WO2018082339A1 - 一种检测方法和装置 - Google Patents

一种检测方法和装置 Download PDF

Info

Publication number
WO2018082339A1
WO2018082339A1 PCT/CN2017/093060 CN2017093060W WO2018082339A1 WO 2018082339 A1 WO2018082339 A1 WO 2018082339A1 CN 2017093060 W CN2017093060 W CN 2017093060W WO 2018082339 A1 WO2018082339 A1 WO 2018082339A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
current
signal
voltage
value
Prior art date
Application number
PCT/CN2017/093060
Other languages
English (en)
French (fr)
Inventor
李延长
陈端雄
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2018082339A1 publication Critical patent/WO2018082339A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3277Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches
    • G01R31/3278Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches of relays, solenoids or reed switches

Definitions

  • the present application relates to the field of relay detection technologies, and in particular, to a detection method and apparatus.
  • Relays are currently used in a variety of industries, such as remote control, telemetry, communications, automation, mechatronics and power electronics.
  • the working environment of the relay is generally high-voltage environment. Therefore, it will often be subjected to high current shock or often in an overload state. At this time, the relay may be damaged.
  • the relay When the relay is damaged, the relay will not work normally, for example: by the contact One side of the contact caused by the one-side adhesion cannot be separated, so that the side of the relay is in a normally closed state; or, the contact ablation is unable to conduct when the relay is closed, so that the relay loses its switching function and the like.
  • there is no effective means in the prior art for detecting whether a relay is damaged there is no effective means in the prior art for detecting whether a relay is damaged.
  • the embodiment of the present application provides a detection method and device for solving the problem that the relay cannot be damaged when the relay is damaged in the prior art.
  • an embodiment of the present application provides a detection method, where the method includes:
  • the current resistance value of the acquisition relay includes:
  • a ratio of the voltage value to the current value is obtained as the resistance value.
  • any possible implementation manner further provide an implementation manner of detecting a voltage value between a positive electrode and a negative electrode of the relay, including:
  • the voltage value is detected based on the second voltage signal.
  • any possible implementation manner further provide an implementation manner of detecting a current value of a current passing through the relay, including:
  • the current value is detected based on the second current signal.
  • the current resistance value of the relay is obtained, and according to the resistance value, it is determined whether the relay is damaged. Because the relay is damaged, the resistance value of the relay may be abnormal, according to the principle. In the embodiment of the present application, it is determined whether the relay is damaged by detecting the resistance value, and the problem that the relay cannot be damaged when the relay is damaged in the prior art is solved.
  • an embodiment of the present application provides a detecting apparatus, where the apparatus includes:
  • An acquisition unit for acquiring a current resistance value of the relay An acquisition unit for acquiring a current resistance value of the relay
  • a detecting unit configured to determine, according to the resistance value, whether the relay is damaged.
  • a ratio of the voltage value to the current value is obtained as the resistance value.
  • detecting unit is specifically configured to:
  • the collecting unit is configured to detect a voltage value between a positive pole and a negative pole of the relay, specifically for:
  • the voltage value is detected based on the second voltage signal.
  • the collecting unit is configured to detect a current value of a current passing through the relay, specifically for:
  • the current value is detected based on the second current signal.
  • the resistance value of the relay may be abnormal. According to this principle, in the embodiment of the present application, whether the relay is damaged or not is detected by detecting the resistance value, and the relay is damaged in the prior art. The problem of damage detection of the relay cannot be performed.
  • FIG. 1 is a schematic flow chart of a detection method provided by an embodiment of the present application.
  • step 101 is a schematic flowchart of a specific implementation manner of step 101 provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a specific implementation manner of step 201 provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a detecting circuit for detecting a voltage value of a relay according to an embodiment of the present application
  • FIG. 5 is a schematic flowchart of a specific implementation manner of step 202 provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a detecting circuit for detecting a relay current value according to an embodiment of the present application
  • FIG. 7 is a schematic structural diagram of a detecting apparatus according to an embodiment of the present application.
  • first and second may be used to describe voltage signals and current signals in the embodiments of the present application, these voltage signals and current signals should not be limited to these terms. These terms are only used to distinguish voltage and current signals from each other.
  • the first voltage signal may also be referred to as a second voltage signal without departing from the scope of the embodiments of the present application.
  • the second voltage signal may also be referred to as a first voltage signal.
  • the word “if” as used herein may be interpreted as “when” or “when” or “in response to determining” or “in response to detecting.”
  • the phrase “if determined” or “if detected (conditions or events stated)” may be interpreted as “when determined” or “in response to determination” or “when detected (stated condition or event) “Time” or “in response to a test (condition or event stated)”.
  • FIG. 1 is a schematic flowchart of a method provided by an embodiment of the present application. As shown in FIG. 1 , the method includes the following steps:
  • the resistance value of the relay will be abnormal. Therefore, it is necessary to determine whether the relay is abnormal by obtaining the current resistance value of the relay.
  • the relay when the relay works in a high-voltage environment, it is often subjected to a large current or is often in an overload state. At this time, a single side of the contact may occur due to a large current or an overload between the contacts of the relay. Adhesion, contact ablation, arcing and contact resistance increase.
  • the relay is in an overload state for a long time, the temperature of the contact surface is sharply increased. Lit, causing contact ablation, at this time, the surface of the contact will be damaged, so that the relay can not be turned on when closed, that is, the relay loses its function as a switch.
