WO2018082072A1 - 定向天线旋转机构及网关设备 - Google Patents

定向天线旋转机构及网关设备 Download PDF

Info

Publication number
WO2018082072A1
WO2018082072A1 PCT/CN2016/104788 CN2016104788W WO2018082072A1 WO 2018082072 A1 WO2018082072 A1 WO 2018082072A1 CN 2016104788 W CN2016104788 W CN 2016104788W WO 2018082072 A1 WO2018082072 A1 WO 2018082072A1
Authority
WO
WIPO (PCT)
Prior art keywords
directional antenna
antenna
rotating
rotating shaft
hole
Prior art date
Application number
PCT/CN2016/104788
Other languages
English (en)
French (fr)
Inventor
夏红华
程良军
朱松
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680082046.XA priority Critical patent/CN108701897A/zh
Priority to PCT/CN2016/104788 priority patent/WO2018082072A1/zh
Publication of WO2018082072A1 publication Critical patent/WO2018082072A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a directional antenna rotating mechanism and a gateway device.
  • WIFI wireless local area networks
  • the most common problem that users complain about wireless gateway devices is that the WIFI signal coverage is poor, that is, the signal coverage is small and the signal strength is weak, which affects the online experience.
  • Antennas applied to wireless gateway devices are generally classified into two types, namely an omnidirectional antenna and a directional antenna.
  • the omnidirectional antenna radiates uniformly 360 degrees in the horizontal plane, and has no directionality. Therefore, the gateway device with the omnidirectional antenna has a large signal coverage range, but the gain is low and the distance is close.
  • the directional antenna exhibits a range of radiation range in the horizontal plane and has directionality. Therefore, the gateway device equipped with the directional antenna has a long signal coverage distance and a high gain, but the coverage is small.
  • the combination of a directional antenna and an omnidirectional antenna can improve the coverage area and gain of the signal to some extent.
  • the direction of the directional antenna can only obtain a higher gain when it is aligned with the antenna of the user terminal. In actual situations, the antenna position of the user terminal changes with the movement of the user, so the quality of the user's WIFI signal is oriented. The limit of the antenna direction.
  • the position of the directional antenna is usually adjusted by manual adjustment, which is extremely inconvenient.
  • the embodiment of the present invention provides a directional antenna rotating mechanism and a gateway device, which are used to solve the problem of inconvenient adjustment of the directional antenna in the prior art, and realize automatic adjustment of the directional antenna, thereby improving the signal coverage quality of the gateway device.
  • a first aspect of the present application provides a directional antenna rotating mechanism, including: a directional antenna, an omnidirectional antenna, a rotating disk, a transmission component, and a driving component, the rotating disk including a top surface and a bottom surface disposed opposite to each other An antenna and the omnidirectional antenna are disposed on the bottom surface, the transmission component is disposed on the top surface, the transmission component is coupled between the rotating disk and the driving component, and the driving component passes the The transmission assembly drives the rotating disk to rotate to adjust the radiation direction of the directional antenna.
  • the omnidirectional antenna includes a first omnidirectional antenna and a second omnidirectional antenna, and the first omnidirectional antenna and the second omnidirectional antenna are disposed at The directional antennas are on both sides.
  • the directional antenna has a long radiation distance, but the angle is small; the omnidirectional antenna has a large radiation angle but a short distance.
  • the directional antenna is located between two omnidirectional antennas, and the omnidirectional antennas on both sides of the directional antenna can compensate for the insufficient radiation angle of the directional antenna, and increase the signal radiation angle of the directional antenna rotating mechanism.
  • the rotating disk is in the shape of a disk
  • the directional antenna, the first omnidirectional antenna, and the second omnidirectional An antenna is located at an edge position of the rotating disk
  • the first omnidirectional antenna and the second omnidirectional antenna are symmetrically distributed on both sides of a rotation center of the rotating disk, the first omnidirectional antenna and the second
  • the omnidirectional antennas are also symmetrically distributed on both sides of the directional antenna.
  • the line connecting the center of the first omnidirectional antenna and the center of the second omnidirectional antenna may pass through the center of the rotating disk.
  • the first omnidirectional antenna and the second omnidirectional antenna are arranged in such a manner that the distance between the first omnidirectional antenna and the second omnidirectional antenna on the rotating disk is the largest, thereby reducing the Signal interference.
  • the directional antenna includes a radiator and a reflector, and the reflector is a curved plate or a flap structure, and the radiator is disposed on the reflector At the center, the signal radiation directivity of the radiator is increased, and the reflector converges the radiation signal in the same direction, so that the antenna gain of the directional antenna increases, and the radiated signal reaches a long transmission distance.
  • the bottom surface of the rotating disk is provided with a first buckle, and the first buckle is provided with a card slot.
  • the card slot is configured to receive the radiator such that the radiator is detachably coupled to the rotating disk for facilitating replacement or maintenance of the radiator.
  • the transmission assembly includes an engaged first gear and a second gear, the first gear is fixed to the rotating disk, and the second gear is connected to the The driving member drives the second gear to rotate to drive the first gear to rotate to drive the rotating disk to rotate, thereby achieving 360-degree rotation of the directional antenna on the rotating disk.
  • the method further includes a fixing bracket, and the fixing branch
  • the frame is opposite to the top surface of the rotating disk, and the orthographic projection of the rotating disk on the fixing bracket is located inside the fixing bracket, and the driving component is embedded in the fixing bracket, and the specific embedded manner is
  • the fixing bracket is provided with a groove for mounting the driving member.
  • the driving member is mounted inside the fixing bracket, and the space in the fixing bracket is fully utilized to promote the miniaturization of the directional antenna rotating mechanism.
  • the seventh possible implementation further includes a rotating shaft fixedly coupled to the rotating shaft and rotating around the rotating shaft,
  • a fixed bracket is rotatably coupled to the rotating shaft.
  • the rotating shaft can be connected perpendicularly to the fixed bracket and the rotating disc.
  • the rotating shaft can be supported by the fixing bracket, vertically suspended from the fixing bracket by the rotating connecting member, rotated 360 degrees in a plane parallel to the fixing bracket, and driven
  • the rotating disk perpendicular to the axis of rotation is rotated 360 degrees together in a plane parallel to the fixed bracket.
  • the rotating disk has a disk shape, and the rotating shaft extends through a center position of the rotating disk, and the fixing bracket is The central position includes a shaft bore through which the rotating shaft is rotatably coupled to the fixed bracket.
  • the rotating disk is rotated about the rotating shaft as a central axis, if the rotating shaft penetrates the center position of the rotating disk, the horizontal plane area required for the rotating disk to rotate about the rotating shaft is the smallest.
  • This embodiment is more advantageous for reducing the volume occupied by the directional antenna rotating mechanism in operation, and is convenient for reducing the space occupied by the directional antenna rotating mechanism.
  • the rotating shaft is rotatably connected to the center position of the fixing bracket, so that the fixing bracket is the same as the central axis of the rotating disc, and the directional antenna rotating mechanism is promoted to be miniaturized.
  • the transmission assembly includes an engaged first gear and a second gear, the first gear being centered on the rotating shaft And being fixed to the rotating shaft, the second gear is connected to the driving member, and the driving member drives the second gear to rotate to drive the first gear to rotate, thereby driving the rotating disk to rotate, thereby A 360 degree rotation of the directional antenna on the rotating disk is achieved.
  • the tenth possible implementation further includes a circuit board located on one side of the rotating disk and facing the bottom surface of the rotating disk
  • the rotating shaft has a hollow structure, and the driving member and the circuit board are electrically connected by an electrical connection line, and the electrical connecting line passes through a hollow space of the rotating shaft to realize the circuit board and the The drive members are electrically connected.
