WO2018082535A1 - 一种用于多天线系统的用户设备、基站中的方法和装置 - Google Patents

一种用于多天线系统的用户设备、基站中的方法和装置 Download PDF

Info

Publication number
WO2018082535A1
WO2018082535A1 PCT/CN2017/108482 CN2017108482W WO2018082535A1 WO 2018082535 A1 WO2018082535 A1 WO 2018082535A1 CN 2017108482 W CN2017108482 W CN 2017108482W WO 2018082535 A1 WO2018082535 A1 WO 2018082535A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna ports
antenna
ports
signaling
reference signal
Prior art date
Application number
PCT/CN2017/108482
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=62070629&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018082535(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2018082535A1 publication Critical patent/WO2018082535A1/zh
Priority to US16/396,800 priority Critical patent/US11063727B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present application relates to a transmission method and apparatus in a wireless communication system, and more particularly to a transmission scheme and apparatus in a wireless communication system in which a large number of antennas are deployed on a base station side.
  • the UE In the downlink multi-antenna transmission, the UE (User Equipment) usually performs downlink channel estimation by measuring the downlink reference signal sent by the base station, and then feeds back CSI (Channel State Information) to assist the base station to perform precoding.
  • CSI Channel State Information
  • periodic downlink reference signals are supported, including cell common and UE-specific downlink reference signals.
  • the number of antennas equipped on the base station side will be greatly increased, and the overhead required for the conventional periodic downlink reference signal will also increase.
  • aperiodic downlink reference signals and downlink reference signals using beamforming are discussed in 3GPP R (Release, Release) 13 and R14.
  • the aperiodic downlink reference signal and the periodic downlink reference signal sometimes correspond to (partially) the same antenna port, such as (partial) aperiodic downlink reference signal and (partial) periodic downlink.
  • the reference signals are transmitted from the same antenna group using the same beamforming vector.
  • the aperiodic downlink reference signal corresponding to the same antenna port as the periodic downlink reference signal does not need to be transmitted, and the channel estimation based on the aperiodic downlink reference signal can jointly utilize the (partial) periodic downlink reference signal.
  • non-periodic reference signals are used to reduce the overhead of the non-periodic downlink reference signal.
  • the present application discloses a solution to the above problem. It should be noted that, in the case of no conflict, the features in the embodiments and embodiments in the UE of the present application can be applied to the base station, and vice versa. The features of the embodiments and the embodiments of the present application may be combined with each other arbitrarily without conflict.
  • the present application discloses a method in a UE for multi-antenna transmission, which includes the following steps Step:
  • Step A receiving first signaling, second signaling, first reference signal and second reference signal;
  • the first reference signal includes Q1 RS ports, and the Q1 RS ports are respectively sent by Q1 antenna ports; the second reference signal includes Q2 RS ports, and the Q2 RS ports are respectively Q2 Antenna port transmission; the first signaling is used to determine L1 antenna ports, the Q1 antenna ports are a subset of the L1 antenna ports; the second signaling is used to determine the Q2 An antenna port; wherein the Q1 and the Q2 are positive integers, respectively, the L1 is a positive integer greater than or equal to the Q1; the first channel information is for Q antenna ports; the Q antenna ports are Q1 antenna ports and the Q2 antenna ports, the Q is equal to the sum of the Q1 and the Q2.
  • the first channel information is CSI (Channel State Information).
  • measurements for the first reference signal and the second reference signal are used to determine the first channel information.
  • the first channel information includes a ⁇ RI (Rank Indicator), a PTI (Precoder Type Indication), a PMI (Precoding Matrix Indicator), and a CQI (Channel Quality). At least one of Indicator, channel quality indicator, channel parameter quantized value ⁇ .
  • the first signaling is high layer signaling
  • the second signaling is physical layer signaling
  • the first signaling is RRC (Radio Resource Control) layer signaling.
  • the first signaling is physical layer signaling
  • the second signaling is physical layer signaling
  • the first signaling triggers multiple transmissions of the L1 antenna ports
  • the second signaling triggers one transmission of the Q2 antenna ports
  • the Q1 antenna ports are the L1 A subset of the antenna ports.
  • the first signaling is common to the cell.
  • the first signaling is a MIB (Master Information Block).
  • the first signaling is an SIB (System Information Block).
  • SIB System Information Block
  • the Q1 is 1.
  • the Q1 is equal to the L1.
  • the Q1 antenna ports and the Q2 antenna ports do not overlap each other, and none of the antenna ports belong to the Q1 antenna ports and the Q2 antenna ports.
  • channel estimation for the Q1 antenna ports may be implemented by measuring the first reference signal, and does not need to include sending from the Q1 antenna ports in the second reference signal. Reference signal, thereby reducing the overhead of the second reference signal.
  • the first reference signal is transmitted in a first time resource pool
  • the second reference signal is transmitted in a second time resource pool.
  • the first reference signal appears multiple times in the first time resource pool, and the first reference signal appears any two adjacent times in the first time resource pool.
  • the time intervals are equal.
  • the second reference signal appears once in the second time resource pool.
  • the first time resource pool includes a positive integer number of time units
  • the second time resource pool includes a positive integer number of consecutive time units.
  • the time unit is a subframe.
  • the time unit is 1 ms.
  • the time unit in the second time resource pool does not belong to the first time resource pool.
  • the time unit in the second time resource pool belongs to the first time resource pool.
  • the physical layer channel corresponding to the second signaling includes a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer control information).
  • the downlink physical layer control channel is a PDCCH (Physical Downlink Control Channel).
  • the first reference signal is broadband.
  • the system bandwidth is divided into a positive integer frequency domain region, the first reference signal appears on all frequency domain regions within the system bandwidth, and the frequency domain region corresponds to a bandwidth equal to the first reference signal. The difference between the frequencies of the frequency units that appear adjacent to each other twice.
  • the second reference signal is broadband.
  • the second reference signal is narrowband.
  • the system bandwidth is divided into positive integer frequency domain regions, and the second reference signal appears only in a portion of the frequency domain region.
  • an antenna port is formed by superposing multiple antennas through antenna virtualization, and mapping coefficients of the multiple antennas to the antenna port form a beamforming vector.
  • the small-scale characteristics of the wireless channel experienced by the signal transmitted by the first antenna port cannot be used to infer the small-scale characteristics of the wireless channel experienced by the signal transmitted by the second antenna port.
  • the first antenna port and the second antenna port are any two different antenna ports.
  • the first channel information includes UCI (Uplink Control Information).
  • UCI Uplink Control Information
  • the first channel information is transmitted on an uplink physical layer control channel (ie, an uplink channel that can only be used to carry physical layer signaling).
  • the uplink physical layer control channel is a PUCCH (Physical Uplink Control Channel).
  • the first channel information is transmitted on an uplink physical layer data channel (ie, an uplink channel that can be used to carry physical layer data).
  • an uplink physical layer data channel is a PUSCH (Physical Uplink Shared Channel).
  • the first channel information is used to determine a first matrix, the first matrix comprising a number of rows equal to the Q.
  • the first matrix is quantized by a first channel matrix
  • the first reference signal is used to determine a downlink channel parameter corresponding to the Q1 antenna port
  • the second reference signal is used to determine a downlink channel parameter corresponding to the Q2 antenna ports, ⁇ a downlink channel parameter corresponding to the Q1 antenna port, and a downlink channel corresponding to the Q2 antenna port
  • the parameter ⁇ constitutes the first channel matrix
  • the downlink channel parameter corresponding to the Q1 antenna port and the downlink channel parameter corresponding to the Q2 antenna port are respectively CIR (Channel Impulse Response) response).
  • the first channel information is quantization information of the first matrix.
  • the first channel information is an index of the first matrix in a candidate matrix set, and the candidate matrix set includes a positive integer number of matrices.
  • the first channel information includes M index groups and M parameter groups, and the M index groups are used to determine M vector groups, the M vector groups and The M parameter groups are in one-to-one correspondence, and the M vector groups and the M parameter groups are respectively used to generate M synthesis vectors, and the M synthesis vectors are used to determine the first matrix.
  • the M is a positive integer.
  • the vectors in the M vector groups belong to a candidate vector set, and the candidate vector set includes a positive integer vector.
  • a given composite vector is obtained by weighting the vectors in a given set of vectors by a parameter in a given set of parameters, wherein a given composite vector is in the M composite vectors. Or any one of the M vector groups used to generate the given composite vector, the given parameter group being used in the M parameter groups Generating the set of parameters of the given composite vector.
  • the first matrix is composed of the M composite vectors as column vectors.
  • one vector group includes L vectors, and the corresponding coefficient group includes L-1 coefficients.
  • one vector group includes L vectors, and the corresponding coefficient group includes L coefficients.
  • the step B further includes the following steps:
  • Step B0 Send the first message.
  • the first information indicates Q3 antenna ports from the L1 antenna ports; and the Q3 is a positive integer smaller than or equal to the L1.
  • the first information is transmitted on a physical layer control channel.
  • the first information is transmitted on a physical layer data channel.
  • the first information is a CRI (Channel-State Information Reference Signal Resource Indicator).
  • the time domain resources occupied by any two of the L1 antenna ports are orthogonal.
  • the Q3 is equal to the Q1.
  • the Q3 antenna ports are equal to the Q1 antenna ports.
  • the Q3 antenna ports are used to determine the Q1 antenna ports.
  • the Q1 antenna ports are a subset of the Q3 antenna ports, and the Q3 is greater than or equal to the Q1.
  • the Q3 antenna ports are a subset of the Q1 antenna ports, and the Q1 is greater than or equal to the Q3.
  • the step A further includes the following steps:
  • the second information indicates the Q1 antenna ports from the L1 antenna ports.
  • the second information is carried by the second signaling.
  • the second information is transmitted on a physical layer control channel.
  • the location of the Q1 antenna ports in the Q antenna ports is determined by default.
  • the Q1 antenna ports and the Q1 first antenna ports of the Q antenna ports are in one-to-one correspondence.
  • the Q2 antenna ports are in one-to-one correspondence with the Q2 last antenna ports of the Q antenna ports.
  • the Q1 antenna ports are in one-to-one correspondence with the Q1 last antenna ports of the Q antenna ports.
  • the Q2 antenna ports and the Q2 first antenna ports of the Q antenna ports are in one-to-one correspondence.
  • the beamforming vector corresponding to the Q1 antenna ports is used to determine a beamforming vector corresponding to the transmitting antenna port of the second signaling.
  • the transmit antenna port of the second signaling includes the Q1 Some or all of the antenna ports.
  • the beamforming vector corresponding to the Q1 antenna ports is a beamforming vector corresponding to the transmitting antenna port of the second signaling.
  • the beamforming vector corresponding to the Q1 antenna ports includes Q1 vectors, the dimensions of the Q1 vectors are the same, and the Q1 antenna ports and the Q1 vectors are in one-to-one correspondence. .
  • the foregoing method ensures that the second signaling is sent by a beamforming vector directed to the UE, which improves transmission reliability and transmission efficiency of the second signaling.
  • the step A further includes the following steps:
  • the first channel information is used to generate the first wireless signal.
  • the first channel information is used to determine a precoding matrix corresponding to the first wireless signal.
  • the column vector in the precoding matrix corresponding to the first wireless signal includes part or all of the column vector of the first matrix.
  • the first wireless signal is transmitted on a downlink physical layer data channel (ie, a channel that can be used to carry physical layer data).
  • a downlink physical layer data channel ie, a channel that can be used to carry physical layer data.
  • the downlink physical layer data channel is a PDSCH (Physical Downlink Shared Channel).
  • the transport channel corresponding to the first wireless signal is a DL-SCH (DownLink Shared Channel).
  • the first wireless signal further includes physical layer data.
  • the application discloses a method in a base station for multi-antenna transmission, which comprises the following steps:
  • Step A transmitting first signaling, second signaling, first reference signal and second reference signal;
  • the first reference signal includes Q1 RS ports, and the Q1 RS ports are respectively sent by Q1 antenna ports; the second reference signal includes Q2 RS ports, and the Q2 RS ports are respectively Q2 Antenna port transmission; the first signaling is used to determine L1 antenna ports, and the Q1 antenna ports are a subset of the L1 antenna ports; Two signaling is used to determine the Q2 antenna ports; wherein the Q1 and the Q2 are positive integers, respectively, and the L1 is a positive integer greater than or equal to the Q1; the first channel information is for Q antennas a port; the Q antenna ports are composed of the Q1 antenna ports and the Q2 antenna ports, and the Q is equal to a sum of the Q1 and the Q2.
  • measurements for the first reference signal and the second reference signal are used to determine the first channel information.
  • the first signaling is high layer signaling
  • the second signaling is physical layer signaling
  • the first signaling is physical layer signaling
  • the second signaling is physical layer signaling
  • the first signaling triggers multiple transmissions of the L1 antenna ports
  • the second signaling triggers one transmission of the Q2 antenna ports
  • the Q1 antenna ports are the L1 A subset of the antenna ports.
  • the Q1 is 1.
  • the first reference signal is transmitted in a first time resource pool
  • the second reference signal is transmitted in a second time resource pool.
  • the first reference signal appears multiple times in the first time resource pool, and the first reference signal appears any two adjacent times in the first time resource pool.
  • the time intervals are equal.
  • the second reference signal appears once in the second time resource pool.
  • the first reference signal is broadband.
  • the system bandwidth is divided into a positive integer frequency domain region, the first reference signal appears on all frequency domain regions within the system bandwidth, and the frequency domain region corresponds to a bandwidth equal to the first reference signal.
  • the second reference signal is broadband.
  • the second reference signal is narrowband.
  • the system bandwidth is divided into positive integer frequency domain regions, and the second reference signal appears only in a portion of the frequency domain region.
  • the antenna port is formed by superposing multiple antennas through antenna virtualization, and mapping of the multiple antennas to the antenna port The numbers make up the beamforming vector.
  • the first channel information includes UCI (Uplink Control Information).
  • UCI Uplink Control Information
  • the step B further includes the following steps:
  • the first information indicates Q3 antenna ports from the L1 antenna ports; and the Q3 is a positive integer smaller than or equal to the L1.
  • the time domain resources occupied by any two of the L1 antenna ports are orthogonal.
  • the Q3 is equal to the Q1.
  • the Q3 antenna ports are equal to the Q1 antenna ports.
  • the Q3 antenna ports are used to determine the Q1 antenna ports.
  • the step A further includes the following steps:
  • the second information indicates the Q1 antenna ports from the L1 antenna ports.
  • the second information is carried by the second signaling.
  • the location of the Q1 antenna ports in the Q antenna ports is determined by default.
  • the Q1 antenna ports and the Q1 first antenna ports of the Q antenna ports are in one-to-one correspondence.
  • the Q2 antenna ports are in one-to-one correspondence with the Q2 last antenna ports of the Q antenna ports.
  • the Q1 antenna ports are in one-to-one correspondence with the Q1 last antenna ports of the Q antenna ports.
  • the Q2 antenna ports and the Q2 first antenna ports of the Q antenna ports are in one-to-one correspondence.
  • the Q1 antenna end is The beamforming vector corresponding to the port is used to determine a beamforming vector corresponding to the transmitting antenna port of the second signaling.
  • the transmit antenna port of the second signaling includes some or all of the Q1 antenna ports.
  • the beamforming vector corresponding to the Q1 antenna ports is a beamforming vector corresponding to the transmitting antenna port of the second signaling.
  • the step A further includes the following steps:
  • the first channel information is used to generate the first wireless signal.
  • the first channel information is used to determine a precoding matrix corresponding to the first wireless signal.
  • the present application discloses a user equipment for multi-antenna transmission, which includes the following modules:
  • a first receiver module receiving first signaling, second signaling, a first reference signal, and a second reference signal;
  • a first transmitter module transmitting first channel information
  • the first reference signal includes Q1 RS ports, and the Q1 RS ports are respectively sent by Q1 antenna ports; the second reference signal includes Q2 RS ports, and the Q2 RS ports are respectively Q2 Antenna port transmission; the first signaling is used to determine L1 antenna ports, the Q1 antenna ports are a subset of the L1 antenna ports; the second signaling is used to determine the Q2 An antenna port; wherein the Q1 and the Q2 are positive integers, respectively, the L1 is a positive integer greater than or equal to the Q1; the first channel information is for Q antenna ports; the Q antenna ports are Q1 antenna ports and the Q2 antenna ports, the Q is equal to the sum of the Q1 and the Q2.
  • the first signaling triggers multiple transmissions of the L1 antenna ports
  • the second signaling triggers one transmission of the Q2 antenna ports
  • the Q1 antenna ports are the L1 A subset of the antenna ports.
  • the Q1 is 1.
  • the foregoing user equipment is characterized in that the first transmitter module further sends the first information.
  • the first information indicates Q3 antenna ports from the L1 antenna ports.
  • the Q3 is a positive integer less than or equal to the L1.
  • the Q3 is equal to the Q1.
  • the Q3 antenna ports are equal to the Q1 antenna ports.
  • the Q3 antenna ports are used to determine the Q1 antenna ports.
  • the user equipment is characterized in that the first receiver module further receives the second information.
  • the second information indicates the Q1 antenna ports from the L1 antenna ports.
  • the second information is carried by the second signaling.
  • the user equipment is characterized in that the location of the Q1 antenna ports in the Q antenna ports is determined by default.
  • the user equipment is characterized in that the beamforming vector corresponding to the Q1 antenna ports is used to determine a beamforming vector corresponding to the transmitting antenna port of the second signaling.
  • the user equipment is characterized in that the first receiver module further receives a first wireless signal.
  • the first channel information is used to generate the first wireless signal.
  • the first channel information is used to determine a precoding matrix corresponding to the first wireless signal.
  • the present application discloses a base station device for multi-antenna transmission, which includes the following modules:
  • a second transmitter module transmitting first signaling, second signaling, a first reference signal, and a second reference signal;
