WO2017070856A1 - 一种无人机的线缆避障方法和系统及无人机 - Google Patents

一种无人机的线缆避障方法和系统及无人机 Download PDF

Info

Publication number
WO2017070856A1
WO2017070856A1 PCT/CN2015/093010 CN2015093010W WO2017070856A1 WO 2017070856 A1 WO2017070856 A1 WO 2017070856A1 CN 2015093010 W CN2015093010 W CN 2015093010W WO 2017070856 A1 WO2017070856 A1 WO 2017070856A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
information
support
drone
cable
Prior art date
Application number
PCT/CN2015/093010
Other languages
English (en)
French (fr)
Inventor
陶冶
王庶
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201580058287.6A priority Critical patent/CN107077143B/zh
Priority to PCT/CN2015/093010 priority patent/WO2017070856A1/zh
Publication of WO2017070856A1 publication Critical patent/WO2017070856A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones

Definitions

  • the invention relates to the technical field of drones, in particular to a cable obstacle avoiding method and system for a drone and a drone.
  • Transmission lines are widely distributed in outdoor low-altitudes. Due to their undetectable characteristics, they are a great threat to UAVs that are widely used in outdoor scenes such as aerial photography, surveying, and plant protection. For a long time, the UAV's obstacle avoidance for transmission lines relies mostly on the operator's experience. It not only has a high failure rate but is only effective when operating within the line of sight.
  • the existing UAV technology capable of automatically avoiding obstacles on transmission lines mainly uses the vision system to perform pattern recognition on the cables of the transmission lines, and then feeds back to the flight control system of the drones to adjust the flight lines for avoidance.
  • Embodiments of the present invention provide a cable avoidance method and system for a drone, and a drone to improve the recognition of the cable by the drone and improve the obstacle avoidance capability of the drone to the cable.
  • a first aspect of the present invention provides a cable obstacle avoidance method for a drone, wherein the cable is supported in the air by a support, the method comprising: recognizing a support in front of the drone during flight, and Identifying the support as a node; acquiring node information of each node; constructing a virtual fence between adjacent nodes according to node information of the node; adjusting a flight line according to the virtual fence, The cable is shielded from obstacles.
  • a second aspect of the present invention provides a cable obstacle avoidance system for a drone, comprising: an identification module, configured to identify a front support during flight, and use the identified support as a node; a node of the node; a processing module, configured to construct a virtual fence between the adjacent nodes according to the node information of the node; and a flight control module, configured to adjust the flight line according to the virtual fence, to The cable is shielded from obstacles, and the cable is supported in the air by the support.
  • a third aspect of the present invention provides a system for an obstacle avoidance of a drone cable, the cable being supported in the air by a support, the system comprising: one or more processors, each working independently or together The processor is configured to: identify a support in front, and use the identified support as a node; acquire node information of each node; and construct between adjacent nodes according to node information of the node a virtual fence; adjusting the flight line according to the virtual fence to perform obstacle avoidance on the cable.
  • a fourth aspect of the present invention provides a drone, comprising: a cable obstacle avoidance system of a drone according to the third aspect of the present invention; a sensor communicatively coupled to the processor; wherein the sensor is used for Information of the front support is obtained, and information of the support is transmitted to the processor, and the processor identifies the support based on information of the support.
  • a fifth aspect of the invention provides a storage medium storing one or more programs, the instructions comprising instructions, when included in an aircraft platform, a power plant, an electrical system, one or more processors When the drone is executed, the drone is caused to perform the method as described in the first aspect of the invention.
  • the support for the cable is identified, and the support is used as a node, the virtual fence is constructed based on the node information of the node, and the flight avoidance technology according to the virtual fence is adopted.
  • the program has achieved the following technical effects:
  • the technical solution of the present invention can identify the cable in front at a greater distance and more accurately;
  • a virtual fence is constructed between adjacent nodes, and the flight path is adjusted according to the virtual fence, so that the flight obstacle avoidance capability is higher, and collision or entanglement with the cable can be effectively avoided, thereby further improving safety. It improves the ability of the drone to fly autonomously outdoors.
  • a sixth aspect of the present invention provides a method for avoiding obstacles of a drone, the method comprising: acquiring node information of a plurality of nodes, each of the nodes being established according to an obstacle avoidance; and calculating an obstacle avoidance according to node information of the node Route, wherein the obstacle avoidance route crosses or bypasses a virtual relationship established between adjacent nodes Wall.
  • a seventh aspect of the present invention provides an obstacle avoidance system for a drone, the system comprising: one or more processors, each working independently or in cooperation, the processor being configured to: acquire node information of each node, each The node is set up according to the obstacle avoidance; the obstacle avoidance route is calculated according to the node information of the node, wherein the obstacle avoidance route crosses or bypasses the virtual fence established between the adjacent nodes.
  • An eighth aspect of the present invention provides a drone, comprising: an obstacle avoidance system of a drone according to the seventh aspect of the present invention; a sensor, communicatively coupled to the processor; wherein the sensor is used to acquire Information of the obstacle and transmitting the information of the obstacle avoidance to the processor, the processor setting up the node according to the information of the obstacle avoidance.
  • a ninth aspect of the present invention provides a storage medium storing one or more programs, the one or more programs including instructions that, when executed by a drone including one or more processors, cause the The drone performs the method as described in the sixth aspect of the invention.
  • the node information of the node established according to the obstacle avoidance is used, and the obstacle avoidance route is calculated according to the node information of the node, wherein the obstacle avoidance route is crossed or bypassed.
  • the technical solution of the virtual fence between the adjacent nodes achieves the following technical effects:
  • a virtual fence is constructed between adjacent nodes, and the obstacle avoidance route is calculated according to the virtual fence, so that the obstacle avoidance capability is higher, and the collision or entanglement with the obstacles such as cables can be effectively avoided, and the obstacle is further improved.
  • Safety has improved the ability of drones to fly autonomously outdoors.
  • a tenth aspect of the present invention provides a cable obstacle avoiding method for a drone, the method comprising: acquiring position information of a front support, the support is for supporting a cable in the air; according to the support The location information calculates an obstacle avoidance route, wherein the obstacle avoidance route passes over or bypasses a cable supported between adjacent supports.
  • An eleventh aspect of the present invention provides an obstacle avoidance system for a drone, the system comprising: one or more processors, each working independently or in cooperation, the processor being configured to: acquire position information of a support in front, The support is for supporting the cable in the air; the obstacle avoidance route is calculated according to the position information of the support, wherein the obstacle avoidance route crosses or bypasses a line established between the adjacent supports cable.
  • a twelfth aspect of the present invention provides a drone, the UAV comprising: an obstacle avoidance system of the unmanned aerial vehicle according to the eleventh aspect of the present invention; a sensor, being communicatively coupled to the processor; The sensor is configured to acquire feature information of the support and transmit characteristic information of the support to the processor; the processor calculates position information of the support according to the feature information.
  • a thirteenth aspect of the invention provides a storage medium storing one or more programs, the one or more programs including instructions that, when executed by a drone including one or more processors, The drone performs the method as described in the tenth aspect of the invention.
  • the support for supporting the cable is identified, and the obstacle avoidance route is calculated according to the position information of the support, wherein the obstacle avoidance route crosses or bypasses the support.
  • the technical solution of the present invention can identify the cable in front at a greater distance and more accurately; thus, the flight obstacle avoidance capability is higher. It can effectively avoid the collision or entanglement with the cable, further improve the safety and improve the ability of the drone to fly autonomously outdoors.
  • FIG. 1 is a flowchart of a method for avoiding obstacles of a power transmission line UAV according to an embodiment of the present invention
  • Figure 2-1 is a schematic view of a power transmission tower identifying a rod-like structure
  • FIG. 2-2 is a schematic view of a power transmission tower identifying a tower structure
  • Figure 2-3 is a schematic diagram for determining the orientation of the power transmission tower, that is, the cable direction;
  • Figure 2-4 is a schematic plan view of the virtual fence
  • Figure 2-5 is a perspective view of a virtual fence
  • FIG. 3 is a schematic structural diagram of a cable obstacle avoidance system of a drone according to an embodiment of the present invention
  • FIG. 4 is a schematic structural view of a cable obstacle avoidance system of another unmanned aerial vehicle according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural view of an unmanned aerial vehicle according to an embodiment of the present invention.
  • FIG. 6 is a flow chart of a method for avoiding obstacles of a drone according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural view of an obstacle avoidance system of a drone according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an obstacle avoidance system of another UAV according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural view of an unmanned aerial vehicle according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of a method for avoiding obstacles of a drone according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural view of an obstacle avoidance system of a drone according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of an obstacle avoidance system of another unmanned aerial vehicle according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural view of an unmanned aerial vehicle according to an embodiment of the present invention.
  • an embodiment of the present invention provides a cable obstacle avoidance method for a drone.
  • the method is used for a drone to carry out flight avoidance of a cable, and the cable is supported in the air by a support.
  • the cable may be, for example, a power transmission cable or a communication cable.
  • the support may be any possible structure, such as a rod-like structure, or a tower-like structure.
  • the transmission cable as an example, the corresponding support is a transmission tower.
  • the corresponding support is a communication tower.
  • the method of the embodiment of the present invention may include:
  • the drone identifies the support in front and uses the identified support as a node; and acquires node information of each node.
  • the drone recognizes the support of the front carrying cable during the flight.
  • the size of the support includes The height and width are much larger than the diameter of the cable, so the recognition is higher and can be identified more accurately and at greater distances.
  • the support can be identified in a variety of ways.
  • image information of the support may be acquired; the support is identified based on image information of the support.
  • the drone can use the vision system to identify the transmission pole tower in the front transmission line.
  • the power transmission tower includes a rod structure and a tower structure. wherein, as shown in FIG. 2-1, the line segment detection method can be used to identify the transmission tower of the rod structure, as shown in FIG. 2-2, and a learning algorithm can be adopted. Identifying the transmission tower of the tower structure, the learning algorithm learns the characteristics of the transmission tower by learning the pictures of the large number of transmission towers.