  • a first through hole is disposed on the rotating shaft, the first through hole is radially disposed along the rotating shaft, and the directional antenna and the circuit board are electrically connected by a first connecting line, the first A connecting wire extends from a side of the circuit board into a hollow space of the rotating shaft, and protrudes from the first through hole to be electrically connected to the directional antenna.
  • the omnidirectional antenna includes a first omnidirectional antenna and a second omnidirectional antenna, and the first omnidirectional antenna and The second omnidirectional antenna is disposed on both sides of the directional antenna.
  • the rotating shaft is provided with a second through hole radially disposed along the rotating shaft, the first An omnidirectional antenna is electrically connected to the circuit board through a second connecting line, and the second connecting line extends from a side of the circuit board into a hollow space of the rotating shaft, and from the second through hole
  • the rotating shaft is extended to be electrically connected to the first omnidirectional antenna.
  • the rotating shaft is provided with a third through hole radially disposed along the rotating shaft, and the second An omnidirectional antenna is electrically connected to the circuit board through a third connecting line, and the third connecting line extends from a side of the circuit board into a hollow space of the rotating shaft, and from the third through hole
  • the rotating shaft is extended to be electrically connected to the second omnidirectional antenna.
  • the first through hole, the second through hole, and the The third through holes are spaced apart from each other.
  • the sixteenth possible implementation in a circumferential direction of the rotating shaft, between the first through hole and the second through hole 90 degrees apart, the first through hole and the third through hole are separated by 90 degrees, and the first through hole is located between the second through hole and the third through hole.
  • the connecting wires connected to them also rotate.
  • the rotating shaft In order to prevent the connecting wire from being wound into the antenna structure or other equipment during the rotation process, the present application designs the rotating shaft to be a hollow cylindrical structure, so that the connecting line is separated from the antenna device, and the direction of the connecting line is combed.
  • the through holes on the rotating shaft are designed for the passage of the connecting wires and are connected to the corresponding antennas to avoid entanglement between the connecting wires.
  • a second aspect of the present application provides a gateway device, including: a directional antenna rotating mechanism, the orientation
  • the antenna rotating mechanism is a directional antenna rotating mechanism of any of the above, and the gateway device further includes a rotation control assembly that drives rotation of the rotating disk and the directional antenna by controlling the driving member.
  • the gateway device further includes a signal detecting component, configured to detect a signal usage position around the gateway device; the detecting component is electrically connected to the rotation control component, The rotation control component will control the directional antenna to rotate to the signal use position when the signal detection component detects the signal use position.
  • the directional antenna rotating mechanism and the gateway device combine the design of the directional antenna and the omnidirectional antenna to ensure that the gateway device has a large signal coverage and a high antenna gain; and the directional antenna is rotated by controlling the driving component to Automatically adjust the radiation direction of the directional antenna.
  • the directional antenna rotating mechanism and the gateway device can automatically adjust the radiation direction of the directional antenna to the optimal position under the trigger condition, satisfy the user's demand for the wireless network, and overcome the problem of inconvenient manual adjustment.
  • FIG. 1 is a schematic structural diagram of a directional antenna rotating mechanism provided by an embodiment of the present application.
  • FIG. 2 is a schematic partial structural diagram of a directional antenna rotating mechanism provided by an embodiment of the present application.
  • FIG. 3 is a schematic partial structural diagram of a directional antenna rotating mechanism provided by an embodiment of the present application.
  • FIG. 4 is a schematic partial structural diagram of a directional antenna rotating mechanism provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a gateway device according to an embodiment of the present application.
  • the directional antenna rotating mechanism 01 provided by the present application includes a directional antenna 1, an omnidirectional antenna 2, a rotating disk 3, a transmission assembly 4, and a driving member 5.
  • the rotating disk 3 includes an oppositely disposed top surface 31 and a bottom surface 32.
  • the directional antenna 1 and the omnidirectional antenna 2 are disposed on the bottom surface 32, and the transmission assembly 4 is disposed on the top surface 31.
  • the rotating disk 3 has a circular plate-like structure, and the top surface 31 is parallel to the bottom surface 32, and is connected by a cylindrical side surface therebetween.
  • the rotary disk 3 has a circular plate-like structure, it rotates in a horizontal plane around the center of the circle, and the additional spatial position is unnecessary, and the present embodiment can reduce the occupied space in the horizontal plane of the directional antenna rotating mechanism.
  • the transmission assembly 4 is connected between the rotating disc 3 and the driving member 5, and the driving member 5 drives the rotating disc 3 to rotate by the transmission assembly 4 to adjust the radiation direction of the directional antenna 1. .
  • the driving member 5 drives the transmission assembly 4 to rotate, and the rotation of the transmission assembly 4 drives the rotating disc 3 to rotate, thereby achieving 360-degree rotation of the rotating disc.
  • the omnidirectional antenna 2 includes a first omnidirectional antenna 21 and a second omnidirectional antenna 22, and the first omnidirectional antenna 21 and the second omnidirectional antenna 22 are disposed on the directional antenna 1 On both sides.
  • the directional antenna 1 has a long radiation distance but a small angle; the omnidirectional antenna 2 has a large radiation angle but a short distance.
  • the directional antenna 1 is located between the two omnidirectional antennas 2.
  • the omnidirectional antennas 2 on both sides of the directional antenna 1 can compensate for the lack of radiation angle of the directional antenna 1 and are formed by the combination of the directional antenna and the omnidirectional antenna.
  • the gateway device has a large signal radiation angle, and has large antenna gain, high signal strength, and good signal quality in the directional direction of the directional antenna.
  • the antenna combination design in the embodiment can avoid the situation that the user's signal suddenly fails when the user moves out of the directional antenna radiation range and the directional antenna has not turned in time.
  • the directional antenna rotating mechanism 01 includes a plurality of directional antennas 1 and a plurality of omnidirectional antennas 2.
  • the directional antenna 1 includes a radiator 11 and a reflection plate 12, and the reflection plate 12 is a curved plate or a flap structure.
  • the reflecting plate 12 has a semi-enclosed structure
  • the radiator 11 is located on one side of the reflecting plate 12, and the reflecting plate 12 surrounds the side of the radiator 11.
  • the radiator 11 is located at a center position of the circular arc reflecting plate 12, and the center position is similar to the reflection focus of the circular arc reflecting plate 12.
  • the radiator 11 emits signals to the periphery, and after being reflected by the reflector 12, all face in the same direction, thereby increasing the signal radiation directivity of the radiator 11 while radiating in the same direction.
  • the signal concentration increases the antenna gain of the directional antenna 1 and the radiated signal reaches a distant transmission distance.
  • the opening direction of the reflecting plate 12 may be a direction facing away from the center position of the rotating disk 3 so that the radiation signal is concentrated toward the user.
  • the rotating disk 3 has a disk shape, and the directional antenna 1 and the first omnidirectional direction The antenna 21 and the second omnidirectional antenna 22 are located at an edge position of the rotating disk.
  • the first omnidirectional antenna 21 and the second omnidirectional antenna 22 are symmetrically distributed on both sides of the center of rotation of the rotating disk 3.
  • the first omnidirectional antenna 21 and the second omnidirectional antenna 22 are also symmetrically distributed on both sides of the directional antenna 1.
  • the line connecting the center of the first omnidirectional antenna 21 and the center of the second omnidirectional antenna 22 may pass through the center of the rotating disk 3.