  • the relay when the contacts on both sides of the relay are separated, that is, the relay is switched from the closed state to the open state, if the current is large and the separation action is slow, the relay is caused to pull the arc, and the relay is The insulation material is destroyed, leaving the relay in an uninsulated state.
  • the relay when the relay is in a large current or an overload state for a long time, the conductive characteristics of the contact surface are changed, thereby causing the contact resistance of the contact to increase, so that the contact cannot perform normal electrical conduction.
  • the judgment mode is relatively simple, but also the resistance value of the relay is abnormal due to the above-mentioned damage in the relay, and therefore, the resistance value of the current relay can be visually reflected. Whether the relay has the above damage, so the judgment mode is more effective, so that the judgment result is more accurate.
  • the determining, according to the resistance value, whether the relay is damaged includes:
  • the specified resistance value is a resistance value of the relay in a normal state, and can be obtained according to an empirical value, and can be preset. When the above-mentioned damage occurs, the resistance value of the relay will be greater than the specified resistance value. Therefore, it can be judged whether the relay has the above-mentioned damage by judging whether the current resistance value is greater than the specified resistance value.
  • the resistance value of the relay may be abnormal. According to this principle, in the embodiment of the present application, whether the relay is damaged or not is detected by detecting the resistance value, and the relay is damaged in the prior art. The problem of damage detection of the relay cannot be performed.
  • step 101 provides a specific implementation manner for step 101. Specifically, as shown in FIG. 2, the method includes the following steps:
  • the current value and the voltage value are current values and voltage values at the same time to ensure the accuracy of the obtained resistance value, thereby ensuring the accuracy of the determined result of the damage of the relay.
  • step 201 provides a specific implementation manner for step 201. Specifically, as shown in FIG. 3, the method includes the following steps:
  • the positive pole of the battery is connected to the positive pole of the relay, and then the wire of the positive pole of the battery, the positive voltage and the current of the battery are led out from the negative pole of the relay, that is, the positive pole of the battery passes through the relay.
  • the negative pole is connected to the downstream device of the relay. Due to the resistance of the relay, the positive voltage of the battery generates a voltage drop in the relay. The voltage drop is the operating voltage of the relay (below the low voltage) and forms a current through the relay. The operating current of the relay.
  • the voltage signal acquisition circuit collects the voltage signal of the relay, the acquisition circuit needs to be connected to the positive pole and the negative pole of the relay.
  • the acquisition circuit is also connected with the positive pole of the battery, and the positive pole of the battery generates a voltage drop after passing through the relay. Then, after the battery is subjected to voltage drop, the positive voltage is led out through the negative pole of the relay. Therefore, when the voltage signal of the relay is collected, the obtained voltage signal includes the working voltage signal of the relay (low voltage signal) and the positive voltage signal of the battery, due to the battery The voltage is high voltage, so the voltage signal of the battery is a high voltage signal.
  • the energy generated by the electric vehicle during the braking process is backflushed into the battery.
  • the direction of the current is completely opposite and is also acquired by the acquisition circuit, so the acquired voltage signal is opposite to the direction of the voltage signal mentioned above.
  • the waveform formed by the four voltages belongs to the waveform of the alternating voltage, and therefore, the collected first voltage signal is an alternating voltage signal.
  • the voltage signal that needs to be used is the voltage signal of the relay, and the voltage signal of the relay is a low voltage signal
  • the first voltage signal needs to be isolated from the high voltage signal to ensure that the obtained voltage signal is the voltage of the relay.
  • the signal when isolating the first voltage signal, isolates the voltage signal of the battery and the voltage signal of the energy backlash, that is, the forward high voltage signal and the negative high voltage signal in the first voltage signal, which are retained at this time.
  • the voltage signal includes a voltage signal of a voltage drop generated when the positive pole of the battery passes through the relay and a voltage signal whose energy is backflushed during the passage of the relay, that is, a forward low voltage signal and a negative low voltage signal in the first voltage signal.
  • the isolation process of the high voltage signal in the first voltage signal can be performed by the isolation circuit.
  • the used voltage value is a DC voltage value, so the low voltage signal needs to be converted into a DC voltage signal, and the DC voltage value can be obtained according to the DC voltage signal.
  • the low voltage signal is converted to a DC voltage signal by a rectifying circuit.
  • the DC voltage signal obtained by the above method also includes a DC signal belonging to the low voltage interference signal. In order to ensure the accuracy of the obtained voltage value, it is necessary to remove the interference signal in the DC voltage signal obtained by the above method.
  • the removal can be performed by the filter circuit.
  • the voltage value used should be the voltage value under which the voltage is in a stable state, and therefore, after obtaining the second voltage signal, according to the obtained
  • the two voltage signals determine all voltage values in a steady state, that is, all voltage values whose voltage values fluctuate within a specified period of time less than a specified voltage threshold.
  • the obtained voltage value may be a voltage value at an intermediate timing among all voltage values as a voltage value between the positive and negative terminals of the relay.
  • the average of all voltage values can be obtained from all voltage values as the voltage value between the positive and negative terminals of the relay.
  • a voltage value may be randomly selected among all voltage values as a voltage value between the positive and negative terminals of the relay.
  • the voltage value can be detected by a microcontroller MCU (Microcontroller Unit).
  • MCU Microcontroller Unit
  • the relay operates in the battery system, as shown in FIG. 4, the detection circuit for detecting the voltage value between the positive pole and the negative pole of the relay includes: a voltage sampling circuit, a voltage isolation circuit, and a voltage rectification The circuit, the voltage filter circuit and the MCU, wherein the positive and negative terminals of the input end of the voltage sampling circuit are respectively connected with the positive pole and the negative pole of the relay, and the output end of the voltage sampling circuit is connected with the input end of the voltage isolation circuit; the input of the voltage isolation circuit The terminal is connected to the input end of the voltage rectifying circuit; the output end of the voltage rectifying circuit is connected to the input end of the voltage filtering circuit; and the input end of the voltage filtering circuit is connected to the MCU.
