WO2018086041A1 - 飞行器的飞行位置动态调整方法和装置 - Google Patents

飞行器的飞行位置动态调整方法和装置 Download PDF

Info

Publication number
WO2018086041A1
WO2018086041A1 PCT/CN2016/105355 CN2016105355W WO2018086041A1 WO 2018086041 A1 WO2018086041 A1 WO 2018086041A1 CN 2016105355 W CN2016105355 W CN 2016105355W WO 2018086041 A1 WO2018086041 A1 WO 2018086041A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
real
location
relay
time
Prior art date
Application number
PCT/CN2016/105355
Other languages
English (en)
French (fr)
Inventor
骆磊
Original Assignee
深圳达闼科技控股有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳达闼科技控股有限公司 filed Critical 深圳达闼科技控股有限公司
Priority to PCT/CN2016/105355 priority Critical patent/WO2018086041A1/zh
Priority to CN201680002653.0A priority patent/CN106717048A/zh
Publication of WO2018086041A1 publication Critical patent/WO2018086041A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18504Aircraft used as relay or high altitude atmospheric platform
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the present invention relates to the field of aircraft technology, and in particular, to an aircraft and a method and apparatus for dynamically adjusting flight position.
  • multi-point networking technology is relatively mature, for example, through optical fiber, network cable, WiFi, hot air balloon, satellite, etc., multi-point networking communication can be conveniently and quickly.
  • the inventors have found that at least the following problems exist in the prior art: in the existing wireless networking mode, once the network establishment is completed, the communication transmission rate between the communication nodes is fixed.
  • the technical problem mainly solved by the embodiments of the present invention is that the communication transmission rate between communication nodes in the existing communication network cannot be dynamically adjusted.
  • an embodiment of the present invention provides a method for dynamically adjusting a flight position of an aircraft, including:
  • the multi-point communication network Acquiring a real-time communication rate requirement of each communication connection in the multi-point communication network, the multi-point communication network being composed of a plurality of devices to be communicated;
  • the aircraft is controlled to fly to the second communication relay location to enable the aircraft to communicate between the plurality of devices to be communicated as a communication relay node at the second communication relay location.
  • an embodiment of the present invention provides a flight position dynamic adjustment apparatus for an aircraft, including:
  • a location determining module configured to acquire a real-time communication rate requirement of each communication connection in the multi-point communication network, and determine a second communication relay location according to a real-time communication rate requirement, where the multi-point communication network is composed of multiple to-be-communicated devices;
  • a flight control module configured to control the aircraft to fly to the second communication relay position, so that the aircraft implements communication between the plurality of to-be communicated devices as the communication relay node at the second communication relay position.
  • an embodiment of the present invention provides a flight position dynamic adjustment apparatus for an aircraft, including:
  • At least one processor and,
  • the memory stores instructions executable by at least one processor, the instructions being executed by at least one processor to enable the at least one processor to perform the method.
  • an embodiment of the present invention provides a non-transitory computer readable storage medium storing computer executable instructions for causing a computer to perform the above method.
  • the embodiment of the present invention is applied to a communication network that is relayed by an aircraft as a communication relay, and adjusts a relay point position of the aircraft in the air according to a communication priority or a communication data amount between the devices to be communicated,
  • the location of the relay point can meet the communication priority or the amount of communication data between the devices to be communicated, and realize the dynamic adjustment of the communication transmission rate between the communication nodes according to the actual communication requirements, thereby ensuring the intelligent and efficient operation of the communication network.
  • FIG. 1 is a flow chart of a method for dynamically adjusting a flight position of an aircraft according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic diagram of an aircraft as a communication relay networking
  • Figure 3 is a schematic diagram showing the relationship between the distance between two points and the signal intensity
  • FIG. 4 is a schematic diagram of determining a location of a relay point based on a communication priority
  • FIG. 5 is a schematic diagram of determining a relay point position based on a communication data amount
  • Figure 6 is a schematic illustration of aircraft position changes to accommodate communication needs
  • Figure 7 is a block diagram of a flight position dynamic adjustment device of an aircraft according to Embodiment 2 of the present invention.
  • Figure 8 is a block diagram of a flight position dynamic adjustment device of an aircraft according to Embodiment 3 of the present invention.
  • the aircraft can be used to set up a multi-point communication network, and the aircraft acts as a communication relay between communication points.
  • the aircraft has the characteristics of communication capability and easy movement, and can be applied to communication of complex terrain, and can be communicated through the aircraft as a communication relay. Communication between points bypasses obstacles and enables long-distance transmission.
  • the application environment of the embodiment of the present invention is a communication network in which an aircraft is used as a communication relay between communication points in a multipoint communication network.
  • Embodiment 1 is a flowchart of a method for dynamically adjusting a flight position of an aircraft according to Embodiment 1 of the present invention. As shown in FIG. 1 , Embodiment 1 of the present invention provides a method for dynamically adjusting a flight position of an aircraft, which may be applied to an aircraft. It can also be applied to the ground control system of an aircraft, the method comprising:
  • Step 101 Control an aircraft having a communication relay device to fly to a first communication relay position, so that the aircraft implements communication between the plurality of devices to be communicated as a communication relay node at the first communication relay position, and establishes multi-point communication.
  • the internet The internet.
  • Step 102 Acquire a real-time communication rate requirement of each communication connection in the multi-point communication network, and determine a second communication relay location according to the real-time communication rate requirement.
  • a multipoint communication network is composed of a plurality of devices to be communicated, and a communication connection refers to a connection between two devices to be communicated.
  • real-time communication rate requirements can be based on real-time communication priorities Or the amount of real-time communication data is determined.
  • the aircraft itself can obtain the communication priority or the amount of communication data between any two points of the communication points A, B, C, ... through the network.
  • the communication priority can be set by the user at any time, or can be affected by the system (which can be a communication back-end server or an aircraft acting as a communication relay) according to the current network conditions (such as the amount of communication data between points) without affecting the user experience.
  • the communication priority between two points or some points is raised to meet the communication needs and optimize the network transmission.
  • the amount of communication data can also be set by the user or counted by the system based on current network conditions. Therefore, the communication priority or the amount of communication data acquired in this step may come from the user's settings, or from the system's settings or statistics.
  • the aircraft can determine the appropriate relay point location based on the communication priority or the amount of communication data. For example, a communication point with a high communication priority or a large amount of communication data can shorten the communication distance between two points to increase the transmission rate (according to the principle of short-range wireless communication, the actual transmission rate of most communication transmissions is between the communication points. The distance is sensitive. After a certain threshold is exceeded, the distance between the two points has a great influence on the signal strength. The farther the distance is, the lower the signal strength will be, and the lower the signal strength will increase the bit error rate, and the bit error rate will increase. Further, the negotiation rate is further reduced. In addition, the farther the distance is, the more likely the interference is.) If the communication priority is low or the amount of communication data is small, the distance between the two points can be appropriately increased to prioritize the communication between the other points.
