞行器原有的通信功能外,还能实现通信中继功能,成为其他待通信设备之间的通信中继,进而组建通信网络。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (18)

  1. 一种飞行器,其特征在于,包括:
    飞行器本体;以及
    设置在所述飞行器本体上的通信中继装置;所述通信中继装置适于使飞行器作为通信中继节点实现至少两个待通信设备之间的通信。
  2. 一种飞行器的控制方法,其特征在于,包括:
    控制具有通信中继装置的飞行器飞往通信中继位置,使所述飞行器在所述通信中继位置上作为通信中继节点实现至少两个待通信设备之间的通信。
  3. 根据权利要求2所述的飞行器的控制方法,其特征在于,在所述控制具有通信中继装置的飞行器飞往通信中继位置的步骤之前,所述方法还包括:
    获取各个待通信设备的实时位置信息;
    根据所述待通信设备的实时位置信息定位到所述待通信设备所处区域的三维地图模型,根据所述三维地图模型和待通信设备的实时位置信息确定通信中继位置。
  4. 根据权利要求3所述的飞行器的控制方法,其特征在于,所述根据所述三维地图模型和待通信设备的实时位置信息确定通信中继位置的步骤包括:
    根据所述三维地图模型确定所述三维地图模型中的障碍物;
    寻找与每一所述待通信设备之间的通信线路均避开所述障碍物的位置,将寻找到的所述位置确定为通信中继位置。
  5. 根据权利要求4所述的飞行器的控制方法,其特征在于,所述寻找与每一所述待通信设备之间的通信线路均避开所述障碍物的位置,将寻找到的所述位置确定为通信中继位置的步骤包括:
    步骤C2、从所有待通信设备中确定优先级最高的两个待通信设备;
    步骤C4、寻找与所述优先级最高的两个待通信设备之间的通信线路均避开所述障碍物的位置;
    步骤C6、从寻找到的所述位置中选择与其他待通信设备之间的通信线路均避开所述障碍物且与所述的位置确定为通信中继位置。
  6. 根据权利要求5所述的飞行器的控制方法,其特征在于,所述方法还包括:
    存储步骤C4中寻找到的每一与所述优先级最高的两个待通信设备之间的通信线路均避开所述障碍物的位置,形成第一位置合集;
    当最终没有寻找到与每一所述待通信设备之间的通信线路均避开所述障碍物的位置时,从所述第一位置合集中选择与最多数量的待通信设备之间的通信线路均避开所述障碍物的位置确定为通信中继位置。
  7. 根据权利要求4-6任一项所述的飞行器的控制方法,其特征在于,在所述寻找与每一所述待通信设备之间的通信线路均避开所述障碍物的位置,将寻找到的所述位置确定为通信中继位置的步骤之前,所述方法还包括:
    步骤D2、将所有待通信设备分成任意的N组,其中N≥2;
    所述寻找与每一所述待通信设备之间的通信线路均避开所述障碍物的位置,将寻找到的所述位置确定为通信中继位置包括:
    步骤D4、寻找每组中与该组中每一待通信设备之间的通信线路均避开所述障碍物的位置;
    步骤D6、判断N组中分别寻找到的所述位置之间的通信线路是否避开所述障碍物,若是则确定所述分别寻找到的位置为N个通信中继位置,否则存储所述分别寻找到的位置,形成第二位置合集,返回执行步骤D2并循环执行步骤至完成所有可能的分组下的每组中与该组中每一待通信设备之间的通信线路均避开所述障碍物的位置确定和存储,
    选择第二位置合集中总通信距离最短的一组位置作为N个通信中继位置;
    所述控制具有通信中继装置的飞行器飞往通信中继位置的步骤包括:
    控制具有通信中继装置的N个飞行器分别飞往所述N个通信中继位置。
  8. 根据权利要求4-7任一项所述的飞行器的控制方法,其特征在于,所述寻找与每一所述待通信设备之间的通信线路均避开所述障碍物的位置,将寻找到的所述位置确定为通信中继位置的步骤包括:
    通过步进计算方式,寻找与每一所述待通信设备之间的通信线路均避开所述障碍物的位置;将最先寻找到的所述位置确定为通信中继位置;或者,
    通过全集搜索模式,寻找与每一所述待通信设备之间的通信线路均避开所述障碍物的位置;将与所有待通信设备之间总通信距离最短的位置确定为通信中继位置。
  9. 一种飞行器的控制装置,其特征在于,包括:
    飞行控制模块,用于控制具有通信中继装置的飞行器飞往通信中继位置,使所述飞行器在所述通信中继位置上作为通信中继节点实现至少两个待通信设备之间的通信。
  10. 根据权利要求9所述的飞行器的控制装置,其特征在于,所述装置还包括:
    信息获取模块,用于获取各个待通信设备的实时位置信息;