  • the voltage sampling circuit collects the first voltage signal through its input terminal.
  • the voltage sampling circuit sends the first voltage signal to the input end of the voltage isolation circuit through its output terminal.
  • the voltage isolation circuit performs isolation processing of the high voltage signal on the first voltage signal to obtain a low voltage signal in the first voltage signal.
  • the voltage isolation circuit sends the low voltage signal to the input end of the voltage rectifier circuit through its output terminal.
  • the voltage rectifier circuit converts the low voltage signal into a DC voltage signal.
  • the voltage rectifier circuit sends the DC voltage signal to the input end of the voltage filter circuit through its output terminal.
  • the voltage filter circuit removes the interference signal in the DC voltage signal to obtain a second voltage signal.
  • the voltage filter circuit transmits the second voltage signal to the MCU through its output terminal.
  • the MCU detects, according to the second voltage signal, all voltage values whose voltage range is less than the specified voltage threshold within a specified period of time, and then obtains a voltage value between the positive and negative poles of the relay according to all voltage values.
  • the embodiment provides a specific implementation manner for step 202. Specifically, as shown in FIG. 5, the method includes the following steps:
  • the first current signal of the relay may be collected by the current signal collecting circuit, and has the same reason as the collected first voltage signal, and the collected first current information is an alternating current. signal.
  • the current value used is a DC current value, so the first current signal needs to be converted into a DC current signal, and the DC current value can be obtained according to the DC current signal.
  • the first current signal is converted to a direct current signal by a rectifier circuit.
  • the collected first current signal includes an interference signal
  • the removal can be performed by the filter circuit.
  • the current value used should be the current value at which the current is in a steady state, and therefore, after obtaining the second current signal, according to the obtained
  • the two current signals determine all current values in a steady state, that is, all current values whose current value fluctuation range is less than the specified current threshold within a specified period of time.
  • the obtained second current signal also has a temporal relationship, that is, the detected current value also has time. Successive relationship. Therefore, the obtained current value can be the current value at the intermediate time among all the current values as the current value of the relay.
  • the average of all current values can be obtained as the current value of the relay according to all current values.
  • a current value can be randomly selected among all the current values as the current value of the relay.
  • the current value can be detected by the microcontroller MCU.
  • the relay operates in the battery system.
  • the detection circuit for detecting the current value of the relay includes: a current sampling circuit, a current rectifying circuit, a current filtering circuit, and an MCU, wherein the current sampling The input end of the circuit is connected to the relay, the output end of the current sampling circuit is connected to the input end of the current rectifying circuit; the output end of the current rectifying circuit is connected to the input end of the current filtering circuit; and the input end of the current filtering circuit is connected to the MCU.
  • the current sampling circuit collects the first current signal through its input terminal.
  • the current sampling circuit sends the first current signal to the input end of the current rectifying circuit through its output terminal.
  • the current rectifier circuit converts the first current signal into a direct current signal.
  • the current rectifying circuit sends the DC current signal to the input end of the current filter circuit through its output end.
  • the current filter circuit removes the interference signal in the DC current signal to obtain a second current signal.
  • the current filter circuit transmits the second current signal to the MCU through its output terminal.
  • the MCU detects all the current values whose current value fluctuation range is less than the specified current threshold value within a specified time period according to the second current signal, and then obtains the current value of the relay according to all the current values.
  • the embodiment of the present application further provides an apparatus embodiment for implementing the steps and methods in the foregoing method embodiments.
  • FIG. 7 is a schematic structural diagram of a detecting apparatus according to an embodiment of the present application.
  • the device includes:
  • the collecting unit 71 is configured to acquire a current resistance value of the relay
  • the detecting unit 72 is configured to determine whether the relay is damaged according to the resistance value.
  • the damage includes at least one of the following: single-sided adhesion, contact ablation, arcing, and contact resistance increase.
  • the collecting unit 71 is specifically configured to:
  • a ratio of the voltage value to the current value is obtained as the resistance value.
  • the detecting unit 72 is specifically configured to:
  • the collecting unit 71 when configured to detect a voltage value between the positive pole and the negative pole of the relay, specifically:
  • the voltage value is detected based on the second voltage signal.
  • the collecting unit 71 is configured to: when detecting a current value of a current passing through the relay, specifically for:
  • the current value is detected based on the second current signal.
  • the acquisition unit 71 corresponds to a voltage sampling circuit, a voltage isolation circuit, a voltage rectification circuit, a voltage filter circuit, and the like in the process of obtaining a voltage value.
  • control unit can be a micro control unit, and the detection unit 72 corresponds to the micro control unit mentioned above.
  • the current resistance value of the relay is obtained, and according to the resistance value, it is determined whether the relay is damaged. Because the relay is damaged, the resistance value of the relay may be abnormal, according to the principle. In the embodiment of the present application, it is determined whether the relay is damaged by detecting the resistance value, and the problem that the relay cannot be damaged when the relay is damaged in the prior art is solved.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes a plurality of instructions for causing a computer device (which may be a personal computer, a server, a network device, etc.) Or a processor performs some of the steps of the method described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Abstract