  • Step 103 Control the aircraft to fly to the second communication relay position, so that the aircraft implements communication between the plurality of to-be communicated devices as the communication relay node at the second communication relay position.
  • the aircraft After determining the location of the relay point based on the real-time communication priority and the amount of communication data between the points, the aircraft can adjust its own flight position to the determined position in real time, satisfying the communication priority and the communication data volume to the communication transmission rate.
  • the first communication relay location may be an initial location preset by the user, or may be a communication relay location determined last time according to the real-time communication rate requirement.
  • the aircraft can be controlled to fly into the multipoint communication network after the second communication relay position is determined, so step 101 can be omitted.
  • the aircraft can be determined. In advance, the flight position planning is carried out, and a new relay point position meeting the subsequent communication requirements is found in advance, thereby further improving the communication efficiency.
  • the embodiment of the present invention is applied to a communication network that is relayed by an aircraft as a communication relay, and adjusts a position of a relay point in the air according to a communication priority or a communication data amount between the devices to be communicated, and the position of the relay point can satisfy the device to be communicated.
  • the communication priority between the communication or the amount of communication data enables the communication transmission rate between the communication nodes to be dynamically adjusted according to the actual communication requirements, thereby ensuring the intelligent and efficient operation of the communication network.
  • the relay point location may be determined based on the location of the communication point. For example, determining the second communication relay location based on the real-time communication rate requirement in step 102 includes:
  • Step 201 Obtain real-time location information of each device to be communicated
  • Step 202 Determine a second communication relay location according to a preset algorithm according to the real-time location information and the real-time communication rate requirement.
  • step 202 may specifically be:
  • Step 301 Sort real-time communication rate requirements of each communication connection from high to low;
  • Step 302 Search for a subset of the relay point positions that meet the first requirement in sequence, and the first requirement is that the real-time communication rate demands the communication distance requirement of the communication device, wherein the next relay point position subset is from the previous relay. Find and generate a subset of point locations;
  • the finding of the relay point location point subset may be performed in descending order of communication priority from high to low or the amount of communication data from large to small, for example:
  • Step A2 Find a first relay point location subset that satisfies the first communication priority or the first communication data amount between two communication devices to be communicated, wherein the communication priorities are arranged in descending order, communication data The quantities are arranged in order of largest to smallest.
  • Step 303 Determine, according to a preset rule, a second communication relay location from the generated subset of the last relay point locations.
  • the second communication relay location can be determined according to different requirements according to different preset rules.
  • step 303 may specifically be: determining a location in which the last relay point location subset is the shortest communication distance with the communication device with the lowest communication rate requirement as the second communication relay location.
  • step 303 may specifically be: determining a location in which the last relay point location is the shortest, and the communication distance of the communication device with the highest communication rate requirement is the second communication relay location.
  • the search for the location of the relay point depends on the map to ensure that the communication network established after the aircraft flies to the found relay point location is unobstructed.
  • the method further includes:
  • Step 204 Locating a three-dimensional map model of an area where the device to be communicated is located according to the real-time location information.
  • step 202 may include: according to the real-time location of the device to be communicated
  • the information and the real-time communication rate requirement, and the three-dimensional map model of the area where the device to be communicated is located determine the second communication relay position according to a preset algorithm, thereby finding that the real-time communication rate requirement is satisfied, and at the same time, each communication is to be communicated.
  • the communication lines between the devices avoid the second communication relay position of the obstacle.
  • the position of the aircraft as a relay is dynamically adjusted in real time according to the changed communication priority or the changed communication data amount.
  • the position of the aircraft as a relay is dynamically adjusted in real time, so that the network transmission rate is no longer fixed, and the most needed path can be made according to the actual situation (for example, the user sets the communication priority high or the network determines the communication data amount is large) Obtain the maximum transmission rate allowed by the condition and dynamically adjust it in real time to keep the network in an optimal state.
  • FIG. 2 is a schematic diagram of an aircraft as a communication relay network. As shown in FIG. 2, the aircraft sets up three wireless communication networks of points A, B, and C. The aircraft stays at the Y point, and the Y point is the aircraft as the device to be communicated ( The relay point location of the communication relay between A, B, and C).
  • Figure 3 is a schematic diagram of the relationship between the distance between two points and the signal strength. Please refer to Figure 3. Assume that the relationship between the distance between two points and the signal strength is as follows (different wireless signals, different devices, where the thresholds L1, L2, L3 may be Different, the value should be set according to the actual situation):
  • the communication priority can be set by the user at any time, or can be set by the system (which can be a communication back-end server or an aircraft acting as a communication relay) according to the current network conditions (such as the amount of communication data between points).
  • the communication priority between two points or some points is raised to meet the communication requirements, and the network transmission is optimized.
  • the communication priority of some points is increased, it may be necessary to simultaneously Communication priorities at certain points are reduced to better meet communication needs and optimize network transmission.
  • the amount of communication data can also be set by the user or counted by the system according to the current network conditions.
  • the relay aircraft needs to calculate the new Y point position according to the position information uploaded by the three points A, B, and C and the three-dimensional map model stored in the aircraft.
  • the Y point position should meet the following conditions:
  • AY straight line distance is in the (0, L1) interval, and there is no obstacle blocking
  • BY linear distance is in the (0, L1) interval, and there is no obstacle blocking
  • the CY straight line distance is in the (0, L3) interval, and there is no obstacle blocking. Under the condition that AY and BY are satisfied, the shorter the CY, the better.
  • FIG. 4 is a schematic diagram of determining the position of the relay point based on the communication priority, as shown in FIG. . Then follow the steps below to find the best advantage in the 3D map:
  • the three-dimensional figure of the two ball weights is the point set M1 that satisfies the distance to point A and the distance to point B is ⁇ L1. If M1 is empty, communication between the ABs with the communication priority of I cannot be established, and the user can be notified;
  • point set M3 select the point with the shortest linear distance from point C. If the distance is ⁇ L3, determine this point as point Y; if the distance is > L3, point Y does not exist, or the user can be informed and The user determines whether to temporarily abandon the communication at point C to ensure the priority of the I communication between the ABs.
  • the communication between the AB and the communication priority level I is not determined, but even if the communication priority level II is maintained, it does not mean that there is no optimization space. Because the relationship between distance and communication rate is: within a certain distance range (that is, not exceeding the threshold L1), the transmission rate is not substantially reduced. Above this threshold, the further the distance, the lower the transmission rate. Therefore, the same communication priority level II, but the distance is close to L1 and the distance is close to L2, the actual transmission rate is very different. Therefore, the steps to find the Y point are as follows:
  • AY straight line distance is in the (0, L2) interval, and there is no obstacle blocking
  • BY linear distance is in the (0, L2) interval, and there is no obstacle blocking
  • FIG. 5 is a schematic diagram of determining the position of the relay point based on the amount of communication data, as shown in FIG. . Then follow the steps below to find the best advantage in a 3D map:
  • the three-dimensional figure of the two spheres is the point set M1 that satisfies the distance to point A and the distance to point B is ⁇ L2 (because the range of M1 contains the current position point Y, it must not be empty);
  • the above example is an example of three communication points, third-order communication priorities. If the number of communication points is more, or the number of communication priority points of the same communication is more, or the communication priority order is more, the search process of the optimal Y point is the same in any case, and the highest communication priority communication is determined first. The point of the ball is the center of the ball, and then the point set of the connection is determined, and then the next communication priority is considered.
  • Figure 6 is a schematic diagram of the change of the position of the aircraft to meet the communication requirements.
  • the relay aircraft may actually change its position in the air to ensure that each communication point communicates at different times. Demand. If the communication data amount, duration, and communication priority change are predictable, the relay aircraft can determine the optimal Y-point position for each change moment in advance based on the predicted information, plan the aircraft path in advance, and ensure network communication optimization. .
  • Embodiment 2 of the present invention provides a flight position dynamic adjustment device 100 for an aircraft, including:
  • a network building module 101 configured to control an aircraft having a communication relay device to fly to a first communication relay position, so that the aircraft implements communication between the plurality of devices to be communicated as a communication relay node at the first communication relay position, Establish a multi-point communication network;
  • the location determining module 102 is configured to acquire a real-time communication rate requirement of each communication connection in the multi-point communication network, and determine a second communication relay location according to the real-time communication rate requirement; wherein the real-time communication rate requirement is based on the real-time communication priority Or real-time communication number Determined by quantity;
  • the flight control module 103 is configured to control the aircraft to fly to the second communication relay position, so that the aircraft implements communication between the plurality of to-be communicated devices as the communication relay node at the second communication relay position.
  • the location determining module 102 includes:
  • a real-time location acquisition unit configured to acquire real-time location information of each device to be communicated
  • the location determining unit is configured to determine the second communication relay location according to a preset algorithm according to the real-time location information and the real-time communication rate requirement.
  • the location determining unit can include:
  • a rate ordering subunit for ordering the real-time communication rate requirements of each communication connection from high to low
  • the sub-set finding sub-unit is configured to sequentially search for a subset of the relay point positions satisfying the first requirement according to the sorting, and the first requirement is that the real-time communication rate demands the communication distance requirement of the communication device, wherein the next relay point position subset Find and generate from a subset of the previous relay point locations;
  • a location determining subunit configured to determine, according to a preset rule, a second communication relay location from the generated subset of the last relay point locations.
  • the location determining module 102 can include:
  • a real-time location acquisition unit configured to acquire real-time location information of each device to be communicated
  • a map positioning unit configured to locate, according to real-time location information, a three-dimensional map model of an area where the device to be communicated is located;
  • the location determining unit is configured to determine the second communication relay location according to the real-time location information and the real-time communication rate requirement, and the three-dimensional map model according to a preset algorithm. In this way, it is possible to find a second communication relay position that satisfies the real-time communication rate requirement while making the communication line between each device to be communicated avoid the obstacle.
  • the embodiment of the present invention is applied to a communication network through which an aircraft is used as a communication relay, and the aircraft is adjusted in the air according to the communication priority or the amount of communication data between the devices to be communicated.
  • the location of the relay point can meet the communication priority or the amount of communication data between the devices to be communicated, and realize the dynamic adjustment of the communication transmission rate between the communication nodes according to the actual communication requirements, thereby ensuring the intelligence of the communication network. Run efficiently.
  • the flight position dynamic adjustment device 200 of the aircraft includes: at least one processor 210, and one processor 210 is used in FIG. And a memory 220 communicatively coupled to the at least one processor 210; wherein the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor such that The at least one processor is capable of performing the method of the above-described embodiment of a flight position dynamic adjustment method of an aircraft applied to a flight position dynamic adjustment device 200 of an aircraft.
  • the processor 210 and the memory 220 may be connected by a bus or other means, and the bus connection is taken as an example in FIG.
  • the memory 220 is a non-volatile computer readable storage medium for storing non-volatile software programs, non-volatile computer executable programs, and modules, such as flight position dynamics applied to aircraft in the embodiments of the present application.
  • the processor 210 executes various functional applications and data processing of the flight position dynamic adjustment device 200 of the aircraft by running non-volatile software programs, instructions and modules stored in the memory 220, that is, the application of the above method embodiments The flight position dynamic adjustment method of the aircraft of the flight position dynamic adjustment device 200 of the aircraft.
  • the memory 220 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store an operation created according to the use of the flight position dynamic adjustment device 200 of the aircraft. Data, etc.
  • memory 220 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the memory 220 can optionally include a memory remotely located relative to the processor 210 that can be coupled to the flight position dynamics adjustment device 200 of the aircraft via a network. Examples of the above networks include, but are not limited to, mutual Networking, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the one or more modules are stored in the memory 220, and when executed by the one or more processors 210, perform the aircraft of the flight position dynamic adjustment device 200 applied to the aircraft in any of the above method embodiments. Flight position dynamic adjustment method.
  • the flight position dynamic adjustment device 200 of the aircraft of the embodiment of the present application exists in various forms including, but not limited to, an aircraft, a ground control system of an aircraft, and the like.
  • Embodiment 4 of the present invention provides a computer readable storage medium, a non-transitory computer readable storage medium storing computer executable instructions that are processed by one or more Executing, for example, a processor 210 in FIG. 8, may cause the one or more processors to perform the flight position dynamic adjustment method of the aircraft in any of the above method embodiments.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, ie may be located A place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the various embodiments can be implemented by means of software plus a general hardware platform, and of course, by hardware.
  • a person skilled in the art can understand that all or part of the process of implementing the above embodiments can be completed by a computer program to instruct related hardware, and the program can be stored in a computer readable storage medium. When executed, the flow of an embodiment of the methods as described above may be included.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random storage memory. (Random Access Memory, RAM), etc.