    位置确定模块,用于根据所述待通信设备的实时位置信息定位到所述待通信设备所处区域的三维地图模型,根据所述三维地图模型和待通信设备的实时位置信息确定通信中继位置。
  11. 根据权利要求10所述的飞行器的控制装置,其特征在于,所述位置确定模块包括:
    障碍物确定单元,用于根据所述三维地图模型确定所述三维地图模型中的障碍物;
    位置确定单元,用于寻找与每一所述待通信设备之间的通信线路均避开所述障碍物的位置,将寻找到的所述位置确定为通信中继位置。
  12. 根据权利要求11所述的飞行器的控制装置,其特征在于,所述位置确定单元包括:
    优先级设备确定子单元,用于从所有待通信设备中确定优先级最高的两个待通信设备;
    优先级位置寻找子单元,用于寻找与所述优先级最高的两个待通信设备之间的通信线路均避开所述障碍物的位置;
    位置确定子单元,用于从寻找到的所述位置中选择与其他待通信设备之间的通信线路均避开所述障碍物且与所述的位置确定为通信中继位置。
  13. 根据权利要求12所述的飞行器的控制装置,其特征在于,所述装置还包括:
    第一位置合集存储子单元,用于存储优先级位置寻找子单元寻找到的每一与所述优先级最高的两个待通信设备之间的通信线路均避开所述障碍物的位置,形成第一位置合集;
    位置选择子单元,用于当最终没有寻找到与每一所述待通信设备之间的通信线路均避开所述障碍物的位置时,从所述第一位置合集中选择与最多数量的待通信设备之间的通信线路均避开所述障碍物的位置确定为通信中继位置。
  14. 根据权利要求11-13任一项所述的飞行器的控制装置,其特征在于,所述装置还包括:
    分组子单元,用于将所有待通信设备分成任意的N组,其中N≥2;
    所述位置确定单元包括:
    分组位置确定子单元,用于寻找每组中与该组中每一待通信设备之间的通信线路均避开所述障碍物的位置;
    分组位置判断子单元,用于判断N组中分别寻找到的所述位置之间的通信线路是否避开所述障碍物,若是则确定所述分别寻找到的位置为N个通信中继位置,否则存储所述分别寻找到的位置,形成第二位置合集,由分组子单元和分组位置确定子单元循环执行其功能至完成所有可能的分组下的每组中与该组中每一待通信设备之间的通信线路均避开所述障碍物的位置确定和存储,选择第二位置合集中总通 信距离最短的一组位置作为N个通信中继位置;
    所述飞行控制模块用于控制具有通信中继装置的N个飞行器分别飞往所述N个通信中继位置。
  15. 根据权利要求11-14任一项所述的飞行器的控制装置,其特征在于,所述位置确定单元包括:
    步进计算子单元,用于通过步进计算方式,寻找与每一所述待通信设备之间的通信线路均避开所述障碍物的位置;
    最先位置确定子单元,用于将最先寻找到的所述位置确定为通信中继位置;或者,
    所述位置确定单元包括:
    全集搜索子单元,用于通过全集搜索模式,寻找与每一所述待通信设备之间的通信线路均避开所述障碍物的位置;
    距离最短位置确定子单元,用于将与所有待通信设备之间总通信距离最短的位置确定为通信中继位置。
  16. 一种计算机可读存储介质,其特征在于,包括用于执行根据权利要求2-8任一项所述的飞行器的控制方法的指令。
  17. 一种电子设备,其特征在于,包括:
    至少一个或多个处理器;以及,
    存储器;其中,
    所述存储器存储有可被所述至少一个或多个处理器执行的指令程序,所述指令程序被设置为执行:
    控制具有通信中继装置的飞行器飞往通信中继位置,使所述飞行器在所述通信中继位置上作为通信中继节点实现至少两个待通信设备之间的通信。
  18. 根据权利要求1所述的飞行器,其特征在于,所述飞行器还包括根据权利要求17所述的电子设备。
PCT/CN2016/105356 2016-11-10 2016-11-10 飞行器及其控制方法、装置和电子设备 WO2018086042A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/105356 WO2018086042A1 (zh) 2016-11-10 2016-11-10 飞行器及其控制方法、装置和电子设备
CN201680002663.4A CN106716872B (zh) 2016-11-10 2016-11-10 飞行器及其控制方法、装置和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/105356 WO2018086042A1 (zh) 2016-11-10 2016-11-10 飞行器及其控制方法、装置和电子设备