  • temperature information of the support may be acquired; and the support is identified according to temperature information of the support.
  • the unmanned aerial vehicle can identify the transmission pole tower in the front transmission line by using an infrared induction camera. The principle of this method is that a certain amount of heat is generated in the transmission line due to the presence of current, so the temperature at the transmission tower is high, so it can be identified by an infrared sensor.
  • the support may be identified in other manners, and the specific identification manner is not limited herein.
  • the drone After identifying the support, the drone further takes the identified support as a node; acquires node information of each of the nodes.
  • the node information includes at least one of the following: a size of the node, a location of the node, and an orientation of the node.
  • the visual system identification comprises: identifying the beam; and determining, according to the identified beam, a direction perpendicular to the beam as an orientation of the node.
  • the transmission pole tower is usually provided with a beam
  • the beam is generally provided with an insulator for fixing the cable
  • the cable direction and the beam direction are usually It is vertical. Therefore, in this paper, the drone can use the vision system to identify the beam on the power transmission tower, determine the direction of the beam, and determine that the direction perpendicular to the beam is the cable direction.
  • the cable direction is the orientation of the support.
  • the electric field strength and direction near the node can be obtained, according to the The electric field strength and direction near the node determines the orientation of the node.
  • the unmanned aerial vehicle can use the electric field sensor to sense the electric field strength and direction of the transmission line near the support, and judge the cable orientation according to the electric field strength and direction of the transmission line.
  • the electric field generated by the current in the cable has a certain relationship between the intensity distribution and the direction of the current. Therefore, the direction of the current, that is, the cable direction, can be determined according to the electric field strength and direction of the transmission line.
  • the cable direction is the orientation of the support.
  • orientation of the support may be identified in other manners, and the specific identification manner is not limited herein.
  • the drone further acquires information such as the size and position of the node, that is, the support.
  • the method for obtaining the size and position may include: changing image pixels of the support identified by the drone at different flight positions, and combining the positioning system on the drone (eg, GPS, full name in English: Global Positioning System data for calculating the size and position of the node or the support, the size of the node including the height and width of the support, and the position of the node including longitude and latitude.
  • the drone can recognize the support in front according to periodicity or timing. Since the drone is in a flight state and the position is constantly changing, the support can be identified at different flight positions to take the visual system identification as an example.
  • the image of the support can be identified at different flight locations; the size of the support, including the height and width, can be determined based on the change in position of the drone and the support and the pixel variation of the identified image.
  • the drone can use GPS to determine its position at each moment, combined with the relative position of the drone and the support, can improve the position of the support, including longitude and latitude data.
  • the drone can record the node size and position and orientation information into the node database.
  • the node database can be deployed at the operator of the drone or other third party. In this way, with the improvement of the node information data in the node database, the drone can easily obtain the size, location, and orientation of the support object near the location directly from the node database.
  • the preceding support is identified, and the identified support is used as a node; and the step of acquiring node information of each of the nodes may also be implemented by interacting with a node database.
  • a mathematical model can be constructed in its processing module, such as a processor. So that the flight control system (abbreviation: flight control system) uses the mathematical model to adjust the flight line for obstacle avoidance.
  • flight control system abbreviation: flight control system
  • the support is used as a node, and the virtual fence is constructed according to a preset rule between the nodes.
  • the height of the node may be the height of the virtual fence
  • the orientation of the node is the virtual
  • the wall is oriented to construct a virtual fence between adjacent nodes, the height of the virtual fence being the height of the support, and the direction is consistent with the direction of the cable.
  • This virtual wall is essentially a mathematical abstraction of cable obstructions.
  • the virtual fence is constructed as shown in Figure 2-4 and Figure 2-5.
  • Figure 2-4 shows a schematic view of the virtual fence.
  • Figure 2-5 shows a schematic view of the virtual fence. .
  • the flight control system of the drone can adjust the flight line according to the constructed virtual fence, and the adjusted flight line should avoid the virtual fence. Then the drone moves according to the adjusted flight line, and the cable flight obstacle avoidance is realized. .
  • the support for the cable is identified, and the support is used as a node, the virtual fence is constructed based on the node information of the node, and the technical scheme for flight obstacle avoidance according to the virtual fence is adopted.
  • the following technical effects have been achieved:
  • the technical solution of the present invention can identify the cable in front at a greater distance and more accurately;
  • a virtual fence is constructed between adjacent nodes, and the flight line is adjusted according to the virtual fence, so that the effect of flight obstacle avoidance is better, and collision or entanglement with the cable can be effectively avoided, thereby further improving safety.
  • Sexuality improves the ability of the drone to fly autonomously outdoors.
  • an embodiment of the present invention provides a cable obstacle avoidance system 300 for a drone, which may include:
  • An identification module 301 configured to identify a front support during flight, and to identify the The support is a node; obtaining node information of each of the nodes;
  • the processing module 302 is configured to construct a virtual fence between adjacent nodes according to the node information of the node;
  • the flight control module 303 is configured to adjust a flight line according to the virtual fence to avoid obstacles on the cable, and the cable is supported in the air by the support.
  • the identification module may correspond to a visual system or an electric field sensor of the drone
  • the processing module may correspond to a processor of the drone
  • the flight control module may correspond to a flight control system of the drone.
  • the identification module 301 can include:
  • a first identifying unit configured to identify the support according to image information of the support.
  • the identification module 301 can include:
  • a second identifying unit configured to identify the support according to temperature information of the support.
  • the node information includes at least one of: a size of the node, a location of the node, an orientation of the node.
  • the cable is a power transmission cable
  • the support is provided with a beam for carrying the power cable.
  • the identification module 301 may include:
  • a third identifying unit configured to identify the beam; and determining, according to the identified beam, a direction perpendicular to the beam as an orientation of the node.
  • the cable is a power transmission cable
  • the support is provided with a beam for carrying the power cable.
  • the identification module 301 may include:
  • a fourth identifying unit configured to acquire an electric field strength and a direction in the vicinity of the node, and determine an orientation of the node according to an electric field strength and a direction in the vicinity of the node.
  • the identification module 301 can include:
  • a fifth identifying unit configured to calculate an image pixel change of the support according to the UAV at different flight positions, and calculate a size and a location of the node according to positioning system data on the UAV
  • the location of the node, the size of the node including the height and width of the support, and the location of the node includes longitude and latitude.
  • the processing module is specifically configured to use a height of the node as a height of the virtual fence, and a direction of the node as a direction of the virtual fence, in an adjacent Construct a virtual fence between the nodes.
  • the cable avoidance system 300 of the drone may further include:
  • the recording module 304 is configured to record node information of the node into a node database.
  • a cable obstacle avoidance system for a drone which adopts a transmission tower for identifying a transmission line, and constructs a virtual fence based on the transmission tower and cable direction. According to the technical scheme of flight obstacle avoidance based on virtual fence, the following technical effects have been achieved:
  • the transmission tower Compared with the cable, the transmission tower has a larger size and a higher degree of recognition. Therefore, the technical solution of the present invention can identify the transmission line in front at a greater distance and more accurately;
  • a virtual fence is constructed between adjacent nodes, and the flight path is adjusted according to the virtual fence, so that the effect of flight obstacle avoidance is better, and collision or entanglement with the transmission line can be effectively avoided, thereby further improving safety.
  • Sexuality improves the ability of the drone to fly autonomously outdoors.
  • an embodiment of the present invention further provides a system 400 for an obstacle avoidance of a drone cable.
  • the cable is supported in the air by a support.
  • the system 400 includes: one or more processors 401.
  • the processor 401 is configured to:
  • a memory 402 and a communication interface 403 may also be included, both of which are connected and communicated with the processor 401 through a bus.
  • the processor is further configured to acquire image information of the support; and identify the support according to image information of the support.
  • the processor is further configured to acquire temperature information of the support; and identify the support according to temperature information of the support.
  • the node information includes at least one of a size of the node, a location of the node, and an orientation of the node.
  • the cable is a power transmission cable
  • the support is provided with a beam for carrying the power transmission cable
  • the processor is further configured to: identify the beam; The beam is determined such that the direction perpendicular to the beam is the orientation of the node.
  • the cable is a power transmission cable
  • the support is provided with a beam for carrying the power transmission cable
  • the processor is further configured to: acquire an electric field strength near the node and Direction, determining the orientation of the node based on the electric field strength and direction near the node.
  • the processor is further configured to: according to image pixel changes of the support identified by the drone at different flight positions, and combined with positioning system data on the drone, The size of the node and the location of the node are calculated, the size of the node including the height and width of the support, and the location of the node includes longitude and latitude. specific,
  • the processor is further configured to: acquire an image of the support when the position of the drone changes; calculate position change information of the drone and the support Pixel change information of the image; calculating size information of the node according to the position change information of the drone and the pixel change information of the image of the support.
  • the processor is further configured to: acquire location information of the UAV and an image of the support when the location of the UAV changes; calculate the UAV Position change information and pixel change information of an image of the support; calculating a relative position of the node and the drone according to position change information of the drone and pixel change information of an image of the support Information; calculating location information of the node according to current location information of the drone and relative location information of the node and the drone.
