WO2018083896A1 - Semiconductor element, semiconductor laser, and method for manufacturing semiconductor element - Google Patents

Semiconductor element, semiconductor laser, and method for manufacturing semiconductor element Download PDF

Info

Publication number
WO2018083896A1
WO2018083896A1 PCT/JP2017/033534 JP2017033534W WO2018083896A1 WO 2018083896 A1 WO2018083896 A1 WO 2018083896A1 JP 2017033534 W JP2017033534 W JP 2017033534W WO 2018083896 A1 WO2018083896 A1 WO 2018083896A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
transparent conductive
conductive layer
width
semiconductor
Prior art date
Application number
PCT/JP2017/033534
Other languages
French (fr)
Japanese (ja)
Inventor
雅洋 村山
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US16/334,738 priority Critical patent/US11121524B2/en
Priority to DE112017005516.4T priority patent/DE112017005516T5/en
Priority to CN201780066019.8A priority patent/CN109923743B/en
Priority to JP2018548582A priority patent/JP7107849B2/en
Publication of WO2018083896A1 publication Critical patent/WO2018083896A1/en
Priority to US17/401,735 priority patent/US11876349B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04252Electrodes, e.g. characterised by the structure characterised by the material
    • H01S5/04253Electrodes, e.g. characterised by the structure characterised by the material having specific optical properties, e.g. transparent electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3205Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures with an active layer having a graded composition in the growth direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/321Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures having intermediate bandgap layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022491Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of a thin transparent metal layer, e.g. gold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/176Specific passivation layers on surfaces other than the emission facet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0287Facet reflectivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04252Electrodes, e.g. characterised by the structure characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2081Methods of obtaining the confinement using special etching techniques
    • H01S5/2086Methods of obtaining the confinement using special etching techniques lateral etch control, e.g. mask induced
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser

Definitions

  • This technology relates to the technology of semiconductor elements such as semiconductor lasers.
  • a semiconductor laser is a semiconductor element that amplifies recombination light emission by stimulated emission and emits laser light, and emits laser light with a narrow emission angle and strong intensity. This semiconductor laser is applied to optical communication, an optical pickup for an optical disc, a laser printer, and the like, and further improvement of optical output and reduction of power consumption are desired.
  • a current confinement structure is used to inject current into a predetermined region of an active layer sandwiched between a p-type semiconductor layer and an n-type semiconductor layer.
  • the current confinement structure can be realized by forming a striped ridge in the p-type semiconductor layer or the n-type semiconductor layer.
  • a conductive material such as ITO (IndiumITOTin Oxide) is laminated on the ridge, and the electrode and the semiconductor layer are electrically connected.
  • Patent Documents 1 and 2 disclose a process flow of a semiconductor laser using a transparent conductive layer. In these process flows, after a resist is laminated on the ridge, the resist on the ridge is removed, and a transparent conductive layer is formed on the ridge using the resist as a mask.
  • Patent Document 3 discloses a semiconductor laser that uses a transparent conductive layer etched into a waveguide shape as a part of a clad layer. Here, it is mentioned as a simple point in the process that only the transparent conductive layer is processed into a waveguide shape and the p-type layer is not processed.
  • Patent Document 1 or 2 it is difficult to form the transparent conductive layer up to the ridge end, and the device voltage rise or non-uniformity due to the contact area between the transparent conductive layer and the semiconductor layer being reduced. Current injection may occur. Further, the structure described in Patent Document 3 cannot provide a sufficient lateral light confinement effect.
  • an object of the present technology is to provide a semiconductor element, a semiconductor laser, and a method for manufacturing the semiconductor element that can sufficiently ensure electrical connection between the transparent conductive layer and the semiconductor layer. .
  • a semiconductor element includes a first semiconductor layer, a second semiconductor layer, an active layer, and a transparent conductive layer.
  • the first semiconductor layer has a first conductivity type, and a striped ridge is formed on the surface.
  • the second semiconductor layer has a second conductivity type.
  • the active layer is provided between the first semiconductor layer and the second semiconductor layer.
  • the transparent conductive layer is made of a transparent conductive material and is formed on the ridge. The width of the surface of the ridge on which the transparent conductive layer is formed is defined as the first width, and the width of the surface of the transparent conductive layer on the ridge side is defined as the second width.
  • the second width is not less than 0.99 times and not more than 1.0 times the first width
  • the third width is 0.96 to 1.0 times the second width.
  • the transparent conductive layer is uniform within a range of 90% to 110% in thickness within the range of the third width.
  • the transparent conductive layer is formed with a uniform thickness on almost the entire surface of the first semiconductor layer in the ridge. Accordingly, the contact area between the transparent conductive layer and the first semiconductor layer in the ridge can be increased, and the voltage of the semiconductor element can be reduced. Further, current can be uniformly injected from the entire upper surface of the ridge, and non-uniform injection of carriers into the active layer can be suppressed, so that non-uniform light emission spread can be suppressed.
  • the semiconductor element is made of a conductive material, and further includes a pad electrode in contact with the transparent conductive layer,
  • the pad electrode may include an intermediate layer formed at a joint portion between the pad electrode and the transparent conductive layer, in which constituent elements of the pad electrode and the transparent conductive layer are fused.
  • the adhesion between the pad electrode and the transparent conductive layer can be improved by the intermediate layer.
  • the semiconductor element is made of a metal material, and further includes a metal electrode formed on the transparent conductive layer,
  • the metal electrode may include an intermediate layer formed at a joint portion between the metal electrode and the transparent conductive layer, in which respective constituent elements of the metal electrode and the transparent conductive layer are fused.
  • the adhesion between the metal electrode and the transparent conductive layer can be improved by the intermediate layer.
  • the fourth width may be 0.99 times or more and 1.0 times or less the third width. Good.
  • a semiconductor laser includes a first semiconductor layer, a second semiconductor layer, an active layer, and a transparent conductive layer.
  • the first semiconductor layer has a first conductivity type, and a striped ridge is formed on the surface.
  • the second semiconductor layer has a second conductivity type.
  • the active layer is provided between the first semiconductor layer and the second semiconductor layer.
  • the transparent conductive layer is made of a transparent conductive material and is formed on the ridge. The width of the surface of the ridge on which the transparent conductive layer is formed is defined as the first width, and the width of the surface of the transparent conductive layer on the ridge side is defined as the second width.
  • the second width is not less than 0.99 times and not more than 1.0 times the first width
  • the third width is 0.96 to 1.0 times the second width.
  • the transparent conductive layer is uniform within a range of 90% to 110% in thickness within the range of the third width.
  • a method of manufacturing a semiconductor device includes a first semiconductor layer having a first conductivity type, a second semiconductor layer having a second conductivity type, and the first semiconductor layer.
  • a laminate including a semiconductor layer and an active layer provided between the second semiconductor layers is prepared.
  • a transparent conductive layer made of a transparent conductive material is formed on the first semiconductor layer.
  • a mask structure processed into a stripe shape is formed on the transparent conductive layer. Using the mask structure as an etching mask, at least a part of the transparent conductive layer and the first semiconductor layer is removed by etching.
  • the transparent conductive layer is etched using the mask structure, it is possible to form the transparent conductive layer with a uniform thickness on almost the entire surface of the first semiconductor layer in the ridge.
  • the mask structure may be made of a dielectric.
  • a dielectric layer made of a dielectric is formed on the transparent conductive layer, a photoresist is formed on the dielectric layer, the photoresist is patterned in a stripe shape, and the photo
  • the dielectric layer may be etched using a resist as an etching mask.
  • the mask structure may be made of metal.
  • a photoresist is formed on the transparent conductive layer, the photoresist is patterned into a shape having a stripe-shaped opening, and a metal layer is formed on the transparent conductive layer and the photoresist.
  • the photoresist and the metal layer formed on the photoresist may be removed.
  • a metal layer is formed on the transparent conductive layer, a photoresist is formed on the metal, the photoresist is patterned in a stripe shape, and the metal is formed using the photoresist as an etching mask.
  • the layer may be etched.
  • a pad electrode in contact with the transparent conductive layer is formed, and a heat treatment is performed at the joint between the pad electrode and the transparent conductive layer.
  • An intermediate layer in which the constituent elements of the pad electrode and the transparent conductive layer are fused may be formed.
  • an intermediate layer in which the constituent elements of the metal layer and the transparent conductive layer are fused is formed at the joint between the metal layer and the transparent conductive layer by heat treatment. May be.
  • the present technology it is possible to provide a semiconductor element, a semiconductor laser, and a method for manufacturing a semiconductor element that can sufficiently ensure electrical connection between the transparent conductive layer and the semiconductor layer.
  • the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
  • FIG. 1 is a schematic perspective view showing a semiconductor element 100 according to the first embodiment.
  • FIG. 2 is a plan view thereof.
  • 3 is a cross-sectional view taken along the line CC in FIG.
  • the semiconductor element 100 is a ridge type semiconductor laser having a ridge 151 in a p type conductive layer.
  • the semiconductor element 100 is not limited to a semiconductor laser, and may be an SLD (Super Luminescent Diode), an LED (light emitting diode), or other semiconductor elements.
  • SLD Super Luminescent Diode
  • LED light emitting diode
  • the semiconductor element 100 includes an n-type layer 101, a p-type layer 102, an active layer 103, a transparent conductive layer 104, a dielectric layer 105, and a pad electrode 106.
  • the n-type layer 101, the active layer 103, and the p-type layer 102 are stacked in this order, and the p-type layer 102 forms a striped ridge 151. 1 and 2, the pad electrode 106 and the dielectric layer 105 are not shown.
  • the semiconductor element 100 includes a light emitting end face 152 and a rear end face 153 that is an end face opposite to the light emitting end face 152.
  • the ridge 151 is linearly formed from the rear end face 153 to the light emitting end face 152.
  • the direction in which the ridge 151 extends is defined as the Y direction. Note that the ridge 151 does not necessarily have to be linear, and may be curved.
  • the n-type layer 101 is made of a group III-V nitride semiconductor such as AlN, GaN, AlGaN, AlInGaN, or InN, and specifically, In y Al z Ga 1-yz N (0 ⁇ y, 0 ⁇ z). , Y + z ⁇ 1) or Al x Ga 1-x N (0 ⁇ x ⁇ 1) or the like is preferable.
  • the constituent material of the n-type layer 101 is doped with an n-type impurity such as Si or Ge, and has an n-type conductivity type.
  • the n-type layer 101 can be formed on a substrate (not shown) made of sapphire, silicon, ZnO, GaAs, GaN, InGaN, AlInGaN, AlGaN, AlN, InN, or the like.
  • the p-type layer 102 forms a current confinement structure.
  • the structure of the ridge 151 is configured such that the current injection region from the p-type layer 102 to the active layer 103 is narrowed.
  • an optical waveguide along the extending direction (Y direction) of the ridge 151 is formed near the ridge 151 in the active layer 103.
  • the p-type layer 102 is made of a group III-V nitride semiconductor such as AlN, GaN, AlGaN, AlInGaN, or InN. Specifically, In y Al z Ga 1-yz N (0 ⁇ y, 0 ⁇ z, A gallium nitride compound semiconductor such as y + z ⁇ 1) or Al x Ga 1-x N (0 ⁇ x ⁇ 1) is preferable.
  • the constituent material of the p-type layer 102 is doped with a p-type impurity such as Mg or Zn and has a p-type conductivity type.
  • the active layer 103 is provided between the n-type layer 101 and the p-type layer 102.
  • the material of the active layer 103 is not particularly limited, but the emission color of the semiconductor element 100 varies depending on the material of the active layer 103.
  • the active layer 103 is made of AlInGaP
  • the active layer 103 is made of AlInGaN, blue-violet to green light having an emission wavelength of 400 to 1000 nm (practical range of 400 to 550 nm) is generated.
  • AlGaN emission wavelength ultraviolet region to 400 nm
  • AlGaAs emission wavelength 750 to 850 nm, infrared region
  • InGaAs emission wavelength 800 to 980 nm, infrared region
  • InGaAsP emission wavelength 1.2 to 1.6 ⁇ m, infrared region
  • the active layer 103 has a smaller band gap than the surrounding layers (n-type layer 101 and p-type layer 102) and forms a quantum well.
  • a current is applied between the p-type layer 102 and the n-type layer 101, electrons existing in the conduction band (CB) recombine with holes in the valence band (VB) through the band gap of the quantum well. Emits light.
  • CB conduction band
  • VB valence band
  • the transparent conductive layer 104 is formed on the ridge 151 and electrically connects the pad electrode 106 and the p-type layer 102.
  • the transparent conductive layer 104 is made of a light-transmitting conductive material such as ITO (Indium Tin Oxide), ZnO, or IGZO (Indium Gallium Zinc Oxide).
  • ITO Indium Tin Oxide
  • ZnO Zinc Oxide
  • IGZO Indium Gallium Zinc Oxide
  • the dielectric layer 105 is formed on the p-type layer 102 and on the side surface of the ridge 151, and insulates the pad electrode 106 and the p-type layer 102.
  • the material of the dielectric layer 105 is not particularly limited, but a material having a refractive index smaller than that of the p-type layer 102 is suitable for efficiently confining light in the ridge 151, and for example, SiO 2 can be used.
  • the pad electrode 106 is formed on the transparent conductive layer 104 and the dielectric layer 105 so as to cover the ridge 151.
  • the pad electrode 106 is made of metal.
  • the pad electrode 106 may be composed of a plurality of types of materials.
  • the transparent conductive layer 104 is made of an oxide
  • the adhesiveness between the pad electrode 106 and the transparent conductive layer 104 can be improved by using a material that easily forms an oxide such as Ti, Ni, or Al for the portion in contact with the transparent conductive layer 104.
  • the pad electrode 106 can have a laminated structure of Ti / Pt / Au.
  • an intermediate layer 106 a is formed on the pad electrode 106.
  • the intermediate layer 106 a is a layer in which the constituent elements of the transparent conductive layer 104 and the pad electrode 106 are fused.
  • the transparent conductive layer 104 is made of ITO and the pad electrode 106 is made of Ti / Pt / A
  • the intermediate layer 106a has a structure in which In, Sn, O, and Ti are mixed. The adhesion between the transparent conductive layer 104 and the pad electrode 106 can be improved by the intermediate layer 106a.
  • a low reflection mirror film 154 is provided on the light emitting end face 152, and a high reflection mirror film 155 is provided on the rear end face 153 on the opposite side.
  • a low reflection mirror film may be provided on the rear end face 153 instead of the high reflection mirror film 155. In this case, the emitted light is emitted from both ends of the semiconductor element 100.
  • the semiconductor element 100 can be used as a semiconductor laser, but can also be used as an amplifier for amplifying light generated by another light source.
  • an antireflection film is provided in place of the high reflection mirror film 155.
  • Light generated by another light source enters the optical waveguide through the antireflective film and is amplified while traveling through the optical waveguide.
  • the transparent conductive layer 104 included in the semiconductor element 100 has a predetermined shape.
  • FIG. 4 is a schematic diagram showing the shape of the transparent conductive layer 104.
  • the width of the upper surface of the p-type layer 102 in the ridge 151 in the direction (X direction) orthogonal to the extending direction (Y direction) of the ridge 151 is D1
  • the p-type layer 102 of the transparent conductive layer 104 is formed.
  • the width in the X direction of the surface on the side is defined as a width D2
  • the width in the X direction on the surface opposite to the p-type layer 102 is defined as D3.
  • D1, D2, and D3 have a relationship represented by the following [Formula 1] and [Formula 2].
  • the thickness (Z direction) of the transparent conductive layer 104 is uniform in the range of 90% to 110%.
  • the transparent conductive layer 104 is laminated with a uniform thickness on almost the entire surface of the p-type layer 102 in the ridge 151.
  • Such a shape of the transparent conductive layer 104 can be realized by a manufacturing method described later.
  • the contact area between the transparent conductive layer 104 and the p-type layer 102 in the ridge 151 can be increased, and the voltage of the semiconductor element 100 can be lowered. Further, current can be uniformly injected from the entire upper surface of the ridge 151, and non-uniform injection of carriers into the active layer 103 can be suppressed, so that non-uniform light emission spread can be suppressed.
  • the semiconductor element 100 has the above configuration.
  • the ridge 151 is formed in the p-type layer 102.
  • the p-type layer 102, the active layer 103, and the n-type layer 101 are stacked in this order, and a ridge is formed in the n-type layer 101. Also good.
  • FIG. 5 to 8 are schematic views showing a manufacturing process of the semiconductor element 100.
  • a transparent conductive layer 104 is formed on a p-type layer 102 of a laminate in which an n-type layer 101, an active layer 103, and a p-type layer 102 are laminated.
  • the transparent conductive layer 104 can be formed by a method such as vapor deposition, sputtering, or plasma CVD (chemical vapor deposition). Annealing treatment may be performed after the formation of the transparent conductive layer 104. Thereby, good ohmic characteristics for the p-type layer 102 can be realized.
  • a dielectric layer 156 is formed on the transparent conductive layer 104 as shown in FIG.
  • the type of the dielectric layer 156 is not particularly limited, but SiO 2 is preferable because it is easy to form and process.
  • the dielectric layer 156 can be formed by a method such as vapor deposition, sputtering, or plasma CVD.
  • a photoresist is formed on the dielectric layer 156 and patterned to form a photoresist R as shown in FIG.
  • the photoresist R is patterned into a stripe shape extending along the Y direction.
  • the dielectric layer 156 is etched using the photoresist R as a mask, and the dielectric layer 156 is processed into a stripe shape as shown in FIG.
  • Etching can be dry etching or wet etching.
  • a fluorine-based gas can be used for the etchant.
  • the transparent conductive layer 104 is etched using the dielectric layer 156 processed into a stripe shape as a mask, and the transparent conductive layer 104 is processed into a stripe shape.
  • the etching dry etching or wet etching can be used, but dry etching is preferable from the viewpoint of controlling the stripe width and flatness of the processed side surface.
  • a chlorine-based gas can be used for the etchant.
  • the p-type layer 102 is etched using the dielectric layer 156 and the transparent conductive layer 104 processed into a stripe shape as a mask, thereby forming a ridge 151.
  • a chlorine-based gas can be used for the etchant.
  • This step may be performed separately from the etching of the transparent conductive layer 104 (FIG. 6C), or may be performed at once.
  • the transparent conductive layer 104 can be formed on the upper surface of the ridge 151 with a uniform thickness, and the contact area between the transparent conductive layer 104 and the p-type layer 102 can be increased.
  • the dielectric layer 105 is formed on the p-type layer 102, the transparent conductive layer 104, and the dielectric layer 156.
  • the dielectric layer 105 on the ridge 151 is removed, and the transparent conductive layer 104 is exposed.
  • a pad electrode 106 is formed so as to cover the entire ridge 151.
  • an intermediate layer 106a is formed as shown in FIG.
  • the intermediate layer 106a can be formed by mixing the constituent elements of the transparent conductive layer 104 and the pad electrode 106 by heat treatment.
  • the semiconductor element 100 can be manufactured as described above.
  • the transparent conductive layer 104 can be formed with a uniform thickness on almost the entire surface of the p-type layer 102 in the ridge 151.
  • FIG. 9 is a plan view of a semiconductor element 200 according to the second embodiment.
  • the semiconductor element 200 is different from the semiconductor element 100 according to the first embodiment in that a p-electrode 201 is provided. Since other configurations are the same as those of the semiconductor element 100, the same reference numerals are given and description thereof is omitted.
  • the p electrode 201 is provided between the transparent conductive layer 104 and the pad electrode 106.
  • the p electrode 201 is made of metal.
  • the p-electrode 201 may be composed of a plurality of types of materials.
  • the adhesion between the p electrode 201 and the transparent conductive layer 104 can be improved by using a material that easily forms an oxide such as Ti, Ni, or Al for the portion in contact with the transparent conductive layer 104.
  • the p-electrode 201 can have a laminated structure of Ti / Pt / Au.
  • an intermediate layer 201 a is formed on the p-electrode 201.
  • the intermediate layer 201a is a layer in which the constituent elements of the transparent conductive layer 104 and the p-electrode 201 are fused.
  • the transparent conductive layer 104 is made of ITO and the p-electrode 201 is made of Ti / Pt / A
  • the intermediate layer 201a has a mixed crystal structure of In, Sn, O, and Ti.
  • the adhesion between the transparent conductive layer 104 and the p-electrode 201 can be improved by the intermediate layer 201a.
  • FIG. 10 is a schematic diagram showing the shape of the p-electrode 201. As shown in the figure, the width of the surface on the transparent conductive layer 104 side of the p-electrode 201 in the direction (X direction) orthogonal to the extending direction (Y direction) of the ridge 151 is D4. D1, D2 and D3 are the same as in the first embodiment.
  • D3 and D4 have the relationship represented by the following [Formula 3].
  • the semiconductor element 200 has the above configuration.
  • the ridge 151 is formed in the p-type layer 102.
  • the p-type layer 102, the active layer 103, and the n-type layer 101 are stacked in this order, and a ridge is formed in the n-type layer 101. Also good.
  • an n electrode is provided in place of the p electrode 201.
  • An intermediate layer in which the transparent conductive layer and the constituent elements of the n electrode are fused may also be provided in the n electrode.
  • a manufacturing method 1 of the semiconductor element 200 will be described.
  • 11 to 13 are schematic views showing a manufacturing process of the semiconductor element 200.
  • a transparent conductive layer 104 is formed on a p-type layer 102 of a laminate in which an n-type layer 101, an active layer 103, and a p-type layer 102 are laminated.
  • the transparent conductive layer 104 can be formed by a method such as vapor deposition, sputtering, or plasma CVD (chemical vapor deposition). Annealing treatment may be performed after the formation of the transparent conductive layer 104. Thereby, good ohmic characteristics for the p-type layer 102 can be realized.
  • a photoresist is formed on the transparent conductive layer 104 and patterned to form a photoresist R as shown in FIG.
  • the photoresist R has a stripe-shaped opening extending along the Y direction.
  • a p-electrode 201 is formed on the photoresist R and the transparent conductive layer 104.
  • the photoresist R is removed.
  • the p-electrode 201 formed on the photoresist R is also removed, and a striped p-electrode 201 is formed on the transparent conductive layer 104.
  • an intermediate layer 201a is formed.
  • the intermediate layer 201a can be formed by mixing the constituent elements of the transparent conductive layer 104 and the p-electrode 201 by heat treatment.
  • the transparent conductive layer 104 is etched using the p-electrode 201 processed into a stripe shape as a mask, and the transparent conductive layer 104 is processed into a stripe shape.
  • the etching dry etching or wet etching can be used, but dry etching is preferable from the viewpoint of controlling the stripe width and flatness of the processed side surface.
  • a chlorine-based gas can be used for the etchant.
  • the p-type layer 102 is etched using the p-electrode 201 and the transparent conductive layer 104 processed into stripes as a mask to form a ridge 151.
  • a chlorine-based gas can be used for the etchant.
  • This step may be performed separately from the etching of the transparent conductive layer 104 (FIG. 12C), or may be performed at once.
  • the transparent conductive layer 104 can be formed on the upper surface of the ridge 151 with a uniform thickness, and the contact area between the transparent conductive layer 104 and the p-type layer 102 can be increased.
  • a dielectric layer 105 is formed on the p-type layer 102, the transparent conductive layer 104, and the p-electrode 201.
  • the dielectric layer 105 on the ridge 151 is removed, and the p-electrode 201 is exposed.
  • a pad electrode 106 is formed so as to cover the entire ridge 151.
  • the semiconductor element 200 can be manufactured as described above.
  • the transparent conductive layer 104 can be formed with a uniform thickness on almost the entire surface of the p-type layer 102 in the ridge 151.
  • FIG. 14 to 17 are schematic views showing a manufacturing process of the semiconductor element 200.
  • FIG. 14 to 17 are schematic views showing a manufacturing process of the semiconductor element 200.
  • a transparent conductive layer 104 is formed on a p-type layer 102 of a laminate in which an n-type layer 101, an active layer 103, and a p-type layer 102 are laminated.
  • the transparent conductive layer 104 can be formed by a method such as vapor deposition, sputtering, or plasma CVD (chemical vapor deposition). Annealing treatment may be performed after the formation of the transparent conductive layer 104. Thereby, good ohmic characteristics for the p-type layer 102 can be realized.
  • a p-electrode 201 is formed on the transparent conductive layer 104.
  • an intermediate layer 201a is formed.
  • the intermediate layer 201a can be formed by mixing the constituent elements of the transparent conductive layer 104 and the p-electrode 201 by heat treatment.
  • a photoresist is formed on the p-electrode 201 and patterned to form a photoresist R as shown in FIG.
  • the photoresist R is patterned into a stripe shape extending along the Y direction.
  • the p-electrode 201 is etched using the photoresist R as a mask, and the p-electrode 201 is processed into a stripe shape as shown in FIG. Etching can be dry etching or wet etching.
  • the transparent conductive layer 104 is etched using the p-electrode 201 processed into a stripe shape as a mask, and the transparent conductive layer 104 is processed into a stripe shape.
  • the etching dry etching or wet etching can be used, but dry etching is preferable from the viewpoint of controlling the stripe width and flatness of the processed side surface.
  • a chlorine-based gas can be used for the etchant.
  • the p-type layer 102 is etched using the p-electrode 201 and the transparent conductive layer 104 processed in a stripe shape as a mask, thereby forming a ridge 151.
  • a chlorine-based gas can be used for the etchant.
  • This step may be performed separately from the etching of the transparent conductive layer 104 (FIG. 16A) or may be performed in a lump.
  • the transparent conductive layer 104 can be formed on the upper surface of the ridge 151 with a uniform thickness, and the contact area between the transparent conductive layer 104 and the p-type layer 102 can be increased.
  • a dielectric layer 105 is formed on the p-type layer 102, the transparent conductive layer 104, and the p-electrode 201.
  • the dielectric layer 105 on the ridge 151 is removed, and the p-electrode 201 is exposed.
  • a pad electrode 106 is formed so as to cover the entire ridge 151.
  • the semiconductor element 200 can be manufactured as described above.
  • the transparent conductive layer 104 can be formed with a uniform thickness on almost the entire surface of the p-type layer 102 in the ridge 151.
  • the semiconductor elements according to the first and second embodiments of the present technology can be suitably used as a light source of a display device such as a raster scan projector.
  • this technique can also take the following structures.
  • the width of the surface of the ridge on which the transparent conductive layer is formed is defined as the first width
  • the width of the surface of the transparent conductive layer on the ridge side is defined as the second width.
  • the second width is not less than 0.99 times and not more than 1.0 times the first width
  • the third width is 0.96 to 1.0 times the second width.
  • the transparent conductive layer is uniform within a range of 90% to 110% in thickness within the range of the third width.
  • a pad electrode made of a conductive material and in contact with the transparent conductive layer;
  • the said pad electrode is formed in the junction part of the said pad electrode and the said transparent conductive layer, and has an intermediate
  • the second width is not less than 0.99 times and not more than 1.0 times the first width, When the width of the transparent conductive layer opposite to the ridge in the direction is the third width, the third width is 0.96 to 1.0 times the second width.
  • the transparent conductive layer is uniform within a range of 90% to 110% in thickness within the range of the third width.
  • Semiconductor laser is used to a laser.
  • a laminate comprising a first semiconductor layer having a first conductivity type, a second semiconductor layer having a second conductivity type, and an active layer provided between the first semiconductor layer and the second semiconductor layer Prepare Forming a transparent conductive layer made of a transparent conductive material on the first semiconductor layer; A mask structure processed into a stripe shape is formed on the transparent conductive layer, A method for manufacturing a semiconductor device, wherein at least a part of the transparent conductive layer and the first semiconductor layer is removed by etching using the mask structure as an etching mask.
  • the mask structure is made of a dielectric material.
  • a method for manufacturing a semiconductor device In the step of forming the mask structure, a dielectric layer made of a dielectric is formed on the transparent conductive layer, a photoresist is formed on the dielectric layer, the photoresist is patterned in a stripe shape, and the photo A method for manufacturing a semiconductor device, comprising etching the dielectric layer using a resist as an etching mask.
  • a photoresist is formed on the transparent conductive layer, the photoresist is patterned into a shape having a stripe-shaped opening, and a metal layer is formed on the transparent conductive layer and the photoresist. And removing the photoresist and the metal layer formed on the photoresist.
  • a method for manufacturing a semiconductor device In the step of forming the mask structure, a metal layer is formed on the transparent conductive layer, a photoresist is formed on the metal, the photoresist is patterned in a stripe shape, and the metal is formed using the photoresist as an etching mask. A method of manufacturing a semiconductor device, wherein a layer is etched.
  • a method of manufacturing a semiconductor device according to (8) above After the step of removing at least a part of the transparent conductive layer and the first semiconductor layer by etching, a pad electrode in contact with the transparent conductive layer is formed, and a heat treatment is performed at the joint between the pad electrode and the transparent conductive layer.
  • a method for manufacturing a semiconductor device comprising forming an intermediate layer in which constituent elements of the pad electrode and the transparent conductive layer are fused.
  • a method for manufacturing a semiconductor element according to (9) or (10) above After forming the metal layer on the transparent conductive layer, an intermediate layer in which the constituent elements of the metal layer and the transparent conductive layer are fused is formed at the joint between the metal layer and the transparent conductive layer by heat treatment.
  • a method for manufacturing a semiconductor device After forming the metal layer on the transparent conductive layer, an intermediate layer in which the constituent elements of the metal layer and the transparent conductive layer are fused is formed at the joint between the metal layer and the transparent conductive layer by heat treatment.
  • DESCRIPTION OF SYMBOLS 100 ... Semiconductor element 101 ... N-type layer 102 ... P-type layer 103 ... Active layer 104 ... Transparent conductive layer 105 ... Dielectric layer 106 ... Pad electrode 106a ... Intermediate layer 151 ... Ridge 200 . Semiconductor element 201 ... P electrode 201a ... Intermediate layer

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

[Problem] The present invention addresses the problem of providing: a semiconductor element wherein electrical connection between a transparent conductive layer and a semiconductor layer can be sufficiently ensured; a semiconductor laser; and a method for manufacturing the semiconductor element. [Solution] A semiconductor element relating to the present technology is provided with a first semiconductor layer, a second semiconductor layer, an active layer, and a transparent conductive layer. The first semiconductor layer has a first conductivity type, and has a stripe-shaped ridge that is formed on the surface. When the width of a ridge surface, on which the transparent conductive layer is formed, said width being in the direction orthogonal to the extending direction of the ridge, is set as a first width, and a transparent conductive layer surface on the ridge side, said width being in the above-mentioned direction, is set as a second width, the second width is 0.99-1.0 times the first width. When the transparent conductive layer surface on the reverse side of the ridge, said width being in the above-mentioned direction, is set as a third width, the third width is 0.96-1.0 times the second width, and in the range of the third width, the transparent conductive layer has a uniform thickness within a range of 90-110 %.