一种检测方法和装置。获取继电器当前的电阻值(101);根据所述电阻值,判断所述继电器是否出现损坏(102)。由于继电器在出现损坏时,该继电器的电阻值会出现异常,根据这一原理,在上述方案中,通过检测电阻值来判断继电器是否出现损坏,解决了现有技术中,当继电器出现损坏时,无法对继电器进行检测的问题。

Description

一种检测方法和装置
本申请要求于2016年11月03日提交中国专利局、申请号为CN201610958924.1、发明名称为“一种检测方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及继电器检测技术领域,尤其涉及一种检测方法和装置。
背景技术
目前继电器被广泛应用在各个行业,如遥控、遥测、通讯、自动控制、机电一体化及电力电子设备中。继电器的工作环境一般为高压环境,因此,会经常受到大电流的冲击或经常处于过载状态,此时继电器可能会发生损坏,当继电器出现损坏时,该继电器则无法正常工作,例如:由触点的单边粘连引起的一侧触点无法分离,使得继电器的该侧处于常闭状态;或者,由触点烧蚀引起的在继电器闭合时无法导通,使得继电器丧失其开关功能等。但是,现有技术中并没有检测继电器是否出现损坏的有效手段。
在实现本申请过程中,发明人发现现有技术中至少存在如下问题:
在现有技术中,当继电器出现损坏时,无法对继电器进行损坏检测。急需一种检测方式来满足对继电器进行损坏检测的需求。
发明内容
有鉴于此,本申请实施例提供了一种检测方法和装置,用以解决现有技术中,当继电器出现损坏时,无法对继电器进行损坏检测的问题。
第一方面,本申请实施例提供了一种检测方法,所述方法包括:
获取继电器当前的电阻值;
根据所述电阻值,判断所述继电器是否出现损坏。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述损坏至少包括以下一种:单边粘连、触点烧蚀、拉弧和接触电阻增大。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述获取继电器当前的电阻值,包括:
检测所述继电器的正极和负极之间的电压值;
检测通过所述继电器的电流的电流值;
获得所述电压值与所述电流值的比值,作为所述电阻值。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述根据所述电阻值,判断所述继电器是否出现损坏,包括:
判断所述电阻值是否大于指定电阻值;
响应于所述电阻值大于所述指定电阻值,确定所述继电器出现损坏;
响应于所述电阻值小于或等于所述指定电阻值,确定所述继电器未出现损坏。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述检测所述继电器的正极和负极之间的电压值,包括:
采集第一电压信号;
对所述第一电压信号进行高压信号的隔离处理,得到所述第一电压信号中的低压信号;
将所述低压信号转换为直流电压信号;
去除所述直流电压信号中的干扰信号,得到第二电压信号;
根据所述第二电压信号,检测所述电压值。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述检测通过所述继电器的电流的电流值,包括:
采集第一电流信号;
将所述第一电流信号转换为直流电流信号;
去除所述直流电流信号中的干扰信号,得到第二电流信号;
根据所述第二电流信号,检测所述电流值。
上述技术方案中的一个技术方案具有如下有益效果:
在本申请实施例中,通过获取继电器当前的电阻值,并根据所述电阻值,判断所述继电器是否出现损坏,由于继电器在出现损坏时,该继电器的电阻值会出现异常,根据这一原理,在本申请实施例中,通过检测电阻值来判断继电器是否出现损坏,解决了现有技术中,当继电器出现损坏时,无法对继电器进行损坏检测的问题。
第二方面,本申请实施例提供了一种检测装置,所述装置包括:
采集单元,用于获取继电器当前的电阻值;
检测单元,用于根据所述电阻值,判断所述继电器是否出现损坏。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述损坏至少包括以下一种:单边粘连、触点烧蚀、拉弧和接触电阻增大。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述采集单元,具体用于:
检测所述继电器的正极和负极之间的电压值;
检测通过所述继电器的电流的电流值;
获得所述电压值与所述电流值的比值,作为所述电阻值。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述检测单元,具体用于:
判断所述电阻值是否大于指定电阻值;
响应于所述电阻值大于所述指定电阻值,确定所述继电器出现损坏;
响应于所述电阻值小于或等于所述指定电阻值,确定所述继电器未出现损坏。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述采集单元用于检测所述继电器的正极和负极之间的电压值时,具体用于:
采集第一电压信号;
对所述第一电压信号进行高压信号的隔离处理,得到所述第一电压信号中的低压信号;
将所述低压信号转换为直流电压信号;
去除所述直流电压信号中的干扰信号,得到第二电压信号;
根据所述第二电压信号,检测所述电压值。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述采集单元用于检测通过所述继电器的电流的电流值时,具体用于:
采集第一电流信号;
将所述第一电流信号转换为直流电流信号;
去除所述直流电流信号中的干扰信号,得到第二电流信号;
根据所述第二电流信号,检测所述电流值。
上述技术方案中的一个技术方案具有如下有益效果:
由于继电器在出现损坏时,该继电器的电阻值会出现异常,根据这一原理,在本申请实施例中,通过检测电阻值来判断继电器是否出现损坏,解决了现有技术中,当继电器出现损坏时,无法对继电器进行损坏检测的问题。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1是本申请实施例所提供的一种检测方法的流程示意图;
图2是本申请实施例所提供的一种针对步骤101的具体实现方式的流程示意图;
图3是本申请实施例所提供的一种针对步骤201的具体实现方式的流程示意图;
图4是本申请实施例所提供的一种检测继电器电压值的检测电路的结构示意图;
图5是本申请实施例所提供的一种针对步骤202的具体实现方式的流程示意图;
图6是本申请实施例所提供的一种检测继电器电流值的检测电路的结构示意图;
图7是本申请实施例所提供的一种检测装置的结构示意图。
具体实施方式
为了更好的理解本申请的技术方案,下面结合附图对本申请实施例进行详细描述。
应当明确,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非 旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应当理解,尽管在本申请实施例中可能采用术语第一、第二来描述电压信号和电流信号,但这些电压信号和电流信号不应限于这些术语。这些术语仅用来将电压信号和电流信号彼此区分开。例如,在不脱离本申请实施例范围的情况下,第一电压信号也可以被称为第二电压信号,类似地,第二电压信号也可以被称为第一电压信号。