  • the size of the node includes a height
  • the processor is further configured to: use a height of the node as a height of the virtual fence, and a direction of the node as a direction of the virtual fence Constructing a virtual fence between adjacent nodes.
  • the processor is further configured to: after acquiring the node information of each node, further comprising: recording node information of the node into a node database.
  • the transmission tower Compared with the cable, the transmission tower has a larger size and a higher degree of recognition. Therefore, the technical solution of the present invention can identify the transmission line in front at a greater distance and more accurately;
  • a virtual fence is constructed between adjacent nodes, and the flight path is adjusted according to the virtual fence, so that the effect of flight obstacle avoidance is better, and collision or entanglement with the transmission line can be effectively avoided, thereby further improving safety.
  • Sexuality improves the ability of the drone to fly autonomously outdoors.
  • an embodiment of the present invention further provides a drone 500.
  • the drone 500 can include:
  • the cable obstacle avoidance system 400 of the drone as described in the embodiment of FIG. 4 above;
  • a sensor 501 communicatively coupled to the processor 401;
  • the senor is configured to acquire information of the front support and transmit the information of the support to the processor, and the processor identifies the support according to the information of the support.
  • Embodiments of the present invention also provide a storage medium storing one or more programs, the one or more programs including instructions that, when executed by a drone including one or more processors, cause the The drone performs the method in the method embodiment shown in FIG.
  • a cable avoidance method and system for a drone and a drone are disclosed, and the support of the cable is identified, and The support is a node, the virtual fence is constructed based on the node information of the node, and the technical solution for flight obstacle avoidance according to the virtual fence has achieved the following technical effects:
  • the technical solution of the present invention can identify the cable in front at a greater distance and more accurately;
  • a virtual fence is constructed between adjacent nodes, and the flight path is adjusted according to the virtual fence, so that the flight obstacle avoidance capability is higher, and collision or entanglement with the cable can be effectively avoided, thereby further improving safety. It improves the ability of the drone to fly autonomously outdoors.
  • an embodiment of the present invention provides a method for avoiding obstacles of a drone, which may include:
  • the method before the acquiring the node information of the multiple nodes, the method further includes: acquiring image information or temperature information of the obstacle in front; and identifying the obstacle according to image information or temperature information of the obstacle ; establishing a node according to the obstacle.
  • the node information includes at least one of: a size of the node, a location of the node, an orientation of the node, and a calculation of an obstacle avoidance route according to node information of the node.
  • the method further includes: constructing a virtual fence between adjacent nodes by using a height of the node as a height of the virtual fence, and a direction of the node is a direction of the virtual fence.
  • the obstacle avoidance may be the power transmission tower, the communication tower, etc. in the first embodiment, or may be other objects.
  • the obstacle avoidance may be a high-rise building, and the node is automatically set by the system around the high-rise building. Multiple reference points of the building can also be set for the user to set multiple reference points around the high-rise building.
  • an embodiment of the present invention provides an obstacle avoidance system 700 for a drone, which may include:
  • An obtaining module 701 configured to acquire node information of multiple nodes, where each node is set according to an obstacle avoidance
  • the calculating module 702 is configured to calculate an obstacle avoidance route according to the node information of the node, wherein the obstacle avoidance route crosses or bypasses a virtual fence established between the adjacent nodes.
  • system further includes:
  • the identification module 703 is configured to acquire image information or temperature information of an obstacle in front; and identify the obstacle according to image information or temperature information of the obstacle; and establish a node according to the obstacle.
  • the node information includes at least one of the following: a size of the node, a location of the node, and an orientation of the node; and the system further includes:
  • a building module 704 configured to use the height of the node as the height of the virtual fence, in the section
  • the orientation of the points is the direction of the virtual fence, and a virtual fence is constructed between adjacent nodes.
  • an embodiment of the present invention provides an obstacle avoidance system 800 for a drone, which may include:
  • One or more processors 801 are respectively operated independently or together.
  • the processor 801 is configured to: acquire node information of multiple nodes, each of the nodes is set according to an obstacle avoidance; and calculate and avoid according to node information of the node.
  • a memory 802 and a communication interface 803 are also included, both of which are connected and communicated with the processor 801 through a bus.
  • the processor 801 is further configured to: acquire image information or temperature information of an obstacle in front; and identify the obstacle according to image information or temperature information of the obstacle; Obstacles set up nodes.
  • the node information includes at least one of the following: a size of the node, a location of the node, and an orientation of the node; and the processor 801 is further configured to: The height is the height of the virtual fence, and the orientation of the node is the direction of the virtual fence, and a virtual fence is constructed between the adjacent nodes.
  • an embodiment of the present invention further provides a drone 900, which may include:
  • a sensor 901 communicatively coupled to the processor
  • the sensor 901 is configured to acquire information of the obstacle avoidance and transmit the information of the obstacle avoidance to the processor, and the processor establishes the node according to the information of the obstacle avoidance.
  • the unmanned aerial vehicle of the embodiment of the present invention can be specifically implemented according to the method or device in the foregoing embodiments of FIG. 1 and FIG. 6 to FIG. 8.
  • the specific implementation process reference may be made to the related description in the foregoing method embodiment and the device embodiment. , will not repeat them here.
  • Embodiments of the present invention also provide a storage medium storing one or more programs, the one or more programs including instructions that, when executed by a drone including one or more processors, cause the The drone performs the method in the method embodiment shown in FIG. 6.
  • a cable obstacle avoidance method and system for a drone and a drone are disclosed, and node information of a node established according to the obstacle avoidance is obtained, according to the node.
  • the node information calculates an obstacle avoidance route, wherein the obstacle avoidance route bypasses or bypasses the technical solution of the virtual fence established between the adjacent nodes, and the following technical effects are obtained:
  • a virtual fence is constructed between adjacent nodes, and the obstacle avoidance route is calculated according to the virtual fence, so that the obstacle avoidance capability is higher, and the collision or entanglement with the obstacles such as cables can be effectively avoided, and the obstacle is further improved.
  • Safety has improved the ability of drones to fly autonomously outdoors.
  • an embodiment of the present invention provides a method for avoiding obstacles of a drone, which may include:
  • the method before the acquiring the position information of the front support, the method further includes: acquiring image information or temperature information of the obstacle in front; and identifying the obstacle according to image information or temperature information of the obstacle Things.
  • the method before calculating the obstacle avoidance route according to the position information of the support, the method further includes: acquiring size information and orientation information of the support.
  • the step of calculating the obstacle avoidance route according to the position information of the support is not limited to include: constructing a virtual fence between the adjacent nodes, and may also adopt other manners, for example, according to the support.
  • the step of calculating the obstacle avoidance route by the location information may further include: forming a warning line between the adjacent nodes, wherein an upper area above the first preset height of the warning line is an upper security area, and a second lower than the warning line The area of the preset height is the lower security area, and the drone can pass the cable from the upper security zone or through the cable from the lower security zone.
  • an embodiment of the present invention provides an obstacle avoidance system 1100 for a drone, which may include:
  • the acquiring module 1101 is configured to acquire position information of a front support, and the support is used to support the cable in the air;
  • the calculation module 1102 is configured to calculate an obstacle avoidance route according to the position information of the support, wherein the obstacle avoidance route passes over or bypasses a cable supported between the adjacent supports.
  • the method further includes:
  • the identification module 1103 is configured to acquire image information or temperature information of an obstacle in front; and identify the obstacle according to image information or temperature information of the obstacle.
  • the acquiring module 1102 is further configured to acquire size information and orientation information of the support.
  • an embodiment of the present invention provides an obstacle avoidance system 1200 for a drone, which may include:
  • One or more processors 1201 are respectively operated independently or together, and the processor 1201 is configured to: acquire position information of a front support, the support is used to support the cable in the air; according to the support The location information calculates an obstacle avoidance route, wherein the obstacle avoidance route passes over or bypasses a cable established between adjacent supports.
  • the memory 1202 and the communication interface 1203 may also be included, and both are connected and communicated with the processor 1201 through a bus.
  • the processor 1201 is further configured to: acquire image information or temperature information of an obstacle in front; and identify the obstacle according to image information or temperature information of the obstacle.
  • the processor 1201 is further configured to: acquire size information and orientation information of the support.
  • an embodiment of the present invention further provides a drone 1300, which may include:
  • the sensor 1301 is communicatively coupled to the processor 1201;
  • the sensor is configured to acquire feature information of the support and transmit characteristic information of the support to the processor; the processor calculates position information of the support according to the feature information.
  • Embodiments of the present invention also provide a storage medium storing one or more programs, the one or more programs including instructions that, when executed by a drone including one or more processors, cause the The drone performs the method in the method embodiment shown in FIG.
  • a cable obstacle avoidance method and system for a drone and a drone are disclosed, and the support for supporting the cable is identified, according to the support
  • the position information of the object calculates an obstacle avoidance route, wherein the obstacle avoidance route passes over or bypasses the technical solution of the cable supported between the adjacent supports, and the following technical effects are obtained:
  • the technical solution of the present invention can identify the cable in front at a greater distance and more accurately; thus, the flight obstacle avoidance capability is higher. It can effectively avoid the collision or entanglement with the cable, further improve the safety and improve the ability of the drone to fly autonomously outdoors.
  • the program may be stored in a computer readable storage medium, and the storage medium may include: ROM, RAM, disk or CD.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种无人机的线缆避障方法和系统及无人机,以提高无人机对线缆的避障能力。在本发明一些可行的实施方式中,方法包括:无人机在飞行过程中,识别前方的支撑物,并以识别的所述支撑物为节点;获取每个所述节点的节点信息;根据所述节点的节点信息,在相邻的所述节点之间构建虚拟围墙;根据所述虚拟围墙调整飞行线路,以对所述线缆进行避障。