  • the first omnidirectional antenna and the second omnidirectional antenna are arranged in such a manner that the distance between the first omnidirectional antenna and the second omnidirectional antenna on the rotating disk is the largest, thereby reducing the Signal interference.
  • the rotating disk 3 has a disk shape.
  • the directional antenna 1 and the first omnidirectional antenna 21 are different by 90 degrees, and the directional antenna 1 and the second omnidirectional antenna 22 are also different by 90 degrees.
  • the bottom surface 32 of the rotating disk 3 is provided with a first buckle 321 , a second buckle 322 , a third buckle 323 , and a fourth buckle 324 respectively for mounting the radiator 11.
  • the reflector 12, the first omnidirectional antenna 21 and the second omnidirectional antenna 22 are such that the directional antenna 1 and the omnidirectional antenna 2 are fixed to the rotating disk 3.
  • the first buckle 321 may be integrally formed with the rotating disk 3, and may be a split structure between the two, and fixed by screws.
  • the first buckle 321 is provided with a card slot for receiving the radiator 11 , and the radiator 11 is inserted into the card slot and fixed to the first buckle 321 .
  • the radiator 11 and the rotating disk 3 are detachably connected to facilitate replacement or maintenance of the radiator 11.
  • the second buckle 322 and the reflector 12, the third buckle 323 and the first omnidirectional antenna 21, and the fourth buckle 324 and the second omnidirectional antenna 22 may be detachably connected. relationship.
  • the directional antenna 1 and the omnidirectional antenna 2 may be linear or planar or of other shapes.
  • the transmission assembly 4 includes a first gear 41 and a second gear 42 that are engaged.
  • the first gear 41 is fixed to the rotating disk 3, and in one embodiment, the first gear 41 is provided at a peripheral edge of the rotating disk 3.
  • the second gear 42 is coupled to the driving member 5, the second gear 42 is coaxially coupled to the driving member 5, the second gear 42 is engaged with the first gear 41, and the driving member 5 is driven by the driving device
  • the second gear 42 rotates to drive the first gear 41 to rotate to drive the rotating disk 3 to rotate, thereby achieving 360-degree rotation of the directional antenna 1 on the rotating disk 3.
  • the transmission assembly 4 can also be a belt drive or other means for enabling the drive member 5 to rotate the rotary disk 3 360 degrees.
  • the directional antenna rotating mechanism 01 further includes a fixing bracket 6 on one side of the rotating disk 3 opposite to the top surface 31 of the rotating disk 3, and the rotating disk 3 is at the solid
  • the orthographic projection on the fixed bracket 6 is located inside the fixed bracket 6.
  • the driving member 5 is embedded in the fixing bracket 6 , and the specific mounting manner is that the fixing bracket 6 is provided with a groove 61 for mounting the driving member 5 .
  • the fixing bracket 6 is provided with a recess 61 for mounting the driving member 5, which fully utilizes the space in the fixing bracket 6, and promotes miniaturization of the design of the directional antenna rotating mechanism.
  • the directional antenna rotating mechanism 01 further includes a rotating shaft 7 fixedly coupled to the rotating shaft 7 and rotating about the rotating shaft 7, and the fixing bracket 6 is rotatably coupled to the rotating shaft 7.
  • the rotary shaft 7 can be vertically connected to the fixed bracket 6 and the rotary disk 3.
  • the rotating shaft 7 can be vertically supported by the fixing bracket 6 on the fixing bracket 6 through the rotating connecting member, in a plane parallel to the fixing bracket 6 360.
  • the rotation is rotated, and the rotary disk 3 perpendicular to the rotary shaft 7 is rotated 360 degrees together in a plane parallel to the fixed bracket 6.
  • the rotating disk 3 has a disk shape, and the rotating shaft 7 penetrates the center position of the rotating disk 3, and the center position of the fixing bracket 6 A shaft hole 62 is included, through which the rotating shaft 3 is rotatably coupled to the fixing bracket 6.
  • the rotary disk 3 is rotated about the rotary shaft 7 as a central axis, if the rotary shaft 7 penetrates the center position of the rotary disk 3, the horizontal plane area required for the rotary disk 3 to rotate about the rotary shaft 7 is the smallest.
  • the present embodiment is more advantageous for reducing the volume occupied by the directional antenna rotating mechanism 01 in the working state, and is convenient for reducing the space occupied by the directional antenna rotating mechanism.
  • the rotating shaft is rotatably connected to the center position of the fixing bracket, so that the fixing bracket is the same as the central axis of the rotating disc, and the directional antenna rotating mechanism is promoted to be miniaturized.
  • the radiation direction of the directional antenna 1 may be directed away from the axis of rotation 7 of the rotating disk 3, and the directional antenna 1 and the omnidirectional antenna 2 may be distributed around the axis of rotation 7, as shown in FIG. It can be ensured that the directional antenna rotating mechanism 01 has a radiation signal around it and a strong radiation signal in the directional antenna pointing direction.
  • the transmission assembly 4 includes a first gear 41 and a second gear 42 that are engaged.
  • the second gear 42 is coupled to the driving member 5, the first gear 41 is centered on the rotating shaft 7 and fixed to the rotating shaft 7, and the second gear 42 is identical to the driving member 5 Axis connection.
  • the first gear 41 may be disposed on the circumference of the rotating disk 3, that is, the second gear 42 is in the same plane as the rotating disk 3, or the first gear 41 may be disposed on the rotating shaft 7, that is, the second gear 42 and the rotating The discs 3 are not in the same plane, or the other first gears 41 are rotated to drive the rotating disc 3 to rotate.
  • the first gear 41 is disposed on the rotating shaft 7, as shown in FIG.
  • the second gear 42 and the rotating disc 3 Not in the same plane.
  • the rotating disk 3 occupies a large space in a horizontal plane and a small space in a vertical plane, and the second gear 42 is disposed in the vertical space of the rotating disk 3.
  • the driving member 5 can drive the first gear 41 to rotate by driving the second gear 42 to rotate, so that the rotating disk 3 rotates, thereby realizing 360 of the directional antenna on the rotating disk. Degree of rotation.
  • the directional antenna rotating mechanism 01 further includes a circuit board 9 on one side of the rotating disk 3 and facing the bottom surface 32 of the rotating disk 3, the rotating shaft 7
  • the driving member 5 and the circuit board 9 are electrically connected by an electrical connection line (not shown) which passes through the hollow space of the rotating shaft 7.
  • the circuit board 9 is used to supply power to the directional antenna 1, the first omnidirectional antenna 21, the second omnidirectional antenna 22, and the driving member 5.
  • the rotating shaft 7 is provided with a first through hole 71.
  • the first through hole 71 is radially disposed along the rotating shaft 7.
  • the direction of the first through hole 71 corresponds to the In the direction in which the directional antenna 1 is located, the directional antenna 1 and the circuit board 9 are electrically connected by a first connecting line 81, and the first connecting line 81 extends from one side of the circuit board 9 into the rotation.
  • the hollow space of the shaft 7 extends from the first through hole 71 to the rotating shaft 7 to be electrically connected to the directional antenna 1, thereby realizing the circuit board 9 to supply power to the directional antenna 1.
  • the omnidirectional antenna 2 includes a first omnidirectional antenna 21 and a second omnidirectional antenna 22.
  • the first omnidirectional antenna 21 and the second omnidirectional antenna 22 are disposed on both sides of the directional antenna 1.
  • the rotating shaft 7 is further provided with a second through hole 72 disposed radially along the rotating shaft 7, and the first omnidirectional antenna 21 and the circuit board 9 are electrically connected by a second connecting line 81.