Description

半導体素子、半導体レーザ及び半導体素子の製造方法Semiconductor device, semiconductor laser, and manufacturing method of semiconductor device
 本技術は、半導体レーザ等の半導体素子の技術に関する。 This technology relates to the technology of semiconductor elements such as semiconductor lasers.
 半導体レーザは、再結合発光を誘導放出により増幅し、レーザ光を放出する半導体素子であり、狭い放射角と強い強度でレーザ光を出射する特徴を持つ。この半導体レーザは光通信や光ディスク用の光ピックアップ、レーザプリンタ等に応用されており、さらなる光出力の向上や消費電力の低減が望まれている。 A semiconductor laser is a semiconductor element that amplifies recombination light emission by stimulated emission and emits laser light, and emits laser light with a narrow emission angle and strong intensity. This semiconductor laser is applied to optical communication, an optical pickup for an optical disc, a laser printer, and the like, and further improvement of optical output and reduction of power consumption are desired.
 半導体レーザでは、p型半導体層とn型半導体層に挟まれた活性層の所定領域に電流を注入するため、電流狭窄構造が利用される。電流狭窄構造は、p型半導体層又はn型半導体層にストライプ状のリッジを形成することによって実現することができる。リッジ上にはITO(Indium Tin Oxide)等の導電性材料が積層され、電極と半導体層が電気的に接続される。 In a semiconductor laser, a current confinement structure is used to inject current into a predetermined region of an active layer sandwiched between a p-type semiconductor layer and an n-type semiconductor layer. The current confinement structure can be realized by forming a striped ridge in the p-type semiconductor layer or the n-type semiconductor layer. A conductive material such as ITO (IndiumITOTin Oxide) is laminated on the ridge, and the electrode and the semiconductor layer are electrically connected.
 例えば特許文献1及び2には、透明導電層を用いた半導体レーザのプロセスフローが開示されている。これらのプロセスフローでは、リッジ上にレジストを積層した後、リッジ上のレジストを除去し、このレジストをマスクとして透明導電層をリッジ上に形成する。 For example, Patent Documents 1 and 2 disclose a process flow of a semiconductor laser using a transparent conductive layer. In these process flows, after a resist is laminated on the ridge, the resist on the ridge is removed, and a transparent conductive layer is formed on the ridge using the resist as a mask.
 また、特許文献3には、導波路形状にエッチング加工された透明導電層をクラッド層の一部として用いる半導体レーザが示されている。ここでは、透明導電層のみを導波路形状に加工し、p型層を加工しないことがプロセス上の簡素点として挙げられている。 Further, Patent Document 3 discloses a semiconductor laser that uses a transparent conductive layer etched into a waveguide shape as a part of a clad layer. Here, it is mentioned as a simple point in the process that only the transparent conductive layer is processed into a waveguide shape and the p-type layer is not processed.
特開2011-014891号公報JP 2011-014891 A 特開2015-167263号公報JP2015-167263A 特開2004-289157号公報JP 2004-289157 A
 しかしながら、特許文献1又は2に記載のようなプロセスフローでは、透明導電層をリッジ端まで形成することが難しく、透明導電層と半導体層のコンタクト面積が小さくなることによる素子の電圧上昇や不均一な電流注入が生じるおそれがある。また、特許文献3に記載の構造では横方向の光閉じ込め効果を十分に得ることができない。 However, in the process flow as described in Patent Document 1 or 2, it is difficult to form the transparent conductive layer up to the ridge end, and the device voltage rise or non-uniformity due to the contact area between the transparent conductive layer and the semiconductor layer being reduced. Current injection may occur. Further, the structure described in Patent Document 3 cannot provide a sufficient lateral light confinement effect.
 以上のような事情に鑑み、本技術の目的は、透明導電層と半導体層の電気的接続を十分に確保することが可能な半導体素子、半導体レーザ及び半導体素子の製造方法を提供することにある。 In view of the circumstances as described above, an object of the present technology is to provide a semiconductor element, a semiconductor laser, and a method for manufacturing the semiconductor element that can sufficiently ensure electrical connection between the transparent conductive layer and the semiconductor layer. .
 上記目的を達成するため、本技術の一形態に係る半導体素子は、第1半導体層と、第2半導体層と、活性層と、透明導電層とを具備する。
 上記第1半導体層は、第1の導電型を有し、表面にストライプ状のリッジが形成されている。
 上記第2半導体層は、第2の導電型を有する。
 上記活性層は、上記第1半導体層と上記第2半導体層の間に設けられている。
 上記透明導電層は、透明導電性材料からなり、上記リッジ上に形成されている。
 上記リッジの上記透明導電層が形成された面の、上記リッジの延伸方向に直交する方向の幅を第1の幅とし、上記透明導電層の上記リッジ側の面の上記方向の幅を第2の幅とすると、上記第2の幅は上記第1の幅の0.99倍以上1.0倍以下であり、
 上記透明導電層の上記リッジとは反対側の面の上記方向の幅を第3の幅とすると、上記第3の幅は上記第2の幅の0.96倍以上1.0倍以下であり、
 上記透明導電層は、上記第3の幅の範囲内において厚みが90%以上110%以下の範囲で均一である。
In order to achieve the above object, a semiconductor element according to an embodiment of the present technology includes a first semiconductor layer, a second semiconductor layer, an active layer, and a transparent conductive layer.
The first semiconductor layer has a first conductivity type, and a striped ridge is formed on the surface.
The second semiconductor layer has a second conductivity type.
The active layer is provided between the first semiconductor layer and the second semiconductor layer.
The transparent conductive layer is made of a transparent conductive material and is formed on the ridge.
The width of the surface of the ridge on which the transparent conductive layer is formed is defined as the first width, and the width of the surface of the transparent conductive layer on the ridge side is defined as the second width. The second width is not less than 0.99 times and not more than 1.0 times the first width,
When the width of the transparent conductive layer opposite to the ridge in the direction is the third width, the third width is 0.96 to 1.0 times the second width. ,
The transparent conductive layer is uniform within a range of 90% to 110% in thickness within the range of the third width.
 上記構成によれば、透明導電層は、リッジにおける第1半導体層の表面のほぼ全面に均等な厚さで形成されている。これにより、透明導電層とリッジにおける第1半導体層の接触面積を広く取ることができ、半導体素子の電圧を下げることができる。また、リッジの上面全面から均一に電流を注入することができ、活性層へのキャリアの不均一注入を抑制することができるため、不均一な発光拡がりを抑制することが可能となる。 According to the above configuration, the transparent conductive layer is formed with a uniform thickness on almost the entire surface of the first semiconductor layer in the ridge. Accordingly, the contact area between the transparent conductive layer and the first semiconductor layer in the ridge can be increased, and the voltage of the semiconductor element can be reduced. Further, current can be uniformly injected from the entire upper surface of the ridge, and non-uniform injection of carriers into the active layer can be suppressed, so that non-uniform light emission spread can be suppressed.
 上記半導体素子は、導電性材料からなり、上記透明導電層に当接するパッド電極をさらに具備し、
 上記パッド電極は、上記パッド電極と上記透明導電層の接合部に形成され、上記パッド電極と上記透明導電層のそれぞれの構成元素が融合した中間層を有してもよい。
The semiconductor element is made of a conductive material, and further includes a pad electrode in contact with the transparent conductive layer,
The pad electrode may include an intermediate layer formed at a joint portion between the pad electrode and the transparent conductive layer, in which constituent elements of the pad electrode and the transparent conductive layer are fused.
 この構成によれば、中間層によってパッド電極と透明導電層の密着性を向上させることが可能である。 According to this configuration, the adhesion between the pad electrode and the transparent conductive layer can be improved by the intermediate layer.
 上記半導体素子は、金属材料からなり、上記透明導電層上に形成された金属電極をさらに具備し、
 上記金属電極は、上記金属電極と上記透明導電層の接合部に形成され、上記金属型電極と上記透明導電層のそれぞれの構成元素が融合した中間層を有してもよい。
The semiconductor element is made of a metal material, and further includes a metal electrode formed on the transparent conductive layer,
The metal electrode may include an intermediate layer formed at a joint portion between the metal electrode and the transparent conductive layer, in which respective constituent elements of the metal electrode and the transparent conductive layer are fused.
 この構成によれば、中間層によって金属電極と透明導電層の密着性を向上させることが可能である。 According to this configuration, the adhesion between the metal electrode and the transparent conductive layer can be improved by the intermediate layer.
 上記金属電極の上記透明導電層側の面の上記方向の幅を第4の幅とすると、上記第4の幅は上記第3の幅の0.99倍以上1.0倍以下であってもよい。 If the width of the metal electrode on the transparent conductive layer side in the direction is the fourth width, the fourth width may be 0.99 times or more and 1.0 times or less the third width. Good.
 上記目的を達成するため、本技術の一形態に係る半導体レーザは、第1半導体層と、第2半導体層と、活性層と、透明導電層とを具備する。
 上記第1半導体層は、第1の導電型を有し、表面にストライプ状のリッジが形成されている。
 上記第2半導体層は、第2の導電型を有する。
 上記活性層は、上記第1半導体層と上記第2半導体層の間に設けられている。
 上記透明導電層は、透明導電性材料からなり、上記リッジ上に形成されている。
 上記リッジの上記透明導電層が形成された面の、上記リッジの延伸方向に直交する方向の幅を第1の幅とし、上記透明導電層の上記リッジ側の面の上記方向の幅を第2の幅とすると、上記第2の幅は上記第1の幅の0.99倍以上1.0倍以下であり、
 上記透明導電層の上記リッジとは反対側の面の上記方向の幅を第3の幅とすると、上記第3の幅は上記第2の幅の0.96倍以上1.0倍以下であり、
 上記透明導電層は、上記第3の幅の範囲内において厚みが90%以上110%以下の範囲で均一である。
In order to achieve the above object, a semiconductor laser according to an embodiment of the present technology includes a first semiconductor layer, a second semiconductor layer, an active layer, and a transparent conductive layer.
The first semiconductor layer has a first conductivity type, and a striped ridge is formed on the surface.
The second semiconductor layer has a second conductivity type.
The active layer is provided between the first semiconductor layer and the second semiconductor layer.
The transparent conductive layer is made of a transparent conductive material and is formed on the ridge.
The width of the surface of the ridge on which the transparent conductive layer is formed is defined as the first width, and the width of the surface of the transparent conductive layer on the ridge side is defined as the second width. The second width is not less than 0.99 times and not more than 1.0 times the first width,
When the width of the transparent conductive layer opposite to the ridge in the direction is the third width, the third width is 0.96 to 1.0 times the second width. ,
The transparent conductive layer is uniform within a range of 90% to 110% in thickness within the range of the third width.
 上記目的を達成するため、本技術の一形態に係る半導体素子の製造方法は、第1の導電型を有する第1半導体層と、第2の導電型を有する第2半導体層と、上記第1半導体層と上記第2半導体層の間に設けられた活性層とを備える積層体を準備する。
 上記第1半導体層上に透明導電性材料からなる透明導電層を形成する。
 上記透明導電層上にストライプ状に加工されたマスク構造を形成する。
 上記マスク構造をエッチングマスクとして上記透明導電層と上記第1半導体層の少なくとも一部をエッチングにより除去する。
In order to achieve the above object, a method of manufacturing a semiconductor device according to an aspect of the present technology includes a first semiconductor layer having a first conductivity type, a second semiconductor layer having a second conductivity type, and the first semiconductor layer. A laminate including a semiconductor layer and an active layer provided between the second semiconductor layers is prepared.
A transparent conductive layer made of a transparent conductive material is formed on the first semiconductor layer.
A mask structure processed into a stripe shape is formed on the transparent conductive layer.
Using the mask structure as an etching mask, at least a part of the transparent conductive layer and the first semiconductor layer is removed by etching.
 この製造方法によれば、マスク構造を用いて透明導電層をエッチングするため、透明導電層をリッジにおける第1半導体層の表面のほぼ全面に均等な厚さで形成することが可能となる。 According to this manufacturing method, since the transparent conductive layer is etched using the mask structure, it is possible to form the transparent conductive layer with a uniform thickness on almost the entire surface of the first semiconductor layer in the ridge.
 上記マスク構造は誘電体からなるものであってもよい。 The mask structure may be made of a dielectric.
 上記マスク構造を形成する工程では、上記透明導電層上に誘電体からなる誘電体層を形成し、上記誘電体層上にフォトレジストを形成し、上記フォトレジストをストライプ状にパターニングし、上記フォトレジストをエッチングマスクとして上記誘電体層をエッチングしてもよい。 In the step of forming the mask structure, a dielectric layer made of a dielectric is formed on the transparent conductive layer, a photoresist is formed on the dielectric layer, the photoresist is patterned in a stripe shape, and the photo The dielectric layer may be etched using a resist as an etching mask.
 上記マスク構造は金属からなるものであってもよい。 The mask structure may be made of metal.
 上記マスク構造を形成する工程では、上記透明導電層上にフォトレジストを形成し、上記フォトレジストをストライプ状の開口を有する形状にパターニングし、上記透明導電層及び上記フォトレジト上に金属層を形成し、上記フォトレジストと上記フォトレジスト上に形成された金属層を除去してもよい。 In the step of forming the mask structure, a photoresist is formed on the transparent conductive layer, the photoresist is patterned into a shape having a stripe-shaped opening, and a metal layer is formed on the transparent conductive layer and the photoresist. The photoresist and the metal layer formed on the photoresist may be removed.
 上記マスク構造を形成する工程では、上記透明導電層上に金属層を形成し、上記金属上にフォトレジストを形成し、上記フォトレジストをストライプ状にパターニングし、上記フォトレジストをエッチングマスクとして上記金属層をエッチングしてもよい。 In the step of forming the mask structure, a metal layer is formed on the transparent conductive layer, a photoresist is formed on the metal, the photoresist is patterned in a stripe shape, and the metal is formed using the photoresist as an etching mask. The layer may be etched.
 上記透明導電層と上記第1半導体層の少なくとも一部をエッチングにより除去する工程の後、上記透明導電層に接触するパッド電極を形成し、熱処理によって上記パッド電極と上記透明導電層の接合部に、上記パッド電極と上記透明導電層のそれぞれの構成元素が融合した中間層を形成してもよい。 After the step of removing at least a part of the transparent conductive layer and the first semiconductor layer by etching, a pad electrode in contact with the transparent conductive layer is formed, and a heat treatment is performed at the joint between the pad electrode and the transparent conductive layer. An intermediate layer in which the constituent elements of the pad electrode and the transparent conductive layer are fused may be formed.
 上記透明導電層上に上記金属層を形成した後、熱処理によって上記金属層と上記透明導電層の接合部に、上記金属層と上記透明導電層のそれぞれの構成元素が融合した中間層を形成してもよい。 After forming the metal layer on the transparent conductive layer, an intermediate layer in which the constituent elements of the metal layer and the transparent conductive layer are fused is formed at the joint between the metal layer and the transparent conductive layer by heat treatment. May be.
 以上、本技術によれば、透明導電層と半導体層の電気的接続を十分に確保することが可能な半導体素子、半導体レーザ及び半導体素子の製造方法を提供することができる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。 As described above, according to the present technology, it is possible to provide a semiconductor element, a semiconductor laser, and a method for manufacturing a semiconductor element that can sufficiently ensure electrical connection between the transparent conductive layer and the semiconductor layer. Note that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