  • a second receiver module receiving first channel information
  • the first reference signal includes Q1 RS ports, and the Q1 RS ports are respectively sent by Q1 antenna ports; the second reference signal includes Q2 RS ports, and the Q2 RS ports are respectively Q2 Antenna port transmission; the first signaling is used to determine L1 antenna ports, the Q1 antenna ports are a subset of the L1 antenna ports; the second signaling is used to determine the Q2 An antenna port; wherein the Q1 and the Q2 are positive integers, respectively, the L1 is a positive integer greater than or equal to the Q1; the first channel information is for Q antenna ports; the Q antenna ports are Q1 antenna ports and the Q2 antenna ports, the Q is equal to the sum of the Q1 and the Q2.
  • the foregoing base station device is characterized in that the second receiver module
  • the first information is also received.
  • the first information indicates Q3 antenna ports from the L1 antenna ports.
  • the Q3 is a positive integer less than or equal to the L1.
  • the foregoing base station device is characterized in that the second transmitter module further sends the second information.
  • the second information indicates the Q1 antenna ports from the L1 antenna ports.
  • the foregoing base station device is characterized in that a position of the Q1 antenna ports in the Q antenna ports is determined by default.
  • the foregoing base station device is characterized in that a beamforming vector corresponding to the Q1 antenna ports is used to determine a beamforming vector corresponding to a transmitting antenna port of the second signaling.
  • the foregoing base station device is characterized in that the second transmitter module further transmits a first wireless signal.
  • the first channel information is used to generate the first wireless signal.
  • the (partial) aperiodic downlink reference signal and the (partial) periodic downlink reference signal share the same antenna port
  • the (partial) aperiodic downlink reference signal and the (partial) periodic downlink reference signal use the same The beamforming vectors are transmitted from the same antenna group.
  • the present application allows the (partial) periodic downlink reference signal and the aperiodic downlink reference signal to be jointly utilized for channel estimation for the aperiodic downlink reference signal.
  • the aperiodic downlink reference signal using the same antenna port as the periodic downlink reference signal does not need to be transmitted, thereby reducing the overhead of the aperiodic downlink reference signal.
  • FIG. 1 shows a flow chart of wireless transmission in accordance with one embodiment of the present application
  • FIG. 2 is a schematic diagram showing resource mapping of RS ports in a first reference signal and a second reference signal according to an embodiment of the present application
  • FIG. 3 is a schematic diagram showing the relationship between L1 antenna ports, Q1 antenna ports and Q2 antenna ports according to an embodiment of the present application;
  • FIG. 4 shows a structural block diagram of a processing device for use in a UE according to an embodiment of the present application
  • FIG. 5 is a block diagram showing the structure of a processing device used in a base station according to an embodiment of the present application
  • FIG. 6 shows a flowchart of first signaling, second signaling, first reference signal, second reference signal, and first channel information, according to an embodiment of the present application
  • Figure 7 shows a schematic diagram of a network architecture in accordance with one embodiment of the present application.
  • FIG. 8 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with one embodiment of the present application
  • FIG. 9 shows a schematic diagram of an NR (New Radio) node and a UE in accordance with one embodiment of the present application.
  • NR New Radio
  • Embodiment 1 illustrates a flow chart of wireless transmission, as shown in FIG.
  • base station N1 is a serving cell maintenance base station of UE U2.
  • the steps in block F1, block F2 and block F3 are optional, respectively.
  • the first signaling is transmitted in step S11; the first reference signal is transmitted in step S12; the first information is received in step S101; the second information is transmitted in step S102; the second signaling is transmitted in step S13 Transmitting the second reference signal in step S14; receiving the first channel information in step S15; transmitting the first wireless signal in step S103.
  • the first signaling is received in step S21; the first reference signal is received in step S22; the first information is transmitted in step S201; the second information is received in step S202; the second signaling is received in step S23 Receiving the second reference signal in step S24; transmitting the first channel information in step S25; receiving the first wireless signal in step S203.
  • the first reference signal includes Q1 RS ports, and the Q1 RS ports are respectively sent by Q1 antenna ports; the second reference signal includes Q2 RS ports, and the Q2 RS ports They are sent by Q2 antenna ports respectively.
  • the first signaling is used to determine L1 antenna ports, the Q1 antenna ports being a subset of the L1 antenna ports; the second signaling is used to determine the Q2 antenna ports.
  • Q1 and Q2 are positive integers, respectively, and L1 is a positive integer greater than or equal to Q1.
  • the first channel information is for Q antenna ports.
  • the Q antenna ports are composed of the Q1 antenna ports and the Q2 antenna ports, and the Q is equal to the sum of the Q1 and the Q2. Said
  • the first information indicates Q3 antenna ports from the L1 antenna ports.
  • the Q3 is a positive integer less than or equal to the L1.
  • the second information indicates the Q1 antenna ports from the L1 antenna ports.
  • the first channel information is used to generate the first wireless signal.
  • the location of the Q1 antenna ports in the Q antenna ports is determined by default.
  • the beamforming vector corresponding to the Q1 antenna ports is used to determine a beamforming vector corresponding to the transmitting antenna port of the second signaling.
  • the first channel information is CSI.
  • the first channel information includes at least one of ⁇ RI, PTI, PMI, CQI, channel parameter quantization value ⁇ .
  • measurements for the first reference signal and the second reference signal are used to determine the first channel information.
  • the first signaling is high layer signaling
  • the second signaling is physical layer signaling
  • the first signaling is RRC layer signaling.
  • the first signaling is physical layer signaling
  • the second signaling is physical layer signaling
  • the first signaling triggers multiple transmissions of the L1 antenna ports, and the second signaling triggers one transmission of the Q2 antenna ports.
  • the first signaling is common to the cell.
  • the Q1 is 1.
  • the Q1 is equal to the L1.
  • the Q1 antenna ports and the Q2 antenna ports do not overlap each other, and none of the antenna ports belong to the Q1 antenna ports and the Q2 antenna ports.
  • the first channel information includes UCI (Uplink Control Information).
  • UCI Uplink Control Information
  • the first information is a CRI.
  • the time domain resources occupied by any two of the L1 antenna ports are orthogonal.
  • the antenna port is virtualized by multiple antennas through an antenna (Virtualization) is superimposed, and mapping coefficients of the plurality of antennas to the antenna port form a beamforming vector.
  • the Q3 is equal to the Q1.
  • the Q3 antenna ports are equal to the Q1 antenna ports.
  • the Q3 antenna ports are used to determine the Q1 antenna ports.
  • the Q1 antenna ports are a subset of the Q3 antenna ports, and the Q3 is greater than or equal to the Q1.
  • the Q3 antenna ports are a subset of the Q1 antenna ports, and the Q1 is greater than or equal to the Q3.
  • the second information is carried by the second signaling.
  • the transmit antenna port of the second signaling includes some or all of the Q1 antenna ports.
  • the beamforming vector corresponding to the Q1 antenna ports is a beamforming vector corresponding to the transmitting antenna port of the second signaling.
  • the first channel information is used to determine a precoding matrix corresponding to the first wireless signal.
  • Embodiment 2 illustrates a schematic diagram of resource mapping of RS ports in the first reference signal and the second reference signal, as shown in FIG.
  • the first reference signal is transmitted in a first time resource pool
  • the second reference signal is transmitted in a second time resource pool.
  • the first reference signal includes Q1 RS ports, and the Q1 RS ports are respectively sent by Q1 antenna ports;
  • the second reference signal includes Q2 RS ports, and the Q2 RS ports are respectively Q2 antenna ports. send.
  • the box of the thick solid border indicates the first time resource pool
  • the box of the thin solid border indicates the second time resource pool
  • the square filled with diagonal lines indicates the Q1 RSs shown.
  • the port, the dot-filled square represents the Q2 RS ports.
  • the first time resource pool includes a positive integer number of time units
  • the second time resource pool includes a positive integer number of time units
  • the time included in the first time resource pool Units are non-contiguous in the time domain.
  • the time unit included in the second time resource pool is continuous in the time domain.
  • the time unit is a subframe.
  • the time unit is 1 ms.
  • the time unit in the second time resource pool does not belong to the first time resource pool.
  • the first reference signal appears multiple times in the first time resource pool, and the first reference signal is equal in time interval of any two adjacent occurrences in the first time resource pool.
  • the second reference signal appears once in the second time resource pool.
  • the time domain resources occupied by any two of the Q1 RS ports are orthogonal.
  • the first reference signal is broadband.
  • the system bandwidth is divided into positive integer frequency domain regions, the first reference signal appears on all frequency domain regions within the system bandwidth, and the frequency domain region corresponds to a bandwidth equal to the The difference in frequency of frequency units in which the first reference signal appears twice adjacently.
  • the second reference signal is narrowband.
  • the system bandwidth is divided into positive integer frequency domain regions, and the second reference signal appears only in part of the frequency domain region.
  • Embodiment 3 exemplifies a relationship between L1 antenna ports, Q1 antenna ports and Q2 antenna ports, as shown in FIG.
  • the antenna configured by the base station is divided into G antenna groups, and each of the antenna groups includes a plurality of antennas.
  • An antenna port is formed by superimposing a plurality of antennas in one antenna group by antenna virtualization, and mapping coefficients of the plurality of antennas in the one antenna group to the antenna port form a beamforming vector.
  • the Q1 antenna ports are a subset of the L1 antenna ports.
  • the beamforming vectors corresponding to the L1 antenna ports are different from each other.
  • the time domain resources occupied by any two of the L1 antenna ports are orthogonal.
  • the Q1 is equal to one.
  • the beamforming vectors corresponding to the Q2 antenna ports are respectively equal to the beamforming vectors corresponding to the Q1 antenna ports.
  • the antenna group corresponding to the Q2 antenna ports and the antenna group corresponding to the Q1 antenna ports are different from each other. There is no antenna group used by both the Q2 antenna ports and the Q1 antenna ports.
  • the small-scale characteristics of the wireless channel experienced by the signal transmitted by the first antenna port cannot be used to infer the small-scale characteristics of the wireless channel experienced by the signal transmitted by the second antenna port.
  • the first antenna port and the second antenna port are any two different antenna ports.
  • the first channel information is for Q antenna ports
  • the Q antenna ports are composed of the Q1 antenna ports and the Q2 antenna ports
  • the Q is equal to the sum of the Q1 and the Q2 .
  • the downlink channel parameter corresponding to the Q1 antenna ports, the downlink channel parameter corresponding to the Q2 antenna ports ⁇ constitute a first channel matrix, and the first channel matrix is Used to generate first channel information.
  • the first channel matrix includes a number of rows equal to the sum of the Q1 and the Q2.
  • the downlink channel parameter corresponding to the Q1 antenna port and the downlink channel parameter corresponding to the Q2 antenna port are respectively CIR (Channel Impulse Response) response).
  • Embodiment 4 exemplifies a structural block diagram of a processing device for use in a UE, as shown in FIG.
  • the UE device 200 is mainly composed of a first receiver module 201 and a first transmitter module 202.
  • the first receiver module 201 receives the first signaling, the second signaling, the first reference signal, and the Two reference signals; the first transmitter module 202 transmits the first channel information.
  • the first reference signal includes Q1 RS ports, and the Q1 RS ports are respectively sent by Q1 antenna ports; the second reference signal includes Q2 RS ports, and the Q2 RS ports They are sent by Q2 antenna ports respectively.
  • the first signaling is used to determine L1 antenna ports, the Q1 antenna ports being a subset of the L1 antenna ports; the second signaling is used to determine the Q2 antenna ports.
  • Q1 and Q2 are positive integers, respectively, and L1 is a positive integer greater than or equal to Q1.
  • the first channel information is for Q antenna ports.
  • the Q antenna ports are composed of the Q1 antenna ports and the Q2 antenna ports, and the Q is equal to the sum of the Q1 and the Q2.
  • the first transmitter module 202 also sends the first information.
  • the first information indicates Q3 antenna ports from the L1 antenna ports.
  • the Q3 is a positive integer less than or equal to the L1.
  • the first receiver module 201 also receives second information.
  • the second information indicates the Q1 antenna ports from the L1 antenna ports.
  • the first receiver module 201 also receives a first wireless signal.
  • the first channel information is used to generate the first wireless signal.
  • the location of the Q1 antenna ports in the Q antenna ports is determined by default.
  • the beamforming vector corresponding to the Q1 antenna ports is used to determine a beamforming vector corresponding to the transmitting antenna port of the second signaling.
  • Embodiment 5 exemplifies a structural block diagram of a processing device used in a base station, as shown in FIG.
  • the base station apparatus 300 is mainly composed of a second transmitter module 301 and a second receiver module 302.
  • the second transmitter module 301 transmits first signaling, second signaling, a first reference signal and a second reference signal; and the second receiver module 302 receives the first channel information.
  • the first reference signal includes Q1 RS ports, and the Q1 RS ports are respectively sent by Q1 antenna ports; the second reference signal includes Q2 RS ports, and the Q2 RS ports They are sent by Q2 antenna ports respectively.
  • the first signaling is used to determine L1 antenna ports, and the Q1 antenna ports are sub-ports of the L1 antenna ports
  • the second signaling is used to determine the Q2 antenna ports.
  • Q1 and Q2 are positive integers, respectively, and L1 is a positive integer greater than or equal to Q1.
  • the first channel information is for Q antenna ports.
  • the Q antenna ports are composed of the Q1 antenna ports and the Q2 antenna ports, and the Q is equal to the sum of the Q1 and the Q2.
  • the second receiver module 302 also receives the first information.
  • the first information indicates Q3 antenna ports from the L1 antenna ports.
  • the Q3 is a positive integer less than or equal to the L1.
  • the second transmitter module 301 also sends the second information.
  • the second information indicates the Q1 antenna ports from the L1 antenna ports.
  • the location of the Q1 antenna ports in the Q antenna ports is determined by default.
  • the beamforming vector corresponding to the Q1 antenna ports is used to determine a beamforming vector corresponding to the transmitting antenna port of the second signaling.
  • the second transmitter module 301 also transmits a first wireless signal.
  • the first channel information is used to generate the first wireless signal.
  • Embodiment 6 exemplifies a flowchart of the first signaling, the second signaling, the first reference signal, the second reference signal, and the first channel information, as shown in FIG.
  • the UE in the present application first receives the first signaling, the second signaling, the first reference signal and the second reference signal; and then transmits the first channel information.
  • the first reference signal includes Q1 RS ports, and the Q1 RS ports are respectively sent by Q1 antenna ports;
  • the second reference signal includes Q2 RS ports, and the Q2 RS ports are respectively Q2 Antenna port transmission;
  • the first signaling is used to determine L1 antenna ports, the Q1 antenna ports are a subset of the L1 antenna ports;
  • the second signaling is used to determine the Q2 An antenna port;
  • the Q1 and the Q2 are positive integers, respectively, and the L1 is a positive integer greater than or equal to the Q1;
  • the first channel information is for Q antenna ports; and the Q antenna ports are by the Q1
  • the antenna port is composed of the Q2 antenna ports, and the Q is equal to the sum of the Q1 and the Q2.
  • the first channel information is CSI.
  • the measurement of the first reference signal and the second reference signal The amount is used to determine the first channel information.
  • the first channel information includes at least one of ⁇ RI, PTI, PMI, CQI, channel parameter quantization value ⁇ .
  • the first signaling is high layer signaling
  • the second signaling is physical layer signaling
  • the first signaling is RRC layer signaling.
  • the first signaling is physical layer signaling
  • the second signaling is physical layer signaling
  • the first signaling triggers multiple transmissions of the L1 antenna ports
  • the second signaling triggers one transmission of the Q2 antenna ports
  • the Q1 antenna ports are the L1 A subset of the antenna ports.
  • the first signaling is common to the cell.
  • the first signaling is an MIB.
  • the first signaling is an SIB.
  • the Q1 is 1.
  • the Q1 is equal to the L1.
  • the Q1 antenna ports and the Q2 antenna ports do not overlap each other, and none of the antenna ports belong to the Q1 antenna ports and the Q2 antenna ports.
  • channel estimation for the Q1 antenna ports may be implemented by measuring the first reference signal, and does not need to include sending from the Q1 antenna ports in the second reference signal. Reference signal, thereby reducing the overhead of the second reference signal.
  • the first reference signal is transmitted in a first time resource pool
  • the second reference signal is transmitted in a second time resource pool.
  • the first reference signal appears multiple times in the first time resource pool, and the first reference signal appears any two adjacent times in the first time resource pool.
  • the time intervals are equal.
  • the second reference signal appears once in the second time resource pool.
  • the first time resource pool includes a positive integer Time units, the second time resource pool comprising a positive integer number of consecutive time units.
  • the time unit is a subframe.
  • the time unit is 1 ms.
  • the time unit in the second time resource pool does not belong to the first time resource pool.
  • the time unit in the second time resource pool belongs to the first time resource pool.
  • the physical layer channel corresponding to the second signaling includes a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer control information).
  • the downlink physical layer control channel is a PDCCH.
  • the first reference signal is broadband.
  • the system bandwidth is divided into a positive integer frequency domain region, the first reference signal appears on all frequency domain regions within the system bandwidth, and the frequency domain region corresponds to a bandwidth equal to the first reference signal.
  • the second reference signal is broadband.
  • the second reference signal is narrowband.
  • the system bandwidth is divided into positive integer frequency domain regions, and the second reference signal appears only in a portion of the frequency domain region.
  • an antenna port is formed by superposing multiple antennas through antenna virtualization, and mapping coefficients of the multiple antennas to the antenna port form a beamforming vector.
  • the small-scale characteristics of the wireless channel experienced by the signal transmitted by the first antenna port cannot be used to infer the small-scale characteristics of the wireless channel experienced by the signal transmitted by the second antenna port.
  • the first antenna port and the second antenna port are any two different antenna ports.
  • the first channel information includes UCI (Uplink Control Information).
  • UCI Uplink Control Information
  • the first channel information is transmitted on an uplink physical layer control channel (ie, an uplink channel that can only be used to carry physical layer signaling).