  • the second connecting wire 81 extends from one side of the circuit board 9 into the hollow space of the rotating shaft 7, and protrudes from the second through hole 72 to the rotating shaft 7 to An omnidirectional antenna 21 is electrically connected.
  • a third through hole 83 radially disposed along the rotating shaft 7 is further disposed on the rotating shaft 7, and the second omnidirectional antenna 22 and the circuit board 9 are electrically connected through a third connecting line 73.
  • the third connecting line 73 extends from one side of the circuit board 9 into the hollow space of the rotating shaft 7, and protrudes from the third through hole 83 to the rotating shaft 7 to The two omnidirectional antennas 22 are electrically connected.
  • the first through hole 81, the second through hole 82, and the third through hole 83 are spaced apart from each other in the axial direction of the rotating shaft 7. In the circumferential direction of the rotating shaft 7, the first through hole 81 and the second through hole 82 are separated by 90 degrees, and the first through hole 81 and the third through hole 83 are apart from each other.
  • the first through holes 81 are located between the second through holes 82 and the third through holes 83 at intervals of 90 degrees.
  • the connecting lines connected thereto are also rotated.
  • the present application designs the rotating shaft 7 into a hollow cylindrical structure, so that the connecting line is separated from the antenna device, and the direction of the connecting line is combed.
  • the through hole on the rotating shaft 7 is designed for the passage of the connecting wire and is connected to the corresponding antenna to avoid the winding of the connecting wire.
  • a gateway device 00 includes the directional antenna rotating mechanism 01 according to any one of the foregoing embodiments, and further includes a rotation control component (not shown).
  • the rotation control assembly is located on the circuit board 9 and is electrically connected to the circuit board 9, while the rotation control assembly is electrically connected to the drive member 5, and its connection line can be disposed through the hollow passage of the rotary shaft 7.
  • the rotation control assembly drives the rotation of the rotating disk 3 and the directional antenna 1 by controlling the driving member 5.
  • the gateway device 00 is a wireless router.
  • the trigger condition gives the rotation control component a rotation command
  • the rotation control component drives the directional antenna 1 to rotate around the rotation axis 7 by driving the driving member 5, thereby changing the antenna gain radiation direction, thereby satisfying the user to wirelessly.
  • the above trigger condition can be completed by a separate controller, that is, the user forms a trigger condition by operating a button rotated by the control router on the controller, and the rotation control component receives the "router rotation" command sent by the controller to control the drive.
  • the piece 5 drives the rotating shaft 7, the rotating disk 3, the directional antenna 1 and the omnidirectional antenna 2 to rotate together.
  • the user can maintain the direction of the directional antenna 1 by operating a button on the controller that controls the router to stop rotating. .
  • the directional antenna 1 can also be controlled to rotate to the optimal direction in which the user uses the wireless network.
  • the gateway device 00 provided by the present application solves the problem that the manual adjustment of the directional antenna 1 is not convenient, and satisfies the wireless network requirement when the user moves anywhere within a certain range.
  • the above trigger conditions can also be completed by the application. That is, the user installs the application on the terminal, and the user triggers the rotation control component to control the rotation of the directional antenna 1 through the application.