本技術の第1の実施形態に係る半導体素子の斜視図である。It is a perspective view of a semiconductor device concerning a 1st embodiment of this art. 同半導体素子の平面図である。It is a top view of the semiconductor element. 同半導体素子の断面図である。It is sectional drawing of the same semiconductor element. 同半導体素子が備える透明導電層の形状を示す模式図である。It is a schematic diagram which shows the shape of the transparent conductive layer with which the semiconductor element is provided. 同半導体素子の製造プロセスを示す模式図である。It is a schematic diagram which shows the manufacturing process of the same semiconductor element. 同半導体素子の製造プロセスを示す模式図である。It is a schematic diagram which shows the manufacturing process of the same semiconductor element. 同半導体素子の製造プロセスを示す模式図である。It is a schematic diagram which shows the manufacturing process of the same semiconductor element. 同半導体素子の製造プロセスを示す模式図である。It is a schematic diagram which shows the manufacturing process of the same semiconductor element. 本技術の第2の実施形態に係る半導体素子の断面図である。It is sectional drawing of the semiconductor element which concerns on the 2nd Embodiment of this technique. 同半導体素子が備えるp電極の形状を示す模式図である。It is a schematic diagram which shows the shape of the p electrode with which the semiconductor element is provided. 同半導体素子の第1の製造プロセスを示す模式図である。It is a schematic diagram which shows the 1st manufacturing process of the same semiconductor element. 同半導体素子の第1の製造プロセスを示す模式図である。It is a schematic diagram which shows the 1st manufacturing process of the same semiconductor element. 同半導体素子の第1の製造プロセスを示す模式図である。It is a schematic diagram which shows the 1st manufacturing process of the same semiconductor element. 同半導体素子の第2の製造プロセスを示す模式図である。It is a schematic diagram which shows the 2nd manufacturing process of the same semiconductor element. 同半導体素子の第2の製造プロセスを示す模式図である。It is a schematic diagram which shows the 2nd manufacturing process of the same semiconductor element. 同半導体素子の第2の製造プロセスを示す模式図である。It is a schematic diagram which shows the 2nd manufacturing process of the same semiconductor element. 同半導体素子の第2の製造プロセスを示す模式図である。It is a schematic diagram which shows the 2nd manufacturing process of the same semiconductor element.
 (第1の実施形態)
 本技術の第1の実施形態に係る半導体素子について説明する。
(First embodiment)
A semiconductor device according to the first embodiment of the present technology will be described.
 [半導体素子の構造]
 図1は、第1の実施形態に係る半導体素子100を示す模式的な斜視図である。図2はその平面図である。図3は図2におけるC-C断面図である。この半導体素子100は、p型の導電層にリッジ151を有するリッジ型の半導体レーザである。なお、半導体素子100は、半導体レーザに限られず、SLD(Super Luminescent Diode)やLED(light emitting diode)、その他の半導体素子であってもよい。
[Structure of semiconductor element]
FIG. 1 is a schematic perspective view showing a semiconductor element 100 according to the first embodiment. FIG. 2 is a plan view thereof. 3 is a cross-sectional view taken along the line CC in FIG. The semiconductor element 100 is a ridge type semiconductor laser having a ridge 151 in a p type conductive layer. The semiconductor element 100 is not limited to a semiconductor laser, and may be an SLD (Super Luminescent Diode), an LED (light emitting diode), or other semiconductor elements.
 半導体素子100は、図3に示すように、n型層101、p型層102、活性層103、透明導電層104、誘電体層105及びパッド電極106を備える。n型層101、活性層103及びp型層102はこの順で積層され、p型層102によってストライプ状のリッジ151が形成されている。なお、図1及び図2ではパッド電極106及び誘電体層105の図示は省略されている。図2に示すように、半導体素子100は光出射端面152と、光出射端面152に対して反対側の端面である後端面153を備える。 As shown in FIG. 3, the semiconductor element 100 includes an n-type layer 101, a p-type layer 102, an active layer 103, a transparent conductive layer 104, a dielectric layer 105, and a pad electrode 106. The n-type layer 101, the active layer 103, and the p-type layer 102 are stacked in this order, and the p-type layer 102 forms a striped ridge 151. 1 and 2, the pad electrode 106 and the dielectric layer 105 are not shown. As shown in FIG. 2, the semiconductor element 100 includes a light emitting end face 152 and a rear end face 153 that is an end face opposite to the light emitting end face 152.
 図2に示すようにリッジ151は、後端面153から光出射端面152にかけて直線状に構成されている。以下、リッジ151が延伸する方向をY方向とする。なお、リッジ151は必ずしも直線状でなくてもよく、曲線状であってもよい。 As shown in FIG. 2, the ridge 151 is linearly formed from the rear end face 153 to the light emitting end face 152. Hereinafter, the direction in which the ridge 151 extends is defined as the Y direction. Note that the ridge 151 does not necessarily have to be linear, and may be curved.
 n型層101は、AlN、GaN、AlGaN、AlInGaN又はInN等のIII-V族窒化物半導体からなり、具体的にはInAlGa1-y-zN(0≦y、0≦z、y+z≦1)、又はAlxGa1-xN(0<x<1)等の窒化ガリウム系化合物半導体が好適である。n型層101の構成材料にはSi又はGe等のn型不純物がドープされており、n型の導電型を有する。n型層101は、サファイア、シリコン、ZnO、GaAs、GaN、InGaN、AlInGaN、AlGaN、AlN又はInN等からなる図示しない基板上に形成されているものとすることができる。 The n-type layer 101 is made of a group III-V nitride semiconductor such as AlN, GaN, AlGaN, AlInGaN, or InN, and specifically, In y Al z Ga 1-yz N (0 ≦ y, 0 ≦ z). , Y + z ≦ 1) or Al x Ga 1-x N (0 <x <1) or the like is preferable. The constituent material of the n-type layer 101 is doped with an n-type impurity such as Si or Ge, and has an n-type conductivity type. The n-type layer 101 can be formed on a substrate (not shown) made of sapphire, silicon, ZnO, GaAs, GaN, InGaN, AlInGaN, AlGaN, AlN, InN, or the like.
 p型層102は、電流狭窄構造を形成する。具体的には、リッジ151の構造により、p型層102から活性層103までの電流の注入領域が狭窄するように構成されている。これにより、活性層103におけるリッジ151の付近に、リッジ151の延伸方向(Y方向)に沿った光導波路が形成される。 The p-type layer 102 forms a current confinement structure. Specifically, the structure of the ridge 151 is configured such that the current injection region from the p-type layer 102 to the active layer 103 is narrowed. As a result, an optical waveguide along the extending direction (Y direction) of the ridge 151 is formed near the ridge 151 in the active layer 103.
 p型層102はAlN、GaN、AlGaN、AlInGaN又はInN等のIII-V族窒化物半導体からなり、具体的にはInAlGa1-y-zN(0≦y、0≦z、y+z≦1)、又はAlxGa1-xN(0<x<1)等の窒化ガリウム系化合物半導体が好適である。p型層102の構成材料にはMg又はZn等のp型不純物がドープされており、p型の導電型を有する The p-type layer 102 is made of a group III-V nitride semiconductor such as AlN, GaN, AlGaN, AlInGaN, or InN. Specifically, In y Al z Ga 1-yz N (0 ≦ y, 0 ≦ z, A gallium nitride compound semiconductor such as y + z ≦ 1) or Al x Ga 1-x N (0 <x <1) is preferable. The constituent material of the p-type layer 102 is doped with a p-type impurity such as Mg or Zn and has a p-type conductivity type.
 活性層103はn型層101及びp型層102の間に設けられている。活性層103の材料は特に限定されないが、半導体素子100の発光色は活性層103の材料によって異なる。例えば、活性層103がAlInGaPからなる場合、発光波長550~900nm(実用域630~680nm)の赤色光が生成される。また、活性層103がAlInGaNからなる場合、発光波長400~1000nm(実用域400~550nm)の青紫色から緑色の光が生成される。 The active layer 103 is provided between the n-type layer 101 and the p-type layer 102. The material of the active layer 103 is not particularly limited, but the emission color of the semiconductor element 100 varies depending on the material of the active layer 103. For example, when the active layer 103 is made of AlInGaP, red light having an emission wavelength of 550 to 900 nm (practical range of 630 to 680 nm) is generated. When the active layer 103 is made of AlInGaN, blue-violet to green light having an emission wavelength of 400 to 1000 nm (practical range of 400 to 550 nm) is generated.
 この他にも活性層103の材料としてAlGaN(発光波長紫外域~400nm)、AlGaAs(発光波長750~850nm、赤外域)、InGaAs(発光波長800~980nm、赤外域)、InGaAsP(発光波長1.2~1.6μm、赤外域)等が挙げられる。 In addition, as the material of the active layer 103, AlGaN (emission wavelength ultraviolet region to 400 nm), AlGaAs (emission wavelength 750 to 850 nm, infrared region), InGaAs (emission wavelength 800 to 980 nm, infrared region), InGaAsP (emission wavelength 1.2 to 1.6 μm, infrared region) and the like.
 活性層103は周囲の層(n型層101及びp型層102)よりバンドギャップが小さく、量子井戸を形成する。p型層102とn型層101の間に電流が印加されると、伝導帯(CB)に存在する電子が量子井戸のバンドギャップを介して価電子帯(VB)の正孔と再結合し、発光を生じる。 The active layer 103 has a smaller band gap than the surrounding layers (n-type layer 101 and p-type layer 102) and forms a quantum well. When a current is applied between the p-type layer 102 and the n-type layer 101, electrons existing in the conduction band (CB) recombine with holes in the valence band (VB) through the band gap of the quantum well. Emits light.
 透明導電層104は、リッジ151上に形成され、パッド電極106とp型層102を電気的に接続する。透明導電層104は、ITO(Indium Tin Oxide)、ZnO又はIGZO(Indium Gallium Zinc Oxide)等の光透過性を有する導電性材料からなる。このうち、ITOはp型窒化物半導体へのオーミック接触や光吸収の点で特に好適である。透明導電層104の詳細については後述する。 The transparent conductive layer 104 is formed on the ridge 151 and electrically connects the pad electrode 106 and the p-type layer 102. The transparent conductive layer 104 is made of a light-transmitting conductive material such as ITO (Indium Tin Oxide), ZnO, or IGZO (Indium Gallium Zinc Oxide). Among these, ITO is particularly suitable in terms of ohmic contact to the p-type nitride semiconductor and light absorption. Details of the transparent conductive layer 104 will be described later.
 誘電体層105は、p型層102上とリッジ151の側面に形成され、パッド電極106とp型層102を絶縁する。誘電体層105の材料は特に限定されないが、リッジ151内に効率的に光を閉じ込めるため、p型層102よりも屈折率が小さい材料が好適であり、例えばSiOとすることができる。 The dielectric layer 105 is formed on the p-type layer 102 and on the side surface of the ridge 151, and insulates the pad electrode 106 and the p-type layer 102. The material of the dielectric layer 105 is not particularly limited, but a material having a refractive index smaller than that of the p-type layer 102 is suitable for efficiently confining light in the ridge 151, and for example, SiO 2 can be used.
 パッド電極106は、透明導電層104及び誘電体層105上においてリッジ151を覆うように形成される。パッド電極106は、金属からなる。また、パッド電極106は複数種の材料から構成されてもよい。例えば透明導電層104が酸化物からなる場合、透明導電層104に接する部分をTi、Ni又はAl等の酸化物を形成しやすい材料とすることでパッド電極106と透明導電層104の密着性を向上させることができる。例えばパッド電極106はTi/Pt/Auの積層構造とすることができる。 The pad electrode 106 is formed on the transparent conductive layer 104 and the dielectric layer 105 so as to cover the ridge 151. The pad electrode 106 is made of metal. The pad electrode 106 may be composed of a plurality of types of materials. For example, when the transparent conductive layer 104 is made of an oxide, the adhesiveness between the pad electrode 106 and the transparent conductive layer 104 can be improved by using a material that easily forms an oxide such as Ti, Ni, or Al for the portion in contact with the transparent conductive layer 104. Can be improved. For example, the pad electrode 106 can have a laminated structure of Ti / Pt / Au.
 図3に示すように、パッド電極106には中間層106aが形成されている。中間層106aは、透明導電層104とパッド電極106の構成元素が融合した層である。例えば透明導電層104がITOからなり、パッド電極106がTi/Pt/Aからなる場合、中間層106aはIn、Sn、O及びTiが混晶した構造となる。中間層106aによって透明導電層104とパッド電極106の密着性を向上させることができる。 As shown in FIG. 3, an intermediate layer 106 a is formed on the pad electrode 106. The intermediate layer 106 a is a layer in which the constituent elements of the transparent conductive layer 104 and the pad electrode 106 are fused. For example, when the transparent conductive layer 104 is made of ITO and the pad electrode 106 is made of Ti / Pt / A, the intermediate layer 106a has a structure in which In, Sn, O, and Ti are mixed. The adhesion between the transparent conductive layer 104 and the pad electrode 106 can be improved by the intermediate layer 106a.
 図2に示すように、光出射端面152には低反射ミラー膜154が設けられ、その反対側の後端面153には高反射ミラー膜155が設けられている。 As shown in FIG. 2, a low reflection mirror film 154 is provided on the light emitting end face 152, and a high reflection mirror film 155 is provided on the rear end face 153 on the opposite side.
 p型層102とn型層101の間に電流を印加すると、後端面153近傍の活性層103で自然放出光が生じる。自然放出光は、光導波路を光出射端面152に向かって進行しながら誘導放出により増幅される。自然放出光のうち後端面153側に向かう光は、高反射ミラー膜155によって反射され、光出射端面152に向かって進行しながら増幅される。増幅された光は低反射ミラー膜154を介して光出射端面152から出射される。図1及び図2に半導体素子100の出射光Lを示す。 When a current is applied between the p-type layer 102 and the n-type layer 101, spontaneous emission light is generated in the active layer 103 in the vicinity of the rear end face 153. Spontaneous emission light is amplified by stimulated emission while traveling through the optical waveguide toward the light exit end face 152. Of the spontaneous emission light, the light traveling toward the rear end face 153 is reflected by the high reflection mirror film 155 and amplified while traveling toward the light exit end face 152. The amplified light is emitted from the light emission end face 152 through the low reflection mirror film 154. 1 and 2 show the emitted light L of the semiconductor element 100. FIG.
 なお、後端面153には高反射ミラー膜155に変えて低反射ミラー膜を設けてもよい。この場合、出射光は半導体素子100の両端から出射される。 Note that a low reflection mirror film may be provided on the rear end face 153 instead of the high reflection mirror film 155. In this case, the emitted light is emitted from both ends of the semiconductor element 100.
 半導体素子100は半導体レーザとして利用することができるが、他の光源で発生した光を増幅するための増幅器としても利用することができる。この場合には高反射ミラー膜155に変えて無反射膜が設けられる。他の光源で発生した光は当該無反射膜を介して光導波路に入射し、光導波路を進行しながら増幅される。 The semiconductor element 100 can be used as a semiconductor laser, but can also be used as an amplifier for amplifying light generated by another light source. In this case, an antireflection film is provided in place of the high reflection mirror film 155. Light generated by another light source enters the optical waveguide through the antireflective film and is amplified while traveling through the optical waveguide.
 [透明導電層について]
 半導体素子100が備える透明導電層104は所定の形状を備える。図4は、透明導電層104の形状を示す模式図である。
[About transparent conductive layer]
The transparent conductive layer 104 included in the semiconductor element 100 has a predetermined shape. FIG. 4 is a schematic diagram showing the shape of the transparent conductive layer 104.
 同図に示すように、リッジ151におけるp型層102の上面の、リッジ151の延伸方向(Y方向)に直交する方向(X方向)の幅をD1とし、透明導電層104のp型層102側の面のX方向の幅を幅D2、p型層102とは反対側の面のX方向の幅をD3とする。 As shown in the figure, the width of the upper surface of the p-type layer 102 in the ridge 151 in the direction (X direction) orthogonal to the extending direction (Y direction) of the ridge 151 is D1, and the p-type layer 102 of the transparent conductive layer 104 is formed. The width in the X direction of the surface on the side is defined as a width D2, and the width in the X direction on the surface opposite to the p-type layer 102 is defined as D3.
 このとき、D1、D2及びD3は以下の[式1]及び[式2]で表される関係を有する。 At this time, D1, D2, and D3 have a relationship represented by the following [Formula 1] and [Formula 2].
 0.99×D1≦D2≦D1  [式1]
 0.96×D2≦D3≦D2  [式2]
0.99 × D1 ≦ D2 ≦ D1 [Formula 1]
0.96 × D2 ≦ D3 ≦ D2 [Formula 2]
 さらに、D3の範囲内において、透明導電層104の厚み(Z方向)は90%以上110%以下の範囲で均一である。 Furthermore, within the range of D3, the thickness (Z direction) of the transparent conductive layer 104 is uniform in the range of 90% to 110%.
 このように、透明導電層104は、リッジ151におけるp型層102表面のほぼ全面に均等な厚さで積層されている。このような透明導電層104の形状は、後述する製造方法によって実現することができる。 Thus, the transparent conductive layer 104 is laminated with a uniform thickness on almost the entire surface of the p-type layer 102 in the ridge 151. Such a shape of the transparent conductive layer 104 can be realized by a manufacturing method described later.