  • an uplink physical layer control channel ie, an uplink channel that can only be used to carry physical layer signaling.
  • the uplink physical layer control channel is a PUCCH.
  • the first channel information is transmitted on an uplink physical layer data channel (ie, an uplink channel that can be used to carry physical layer data).
  • an uplink physical layer data channel is a PUSCH.
  • the first channel information is used to determine a first matrix, the first The number of rows included in a matrix is equal to the Q.
  • the first matrix is quantized by a first channel matrix
  • the first reference signal is used to determine a downlink channel parameter corresponding to the Q1 antenna port
  • the second reference signal is used to determine a downlink channel parameter corresponding to the Q2 antenna ports, ⁇ a downlink channel parameter corresponding to the Q1 antenna port, and a downlink channel corresponding to the Q2 antenna port
  • the parameter ⁇ constitutes the first channel matrix
  • the downlink channel parameter corresponding to the Q1 antenna port and the downlink channel parameter corresponding to the Q2 antenna port are respectively CIR.
  • the first channel information is quantization information of the first matrix.
  • the first channel information is an index of the first matrix in a candidate matrix set, and the candidate matrix set includes a positive integer number of matrices.
  • the first channel information includes M index groups and M parameter groups, and the M index groups are used to determine M vector groups, the M vector groups and The M parameter groups are in one-to-one correspondence, and the M vector groups and the M parameter groups are respectively used to generate M synthesis vectors, and the M synthesis vectors are used to determine the first matrix.
  • the M is a positive integer.
  • the vectors in the M vector groups belong to a candidate vector set, and the candidate vector set includes a positive integer vector.
  • a given composite vector is obtained by weighting the vectors in a given set of vectors by a parameter in a given set of parameters, wherein a given composite vector is in the M composite vectors. Or any one of the M vector groups used to generate the given composite vector, the given parameter group being used in the M parameter groups Generating the set of parameters of the given composite vector.
  • the first matrix is composed of the M composite vectors as column vectors.
  • one vector group includes L vectors, and the corresponding coefficient group includes L-1 coefficients.
  • one vector group includes L vectors, and the corresponding coefficient group includes L coefficients.
  • Embodiment 7 illustrates a schematic diagram of a network architecture, as shown in FIG.
  • FIG. 7 illustrates a network architecture 700 of LTE (Long-Term Evolution), LTE-A (Long-Term Evolution Advanced) and future 5G systems.
  • the LTE network architecture 700 may be referred to as an EPS (Evolved Packet System) 700.
  • the EPS 700 may include one or more UEs (User Equipment) 701, E-UTRAN-NR (Evolved UMTS Terrestrial Radio Access Network - New Wireless) 702, 5G-CN (5G-CoreNetwork, 5G Core Network)/ EPC (Evolved Packet Core) 710, HSS (Home Subscriber Server) 720 and Internet Service 730.
  • UMTS corresponds to the Universal Mobile Telecommunications System.
  • the EPS 700 can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown in FIG. 7, EPS 700 provides packet switching services, although those skilled in the art will readily appreciate that the various concepts presented throughout this application can be extended to networks that provide circuit switched services.
  • the E-UTRAN-NR 702 includes an NR (New Radio) Node B (gNB) 703 and other gNBs 704.
  • the gNB 703 provides user and control plane protocol termination towards the UE 701.
  • the gNB 703 can connect to other gNBs 704 via an X2 interface (eg, a backhaul).
  • gNB 703 may also be referred to as a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmission and reception point), or some other suitable terminology.
  • the gNB 703 provides the UE 701 with an access point to the 5G-CN/EPC 710.
  • Examples of UE 701 include cellular telephones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players (for example, an MP3 player), a camera, a game console, a drone, an aircraft, a narrowband physical network device, a machine type communication device, a land vehicle, a car, a wearable device, or any other similar functional device.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • a person skilled in the art may also refer to a UE 701 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB 703 is connected to the 5G-CN/EPC 710 through the S1 interface.
  • the 5G-CN/EPC 710 includes an MME 711, other MMEs 714, an S-GW (Service Gateway) 712, and a P-GW (Packet Date Network Gateway). 713.
  • MME 711 is processing UE 701 and Control node for signaling between 5G-CN/EPC710.
  • the MME 711 provides bearer and connection management. All User IP (Internet Protocol) packets are transmitted through the S-GW 712, which is itself connected to the P-GW 713.
  • the P-GW 713 provides UE IP address allocation as well as other functions.
  • the P-GW 713 is connected to the Internet service 730.
  • the Internet service 730 includes an operator-compatible Internet Protocol service, and may specifically include the Internet, an intranet, an IMS (IP Multimedia Subsystem), and a PS Streaming Service (PSS).
  • IMS IP Multimedia Subsystem
  • PSS PS Streaming Service
  • the UE 701 corresponds to the UE in this application.
  • the gNB 703 corresponds to the base station in this application.
  • Embodiment 8 illustrates a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane, as shown in FIG.
  • FIG. 8 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane and a control plane, and FIG. 8 shows the radio protocol architecture for the UE and gNB in three layers: Layer 1, Layer 2, and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 801.
  • Layer 2 (L2 layer) 805 is above PHY 301 and is responsible for the link between the UE and the gNB through PHY 801.
  • the L2 layer 805 includes a MAC (Medium Access Control) sublayer 802, an RLC (Radio Link Control) sublayer 803, and a PDCP (Packet Data Convergence Protocol).
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • Convergence Protocol Sublayer 804 which terminates at the gNB on the network side.
  • the UE may have several protocol layers above the L2 layer 805, including a network layer (eg, an IP layer) terminated at the P-GW 713 on the network side and terminated at the other end of the connection (eg, Application layer at the remote UE, server, etc.).
  • the PDCP sublayer 804 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 804 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handoff support for UEs between gNBs.
  • the RLC sublayer 803 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 802 provides multiplexing between the logical and transport channels.
  • the MAC sublayer 802 is also responsible for allocating various radio resources (e.g., resource blocks) in one cell between UEs.
  • the MAC sublayer 802 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB for the physical layer 801 and L2 Layer 805 is generally identical, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 806 in Layer 3 (L3 layer).
  • the RRC sublayer 806 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower layer using RRC signaling between the gNB and the UE.
  • the radio protocol architecture of Figure 8 is applicable to the UE in the present application.
  • the radio protocol architecture of Figure 8 is applicable to the base station in this application.
  • the first signaling in the present application is generated by the PHY 801.
  • the first signaling in the present application is generated by the MAC sublayer 802.
  • the first signaling in this application is generated in the RRC sublayer 806.
  • the second signaling in the present application is generated by the MAC sublayer 802.
  • the second signaling in the present application is generated by the PHY 801.
  • the first reference signal in the present application is generated by the PHY 801.
  • the second reference signal in the present application is generated by the PHY 801.
  • the first channel information in the present application is generated by the PHY 801.
  • the first information in the present application is generated by the PHY 801.
  • the second information in the present application is generated by the PHY 801.
  • the second information in the present application is generated in the MAC sublayer 802.
  • the first wireless signal in the present application is generated by the PHY 801.
  • Embodiment 9 exemplifies a schematic diagram of an NR node and a UE, as shown in FIG. 9 is a block diagram of a UE 950 and a gNB 910 that communicate with each other in an access network.
  • the gNB 910 includes a controller/processor 975, a memory 976, a receiving processor 970, a transmitting processor 916, a multi-antenna receiving processor 972, a multi-antenna transmitting processor 971, a transmitter/receiver 918, and an antenna 920.
  • the UE 950 includes a controller/processor 959, a memory 960, a data source 967, a transmit processor 968, a receive processor 956, a multi-antenna transmit processor 957, a multi-antenna receive processor 958, a transmitter/receiver 954, and an antenna 952.
  • DL Downlink
  • controller/processor 975 implements the functionality of the L2 layer.
  • the controller/processor 975 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and radio resource allocation to the UE 950 based on various priority metrics.
  • the controller/processor 975 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the UE 950.
  • the transmit processor 916 and the multi-antenna transmit processor 971 implement various signal processing functions for the L1 layer (ie, the physical layer).
  • Transmit processor 916 implements encoding and interleaving to facilitate forward error correction (FEC) at UE 950, as well as based on various modulation schemes (eg, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), Mapping of signal clusters of M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM).
  • FEC forward error correction
  • a multi-antenna transmit processor 971 performs digital spatial precoding/beamforming processing on the encoded and modulated symbols to generate one or more spatial streams.
  • Transmit processor 916 maps each spatial stream to subcarriers, multiplexes with reference signals (e.g., pilots) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a time-domain multi-carrier symbol stream.
  • the multi-antenna transmit processor 971 then transmits an analog precoding/beamforming operation to the time domain multi-carrier symbol stream.
  • Each transmitter 918 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 971 into a radio frequency stream, which is then provided to a different antenna 920.
  • each receiver 954 receives a signal through its respective antenna 952. Each receiver 954 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream for providing to the receive processor 956.
  • Receive processor 956 and multi-antenna receive processor 958 implement various signal processing functions of the L1 layer.
  • the multi-antenna receive processor 958 performs a receive analog precoding/beamforming operation on the baseband multicarrier symbol stream from the receiver 954.
  • the receive processor 956 converts the baseband multicarrier symbol stream after receiving the analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receive processor 956, wherein the reference signal will be used for channel estimation, and the data signal is recovered by the multi-antenna detection in the multi-antenna reception processor 958 with the UE 950 as Any spatial stream of destinations.
  • the symbols on each spatial stream are demodulated and recovered in receive processor 956 and a soft decision is generated.
  • the receive processor 956 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the gNB 910 on the physical channel.
  • the upper layer data and control signals are then provided to controller/processor 959.
  • the controller/processor 959 implements the functions of the L2 layer.
  • Controller/processor 959 can be associated with memory 960 that stores program codes and data. Memory 960 can be referred to as a computer readable medium.
  • controller/processor 959 provides demultiplexing, packet reassembly, decryption, header decompression, and control signal processing between transport and logical channels to recover upper layer packets from the core network. The upper layer packet is then provided to all protocol layers above the L2 layer. Various control signals can also be provided to L3 for L3 processing.
  • the controller/processor 959 is also responsible for error detection using an acknowledgement (ACK) and/or negative acknowledgement (NACK) protocol to support HARQ operations.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • data source 967 is used to provide upper layer data packets to controller/processor 959.
  • Data source 967 represents all protocol layers above the L2 layer.
  • the controller/processor 959 implements header compression, encryption, packet segmentation and reordering, and multiplexing between the logical and transport channels based on the radio resource allocation of the gNB 910. Used to implement L2 layer functions for the user plane and control plane.
  • the controller/processor 959 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the gNB 910.
  • the transmit processor 968 performs modulation mapping, channel coding processing, the multi-antenna transmit processor 957 performs digital multi-antenna spatial pre-coding/beamforming processing, and then the transmit processor 968 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream.
  • the analog precoding/beamforming operation is performed in the multi-antenna transmit processor 957 and then provided to the different antennas 952 via the transmitter 954.
  • Each transmitter 954 first converts the baseband symbol stream provided by the multi-antenna transmit processor 957 into a stream of radio frequency symbols and provides it to antenna 952.
  • the function at gNB 910 is similar to the receiving function at UE 950 described in the DL.
  • Each receiver 918 receives a radio frequency signal through its respective antenna 920, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to a multi-antenna receive processor 972 and a receive processor 970.
  • the receiving processor 970 and the multi-antenna receiving processor 972 collectively implement the functions of the L1 layer.
  • the controller/processor 975 implements the L2 layer function. Controller/processor 975 can be associated with memory 976 that stores program code and data. Memory 976 can be referred to as a computer readable medium.
  • the controller/processor 975 provides demultiplexing, packet reassembly, decryption, header decompression, and control signal processing between the transport and logical channels to recover upper layer data packets from the UE 950.
  • Upper layer data packets from controller/processor 975 can be provided to the core network.
  • the controller/processor 975 is also responsible for error detection using the ACK and/or NACK protocols to support HARQ operations.
  • the UE 950 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be coupled to the at least one processor use together.
  • the UE 950 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by at least one processor, the action comprising: receiving a location in the present application Receiving the first signaling, receiving the second signaling in the application, receiving the first reference signal in the application, receiving the second reference signal in the application, and sending the first part in the application.
  • One channel information, the first information in the application is sent, the second information in the application is received, and the first wireless signal in the application is received.
  • the gNB 910 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be coupled to the at least one processor use together.
  • the gNB 910 includes: a memory storing a computer readable instruction program that, when executed by at least one processor, generates an action, the action comprising: transmitting the Transmitting the first signaling, sending the second signaling in the application, sending the first reference signal in the application, sending the second reference signal in the application, and receiving the first part in the application.
  • the first information in the application is sent by the channel information, and the first information in the application is sent, and the first wireless signal in the application is sent.
  • the UE 950 corresponds to the UE in this application.
  • the gNB 910 corresponds to the base station in this application.
  • At least one of ⁇ the antenna 952, the receiver 954, the receiving processor 956, the multi-antenna receiving processor 958, the controller/processor 959 ⁇ is used Receiving the first signaling; at least one of the antenna 920, the transmitter 918, the transmitting processor 916, the multi-antenna transmitting processor 971, the controller/processor 975 ⁇ Used to send the first signaling.
  • At least one of ⁇ the antenna 952, the receiver 954, the receiving processor 956, the multi-antenna receiving processor 958, the controller/processor 959 ⁇ is used Receiving the second signaling; at least one of the antenna 920, the transmitter 918, the transmitting processor 916, the multi-antenna transmitting processor 971, the controller/processor 975 ⁇ Used to send the second signaling.
  • At least one of ⁇ the antenna 952, the receiver 954, the receiving processor 956, the multi-antenna receiving processor 958, the controller/processor 959 ⁇ is used Receiving the second reference signal; at least one of the antenna 920, the transmitter 918, the transmit processor 916, the multi-antenna transmit processor 971, the controller/processor 975 ⁇ Used to transmit the second reference signal.
  • At least one of ⁇ the antenna 920, the receiver 918, the receiving processor 970, the multi-antenna receiving processor 972, the controller/processor 975 ⁇ is used Receiving the first channel information; at least one of the antenna 952, the transmitter 954, the transmitting processor 968, the multi-antenna transmitting processor 957, the controller/processor 959 ⁇ Used to transmit the first channel information.
  • At least one of ⁇ the antenna 920, the receiver 918, the receiving processor 970, the multi-antenna receiving processor 972, the controller/processor 975 ⁇ is used Receiving the first information; ⁇ the antenna 952, the transmitter 954, the transmitting processor 968, the multi-antenna transmitting processor 957, the controller/processor 959 ⁇ are at least one of Used to send the first information.
  • At least one of ⁇ the antenna 952, the receiver 954, the receiving processor 956, the multi-antenna receiving processor 958, the controller/processor 959 ⁇ is used Receiving the second information; ⁇ the antenna 920, the transmitter 918, the transmitting processor 916, the multi-antenna transmitting processor 971, the controller/processor 975 ⁇ are at least one of Used to send the second information.
  • At least one of ⁇ the antenna 952, the receiver 954, the receiving processor 956, the multi-antenna receiving processor 958, the controller/processor 959 ⁇ is used Receiving the first wireless signal; at least one of the antenna 920, the transmitter 918, the transmit processor 916, the multi-antenna transmit processor 971, the controller/processor 975 ⁇ Used to transmit the first wireless signal.
  • the first receiver module 201 in Embodiment 4 includes ⁇ the antenna 952, the receiver 954, the receiving processor 956, the multi-antenna receiving processor 958, and the control / processor 959, the memory 960, the data source 967 ⁇ At least one of them.
  • the first transmitter module 202 in Embodiment 4 includes ⁇ the antenna 952, the transmitter 954, the transmitting processor 968, the multi-antenna transmitting processor 957, the control At least one of the processor/processor 959, the memory 960, and the data source 967 ⁇ .
  • the second transmitter module 301 in Embodiment 5 includes ⁇ the antenna 920, the transmitter 918, the transmitting processor 916, the multi-antenna transmitting processor 971, the control At least one of the processor/processor 975, the memory 976 ⁇ .
  • the second receiver module 302 in Embodiment 5 includes ⁇ the antenna 920, the receiver 918, the receiving processor 970, the multi-antenna receiving processor 972, the control At least one of the processor/processor 975, the memory 976 ⁇ .
  • the UE or terminal in the present application includes but is not limited to a drone, a communication module on a drone, a remote control aircraft, an aircraft, a small aircraft, a mobile phone, a tablet computer, a notebook, a vehicle communication device, a wireless sensor, an internet card, and an internet of things terminal.
  • RFID terminal NB-IOT terminal
  • MTC Machine Type Communication
  • eMTC enhanced terminal
  • data card data card
  • network card Vehicle communication device
  • vehicle communication device low-cost mobile phone
  • low-cost tablet Such as wireless communication devices.
  • the base station or system equipment in this application includes, but is not limited to, a macro communication base station, a micro cell base station, a home base station, a relay base station, a gNB (NR Node B), a TRP (Transmitter Receiver Point), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明公开了一种用于多天线系统的用户设备、基站中的方法和装置。UE首先接收第一信令,第二信令,第一参考信号和第二参考信号;然后发送第一信道信息。其中,所述第一参考信号包括Q1个RS端口,所述Q1个RS端口分别被Q1个天线端口发送;所述第二参考信号包括Q2个RS端口,所述Q2个RS端口分别被Q2个天线端口发送。所述第一信令被用于确定L1个天线端口,所述Q1个天线端口是所述L1个天线端口的子集;所述第二信令被用于确定所述Q2个天线端口。其中所述Q1和所述Q2分别是正整数,所述L1是大于或者等于所述Q1的正整数。所述第一信道信息针对Q个天线端口。所述Q个天线端口由所述Q1个天线端口和所述Q2个天线端口组成,所述Q等于所述Q1与所述Q2的和。