取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
实施例一
本申请实施例给出一种检测方法,请参考图1,其为本申请实施例所提供的方法的流程示意图,如图1所示,该方法包括以下步骤:
101、获取继电器当前的电阻值。
具体的,当继电器出现损坏时,该继电器的电阻值会出现异常,因此,需要通过获取继电器当前的电阻值,来判断该继电器是否出现异常。
进一步的,当继电器工作在高压环境中时,会经常受到大电流的冲击或经常处于过载状态,此时,继电器的触点之间会因为大电流或者过载的原因,导致出现触点的单边粘连、触点烧蚀、拉弧和接触电阻增大的现象。
例如,继电器处于大电流环境下时,由于产生的高温,以及触点材料的问题,导致位于一侧的触点之间出现粘连,即单边粘连,此时出现粘连的该侧触点处于常闭状态。
又例如,因为继电器长时间处于过载状态时,使触点表面的温度急剧上 升,造成触点烧蚀,此时,触点的表面会受到破坏,使得继电器在闭合时无法导通,即使得继电器丧失其开关的功能。
又例如,当继电器的两侧触点进行分离时,即继电器由闭合状态切换到断开状态,假如此时电流较大,且分离动作较慢时,使继电器产生拉弧现象,此时继电器的绝缘材料会遭到破坏,使得继电器处于无绝缘的状态。
又例如,由于继电器长时间处于大电流或者过载状态下时,使得触点表面的导电特性发生变化,进而引起触点的接触电阻增大,从而使得触点无法进行正常的电传导。
上述现象均会导致继电器出现损坏,对继电器的正常使用造成影响。并且,上述损坏均会使继电器的电阻值出现异常。
102、根据所述电阻值,判断所述继电器是否出现损坏。
具体的,通过电阻值来判断继电器是否出现损坏,不仅判断方式比较简单,并且,由于在继电器出现上述损坏时,继电器的电阻值均会出现异常,因此,通过当前继电器的电阻值可以直观反映出该继电器是否出现了上述损坏,所以判断方式比较有效,使得判断结果比较准确。
在一个具体的实施方式中,所述根据所述电阻值,判断所述继电器是否出现损坏,包括:
判断所述电阻值是否大于指定电阻值;
响应于所述电阻值大于所述指定电阻值,确定所述继电器出现损坏;
响应于所述电阻值不大于所述指定电阻值,确定所述继电器未出现损坏。
具体的,所述指定电阻值为继电器处于正常状态下的电阻值,可以根据经验值获得,并可以预先设置好。当出现上述的损坏情况时,继电器的电阻值会大于指定电阻值,因此,可以通过判断当前的电阻值是否大于指定电阻值,来判断继电器是否出现了上述情况的损坏。
由于继电器在出现损坏时,该继电器的电阻值会出现异常,根据这一原理,在本申请实施例中,通过检测电阻值来判断继电器是否出现损坏,解决了现有技术中,当继电器出现损坏时,无法对继电器进行损坏检测的问题。
实施例二
本申请实施例提供了一种针对步骤101的具体实现方式,具体如图2所示,该方法包括以下步骤:
201、检测所述继电器的正极和负极之间的电压值。
202、检测通过所述继电器的电流的电流值。
203、获得所述电压值与所述电流值的比值,作为所述电阻值。
其中,所述电流值和所述电压值为同一时刻的电流值和电压值,以保证获得的电阻值的准确性,进而保证了判断出的继电器是否出现损坏的结果的准确性。
实施例三
本申请实施例提供了一种针对步骤201的具体实现方式,具体如图3所示,所述方法包括以下步骤:
301、采集第一电压信号。
在一个具体的实施方式中,如继电器工作在电池系统中,电池的正极与继电器的正极连接,然后电池正极的导线、正极电压和电池的电流从继电器的负极导出,也即电池的正极通过继电器的负极连接到继电器的下游设备,由于继电器存在电阻,会使电池正极电压在继电器中产生一个压降,该压降为继电器的工作电压(属于低压),并形成通过继电器的电流,该电流为继电器的工作电流。电压信号的采集电路采集继电器的电压信号时,采集电路需要连接到继电器正极柱和负极柱,此时该采集电路与电池的正极也进行了连接,并且电池的正极在经过继电器后产生压降,然后电池经过压降后正极电压通过继电器的负极柱导出,因此,在采集继电器的电压信号时,获取的电压信号包括了继电器的工作电压信号(低压信号)和电池的正极电压信号,由于电池的电压属于高压,因此电池的电压信号为高压信号。
以电池系统位于电动汽车为例,当该电池系统工作在电动汽车中时,在电动汽车在制动过程后,对将电动汽车在制动过程中产生的能量回冲到电池中,此时会形成一个反向的电压(属于高压),并在经过继电器时产生压降,该压降也为继电器的工作电压,并形成通过继电器的电流,此时的电压和电流与上述提到的电压和电流的方向时完全相反的,并且也会被采集电路采集到,因此采集到的电压信号与上述提到的电压信号的方向是相反的。
当采集电路采集到上述四种电压后,该四种电压形成的波形属于交流电压的波形,因此,采集到的第一电压信号为交流电压信号。
302、对所述第一电压信号进行高压信号的隔离处理,得到所述第一电压 信号中的低压信号。
具体的,由于需要用到的电压信号为继电器的电压信号,而继电器的电压信号为低压信号,因此需要对第一电压信号进行高压信号的隔离处理,以保证获得的电压信号都为继电器的电压信号,在对第一电压信号进行隔离时,隔离掉的是电池的电压信号和能量回冲的电压信号,即第一电压信号中的正向高压信号和负向高压信号,此时保留下来的电压信号包括电池正极在经过继电器时产生的压降的电压信号和能量回冲在经过继电器时产生的压降的电压信号,即第一电压信号中的正向低压信号和负向低压信号。
在一个具体的实施方式中,可以通过隔离电路对第一电压信号中进行高压信号的隔离处理。
303、将所述低压信号转换为直流电压信号。
具体的,在通过电压值和电流值获得电阻值时,用到的电压值为直流电压值,因此需要将低压信号转换为直流电压信号,进而可以根据直流电压信号获得直流电压值。
在一个具体的实施方式中,通过整流电路将低压信号转换为直流电压信号。
304、去除所述直流电压信号中的干扰信号,得到第二电压信号。
具体的,由于采集到的第一电压信号中,还包含了干扰信号,而干扰信号中也存在于低压信号中,因此通过上述方法获得的直流电压信号中也包含了属于低压干扰信号的直流信号,为了保证获得的电压值的准确性,因此需要去除通过上述方法得到的直流电压信号中的干扰信号。
在一个具体的实施方式中,在去除直流电压信号中的干扰信号时,可以通过滤波电路进行去除。
305、根据所述第二电压信号,检测所述电压值。
具体的,在根据电压值获得电阻值时,为了保证获得的电阻值的准确性,使用的电压值应当为电压处于稳定状态下的电压值,因此在获得第二电压信号后,根据获得的第二电压信号,判断出处于稳定状态下的所有电压值,即:在指定时长内,电压值的波动范围小于指定电压阈值的所有电压值。
然后,在上述得到的所有电压中获得需要用到的电压值。
例如,由于采集到的第一电压信号具有时间上的先后关系,因此得到的 第二电压信号也具有时间上的先后关系,即检测到的电压值也具有时间上的先后关系。因此,所述获得的电压值可以为所有电压值中处于中间时刻的电压值,作为继电器的正极和负极之间的电压值。
又例如,在获得上述所有电压值后,可以根据所有电压值,获得所有电压值的均值,作为继电器的正极和负极之间的电压值。
又例如,在获得上述所有电压值后,可以在所有电压值中随机选取一个电压值,作为继电器的正极和负极之间的电压值。