 これにより、透明導電層104とリッジ151におけるp型層102の接触面積を広く取ることができ、半導体素子100の電圧を下げることができる。また、リッジ151の上面全面から均一に電流を注入することができ、活性層103へのキャリアの不均一注入を抑制することができるため、不均一な発光拡がりを抑制することが可能となる。 Thereby, the contact area between the transparent conductive layer 104 and the p-type layer 102 in the ridge 151 can be increased, and the voltage of the semiconductor element 100 can be lowered. Further, current can be uniformly injected from the entire upper surface of the ridge 151, and non-uniform injection of carriers into the active layer 103 can be suppressed, so that non-uniform light emission spread can be suppressed.
 半導体素子100は以上のような構成を有する。なお、上記説明ではp型層102においてリッジ151が形成されるものとしたが、p型層102、活性層103、n型層101の順で積層し、n型層101にリッジを形成してもよい。 The semiconductor element 100 has the above configuration. In the above description, the ridge 151 is formed in the p-type layer 102. However, the p-type layer 102, the active layer 103, and the n-type layer 101 are stacked in this order, and a ridge is formed in the n-type layer 101. Also good.
 [半導体素子の製造方法]
 半導体素子100の製造方法について説明する。図5から図8は半導体素子100の製造プロセスを示す模式図である。
[Method for Manufacturing Semiconductor Device]
A method for manufacturing the semiconductor element 100 will be described. 5 to 8 are schematic views showing a manufacturing process of the semiconductor element 100. FIG.
 図5(a)に示すように、n型層101、活性層103及びp型層102が積層された積層体のp型層102上に透明導電層104を形成する。透明導電層104は、蒸着、スパッタ又はプラズマCVD(chemical vapor deposition)等の方法で形成することができる。透明導電層104の形成後にアニール処理を行ってもよい。これにより、p型層102への良好なオーミック特性を実現することができる。 As shown in FIG. 5A, a transparent conductive layer 104 is formed on a p-type layer 102 of a laminate in which an n-type layer 101, an active layer 103, and a p-type layer 102 are laminated. The transparent conductive layer 104 can be formed by a method such as vapor deposition, sputtering, or plasma CVD (chemical vapor deposition). Annealing treatment may be performed after the formation of the transparent conductive layer 104. Thereby, good ohmic characteristics for the p-type layer 102 can be realized.
 続いて、図5(b)に示すように透明導電層104上に誘電体層156を形成する。誘電体層156の種類は特に限定されないが、成膜や加工のしやすさからSiOが好適である。誘電体層156は蒸着、スパッタ又はプラズマCVD等の方法で形成することができる。 Subsequently, a dielectric layer 156 is formed on the transparent conductive layer 104 as shown in FIG. The type of the dielectric layer 156 is not particularly limited, but SiO 2 is preferable because it is easy to form and process. The dielectric layer 156 can be formed by a method such as vapor deposition, sputtering, or plasma CVD.
 続いて、誘電体層156上にフォトレジストを形成し、パターニングすることによって図5(c)に示すようにフォトレジストRを形成する。フォトレジストRはY方向に沿って延伸するストライプ形状にパターニングされている。 Subsequently, a photoresist is formed on the dielectric layer 156 and patterned to form a photoresist R as shown in FIG. The photoresist R is patterned into a stripe shape extending along the Y direction.
 続いて、フォトレジストRをマスクとして誘電体層156をエッチングし、図6(a)に示すように誘電体層156をストライプ状に加工する。エッチングはドライエッチングやウェットエッチングを利用することができる。エッチャントには例えばフッ素系ガスを用いることができる。 Subsequently, the dielectric layer 156 is etched using the photoresist R as a mask, and the dielectric layer 156 is processed into a stripe shape as shown in FIG. Etching can be dry etching or wet etching. For the etchant, for example, a fluorine-based gas can be used.
 続いて、図6(b)に示すようにフォトレジストRを除去する。 Subsequently, the photoresist R is removed as shown in FIG.
 続いて、図6(c)に示すように、ストライプ状に加工された誘電体層156をマスクとして透明導電層104をエッチングし、透明導電層104をストライプ状に加工する。エッチングはドライエッチングやウェットエッチングを利用することができるが、ストライプ幅の制御や加工された側面の平坦性の観点からドライエッチングが好適である。エッチャントには例えば塩素系ガスを用いることができる。 Subsequently, as shown in FIG. 6C, the transparent conductive layer 104 is etched using the dielectric layer 156 processed into a stripe shape as a mask, and the transparent conductive layer 104 is processed into a stripe shape. As the etching, dry etching or wet etching can be used, but dry etching is preferable from the viewpoint of controlling the stripe width and flatness of the processed side surface. For example, a chlorine-based gas can be used for the etchant.
 続いて、図7(a)に示すように、ストライプ状に加工された誘電体層156及び透明導電層104をマスクとしてp型層102の少なくとも一部をエッチングし、リッジ151を形成する。エッチャントには例えば塩素系ガスを用いることができる。なお、この工程は、透明導電層104のエッチング(図6(c))とは別々に行ってもよく、一括で行ってもよい。この方法でリッジ151を形成することにより、透明導電層104をリッジ151の上面に均一な厚みで形成することができ、透明導電層104とp型層102の接触面積を広くすることができる。 Subsequently, as shown in FIG. 7A, at least a part of the p-type layer 102 is etched using the dielectric layer 156 and the transparent conductive layer 104 processed into a stripe shape as a mask, thereby forming a ridge 151. For example, a chlorine-based gas can be used for the etchant. This step may be performed separately from the etching of the transparent conductive layer 104 (FIG. 6C), or may be performed at once. By forming the ridge 151 by this method, the transparent conductive layer 104 can be formed on the upper surface of the ridge 151 with a uniform thickness, and the contact area between the transparent conductive layer 104 and the p-type layer 102 can be increased.
 続いて、図7(b)に示すように、p型層102、透明導電層104及び誘電体層156上に誘電体層105を形成する。 Subsequently, as shown in FIG. 7B, the dielectric layer 105 is formed on the p-type layer 102, the transparent conductive layer 104, and the dielectric layer 156.
 続いて、図7(c)に示すように、リッジ151上の誘電体層105を除去し、透明導電層104を露出させる。 Subsequently, as shown in FIG. 7C, the dielectric layer 105 on the ridge 151 is removed, and the transparent conductive layer 104 is exposed.
 続いて、図8に示すように、リッジ151の全体を覆うようにパッド電極106を形成する。 Subsequently, as shown in FIG. 8, a pad electrode 106 is formed so as to cover the entire ridge 151.
 続いて、図3に示すように中間層106aを形成する。中間層106aは熱処理によって透明導電層104とパッド電極106の構成元素を混合させることによって形成することができる。 Subsequently, an intermediate layer 106a is formed as shown in FIG. The intermediate layer 106a can be formed by mixing the constituent elements of the transparent conductive layer 104 and the pad electrode 106 by heat treatment.
 半導体素子100は以上のようにして製造することが可能である。この製造方法ではリッジ151におけるp型層102表面のほぼ全面に均等な厚さで透明導電層104を形成することができる。 The semiconductor element 100 can be manufactured as described above. In this manufacturing method, the transparent conductive layer 104 can be formed with a uniform thickness on almost the entire surface of the p-type layer 102 in the ridge 151.
 (第2の実施形態)
 本技術の第2の実施形態に係る半導体素子について説明する。
(Second Embodiment)
A semiconductor device according to a second embodiment of the present technology will be described.
 [半導体素子の構造]
 図9は、第2の実施形態に係る半導体素子200の平面図である。半導体素子200は、第1の実施形態に係る半導体素子100に対してp電極201が設けられている点が異なる。他の構成については半導体素子100と同様であるので同一の符号を付し、説明を省略する。
[Structure of semiconductor element]
FIG. 9 is a plan view of a semiconductor element 200 according to the second embodiment. The semiconductor element 200 is different from the semiconductor element 100 according to the first embodiment in that a p-electrode 201 is provided. Since other configurations are the same as those of the semiconductor element 100, the same reference numerals are given and description thereof is omitted.
 p電極201は透明導電層104とパッド電極106の間に設けられている。p電極201は金属からなる。また、p電極201は複数種の材料から構成されてもよい。例えば透明導電層104が酸化物からなる場合、透明導電層104に接する部分をTi、Ni又はAl等の酸化物を形成しやすい材料とすることでp電極201と透明導電層104の密着性を向上させることができる。例えばp電極201はTi/Pt/Auの積層構造とすることができる。 The p electrode 201 is provided between the transparent conductive layer 104 and the pad electrode 106. The p electrode 201 is made of metal. Further, the p-electrode 201 may be composed of a plurality of types of materials. For example, in the case where the transparent conductive layer 104 is made of an oxide, the adhesion between the p electrode 201 and the transparent conductive layer 104 can be improved by using a material that easily forms an oxide such as Ti, Ni, or Al for the portion in contact with the transparent conductive layer 104. Can be improved. For example, the p-electrode 201 can have a laminated structure of Ti / Pt / Au.
 図9に示すように、p電極201には中間層201aが形成されている。中間層201aは、透明導電層104とp電極201の構成元素が融合した層である。例えば透明導電層104がITOからなり、p電極201がTi/Pt/Aからなる場合、中間層201aはIn、Sn、O及びTiが混晶した構造となる。中間層201aによって透明導電層104とp電極201の密着性を向上させることができる。 As shown in FIG. 9, an intermediate layer 201 a is formed on the p-electrode 201. The intermediate layer 201a is a layer in which the constituent elements of the transparent conductive layer 104 and the p-electrode 201 are fused. For example, when the transparent conductive layer 104 is made of ITO and the p-electrode 201 is made of Ti / Pt / A, the intermediate layer 201a has a mixed crystal structure of In, Sn, O, and Ti. The adhesion between the transparent conductive layer 104 and the p-electrode 201 can be improved by the intermediate layer 201a.
 図10は、p電極201の形状を示す模式図である。同図に示すように、p電極201の透明導電層104側の面の、リッジ151の延伸方向(Y方向)に直交する方向(X方向)の幅をD4とする。D1、D2及びD3については第1の実施形態と同様である。 FIG. 10 is a schematic diagram showing the shape of the p-electrode 201. As shown in the figure, the width of the surface on the transparent conductive layer 104 side of the p-electrode 201 in the direction (X direction) orthogonal to the extending direction (Y direction) of the ridge 151 is D4. D1, D2 and D3 are the same as in the first embodiment.
 このとき、D3及びD4は以下の[式3]で表される関係を有する。 At this time, D3 and D4 have the relationship represented by the following [Formula 3].
 0.99×D3≦D4≦1.0×D3  [式3] 0.99 × D3 ≦ D4 ≦ 1.0 × D3 [Formula 3]
 半導体素子200は以上のような構成を有する。なお、上記説明ではp型層102においてリッジ151が形成されるものとしたが、p型層102、活性層103、n型層101の順で積層し、n型層101にリッジを形成してもよい。この場合にはp電極201に代えてn電極が設けられる。n電極においても透明導電層とn電極の構成元素が融合した中間層が設けられてもよい。 The semiconductor element 200 has the above configuration. In the above description, the ridge 151 is formed in the p-type layer 102. However, the p-type layer 102, the active layer 103, and the n-type layer 101 are stacked in this order, and a ridge is formed in the n-type layer 101. Also good. In this case, an n electrode is provided in place of the p electrode 201. An intermediate layer in which the transparent conductive layer and the constituent elements of the n electrode are fused may also be provided in the n electrode.
 [半導体素子の製造方法1]
 半導体素子200の製造方法1について説明する。図11から図13は半導体素子200の製造プロセスを示す模式図である。
[Manufacturing Method 1 of Semiconductor Element]
A manufacturing method 1 of the semiconductor element 200 will be described. 11 to 13 are schematic views showing a manufacturing process of the semiconductor element 200.
 図11(a)に示すように、n型層101、活性層103及びp型層102が積層された積層体のp型層102上に透明導電層104を形成する。透明導電層104は、蒸着、スパッタ又はプラズマCVD(chemical vapor deposition)等の方法で形成することができる。透明導電層104の形成後にアニール処理を行ってもよい。これにより、p型層102への良好なオーミック特性を実現することができる。 As shown in FIG. 11A, a transparent conductive layer 104 is formed on a p-type layer 102 of a laminate in which an n-type layer 101, an active layer 103, and a p-type layer 102 are laminated. The transparent conductive layer 104 can be formed by a method such as vapor deposition, sputtering, or plasma CVD (chemical vapor deposition). Annealing treatment may be performed after the formation of the transparent conductive layer 104. Thereby, good ohmic characteristics for the p-type layer 102 can be realized.
 続いて、透明導電層104上にフォトレジストを形成し、パターニングすることによって図11(b)に示すようにフォトレジストRを形成する。フォトレジストRにはY方向に沿って延伸するストライプ形状の開口が形成されている。 Subsequently, a photoresist is formed on the transparent conductive layer 104 and patterned to form a photoresist R as shown in FIG. The photoresist R has a stripe-shaped opening extending along the Y direction.
 続いて、図11(c)に示すように、フォトレジストR及び透明導電層104上にp電極201を形成する。 Subsequently, as shown in FIG. 11C, a p-electrode 201 is formed on the photoresist R and the transparent conductive layer 104.
 続いて、図12(a)に示すように、フォトレジストRを除去する。これにより、フォトレジストR上に形成されたp電極201も除去され、透明導電層104上にストライプ状のp電極201が形成される。 Subsequently, as shown in FIG. 12A, the photoresist R is removed. As a result, the p-electrode 201 formed on the photoresist R is also removed, and a striped p-electrode 201 is formed on the transparent conductive layer 104.
 続いて、図12(b)に示すように、中間層201aを形成する。中間層201aは熱処理によって透明導電層104とp電極201の構成元素を混合させることによって形成することができる。 Subsequently, as shown in FIG. 12B, an intermediate layer 201a is formed. The intermediate layer 201a can be formed by mixing the constituent elements of the transparent conductive layer 104 and the p-electrode 201 by heat treatment.
 続いて、図12(c)に示すように、ストライプ状に加工されたp電極201をマスクとして透明導電層104をエッチングし、透明導電層104をストライプ状に加工する。エッチングはドライエッチングやウェットエッチングを利用することができるが、ストライプ幅の制御や加工された側面の平坦性の観点からドライエッチングが好適である。エッチャントには例えば塩素系ガスを用いることができる。 Subsequently, as shown in FIG. 12C, the transparent conductive layer 104 is etched using the p-electrode 201 processed into a stripe shape as a mask, and the transparent conductive layer 104 is processed into a stripe shape. As the etching, dry etching or wet etching can be used, but dry etching is preferable from the viewpoint of controlling the stripe width and flatness of the processed side surface. For example, a chlorine-based gas can be used for the etchant.
 続いて、図13(a)に示すように、ストライプ状に加工されたp電極201及び透明導電層104をマスクとしてp型層102の少なくとも一部をエッチングし、リッジ151を形成する。エッチャントには例えば塩素系ガスを用いることができる。なお、この工程は、透明導電層104のエッチング(図12(c))とは別々に行ってもよく、一括で行ってもよい。この方法でリッジ151を形成することにより、透明導電層104をリッジ151の上面に均一な厚みで形成することができ、透明導電層104とp型層102の接触面積を広くすることができる。 Subsequently, as shown in FIG. 13A, at least a part of the p-type layer 102 is etched using the p-electrode 201 and the transparent conductive layer 104 processed into stripes as a mask to form a ridge 151. For example, a chlorine-based gas can be used for the etchant. This step may be performed separately from the etching of the transparent conductive layer 104 (FIG. 12C), or may be performed at once. By forming the ridge 151 by this method, the transparent conductive layer 104 can be formed on the upper surface of the ridge 151 with a uniform thickness, and the contact area between the transparent conductive layer 104 and the p-type layer 102 can be increased.
 続いて、図13(b)に示すように、p型層102、透明導電層104及びp電極201上に誘電体層105を形成する。 Subsequently, as shown in FIG. 13B, a dielectric layer 105 is formed on the p-type layer 102, the transparent conductive layer 104, and the p-electrode 201.
 続いて、図13(c)に示すように、リッジ151上の誘電体層105を除去し、p電極201を露出させる。 Subsequently, as shown in FIG. 13C, the dielectric layer 105 on the ridge 151 is removed, and the p-electrode 201 is exposed.
 続いて、図9に示すように、リッジ151の全体を覆うようにパッド電極106を形成する。 Subsequently, as shown in FIG. 9, a pad electrode 106 is formed so as to cover the entire ridge 151.
 半導体素子200は以上のようにして製造することが可能である。この製造方法ではリッジ151におけるp型層102表面のほぼ全面に均等な厚さで透明導電層104を形成することができる。 The semiconductor element 200 can be manufactured as described above. In this manufacturing method, the transparent conductive layer 104 can be formed with a uniform thickness on almost the entire surface of the p-type layer 102 in the ridge 151.