Description

一种用于多天线系统的用户设备、基站中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及基站侧部署了大量天线的无线通信系统中的传输方案和装置。
背景技术
下行多天线传输中,UE(User Equipment,用户设备)通常要通过测量基站发送的下行参考信号进行下行信道估计,然后反馈CSI(Channel State Information,信道状态信息)以辅助基站执行预编码。传统的第三代合作伙伴项目(3GPP–3rd GenerationPartner Project)蜂窝网系统中,周期性(periodic)的下行参考信号被支持,包括小区公用和UE专用的下行参考信号。
下一代无线通信系统中,基站侧装备的天线数量将会大大增加,传统的周期性下行参考信号所需要的开销也将随之增加。为了降低下行参考信号的开销,3GPP R(Release,版本)13和R14中讨论了非周期性(aperiodic)的下行参考信号和使用了波束赋型的下行参考信号。
发明内容
发明人通过研究发现,非周期性的下行参考信号和周期性的下行参考信号有时会对应(部分)相同的天线端口,比如(部分)非周期性的下行参考信号和(部分)周期性的下行参考信号使用相同的波束赋型向量从相同的天线组上发送。在这种情况下,和周期性下行参考信号对应相同天线端口的非周期性下行参考信号不需要被发送,基于非周期性下行参考信号的信道估计可以联合利用(部分)周期性的下行参考信号和非周期性的参考信号来进行,从而降低非周期性的下行参考信号的开销。
本申请针对上述问题公开了一种解决方案。需要说明的是,在不冲突的情况下,本申请的UE中的实施例和实施例中的特征可以应用到基站中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了用于多天线传输的UE中的方法,其中,包括如下步 骤:
-步骤A.接收第一信令,第二信令,第一参考信号和第二参考信号;
-步骤B.发送第一信道信息;
其中,所述第一参考信号包括Q1个RS端口,所述Q1个RS端口分别被Q1个天线端口发送;所述第二参考信号包括Q2个RS端口,所述Q2个RS端口分别被Q2个天线端口发送;所述第一信令被用于确定L1个天线端口,所述Q1个天线端口是所述L1个天线端口的子集;所述第二信令被用于确定所述Q2个天线端口;其中所述Q1和所述Q2分别是正整数,所述L1是大于或者等于所述Q1的正整数;所述第一信道信息针对Q个天线端口;所述Q个天线端口由所述Q1个天线端口和所述Q2个天线端口组成,所述Q等于所述Q1与所述Q2的和。
作为一个实施例,所述第一信道信息是CSI(ChannelStateInformation,信道状态信息)。
作为一个实施例,针对所述第一参考信号和所述第二参考信号的测量被用于确定所述第一信道信息。
作为一个实施例,所述第一信道信息包括{RI(Rank Indicator,秩标识),PTI(Precoder Type Indication,预编码类型标识),PMI(Precoding Matrix Indicator,预编码矩阵标识),CQI(Channel Quality Indicator,信道质量标识),信道参数量化值}中的至少之一。
作为一个实施例,所述第一信令是高层信令,所述第二信令是物理层信令。
作为上述实施例的一个子实施例,所述第一信令是RRC(Radio Resource Control,无线资源控制)层信令。
作为一个实施例,所述第一信令是物理层信令,所述第二信令是物理层信令。
作为一个实施例,所述第一信令触发所述L1个天线端口的多次发送,所述第二信令触发所述Q2个天线端口的一次发送,所述Q1个天线端口是所述L1个天线端口的子集。
作为一个实施例,所述第一信令是小区公共的。
作为一个实施例,所述第一信令是MIB(Master Information Block,主信息块)。
作为一个实施例,所述第一信令是SIB(System Information Block,系统信息块)。
作为一个实施例,所述Q1为1。
作为一个实施例,所述Q1等于所述L1。
作为一个实施例,所述Q1个天线端口和所述Q2个天线端口互不重叠,不存在一个所述天线端口同时属于所述Q1个天线端口和所述Q2个天线端口。
作为一个实施例,在上述方法中,针对所述Q1个天线端口的信道估计可以通过测量所述第一参考信号来实现,无需在所述第二参考信号中包括从所述Q1个天线端口发送的参考信号,从而降低了所述第二参考信号的开销。
作为一个实施例,所述第一参考信号在第一时间资源池中传输,所述第二参考信号在第二时间资源池中传输。
作为上述实施例的一个子实施例,所述第一参考信号在所述第一时间资源池内出现多次,并且所述第一参考信号在所述第一时间资源池内任意相邻两次出现的时间间隔相等。
作为上述实施例的一个子实施例,所述第二参考信号在所述第二时间资源池内出现一次。
作为上述实施例的一个子实施例,所述第一时间资源池包括正整数个时间单位,所述第二时间资源池包括正整数个连续的时间单位。作为一个子实施例,所述时间单位是子帧。作为一个子实施例,所述时间单位是1ms。作为一个子实施例,所述第二时间资源池中的时间单位不属于所述第一时间资源池。作为一个子实施例,所述第二时间资源池中的时间单位属于所述第一时间资源池。
作为一个实施例,所述第二信令对应的物理层信道包括下行物理层控制信道(即仅能用于承载物理层控制信息的下行信道)。作为一个子实施例,所述下行物理层控制信道是PDCCH(Physical DownlinkControlChannel,物理下行控制信道)。
作为一个实施例,所述第一参考信号是宽带的。作为一个子实施例,系统带宽被划分成正整数个频域区域,所述第一参考信号在系统带宽内的所有频域区域上出现,所述频域区域对应的带宽等于所述第一参考信 号相邻两次出现的频率单位的频率的差值。
作为一个实施例,所述第二参考信号是宽带的。
作为一个实施例,所述第二参考信号是窄带的。作为一个子实施例,系统带宽被划分成正整数个频域区域,所述第二参考信号只在部分频域区域上出现。
作为一个实施例,一个天线端口是由多根天线通过天线虚拟化(Virtualization)叠加而成,所述多根天线到所述天线端口的映射系数组成波束赋型向量。作为一个子实施例,第一天线端口发送的信号所经历的无线信道的小尺度特性不能被用于推断第二天线端口发送的信号所经历的无线信道的小尺度特性。所述第一天线端口和所述第二天线端口是任意两个不同的天线端口。
作为一个实施例,所述第一信道信息包括UCI(Uplink Control Information)。
作为一个实施例,所述第一信道信息在上行物理层控制信道(即仅能用于承载物理层信令的上行信道)上传输。作为一个子实施例,所述上行物理层控制信道是PUCCH(Physical Uplink Control Channel,物理上行控制信道)。
作为一个实施例,所述第一信道信息在上行物理层数据信道(即能用于承载物理层数据的上行信道)上传输。作为一个子实施例,所述上行物理层数据信道是PUSCH(Physical Uplink Shared Channel,物理上行共享信道)。
作为一个实施例,所述第一信道信息被用于确定第一矩阵,所述第一矩阵包括的行的数目等于所述Q。
作为上述实施例的一个子实施例,所述第一矩阵是由第一信道矩阵量化得到的,所述第一参考信号被用于确定所述Q1个天线端口所对应的下行信道参数,所述第二参考信号被用于确定所述Q2个天线端口所对应的下行信道参数,{所述所述Q1个天线端口所对应的下行信道参数,所述所述Q2个天线端口所对应的下行信道参数}构成所述第一信道矩阵。
作为上述实施例的一个子实施例,所述所述Q1个天线端口所对应的下行信道参数和所述所述Q2个天线端口所对应的下行信道参数分别是CIR(Channel Impulse Response,信道冲激响应)。
作为上述实施例的一个子实施例,所述第一信道信息是所述第一矩阵的量化信息。作为一个子实施例,所述第一信道信息是所述第一矩阵在候选矩阵集合中的索引,所述候选矩阵集合包括正整数个矩阵。
作为上述实施例的一个子实施例,所述第一信道信息包括M个索引组和M个参数组,所述M个索引组被用于确定M个向量组,所述M个向量组和所述M个参数组一一对应,所述M个向量组和所述M个参数组分别被用于生成M个合成向量,所述M个合成向量被用于确定所述第一矩阵。所述M是正整数。
作为上述实施例的子实施例,所述M个向量组中的向量属于候选向量集合,所述候选向量集合包括正整数个向量。
作为上述实施例的子实施例,给定合成向量是由给定向量组中的向量经给定参数组中的参数加权后相加得到的,其中给定合成向量是所述M个合成向量中的任意一个,所述给定向量组是所述M个向量组中被用于生成所述给定合成向量的所述向量组,所述给定参数组是所述M个参数组中被用于生成所述给定合成向量的所述参数组。
作为上述实施例的子实施例,所述第一矩阵是由所述M个合成向量作为列向量构成的。
作为上述实施例的子实施例,一个所述向量组中包括L个向量,对应的系数组中包括L-1个系数。
作为上述实施例的子实施例,一个所述向量组中包括L个向量,对应的系数组中包括L个系数。
具体的,根据本申请的一个方面,其特征在于,所述步骤B还包括如下步骤:
-步骤B0.发送第一信息。
其中,所述第一信息从所述L1个天线端口中指示Q3个天线端口;所述Q3是小于或者等于所述L1的正整数。
作为一个实施例,所述第一信息在物理层控制信道上传输。
作为一个实施例,所述第一信息在物理层数据信道上传输。
作为一个实施例,所述第一信息是CRI(Channel-state information reference signals Resource Indicator,信道状态信息参考信号资源标识)。
作为一个实施例,所述L1个天线端口中任意两个天线端口所占用的时域资源是正交的。
作为一个实施例,所述Q3等于所述Q1。作为一个子实施例,所述Q3个天线端口等于所述Q1个天线端口。
作为一个实施例,所述Q3个天线端口被用于确定所述Q1个天线端口。
作为一个实施例,所述Q1个天线端口是所述Q3个天线端口的子集,所述Q3大于或者等于所述Q1。
作为一个实施例,所述Q3个天线端口是所述Q1个天线端口的子集,所述Q1大于或者等于所述Q3。
具体的,根据本申请的一个方面,其特征在于,步骤A还包括如下步骤:
-步骤A0.接收第二信息;
其中,所述第二信息从所述L1个天线端口中指示所述Q1个天线端口。
作为一个实施例,所述第二信息由所述第二信令携带。
作为一个实施例,所述第二信息在物理层控制信道上传输。
具体的,根据本申请的一个方面,其特征在于,所述Q1个天线端口在所述Q个天线端口中的位置是缺省确定的。
作为一个实施例,所述Q1个天线端口和所述Q个天线端口中Q1个最前面的所述天线端口一一对应。
作为上述实施例的一个子实施例,所述Q2个天线端口和所述Q个天线端口中Q2个最后面的所述天线端口一一对应。
作为一个实施例,所述Q1个天线端口和所述Q个天线端口中Q1个最后面的所述天线端口一一对应。
作为上述实施例的一个子实施例,所述Q2个天线端口和所述Q个天线端口中Q2个最前面的所述天线端口一一对应。
具体的,根据本申请的一个方面,其特征在于,所述Q1个天线端口对应的波束赋型向量被用于确定所述第二信令的发送天线端口所对应的波束赋型向量。
作为一个实施例,所述所述第二信令的发送天线端口包括所述Q1 个天线端口中的部分或者全部天线端口。
作为一个实施例,所述Q1个天线端口对应的波束赋型向量是所述第二信令的发送天线端口所对应的波束赋型向量。
作为一个实施例,所述所述Q1个天线端口对应的波束赋型向量包括Q1个向量,所述Q1个向量的维度是相同的,所述Q1个天线端口和所述Q1个向量一一对应。
作为一个实施例,上述方法保证了所述第二信令用指向所述UE的波束赋型向量发送,提高了所述第二信令的传输可靠性和传输效率。
具体的,根据本申请的一个方面,其特征在于,所述步骤A还包括如下步骤:
-步骤A1.接收第一无线信号;
其中,所述第一信道信息被用于生成所述第一无线信号。
作为一个实施例,所述第一信道信息被用于确定所述第一无线信号对应的预编码矩阵。
作为一个实施例,所述第一无线信号对应的预编码矩阵中的列向量包括所述第一矩阵的列向量的部分或全部。
作为一个实施例,所述第一无线信号在下行物理层数据信道(即能用于承载物理层数据的信道)上传输。作为一个实施例,所述下行物理层数据信道是PDSCH(Physical Downlink Shared Channel,物理下行共享信道)。
作为一个实施例,所述第一无线信号对应的传输信道是DL-SCH(DownLink Shared Channel,下行共享信道)。
作为一个实施例,所述第一无线信号还包括物理层数据。
本申请公开了用于多天线传输的基站中的方法,其中,包括如下步骤:
-步骤A.发送第一信令,第二信令,第一参考信号和第二参考信号;
-步骤B.接收第一信道信息;
其中,所述第一参考信号包括Q1个RS端口,所述Q1个RS端口分别被Q1个天线端口发送;所述第二参考信号包括Q2个RS端口,所述Q2个RS端口分别被Q2个天线端口发送;所述第一信令被用于确定L1个天线端口,所述Q1个天线端口是所述L1个天线端口的子集;所述第 二信令被用于确定所述Q2个天线端口;其中所述Q1和所述Q2分别是正整数,所述L1是大于或者等于所述Q1的正整数;所述第一信道信息针对Q个天线端口;所述Q个天线端口由所述Q1个天线端口和所述Q2个天线端口组成,所述Q等于所述Q1与所述Q2的和。
作为一个实施例,针对所述第一参考信号和所述第二参考信号的测量被用于确定所述第一信道信息。
作为一个实施例,所述第一信令是高层信令,所述第二信令是物理层信令。
作为一个实施例,所述第一信令是物理层信令,所述第二信令是物理层信令。
作为一个实施例,所述第一信令触发所述L1个天线端口的多次发送,所述第二信令触发所述Q2个天线端口的一次发送,所述Q1个天线端口是所述L1个天线端口的子集。
作为一个实施例,所述Q1为1。
作为一个实施例,所述第一参考信号在第一时间资源池中传输,所述第二参考信号在第二时间资源池中传输。
作为上述实施例的一个子实施例,所述第一参考信号在所述第一时间资源池内出现多次,并且所述第一参考信号在所述第一时间资源池内任意相邻两次出现的时间间隔相等。
作为上述实施例的一个子实施例,所述第二参考信号在所述第二时间资源池内出现一次。
作为一个实施例,所述第一参考信号是宽带的。作为一个子实施例,系统带宽被划分成正整数个频域区域,所述第一参考信号在系统带宽内的所有频域区域上出现,所述频域区域对应的带宽等于所述第一参考信号相邻两次出现的频率单位的频率的差值。
作为一个实施例,所述第二参考信号是宽带的。
作为一个实施例,所述第二参考信号是窄带的。作为一个子实施例,系统带宽被划分成正整数个频域区域,所述第二参考信号只在部分频域区域上出现。
作为一个实施例,所述天线端口是由多根天线通过天线虚拟化(Virtualization)叠加而成,所述多根天线到所述天线端口的映射系 数组成波束赋型向量。
作为一个实施例,所述第一信道信息包括UCI(Uplink Control Information)。
具体的,根据本申请的一个方面,其特征在于,所述步骤B还包括如下步骤:
-步骤B0.接收第一信息;
其中,所述第一信息从所述L1个天线端口中指示Q3个天线端口;所述Q3是小于或者等于所述L1的正整数。
作为一个实施例,所述L1个天线端口中任意两个天线端口所占用的时域资源是正交的。
作为一个实施例,所述Q3等于所述Q1。作为一个子实施例,所述Q3个天线端口等于所述Q1个天线端口。
作为一个实施例,所述Q3个天线端口被用于确定所述Q1个天线端口。
具体的,根据本申请的一个方面,其特征在于,步骤A还包括如下步骤:
-步骤A0.发送第二信息;
其中,所述第二信息从所述L1个天线端口中指示所述Q1个天线端口。
作为一个实施例,所述第二信息由所述第二信令携带。
具体的,根据本申请的一个方面,其特征在于,所述Q1个天线端口在所述Q个天线端口中的位置是缺省确定的。
作为一个实施例,所述Q1个天线端口和所述Q个天线端口中Q1个最前面的所述天线端口一一对应。
作为上述实施例的一个子实施例,所述Q2个天线端口和所述Q个天线端口中Q2个最后面的所述天线端口一一对应。
作为一个实施例,所述Q1个天线端口和所述Q个天线端口中Q1个最后面的所述天线端口一一对应。
作为上述实施例的一个子实施例,所述Q2个天线端口和所述Q个天线端口中Q2个最前面的所述天线端口一一对应。
具体的,根据本申请的一个方面,其特征在于,所述Q1个天线端 口对应的波束赋型向量被用于确定所述第二信令的发送天线端口所对应的波束赋型向量。
作为一个实施例,所述所述第二信令的发送天线端口包括所述Q1个天线端口中的部分或者全部天线端口。
作为一个实施例,所述Q1个天线端口对应的波束赋型向量是所述第二信令的发送天线端口所对应的波束赋型向量。
具体的,根据本申请的一个方面,其特征在于,所述步骤A还包括如下步骤:
-步骤A1.发送第一无线信号;
其中,所述第一信道信息被用于生成所述第一无线信号。
作为一个实施例,所述第一信道信息被用于确定所述第一无线信号对应的预编码矩阵。
本申请公开了用于多天线传输的用户设备,其中,包括如下模块:
第一接收机模块:接收第一信令,第二信令,第一参考信号和第二参考信号;
第一发送机模块:发送第一信道信息;
其中,所述第一参考信号包括Q1个RS端口,所述Q1个RS端口分别被Q1个天线端口发送;所述第二参考信号包括Q2个RS端口,所述Q2个RS端口分别被Q2个天线端口发送;所述第一信令被用于确定L1个天线端口,所述Q1个天线端口是所述L1个天线端口的子集;所述第二信令被用于确定所述Q2个天线端口;其中所述Q1和所述Q2分别是正整数,所述L1是大于或者等于所述Q1的正整数;所述第一信道信息针对Q个天线端口;所述Q个天线端口由所述Q1个天线端口和所述Q2个天线端口组成,所述Q等于所述Q1与所述Q2的和。
作为一个实施例,所述第一信令触发所述L1个天线端口的多次发送,所述第二信令触发所述Q2个天线端口的一次发送,所述Q1个天线端口是所述L1个天线端口的子集。
作为一个实施例,所述Q1为1。
作为一个实施例,上述用户设备的特征在于,所述第一发送机模块还发送第一信息。其中,所述第一信息从所述L1个天线端口中指示Q3个天线端口。所述Q3是小于或者等于所述L1的正整数。
作为一个实施例,所述Q3等于所述Q1。作为一个子实施例,所述Q3个天线端口等于所述Q1个天线端口。
作为一个实施例,所述Q3个天线端口被用于确定所述Q1个天线端口。
作为一个实施例,上述用户设备的特征在于,所述第一接收机模块还接收第二信息。其中,所述第二信息从所述L1个天线端口中指示所述Q1个天线端口。
作为一个实施例,所述第二信息由所述第二信令携带。
作为一个实施例,上述用户设备的特征在于,所述Q1个天线端口在所述Q个天线端口中的位置是缺省确定的。
作为一个实施例,上述用户设备的特征在于,所述Q1个天线端口对应的波束赋型向量被用于确定所述第二信令的发送天线端口所对应的波束赋型向量。