Description

一种无人机的线缆避障方法和系统及无人机 技术领域
本发明涉及无人机技术领域,具体涉及一种无人机的线缆避障方法和系统及无人机。
背景技术
输电线路广泛分布于户外低空,由于其不易被察觉的特征,对广泛应用于航拍、测绘、植保等户外场景的无人机造成了极大的威胁。长期以来无人机对输电线路的避障大多依赖于操作员的经验,不但失败率很高而且只在视距内操作时有效。
现有能够对输电线路实现自动避障的无人机技术,主要是通过视觉系统对输电线路的线缆本身做图形识别,然后反馈给无人机的飞行控制系统,调整飞行线路进行躲避。
实践发现,由于线缆识别度低,无人机视觉系统只有在非常靠近线缆时,才能识别出线缆,而此时无人机往往已躲闪不及,因此,该识别线缆进行避障的方案避障效果差,实用性较低。
发明内容
本发明实施例提供一种无人机的线缆避障方法和系统及无人机,以提高无人机对线缆的识别度,提高无人机对线缆的避障能力。
本发明第一方面提供一种无人机的线缆避障方法,所述线缆采用支撑物支撑在空中,所述方法包括:无人机在飞行过程中,识别前方的支撑物,并以识别的所述支撑物为节点;获取每个所述节点的节点信息;根据所述节点的节点信息,在相邻的所述节点之间构建虚拟围墙;根据所述虚拟围墙调整飞行线路,以对所述线缆进行避障。
本发明第二方面提供一种无人机的线缆避障系统,包括:识别模块,用于在飞行过程中,识别前方的支撑物,并以识别的所述支撑物为节点;获取每个 所述节点的节点信息;处理模块,用于根据所述节点的节点信息,在相邻的所述节点之间构建虚拟围墙;飞控模块,用于根据所述虚拟围墙调整飞行线路,以对线缆进行避障,所述线缆采用所述支撑物支撑在空中。
本发明第三方面提供一种用于无人机线缆避障的系统,所述线缆采用支撑物支撑在空中,所述系统包括:一个或多个处理器,分别独立或共同工作,所述处理器用于:识别前方的支撑物,并以识别的所述支撑物为节点;获取每个所述节点的节点信息;根据所述节点的节点信息,在相邻的所述节点之间构建虚拟围墙;根据所述虚拟围墙调整飞行线路,以对所述线缆进行避障。
本发明第四方面提供一种无人机,包括:如本发明第三方面所述的无人机的线缆避障系统;传感器,与所述处理器通讯连接;其中,所述传感器用于获取前方的支撑物的信息,并将所述支撑物的信息传送给所述处理器,所述处理器根据所述支撑物的信息识别所述支撑物。
本发明第五方面提供一种存储一个或多个程序的存储介质,所述一个或多个程序包括指令,所述指令当被包括飞行平台,动力装置,电气系统,一个或多个处理器的无人机执行时,使所述无人机执行如本发明第一方面所述的方法。
由上可见,在本发明的一些可行的实施方式中,采用对线缆的支撑物进行识别,并以支撑物为节点,基于节点的节点信息构建虚拟围墙,根据虚拟围墙进行飞行避障的技术方案,取得了以下技术效果:
相对于线缆,支撑物的尺寸更大,识别度更高,因此,本发明技术方案能够在更远的距离、更精确的识别出前方的线缆;
另外,通过以支撑物为节点,在相邻节点之间构建虚拟围墙,根据虚拟围墙调整飞行线路,使得飞行避障能力更高,可有效避免与线缆的碰撞或缠绕,进一步提高了安全性,提高了无人机户外自主飞行的能力。
本发明第六方面提供一种无人机的避障方法,所述方法包括:获取多个节点的节点信息,每个所述节点根据避障物设立;根据所述节点的节点信息计算避障路线,其中,所述避障路线越过或绕过建立在相邻的所述节点之间的虚拟 围墙。
本发明第七方面提供一种无人机的避障系统,所述系统包括:一个或多个处理器,分别独立或共同工作,所述处理器用于:获取多个节点的节点信息,每个所述节点根据避障物设立;根据所述节点的节点信息计算避障路线,其中,所述避障路线越过或绕过建立在相邻的所述节点之间的虚拟围墙。
本发明第八方面提供一种无人机,包括:如本发明第七方面所述的无人机的避障系统;传感器,与所述处理器通讯连接;其中,所述传感器用于获取避障物的信息,并将所述避障物的信息传送给所述处理器,所述处理器根据所述避障物的信息设立所述节点。
本发明第九方面提供一种存储一个或多个程序的存储介质,所述一个或多个程序包括指令,所述指令当被包括一个或多个处理器的无人机执行时,使所述无人机执行如本发明第六方面所述的方法。
由上可见,在本发明的一些可行的实施方式中,采用获取根据避障物设立的节点的节点信息,根据节点的节点信息计算避障路线,其中,所述避障路线越过或绕过建立在相邻的所述节点之间的虚拟围墙的技术方案,取得了以下技术效果:
通过以避障物为节点,在相邻节点之间构建虚拟围墙,根据虚拟围墙计算避障路线,使得避障能力更高,可有效避免与线缆等避障物的碰撞或缠绕,进一步提高了安全性,提高了无人机户外自主飞行的能力。
本发明第十方面提供一种无人机的线缆避障方法,所述方法包括:获取前方的支撑物的位置信息,所述支撑物用于将线缆支撑在空中;根据所述支撑物的位置信息计算避障路线,其中,所述避障路线越过或绕过支撑在相邻的所述支撑物之间的线缆。
本发明第十一方面提供一种无人机的避障系统,所述系统包括:一个或多个处理器,分别独立或共同工作,所述处理器用于:获取前方的支撑物的位置信息,所述支撑物用于将线缆支撑在空中;根据所述支撑物的位置信息计算避障路线,其中,所述避障路线越过或绕过建立在相邻的所述支撑物之间的线缆。
本发明第十二方面提供一种无人机,所述无人机包括:如本发明第十一方面所述的无人机的避障系统;传感器,与所述处理器通讯连接;其中,所述传感器用于获取支撑物的特征信息,并将所述支撑物的特征信息传送给所述处理器;所述处理器根据所述特征信息计算所述支撑物的位置信息。
本发明第十三方面提供一种存储一个或多个程序的存储介质,所述一个或多个程序包括指令,所述指令当被包括一个或多个处理器的无人机执行时,使所述无人机执行如本发明第十方面所述的方法。
由上可见,在本发明的一些可行的实施方式中,采用对支撑线缆的支撑物进行识别,根据所述支撑物的位置信息计算避障路线,其中所述避障路线越过或绕过支撑在相邻的所述支撑物之间的线缆的技术方案,取得了以下技术效果:
相对于线缆,支撑物的尺寸更大,识别度更高,因此,本发明技术方案能够在更远的距离、更精确的识别出前方的线缆;从而,使得飞行避障能力更高,可有效避免与线缆的碰撞或缠绕,进一步提高了安全性,提高了无人机户外自主飞行的能力。
附图说明
为了更清楚地说明本发明实施例技术方案,下面将对实施例和现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本发明实施例提供的一种输电线路无人机避障方法的流程图;
图2-1是识别杆状结构的输电杆塔的示意图;
图2-2是识别塔状结构的输电杆塔的示意图;
图2-3是确定输电杆塔的朝向即线缆走向的示意图;
图2-4是虚拟围墙的俯视示意图;
图2-5是虚拟围墙的立体示意图
图3是本发明实施例一种无人机的线缆避障系统的结构示意图;
图4是本发明实施例另一种无人机的线缆避障系统的结构示意图;
图5是本发明实施例一种用于无人机的结构示意图;
图6是本发明实施例一种无人机的避障方法的流程图;
图7是本发明实施例一种无人机的避障系统的结构示意图;
图8是本发明实施例另一种无人机的避障系统的结构示意图;
图9是本发明实施例一种用于无人机的结构示意图;
图10是本发明实施例一种无人机的避障方法的流程图;
图11是本发明实施例一种无人机的避障系统的结构示意图;
图12是本发明实施例另一种无人机的避障系统的结构示意图;
图13是本发明实施例一种用于无人机的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参考图1,本发明实施例提供一种无人机的线缆避障方法。
该方法用于无人机对线缆进行飞行避障,所述线缆采用支撑物支撑在空中。本文中,所说的线缆例如可以是输电线缆或通信线缆等。其中,支撑物可以为任何可能的结构,例如,杆状结构,或塔状结构。以输电线缆为例,相应的支撑物为输电杆塔。以通信线缆为例,相应的支撑物为通信杆塔。
如图1所示,本发明实施例方法可包括:
101、无人机在飞行过程中,识别前方的支撑物,并以识别的所述支撑物为节点;获取每个所述节点的节点信息。
与现有技术中识别线缆不同的是,本发明实施例中,为了提高识别精度,无人机在飞行过程中,对前方承载线缆的支撑物进行识别。支撑物的尺寸包括 高度和宽度要远大于线缆的直径,因此,识别度更高,可以在更远的距离、更精确的予以识别。
可以采用多种方法对支撑物进行识别。
一种实施方式中,可以获取所述支撑物的图像信息;根据所述支撑物的图像信息,识别所述支撑物。具体的,以支撑物为输电杆塔为例,无人机可以利用视觉系统识别前方输电线路中的输电杆塔。通常,所述输电杆塔包括杆状结构和塔状结构,其中,如图2-1所示,可以采用线段检测方法识别杆状结构的输电杆塔,如图2-2所示,可以采用学习算法识别塔状结构的输电杆塔,该学习算法通过对大量输电杆塔的图片进行学习,提取输电杆塔的特征进行识别。
另一种实施方式中,可以获取所述支撑物的温度信息;根据所述支撑物的温度信息,识别所述支撑物。具体的,以支撑物为输电杆塔为例,无人机可以利用红外感应相机识别前方输电线路中的输电杆塔。该方式的原理在于,输电线路中由于电流的存在,会产生一定热量,因此输电杆塔处的温度较高,故而可以利用红外感应相机识别。
其它实施方式中,还可以采用其它方式对支撑物进行识别,本文中对于具体的识别方式不做限定。
无人机在识别出支撑物之后,进一步以识别的所述支撑物为节点;获取每个所述节点的节点信息。所述节点信息包括如下至少一种:所述节点的尺寸,所述节点的位置,所述节点的朝向。
其中,可以采用多种方法对节点的朝向走向进行识别。
一种实施方式中利用视觉系统识别,包括:识别所述横梁;根据识别的所述横梁,确定与所述横梁垂直的方向为所述节点的朝向。具体的,以支撑物为输电杆塔为例,如图2-3所示,输电杆塔上通常设置有横梁,横梁上一般设置有绝缘子,以用于固定线缆,而线缆走向与横梁方向通常是垂直的。因此,本文中,无人机可以利用视觉系统识别所述输电杆塔上的横梁,确定所述横梁的方向,判断与所述横梁垂直的方向为线缆走向。本文中,所述线缆走向即为支撑物的朝向。
另一种实施方式中,可以获取所述节点附近的电场强度和方向,根据所述 节点附近的电场强度和方向确定所述节点的朝向。具体的,以支撑物为输电杆塔为例,无人机可以利用电场传感器感知支撑物附近的输电线路的电场强度和方向,根据所述输电线路的电场强度和方向判断线缆走向。线缆中电流产生的电场,其强度分布和方向与电流的方向是有确定关系的,因此,可以根据所述输电线路的电场强度和方向判断电流的方向,即,线缆走向。本文中,所述线缆走向即为支撑物的朝向。