在一个具体的实施方式中,可以通过单片机MCU(Microcontroller Unit,微控制单元)来检测电压值。
在一个具体的实施方式中,继电器工作在电池系统中,具体如图4所示,检测继电器的正极柱和负极柱之间的电压值的检测电路包括:电压采样电路、电压隔离电路、电压整流电路、电压滤波电路以及MCU,其中,电压采样电路的输入端的正负极分别与继电器的正极柱和负极柱连接,该电压采样电路的输出端与电压隔离电路输入端连接;电压隔离电路的输入端与电压整流电路的输入端连接;电压整流电路的输出端与电压滤波电路的输入端连接;电压滤波电路的输入端与MCU连接。
在该检测电路对继电器的正极和负极之间的电压值进行检测时,包括以下步骤:
1、电压采样电路通过其输入端采集到第一电压信号。
2、电压采样电路通过其输出端将第一电压信号发送给电压隔离电路的输入端。
3、电压隔离电路对第一电压信号进行高电压信号的隔离处理,得到第一电压信号中的低压信号。
4、电压隔离电路通过其输出端将该低压信号发送给电压整流电路的输入端。
5、电压整流电路将该低压信号转换为直流电压信号。
6、电压整流电路通过其输出端将该直流电压信号发送给电压滤波电路的输入端。
7、电压滤波电路去除该直流电压信号中的干扰信号,得到第二电压信号。
8、电压滤波电路通过其输出端将该第二电压信号发送MCU。
9、MCU根据该第二电压信号,检测出在指定时长内,电压值的波动范围小于指定电压阈值的所有电压值,然后根据所有电压值,得到继电器的正极和负极之间的电压值。
实施例四
实施例提供了一种针对步骤202的具体实现方式,具体如图5所示,所述方法包括以下步骤:
501、采集第一电流信号。
具体的,在采集第一电流信号时,可以通过电流信号的采集电路采集继电器的第一电流信号,并且与采集到的第一电压信号具有相同的原因,采集到的第一电流信息为交流电流信号。
502、将所述第一电流信号转换为直流电流信号。
具体的,在通过电压值和电流值获得电阻值时,用到的电流值为直流电流值,因此需要将第一电流信号转换为直流电流信号,进而可以根据直流电流信号获得直流电流值。
在一个具体的实施方式中,通过整流电路将所述第一电流信号转换为直流电流信号。
503、去除所述直流电流信号中的干扰信号,得到第二电流信号。
具体的,由于采集到的第一电流信号中,包含了干扰信号,为了保证获得的电流值的准确性,因此需要去除通过上述方法得到的直流电流信号中的干扰信号。
在一个具体的实施方式中,在去除直流电流信号中的干扰信号时,可以通过滤波电路进行去除。
504、根据所述第二电流信号,检测所述电流值。
具体的,在根据电流值获得电阻值时,为了保证获得的电阻值的准确性,使用的电流值应当为电流处于稳定状态下的电流值,因此在获得第二电流信号后,根据获得的第二电流信号,判断出处于稳定状态下的所有电流值,即:在指定时长内,电流值的波动范围小于指定电流阈值的所有电流值。
然后,在上述得到的所有电流中获得需要用到的电流值。
例如,由于采集到的第一电流信号具有时间上的先后关系,因此得到的第二电流信号也具有时间上的先后关系,即检测到的电流值也具有时间上的 先后关系。因此,获得的电流值可以为所有电流值中处于中间时刻的电流值,作为继电器的电流值。
又例如,在获得上述所有电流值后,可以根据所有电流值,获得所有电流值的均值,作为继电器的电流值。
又例如,在获得上述所有电流值后,可以在所有电流值中随机选取一个电流值,作为继电器的电流值。
在一个具体的实施方式中,可以通过单片机MCU来检测电流值。
在一个具体的实施方式中,继电器工作在电池系统中,具体如图6所示,检测继电器的电流值的检测电路包括:电流采样电路、电流整流电路、电流滤波电路以及MCU,其中,电流采样电路的输入端与继电器连接,该电流采样电路的输出端与电流整流电路的输入端连接;电流整流电路的输出端与电流滤波电路的输入端连接;电流滤波电路的输入端与MCU连接。
在该检测电路对继电器的电流值进行检测时,包括以下步骤:
1、电流采样电路通过其输入端采集到第一电流信号。
2、电流采样电路通过其输出端将第一电流信号发送给电流整流电路的输入端。
3、电流整流电路将该第一电流信号转换为直流电流信号。
4、电流整流电路通过其输出端将该直流电流信号发送给电流滤波电路的输入端。
5、电流滤波电路去除该直流电流信号中的干扰信号,得到第二电流信号。
6、电流滤波电路通过其输出端将该第二电流信号发送MCU。
7、MCU根据该第二电流信号,检测出在指定时长内,电流值的波动范围小于指定电流阈值的所有电流值,然后根据所有电流值,得到继电器的电流值。
本申请实施例进一步给出实现上述方法实施例中各步骤及方法的装置实施例。
实施例五
请参考图7,其为本申请实施例所提供的一种检测装置的结构示意图。所该装置包括:
采集单元71,用于获取继电器当前的电阻值;
检测单元72,用于根据所述电阻值,判断所述继电器是否出现损坏。
在一个具体的实施方式中,所述损坏至少包括以下一种:单边粘连、触点烧蚀、拉弧和接触电阻增大。
在一个具体的实施方式中,所述采集单元71,具体用于:
检测所述继电器的正极和负极之间的电压值;
检测通过所述继电器的电流的电流值;
获得所述电压值与所述电流值的比值,作为所述电阻值。
在一个具体的实施方式中,所述检测单元72,具体用于:
判断所述电阻值是否大于指定电阻值;
响应于所述电阻值大于所述指定电阻值,确定所述继电器出现损坏;
响应于所述电阻值小于或等于所述指定电阻值,确定所述继电器未出现损坏。
在一个具体的实施方式中,所述采集单元71用于检测所述继电器的正极和负极之间的电压值时,具体用于:
采集第一电压信号;
对所述第一电压信号进行高压信号的隔离处理,得到所述第一电压信号中的低压信号;
将所述低压信号转换为直流电压信号;
去除所述直流电压信号中的干扰信号,得到第二电压信号;
根据所述第二电压信号,检测所述电压值。
在一个具体的实施方式中,所述采集单元71用于检测通过所述继电器的电流的电流值时,具体用于:
采集第一电流信号;
将所述第一电流信号转换为直流电流信号;
去除所述直流电流信号中的干扰信号,得到第二电流信号;
根据所述第二电流信号,检测所述电流值。
由于本实施例中的各单元能够执行实施例一、实施例二、实施例三和实施例四所示的方法,本实施例未详细描述的部分,可参考实施例一、实施例二、实施例三和实施例四的相关说明,其中,采集单元71对应于获得电压值的过程中的电压采样电路、电压隔离电路、电压整流电路、电压滤波电路和 微控制单元,以及对应于获得电流值的过程中的电流采样电路、电流整流电路、电流滤波电路和微控制单元,且获得电压值的过程中的微控制单元和获得电流值的过程中的微控制单元可以为一个微控制单元,检测单元72对应于获得上述提到的微控制单元。
在本申请实施例中,通过获取继电器当前的电阻值,并根据所述电阻值,判断所述继电器是否出现损坏,由于继电器在出现损坏时,该继电器的电阻值会出现异常,根据这一原理,在本申请实施例中,通过检测电阻值来判断继电器是否出现损坏,解决了现有技术中,当继电器出现损坏时,无法对继电器进行损坏检测的问题。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机装置(可以是个人计算机,服务器,或者网络装置等) 或处理器(Processor)执行本申请各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (12)