作为一个实施例,上述用户设备的特征在于,所述第一接收机模块还接收第一无线信号。其中,所述第一信道信息被用于生成所述第一无线信号。
作为一个实施例,所述第一信道信息被用于确定所述第一无线信号对应的预编码矩阵。
本申请公开了用于多天线传输的基站设备,其中,包括如下模块:
第二发送机模块:发送第一信令,第二信令,第一参考信号和第二参考信号;
第二接收机模块:接收第一信道信息;
其中,所述第一参考信号包括Q1个RS端口,所述Q1个RS端口分别被Q1个天线端口发送;所述第二参考信号包括Q2个RS端口,所述Q2个RS端口分别被Q2个天线端口发送;所述第一信令被用于确定L1个天线端口,所述Q1个天线端口是所述L1个天线端口的子集;所述第二信令被用于确定所述Q2个天线端口;其中所述Q1和所述Q2分别是正整数,所述L1是大于或者等于所述Q1的正整数;所述第一信道信息针对Q个天线端口;所述Q个天线端口由所述Q1个天线端口和所述Q2个天线端口组成,所述Q等于所述Q1与所述Q2的和。
作为一个实施例,上述基站设备的特征在于,所述第二接收机模块 还接收第一信息。其中,所述第一信息从所述L1个天线端口中指示Q3个天线端口。所述Q3是小于或者等于所述L1的正整数。
作为一个实施例,上述基站设备的特征在于,所述第二发送机模块还发送第二信息。其中,所述第二信息从所述L1个天线端口中指示所述Q1个天线端口。
作为一个实施例,上述基站设备的特征在于,所述Q1个天线端口在所述Q个天线端口中的位置是缺省确定的。
作为一个实施例,上述基站设备的特征在于,所述Q1个天线端口对应的波束赋型向量被用于确定所述第二信令的发送天线端口所对应的波束赋型向量。
作为一个实施例,上述基站设备的特征在于,所述第二发送机模块还发送第一无线信号。其中,所述第一信道信息被用于生成所述第一无线信号。
和传统方案相比,本申请具备如下优势:
-.当(部分)非周期性下行参考信号和(部分)周期性下行参考信号共享相同的天线端口时,比如(部分)非周期性下行参考信号和(部分)周期性下行参考信号使用相同的波束赋型向量从相同的天线组发送,本申请允许联合利用(部分)周期性下行参考信号和非周期性下行参考信号来进行针对非周期性下行参考信号的信道估计。在这种方法下,和周期性下行参考信号使用相同天线端口的非周期性下行参考信号不需要被发送,从而降低了非周期性下行参考信号的开销。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的无线传输的流程图;
图2示出了根据本申请的一个实施例的第一参考信号和第二参考信号中RS端口的资源映射的示意图;
图3示出了根据本申请的一个实施例的L1个天线端口,Q1个天线端口和Q2个天线端口之间关系的示意图;
图4示出了根据本申请的一个实施例的用于UE中的处理装置的结构框图;
图5示出了根据本申请的一个实施例的用于基站中的处理装置的结构框图;
图6示出了根据本申请的一个实施例的第一信令、第二信令、第一参考信号、第二参考信号和第一信道信息的流程图;
图7示出了根据本申请的一个实施例的网络架构的示意图;
图8示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图9示出了根据本申请的一个实施例的NR(NewRadio,新无线)节点和UE的示意图。
实施例1
实施例1示例了无线传输的流程图,如附图1所示。附图1中,基站N1是UE U2的服务小区维持基站。附图1中,方框F1,方框F2和方框F3中的步骤分别是可选的。
对于N1,在步骤S11中发送第一信令;在步骤S12中发送第一参考信号;在步骤S101中接收第一信息;在步骤S102中发送第二信息;在步骤S13中发送第二信令;在步骤S14中发送第二参考信号;在步骤S15中接收第一信道信息;在步骤S103中发送第一无线信号。
对于U2,在步骤S21中接收第一信令;在步骤S22中接收第一参考信号;在步骤S201中发送第一信息;在步骤S202中接收第二信息;在步骤S23中接收第二信令;在步骤S24中接收第二参考信号;在步骤S25中发送第一信道信息;在步骤S203中接收第一无线信号。
在实施例1中,所述第一参考信号包括Q1个RS端口,所述Q1个RS端口分别被Q1个天线端口发送;所述第二参考信号包括Q2个RS端口,所述Q2个RS端口分别被Q2个天线端口发送。所述第一信令被用于确定L1个天线端口,所述Q1个天线端口是所述L1个天线端口的子集;所述第二信令被用于确定所述Q2个天线端口。其中所述Q1和所述Q2分别是正整数,所述L1是大于或者等于所述Q1的正整数。所述第一信道信息针对Q个天线端口。所述Q个天线端口由所述Q1个天线端口和所述Q2个天线端口组成,所述Q等于所述Q1与所述Q2的和。所述 第一信息从所述L1个天线端口中指示Q3个天线端口。所述Q3是小于或者等于所述L1的正整数。所述第二信息从所述L1个天线端口中指示所述Q1个天线端口。所述第一信道信息被用于生成所述第一无线信号。
作为一个实施例,所述Q1个天线端口在所述Q个天线端口中的位置是缺省确定的。
作为一个实施例,所述Q1个天线端口对应的波束赋型向量被用于确定所述第二信令的发送天线端口所对应的波束赋型向量。
作为一个实施例,所述第一信道信息是CSI。
作为上述实施例的一个子实施例,所述第一信道信息包括{RI,PTI,PMI,CQI,信道参数量化值}中的至少之一。
作为一个实施例,针对所述第一参考信号和所述第二参考信号的测量被用于确定所述第一信道信息。
作为一个实施例,所述第一信令是高层信令,所述第二信令是物理层信令。
作为上述实施例的一个子实施例,所述第一信令是RRC层信令。
作为一个实施例,所述第一信令是物理层信令,所述第二信令是物理层信令。
作为一个实施例,所述第一信令触发所述L1个天线端口的多次发送,所述第二信令触发所述Q2个天线端口的一次发送。
作为一个实施例,所述第一信令是小区公共的。
作为一个实施例,所述Q1为1。
作为一个实施例,所述Q1等于所述L1。
作为一个实施例,所述Q1个天线端口和所述Q2个天线端口互不重叠,不存在一个所述天线端口同时属于所述Q1个天线端口和所述Q2个天线端口。
作为一个实施例,所述第一信道信息包括UCI(Uplink Control Information)。
作为一个实施例,所述第一信息是CRI。
作为一个实施例,所述L1个天线端口中任意两个天线端口所占用的时域资源是正交的。
作为一个实施例,所述天线端口是由多根天线通过天线虚拟化 (Virtualization)叠加而成,所述多根天线到所述天线端口的映射系数组成波束赋型向量。
作为一个实施例,所述Q3等于所述Q1。作为一个子实施例,所述Q3个天线端口等于所述Q1个天线端口。
作为一个实施例,所述Q3个天线端口被用于确定所述Q1个天线端口。
作为一个实施例,所述Q1个天线端口是所述Q3个天线端口的子集,所述Q3大于或者等于所述Q1。
作为一个实施例,所述Q3个天线端口是所述Q1个天线端口的子集,所述Q1大于或者等于所述Q3。
作为一个实施例,所述第二信息由所述第二信令携带。
作为一个实施例,所述第二信令的发送天线端口包括所述Q1个天线端口中的部分或者全部天线端口。
作为一个实施例,所述Q1个天线端口对应的波束赋型向量是所述第二信令的发送天线端口所对应的波束赋型向量。
作为一个实施例,所述第一信道信息被用于确定所述第一无线信号对应的预编码矩阵。
实施例2
实施例2示例了第一参考信号和第二参考信号中RS端口的资源映射的示意图,如附图2所示。
在实施例2中,所述第一参考信号在第一时间资源池中传输,所述第二参考信号在第二时间资源池中传输。所述第一参考信号包括Q1个RS端口,所述Q1个RS端口分别被Q1个天线端口发送;所述第二参考信号包括Q2个RS端口,所述Q2个RS端口分别被Q2个天线端口发送。在附图2中,粗实线边框的方框表示所述第一时间资源池,细实线边框的方框表示所述第二时间资源池,斜线填充的方格表示所示Q1个RS端口,小点填充的方格表示所述Q2个RS端口。
作为一个实施例,所述第一时间资源池包括正整数个时间单位,所述第二时间资源池包括正整数个时间单位。
作为上述实施例的一个子实施例,所述第一时间资源池包括的时间 单位在时域上是非连续的。
作为上述实施例的一个子实施例,所述第二时间资源池包括的时间单位在时域上是连续的。
作为上述实施例的一个子实施例,所述时间单位是子帧。
作为上述实施例的一个子实施例,所述时间单位是1ms。
作为上述实施例的一个子实施例,所述第二时间资源池中的时间单位不属于所述第一时间资源池。
作为一个实施例,所述第一参考信号在所述第一时间资源池内出现多次,并且所述第一参考信号在所述第一时间资源池内任意相邻两次出现的时间间隔相等。
作为一个实施例,所述第二参考信号在所述第二时间资源池内出现一次。
作为一个实施例,所述Q1个RS端口中任意两个RS端口所占用的时域资源是正交的。
作为一个实施例,所述第一参考信号是宽带的。
作为上述实施例的一个子实施例,系统带宽被划分成正整数个频域区域,所述第一参考信号在系统带宽内的所有频域区域上出现,所述频域区域对应的带宽等于所述第一参考信号相邻两次出现的频率单位的频率的差值。
作为一个实施例,所述第二参考信号是窄带的。
作为上述实施例的一个子实施例,系统带宽被划分成正整数个频域区域,所述第二参考信号只在部分频域区域上出现。
实施例3
实施例3示例了L1个天线端口,Q1个天线端口和Q2个天线端口之间关系的示意图,如附图3所示。
在实施例3中,基站配置的天线被分成了G个天线组,每个所述天线组包括多根天线。一个天线端口是由一个天线组中的多根天线通过天线虚拟化(Virtualization)叠加而成,所述一个天线组中的多根天线到所述天线端口的映射系数组成波束赋型向量。所述Q1个天线端口是所述L1个天线端口的子集。
作为一个实施例,所述L1个天线端口对应的波束赋型向量互不相同。
作为一个实施例,所述L1个天线端口中任意两个天线端口所占用的时域资源是正交的。
作为一个实施例,所述Q1等于1。
作为一个实施例,所述Q2个天线端口对应的波束赋型向量分别等于所述Q1个天线端口对应的波束赋型向量。
作为上述实施例的一个子实施例,所述Q2个天线端口所对应的天线组和所述Q1个天线端口所对应的天线组互不相同。不存在一个天线组同时被所述Q2个天线端口和所述Q1个天线端口所使用。
作为一个实施例,第一天线端口发送的信号所经历的无线信道的小尺度特性不能被用于推断第二天线端口发送的信号所经历的无线信道的小尺度特性。所述第一天线端口和所述第二天线端口是任意两个不同的天线端口。
作为一个实施例,第一信道信息针对Q个天线端口,所述Q个天线端口由所述Q1个天线端口和所述Q2个天线端口组成,所述Q等于所述Q1与所述Q2的和。
作为上述实施例的一个子实施例,{所述Q1个天线端口所对应的下行信道参数,所述Q2个天线端口所对应的下行信道参数}构成第一信道矩阵,所述第一信道矩阵被用于生成第一信道信息。
作为上述实施例的一个子实施例,所述第一信道矩阵包括的行的数目等于所述Q1和所述Q2的和。
作为上述实施例的一个子实施例,所述所述Q1个天线端口所对应的下行信道参数和所述所述Q2个天线端口所对应的下行信道参数分别是CIR(Channel Impulse Response,信道冲激响应)。
实施例4
实施例4示例了用于UE中的处理装置的结构框图,如附图4所示。
附图4中,UE装置200主要由第一接收机模块201和第一发送机模块202组成。
第一接收机模块201接收第一信令,第二信令,第一参考信号和第 二参考信号;第一发送机模块202发送第一信道信息。
在实施例4中,所述第一参考信号包括Q1个RS端口,所述Q1个RS端口分别被Q1个天线端口发送;所述第二参考信号包括Q2个RS端口,所述Q2个RS端口分别被Q2个天线端口发送。所述第一信令被用于确定L1个天线端口,所述Q1个天线端口是所述L1个天线端口的子集;所述第二信令被用于确定所述Q2个天线端口。其中所述Q1和所述Q2分别是正整数,所述L1是大于或者等于所述Q1的正整数。所述第一信道信息针对Q个天线端口。所述Q个天线端口由所述Q1个天线端口和所述Q2个天线端口组成,所述Q等于所述Q1与所述Q2的和。
作为一个实施例,所述第一发送机模块202还发送第一信息。其中,所述第一信息从所述L1个天线端口中指示Q3个天线端口。所述Q3是小于或者等于所述L1的正整数。
作为一个实施例,所述第一接收机模块201还接收第二信息。其中,所述第二信息从所述L1个天线端口中指示所述Q1个天线端口。
作为一个实施例,所述第一接收机模块201还接收第一无线信号。其中,所述第一信道信息被用于生成所述第一无线信号。
作为一个实施例,所述Q1个天线端口在所述Q个天线端口中的位置是缺省确定的。
作为一个实施例,所述Q1个天线端口对应的波束赋型向量被用于确定所述第二信令的发送天线端口所对应的波束赋型向量。
实施例5
实施例5示例了用于基站中的处理装置的结构框图,如附图5所示。
附图5中,基站装置300主要由第二发送机模块301和第二接收机模块302组成。
第二发送机模块301发送第一信令,第二信令,第一参考信号和第二参考信号;第二接收机模块302接收第一信道信息。
在实施例5中,所述第一参考信号包括Q1个RS端口,所述Q1个RS端口分别被Q1个天线端口发送;所述第二参考信号包括Q2个RS端口,所述Q2个RS端口分别被Q2个天线端口发送。所述第一信令被用于确定L1个天线端口,所述Q1个天线端口是所述L1个天线端口的子 集;所述第二信令被用于确定所述Q2个天线端口。其中所述Q1和所述Q2分别是正整数,所述L1是大于或者等于所述Q1的正整数。所述第一信道信息针对Q个天线端口。所述Q个天线端口由所述Q1个天线端口和所述Q2个天线端口组成,所述Q等于所述Q1与所述Q2的和。
作为一个实施例,所述第二接收机模块302还接收第一信息。其中,所述第一信息从所述L1个天线端口中指示Q3个天线端口。所述Q3是小于或者等于所述L1的正整数。
作为一个实施例,所述第二发送机模块301还发送第二信息。其中,所述第二信息从所述L1个天线端口中指示所述Q1个天线端口。
作为一个实施例,所述Q1个天线端口在所述Q个天线端口中的位置是缺省确定的。
作为一个实施例,所述Q1个天线端口对应的波束赋型向量被用于确定所述第二信令的发送天线端口所对应的波束赋型向量。
作为一个实施例,所述第二发送机模块301还发送第一无线信号。其中,所述第一信道信息被用于生成所述第一无线信号。
实施例6
实施例6示例了第一信令、第二信令、第一参考信号、第二参考信号和第一信道信息的流程图,如附图6所示。
在实施例6中,本申请中的所述UE首先接收第一信令,第二信令,第一参考信号和第二参考信号;然后发送第一信道信息。其中,所述第一参考信号包括Q1个RS端口,所述Q1个RS端口分别被Q1个天线端口发送;所述第二参考信号包括Q2个RS端口,所述Q2个RS端口分别被Q2个天线端口发送;所述第一信令被用于确定L1个天线端口,所述Q1个天线端口是所述L1个天线端口的子集;所述第二信令被用于确定所述Q2个天线端口;所述Q1和所述Q2分别是正整数,所述L1是大于或者等于所述Q1的正整数;所述第一信道信息针对Q个天线端口;所述Q个天线端口由所述Q1个天线端口和所述Q2个天线端口组成,所述Q等于所述Q1与所述Q2的和。
作为一个实施例,所述第一信道信息是CSI。
作为一个实施例,针对所述第一参考信号和所述第二参考信号的测 量被用于确定所述第一信道信息。
作为一个实施例,所述第一信道信息包括{RI,PTI,PMI,CQI,信道参数量化值}中的至少之一。
作为一个实施例,所述第一信令是高层信令,所述第二信令是物理层信令。
作为上述实施例的一个子实施例,所述第一信令是RRC层信令。
作为一个实施例,所述第一信令是物理层信令,所述第二信令是物理层信令。
作为一个实施例,所述第一信令触发所述L1个天线端口的多次发送,所述第二信令触发所述Q2个天线端口的一次发送,所述Q1个天线端口是所述L1个天线端口的子集。
作为一个实施例,所述第一信令是小区公共的。
作为一个实施例,所述第一信令是MIB。
作为一个实施例,所述第一信令是SIB。
作为一个实施例,所述Q1为1。
作为一个实施例,所述Q1等于所述L1。
作为一个实施例,所述Q1个天线端口和所述Q2个天线端口互不重叠,不存在一个所述天线端口同时属于所述Q1个天线端口和所述Q2个天线端口。
作为一个实施例,在上述方法中,针对所述Q1个天线端口的信道估计可以通过测量所述第一参考信号来实现,无需在所述第二参考信号中包括从所述Q1个天线端口发送的参考信号,从而降低了所述第二参考信号的开销。
作为一个实施例,所述第一参考信号在第一时间资源池中传输,所述第二参考信号在第二时间资源池中传输。
作为上述实施例的一个子实施例,所述第一参考信号在所述第一时间资源池内出现多次,并且所述第一参考信号在所述第一时间资源池内任意相邻两次出现的时间间隔相等。
作为上述实施例的一个子实施例,所述第二参考信号在所述第二时间资源池内出现一次。
作为上述实施例的一个子实施例,所述第一时间资源池包括正整数 个时间单位,所述第二时间资源池包括正整数个连续的时间单位。作为一个子实施例,所述时间单位是子帧。作为一个子实施例,所述时间单位是1ms。作为一个子实施例,所述第二时间资源池中的时间单位不属于所述第一时间资源池。作为一个子实施例,所述第二时间资源池中的时间单位属于所述第一时间资源池。
作为一个实施例,所述第二信令对应的物理层信道包括下行物理层控制信道(即仅能用于承载物理层控制信息的下行信道)。作为一个子实施例,所述下行物理层控制信道是PDCCH。
作为一个实施例,所述第一参考信号是宽带的。作为一个子实施例,系统带宽被划分成正整数个频域区域,所述第一参考信号在系统带宽内的所有频域区域上出现,所述频域区域对应的带宽等于所述第一参考信号相邻两次出现的频率单位的频率的差值。
作为一个实施例,所述第二参考信号是宽带的。
作为一个实施例,所述第二参考信号是窄带的。作为一个子实施例,系统带宽被划分成正整数个频域区域,所述第二参考信号只在部分频域区域上出现。
作为一个实施例,一个天线端口是由多根天线通过天线虚拟化(Virtualization)叠加而成,所述多根天线到所述天线端口的映射系数组成波束赋型向量。作为一个子实施例,第一天线端口发送的信号所经历的无线信道的小尺度特性不能被用于推断第二天线端口发送的信号所经历的无线信道的小尺度特性。所述第一天线端口和所述第二天线端口是任意两个不同的天线端口。
作为一个实施例,所述第一信道信息包括UCI(Uplink Control Information)。
作为一个实施例,所述第一信道信息在上行物理层控制信道(即仅能用于承载物理层信令的上行信道)上传输。作为一个子实施例,所述上行物理层控制信道是PUCCH。
作为一个实施例,所述第一信道信息在上行物理层数据信道(即能用于承载物理层数据的上行信道)上传输。作为一个子实施例,所述上行物理层数据信道是PUSCH。
作为一个实施例,所述第一信道信息被用于确定第一矩阵,所述第 一矩阵包括的行的数目等于所述Q。