其它实施方式中,还可以采用其它方式对支撑物的朝向进行识别,本文中对于具体的识别方式不做限定。
无人机还进一步获取节点即支撑物的尺寸和位置等信息。获取尺寸和位置的方法可以包括:根据所述无人机在不同的飞行位置识别出的所述支撑物的图像像素变化,并结合所述无人机上的定位系统(例如GPS,英文全称:Global Positioning System)数据,计算所述节点或者说所述支撑物的尺寸和位置,所述节点的尺寸包括所述支撑物的高度和宽度,所述节点的位置包括经度和纬度。
具体的,无人机可以按照周期性或定时识别前方的支撑物,由于无人机处于飞行状态中,位置不断变化,因此,可以在不同的飞行位置识别支撑物,以利用视觉系统识别为例,可以在不同的飞行位置识别出所述支撑物的图像;根据无人机与支撑物的位置变化及识别出的图像的像素变化,可以确定支撑物的尺寸,包括高度和宽度等。另外,无人机可以利用GPS确定自身每个时刻的位置,结合无人机与支撑物的相对位置,可以进步确定支撑物的位置,包括经度和纬度数据等。
优选的,无人机可以将所述节点的尺寸和位置以及朝向等节点信息记录到节点数据库中。节点数据库可以部署在无人机的运营方或其它第三方处。这样,随着节点数据库中节点信息数据的完善,无人机就可以轻易的从节点数据库直接获取所在位置附近的支撑物的尺寸和位置以及朝向等节点信息。
因此,可选的,上文中的识别前方的支撑物,并以识别的所述支撑物为节点;获取每个所述节点的节点信息的步骤,也可以是通过与节点数据库交互来实现。
102、根据所述节点的节点信息,在相邻的所述节点之间构建虚拟围墙。
无人机在识别并确定支撑物的尺寸和位置以及朝向等节点信息之后,可以在其处理模块例如处理器中构建数学模型。以便飞行控制系统(简称:飞控系统)利用该数学模型调整飞行线路进行避障。
数学模型中,以支撑物为节点,在节点之间按照预设规则构建虚拟围墙,具体的:可以以所述节点的高度为所述虚拟围墙的高度,以所述节点的朝向为所述虚拟围墙的走向,在相邻的节点之间构建虚拟围墙,所述虚拟围墙的高度为所述支撑物的高度,走向与所述线缆走向一致。
该虚拟围墙实质上是对线缆障碍的数学抽象。一个实例中,所构建的虚拟围墙的如图2-4和图2-5所示,其中,图2-4所示是虚拟围墙的俯视示意图,图2-5所示是虚拟围墙的立体示意图。
103、根据所述虚拟围墙调整飞行线路,以对所述线缆进行避障。
无人机的飞控系统可以根据所构建的虚拟围墙调整飞行线路,调整后的飞行线路应对虚拟围墙进行躲避,则无人机按照调整后的飞行线路飞行,就实现了对线缆飞行避障。
可以理解,本发明实施例上述方案例如可以在无人机上具体实施。
由上可见,本发明一些可行的实施方式中,采用对线缆的支撑物进行识别,并以支撑物为节点,基于节点的节点信息构建虚拟围墙,根据虚拟围墙进行飞行避障的技术方案,取得了以下技术效果:
相对于线缆,支撑物的尺寸更大,识别度更高,因此,本发明技术方案能够在更远的距离、更精确的识别出前方的线缆;
另外,通过以支撑物为节点,在相邻节点之间构建虚拟围墙,根据虚拟围墙调整飞行线路,使得飞行避障的效果更好,可有效避免与线缆的碰撞或缠绕,进一步提高了安全性,提高了无人机户外自主飞行的能力。
为了更好的实施本发明实施例的上述方案,下面还提供用于配合实施上述方案的相关装置。
请参考图3,本发明实施例提供一种无人机的线缆避障系统300,可包括:
识别模块301,用于在飞行过程中,识别前方的支撑物,并以识别的所述 支撑物为节点;获取每个所述节点的节点信息;
处理模块302,用于根据所述节点的节点信息,在相邻的所述节点之间构建虚拟围墙;
飞控模块303,用于根据所述虚拟围墙调整飞行线路,以对线缆进行避障,所述线缆采用所述支撑物支撑在空中。
其中,识别模块可对应于无人机的视觉系统或电场传感器等,处理模块可对应于无人机的处理器,飞控模块可对应于无人机的飞控系统。
在本发明的一些实施例中,所述识别模块301可包括:
第一识别单元,用于根据所述支撑物的图像信息,识别所述支撑物。
在本发明的一些实施例中,所述识别模块301可包括:
第二识别单元,用于根据所述支撑物的温度信息,识别所述支撑物。
在本发明的一些实施例中,所述节点信息包括如下至少一种:所述节点的尺寸,所述节点的位置,所述节点的朝向。
在本发明的一些实施例中,所述线缆为输电线缆,所述支撑物上设有用于搭载所述输电线缆的横梁,所述识别模块301可包括:
第三识别单元,用于识别所述横梁;根据识别的所述横梁,确定与所述横梁垂直的方向为所述节点的朝向。
在本发明的一些实施例中,所述线缆为输电线缆,所述支撑物上设有用于搭载所述输电线缆的横梁,所述识别模块301可包括:
第四识别单元,用于获取所述节点附近的电场强度和方向,根据所述节点附近的电场强度和方向确定所述节点的朝向。
在本发明的一些实施例中,所述识别模块301可包括:
第五识别单元,用于根据所述无人机在不同的飞行位置识别出的所述支撑物的图像像素变化,并结合所述无人机上的定位系统数据,计算所述节点的尺寸和所述节点的位置,所述节点的尺寸包括所述支撑物的高度和宽度,所述节点的位置包括经度和纬度。
在本发明的一些实施例中,所述处理模块,具体用于以所述节点的高度为所述虚拟围墙的高度,以所述节点的朝向为所述虚拟围墙的走向,在相邻的所 述节点之间构建虚拟围墙。
在本发明的一些实施例中,所述无人机的线缆避障系统300还可包括:
记录模块304,用于将所述节点的节点信息记录到节点数据库中。
可以理解,本发明实施例的无人机的线缆避障系统的各个功能模块的功能可根据上述方法实施例中的方法具体实现,其具体实现过程可参照上述方法实施例中的相关描述,此处不再赘述。
由上可见,在本发明的一些可行的实施方式中,公开了一种无人机的线缆避障系统,采用对输电线路的输电杆塔进行识别,基于输电杆塔和线缆走向构建虚拟围墙,根据虚拟围墙进行飞行避障的技术方案,取得了以下技术效果:
相对于线缆,输电杆塔的尺寸更大,识别度更高,因此,本发明技术方案能够在更远的距离、更精确的识别出前方的输电线路;
另外,通过以输电杆塔为节点,在相邻节点之间构建虚拟围墙,根据虚拟围墙调整飞行线路,使得飞行避障的效果更好,可有效避免与输电线路的碰撞或缠绕,进一步提高了安全性,提高了无人机户外自主飞行的能力。
请参考图4,本发明实施例还提供一种用于无人机线缆避障的系统400,所述线缆采用支撑物支撑在空中,所述系统400包括:一个或多个处理器401,分别独立或共同工作,所述处理器401用于:
识别前方的支撑物,并以识别的所述支撑物为节点;获取每个所述节点的节点信息;根据所述节点的节点信息,在相邻的所述节点之间构建虚拟围墙;根据所述虚拟围墙调整飞行线路,以对所述线缆进行避障。
可选的,还可以包括存储器402和通信接口403,均通过总线与处理器401连接并通信。
本发明一些实施例中,所述处理器还用于获取所述支撑物的图像信息;根据所述支撑物的图像信息,识别所述支撑物。
本发明一些实施例中,所述处理器还用于获取所述支撑物的温度信息;根据所述支撑物的温度信息,识别所述支撑物。
本发明一些实施例中,所述节点信息包括如下至少一种:所述节点的尺寸,所述节点的位置,所述节点的朝向。
本发明一些实施例中,所述线缆为输电线缆,所述支撑物上设有用于搭载所述输电线缆的横梁,所述处理器还用于:识别所述横梁;根据识别的所述横梁,确定与所述横梁垂直的方向为所述节点的朝向。
本发明一些实施例中,所述线缆为输电线缆,所述支撑物上设有用于搭载所述输电线缆的横梁,所述处理器还用于:获取所述节点附近的电场强度和方向,根据所述节点附近的电场强度和方向确定所述节点的朝向。
本发明一些实施例中,所述处理器还用于:根据所述无人机在不同的飞行位置识别出的所述支撑物的图像像素变化,并结合所述无人机上的定位系统数据,计算所述节点的尺寸和所述节点的位置,所述节点的尺寸包括所述支撑物的高度和宽度,所述节点的位置包括经度和纬度。具体的,
本发明一些实施例中,所述处理器还用于:在所述无人机的位置变化时,获取所述支撑物的图像;计算所述无人机的位置变化信息和所述支撑物的图像的像素变化信息;根据所述无人机的位置变化信息和所述支撑物的图像的像素变化信息,计算所述节点的尺寸信息。
本发明一些实施例中,所述处理器还用于:在所述无人机的位置变化时,获取所述无人机的位置信息及所述支撑物的图像;计算所述无人机的位置变化信息和所述支撑物的图像的像素变化信息;根据所述无人机的位置变化信息和所述支撑物的图像的像素变化信息,计算所述节点与所述无人机的相对位置信息;根据所述无人机的当前位置信息、以及所述节点与所述无人机的相对位置信息,计算所述节点的位置信息。
本发明一些实施例中,所述节点的尺寸包括高度,所述处理器还用于:以所述节点的高度为所述虚拟围墙的高度,以所述节点的朝向为所述虚拟围墙的走向,在相邻的所述节点之间构建虚拟围墙。
本发明一些实施例中,所述处理器还用于:获取每个所述节点的节点信息之后还包括:将所述节点的节点信息记录到节点数据库中。
可以理解,本发明实施例的处理器的功能可根据上述如图1所示的方法实施例中的方法以及如图3所示的装置实施例中的装置具体实现,其具体实现过程可参照上述方法和装置实施例中的相关描述。
由上可见,在本发明的一些可行的实施方式中,公开了一种无人机的线缆避障系统,取得了以下技术效果:
相对于线缆,输电杆塔的尺寸更大,识别度更高,因此,本发明技术方案能够在更远的距离、更精确的识别出前方的输电线路;
另外,通过以输电杆塔为节点,在相邻节点之间构建虚拟围墙,根据虚拟围墙调整飞行线路,使得飞行避障的效果更好,可有效避免与输电线路的碰撞或缠绕,进一步提高了安全性,提高了无人机户外自主飞行的能力。
请参考图5,本发明实施例还提供一种无人机500。该无人机500可包括:
如上文图4实施例所述的无人机的线缆避障系统400;
传感器501,与所述处理器401通讯连接;
其中,所述传感器用于获取前方的支撑物的信息,并将所述支撑物的信息传送给所述处理器,所述处理器根据所述支撑物的信息识别所述支撑物。
可以理解,本发明实施例的无人机的功能可根据上述如图1实施例所示的方法实施例中的方法以及如图3所示的装置实施例中的装置具体实现,其具体实现过程可参照上述方法和装置实施例中的相关描述。