Abstract

一种飞行器及其飞行位置动态调整方法和装置。其中飞行器的飞行位置动态调整方法包括:获取多点通信网络中各个通信连接的实时的通信速率需求,根据实时的通信速率需求确定第二通信中继位置(102),该多点通信网络由多个待通信设备组成;控制飞行器飞往第二通信中继位置,使飞行器在第二通信中继位置上作为通信中继节点实现多个待通信设备之间的通信(103)。该方法实现对各个通信节点间的通信传输速率根据实际通信需求动态调整,从而保证通信网络智能高效地运行。

Description

飞行器的飞行位置动态调整方法和装置 技术领域
本发明涉及飞行器技术领域,特别是涉及一种飞行器及其飞行位置动态调整方法和装置。
背景技术
目前,多点组网技术已经较为成熟,例如通过光纤、网线、WiFi、热气球、卫星等等,都能方便快捷地进行多点组网通信。
在实现本发明的过程中,发明人发现现有技术至少存在以下问题:在现有的无线组网方式下,一旦网络建立完成,各个通信节点间的通信传输速率就是固定的。
鉴于此,克服上述现有技术所存在的缺陷是本技术领域亟待解决的问题。
发明内容
本发明实施例主要解决的技术问题是现有通信网络中各通信节点间的通信传输速率不能动态调整的问题。
本发明实施例采用如下技术方案:
第一方面,本发明实施例提供了一种飞行器的飞行位置动态调整方法,包括:
获取多点通信网络中各个通信连接的实时的通信速率需求,该多点通信网络由多个待通信设备组成;
根据实时的通信速率需求确定第二通信中继位置;
控制飞行器飞往第二通信中继位置,使飞行器在第二通信中继位置上作为通信中继节点实现多个待通信设备之间的通信。
第二方面,本发明实施例提供了一种飞行器的飞行位置动态调整装置,包括:
位置确定模块,用于获取多点通信网络中各个通信连接的实时的通信速率需求,根据实时的通信速率需求确定第二通信中继位置,该多点通信网络由多个待通信设备组成;
飞行控制模块,用于控制飞行器飞往第二通信中继位置,使飞行器在第二通信中继位置上作为通信中继节点实现多个待通信设备之间的通信。
第三方面,本发明实施例提供了一种飞行器的飞行位置动态调整装置,包括:
至少一个处理器;以及,
与至少一个处理器通信连接的存储器;其中,
存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行如上的方法。
第四方面,本发明实施例提供了一种非易失性计算机可读存储介质,计算机可读存储介质存储有计算机可执行指令,计算机可执行指令用于使计算机执行如上的方法。
本发明实施例的有益效果在于:本发明实施例应用于通过飞行器作为通信中继的通信网络中,根据待通信设备间的通信优先级或通信数据量调整飞行器在空中的中继点位置,该中继点位置能满足待通信设备间的通信优先级或通信数据量的要求,实现对各个通信节点间的通信传输速率根据实际通信需求动态调整,从而保证通信网络智能高效地运行。
附图说明
图1是本发明实施例1的飞行器的飞行位置动态调整方法流程图;
图2是飞行器作为通信中继组网的示意图;
图3是两点间距离和信号强度的关系示意图;
图4是基于通信优先级确定中继点位置的示意图;
图5是基于通信数据量确定中继点位置的示意图;
图6是飞行器位置变化以适应通信需求的示意图;
图7是本发明实施例2的飞行器的飞行位置动态调整装置的框图;
图8是本发明实施例3的飞行器的飞行位置动态调整装置的框图。
具体实施例
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
针对复杂地形、通信点间有障碍物、远距离传输或动态通信点等情况,依靠点对点通信无法建立多点网络通信或者无法确保建立稳定的多点通信网络。此时,可采用飞行器组建多点通信网络,由飞行器充当通信点间的通信中继,飞行器具有通信能力以及易移动等特点,可以适用于复杂地形的通信,通过飞行器作为通信中继可使通信点间的通信绕过障碍物,实现远距离传输等。本发明实施例的应用环境即为飞行器作为多点通信网络中通信点间的通信中继的通信网络。
实施例1:
图1是本发明实施例1的飞行器的飞行位置动态调整方法流程图,如图1所示,本发明实施例1提供了一种飞行器的飞行位置动态调整方法,该方法可以应用于飞行器上,也可以应用于飞行器的地面控制系统中,该方法包括:
步骤101、控制具有通信中继装置的飞行器飞往第一通信中继位置,使飞行器在第一通信中继位置上作为通信中继节点实现多个待通信设备之间的通信,组建多点通信网络。
步骤102、获取多点通信网络中各个通信连接的实时的通信速率需求,根据实时的通信速率需求确定第二通信中继位置。
多点通信网络由多个待通信设备组成,通信连接指两个待通信设备之间的连接。其中,实时的通信速率需求可根据实时的通信优先级 或者实时的通信数据量确定。
例如,飞行器自身可通过网络获取通信点A、B、C……中任意两点间的通信优先级或通信数据量。通信优先级可以由用户随时设定,也可以由系统(可以是通信后台服务器,也可以是充当通信中继的飞行器)根据当前网络情况(如各点间的通信数据量)在不影响用户体验的前提下把某两点或某些点之间的通信优先级调高,以满足通信需求,优化网络传输。通信数据量也可以由用户设定或者由系统根据当前网络情况统计。因此,本步骤获取到的通信优先级或通信数据量可能来自用户的设定,或者来自于系统的设置或统计。
接收到通信优先级或通信数据量后,飞行器可根据通信优先级或通信数据量确定合适的中继点位置。例如,通信优先级高的,或者通信数据量大的通信点,可以缩短两点间的通信距离以提升传输速率(根据短距离无线通信原理,大部分通信传输的实际传输速率都对通信点间的距离敏感,在超过一定阈值后,两点间的距离对信号强度有较大影响,距离越远则信号强度就会越低,而信号强度降低会使误码率提升,误码率提升会进一步降低协商速率。另外,距离越远,受到干扰的可能性也越大);通信优先级低的或者通信数据量小的,可适当加大两点间的距离以优先其他点间的通信。
步骤103、控制飞行器飞往第二通信中继位置,使飞行器在第二通信中继位置上作为通信中继节点实现多个待通信设备之间的通信。
飞行器根据各个点间的实时通信优先级和通信数据量确定中继点位置后,可实时调整自身的飞行位置到该确定的位置,满足通信优先级和通信数据量对通信传输速率的要求。
此处需要说明的是,步骤101中,第一通信中继位置可以是用户预设的初始位置,也可以是上次根据实时的通信速率需求确定的通信中继位置。另外,可以在确定了第二通信中继位置之后,再控制飞行器飞入多点通信网络,因此步骤101是可以省略的。
可以理解的是,如果通信网络中部分通信节点间或全部通信节点间的通信优先级或通信数据量可以预测或提前可确定时,则飞行器可 以提前进行飞行位置规划,提前寻找新的符合后续通信要求的中继点位置,进一步提升通信效率。
本发明实施例应用于通过飞行器作为通信中继的通信网络中,根据待通信设备间的通信优先级或通信数据量调整飞行器在空中的中继点位置,该中继点位置能满足待通信设备间的通信优先级或通信数据量的要求,实现对各个通信节点间的通信传输速率根据实际通信需求动态调整,从而保证通信网络智能高效地运行。
在一些实施例中,可根据通信点位置确定中继点位置,例如,步骤102中根据实时的通信速率需求确定第二通信中继位置包括:
步骤201、获取各个待通信设备的实时位置信息;
步骤202、根据实时位置信息与实时的通信速率需求按预置算法确定第二通信中继位置。