作为上述实施例的一个子实施例,所述第一矩阵是由第一信道矩阵量化得到的,所述第一参考信号被用于确定所述Q1个天线端口所对应的下行信道参数,所述第二参考信号被用于确定所述Q2个天线端口所对应的下行信道参数,{所述所述Q1个天线端口所对应的下行信道参数,所述所述Q2个天线端口所对应的下行信道参数}构成所述第一信道矩阵。
作为上述实施例的一个子实施例,所述所述Q1个天线端口所对应的下行信道参数和所述所述Q2个天线端口所对应的下行信道参数分别是CIR。
作为上述实施例的一个子实施例,所述第一信道信息是所述第一矩阵的量化信息。作为一个子实施例,所述第一信道信息是所述第一矩阵在候选矩阵集合中的索引,所述候选矩阵集合包括正整数个矩阵。
作为上述实施例的一个子实施例,所述第一信道信息包括M个索引组和M个参数组,所述M个索引组被用于确定M个向量组,所述M个向量组和所述M个参数组一一对应,所述M个向量组和所述M个参数组分别被用于生成M个合成向量,所述M个合成向量被用于确定所述第一矩阵。所述M是正整数。
作为上述实施例的子实施例,所述M个向量组中的向量属于候选向量集合,所述候选向量集合包括正整数个向量。
作为上述实施例的子实施例,给定合成向量是由给定向量组中的向量经给定参数组中的参数加权后相加得到的,其中给定合成向量是所述M个合成向量中的任意一个,所述给定向量组是所述M个向量组中被用于生成所述给定合成向量的所述向量组,所述给定参数组是所述M个参数组中被用于生成所述给定合成向量的所述参数组。
作为上述实施例的子实施例,所述第一矩阵是由所述M个合成向量作为列向量构成的。
作为上述实施例的子实施例,一个所述向量组中包括L个向量,对应的系数组中包括L-1个系数。
作为上述实施例的子实施例,一个所述向量组中包括L个向量,对应的系数组中包括L个系数。
实施例7
实施例7示例了网络架构的示意图,如附图7所示。
附图 7说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G系统的网络架构700。LTE网络架构700可称为EPS(Evolved Packet System,演进分组系统)700。EPS 700可包括一个或一个以上UE(User Equipment,用户设备)701,E-UTRAN-NR(演进UMTS陆地无线电接入网络-新无线)702,5G-CN(5G-CoreNetwork,5G核心网)/EPC(Evolved Packet Core,演进分组核心)710,HSS(Home Subscriber Server,归属签约用户服务器)720和因特网服务730。其中,UMTS对应通用移动通信业务(Universal Mobile Telecommunications System)。EPS700可与其它接入网络互连,但为了简单未展示这些实体/接口。如附图7所示,EPS700提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。E-UTRAN-NR702包括NR(NewRadio,新无线)节点B(gNB)703和其它gNB704。gNB703提供朝向UE701的用户和控制平面协议终止。gNB703可经由X2接口(例如,回程)连接到其它gNB704。gNB703也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB703为UE701提供对5G-CN/EPC710的接入点。UE701的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE701称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB703通过S1接口连接到5G-CN/EPC710。5G-CN/EPC710包括MME 711、其它MME714、S-GW(Service Gateway,服务网关)712以及P-GW(Packet Date Network Gateway,分组数据网络网关)713。MME711是处理UE701与 5G-CN/EPC710之间的信令的控制节点。大体上,MME711提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW712传送,S-GW712自身连接到P-GW713。P-GW713提供UE IP地址分配以及其它功能。P-GW713连接到因特网服务730。因特网服务730包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和PS串流服务(PSS)。
作为一个实施例,所述UE701对应本申请中的所述UE。
作为一个实施例,所述gNB703对应本申请中的所述基站。
实施例8
实施例8示例了用户平面和控制平面的无线协议架构的实施例的示意图,如附图8所示。
附图8是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,附图8用三个层展示用于UE和gNB的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY801。层2(L2层)805在PHY301之上,且负责通过PHY801在UE与gNB之间的链路。在用户平面中,L2层805包括MAC(Medium Access Control,媒体接入控制)子层802、RLC(Radio Link Control,无线链路层控制协议)子层 803和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层804,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层805之上的若干协议层,包括终止于网络侧上的P-GW713处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层804提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层804还提供用于上层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层803提供上层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层802提供逻辑与输送信道之间的多路复用。MAC子层802还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层802还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层801和L2 层805来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层806。RRC子层806负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个实施例,附图8中的无线协议架构适用于本申请中的所述UE。
作为一个实施例,附图8中的无线协议架构适用于本申请中的所述基站。
作为一个实施例,本申请中的所述第一信令生成于所述PHY801。
作为一个实施例,本申请中的所述第一信令生成于所述MAC子层802。
作为一个实施例,本申请中的所述第一信令生成于所述RRC子层806。
作为一个实施例,本申请中的所述第二信令生成于所述MAC子层802。
作为一个实施例,本申请中的所述第二信令生成于所述PHY801。
作为一个实施例,本申请中的所述第一参考信号生成于所述PHY801。
作为一个实施例,本申请中的所述第二参考信号生成于所述PHY801。
作为一个实施例,本申请中的所述第一信道信息生成于所述PHY801。
作为一个实施例,本申请中的所述第一信息生成于所述PHY801。
作为一个实施例,本申请中的所述第二信息生成于所述PHY801。
作为一个实施例,本申请中的所述第二信息生成于所述MAC子层802。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY801。
实施例9
实施例9示例了NR节点和UE的示意图,如附图9所示。附图9是在接入网络中相互通信的UE950以及gNB910的框图。
gNB910包括控制器/处理器975,存储器976,接收处理器970,发射处理器916,多天线接收处理器972,多天线发射处理器971,发射器/接收器918和天线920。
UE950包括控制器/处理器959,存储器960,数据源967,发射处理器968,接收处理器956,多天线发射处理器957,多天线接收处理器958,发射器/接收器954和天线952。
在DL(Downlink,下行)中,在gNB910处,来自核心网络的上层数据 包被提供到控制器/处理器975。控制器/处理器975实施L2层的功能性。在DL中,控制器/处理器975提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对UE950的无线电资源分配。控制器/处理器975还负责HARQ操作、丢失包的重新发射,和到UE950的信令。发射处理器916和多天线发射处理器971实施用于L1层(即,物理层)的各种信号处理功能。发射处理器916实施编码和交错以促进UE950处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器971对经编码和调制后的符号进行数字空间预编码/波束赋型处理,生成一个或多个空间流。发射处理器916随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器971对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器918把多天线发射处理器971提供的基带多载波符号流转化成射频流,随后提供到不同天线920。
在DL(Downlink,下行)中,在UE950处,每一接收器954通过其相应天线952接收信号。每一接收器954恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器956。接收处理器956和多天线接收处理器958实施L1层的各种信号处理功能。多天线接收处理器958对来自接收器954的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器956使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器956解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器958中经过多天线检测后恢复出以UE950为目的地的任何空间流。每一空间流上的符号在接收处理器956中被解调和恢复,并生成软决策。随后接收处理器956解码和解交错所述软决策以恢复在物理信道上由gNB910发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器959。控制器/处理器959实施L2层的功能。控制器/处理器959可与存储程序代码和数据的存储器960相关联。存储器960可称为计算机可读媒体。在DL中,控制器/处理器 959提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器959还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
在UL(Uplink,上行)中,在UE950处,使用数据源967来将上层数据包提供到控制器/处理器959。数据源967表示L2层之上的所有协议层。类似于在DL中所描述gNB910处的发送功能,控制器/处理器959基于gNB910的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器959还负责HARQ操作、丢失包的重新发射,和到gNB910的信令。发射处理器968执行调制映射、信道编码处理,多天线发射处理器957进行数字多天线空间预编码/波束赋型处理,随后发射处理器968将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器957中经过模拟预编码/波束赋型操作后再经由发射器954提供到不同天线952。每一发射器954首先把多天线发射处理器957提供的基带符号流转化成射频符号流,再提供到天线952。
在UL(Uplink,上行)中,gNB910处的功能类似于在DL中所描述的UE950处的接收功能。每一接收器918通过其相应天线920接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器972和接收处理器970。接收处理器970和多天线接收处理器972共同实施L1层的功能。控制器/处理器975实施L2层功能。控制器/处理器975可与存储程序代码和数据的存储器976相关联。存储器976可称为计算机可读媒体。在UL中,控制器/处理器975提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE950的上层数据包。来自控制器/处理器975的上层数据包可被提供到核心网络。控制器/处理器975还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述UE950包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。
作为一个实施例,所述UE950包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收本申请中的所述第一信令,接收本申请中的所述第二信令,接收本申请中的所述第一参考信号,接收本申请中的所述第二参考信号,发送本申请中的所述第一信道信息,发送本申请中的所述第一信息,接收本申请中的所述第二信息,接收本申请中的所述第一无线信号。
作为一个实施例,所述gNB910包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。
作为一个实施例,所述gNB910包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送本申请中的所述第一信令,发送本申请中的所述第二信令,发送本申请中的所述第一参考信号,发送本申请中的所述第二参考信号,接收本申请中的所述第一信道信息,接收本申请中的所述第一信息,发送本申请中的所述第二信息,发送本申请中的所述第一无线信号。
作为一个实施例,所述UE950对应本申请中的所述UE。
作为一个实施例,所述gNB910对应本申请中的所述基站。
作为一个实施例,{所述天线952,所述接收器954,所述接收处理器956,所述多天线接收处理器958,所述控制器/处理器959}中的至少之一被用于接收所述第一信令;{所述天线920,所述发射器918,所述发射处理器916,所述多天线发射处理器971,所述控制器/处理器975}中的至少之一被用于发送所述第一信令。
作为一个实施例,{所述天线952,所述接收器954,所述接收处理器956,所述多天线接收处理器958,所述控制器/处理器959}中的至少之一被用于接收所述第二信令;{所述天线920,所述发射器918,所述发射处理器916,所述多天线发射处理器971,所述控制器/处理器975}中的至少之一被用于发送所述第二信令。
作为一个实施例,{所述天线952,所述接收器954,所述接收处理器956,所述多天线接收处理器958,所述控制器/处理器959}中的至少之一 被用于接收所述第一参考信号;{所述天线920,所述发射器918,所述发射处理器916,所述多天线发射处理器971,所述控制器/处理器975}中的至少之一被用于发送所述第一参考信号。
作为一个实施例,{所述天线952,所述接收器954,所述接收处理器956,所述多天线接收处理器958,所述控制器/处理器959}中的至少之一被用于接收所述第二参考信号;{所述天线920,所述发射器918,所述发射处理器916,所述多天线发射处理器971,所述控制器/处理器975}中的至少之一被用于发送所述第二参考信号。
作为一个实施例,{所述天线920,所述接收器918,所述接收处理器970,所述多天线接收处理器972,所述控制器/处理器975}中的至少之一被用于接收所述第一信道信息;{所述天线952,所述发射器954,所述发射处理器968,所述多天线发射处理器957,所述控制器/处理器959}中的至少之一被用于发送所述第一信道信息。
作为一个实施例,{所述天线920,所述接收器918,所述接收处理器970,所述多天线接收处理器972,所述控制器/处理器975}中的至少之一被用于接收所述第一信息;{所述天线952,所述发射器954,所述发射处理器968,所述多天线发射处理器957,所述控制器/处理器959}中的至少之一被用于发送所述第一信息。
作为一个实施例,{所述天线952,所述接收器954,所述接收处理器956,所述多天线接收处理器958,所述控制器/处理器959}中的至少之一被用于接收所述第二信息;{所述天线920,所述发射器918,所述发射处理器916,所述多天线发射处理器971,所述控制器/处理器975}中的至少之一被用于发送所述第二信息。
作为一个实施例,{所述天线952,所述接收器954,所述接收处理器956,所述多天线接收处理器958,所述控制器/处理器959}中的至少之一被用于接收所述第一无线信号;{所述天线920,所述发射器918,所述发射处理器916,所述多天线发射处理器971,所述控制器/处理器975}中的至少之一被用于发送所述第一无线信号。
作为一个实施例,实施例4中的所述第一接收机模块201包括{所述天线952,所述接收器954,所述接收处理器956,所述多天线接收处理器958,所述控制器/处理器959,所述存储器960,所述数据源967}中 的至少之一。
作为一个实施例,实施例4中的所述第一发送机模块202包括{所述天线952,所述发射器954,所述发射处理器968,所述多天线发射处理器957,所述控制器/处理器959,所述存储器960,所述数据源967}中的至少之一。
作为一个实施例,实施例5中的所述第二发送机模块301包括{所述天线920,所述发射器918,所述发射处理器916,所述多天线发射处理器971,所述控制器/处理器975,所述存储器976}中的至少之一。
作为一个实施例,实施例5中的所述第二接收机模块302包括{所述天线920,所述接收器918,所述接收处理器970,所述多天线接收处理器972,所述控制器/处理器975,所述存储器976}中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的UE或者终端包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B),TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (14)