本发明实施例还提供一种存储一个或多个程序的存储介质,所述一个或多个程序包括指令,所述指令当被包括一个或多个处理器的无人机执行时,使所述无人机执行如图1所示的方法实施例中的方法。
综上,本发明图1至图5所示的几个实施例中公开了一种无人机的线缆避障方法和系统及无人机,采用对线缆的支撑物进行识别,并以支撑物为节点,基于节点的节点信息构建虚拟围墙,根据虚拟围墙进行飞行避障的技术方案,取得了以下技术效果:
相对于线缆,支撑物的尺寸更大,识别度更高,因此,本发明技术方案能够在更远的距离、更精确的识别出前方的线缆;
另外,通过以支撑物为节点,在相邻节点之间构建虚拟围墙,根据虚拟围墙调整飞行线路,使得飞行避障能力更高,可有效避免与线缆的碰撞或缠绕,进一步提高了安全性,提高了无人机户外自主飞行的能力。
请参考图6,本发明实施例提供一种无人机的避障方法,可包括:
601、获取多个节点的节点信息,每个所述节点根据避障物设立;
602、根据所述节点的节点信息计算避障路线,其中,所述避障路线越过或绕过建立在相邻的所述节点之间的虚拟围墙。
在本发明一些实施例中,所述获取多个节点的节点信息之前还包括:获取前方的障碍物的图像信息或温度信息;根据所述障碍物的图像信息或温度信息,识别所述障碍物;根据所述障碍物设立节点。
在本发明一些实施例中,所述节点信息包括如下至少一种:所述节点的尺寸,所述节点的位置,所述节点的朝向;所述根据所述节点的节点信息计算避障路线之前还包括:以所述节点的高度为所述虚拟围墙的高度,以所述节点的朝向为所述虚拟围墙的走向,在相邻的所述节点之间构建虚拟围墙。
需要说明的是,避障物可以为上述实施例一中的输电杆塔、通信杆塔等,也可以为其他物体,例如,避障物可以为高楼大厦,节点为系统自动设定的围绕所述高楼大厦的多个参考点,也可以为用户设定的围绕高楼大厦的多个参考点。
可以理解,本发明实施例的方法具体实现,其具体实现过程也可以参照上文图1方法实施例中的相关描述,此处不再赘述。
请参考图7,本发明实施例提供一种无人机的避障系统700,可包括:
获取模块701,用于获取多个节点的节点信息,每个所述节点根据避障物设立;
计算模块702,用于根据所述节点的节点信息计算避障路线,其中,所述避障路线越过或绕过建立在相邻的所述节点之间的虚拟围墙。
在本发明一些实施例中,所述系统还包括:
识别模块703,用于获取前方的障碍物的图像信息或温度信息;根据所述障碍物的图像信息或温度信息,识别所述障碍物;根据所述障碍物设立节点。
在本发明一些实施例中,所述节点信息包括如下至少一种:所述节点的尺寸,所述节点的位置,所述节点的朝向;所述系统还包括:
构建模块704,用于以所述节点的高度为所述虚拟围墙的高度,以所述节 点的朝向为所述虚拟围墙的走向,在相邻的所述节点之间构建虚拟围墙。
可以理解,本发明实施例的系统的各个功能模块的功能可根据上述图1及图6方法实施例中的方法具体实现,其具体实现过程可参照上述方法实施例中的相关描述,此处不再赘述。
请参考图8,本发明实施例提供一种无人机的避障系统800,可包括:
一个或多个处理器801,分别独立或共同工作,所述处理器801用于:获取多个节点的节点信息,每个所述节点根据避障物设立;根据所述节点的节点信息计算避障路线,其中,所述避障路线越过或绕过建立在相邻的所述节点之间的虚拟围墙。
可选的,还可以包括存储器802和通信接口803,均通过总线与处理器801连接并通信。
在本发明一些实施例中,所述处理器801还用于:获取前方的障碍物的图像信息或温度信息;根据所述障碍物的图像信息或温度信息,识别所述障碍物;根据所述障碍物设立节点。
在本发明一些实施例中,所述节点信息包括如下至少一种:所述节点的尺寸,所述节点的位置,所述节点的朝向;所述处理器801还用于:以所述节点的高度为所述虚拟围墙的高度,以所述节点的朝向为所述虚拟围墙的走向,在相邻的所述节点之间构建虚拟围墙。
可以理解,本发明实施例的系统的功能可根据上述图1及图6方法实施例中的方法具体实现,其具体实现过程可参照上述方法实施例中的相关描述,此处不再赘述。
请参考图9,本发明实施例还提供一种无人机900,可包括:
如上文图8实施例所述的无人机的避障系统800;
传感器901,与所述处理器通讯连接;
其中,所述传感器901用于获取避障物的信息,并将所述避障物的信息传送给所述处理器,所述处理器根据所述避障物的信息设立所述节点。
可以理解,本发明实施例的无人机可根据上述图1及图6至图8实施例中的方法或装置具体实现,其具体实现过程可参照上述方法实施例和装置实施例中的相关描述,此处不再赘述。
本发明实施例还提供一种存储一个或多个程序的存储介质,所述一个或多个程序包括指令,所述指令当被包括一个或多个处理器的无人机执行时,使所述无人机执行如图6所示的方法实施例中的方法。
综上,本发明图6至图9几个实施例中公开了一种无人机的线缆避障方法和系统及无人机,采用获取根据避障物设立的节点的节点信息,根据节点的节点信息计算避障路线,其中,所述避障路线越过或绕过建立在相邻的所述节点之间的虚拟围墙的技术方案,取得了以下技术效果:
通过以避障物为节点,在相邻节点之间构建虚拟围墙,根据虚拟围墙计算避障路线,使得避障能力更高,可有效避免与线缆等避障物的碰撞或缠绕,进一步提高了安全性,提高了无人机户外自主飞行的能力。
请参考图10,本发明实施例提供一种无人机的避障方法,可包括:
1001、获取前方的支撑物的位置信息,所述支撑物用于将线缆支撑在空中;
1002、根据所述支撑物的位置信息计算避障路线,其中,所述避障路线越过或绕过支撑在相邻的所述支撑物之间的线缆。
在本发明一些实施例中,所述获取前方的支撑物的位置信息之前还包括:获取前方的障碍物的图像信息或温度信息;根据所述障碍物的图像信息或温度信息,识别所述障碍物。
在本发明一些实施例中,所述根据所述支撑物的位置信息计算避障路线之前,还包括:获取所述支撑物的尺寸信息和朝向信息。
需要说明的是,根据所述支撑物的位置信息计算避障路线的步骤不限于包括:在相邻的所述节点之间构建虚拟围墙,也可以采用其他方式,例如,根据所述支撑物的位置信息计算避障路线的步骤也可以包括:在相邻的所述节点之间形成警示线,高于警示线的第一预设高度的上方区域为上安全区域,低于警示线的第二预设高度的区域为下安全区域,无人机可以从上安全区域越过线缆,或者从下安全区穿过线缆。
可以理解,本发明实施例的系统的各个功能模块的功能也可根据上述图1 方法实施例中的方法具体实现,其具体实现过程可参照上述方法实施例中的相关描述,此处不再赘述。
请参考图11,本发明实施例提供一种无人机的避障系统1100,可包括:
获取模块1101,用于获取前方的支撑物的位置信息,所述支撑物用于将线缆支撑在空中;
计算模块1102,用于根据所述支撑物的位置信息计算避障路线,其中,所述避障路线越过或绕过支撑在相邻的所述支撑物之间的线缆。
在本发明一些实施例中,还包括:
识别模块1103,用于获取前方的障碍物的图像信息或温度信息;根据所述障碍物的图像信息或温度信息,识别所述障碍物。
在本发明一些实施例中,所述获取模块1102还用于获取所述支撑物的尺寸信息和朝向信息。
可以理解,本发明实施例的系统的各个功能模块的功能可根据上述图1及图10方法实施例中的方法具体实现,其具体实现过程可参照上述方法实施例中的相关描述,此处不再赘述。
请参考图12,本发明实施例提供一种无人机的避障系统1200,可包括:
一个或多个处理器1201,分别独立或共同工作,所述处理器1201用于:获取前方的支撑物的位置信息,所述支撑物用于将线缆支撑在空中;根据所述支撑物的位置信息计算避障路线,其中,所述避障路线越过或绕过建立在相邻的所述支撑物之间的线缆。
可选的,还可以包括存储器1202和通信接口1203,均通过总线与处理器1201连接并通信。
在本发明一些实施例中,所述处理器1201还用于:获取前方的障碍物的图像信息或温度信息;根据所述障碍物的图像信息或温度信息,识别所述障碍物。
在本发明一些实施例中,所述处理器1201还用于:获取所述支撑物的尺寸信息和朝向信息。
可以理解,本发明实施例的系统的功能可根据上述图1及图10方法实施例中的方法具体实现,其具体实现过程可参照上述方法实施例中的相关描述, 此处不再赘述。
请参考图13,本发明实施例还提供一种无人机1300,可包括:
如上文图12实施例所述的无人机的避障系统;
传感器1301,与所述处理器1201通讯连接;
其中,所述传感器用于获取支撑物的特征信息,并将所述支撑物的特征信息传送给所述处理器;所述处理器根据所述特征信息计算所述支撑物的位置信息。
可以理解,本发明实施例的无人机的功能可根据上述图1及图6至图12方法实施例和装置实施例中的方法具体实现,其具体实现过程可参照上述方法实施例和装置实施例中的相关描述,此处不再赘述。
本发明实施例还提供一种存储一个或多个程序的存储介质,所述一个或多个程序包括指令,所述指令当被包括一个或多个处理器的无人机执行时,使所述无人机执行如图10所示的方法实施例中的方法。
综上,本发明图10至图13几个实施例中公开了一种无人机的线缆避障方法和系统及无人机,采用对支撑线缆的支撑物进行识别,根据所述支撑物的位置信息计算避障路线,其中所述避障路线越过或绕过支撑在相邻的所述支撑物之间的线缆的技术方案,取得了以下技术效果:
相对于线缆,支撑物的尺寸更大,识别度更高,因此,本发明技术方案能够在更远的距离、更精确的识别出前方的线缆;从而,使得飞行避障能力更高,可有效避免与线缆的碰撞或缠绕,进一步提高了安全性,提高了无人机户外自主飞行的能力。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其它实施例的相关描述。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述动作顺序的限制,因为依据本发明,某些步骤可以采用其它顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施 例,所涉及的动作和模块并不一定是本发明所必须的。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:ROM、RAM、磁盘或光盘等。
以上对本发明实施例所提供的无人机的线缆避障方法和系统及无人机进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (48)