因为通信强度和通信距离相关,因此根据通信点的实时位置寻找的满足通信优先级或通信数据量要求的中继点位置较为准确。可以理解的是,预置算法可以有很多种。例如,在一些实施例中,步骤202具体可以是:
步骤301、将每一通信连接的实时的通信速率需求从高到低排序;
步骤302、按照排序依次寻找满足第一要求的中继点位置子集,第一要求为实时的通信速率需求对待通信设备的通信距离要求,其中下一中继点位置子集从上一中继点位置子集中寻找并产生;
在一些实施例中,中继点位置点子集的寻找可按通信优先级从高到低或者通信数据量从大到小的顺序进行,例如:
步骤A2、寻找满足第一通信优先级或第一通信数据量的两个待通信设备间通信需求的第1中继点位置子集,其中通信优先级按从高到低的顺序排列,通信数据量按从大到小的顺序排列。
步骤A4、从第X中继点位置子集中寻找满足第N通信优先级或第M通信数据量的待通信设备间通信需求的第X+1中继点位置子集,其中初始值为X=1,N=2,M=2。
步骤A6、取X=X+1、N=N+1和M=M+1并重复执行步骤A4直至产生最后一个中继点位置子集。
步骤303、按预置规则从产生的最后一个中继点位置子集中确定第二通信中继位置。
此处需要说明的是,有可能无法在上一中继点位置子集中找到满足第一要求的下一中继点位置子集,即该下一中继点位置子集为空,此时该上一中继点位置子集即为最后一个中继点位置子集。该点在图4与图5实施例中有详细体现。
在最后一个中继点位置子集中,可以根据不同需求,按照不同种预置规则来确定第二通信中继位置。例如,步骤303具体可以为:将最后一个中继点位置子集中,与通信速率需求最低的通信设备的通信距离最短的位置确定为第二通信中继位置。再如,步骤303具体可以为:将最后一个中继点位置子集中,与通信速率需求最高的通信设备的通信距离最短的位置确定为第二通信中继位置。
在一些实施例中,若通信地形复杂,其中存在一些障碍物,则中继点位置的寻找需依赖地图进行,以保证飞行器飞往寻找到的中继点位置后搭建的通信网络之间无障碍,例如,步骤201之后,该方法还包括:
步骤204、根据实时位置信息定位到待通信设备所处区域的三维地图模型。
此时,中继点位置需满足:在三维地图模型中,中继点位置与任一待通信设备间的通信线路上均没有障碍物,此时步骤202可以包括:根据待通信设备的实时位置信息与实时的通信速率需求、以及待通信设备所处区域的三维地图模型按预置算法确定第二通信中继位置,从而寻找到既满足实时的通信速率需求的,同时又使得每一待通信设备之间的通信线路均避开障碍物的第二通信中继位置。
此外,本发明实施例是在通信网络组建之后,根据变化的通信优先级或者变化的通信数据量,实时动态调整飞行器作为中继的位置。
在通信网络组建之后,根据变化的通信优先级或者变化的通信数 据量,实时动态调整飞行器作为中继的位置,使网络传输速率不再是固定的,而可以根据实际情况让最需要的路径(例如用户设定通信优先级高或网络判定通信数据量大)获得条件允许的最大传输速率,并动态地实时调整,让网络时刻保持最优状态。
下面通过具体实施方式对步骤102中如何根据通信优先级或通信数据量确定作为待通信设备间通信中继的飞行器的中继点位置做详细说明。下面以3个通信点为例进行本发明实施例的说明,并按照寻找最优中继点位置的方案进行说明。图2是飞行器作为通信中继组网的示意图,如图2所示,飞行器组建了三个点A、B、C的无线通信网络,飞行器停留在Y点,Y点为飞行器作为待通信设备(A、B、C)间通信中继的中继点位置。可以理解的是,本发明实施例适用于多点通信(至少三点通信),而不限于三点通信。假设网络中任意两点间的通信优先级分为I,II,III三级,其中I代表最高通信优先级,信号强度保持强,通信速率有保障;II代表中等通信优先级,信号强度保持中等,可正常通信;III代表低通信优先级,信号强度可以比较差,通信速率低。前文提到,两点间的距离对信号强度有较大影响。若想保持最高的传输速率,距离短到信号强度足够大即可,在距离短到某一阈值后,进一步缩短距离,传输速率不会再有明显提升。
图3是两点间距离和信号强度的关系示意图,请参考图3,假设两点间距离和信号强度的关系如下所示(不同无线信号、不同设备,此处的阈值L1,L2,L3可能不同,应根据实际情况设定数值):
1.当两点间距离在(0,L1)时,信号强度最强,作为通信优先级I的条件;
2.当两点间距离在(L1,L2)时,信号强度中,作为通信优先级II的条件;
3.当两点间距离在(L2,L3)时,信号强度弱,作为通信优先级III的条件。
如果距离超过L3,则信号强度太弱,可能造成断开连接或者速率过低的情况,为了保证组网的可靠性和完整性,本实施方式中不考 虑这种情况。
前文提到,通信优先级可以由用户随时设定,也可以由系统(可以是通信后台服务器,也可以是充当通信中继的飞行器)根据当前网络情况(如各点间的通信数据量)在不影响用户体验的前提下把某两点或某些点之间的通信优先级调高,以满足通信需求,优化网络传输,当把某些点的通信优先级调高时,可能同时需要把某些点的通信优先级降低,以更好地满足通信需求,优化网络传输。同理,通信数据量也可以由用户设定或者由系统根据当前网络情况统计。
假设A、B、C三个点的通信优先级都为II,此时AY,BY,CY的长度都处于区间(L1,L2)。
(1)根据通信优先级调整中继点位置的实施方式
假设某一时刻用户将AB两点间的通信优先级设置为I,则中继飞行器需根据A、B、C三点上传的位置信息和飞行器内存储的三维地图模型计算新的Y点位置。Y点位置应满足如下条件:
1.AY直线距离处于(0,L1)区间,且没有障碍阻挡;
2.BY直线距离处于(0,L1)区间,且没有障碍阻挡;
3.CY直线距离处于(0,L3)区间,且没有障碍阻挡,在AY和BY满足的条件下,CY越短越好。
基于如上条件,可以在飞行器的三维地图中分别以A为圆心、B为圆心定义两个半径为L1的实心球体,图4是基于通信优先级确定中继点位置的示意图,如图4所示。然后按如下步骤在三维地图中寻找最优点Y:
1.两个球体重合部分的立体图形则为满足到A点距离和到B点距离都≤L1的点集M1。如果M1为空,则AB间无法建立通信优先级为I的通信,可告知用户;
2.连接A点与M1,并连接B点与M1,在点集M1中所有与A、B连线间都没有障碍的点集确定为M2。如果M2为空,则AB间无法建立通信优先级为I的通信,可告知用户;
3.连接C点与M2,在点集M2中所有与C点连线间都没有障 碍的点集确定为M3。如果M3为空,则AB间建立通信优先级为I的通信就要暂时放弃与C点的通信,可告知用户;
4.在点集M3中选择与C点直线距离最短的点,如果此距离≤L3,则将此点确定为Y点;如果此距离>L3,则Y点不存在,或者可告知用户并由用户确定是否要暂时放弃C点的通信来保证AB间的I通信优先级。
(2)根据通信数据量调整中继点位置的实施方式
假设某一时刻,AB间通信数据量很大且会持续一段时间,同时C点与A、B两点间通信数据量很小,III级也可满足C点与A、B两点的通信。
因为示例A、B、C三点都处于通信优先级II,AB间并不确定能进入通信优先级I的通信,但即使维持在通信优先级II,也并不意味着没有优化空间。因为距离和通信速率的关系为:在一定距离范围内(也即不超过阈值L1),传输速率基本不会降低。而超过这个阈值,则距离越远,传输速率越低。所以,同为通信优先级II,但距离接近L1与距离接近L2时,实际传输速率差别很大。因此,寻找Y点的步骤如下:
1.AY直线距离处于(0,L2)区间,且没有障碍阻挡;
2.BY直线距离处于(0,L2)区间,且没有障碍阻挡;
3.CY直线距离处于(0,L3)区间,且没有障碍阻挡;
4.在AY、BY、CY都满足的条件下,AY与BY的较大值越小越好(AB间实际通信速率取决于AY与BY中距离较长的那一边)。
基于如上条件,可以在飞行器的三维地图中分别以A为圆心、B为圆心做两个半径为L2的实心球体,图5是基于通信数据量确定中继点位置的示意图,如图5所示。然后遵循如下步骤在三维地图中寻找最优点Y:
1.两个球体重合部分的立体图形则为满足到A点距离和到B点距离都≤L2的点集M1(因为M1范围包含当前位置点Y,所以一定不为空);
2.连接A点与M1,并连接B点与M1,在点集M1中所有与A、B点连线间都没有障碍的点集确定为M2(因为M2范围包含当前位置点Y,所以一定不为空);
3.连接C点与M2,在点集M2中所有与C点连线间都没有障碍且距离≤L3的点集确定为M3(因为M3范围包含当前位置点Y,所以一定不为空);
4.在点集M3中选中与A点直线距离和与B点直线距离中较大值最小的点,则将此点确定为Y点。
以上示例为三个通信点、三阶通信优先级的示例。如果通信点数目更多,或者同一通信优先级通信点数目更多,或通信优先级阶数更多,无论如何变化,最优Y点的寻找过程也是同理,均先确定最高通信优先级通信点为球心的球体重合部分点集,再确定连线无障碍的点集,然后再考虑下一个通信优先级。
图6是飞行器位置变化以适应通信需求的示意图,如图6所示,以一个二维平面的俯视图为例,中继飞行器实际可能在空中不断的变化自身位置来保证各个通信点在不同时刻通信的需求。如果通信数据量、持续时间、通信优先级变化是可以预知的,则中继飞行器可以根据预知的信息提前判断每一次变化时刻的最优Y点位置,提前规划飞行器路径,保证网络通信的最优化。
实施例2:
图7是本发明实施例2的飞行器的飞行位置动态调整装置的框图,如图7所示,本发明实施例2提供了一种飞行器的飞行位置动态调整装置100,包括:
网络组建模块101,用于控制具有通信中继装置的飞行器飞往第一通信中继位置,使飞行器在第一通信中继位置上作为通信中继节点实现多个待通信设备之间的通信,组建多点通信网络;
位置确定模块102,用于获取多点通信网络中各个通信连接的实时的通信速率需求,根据实时的通信速率需求确定第二通信中继位置;其中,实时的通信速率需求根据实时的通信优先级或者实时的通信数 据量确定;
飞行控制模块103,用于控制飞行器飞往第二通信中继位置,使飞行器在第二通信中继位置上作为通信中继节点实现多个待通信设备之间的通信。
在一些实施例中,位置确定模块102包括:
实时位置获取单元,用于获取各个待通信设备的实时位置信息;
位置确定单元,用于根据实时位置信息与实时的通信速率需求按预置算法确定第二通信中继位置。
在一些实施例中,位置确定单元可以包括:
速率排序子单元,用于将每一通信连接的实时的通信速率需求从高到低排序;
子集寻找子单元,用于按照排序依次寻找满足第一要求的中继点位置子集,第一要求为实时的通信速率需求对待通信设备的通信距离要求,其中下一中继点位置子集从上一中继点位置子集中寻找并产生;
位置确定子单元,用于按预置规则从产生的最后一个中继点位置子集中确定第二通信中继位置。
在一些实施例中,位置确定模块102可以包括:
实时位置获取单元,用于获取各个待通信设备的实时位置信息;
地图定位单元,用于根据实时位置信息定位到待通信设备所处区域的三维地图模型;
位置确定单元,用于根据实时位置信息与实时的通信速率需求、以及三维地图模型按预置算法确定第二通信中继位置。如此,可以寻找到既满足实时的通信速率需求的,同时又使得每一待通信设备之间的通信线路均避开障碍物的第二通信中继位置。
值得说明的是,上述装置内的模块、单元之间的信息交互、执行过程等内容,由于与本发明的方法实施例基于同一构思,具体内容可参见本发明方法实施例中的叙述,此处不再赘述。
本发明实施例应用于通过飞行器作为通信中继的通信网络中,根据待通信设备间的通信优先级或通信数据量调整飞行器在空中的中 继点位置,该中继点位置能满足待通信设备间的通信优先级或通信数据量的要求,实现对各个通信节点间的通信传输速率的根据实际通信需求的动态调整,从而保证通信网络智能高效地运行。
实施例3:
图8是本发明实施例3的飞行器的飞行位置动态调整装置的框图,如图8所示,飞行器的飞行位置动态调整装置200包括:至少一个处理器210,图8中以一个处理器210为例;以及与所述至少一个处理器210通信连接的存储器220;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行上述应用于飞行器的飞行位置动态调整装置200的飞行器的飞行位置动态调整方法实施例的方法。
处理器210和存储器220可以通过总线或者其他方式连接,图8中以通过总线连接为例。
存储器220作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本申请实施例中的应用于飞行器的飞行位置动态调整装置200的飞行器的飞行位置动态调整方法对应的程序指令/模块。处理器210通过运行存储在存储器220中的非易失性软件程序、指令以及模块,从而执行飞行器的飞行位置动态调整装置200的各种功能应用以及数据处理,即实现上述方法实施例的应用于飞行器的飞行位置动态调整装置200的飞行器的飞行位置动态调整方法。
存储器220可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据飞行器的飞行位置动态调整装置200的使用所创建的数据等。此外,存储器220可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器220可选包括相对于处理器210远程设置的存储器,这些远程存储器可以通过网络连接至飞行器的飞行位置动态调整装置200。上述网络的实例包括但不限于互 联网、企业内部网、局域网、移动通信网及其组合。
所述一个或者多个模块存储在所述存储器220中,当被所述一个或者多个处理器210执行时,执行上述任意方法实施例中的应用于飞行器的飞行位置动态调整装置200的飞行器的飞行位置动态调整方法。
上述产品可执行本申请实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本申请实施例所提供的方法。
本申请实施例的飞行器的飞行位置动态调整装置200以多种形式存在,包括但不限于:飞行器、飞行器的地面控制系统等。
实施例4:
本发明实施例4提供了一种计算机可读存储介质,非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个处理器执行,例如图8中的一个处理器210,可使得上述一个或多个处理器可执行上述任意方法实施例中的飞行器的飞行位置动态调整方法。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域普通技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体 (Random Access Memory,RAM)等。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技