  1. 用于多天线传输的UE中的方法,其中,包括如下步骤:
    -步骤A.接收第一信令,第二信令,第一参考信号和第二参考信号;
    -步骤B.发送第一信道信息;
    其中,所述第一参考信号包括Q1个RS端口,所述Q1个RS端口分别被Q1个天线端口发送;所述第二参考信号包括Q2个RS端口,所述Q2个RS端口分别被Q2个天线端口发送;所述第一信令被用于确定L1个天线端口,所述Q1个天线端口是所述L1个天线端口的子集;所述第二信令被用于确定所述Q2个天线端口;其中所述Q1和所述Q2分别是正整数,所述L1是大于或者等于所述Q1的正整数;所述第一信道信息针对Q个天线端口;所述Q个天线端口由所述Q1个天线端口和所述Q2个天线端口组成,所述Q等于所述Q1与所述Q2的和。
  2. 根据权利要求1所述的方法,其特征在于,所述步骤B还包括如下步骤:
    -步骤B0.发送第一信息;
    其中,所述第一信息从所述L1个天线端口中指示Q3个天线端口;所述Q3是小于或者等于所述L1的正整数。
  3. 根据权利要求1或2所述的方法,其特征在于,步骤A还包括如下步骤:
    -步骤A0.接收第二信息;
    其中,所述第二信息从所述L1个天线端口中指示所述Q1个天线端口。
  4. 根据权利要求1至3中任一权利要求所述的方法,其特征在于,所述Q1个天线端口在所述Q个天线端口中的位置是缺省确定的。
  5. 根据权利要求1至4中任一权利要求所述的方法,其特征在于,所述Q1个天线端口对应的波束赋型向量被用于确定所述第二信令的发送天线端口所对应的波束赋型向量。
  6. 根据权利要求1至5中任一权利要求所述的方法,其特征在于,所述步骤A还包括如下步骤:
    -步骤A1.接收第一无线信号;
    其中,所述第一信道信息被用于生成所述第一无线信号。
  7. 用于多天线传输的基站中的方法,其中,包括如下步骤:
    -步骤A.发送第一信令,第二信令,第一参考信号和第二参考信号;
    -步骤B.接收第一信道信息;
    其中,所述第一参考信号包括Q1个RS端口,所述Q1个RS端口分别被Q1个天线端口发送;所述第二参考信号包括Q2个RS端口,所述Q2个RS端口分别被Q2个天线端口发送;所述第一信令被用于确定L1个天线端口,所述Q1个天线端口是所述L1个天线端口的子集;所述第二信令被用于确定所述Q2个天线端口;其中所述Q1和所述Q2分别是正整数,所述L1是大于或者等于所述Q1的正整数;所述第一信道信息针对Q个天线端口;所述Q个天线端口由所述Q1个天线端口和所述Q2个天线端口组成,所述Q等于所述Q1与所述Q2的和。
  8. 根据权利要求7所述的方法,其特征在于,所述步骤B还包括如下步骤:
    -步骤B0.接收第一信息;
    其中,所述第一信息从所述L1个天线端口中指示Q3个天线端口;所述Q3是小于或者等于所述L1的正整数。
  9. 根据权利要求7或8所述的方法,其特征在于,步骤A还包括如下步骤:
    -步骤A0.发送第二信息;
    其中,所述第二信息从所述L1个天线端口中指示所述Q1个天线端口。
  10. 根据权利要求7至9中任一权利要求所述的方法,其特征在于,所述Q1个天线端口在所述Q个天线端口中的位置是缺省确定的。
  11. 根据权利要求7至10中任一权利要求所述的方法,其特征在于,所述Q1个天线端口对应的波束赋型向量被用于确定所述第二信令的发送天线端口所对应的波束赋型向量。
  12. 根据权利要求7至11中任一权利要求所述的方法,其特征在于,所述步骤A还包括如下步骤:
    -步骤A1.发送第一无线信号;
    其中,所述第一信道信息被用于生成所述第一无线信号。
  13. 用于多天线传输的用户设备,其中,包括如下模块:
    第一接收机模块:接收第一信令,第二信令,第一参考信号和第 二参考信号;
    第一发送机模块:发送第一信道信息;
    其中,所述第一参考信号包括Q1个RS端口,所述Q1个RS端口分别被Q1个天线端口发送;所述第二参考信号包括Q2个RS端口,所述Q2个RS端口分别被Q2个天线端口发送;所述第一信令被用于确定L1个天线端口,所述Q1个天线端口是所述L1个天线端口的子集;所述第二信令被用于确定所述Q2个天线端口;其中所述Q1和所述Q2分别是正整数,所述L1是大于或者等于所述Q1的正整数;所述第一信道信息针对Q个天线端口;所述Q个天线端口由所述Q1个天线端口和所述Q2个天线端口组成,所述Q等于所述Q1与所述Q2的和。
  14. 用于多天线传输的基站设备,其中,包括如下模块:
    第二发送机模块:发送第一信令,第二信令,第一参考信号和第二参考信号;
    第二接收机模块:接收第一信道信息;
    其中,所述第一参考信号包括Q1个RS端口,所述Q1个RS端口分别被Q1个天线端口发送;所述第二参考信号包括Q2个RS端口,所述Q2个RS端口分别被Q2个天线端口发送;所述第一信令被用于确定L1个天线端口,所述Q1个天线端口是所述L1个天线端口的子集;所述第二信令被用于确定所述Q2个天线端口;其中所述Q1和所述Q2分别是正整数,所述L1是大于或者等于所述Q1的正整数;所述第一信道信息针对Q个天线端口;所述Q个天线端口由所述Q1个天线端口和所述Q2个天线端口组成,所述Q等于所述Q1与所述Q2的和。
PCT/CN2017/108482 2016-11-01 2017-10-31 一种用于多天线系统的用户设备、基站中的方法和装置 WO2018082535A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/396,800 US11063727B2 (en) 2016-11-01 2019-04-29 Method and device in UE and base station for multi-antenna system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610940656.0 2016-11-01
CN201610940656.0A CN108023616B (zh) 2016-11-01 2016-11-01 一种用于多天线系统的ue、基站中的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/396,800 Continuation US11063727B2 (en) 2016-11-01 2019-04-29 Method and device in UE and base station for multi-antenna system