  • the user thinks that the directional antenna 1 has rotated to the optimal direction of the wireless network or the terminal prompts that the wireless network is optimal The user can control the router to stop rotating by operating the application, so that the directional antenna 1 maintains the direction unchanged.
  • the gateway device 00 further includes a signal detecting component (not shown) for detecting a signal use location around the gateway device 00.
  • the detecting component is electrically connected to the rotating control component
  • the signal detecting component is located on the circuit board 9 and is electrically connected to the circuit board 9, and the rotating control component is electrically connected to the driving component 5, and the connecting line thereof It can be arranged through a hollow passage of the rotary shaft 7.
  • the rotation control component will control the directional antenna 1 to rotate to the signal use position when the signal detection component detects the signal use position.
  • the trigger signal detecting component can start detecting the use position of the wireless network signal around the router by using a trigger condition, and when the wireless network signal use position is detected, the automatic trigger rotation control component controls the directional antenna 1 to rotate to the position. . When the rotation is completed, the user can stop the detection of the trigger signal detecting component, thereby saving energy.
  • the trigger condition can be accomplished by a separate controller, application, or other means.
  • a gateway device 00 provided by the present application further includes a top case 02, a bottom case 03, and a case 04 connecting and supporting the top case and the bottom case.
  • the top case 02 is located on one side of the fixing bracket 6 and is fixedly connected to the fixing bracket 6 , and the fixing bracket 6 separates the top case 02 from the rotating disk 3 .
  • the bottom case 03 is located on one side of the circuit board 9 and is fixedly connected to the circuit board 9, and the circuit board 9 separates the bottom case 03 from the rotary disk 3.
  • the housing 04 is configured to encapsulate the directional antenna rotating mechanism 01, the rotation control component, and the signal detecting component between the top case 02 and the bottom case 03.
  • the gateway device is a wireless router, including a directional antenna rotating mechanism 01, which can automatically adjust the direction of the optimal wireless network signal, so that the user can use the optimal wireless network more conveniently and quickly.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请提供了一种定向天线旋转机构,包括定向天线、全向天线、旋转盘、传动组件及驱动件。所述旋转盘包括相对设置的顶面和底面,所述定向天线和所述全向天线设置在所述底面,所述传动组件设于所述顶面。所述传动组件连接在所述旋转盘和所述驱动件之间。所述驱动件通过所述传动组件带动所述旋转盘转动,以调整所述定向天线的辐射方向。本申请还提供了一种网关设备。本申请通过驱动件带动旋转盘转轴,控制定向天线的辐射方向,避免了手动调整不便的问题。

Description

定向天线旋转机构及网关设备 技术领域
本申请涉及通信技术领域,具体涉及一种定向天线旋转机构及网关设备。
背景技术
随着近年来移动互联网和智能手机的快速发展,日常生活中无线局域网(WIFI)的使用量日益频繁、使用场景日趋复杂以及家居面积的增大都对网关设备的信号覆盖质量提出了更高的要求。
目前市场上,用户对无线网关设备抱怨的最多的问题就是WIFI信号覆盖质量差,即信号覆盖面小、信号强度弱,影响上网体验。应用于无线网关设备上的天线通常分为两种,即全向天线和定向天线。全向天线在水平面内360度都均匀辐射,无方向性,所以安装全向天线的网关设备的信号覆盖范围大,但是增益低,距离近。定向天线在水平面内表现为具有一定角度辐射范围,具有方向性,所以安装定向天线的网关设备的信号覆盖距离远、增益高,但覆盖范围小。定向天线和全向天线的结合使用可以在一定程度上提高信号的覆盖面积和增益。而定向天线方向只有在与用户终端的天线对准的情况下才能获得较高的增益,在实际情况下用户终端的天线位置会随着用户的移动而变化,所以用户的WIFI信号使用质量受到定向天线方向的限制。
现有技术中,通常采用人工调整的方式调整定向天线的位置,这种调整方式极不方便。
如何能够实现网关设备的定向天线自动调整方向,为业界持续研究的方向。
发明内容
本申请实施例提供一种定向天线旋转机构及网关设备,用以解决现有技术中定向天线调整不方便的问题,实现定向天线的自动调整,从而提高网关设备的信号覆盖质量。
本申请第一方面提供一种定向天线旋转机构,包括:定向天线、全向天线、旋转盘、传动组件及驱动件,所述旋转盘包括相对设置的顶面和底面,所述定 向天线和所述全向天线设置在所述底面,所述传动组件设于所述顶面,所述传动组件连接在所述旋转盘和所述驱动件之间,所述驱动件通过所述传动组件带动所述旋转盘转动,以调整所述定向天线的辐射方向。
结合第一方面,第一种可能的实施方式中,所述全向天线包括第一全向天线和第二全向天线,所述第一全向天线和所述第二全向天线设于所述定向天线两侧。定向天线的辐射距离长,但角度小;全向天线辐射角度大,但距离短。本实施方式中,定向天线位于两个全向天线之间,定向天线两侧的全向天线可弥补定向天线辐射角度小的不足,增加定向天线旋转机构的信号辐射角度。