 [半導体素子の製造方法2]
 半導体素子200の製造方法2について説明する。図14から図17は半導体素子200の製造プロセスを示す模式図である。
[Semiconductor Element Manufacturing Method 2]
A method 2 for manufacturing the semiconductor element 200 will be described. 14 to 17 are schematic views showing a manufacturing process of the semiconductor element 200. FIG.
 図14(a)に示すように、n型層101、活性層103及びp型層102が積層された積層体のp型層102上に透明導電層104を形成する。透明導電層104は、蒸着、スパッタ又はプラズマCVD(chemical vapor deposition)等の方法で形成することができる。透明導電層104の形成後にアニール処理を行ってもよい。これにより、p型層102への良好なオーミック特性を実現することができる。 As shown in FIG. 14A, a transparent conductive layer 104 is formed on a p-type layer 102 of a laminate in which an n-type layer 101, an active layer 103, and a p-type layer 102 are laminated. The transparent conductive layer 104 can be formed by a method such as vapor deposition, sputtering, or plasma CVD (chemical vapor deposition). Annealing treatment may be performed after the formation of the transparent conductive layer 104. Thereby, good ohmic characteristics for the p-type layer 102 can be realized.
 続いて、図14(b)に示すように、透明導電層104上にp電極201を形成する。 Subsequently, as shown in FIG. 14B, a p-electrode 201 is formed on the transparent conductive layer 104.
 続いて、図14(c)に示すように、中間層201aを形成する。中間層201aは熱処理によって透明導電層104とp電極201の構成元素を混合させることによって形成することができる。 Subsequently, as shown in FIG. 14C, an intermediate layer 201a is formed. The intermediate layer 201a can be formed by mixing the constituent elements of the transparent conductive layer 104 and the p-electrode 201 by heat treatment.
 続いて、p電極201上にフォトレジストを形成し、パターニングすることによって図15(a)に示すようにフォトレジストRを形成する。フォトレジストRはY方向に沿って延伸するストライプ形状にパターニングされている。 Subsequently, a photoresist is formed on the p-electrode 201 and patterned to form a photoresist R as shown in FIG. The photoresist R is patterned into a stripe shape extending along the Y direction.
 続いて、フォトレジストRをマスクとしてp電極201をエッチングし、図15(b)に示すようにp電極201をストライプ状に加工する。エッチングはドライエッチングやウェットエッチングを利用することができる。 Subsequently, the p-electrode 201 is etched using the photoresist R as a mask, and the p-electrode 201 is processed into a stripe shape as shown in FIG. Etching can be dry etching or wet etching.
 続いて、図15(c)に示すように、フォトレジストRを除去する。 Subsequently, as shown in FIG. 15C, the photoresist R is removed.
 続いて、図16(a)に示すように、ストライプ状に加工されたp電極201をマスクとして透明導電層104をエッチングし、透明導電層104をストライプ状に加工する。エッチングはドライエッチングやウェットエッチングを利用することができるが、ストライプ幅の制御や加工された側面の平坦性の観点からドライエッチングが好適である。エッチャントには例えば塩素系ガスを用いることができる。 Subsequently, as shown in FIG. 16A, the transparent conductive layer 104 is etched using the p-electrode 201 processed into a stripe shape as a mask, and the transparent conductive layer 104 is processed into a stripe shape. As the etching, dry etching or wet etching can be used, but dry etching is preferable from the viewpoint of controlling the stripe width and flatness of the processed side surface. For example, a chlorine-based gas can be used for the etchant.
 続いて、図16(b)に示すように、ストライプ状に加工されたp電極201及び透明導電層104をマスクとしてp型層102の少なくとも一部をエッチングし、リッジ151を形成する。エッチャントには例えば塩素系ガスを用いることができる。なお、この工程は、透明導電層104のエッチング(図16(a))とは別々に行ってもよく、一括で行ってもよい。この方法でリッジ151を形成することにより、透明導電層104をリッジ151の上面に均一な厚みで形成することができ、透明導電層104とp型層102の接触面積を広くすることができる。 Subsequently, as shown in FIG. 16B, at least a part of the p-type layer 102 is etched using the p-electrode 201 and the transparent conductive layer 104 processed in a stripe shape as a mask, thereby forming a ridge 151. For example, a chlorine-based gas can be used for the etchant. This step may be performed separately from the etching of the transparent conductive layer 104 (FIG. 16A) or may be performed in a lump. By forming the ridge 151 by this method, the transparent conductive layer 104 can be formed on the upper surface of the ridge 151 with a uniform thickness, and the contact area between the transparent conductive layer 104 and the p-type layer 102 can be increased.
 続いて、図16(c)に示すように、p型層102、透明導電層104及びp電極201上に誘電体層105を形成する。 Subsequently, as shown in FIG. 16C, a dielectric layer 105 is formed on the p-type layer 102, the transparent conductive layer 104, and the p-electrode 201.
 続いて、図17に示すように、リッジ151上の誘電体層105を除去し、p電極201を露出させる。 Subsequently, as shown in FIG. 17, the dielectric layer 105 on the ridge 151 is removed, and the p-electrode 201 is exposed.
 続いて、図9に示すように、リッジ151の全体を覆うようにパッド電極106を形成する。 Subsequently, as shown in FIG. 9, a pad electrode 106 is formed so as to cover the entire ridge 151.
 半導体素子200は以上のようにして製造することが可能である。この製造方法ではリッジ151におけるp型層102表面のほぼ全面に均等な厚さで透明導電層104を形成することができる。 The semiconductor element 200 can be manufactured as described above. In this manufacturing method, the transparent conductive layer 104 can be formed with a uniform thickness on almost the entire surface of the p-type layer 102 in the ridge 151.
 (表示装置について)
 本技術の第1及び第2の実施形態に係る半導体素子は、ラスタスキャン方式のプロジェクタ等の表示装置の光源として好適に利用することが可能である。
(About display devices)
The semiconductor elements according to the first and second embodiments of the present technology can be suitably used as a light source of a display device such as a raster scan projector.
 なお、本技術は以下のような構成もとることができる。
 (1)
 第1の導電型を有し、表面にストライプ状のリッジが形成された第1半導体層と、
 第2の導電型を有する第2半導体層と、
 上記第1半導体層と上記第2半導体層の間に設けられた活性層と、
 透明導電性材料からなり、上記リッジ上に形成された透明導電層と
 を具備し、
 上記リッジの上記透明導電層が形成された面の、上記リッジの延伸方向に直交する方向の幅を第1の幅とし、上記透明導電層の上記リッジ側の面の上記方向の幅を第2の幅とすると、上記第2の幅は上記第1の幅の0.99倍以上1.0倍以下であり、
 上記透明導電層の上記リッジとは反対側の面の上記方向の幅を第3の幅とすると、上記第3の幅は上記第2の幅の0.96倍以上1.0倍以下であり、
 上記透明導電層は、上記第3の幅の範囲内において厚みが90%以上110%以下の範囲で均一である
 半導体素子。
In addition, this technique can also take the following structures.
(1)
A first semiconductor layer having a first conductivity type and having a striped ridge formed on the surface;
A second semiconductor layer having a second conductivity type;
An active layer provided between the first semiconductor layer and the second semiconductor layer;
A transparent conductive layer made of a transparent conductive material and formed on the ridge,
The width of the surface of the ridge on which the transparent conductive layer is formed is defined as the first width, and the width of the surface of the transparent conductive layer on the ridge side is defined as the second width. The second width is not less than 0.99 times and not more than 1.0 times the first width,
When the width of the transparent conductive layer opposite to the ridge in the direction is the third width, the third width is 0.96 to 1.0 times the second width. ,
The transparent conductive layer is uniform within a range of 90% to 110% in thickness within the range of the third width.
 (2)
 上記(1)に記載の半導体素子であって、
 導電性材料からなり、上記透明導電層に当接するパッド電極をさらに具備し、
 上記パッド電極は、上記パッド電極と上記透明導電層の接合部に形成され、上記パッド電極と上記透明導電層のそれぞれの構成元素が融合した中間層を有する
 半導体素子。
(2)
The semiconductor element according to (1) above,
A pad electrode made of a conductive material and in contact with the transparent conductive layer;
The said pad electrode is formed in the junction part of the said pad electrode and the said transparent conductive layer, and has an intermediate | middle layer which each component element of the said pad electrode and the said transparent conductive layer united.
 (3)
 上記(1)に記載の半導体素子であって、
 金属材料からなり、上記透明導電層上に形成された金属電極をさらに具備し、
 上記金属電極は、上記金属電極と上記透明導電層の接合部に形成され、上記金属電極と上記透明導電層のそれぞれの構成元素が融合した中間層を有する
 半導体素子。
(3)
The semiconductor element according to (1) above,
A metal electrode made of a metal material and further formed on the transparent conductive layer,
The said metal electrode is formed in the junction part of the said metal electrode and the said transparent conductive layer, and has an intermediate | middle layer which each element of the said metal electrode and the said transparent conductive layer united.
 (4)
 上記(3)に記載の半導体素子であって、
 上記金属電極の上記透明導電層側の面の上記方向の幅を第4の幅とすると、上記第4の幅は上記第3の幅の0.99倍以上1.0倍以下である
 半導体素子。
(4)
The semiconductor element according to (3) above,
When the width of the surface of the metal electrode on the transparent conductive layer side in the direction is the fourth width, the fourth width is 0.99 times to 1.0 times the third width. Semiconductor element .
 (5)
 第1の導電型を有し、表面にストライプ状のリッジが形成された第1半導体層と、
 第2の導電型を有する第2半導体層と、
 上記第1半導体層と上記第2半導体層の間に設けられた活性層と、
 透明導電性材料からなり、上記リッジ上に形成された透明導電層と
 を具備し、
 上記リッジの上記透明導電層が形成された面の、上記リッジの延伸方向に直交する方向の幅を第1の幅とし、上記透明導電層の上記リッジ側の面の上記方向の幅を第2の幅とすると、上記第2の幅は上記第1の幅の0.99倍以上1.0倍以下であり、
 上記透明導電層の上記リッジとは反対側の面の上記方向の幅を第3の幅とすると、上記第3の幅は上記第2の幅の0.96倍以上1.0倍以下であり、
 上記透明導電層は、上記第3の幅の範囲内において厚みが90%以上110%以下の範囲で均一である
 半導体レーザ。
(5)
A first semiconductor layer having a first conductivity type and having a striped ridge formed on the surface;
A second semiconductor layer having a second conductivity type;
An active layer provided between the first semiconductor layer and the second semiconductor layer;
A transparent conductive layer made of a transparent conductive material and formed on the ridge,
The width of the surface of the ridge on which the transparent conductive layer is formed is defined as the first width, and the width of the surface of the transparent conductive layer on the ridge side is defined as the second width. The second width is not less than 0.99 times and not more than 1.0 times the first width,
When the width of the transparent conductive layer opposite to the ridge in the direction is the third width, the third width is 0.96 to 1.0 times the second width. ,
The transparent conductive layer is uniform within a range of 90% to 110% in thickness within the range of the third width. Semiconductor laser.
 (6)
 第1の導電型を有する第1半導体層と、第2の導電型を有する第2半導体層と、上記第1半導体層と上記第2半導体層の間に設けられた活性層とを備える積層体を準備し、
 上記第1半導体層上に透明導電性材料からなる透明導電層を形成し、
 上記透明導電層上にストライプ状に加工されたマスク構造を形成し、
 上記マスク構造をエッチングマスクとして上記透明導電層と上記第1半導体層の少なくとも一部をエッチングにより除去する
 半導体素子の製造方法。
(6)
A laminate comprising a first semiconductor layer having a first conductivity type, a second semiconductor layer having a second conductivity type, and an active layer provided between the first semiconductor layer and the second semiconductor layer Prepare
Forming a transparent conductive layer made of a transparent conductive material on the first semiconductor layer;
A mask structure processed into a stripe shape is formed on the transparent conductive layer,
A method for manufacturing a semiconductor device, wherein at least a part of the transparent conductive layer and the first semiconductor layer is removed by etching using the mask structure as an etching mask.
 (7)
 上記(6)に記載の半導体素子の製造方法であって、
 上記マスク構造は誘電体からなる
 半導体素子の製造方法。
(7)
A method for manufacturing a semiconductor device according to (6) above,
The mask structure is made of a dielectric material.
 (8)
 上記(7)に記載の半導体素子の製造方法であって、
 上記マスク構造を形成する工程では、上記透明導電層上に誘電体からなる誘電体層を形成し、上記誘電体層上にフォトレジストを形成し、上記フォトレジストをストライプ状にパターニングし、上記フォトレジストをエッチングマスクとして上記誘電体層をエッチングする
 半導体素子の製造方法。
(8)
A method for manufacturing a semiconductor device according to (7) above,
In the step of forming the mask structure, a dielectric layer made of a dielectric is formed on the transparent conductive layer, a photoresist is formed on the dielectric layer, the photoresist is patterned in a stripe shape, and the photo A method for manufacturing a semiconductor device, comprising etching the dielectric layer using a resist as an etching mask.
 (9)
 上記(6)に記載の半導体素子の製造方法であって、
 上記マスク構造は金属からなる
 半導体素子の製造方法。
(9)
A method for manufacturing a semiconductor device according to (6) above,
The mask structure is made of metal.
 (10)
 上記(9)に記載の半導体素子の製造方法であって、
 上記マスク構造を形成する工程では、上記透明導電層上にフォトレジストを形成し、上記フォトレジストをストライプ状の開口を有する形状にパターニングし、上記透明導電層及び上記フォトレジト上に金属層を形成し、上記フォトレジストと上記フォトレジスト上に形成された金属層を除去する
 半導体素子の製造方法。
(10)
A method for manufacturing a semiconductor device according to (9) above,
In the step of forming the mask structure, a photoresist is formed on the transparent conductive layer, the photoresist is patterned into a shape having a stripe-shaped opening, and a metal layer is formed on the transparent conductive layer and the photoresist. And removing the photoresist and the metal layer formed on the photoresist.
 (11)
 上記(9)に記載の半導体素子の製造方法であって、
 上記マスク構造を形成する工程では、上記透明導電層上に金属層を形成し、上記金属上にフォトレジストを形成し、上記フォトレジストをストライプ状にパターニングし、上記フォトレジストをエッチングマスクとして上記金属層をエッチングする
 半導体素子の製造方法。
(11)
A method for manufacturing a semiconductor device according to (9) above,
In the step of forming the mask structure, a metal layer is formed on the transparent conductive layer, a photoresist is formed on the metal, the photoresist is patterned in a stripe shape, and the metal is formed using the photoresist as an etching mask. A method of manufacturing a semiconductor device, wherein a layer is etched.
 (12)
 上記(8)に記載の半導体素子の製造方法であって、
 上記透明導電層と上記第1半導体層の少なくとも一部をエッチングにより除去する工程の後、上記透明導電層に接触するパッド電極を形成し、熱処理によって上記パッド電極と上記透明導電層の接合部に、上記パッド電極と上記透明導電層のそれぞれの構成元素が融合した中間層を形成する
 半導体素子の製造方法。
(12)
A method of manufacturing a semiconductor device according to (8) above,
After the step of removing at least a part of the transparent conductive layer and the first semiconductor layer by etching, a pad electrode in contact with the transparent conductive layer is formed, and a heat treatment is performed at the joint between the pad electrode and the transparent conductive layer. A method for manufacturing a semiconductor device, comprising forming an intermediate layer in which constituent elements of the pad electrode and the transparent conductive layer are fused.
 (13)
 上記(9)又は(10)に記載の半導体素子の製造方法であって、
 上記透明導電層上に上記金属層を形成した後、熱処理によって上記金属層と上記透明導電層の接合部に、上記金属層と上記透明導電層のそれぞれの構成元素が融合した中間層を形成する
 半導体素子の製造方法。
(13)
A method for manufacturing a semiconductor element according to (9) or (10) above,
After forming the metal layer on the transparent conductive layer, an intermediate layer in which the constituent elements of the metal layer and the transparent conductive layer are fused is formed at the joint between the metal layer and the transparent conductive layer by heat treatment. A method for manufacturing a semiconductor device.
 100…半導体素子
 101…n型層
 102…p型層
 103…活性層
 104…透明導電層
 105…誘電体層
 106…パッド電極
 106a…中間層
 151…リッジ
 200…半導体素子
 201…p電極
 201a…中間層
DESCRIPTION OF SYMBOLS 100 ... Semiconductor element 101 ... N-type layer 102 ... P-type layer 103 ... Active layer 104 ... Transparent conductive layer 105 ... Dielectric layer 106 ... Pad electrode 106a ... Intermediate layer 151 ... Ridge 200 ... Semiconductor element 201 ... P electrode 201a ... Intermediate layer