Publications (1)

Publication Number Publication Date
WO2018082535A1 true WO2018082535A1 (zh) 2018-05-11

Family

ID=62070629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108482 WO2018082535A1 (zh) 2016-11-01 2017-10-31 一种用于多天线系统的用户设备、基站中的方法和装置

Country Status (3)

Country Link
US (1) US11063727B2 (zh)
CN (3) CN110690915B (zh)
WO (1) WO2018082535A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102332945A (zh) * 2011-09-30 2012-01-25 中兴通讯股份有限公司 一种信息反馈方法及用户设备
US20120275495A1 (en) * 2011-04-29 2012-11-01 Telefonaktiebolaget L M Ericsson (Publ) Controlling Uplink Multi-Antenna Transmissions in a Telecommunication System
CN102932112A (zh) * 2011-08-11 2013-02-13 华为技术有限公司 一种多天线传输的方法及装置
CN105429683A (zh) * 2014-09-17 2016-03-23 上海朗帛通信技术有限公司 一种3d mimo传输方法和装置
CN105515732A (zh) * 2014-09-24 2016-04-20 上海朗帛通信技术有限公司 一种3d mimo通信方法和装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102083223A (zh) * 2010-03-05 2011-06-01 大唐移动通信设备有限公司 一种发送dci和上行传输的方法、系统及装置
CN102404029B (zh) * 2010-09-13 2014-08-06 电信科学技术研究院 周期探测参考信号的传输指示及传输方法、设备
JP2012114901A (ja) * 2010-11-05 2012-06-14 Sharp Corp 移動局装置、基地局装置、方法および集積回路
US9252930B2 (en) * 2011-01-07 2016-02-02 Futurewei Technologies, Inc. Reference signal transmission and reception method and equipment
CN102595514B (zh) * 2011-01-12 2015-03-18 上海贝尔股份有限公司 非周期性探测参考信号的配置方法
CN102075274B (zh) * 2011-01-31 2016-09-28 中兴通讯股份有限公司 一种测量参考信号的多天线参数的配置方法及装置
PL2919545T3 (pl) * 2011-02-11 2017-12-29 Interdigital Patent Holdings, Inc. Urządzenie oraz sposób dla rozszerzonego kanału sterowania (e-pdcch)
EP2709289A4 (en) * 2011-05-13 2015-01-14 Lg Electronics Inc METHOD OF ESTIMATING CSI-RS BASED CHANNEL IN A WIRELESS COMMUNICATION SYSTEM AND CORRESPONDING DEVICE
KR102017705B1 (ko) * 2012-03-13 2019-10-14 엘지전자 주식회사 기지국 협력 무선 통신 시스템에서 간섭 측정 방법 및 이를 위한 장치
WO2014007512A1 (ko) * 2012-07-02 2014-01-09 엘지전자 주식회사 무선 통신 시스템에서 채널상태정보 보고 방법 및 장치
KR101978776B1 (ko) * 2013-02-28 2019-05-16 삼성전자주식회사 다수의 안테나를 사용하는 이동통신 시스템에서 피드백 송수신 방법 및 장치
KR102064939B1 (ko) * 2013-08-07 2020-01-13 삼성전자 주식회사 다수의 이차원 배열 안테나를 사용하는 이동통신 시스템에서의 피드백 송수신 방법 및 장치
WO2015060680A2 (ko) * 2013-10-24 2015-04-30 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보를 보고하는 방법 및 이를 위한 장치
CN104753646B (zh) * 2013-12-27 2018-04-27 上海朗帛通信技术有限公司 一种有源天线系统的csi反馈方法和装置
CN105577318B (zh) * 2014-10-15 2019-05-03 上海朗帛通信技术有限公司 一种fd-mimo传输中的csi反馈方法和装置
US10225054B2 (en) * 2014-11-07 2019-03-05 Electronics And Telecommunications Research Institute Method and apparatus for transmitting reference signal, method and apparatus for measuring and reporting channel state information, and method for configuring the same
CN105790905A (zh) * 2014-12-16 2016-07-20 北京信威通信技术股份有限公司 下行信道状态信息参考信号的发送方法、装置及系统
US10084577B2 (en) * 2015-01-30 2018-09-25 Motorola Mobility Llc Method and apparatus for signaling aperiodic channel state indication reference signals for LTE operation
US10110286B2 (en) * 2015-03-30 2018-10-23 Samsung Electronics Co., Ltd. Method and apparatus for codebook design and signaling
CN107040345B (zh) * 2016-02-03 2020-12-18 华为技术有限公司 传输导频信号的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120275495A1 (en) * 2011-04-29 2012-11-01 Telefonaktiebolaget L M Ericsson (Publ) Controlling Uplink Multi-Antenna Transmissions in a Telecommunication System
CN102932112A (zh) * 2011-08-11 2013-02-13 华为技术有限公司 一种多天线传输的方法及装置
CN102332945A (zh) * 2011-09-30 2012-01-25 中兴通讯股份有限公司 一种信息反馈方法及用户设备
CN105429683A (zh) * 2014-09-17 2016-03-23 上海朗帛通信技术有限公司 一种3d mimo传输方法和装置
CN105515732A (zh) * 2014-09-24 2016-04-20 上海朗帛通信技术有限公司 一种3d mimo通信方法和装置

Also Published As

Publication number Publication date
CN110690915A (zh) 2020-01-14
CN108023616A (zh) 2018-05-11
CN110635835A (zh) 2019-12-31
CN110690915B (zh) 2022-11-25
CN108023616B (zh) 2020-01-03
US11063727B2 (en) 2021-07-13
CN110635835B (zh) 2022-11-25
US20190253218A1 (en) 2019-08-15

Similar Documents

Publication Publication Date Title
WO2020020005A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019174530A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019170057A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018059185A1 (zh) 一种用于随机接入的用户设备、基站中的方法和装置
WO2020199977A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019174489A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018103444A1 (zh) 一种用于功率调整的用户设备、基站中的方法和装置
CN110120859B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020088212A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US11949469B2 (en) Method and device for multi-antenna transmission in UE and base station
WO2019041240A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
WO2019028885A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
WO2019014882A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
WO2020216015A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2018192350A1 (zh) 一种用于多天线传输的用户设备、基站中的方法和装置
WO2019144264A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2022161233A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021036790A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020207244A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020034847A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2022166702A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2018082504A1 (zh) 一种用于动态调度的用户设备、基站中的方法和装置
WO2018040815A1 (zh) 一种支持广播信号的无线通信系统中的方法和装置
WO2019006717A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
WO2020147553A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/09/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17867834

Country of ref document: EP

Kind code of ref document: A1