结合第一方面的第一种可能的实施方式,第二种可能的实施方式中,所述旋转盘呈圆盘状,所述定向天线、所述第一全向天线及所述第二全向天线位于所述旋转盘的边缘位置,所述第一全向天线和所述第二全向天线对称分布在所述旋转盘旋转中心的两侧,所述第一全向天线和所述第二全向天线亦对称分布在所述定向天线的两侧。进一步地,第一全向天线的中心和所述第二全向天线中心的连线可以经过旋转盘的中心。本实施方式中,所述第一全向天线与所述第二全向天线的布局方式使得第一全向天线与第二全向天线在旋转盘上的间距最大,从而减少两者之间的信号干扰。
结合第一方面,第三种可能的实施方式中,所述定向天线包括辐射体和反射板,所述反射板为弧形板或折板结构,所述辐射体设于所述反射板的反射中心处,以增加所述辐射体的信号辐射方向性,同时反射板使辐射体在同一个方向上辐射信号的集中,从而使得定向天线的天线增益增加,辐射的信号达到较远的传输距离。
结合第一方面的第三种可能的实施方式,第四种可能的实施方式中,所述旋转盘的所述底面上设有第一卡扣,所述第一卡扣上设有卡槽,所述卡槽用于收容所述辐射体,使得所述辐射体可拆卸的连接在所述旋转盘上,便于更换或维护辐射体。
结合第一方面,第五种可能的实施方式中,所述传动组件包括相啮合的第一齿轮和第二齿轮,所述第一齿轮固定至所述旋转盘,所述第二齿轮连接至所述驱动件,所述驱动件通过驱动所述第二齿轮转动来带动所述第一齿轮转动,以带动所述旋转盘转动,从而实现旋转盘上定向天线的360度转动。
结合第一方面,第六种可能的实施方式中,还包括固定支架,所述固定支 架与所述旋转盘的所述顶面相对,所述旋转盘在所述固定支架上的正投影位于所述固定支架内部,所述驱动件嵌入所述固定支架内,具体的内嵌方式为所述固定支架上设有凹槽,所述凹槽用于安装所述驱动件。将驱动件安装于固定支架内部,充分利用了固定支架中的空间,促进定向天线旋转机构设计小型化。
结合第一方面的第六种可能的实施方式,第七种可能的实施方式中,还包括旋转轴,所述旋转盘与所述旋转轴固定连接且以所述旋转轴为中心旋转,所述固定支架转动连接至所述旋转轴。旋转轴可以与固定支架和旋转盘垂直连接。具体而言,在固定支架固定不动的情况下,旋转轴可以以固定支架为支撑架,通过转动连接部件垂直悬挂于固定支架上,在平行于固定支架所在的平面内360度转动,并带动与旋转轴垂直的旋转盘在平行于固定支架所在的平面内一起做360度转动。
结合第一方面的第七种可能的实施方式,第八种可能的实施方式中,所述旋转盘呈圆盘状,所述旋转轴贯穿于所述旋转盘的中心位置,所述固定支架的中心位置包括一个轴孔,所述旋转轴穿过所述轴孔与所述固定支架转动连接。当旋转盘围绕旋转轴为中心轴转动时,若旋转轴贯穿于所述旋转盘的中心位置,此时旋转盘绕着旋转轴旋转所需要的水平面面积最小。本实施方式更利于减少定向天线旋转机构工作状态时占据的体积,便于减少定向天线旋转机构占据的空间。旋转轴与固定支架的中心位置转动连接,使得固定支架与旋转盘的中心轴相同,促进定向天线旋转机构小型化。
结合第一方面的第七种可能的实施方式,第九种可能的实施方式中,所述传动组件包括相啮合的第一齿轮和第二齿轮,所述第一齿轮以所述旋转轴为中心且固定至所述旋转轴,所述第二齿轮连接至所述驱动件,所述驱动件通过驱动所述第二齿轮转动来带动所述第一齿轮转动,以带动所述旋转盘转动,从而实现旋转盘上定向天线的360度转动。
结合第一方面的第七种可能的实施方式,第十种可能的实施方式中还包括电路板,所述电路板位于所述旋转盘的一侧,且面对所述旋转盘的所述底面,所述旋转轴呈中空结构,所述驱动件与所述电路板之间通过电连接线电连接,所述电连接线从所述旋转轴的中空空间穿过,实现所述电路板与所述驱动件电连接。
结合第一方面的第十种可能的实施方式,第十一种可能的实施方式中,所 述旋转轴上设有第一通孔,所述第一通孔沿着所述旋转轴径向设置,所述定向天线与所述电路板之间通过第一连接线电连接,所述第一连接线从所述电路板的一侧伸入所述旋转轴的中空空间,并从所述第一通孔伸出所述旋转轴,以与所述定向天线电连接。
结合第一方面的第十一种可能的实施方式,第十二种可能的实施方式中,所述全向天线包括第一全向天线和第二全向天线,所述第一全向天线和所述第二全向天线设于所述定向天线两侧。
结合第一方面的第十二种可能的实施方式,第十三种可能的实施方式中,所述旋转轴上设有沿着所述旋转轴径向设置的第二通孔,所述第一全向天线与所述电路板之间通过第二连接线电连接,所述第二连接线从所述电路板的一侧伸入所述旋转轴的中空空间,并从所述第二通孔伸出所述旋转轴,以与所述第一全向天线电连接。
结合第一方面的第十三种可能的实施方式,第十四种可能的实施方式中,所述旋转轴上设有沿着所述旋转轴径向设置的第三通孔,所述第二全向天线与所述电路板之间通过第三连接线电连接,所述第三连接线从所述电路板的一侧伸入所述旋转轴的中空空间,并从所述第三通孔伸出所述旋转轴,以与所述第二全向天线电连接。
结合第一方面的第十四种可能的实施方式,第十五种可能的实施方式中,在所述旋转轴的轴向方向上,所述第一通孔、所述第二通孔和所述第三通孔彼此间隔分布。
结合第一方面的第十五种可能的实施方式,第十六种可能的实施方式中,在所述旋转轴的周向方向上,所述第一通孔和所述第二通孔之间相隔90度,所述第一通孔和所述第三通孔之间相隔90度,所述第一通孔位于所述第二通孔和所述第三通孔之间。
在定向天线和全向天线旋转的过程中,与它们相连接的连接线也会随之旋转。为了避免连接线在旋转过程中缠绕到天线结构或其他设备,本申请通过将旋转轴设计为中空筒状结构,使得连接线与天线装置隔开,梳理连接线的走向。旋转轴上的通孔设计用于连接线的穿出,且与对应的天线连接,可避免连接线之间发生缠绕。
本申请第二方面提供一种网关设备,包括:定向天线旋转机构,所述定向 天线旋转机构为上述任一种的定向天线旋转机构,所述网关设备还包括旋转控制组件,所述旋转控制组件通过控制所述驱动件来带动所述旋转盘和所述定向天线的转动。
结合第二方面,第一种可能的实施方式中,所述网关设备还包括信号探测组件,用于检测所述网关设备四周的信号使用位置;所述探测组件与所述旋转控制组件电连接,当所述信号探测组件检测出所述信号使用位置后,所述旋转控制组件将控制所述定向天线转动到所述信号使用位置。
本申请提供的定向天线旋转机构及网关设备,将定向天线和全向天线的结合设计确保网关设备具有较大的信号覆盖范围和较高的天线增益;通过控制驱动件来带动定向天线转动,以自动调整定向天线的辐射方向。这种定向天线旋转机构及网关设备在触发条件下可自动调整定向天线的辐射方向到最佳的位置,满足用户对于无线网络的使用需求,克服了人工调整不便利的问题。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施方式提供的定向天线旋转机构结构示意图;
图2是本申请实施方式提供的定向天线旋转机构局部结构示意图;
图3是本申请实施方式提供的定向天线旋转机构局部结构示意图;
图4是本申请实施方式提供的定向天线旋转机构局部结构示意图;
图5是本申请实施方式提供的网关设备结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请一并参阅图1和图2,本申请提供的定向天线旋转机构01,包括定向天线1、全向天线2、旋转盘3、传动组件4及驱动件5。所述旋转盘3包括相对设置的顶面31和底面32,所述定向天线1和所述全向天线2设置在所述底面32,所述传动组件4设于所述顶面31。一种实施方式中,旋转盘3呈圆形板状结构,顶面31平行于底面32,二者之间通过圆柱状的侧面连接。旋转盘3呈圆形板状结构时,其绕着圆心位置在水平面内旋转,无需的另外空间位置,本实施方式可减小定向天线旋转机构水平面内的占据空间。
所述传动组件4连接在所述旋转盘3和所述驱动件5之间,所述驱动件5通过所述传动组件4带动所述旋转盘3转动,以调整所述定向天线1的辐射方向。一种实施方式中,驱动件5的驱动作用下带动传动组件4转动,传动组件4的转动带动旋转盘3转动,从而实现旋转盘360度转动。
请参阅图2,所述全向天线2包括第一全向天线21和第二全向天线22,所述第一全向天线21和所述第二全向天线22设于所述定向天线1两侧。定向天线1的辐射距离长,但角度小;全向天线2辐射角度大,但距离短。本实施方式中,定向天线1位于两个全向天线2之间,定向天线1两侧的全向天线2可弥补定向天线1辐射角度小的不足,由定向天线与全向天线的组合形成的网关设备,其信号辐射角度大,且在定向天线的指向方向天线增益大、信号强度高、信号质量好。此外,本实施方式中的天线组合设计可避免用户活动出定向天线辐射范围时且定向天线还没有及时地转向,造成用户的信号突然失效的情况。在其他实施方式中,定向天线旋转机构01包括多个定向天线1和多个全向天线2。
所述定向天线1包括辐射体11和反射板12,所述反射板12为弧形板或折板结构。换言之,反射板12呈半包围结构,辐射体11位于反射板12的一侧,反射板12环绕在辐射体11一侧的周围。一种具体实施方式中,辐射体11位于圆弧形反射板12的中心位置,此中心位置类似于圆弧形反射板12的反射焦点处。在定向天线1工作过程中,辐射体11向四周发射信号,经过反射板12反射后,全部朝向同一个方向,从而增加所述辐射体11的信号辐射方向性,同时在同一个方向上的辐射信号集中,使定向天线1的天线增益增加,辐射的信号达到较远的传输距离。反射板12的开口方向可以是朝向背离旋转盘3中心位置的方向,以使辐射信号集中处朝向用户。