Publications (1)

Publication Number Publication Date
WO2018086042A1 true WO2018086042A1 (zh) 2018-05-17

Family

ID=58903765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105356 WO2018086042A1 (zh) 2016-11-10 2016-11-10 飞行器及其控制方法、装置和电子设备

Country Status (2)

Country Link
CN (1) CN106716872B (zh)
WO (1) WO2018086042A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111787640A (zh) * 2019-04-04 2020-10-16 Oppo广东移动通信有限公司 通信方法及相关产品
CN116781867A (zh) * 2023-07-08 2023-09-19 深圳市恺恩科技有限公司 无信号区输电线路监控方法及系统

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108496133B (zh) * 2017-06-30 2021-05-04 深圳市大疆创新科技有限公司 中继无人机的控制方法和中继无人机
WO2019060339A1 (en) * 2017-09-21 2019-03-28 Smartsky Networks LLC ARCHITECTURE TO DEFINE GROUP MESSAGING
CN108337033A (zh) * 2018-01-15 2018-07-27 湖北工业大学 一种用于中继通信网络的最短距离优化方法
CN108698227B (zh) * 2018-04-24 2021-07-09 达闼机器人有限公司 云端控制的信息传输方法、机器人和组群机器人系统
CN108768490A (zh) * 2018-05-22 2018-11-06 西安蜂语信息科技有限公司 中继方法、中继装置及中继终端
CN110113094B (zh) * 2019-05-09 2021-08-13 西安爱生技术集团公司 一种升空通信中继无人机通视计算方法
CN110398898B (zh) * 2019-06-20 2023-11-14 平安科技(深圳)有限公司 智能终端管理方法、装置、计算机设备及可读存储介质
CN110674935B (zh) * 2019-09-24 2022-12-20 中国航空工业集团公司沈阳飞机设计研究所 向机载嵌入式平台移植智能算法的方法及智能计算平台
WO2021062670A1 (zh) * 2019-09-30 2021-04-08 上海飞来信息科技有限公司 无人飞行器定位方法、终端设备、以及无人飞行器
CN110825106B (zh) * 2019-10-22 2022-04-22 深圳市道通智能航空技术股份有限公司 一种飞行器的避障方法、飞行器、飞行系统及存储介质
CN111836271B (zh) * 2020-07-28 2021-08-20 河海大学 一种多无人机通信基站的3d位置部署方法
CN112821936A (zh) * 2020-12-31 2021-05-18 上海海洋大学 一种无人机信号中继系统及应用
CN114489128B (zh) * 2022-01-20 2023-04-07 北京远度互联科技有限公司 中继无人机的飞行位置规划方法、装置及电子设备
CN116709355A (zh) * 2023-08-08 2023-09-05 东莞华松创新科技有限公司 一种无人机的应急通讯方法和应急通讯系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148637A (zh) * 2010-02-08 2011-08-10 宗鹏 一种高空气球组阵中继的通信方法
CN104853402A (zh) * 2014-02-19 2015-08-19 华为技术有限公司 无线接入服务方法和设备
CN105071852A (zh) * 2015-08-27 2015-11-18 杨珊珊 一种利用无人机实现的智能中继系统及方法
CN105119650A (zh) * 2015-08-24 2015-12-02 杨珊珊 基于无人飞行器的信号中继系统及其信号中继方法
CN105246089A (zh) * 2015-10-28 2016-01-13 上海市上海中学 用于移动式自适应无线网络中继器的方法和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110092257A1 (en) * 2009-10-16 2011-04-21 Burt Steven D Wireless communication device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148637A (zh) * 2010-02-08 2011-08-10 宗鹏 一种高空气球组阵中继的通信方法
CN104853402A (zh) * 2014-02-19 2015-08-19 华为技术有限公司 无线接入服务方法和设备
CN105119650A (zh) * 2015-08-24 2015-12-02 杨珊珊 基于无人飞行器的信号中继系统及其信号中继方法
CN105071852A (zh) * 2015-08-27 2015-11-18 杨珊珊 一种利用无人机实现的智能中继系统及方法
CN105246089A (zh) * 2015-10-28 2016-01-13 上海市上海中学 用于移动式自适应无线网络中继器的方法和装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111787640A (zh) * 2019-04-04 2020-10-16 Oppo广东移动通信有限公司 通信方法及相关产品
CN111787640B (zh) * 2019-04-04 2022-07-08 Oppo广东移动通信有限公司 通信方法及相关产品
CN116781867A (zh) * 2023-07-08 2023-09-19 深圳市恺恩科技有限公司 无信号区输电线路监控方法及系统