Claims (13)

  1.  第1の導電型を有し、表面にストライプ状のリッジが形成された第1半導体層と、
     第2の導電型を有する第2半導体層と、
     前記第1半導体層と前記第2半導体層の間に設けられた活性層と、
     透明導電性材料からなり、前記リッジ上に形成された透明導電層と
     を具備し、
     前記リッジの前記透明導電層が形成された面の、前記リッジの延伸方向に直交する方向の幅を第1の幅とし、前記透明導電層の前記リッジ側の面の前記方向の幅を第2の幅とすると、前記第2の幅は前記第1の幅の0.99倍以上1.0倍以下であり、
     前記透明導電層の前記リッジとは反対側の面の前記方向の幅を第3の幅とすると、前記第3の幅は前記第2の幅の0.96倍以上1.0倍以下であり、
     前記透明導電層は、前記第3の幅の範囲内において厚みが90%以上110%以下の範囲で均一である
     半導体素子。
    A first semiconductor layer having a first conductivity type and having a striped ridge formed on the surface;
    A second semiconductor layer having a second conductivity type;
    An active layer provided between the first semiconductor layer and the second semiconductor layer;
    A transparent conductive layer made of a transparent conductive material and formed on the ridge,
    The width of the surface of the ridge on which the transparent conductive layer is formed is a width in the direction perpendicular to the extending direction of the ridge, and the width of the surface of the transparent conductive layer on the ridge side is the second width. The second width is not less than 0.99 times and not more than 1.0 times the first width,
    When the width of the surface of the transparent conductive layer opposite to the ridge is the third width, the third width is 0.96 times or more and 1.0 times or less of the second width. ,
    The transparent conductive layer is uniform in a thickness range of 90% to 110% within the range of the third width.
  2.  請求項1に記載の半導体素子であって、
     導電性材料からなり、前記透明導電層に当接するパッド電極をさらに具備し、
     前記パッド電極は、前記パッド電極と前記透明導電層の接合部に形成され、前記パッド電極と前記透明導電層のそれぞれの構成元素が融合した中間層を有する
     半導体素子。
    The semiconductor device according to claim 1,
    A pad electrode made of a conductive material and in contact with the transparent conductive layer;
    The said pad electrode is formed in the junction part of the said pad electrode and the said transparent conductive layer, and has an intermediate | middle layer which each element of the said pad electrode and the said transparent conductive layer united.
  3.  請求項1に記載の半導体素子であって、
     金属材料からなり、前記透明導電層上に形成された金属電極をさらに具備し、
     前記金属電極は、前記金属電極と前記透明導電層の接合部に形成され、前記金属電極と前記透明導電層のそれぞれの構成元素が融合した中間層を有する
     半導体素子。
    The semiconductor device according to claim 1,
    A metal electrode made of a metal material and formed on the transparent conductive layer;
    The said metal electrode is formed in the junction part of the said metal electrode and the said transparent conductive layer, and has an intermediate | middle layer which each component element of the said metal electrode and the said transparent conductive layer united.
  4.  請求項3に記載の半導体素子であって、
     前記金属電極の前記透明導電層側の面の前記方向の幅を第4の幅とすると、前記第4の幅は前記第3の幅の0.99倍以上1.0倍以下である
     半導体素子。
    The semiconductor device according to claim 3,
    When the width in the direction of the surface of the metal electrode on the transparent conductive layer side is a fourth width, the fourth width is 0.99 times to 1.0 times the third width. Semiconductor element .
  5.  第1の導電型を有し、表面にストライプ状のリッジが形成された第1半導体層と、
     第2の導電型を有する第2半導体層と、
     前記第1半導体層と前記第2半導体層の間に設けられた活性層と、
     透明導電性材料からなり、前記リッジ上に形成された透明導電層と
     を具備し、
     前記リッジの前記透明導電層が形成された面の、前記リッジの延伸方向に直交する方向の幅を第1の幅とし、前記透明導電層の前記リッジ側の面の前記方向の幅を第2の幅とすると、前記第2の幅は前記第1の幅の0.99倍以上1.0倍以下であり、
     前記透明導電層の前記リッジとは反対側の面の前記方向の幅を第3の幅とすると、前記第3の幅は前記第2の幅の0.96倍以上1.0倍以下であり、
     前記透明導電層は、前記第3の幅の範囲内において厚みが90%以上110%以下の範囲で均一である
     半導体レーザ。
    A first semiconductor layer having a first conductivity type and having a striped ridge formed on the surface;
    A second semiconductor layer having a second conductivity type;
    An active layer provided between the first semiconductor layer and the second semiconductor layer;
    A transparent conductive layer made of a transparent conductive material and formed on the ridge,
    The width of the surface of the ridge on which the transparent conductive layer is formed is a width in the direction perpendicular to the extending direction of the ridge, and the width of the surface of the transparent conductive layer on the ridge side is the second width. The second width is not less than 0.99 times and not more than 1.0 times the first width,
    When the width of the surface of the transparent conductive layer opposite to the ridge is the third width, the third width is 0.96 times or more and 1.0 times or less of the second width. ,
    The transparent conductive layer is uniform within a range of 90% to 110% in thickness within the range of the third width. Semiconductor laser.
  6.  第1の導電型を有する第1半導体層と、第2の導電型を有する第2半導体層と、前記第1半導体層と前記第2半導体層の間に設けられた活性層とを備える積層体を準備し、
     前記第1半導体層上に透明導電性材料からなる透明導電層を形成し、
     前記透明導電層上にストライプ状に加工されたマスク構造を形成し、
     前記マスク構造をエッチングマスクとして前記透明導電層と前記第1半導体層の少なくとも一部をエッチングにより除去する
     半導体素子の製造方法。
    A laminate comprising a first semiconductor layer having a first conductivity type, a second semiconductor layer having a second conductivity type, and an active layer provided between the first semiconductor layer and the second semiconductor layer Prepare
    Forming a transparent conductive layer made of a transparent conductive material on the first semiconductor layer;
    Forming a mask structure processed into a stripe shape on the transparent conductive layer;
    A method for manufacturing a semiconductor device, wherein at least a part of the transparent conductive layer and the first semiconductor layer is removed by etching using the mask structure as an etching mask.
  7.  請求項6に記載の半導体素子の製造方法であって、
     前記マスク構造は誘電体からなる
     半導体素子の製造方法。
    A method of manufacturing a semiconductor device according to claim 6,
    The mask structure is made of a dielectric material.
  8.  請求項7に記載の半導体素子の製造方法であって、
     前記マスク構造を形成する工程では、前記透明導電層上に誘電体からなる誘電体層を形成し、前記誘電体層上にフォトレジストを形成し、前記フォトレジストをストライプ状にパターニングし、前記フォトレジストをエッチングマスクとして前記誘電体層をエッチングする
     半導体素子の製造方法。
    A method of manufacturing a semiconductor device according to claim 7,
    In the step of forming the mask structure, a dielectric layer made of a dielectric is formed on the transparent conductive layer, a photoresist is formed on the dielectric layer, the photoresist is patterned in a stripe shape, and the photo A method of manufacturing a semiconductor device, comprising etching the dielectric layer using a resist as an etching mask.
  9.  請求項6に記載の光学素子の製造方法であって、
     前記マスク構造は金属からなる
     半導体素子の製造方法。
    It is a manufacturing method of the optical element according to claim 6,
    The mask structure is made of metal.
  10.  請求項9に記載の半導体素子の製造方法であって、
     前記マスク構造を形成する工程では、前記透明導電層上にフォトレジストを形成し、前記フォトレジストをストライプ状の開口を有する形状にパターニングし、前記透明導電層及び前記フォトレジト上に金属層を形成し、前記フォトレジストと前記フォトレジスト上に形成された金属層を除去する
     半導体素子の製造方法。
    A method of manufacturing a semiconductor device according to claim 9,
    In the step of forming the mask structure, a photoresist is formed on the transparent conductive layer, the photoresist is patterned into a shape having a stripe-shaped opening, and a metal layer is formed on the transparent conductive layer and the photoresist. And removing the photoresist and the metal layer formed on the photoresist.
  11.  請求項9に記載の半導体素子の製造方法であって、
     前記マスク構造を形成する工程では、前記透明導電層上に金属層を形成し、前記金属上にフォトレジストを形成し、前記フォトレジストをストライプ状にパターニングし、前記フォトレジストをエッチングマスクとして前記金属層をエッチングする
     半導体素子の製造方法。
    A method of manufacturing a semiconductor device according to claim 9,
    In the step of forming the mask structure, a metal layer is formed on the transparent conductive layer, a photoresist is formed on the metal, the photoresist is patterned in a stripe shape, and the metal is used as an etching mask. A method of manufacturing a semiconductor device, wherein a layer is etched.
  12.  請求項8に記載の半導体素子の製造方法であって、
     前記透明導電層と前記第1半導体層の少なくとも一部をエッチングにより除去する工程の後、前記透明導電層に接触するパッド電極を形成し、熱処理によって前記パッド電極と前記透明導電層の接合部に、前記パッド電極と前記透明導電層のそれぞれの構成元素が融合した中間層を形成する
     半導体素子の製造方法。
    A method of manufacturing a semiconductor device according to claim 8,
    After the step of removing at least a part of the transparent conductive layer and the first semiconductor layer by etching, a pad electrode in contact with the transparent conductive layer is formed, and a heat treatment is performed at the joint between the pad electrode and the transparent conductive layer. A method for manufacturing a semiconductor device, comprising forming an intermediate layer in which constituent elements of the pad electrode and the transparent conductive layer are fused.
  13.  請求項9又は10に記載の半導体素子の製造方法であって、
     前記透明導電層上に前記金属層を形成した後、熱処理によって前記金属層と前記透明導電層の接合部に、前記金属層と前記透明導電層のそれぞれの構成元素が融合した中間層を形成する
     半導体素子の製造方法。
    It is a manufacturing method of the semiconductor device according to claim 9 or 10,
    After the metal layer is formed on the transparent conductive layer, an intermediate layer in which the constituent elements of the metal layer and the transparent conductive layer are fused is formed at the joint between the metal layer and the transparent conductive layer by heat treatment. A method for manufacturing a semiconductor device.
PCT/JP2017/033534 2016-11-01 2017-09-15 Semiconductor element, semiconductor laser, and method for manufacturing semiconductor element WO2018083896A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/334,738 US11121524B2 (en) 2016-11-01 2017-09-15 Semiconductor device, semiconductor laser, and method of producing a semiconductor device
DE112017005516.4T DE112017005516T5 (en) 2016-11-01 2017-09-15 SEMICONDUCTOR ELEMENT, SEMICONDUCTOR LASER AND MANUFACTURING METHOD FOR A SEMICONDUCTOR ELEMENT
CN201780066019.8A CN109923743B (en) 2016-11-01 2017-09-15 Semiconductor device, semiconductor laser, and method of manufacturing semiconductor device
JP2018548582A JP7107849B2 (en) 2016-11-01 2017-09-15 Semiconductor device manufacturing method
US17/401,735 US11876349B2 (en) 2016-11-01 2021-08-13 Semiconductor device, semiconductor laser, and method of producing a semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016214555 2016-11-01
JP2016-214555 2016-11-01