一种实施方式中,所述旋转盘3呈圆盘状,所述定向天线1、所述第一全向 天线21及所述第二全向天线22位于所述旋转盘的边缘位置。
一种实施方式中,所述第一全向天线21和所述第二全向天线22对称分布在旋转盘3旋转中心的两侧。第一全向天线21和所述第二全向天线22亦对称分布在定向天线1的两侧。进一步地,第一全向天线21的中心和所述第二全向天线22中心的连线可以经过旋转盘3的中心。本实施方式中,所述第一全向天线与所述第二全向天线的布局方式使得第一全向天线与第二全向天线在旋转盘上的间距最大,从而减少两者之间的信号干扰。
一种实施方式中,旋转盘3呈圆盘状。在旋转盘3圆周方向上,定向天线1与第一全向天线21之间相差90度,定向天线1和所述第二全向天线22之间亦相差90度。
请参阅图2,所述旋转盘3的所述底面32上设有第一卡扣321、第二卡扣322、第三卡扣323、第四卡扣324,分别用于安装所述辐射体11、所述反射板12、所述第一全向天线21和所述第二全向天线22,使得定向天线1和全向天线2固定于旋转盘3上。具体而言,第一卡扣321可以与旋转盘3一体成型,二者之间也可以是分体式结构,通过螺丝组装固定。第一卡扣321设有卡槽,可收容辐射体11,辐射体11插入卡槽中并固定至第一卡扣321。这样,辐射体11与旋转盘3之间为可拆卸的连接关系,方便更换或维护辐射体11。同样,第二卡扣322与反射板12之间、第三卡扣323与第一全向天线21之间、第四卡扣324与第二全向天线22之间均可以为可拆卸的连接关系。
所述定向天线1和全向天线2可以为线状或面状或者其他形状。
请参阅图1,所述传动组件4包括相啮合的第一齿轮41和第二齿轮42。所述第一齿轮41固定至所述旋转盘3,一种实施方式中,第一齿轮41设于旋转盘3的周长边沿。所述第二齿轮42连接至所述驱动件5,所述第二齿轮42与所述驱动件5同轴连接,第二齿轮42与第一齿轮41相互啮合,所述驱动件5通过驱动所述第二齿轮42转动来带动所述第一齿轮41转动,以带动所述旋转盘3转动,从而实现旋转盘3上定向天线1的360度转动。其他实施方式中,传动组件4也可以是皮带传动或其他的实现驱动件5带动旋转盘3能360度转动的方式。
请参阅图3,定向天线旋转机构01还包括固定支架6,固定支架6位于旋转盘3的一侧,与所述旋转盘3的所述顶面31相对,所述旋转盘3在所述固 定支架6上的正投影位于所述固定支架6内部。所述驱动件5嵌入所述固定支架6内,具体的嵌入方式是所述固定支架6上设有凹槽61,所述凹槽61用于安装所述驱动件5。在固定支架6设置凹槽61以安装驱动件5,充分利用了固定支架6中的空间,促进定向天线旋转机构设计小型化。
定向天线旋转机构01还包括旋转轴7,所述旋转盘3与所述旋转轴7固定连接且以所述旋转轴7为中心旋转,所述固定支架6转动连接至所述旋转轴7。旋转轴7可以与固定支架6和旋转盘3垂直连接。具体而言,在固定支架6固定不动的情况下,旋转轴7可以以固定支架6为支撑架,通过转动连接部件垂直悬挂于固定支架6上,在平行于固定支架6所在的平面内360度转动,并带动与旋转轴7垂直的旋转盘3在平行于固定支架6所在的平面内一起做360度转动。
一种实施方式中,请一并参阅图2和图3,所述旋转盘3呈圆盘状,所述旋转轴7贯穿于所述旋转盘3的中心位置,所述固定支架6的中心位置包括一个轴孔62,所述旋转轴3穿过所述轴孔62与所述固定支架6转动连接。当旋转盘3围绕旋转轴7为中心轴转动时,若旋转轴7贯穿于所述旋转盘3的中心位置,此时旋转盘3绕着旋转轴7旋转所需要的水平面面积最小。在满足其他需求的情况下,本实施方式更利于减少定向天线旋转机构01工作状态时占据的体积,便于减少定向天线旋转机构占据的空间。旋转轴与固定支架的中心位置转动连接,使得固定支架与旋转盘的中心轴相同,促进定向天线旋转机构小型化。在这种实施方式中,定向天线1的辐射方向可以朝向背离旋转盘3的旋转轴7,定向天线1和全向天线2可以围绕所述旋转轴7分布,如图1所示,这种方式可以确保定向天线旋转机构01四周都具有辐射信号,且在定向天线指向方向上有较强辐射信号。
一种实施方式,所述传动组件4包括相啮合的第一齿轮41和第二齿轮42。所述第二齿轮42连接至所述驱动件5,所述第一齿轮41以所述旋转轴7为中心且固定至所述旋转轴7,所述第二齿轮42与所述驱动件5同轴连接。第一齿轮41可以设于旋转盘3的周长边沿,即第二齿轮42与旋转盘3在同一平面内,或者,第一齿轮41可以设于旋转轴7上,即第二齿轮42与旋转盘3不在同一平面内,或者,其他的第一齿轮41转动可以带动旋转盘3转动的方式。优选地,第一齿轮41设于旋转轴7上,如图4所示,第二齿轮42与旋转盘3 不在同一平面内。旋转盘3占据水平平面内的空间较大而垂直平面内占据空间小,第二齿轮42设置在旋转盘3的垂直空间中,这样的设计可以充分利用垂直空间位置,减少定向天线旋转机构01的体积,便于设备小型化。通过以上的几种实施方式,所述驱动件5可通过驱动所述第二齿轮42转动来带动所述第一齿轮41转动,使得所述旋转盘3转动,从而实现旋转盘上定向天线的360度转动。
请参阅图1,定向天线旋转机构01还包括电路板9,所述电路板9位于所述旋转盘3的一侧,且面对所述旋转盘3的所述底面32,所述旋转轴7呈中空结构,所述驱动件5与所述电路板9之间通过电连接线(图中未示出)电连接,所述电连接线从所述旋转轴7的中空空间穿过。所述电路板9用于为所述定向天线1、第一全向天线21、第二全向天线22、驱动件5供电。
请参阅图2,所述旋转轴7上设有第一通孔71,所述第一通孔71沿着所述旋转轴7径向设置,所述第一通孔71的方向对应于所述定向天线1所在的方向,所述定向天线1与所述电路板9之间通过第一连接线81电连接,所述第一连接线81从所述电路板9的一侧伸入所述旋转轴7的中空空间,并从所述第一通孔71伸出所述旋转轴7,以与所述定向天线1电连接,从而实现电路板9为定向天线1供电。
所述全向天线2包括第一全向天线21和第二全向天线22。,所述第一全向天线21和所述第二全向天线22设于所述定向天线1两侧。所述旋转轴7上还设有沿着所述旋转轴7径向设置的第二通孔72,所述第一全向天线21与所述电路板9之间通过第二连接线81电连接,所述第二连接线81从所述电路板9的一侧伸入所述旋转轴7的中空空间,并从所述第二通孔72伸出所述旋转轴7,以与所述第一全向天线21电连接。
所述旋转轴7上还设有沿着所述旋转轴7径向设置的第三通孔83,所述第二全向天线22与所述电路板9之间通过第三连接线73电连接,所述第三连接线73从所述电路板9的一侧伸入所述旋转轴7的中空空间,并从所述第三通孔83伸出所述旋转轴7,以与所述第二全向天线22电连接。
在所述旋转轴7的轴向方向上,所述第一通孔81、所述第二通孔82和所述第三通孔83彼此间隔分布。在所述旋转轴7的周向方向上,所述第一通孔81和所述第二通孔82之间相隔90度,所述第一通孔81和所述第三通孔83 之间相隔90度,所述第一通孔81位于所述第二通孔82和所述第三通孔83之间。
在定向天线1和全向天线2旋转的过程中,与它们相连接的连接线也会随之旋转。为了避免连接线在旋转过程中缠绕到天线结构或其他设备,本申请通过将旋转轴7设计为中空筒状结构,使得连接线与天线装置隔开,梳理连接线的走向。旋转轴7上的通孔设计用于连接线的穿出,且与对应的天线连接,可避免连接线发生缠绕。
请参阅图5,本申请实施例提供的一种网关设备00,包括上述任意一种实施方式所述的定向天线旋转机构01,还包括旋转控制组件(图中未示出)。所述旋转控制组件位于电路板9上,并与电路板9电连接,同时所述旋转控制组件与所述驱动件5电连接,其连接线可穿过旋转轴7的中空通道设置。所述旋转控制组件通过控制所述驱动件5来带动所述旋转盘3和所述定向天线1的转动。本实施方式中,网关设备00为无线路由器。
当外界给予一个触发条件后,该触发条件给予旋转控制组件一个转动指令,旋转控制组件通过驱动件5的驱动,带动定向天线1绕旋转轴7转动,改变天线增益辐射方向,从而满足用户对无线网络的使用需求。
上述触发条件可以通过一个独立的控制器完成,即用户通过操作该控制器上的控制路由器旋转的按键,形成一个触发条件,旋转控制组件接收到该控制器发送的“路由器旋转”指令,控制驱动件5带动旋转轴7、旋转盘3、定向天线1和全向天线2一起旋转。当用户认为定向天线1已旋转到无线网络最佳的方向或终端提示此时无线网络最佳时,用户可以通过操作该控制器上控制路由器停止旋转的按键,使定向天线1维持该方向不变。当用户移动到其他位置时,也可以通过上述方式控制定向天线1旋转到用户使用无线网络最佳的方向。本申请提供的网关设备00解决了人工调节定向天线1不便利的问题,满足用户在一定范围内随处移动时的无线网络需求。
上述触发条件还可以通过应用程序完成。即用户在终端上安装该应用程序,用户通过该应用程序触发旋转控制组件控制定向天线1旋转,当用户认为定向天线1已旋转到无线网络最佳的方向或终端提示此时无线网络最佳,用户可以通过操作该应用程序控制路由器停止旋转,使定向天线1维持该方向不变。