Also Published As

Publication number Publication date
CN106716872B (zh) 2020-11-06
CN106716872A (zh) 2017-05-24

Similar Documents

Publication Publication Date Title
WO2018086042A1 (zh) 飞行器及其控制方法、装置和电子设备
Feng et al. AVE: Autonomous vehicular edge computing framework with ACO-based scheduling
CN108512880B (zh) 通信方法和通信设备
CN110650039B (zh) 一种基于多峰优化的无人机群辅助车辆网络协同通信模型
CN107454945B (zh) 无人机的导航系统
US11398863B2 (en) Alignment in line-of-sight communication networks
WO2019041874A1 (zh) 飞行器控制方法及装置
CN108401438A (zh) 无人机飞行路径的确定方法及装置
CN111132258A (zh) 一种基于虚拟势场法的无人机集群协同机会路由方法
US20220044578A1 (en) Decentralized collision avoidance for uavs
CN109104235A (zh) 一种基于自适应的无人机群长距离通信方法
CN108519737B (zh) 一种考虑能源补给的无人设备路径规划方法
WO2018086041A1 (zh) 飞行器的飞行位置动态调整方法和装置
CN113867382B (zh) 一种无人机集群网络的拓扑控制方法
Uchida et al. Evaluation of wireless network communication by autonomous flight wireless nodes for resilient networks
JP7087302B2 (ja) 通信制御装置
KR101668416B1 (ko) 공중 운행체의 운행 제어 방법, 무인 공중 운행체 및 노드 장비
KR101752601B1 (ko) 무인 자율비행체간 에드혹 네트워크에서 신뢰성 있는 데이터 전달을 위한 라우팅 경로 설정 방법
JP2020518155A (ja) Ngso衛星ネットワーク用の時空間ソフトウェア定義ネットワーキング
KR20130128150A (ko) 무인 편대 비행체들의 번들 데이터 중계 방법
Huo et al. A UAV mobile strategy in mobile ad hoc networks
CN109660966A (zh) 一种车辆远程监控系统及方法
CN109885090B (zh) 一种基于基站控制自动飞行的方法及装置
CN113190035B (zh) 基于混合型拓扑结构的无人机编队控制方法及系统
CN112436879B (zh) 一种应用于无人机超远距离通信的多点切换方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921174

Country of ref document: EP

Kind code of ref document: A1