Claims (14)

  1. 一种飞行器的飞行位置动态调整方法,其特征在于,包括:
    获取多点通信网络中各个通信连接的实时的通信速率需求,该多点通信网络由多个待通信设备组成;
    根据所述实时的通信速率需求确定第二通信中继位置;
    控制飞行器飞往所述第二通信中继位置,使所述飞行器在所述第二通信中继位置上作为通信中继节点实现所述多个待通信设备之间的通信。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述实时的通信速率需求确定第二通信中继位置包括:
    获取各个待通信设备的实时位置信息;
    根据所述实时位置信息与实时的通信速率需求按预置算法确定第二通信中继位置。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述实时位置信息与实时的通信速率需求按预置算法确定第二通信中继位置包括:
    将每一通信连接的实时的通信速率需求从高到低排序;
    按照所述排序依次寻找满足第一要求的中继点位置子集,第一要求为所述实时的通信速率需求对待通信设备的通信距离要求,其中下一中继点位置子集从上一中继点位置子集中寻找并产生;
    按预置规则从产生的最后一个中继点位置子集中确定第二通信中继位置。
  4. 根据权利要求3所述的方法,其特征在于,所述按预置规则从产生的最后一个中继点位置子集中确定第二通信中继位置包括:
    将所述最后一个中继点位置子集中,与通信速率需求最低的通信设备的通信距离最短的位置确定为第二通信中继位置。
  5. 根据权利要求3所述的方法,其特征在于,所述按预置规则从产生的最后一个中继点位置子集中确定第二通信中继位置包括:
    将所述最后一个中继点位置子集中,与通信速率需求最高的通信 设备的通信距离最短的位置确定为第二通信中继位置。
  6. 根据权利要求1所述的方法,其特征在于,所述根据所述实时的通信速率需求确定第二通信中继位置包括:
    获取各个待通信设备的实时位置信息;
    根据所述实时位置信息定位到所述待通信设备所处区域的三维地图模型;
    根据所述实时位置信息与实时的通信速率需求、以及所述三维地图模型按预置算法确定第二通信中继位置。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述实时的通信速率需求根据实时的通信优先级或者实时的通信数据量确定。
  8. 一种飞行器的飞行位置动态调整装置,其特征在于,包括:
    位置确定模块,用于获取多点通信网络中各个通信连接的实时的通信速率需求,根据所述实时的通信速率需求确定第二通信中继位置,该多点通信网络由多个待通信设备组成;
    飞行控制模块,用于控制飞行器飞往所述第二通信中继位置,使所述飞行器在所述第二通信中继位置上作为通信中继节点实现所述多个待通信设备之间的通信。
  9. 根据权利要求8所述的装置,其特征在于,所述位置确定模块包括:
    实时位置获取单元,用于获取各个待通信设备的实时位置信息;
    位置确定单元,用于根据所述实时位置信息与实时的通信速率需求按预置算法确定第二通信中继位置。
  10. 根据权利要求9所述的装置,其特征在于,所述位置确定单元包括:
    速率排序子单元,用于将每一通信连接的实时的通信速率需求从高到低排序;
    子集寻找子单元,用于按照所述排序依次寻找满足第一要求的中继点位置子集,第一要求为所述实时的通信速率需求对待通信设备的 通信距离要求,其中下一中继点位置子集从上一中继点位置子集中寻找并产生;
    位置确定子单元,用于按预置规则从产生的最后一个中继点位置子集中确定第二通信中继位置。
  11. 根据权利要求8所述的装置,其特征在于,所述位置确定模块包括:
    实时位置获取单元,用于获取各个待通信设备的实时位置信息;
    地图定位单元,用于根据所述实时位置信息定位到所述待通信设备所处区域的三维地图模型;
    位置确定单元,用于根据所述实时位置信息与实时的通信速率需求、以及所述三维地图模型按预置算法确定第二通信中继位置。
  12. 根据权利要求8-11任一项所述的装置,其特征在于,所述实时的通信速率需求根据实时的通信优先级或者实时的通信数据量确定。
  13. 一种飞行器的飞行位置动态调整装置,其特征在于,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-7任意一项所述的方法。
  14. 一种非易失性计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行权利要求1-7任意一项所述的方法。
PCT/CN2016/105355 2016-11-10 2016-11-10 飞行器的飞行位置动态调整方法和装置 WO2018086041A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/105355 WO2018086041A1 (zh) 2016-11-10 2016-11-10 飞行器的飞行位置动态调整方法和装置
CN201680002653.0A CN106717048A (zh) 2016-11-10 2016-11-10 飞行器的飞行位置动态调整方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/105355 WO2018086041A1 (zh) 2016-11-10 2016-11-10 飞行器的飞行位置动态调整方法和装置