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/334,738 A-371-Of-International US11121524B2 (en) 2016-11-01 2017-09-15 Semiconductor device, semiconductor laser, and method of producing a semiconductor device
US17/401,735 Division US11876349B2 (en) 2016-11-01 2021-08-13 Semiconductor device, semiconductor laser, and method of producing a semiconductor device

Publications (1)

Publication Number Publication Date
WO2018083896A1 true WO2018083896A1 (en) 2018-05-11

Family

ID=62075970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033534 WO2018083896A1 (en) 2016-11-01 2017-09-15 Semiconductor element, semiconductor laser, and method for manufacturing semiconductor element

Country Status (5)

Country Link
US (2) US11121524B2 (en)
JP (1) JP7107849B2 (en)
CN (1) CN109923743B (en)
DE (1) DE112017005516T5 (en)
WO (1) WO2018083896A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111541147A (en) * 2019-02-06 2020-08-14 夏普株式会社 Semiconductor laser element and method for manufacturing the same
JP2021163921A (en) * 2020-04-02 2021-10-11 浜松ホトニクス株式会社 Method for manufacturing quantum cascade laser element
WO2023281848A1 (en) * 2021-07-08 2023-01-12 ソニーセミコンダクタソリューションズ株式会社 Semiconductor laser element
DE102022125844A1 (en) 2021-10-11 2023-04-13 Hamamatsu Photonics K.K. Semiconductor laser element, semiconductor laser device and method of manufacturing a semiconductor laser element
WO2023223676A1 (en) * 2022-05-19 2023-11-23 パナソニックホールディングス株式会社 Semiconductor laser element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110739605A (en) * 2019-09-26 2020-01-31 苏州长光华芯半导体激光创新研究院有限公司 semiconductor laser and carrier injection method thereof
CN113839304A (en) * 2021-07-30 2021-12-24 湖北光安伦芯片有限公司 Non-oxidation process micron column array high-power VCSEL structure and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10209559A (en) * 1997-01-22 1998-08-07 Matsushita Electric Ind Co Ltd Semiconductor light emitting element and manufacture thereof
JP2004260152A (en) * 2003-02-07 2004-09-16 Sanyo Electric Co Ltd Semiconductor device and manufacturing method therefor
JP2004281431A (en) * 2003-03-12 2004-10-07 Nichia Chem Ind Ltd Nitride semiconductor laser element
JP2011222973A (en) * 2010-03-25 2011-11-04 Nichia Chem Ind Ltd Semiconductor laser element and method of manufacturing the same
WO2012127778A1 (en) * 2011-03-24 2012-09-27 パナソニック株式会社 Nitride semiconductor light-emitting element
JP2013102043A (en) * 2011-11-08 2013-05-23 Sumitomo Electric Ind Ltd Semiconductor laser element and semiconductor laser element manufacturing method
US8971370B1 (en) * 2011-10-13 2015-03-03 Soraa Laser Diode, Inc. Laser devices using a semipolar plane

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3444610B2 (en) * 1992-09-29 2003-09-08 三菱化学株式会社 Semiconductor laser device
KR970009670B1 (en) * 1994-03-30 1997-06-17 Samsung Electronics Co Ltd Method of manufacture for semiconductor laserdiode
JP3739071B2 (en) * 1999-01-25 2006-01-25 パイオニア株式会社 Distributed feedback ridge type semiconductor laser and manufacturing method thereof
US7372077B2 (en) * 2003-02-07 2008-05-13 Sanyo Electric Co., Ltd. Semiconductor device
US6990132B2 (en) 2003-03-20 2006-01-24 Xerox Corporation Laser diode with metal-oxide upper cladding layer
KR100896564B1 (en) * 2004-08-31 2009-05-07 삼성전기주식회사 Reflective electrode and compound semiconductor light emitting device including the same
US9318874B2 (en) * 2009-06-03 2016-04-19 Nichia Corporation Semiconductor device and method of manufacturing semiconductor device
JP2011243939A (en) * 2010-01-20 2011-12-01 Panasonic Corp Nitride semiconductor laser device
CN102545051A (en) * 2012-01-16 2012-07-04 苏州纳睿光电有限公司 Method for preparing gallium nitride-base laser tube core
CN103311398A (en) * 2013-05-22 2013-09-18 上海蓝光科技有限公司 LED (Light Emitting Diode) chip with electrode transitional layer and manufacturing method thereof
US9520695B2 (en) * 2013-10-18 2016-12-13 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser device having confinement region

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10209559A (en) * 1997-01-22 1998-08-07 Matsushita Electric Ind Co Ltd Semiconductor light emitting element and manufacture thereof
JP2004260152A (en) * 2003-02-07 2004-09-16 Sanyo Electric Co Ltd Semiconductor device and manufacturing method therefor
JP2004281431A (en) * 2003-03-12 2004-10-07 Nichia Chem Ind Ltd Nitride semiconductor laser element
JP2011222973A (en) * 2010-03-25 2011-11-04 Nichia Chem Ind Ltd Semiconductor laser element and method of manufacturing the same
WO2012127778A1 (en) * 2011-03-24 2012-09-27 パナソニック株式会社 Nitride semiconductor light-emitting element
US8971370B1 (en) * 2011-10-13 2015-03-03 Soraa Laser Diode, Inc. Laser devices using a semipolar plane
JP2013102043A (en) * 2011-11-08 2013-05-23 Sumitomo Electric Ind Ltd Semiconductor laser element and semiconductor laser element manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111541147A (en) * 2019-02-06 2020-08-14 夏普株式会社 Semiconductor laser element and method for manufacturing the same
JP2021163921A (en) * 2020-04-02 2021-10-11 浜松ホトニクス株式会社 Method for manufacturing quantum cascade laser element
DE112021002008T5 (en) 2020-04-02 2023-01-26 Hamamatsu Photonics K.K. Process for manufacturing a quantum cascade laser element
JP7411483B2 (en) 2020-04-02 2024-01-11 浜松ホトニクス株式会社 Manufacturing method of quantum cascade laser device
WO2023281848A1 (en) * 2021-07-08 2023-01-12 ソニーセミコンダクタソリューションズ株式会社 Semiconductor laser element
DE102022125844A1 (en) 2021-10-11 2023-04-13 Hamamatsu Photonics K.K. Semiconductor laser element, semiconductor laser device and method of manufacturing a semiconductor laser element
WO2023223676A1 (en) * 2022-05-19 2023-11-23 パナソニックホールディングス株式会社 Semiconductor laser element

Also Published As

Publication number Publication date
US11876349B2 (en) 2024-01-16
US20190393679A1 (en) 2019-12-26
JP7107849B2 (en) 2022-07-27
CN109923743A (en) 2019-06-21
CN109923743B (en) 2022-03-08
JPWO2018083896A1 (en) 2019-09-19
US11121524B2 (en) 2021-09-14
US20210376571A1 (en) 2021-12-02
DE112017005516T5 (en) 2019-09-26

Similar Documents

Publication Publication Date Title
WO2018083896A1 (en) Semiconductor element, semiconductor laser, and method for manufacturing semiconductor element
JP5963004B2 (en) Nitride semiconductor light emitting device
JP6152848B2 (en) Semiconductor light emitting device
US9423678B2 (en) Light emitting device, and super luminescent diode
JP5088498B2 (en) Light emitting device
JP6040790B2 (en) Light emitting device, super luminescent diode, and projector
KR20160078259A (en) Light emitting device and projector
JP5382289B2 (en) Light emitting device
WO2020196735A1 (en) Infrared led device
JP2023176020A (en) Semiconductor laser diode and method for producing semiconductor laser diode
JP5411440B2 (en) Light emitting device
JP2020126995A (en) Semiconductor laser element and manufacturing method of the same
US10691005B2 (en) Optical element and display apparatus
JP2017041466A (en) Light-emitting device and projector
JP2016066670A (en) Semiconductor laser
JP2010034246A (en) Semiconductor laser element
JP5168476B2 (en) Light emitting device
JP2010034267A (en) Broad-area type semiconductor laser device, broad-area type semiconductor laser array, laser display, and laser irradiation apparatus
JP2009238846A (en) Light-emitting device
JP6551678B2 (en) Light emitting device and projector
JP2012104764A (en) Semiconductor light emitting device
JP5494991B2 (en) Light emitting device
JP5534259B2 (en) Light emitting device
JP2009146920A (en) Semiconductor laser
JP2009238844A (en) Light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868447

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018548582

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17868447

Country of ref document: EP

Kind code of ref document: A1