  1. 一种无人机的线缆避障方法,所述线缆采用支撑物支撑在空中,其特征在于,所述方法包括:
    无人机在飞行过程中,识别前方的支撑物,并以识别的所述支撑物为节点;
    获取每个所述节点的节点信息;
    根据所述节点的节点信息,在相邻的所述节点之间构建虚拟围墙;
    根据所述虚拟围墙调整飞行线路,以对所述线缆进行避障。
  2. 根据权利要求1所述的方法,其特征在于,所述识别前方的支撑物包括:
    获取所述支撑物的图像信息;
    根据所述支撑物的图像信息,识别所述支撑物。
  3. 根据权利要求1所述的方法,其特征在于,所述识别前方的支撑物包括:
    获取所述支撑物的温度信息;
    根据所述支撑物的温度信息,识别所述支撑物。
  4. 根据权利要求1至3中任一所述的方法,其特征在于,所述节点信息包括如下至少一种:
    所述节点的尺寸,所述节点的位置,所述节点的朝向。
  5. 根据权利要求4所述的方法,其特征在于,所述线缆为输电线缆,所述支撑物上设有用于搭载所述输电线缆的横梁,所述获取每个所述节点的节点信息包括:
    识别所述横梁;
    根据识别的所述横梁,确定与所述横梁垂直的方向为所述节点的朝向。
  6. 根据权利要求4所述的方法,其特征在于,所述线缆为输电线缆,所述支撑物上设有用于搭载所述输电线缆的横梁,所述获取每个所述节点的节点信息包括:
    获取所述节点附近的电场强度和方向,根据所述节点附近的电场强度和方向确定所述节点的朝向。
  7. 根据权利要求4所述的方法,其特征在于,所述获取每个所述节点的节点信息包括:
    在所述无人机的位置变化时,获取所述支撑物的图像;
    计算所述无人机的位置变化信息和所述支撑物的图像的像素变化信息;
    根据所述无人机的位置变化信息和所述支撑物的图像的像素变化信息,计算所述节点的尺寸信息。
  8. 根据权利要求4所述的方法,其特征在于,所述获取每个所述节点的节点信息包括:
    在所述无人机的位置变化时,获取所述无人机的位置信息及所述支撑物的图像;
    计算所述无人机的位置变化信息和所述支撑物的图像的像素变化信息;
    根据所述无人机的位置变化信息和所述支撑物的图像的像素变化信息,计算所述节点与所述无人机的相对位置信息;
    根据所述无人机的当前位置信息、以及所述节点与所述无人机的相对位置信息,计算所述节点的位置信息。
  9. 根据权利要求4所述的方法,其特征在于,所述节点的尺寸包括高度,所述在相邻的所述节点之间构建虚拟围墙包括:
    以所述节点的高度为所述虚拟围墙的高度,以所述节点的朝向为所述虚拟围墙的走向,在相邻的所述节点之间构建虚拟围墙。
  10. 根据权利要求1至9中任一所述的方法,其特征在于,获取每个所述节点的节点信息之后还包括:
    将所述节点的节点信息记录到节点数据库中。
  11. 一种无人机的线缆避障系统,其特征在于,包括:
    识别模块,用于在飞行过程中,识别前方的支撑物,并以识别的所述支撑物为节点;获取每个所述节点的节点信息;
    处理模块,用于根据所述节点的节点信息,在相邻的所述节点之间构建虚拟围墙;
    飞控模块,用于根据所述虚拟围墙调整飞行线路,以对线缆进行避障,所述线缆采用所述支撑物支撑在空中。
  12. 根据权利要求11所述的无人机,其特征在于,所述识别模块包括:
    第一识别单元,用于获取所述支撑物的图像信息;根据所述支撑物的图像信息,识别所述支撑物。
  13. 根据权利要求11所述的无人机,其特征在于,所述识别模块包括:
    第二识别单元,用于获取所述支撑物的温度信息;根据所述支撑物的温度信息,识别所述支撑物。
  14. 根据权利要求11至13中任一所述的无人机,其特征在于,所述节点信息包括如下至少一种:
    所述节点的尺寸,所述节点的位置,所述节点的朝向。
  15. 根据权利要求14所述的无人机,其特征在于,所述线缆为输电线缆,所述支撑物上设有用于搭载所述输电线缆的横梁,所述识别模块包括:
    第三识别单元,用于识别所述横梁;根据识别的所述横梁,确定与所述横梁垂直的方向为所述节点的朝向。
  16. 根据权利要求14所述的无人机,其特征在于,所述线缆为输电线缆,所述支撑物上设有用于搭载所述输电线缆的横梁,所述识别模块包括:
    第四识别单元,用于获取所述节点附近的电场强度和方向,根据所述节点附近的电场强度和方向确定所述节点的朝向。
  17. 根据权利要求14所述的无人机,其特征在于,所述识别模块包括:
    第五识别单元,用于在所述无人机的位置变化时,获取所述支撑物的图像;计算所述无人机的位置变化信息和所述支撑物的图像的像素变化信息;根据所述无人机的位置变化信息和所述支撑物的图像的像素变化信息,计算所述节点的尺寸信息。
  18. 根据权利要求14所述的无人机,其特征在于,所述识别模块包括:
    第六识别单元,用于在所述无人机的位置变化时,获取所述无人机的位置信息及所述支撑物的图像;计算所述无人机的位置变化信息和所述支撑物的图像的像素变化信息;根据所述无人机的位置变化信息和所述支撑物的图像的像素变化信息,计算所述节点与所述无人机的相对位置信息;根据所述无人机的当前位置信息、以及所述节点与所述无人机的相对位置信息,计算所述节点的位置信息。
  19. 根据权利要求14所述的无人机,其特征在于,
    所述处理模块,具体用于以所述节点的高度为所述虚拟围墙的高度,以所述节点的朝向为所述虚拟围墙的走向,在相邻的所述节点之间构建虚拟围墙。
  20. 根据权利要求11至19中任一所述的无人机,其特征在于,还包括:
    记录模块,用于将所述节点的节点信息记录到节点数据库中。
  21. 一种无人机的线缆避障系统,所述线缆采用支撑物支撑在空中,其特征在于,所述系统包括:
    一个或多个处理器,分别独立或共同工作,所述处理器用于:
    识别前方的支撑物,并以识别的所述支撑物为节点;
    获取每个所述节点的节点信息;
    根据所述节点的节点信息,在相邻的所述节点之间构建虚拟围墙;
    根据所述虚拟围墙调整飞行线路,以对所述线缆进行避障。
  22. 根据权利要求21所述的系统,其特征在于,
    所述处理器还用于:根据所述支撑物的图像信息,识别所述支撑物。
  23. 根据权利要求21所述的系统,其特征在于,
    所述处理器还用于:根据所述支撑物的温度信息,识别所述支撑物。
  24. 根据权利要求21至23中任一所述的系统,其特征在于,所述节点信息包括如下至少一种:所述节点的尺寸,所述节点的位置,所述节点的朝向。
  25. 根据权利要求24所述的系统,其特征在于,所述线缆为输电线缆,所述支撑物上设有用于搭载所述输电线缆的横梁;
    所述处理器还用于:识别所述横梁;根据识别的所述横梁,确定与所述横梁垂直的方向为所述节点的朝向。
  26. 根据权利要求24所述的系统,其特征在于,所述线缆为输电线缆,所述支撑物上设有用于搭载所述输电线缆的横梁;
    所述处理器还用于:获取所述节点附近的电场强度和方向,根据所述节点附近的电场强度和方向确定所述节点的朝向。
  27. 根据权利要求24所述的系统,其特征在于,
    所述处理器还用于:在所述无人机的位置变化时,计算所述无人机的位置 变化信息和所述支撑物的图像的像素变化信息;根据所述无人机的位置变化信息和所述支撑物的图像的像素变化信息,计算所述节点的尺寸信息。
  28. 根据权利要求24所述的系统,其特征在于,
    所述处理器还用于:在所述无人机的位置变化时,计算所述无人机的位置变化信息和所述支撑物的图像的像素变化信息;根据所述无人机的位置变化信息和所述支撑物的图像的像素变化信息,计算所述节点与所述无人机的相对位置信息;根据所述无人机的当前位置信息、以及所述节点与所述无人机的相对位置信息,计算所述节点的位置信息。
  29. 根据权利要求24所述的系统,其特征在于,所述节点的尺寸包括高度,所述处理器还用于:
    以所述节点的高度为所述虚拟围墙的高度,以所述节点的朝向为所述虚拟围墙的走向,在相邻的所述节点之间构建虚拟围墙。
  30. 根据权利要求21至29中任一所述的系统,其特征在于,
    所述处理器还用于:将所述节点的节点信息记录到节点数据库中。
  31. 一种无人机,其特征在于,包括:
    如权利要求21至30中任一所述的无人机的线缆避障系统;
    传感器,与所述处理器通讯连接;
    其中,所述传感器用于获取前方的支撑物的信息,并将所述支撑物的信息传送给所述处理器,所述处理器根据所述支撑物的信息识别所述支撑物。
  32. 一种存储一个或多个程序的存储介质,所述一个或多个程序包括指令,所述指令当被包括一个或多个处理器的无人机执行时,使所述无人机执行如权利要求1至10任一项所述的方法。
  33. 一种无人机的避障方法,其特征在于,所述方法包括:
    获取多个节点的节点信息,每个所述节点根据避障物设立;
    根据所述节点的节点信息计算避障路线,其中,所述避障路线越过或绕过建立在相邻的所述节点之间的虚拟围墙。
  34. 根据权利要求33所述的方法,其特征在于,所述获取多个节点的节点信息之前还包括:
    获取前方的障碍物的图像信息或温度信息;
    根据所述障碍物的图像信息或温度信息,识别所述障碍物;
    根据所述障碍物设立节点。
  35. 根据权利要求33所述的方法,其特征在于,所述节点信息包括如下至少一种:所述节点的尺寸,所述节点的位置,所述节点的朝向;所述根据所述节点的节点信息计算避障路线之前还包括:
    以所述节点的高度为所述虚拟围墙的高度,以所述节点的朝向为所述虚拟围墙的走向,在相邻的所述节点之间构建虚拟围墙。
  36. 一种无人机的避障系统,其特征在于,所述系统包括:
    一个或多个处理器,分别独立或共同工作,所述处理器用于:
    获取多个节点的节点信息,每个所述节点根据避障物设立;
    根据所述节点的节点信息计算避障路线,其中,所述避障路线越过或绕过建立在相邻的所述节点之间的虚拟围墙。
  37. 根据权利要求36所述的系统,其特征在于,
    所述处理器还用于:获取前方的障碍物的图像信息或温度信息;根据所述障碍物的图像信息或温度信息,识别所述障碍物;根据所述障碍物设立节点。
  38. 根据权利要求36所述的系统,其特征在于,所述节点信息包括如下至少一种:所述节点的尺寸,所述节点的位置,所述节点的朝向;
    所述处理器还用于:以所述节点的高度为所述虚拟围墙的高度,以所述节点的朝向为所述虚拟围墙的走向,在相邻的所述节点之间构建虚拟围墙。
  39. 一种无人机,其特征在于,所述无人机包括:
    如权利要求36至38中任一所述的无人机的避障系统;
    传感器,与所述处理器通讯连接;
    其中,所述传感器用于获取避障物的信息,并将所述避障物的信息传送给所述处理器,所述处理器根据所述避障物的信息设立所述节点。
  40. 一种存储一个或多个程序的存储介质,所述一个或多个程序包括指令,所述指令当被包括一个或多个处理器的无人机执行时,使所述无人机执行如权利要求33至35任一项所述的方法。
  41. 一种无人机的避障方法,其特征在于,所述方法包括:
    获取前方的支撑物的位置信息,所述支撑物用于将线缆支撑在空中;
    根据所述支撑物的位置信息计算避障路线,其中,所述避障路线越过或绕过支撑在相邻的所述支撑物之间的线缆。
  42. 根据权利要求41所述的方法,其特征在于,所述获取前方的支撑物的位置信息之前还包括:
    获取前方的障碍物的图像信息或温度信息;
    根据所述障碍物的图像信息或温度信息,识别所述障碍物。
  43. 根据权利要求41所述的方法,其特征在于,所述根据所述支撑物的位置信息计算避障路线之前,还包括:
    获取所述支撑物的尺寸信息和朝向信息。
  44. 一种无人机的避障系统,其特征在于,所述系统包括:
    一个或多个处理器,分别独立或共同工作,所述处理器用于:
    获取前方的支撑物的位置信息,所述支撑物用于将线缆支撑在空中;
    根据所述支撑物的位置信息计算避障路线,其中,所述避障路线越过或绕过建立在相邻的所述支撑物之间的线缆。
  45. 根据权利要求44所述的系统,其特征在于,
    所述处理器还用于:获取前方的障碍物的图像信息或温度信息;
    根据所述障碍物的图像信息或温度信息,识别所述障碍物。
  46. 根据权利要求44所述的系统,其特征在于,
    所述处理器还用于:获取所述支撑物的尺寸信息和朝向信息。
  47. 一种无人机,其特征在于,所述无人机包括:
    如权利要求44至46中任一所述的无人机的避障系统;
    传感器,与所述处理器通讯连接;
    其中,所述传感器用于获取支撑物的特征信息,并将所述支撑物的特征信息传送给所述处理器;所述处理器根据所述特征信息计算所述支撑物的位置信息。
  48. 一种存储一个或多个程序的存储介质,所述一个或多个程序包括指令,所述指令当被包括一个或多个处理器的无人机执行时,使所述无人机执行如权 利要求41至43任一项所述的方法。
PCT/CN2015/093010 2015-10-28 2015-10-28 一种无人机的线缆避障方法和系统及无人机 WO2017070856A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580058287.6A CN107077143B (zh) 2015-10-28 2015-10-28 一种无人机的线缆避障方法和系统及无人机
PCT/CN2015/093010 WO2017070856A1 (zh) 2015-10-28 2015-10-28 一种无人机的线缆避障方法和系统及无人机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/093010 WO2017070856A1 (zh) 2015-10-28 2015-10-28 一种无人机的线缆避障方法和系统及无人机