  1. 一种检测方法,其特征在于,所述方法包括:
    获取继电器当前的电阻值;
    根据所述电阻值,判断所述继电器是否出现损坏。
  2. 如权利要求1所述的方法,其特征在于,所述损坏至少包括以下一种:单边粘连、触点烧蚀、拉弧和接触电阻增大。
  3. 如权利要求1所述的方法,其特征在于,所述获取继电器当前的电阻值,包括:
    检测所述继电器的正极和负极之间的电压值;
    检测通过所述继电器的电流的电流值;
    获得所述电压值与所述电流值的比值,作为所述电阻值。
  4. 如权利要求1所述的方法,其特征在于,所述根据所述电阻值,判断所述继电器是否出现损坏,包括:
    判断所述电阻值是否大于指定电阻值;
    响应于所述电阻值大于所述指定电阻值,确定所述继电器出现损坏;
    响应于所述电阻值小于或等于所述指定电阻值,确定所述继电器未出现损坏。
  5. 如权利要求3所述的方法,其特征在于,所述检测所述继电器的正极和负极之间的电压值,包括:
    采集第一电压信号;
    对所述第一电压信号进行高压信号的隔离处理,得到所述第一电压信号中的低压信号;
    将所述低压信号转换为直流电压信号;
    去除所述直流电压信号中的干扰信号,得到第二电压信号;
    根据所述第二电压信号,检测所述电压值。
  6. 如权利要求3所述的方法,其特征在于,所述检测通过所述继电器的电流值,包括:
    采集第一电流信号;
    将所述第一电流信号转换为直流电流信号;
    去除所述直流电流信号中的干扰信号,得到第二电流信号;
    根据所述第二电流信号,检测所述电流值。
  7. 一种检测装置,其特征在于,所述装置包括:
    采集单元,用于获取继电器当前的电阻值;
    检测单元,用于根据所述电阻值,判断所述继电器是否出现损坏。
  8. 如权利要求7所述的装置,其特征在于,所述损坏至少包括以下一种:单边粘连、触点烧蚀、拉弧和接触电阻增大。
  9. 如权利要求7所述的装置,其特征在于,所述采集单元,具体用于:
    检测所述继电器的正极和负极之间的电压值;
    检测通过所述继电器的电流的电流值;
    获得所述电压值与所述电流值的比值,作为所述电阻值。
  10. 如权利要求7所述的装置,其特征在于,所述检测单元,具体用于:
    判断所述电阻值是否大于指定电阻值;
    响应于所述电阻值大于所述指定电阻值,确定所述继电器出现损坏;
    响应于所述电阻值小于或等于所述指定电阻值,确定所述继电器未出现损坏。
  11. 如权利要求9所述的装置,其特征在于,所述采集单元用于检测所述继电器的正极和负极之间的电压值时,具体用于:
    采集第一电压信号;
    对所述第一电压信号进行高压信号的隔离处理,得到所述第一电压信号中的低压信号;
    将所述低压信号转换为直流电压信号;
    去除所述直流电压信号中的干扰信号,得到第二电压信号;
    根据所述第二电压信号,检测所述电压值。
  12. 如权利要求9所述的装置,其特征在于,所述采集单元用于检测通过所述继电器的电流的电流值时,具体用于:
    采集第一电流信号;
    将所述第一电流信号转换为直流电流信号;
    去除所述直流电流信号中的干扰信号,得到第二电流信号;
    根据所述第二电流信号,检测所述电流值。
PCT/CN2017/093060 2016-11-03 2017-07-15 一种检测方法和装置 WO2018082339A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610958924.1A CN106569128B (zh) 2016-11-03 2016-11-03 一种检测方法和装置
CN201610958924.1 2016-11-03