Publications (1)

Publication Number Publication Date
WO2018086041A1 true WO2018086041A1 (zh) 2018-05-17

Family

ID=58903771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105355 WO2018086041A1 (zh) 2016-11-10 2016-11-10 飞行器的飞行位置动态调整方法和装置

Country Status (2)

Country Link
CN (1) CN106717048A (zh)
WO (1) WO2018086041A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115066003A (zh) * 2022-08-18 2022-09-16 香港中文大学(深圳) 一种避免通信感知路径被遮挡的空间节点位置确定方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111435257B (zh) * 2019-01-14 2022-04-05 华为技术有限公司 一种移动路线确定方法及相关设备
WO2020202371A1 (ja) * 2019-03-29 2020-10-08 本田技研工業株式会社 制御装置、制御方法、及びプログラム
CN110826193A (zh) * 2019-10-15 2020-02-21 西北工业大学 一种航天器集群的边界检测方法
CN111147294B (zh) * 2019-12-19 2022-08-16 达闼机器人股份有限公司 配置通信资源的方法、装置、存储介质及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148637A (zh) * 2010-02-08 2011-08-10 宗鹏 一种高空气球组阵中继的通信方法
CN104853402A (zh) * 2014-02-19 2015-08-19 华为技术有限公司 无线接入服务方法和设备
CN105071852A (zh) * 2015-08-27 2015-11-18 杨珊珊 一种利用无人机实现的智能中继系统及方法
CN105119650A (zh) * 2015-08-24 2015-12-02 杨珊珊 基于无人飞行器的信号中继系统及其信号中继方法
CN105246089A (zh) * 2015-10-28 2016-01-13 上海市上海中学 用于移动式自适应无线网络中继器的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148637A (zh) * 2010-02-08 2011-08-10 宗鹏 一种高空气球组阵中继的通信方法
CN104853402A (zh) * 2014-02-19 2015-08-19 华为技术有限公司 无线接入服务方法和设备
CN105119650A (zh) * 2015-08-24 2015-12-02 杨珊珊 基于无人飞行器的信号中继系统及其信号中继方法
CN105071852A (zh) * 2015-08-27 2015-11-18 杨珊珊 一种利用无人机实现的智能中继系统及方法
CN105246089A (zh) * 2015-10-28 2016-01-13 上海市上海中学 用于移动式自适应无线网络中继器的方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115066003A (zh) * 2022-08-18 2022-09-16 香港中文大学(深圳) 一种避免通信感知路径被遮挡的空间节点位置确定方法
CN115066003B (zh) * 2022-08-18 2022-11-04 香港中文大学(深圳) 一种避免通信感知路径被遮挡的空间节点位置确定方法

Also Published As

Publication number Publication date
CN106717048A (zh) 2017-05-24

Similar Documents

Publication Publication Date Title
WO2018086041A1 (zh) 飞行器的飞行位置动态调整方法和装置
CN106716872B (zh) 飞行器及其控制方法、装置和电子设备
CN111132258B (zh) 一种基于虚拟势场法的无人机集群协同机会路由方法
CN110650039B (zh) 一种基于多峰优化的无人机群辅助车辆网络协同通信模型
CN105488892B (zh) 一种用于机器人排队管理的方法及服务器
KR101992958B1 (ko) 드론 편대 제어 장치 및 방법
CN116185079B (zh) 一种基于自适应巡航的无人机施工巡检航线规划方法
US11158200B2 (en) Decentralized collision avoidance for UAVs
CN110958661B (zh) 一种无人机网络路由选取方法、装置及无人机节点
CN114389679B (zh) 基于信息年龄最小化的多天线无人机感知和传输优化方法
CN113392539B (zh) 基于联邦强化学习的机器人通信控制方法、系统及设备
CN112367111A (zh) 一种无人机中继部署方法、系统、计算机设备及应用
WO2021037071A1 (zh) 一种飞行控制方法及相关装置
CN114942653B (zh) 无人集群飞行策略的确定方法、装置和电子设备
CN109978286A (zh) 一种基于改进蚁群算法的多航空器绕飞雷暴航路规划方法
CN113870588B (zh) 一种基于深度q网络的交通灯控制方法、终端及存储介质
Wubben et al. FFP: A Force Field Protocol for the tactical management of UAV conflicts
WO2017070856A1 (zh) 一种无人机的线缆避障方法和系统及无人机
CN113625733A (zh) 一种基于ddpg多目标三维无人机路径规划方法
CN112764428A (zh) 一种航天器集群重构方法和系统
CN104606886A (zh) 一种分布式无碰撞移动规划的方法
CN111506104A (zh) 一种规划无人机位置的方法及装置
CN112867023B (zh) 一种通过动态调度无人终端最小化感知数据获取时延方法
CN114201292B (zh) 一种道路网络临近检测方法及装置
CN104066116A (zh) 水下传感器网络的媒体介质访问控制协议方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921270

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921270

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/09/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16921270

Country of ref document: EP

Kind code of ref document: A1