Publications (1)

Publication Number Publication Date
WO2017070856A1 true WO2017070856A1 (zh) 2017-05-04

Family

ID=58629772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093010 WO2017070856A1 (zh) 2015-10-28 2015-10-28 一种无人机的线缆避障方法和系统及无人机

Country Status (2)

Country Link
CN (1) CN107077143B (zh)
WO (1) WO2017070856A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113454558A (zh) * 2020-09-24 2021-09-28 深圳市大疆创新科技有限公司 障碍物检测方法、装置、无人机和存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021087782A1 (zh) * 2019-11-05 2021-05-14 深圳市大疆创新科技有限公司 障碍物检测方法、系统、地面端设备及自主移动平台
CN112068597B (zh) * 2020-09-25 2022-09-13 中国直升机设计研究所 一种基于前驱无人机的直升机避障系统
CN112258604B (zh) * 2020-11-18 2023-02-14 广州极飞科技股份有限公司 悬空线缆重建方法、装置及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060034360A (ko) * 2004-10-18 2006-04-24 한국과학기술원 비례 항법을 이용한 무인 항공기의 충돌 회피 방법 및시스템
CN103076802A (zh) * 2012-10-09 2013-05-01 江苏大学 机器人虚拟边界建立与识别方法及系统
CN103116360A (zh) * 2013-01-31 2013-05-22 南京航空航天大学 一种无人机避障控制方法
CN103135550A (zh) * 2013-01-31 2013-06-05 南京航空航天大学 用于电力巡线的无人机多重避障控制方法
CN104699102A (zh) * 2015-02-06 2015-06-10 东北大学 一种无人机与智能车协同导航与侦查监控系统及方法
CN204631622U (zh) * 2015-04-28 2015-09-09 南京航空航天大学 基于超声波距离检测的无人机避障系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141983A (ja) * 2008-12-10 2010-06-24 Chugoku Electric Power Co Inc:The 航空障害標識
CN202135197U (zh) * 2011-06-25 2012-02-01 北京播思软件技术有限公司 一种可识别电线走向及天气变化的移动终端
CN102722178B (zh) * 2012-06-29 2014-02-26 山东电力集团公司电力科学研究院 用于无人机巡检带电导线的电场测量避障系统及方法
CN104865971B (zh) * 2015-05-26 2017-07-28 广西大学 一种输电线路巡检无人机的控制方法及无人机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060034360A (ko) * 2004-10-18 2006-04-24 한국과학기술원 비례 항법을 이용한 무인 항공기의 충돌 회피 방법 및시스템
CN103076802A (zh) * 2012-10-09 2013-05-01 江苏大学 机器人虚拟边界建立与识别方法及系统
CN103116360A (zh) * 2013-01-31 2013-05-22 南京航空航天大学 一种无人机避障控制方法
CN103135550A (zh) * 2013-01-31 2013-06-05 南京航空航天大学 用于电力巡线的无人机多重避障控制方法
CN104699102A (zh) * 2015-02-06 2015-06-10 东北大学 一种无人机与智能车协同导航与侦查监控系统及方法
CN204631622U (zh) * 2015-04-28 2015-09-09 南京航空航天大学 基于超声波距离检测的无人机避障系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113454558A (zh) * 2020-09-24 2021-09-28 深圳市大疆创新科技有限公司 障碍物检测方法、装置、无人机和存储介质
WO2022061632A1 (zh) * 2020-09-24 2022-03-31 深圳市大疆创新科技有限公司 障碍物检测方法、装置、无人机和存储介质

Also Published As

Publication number Publication date
CN107077143B (zh) 2021-01-29
CN107077143A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
US20210065400A1 (en) Selective processing of sensor data
CN106873630B (zh) 一种飞行控制方法及装置,执行设备
CN108323190B (zh) 一种避障方法、装置和无人机
US20180032042A1 (en) System And Method Of Dynamically Controlling Parameters For Processing Sensor Output Data
WO2017070856A1 (zh) 一种无人机的线缆避障方法和系统及无人机
CN109358648B (zh) 无人机自主飞行的方法、装置以及无人机
CN109144097A (zh) 障碍物或地面识别及飞行控制方法、装置、设备及介质
JPWO2018062336A1 (ja) 飛行制御装置、無人飛行機、飛行制御方法、及びコンピュータ読み取り可能な記録媒体
CN110244760A (zh) 一种避障方法、装置和电子设备
JP2019011971A (ja) 推定システムおよび自動車
US11021246B2 (en) Method and system for capturing images of asset using unmanned aerial vehicles
JP6761146B1 (ja) 情報処理システム、情報処理方法及びプログラム
CN110139038B (zh) 一种自主环绕拍摄方法、装置以及无人机
JP2018157767A (ja) 警告方法
CN110850894A (zh) 一种无人机自动返航的方法、装置、无人机及存储介质
Ivanovas et al. Block matching based obstacle avoidance for unmanned aerial vehicle
CN109885091B (zh) 一种无人机自主飞行控制方法及系统
JP2019049874A (ja) 飛行管理装置、飛行装置、及び飛行管理方法
KR20170058767A (ko) 스마트 재배농장 시스템 및 그 제어방법
US20200379463A1 (en) Control apparatus, moving object, control method, and computer readable storage medium
CN113791640A (zh) 一种图像获取方法、装置、飞行器和存储介质
WO2021056144A1 (zh) 可移动平台的返航控制方法、装置及可移动平台
JP7143103B2 (ja) 経路表示装置
JP6972584B2 (ja) 離隔距離測定システム
JP7026765B1 (ja) 制御システム、飛行体、及び、方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15906922

Country of ref document: EP

Kind code of ref document: A1