Publications (1)

Publication Number Publication Date
WO2018082339A1 true WO2018082339A1 (zh) 2018-05-11

Family

ID=58535651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093060 WO2018082339A1 (zh) 2016-11-03 2017-07-15 一种检测方法和装置

Country Status (2)

Country Link
CN (1) CN106569128B (zh)
WO (1) WO2018082339A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108556627A (zh) * 2018-05-21 2018-09-21 梁志强 一种防止误踩油门的汽车智能油门控制系统
CN112415372A (zh) * 2020-11-10 2021-02-26 科大智能(合肥)科技有限公司 一种继电器粘连检测电路
CN112798918A (zh) * 2020-12-30 2021-05-14 重庆金康动力新能源有限公司 一种测试系统和测试方法
CN113406486A (zh) * 2020-03-17 2021-09-17 上海汽车集团股份有限公司 继电器检测电路、检测方法、继电器、动力系统及汽车

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106569128B (zh) * 2016-11-03 2019-07-30 宁德时代新能源科技股份有限公司 一种检测方法和装置
CN108445386A (zh) * 2018-05-24 2018-08-24 顺科新能源技术股份有限公司 一种电动汽车功率继电器故障检测系统及其方法
CN110456265A (zh) * 2019-08-16 2019-11-15 武汉合康智能电气有限公司 一种充电桩内继电器的检测方法
CN112072617A (zh) * 2020-08-07 2020-12-11 王嘉欣 一种直流断路控制器
CN112213631B (zh) * 2020-09-03 2021-11-09 珠海格力电器股份有限公司 一种继电器的状态检测装置、方法和汽车
CN114217220B (zh) * 2022-02-23 2022-05-17 深圳市德兰明海科技有限公司 一种开关检测电路、方法及开关检测器
CN114753924B (zh) * 2022-04-21 2023-06-16 上海三一重机股份有限公司 发动机预热保护方法、系统及作业机械

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2113496U (zh) * 1991-07-21 1992-08-19 苏州供电局 继电器校验箱
CN2133983Y (zh) * 1992-08-13 1993-05-19 天津市东方气体工程技术开发公司 镍镉电池过充电报警充电器
US20030132752A1 (en) * 2002-01-11 2003-07-17 Alan Glen Johnson Method and apparatus for automated relay testing
CN101071158A (zh) * 2006-05-08 2007-11-14 中兴通讯股份有限公司 一种在线测试仪的继电器测试方法
CN104020415A (zh) * 2014-06-20 2014-09-03 珠海格力电器股份有限公司 一种继电器检测装置
CN106569128A (zh) * 2016-11-03 2017-04-19 宁德时代新能源科技股份有限公司 一种检测方法和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201993444U (zh) * 2010-12-09 2011-09-28 华北电网有限公司计量中心 一种继电器的测试设备及系统
CN103713258A (zh) * 2012-10-08 2014-04-09 力铭科技股份有限公司 一种继电器失效的检测电路
JP6185337B2 (ja) * 2013-08-26 2017-08-23 株式会社トランストロン リレー回路の診断装置及び診断方法
CN104827912B (zh) * 2014-12-16 2017-03-15 北汽福田汽车股份有限公司 继电器的检测装置
CN204705701U (zh) * 2015-05-15 2015-10-14 华能国际电力开发公司铜川照金电厂 继电器自动检测仪
CN205484708U (zh) * 2016-01-18 2016-08-17 湖南机电职业技术学院 一种继电器检测装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2113496U (zh) * 1991-07-21 1992-08-19 苏州供电局 继电器校验箱
CN2133983Y (zh) * 1992-08-13 1993-05-19 天津市东方气体工程技术开发公司 镍镉电池过充电报警充电器
US20030132752A1 (en) * 2002-01-11 2003-07-17 Alan Glen Johnson Method and apparatus for automated relay testing
CN101071158A (zh) * 2006-05-08 2007-11-14 中兴通讯股份有限公司 一种在线测试仪的继电器测试方法
CN104020415A (zh) * 2014-06-20 2014-09-03 珠海格力电器股份有限公司 一种继电器检测装置
CN106569128A (zh) * 2016-11-03 2017-04-19 宁德时代新能源科技股份有限公司 一种检测方法和装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108556627A (zh) * 2018-05-21 2018-09-21 梁志强 一种防止误踩油门的汽车智能油门控制系统
CN113406486A (zh) * 2020-03-17 2021-09-17 上海汽车集团股份有限公司 继电器检测电路、检测方法、继电器、动力系统及汽车
CN112415372A (zh) * 2020-11-10 2021-02-26 科大智能(合肥)科技有限公司 一种继电器粘连检测电路
CN112798918A (zh) * 2020-12-30 2021-05-14 重庆金康动力新能源有限公司 一种测试系统和测试方法

Also Published As

Publication number Publication date
CN106569128A (zh) 2017-04-19
CN106569128B (zh) 2019-07-30

Similar Documents

Publication Publication Date Title
WO2018082339A1 (zh) 一种检测方法和装置
WO2018153137A1 (zh) 柔性直流配电网单极接地故障识别方法及装置、存储介质
CN105988082B (zh) 电动汽车高压系统的继电器状态检测方法和装置
CN100566068C (zh) 一种硬件过压脱离电路
RU2014136748A (ru) Способ определения причины потери напряжения на выходе выключатетя, вспомогательный прибор для выключателя, электрическая система, содержащая выключатель и такой вспомогательный прибор
CN101853554B (zh) 无人基站机房防火预警监控方法和系统
CN106526474B (zh) 一种电能表用负荷开关过零操作测试系统及方法
WO2022021964A1 (zh) 开关状态检测电路、方法和装置
CN109406989B (zh) 一种负载回路检测方法、负载检测电路及电子设备
CN203759149U (zh) 高压直流输电工程换相失败判断装置
CN106549366B (zh) 用电安全检测防护电路、开关设备或插座
CN103324128B (zh) 电力调度自动化系统中一次设备故障告警综合压缩方法
CN105021977A (zh) 一种光伏逆变器并网前交流继电器检测方法及系统
CN110073562B (zh) 过电流与短路探测器
CN112666494A (zh) 一种检测三相市电掉电的电路
CN204009002U (zh) 用于检测afci的设备
CN109239588A (zh) 一种故障检测电路与方法
CN106370922B (zh) 一种固态功率控制器及其故障电流记录方法
WO2022082503A1 (zh) 继电器粘连检测电路、方法及系统
CN211478533U (zh) 电气安全检测装置及智能插座
CN103900777A (zh) 一种支柱式电子式电流互感器一次振动检测装置及方法
CN103376389B (zh) 一种用于低压线路的故障电弧判断系统及其判断方法
CN104122501A (zh) 用于检测afci的方法、装置和设备
CN111007310B (zh) 智能物联网芯片及其电流检测电路
JP6585935B2 (ja) エネルギー供給ネットワーク内のアイランドネットワーク状況を検知する方法と装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868030

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17868030

Country of ref document: EP

Kind code of ref document: A1