一种实施方式中,网关设备00还包括信号探测组件(图中未示出),用于检测所述网关设备00四周的信号使用位置。所述探测组件与所述旋转控制组件电连接,所述信号探测组件位于电路板9上,并与电路板9电连接,同时所述旋转控制组件与所述驱动件5电连接,其连接线可穿过旋转轴7的中空通道设置。当所述信号探测组件检测出所述信号使用位置后,所述旋转控制组件将控制所述定向天线1转动到所述信号使用位置。具体而言,可通过触发条件,触发信号探测组件开始对该路由器四周的无线网络信号使用位置进行检测,当检测到无线网络信号使用位置时,自动触发旋转控制组件控制定向天线1旋转到该位置。当旋转完成后,用户可停止触发信号探测组件的检测,便于节约能量。所述触发条件可以通过独立的控制器、应用程序或者其他方式完成。
本申请提供的一种网关设备00,还包括顶壳02、底壳03及连接并支撑所述顶壳与所述底壳之间的外壳04。所述顶壳02位于所述固定支架6的一侧,与所述固定支架6固定连接,所述固定支架6将所述顶壳02与所述旋转盘3隔开。所述底壳03位于所述电路板9的一侧,与所述电路板9固定连接,所述电路板9将所述底壳03与所述旋转盘3隔开。所述外壳04用于将所述定向天线旋转机构01、所述旋转控制组件、所述信号探测组件封装于所述顶壳02与所述底壳03之间。一种实施方式中,该网关设备是无线路由器,包括定向天线旋转机构01,可自动调整最佳无线网络信号的方向,使用户能更为方便快捷地使用到最佳的无线网络。
以上对本申请实施例所提供的定向天线旋转机构及网关设备进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (19)

  1. 一种定向天线旋转机构,其特征在于,包括定向天线、全向天线、旋转盘、传动组件及驱动件,所述旋转盘包括相对设置的顶面和底面,所述定向天线和所述全向天线设置在所述底面,所述传动组件设于所述顶面,所述传动组件连接在所述旋转盘和所述驱动件之间,所述驱动件通过所述传动组件带动所述旋转盘转动,以调整所述定向天线的辐射方向。
  2. 如权利要求1所述的定向天线旋转机构,其特征在于,所述全向天线包括第一全向天线和第二全向天线,所述第一全向天线和所述第二全向天线设于所述定向天线两侧。
  3. 如权利要求2所述的定向天线旋转机构,其特征在于,所述旋转盘呈圆盘状,所述定向天线、所述第一全向天线及所述第二全向天线位于所述旋转盘的边缘位置,所述第一全向天线和所述第二全向天线对称分布在所述旋转盘旋转中心的两侧,所述第一全向天线和所述第二全向天线亦对称分布在所述定向天线的两侧。
  4. 如权利要求1所述的定向天线旋转机构,其特征在于,所述定向天线包括辐射体和反射板,所述反射板为弧形板或折板结构,所述辐射体设于所述反射板的反射中心处,以增加所述辐射体的信号辐射方向性。
  5. 如权利要求4所述的定向天线旋转机构,其特征在于,所述旋转盘的所述底面上设有第一卡扣,所述第一卡扣上设有卡槽,所述卡槽用于收容所述辐射体,使所述辐射体可拆卸的连接在所述旋转盘上。
  6. 如权利要求1所述的定向天线旋转机构,其特征在于,所述传动组件包括相啮合的第一齿轮和第二齿轮,所述第一齿轮固定至所述旋转盘,所述第二齿轮连接至所述驱动件。
  7. 如权利要求1所述的定向天线旋转机构,其特征在于,还包括固定支架,所述固定支架与所述旋转盘的所述顶面相对,所述旋转盘在所述固定支架上的正投影位于所述固定支架内部,所述驱动件嵌入所述固定支架内。
  8. 如权利要求7所述的定向天线旋转机构,其特征在于,还包括旋转轴,所述旋转盘与所述旋转轴固定连接且以所述旋转轴为中心旋转,所述固定支架转动连接至所述旋转轴。
  9. 如权利要求8所述的定向天线旋转机构,其特征在于,所述旋转盘呈圆盘状,所述旋转轴贯穿于所述旋转盘的中心位置,所述固定支架的中心位置包括一个轴孔,所述旋转轴穿过所述轴孔与所述固定支架转动连接。
  10. 如权利要求8所述的定向天线旋转机构,其特征在于,所述传动组件包括相啮合的第一齿轮和第二齿轮,所述第一齿轮以所述旋转轴为中心且固定至所述旋转轴,所述第二齿轮连接至所述驱动件。
  11. 如权利要求8所述的定向天线旋转机构,其特征在于,还包括电路板,所述电路板位于所述旋转盘的一侧,且面对所述旋转盘的所述底面,所述旋转轴呈中空结构,所述驱动件与所述电路板之间通过电连接线电连接,所述电连接线从所述旋转轴的中空空间穿过。
  12. 如权利要求11所述的定向天线旋转机构,其特征在于,所述旋转轴上设有第一通孔,所述第一通孔沿着所述旋转轴径向设置,所述定向天线与所述电路板之间通过第一连接线电连接,所述第一连接线从所述电路板的一侧伸入所述旋转轴的中空空间,并从所述第一通孔伸出所述旋转轴,以与所述定向天线电连接。
  13. 如权利要求12所述的定向天线旋转机构,其特征在于,所述全向天线包括第一全向天线和第二全向天线,所述第一全向天线和所述第二全向天线设于所述定向天线两侧。
  14. 如权利要求13所述的定向天线旋转机构,其特征在于,所述旋转轴上设有沿着所述旋转轴径向设置的第二通孔,所述第一全向天线与所述电路板之间通过第二连接线电连接,所述第二连接线从所述电路板的一侧伸入所述旋转轴的中空空间,并从所述第二通孔伸出所述旋转轴,以与所述第一全向天线电连接。。
  15. 如权利要求14所述的定向天线旋转机构,其特征在于,所述旋转轴上设有沿着所述旋转轴径向设置的第三通孔,所述第二全向天线与所述电路板之间通过第三连接线电连接,所述第三连接线从所述电路板的一侧伸入所述旋转轴的中空空间,并从所述第三通孔伸出所述旋转轴,以与所述第二全向天线电连接。
  16. 如权利要求15所述的定向天线旋转机构,其特征在于,在所述旋转轴的轴向方向上,所述第一通孔、所述第二通孔和所述第三通孔彼此间隔分布。
  17. 如权利要求16所述的定向天线旋转机构,其特征在于,在所述旋转轴的周向方向上,所述第一通孔和所述第二通孔之间相隔90度,所述第一通孔和所述第三通孔之间相隔90度,所述第一通孔位于所述第二通孔和所述第三通孔之间。
  18. 一种网关设备,其特征在于,包括权利要求1-17任意一项所述的定向天线旋转机构和旋转控制组件,所述旋转控制组件通过控制所述驱动件来带动所述旋转盘和所述定向天线的转动。
  19. 如权利要求18所述的网关设备,其特征在于,还包括信号探测组件,用于检测所述网关设备四周的信号使用位置;所述探测组件与所述旋转控制组件电连接,当所述信号探测组件检测出所述信号使用位置后,所述旋转控制组件将控制所述定向天线转动到所述信号使用位置。
PCT/CN2016/104788 2016-11-04 2016-11-04 定向天线旋转机构及网关设备 WO2018082072A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680082046.XA CN108701897A (zh) 2016-11-04 2016-11-04 定向天线旋转机构及网关设备
PCT/CN2016/104788 WO2018082072A1 (zh) 2016-11-04 2016-11-04 定向天线旋转机构及网关设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/104788 WO2018082072A1 (zh) 2016-11-04 2016-11-04 定向天线旋转机构及网关设备

Publications (1)

Publication Number Publication Date
WO2018082072A1 true WO2018082072A1 (zh) 2018-05-11

Family

ID=62075458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104788 WO2018082072A1 (zh) 2016-11-04 2016-11-04 定向天线旋转机构及网关设备

Country Status (2)

Country Link
CN (1) CN108701897A (zh)
WO (1) WO2018082072A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108993247A (zh) * 2018-09-18 2018-12-14 东莞市琅菱机械有限公司 一种单驱动机构带动的内外反转搅拌装置
CN110838622A (zh) * 2019-01-30 2020-02-25 新华三技术有限公司 天线系统及网络设备
CN113659313A (zh) * 2021-08-27 2021-11-16 上海移远通信技术股份有限公司 一种天线机械扫描装置和用户终端设备
CN113825261A (zh) * 2021-09-06 2021-12-21 Oppo广东移动通信有限公司 网关设备
CN115473844A (zh) * 2022-09-14 2022-12-13 河南捷茂电子科技有限公司 一种通信网络连接用路由器组件
CN116742319A (zh) * 2023-08-03 2023-09-12 荣耀终端有限公司 电子设备
CN117907978A (zh) * 2024-03-07 2024-04-19 沈阳才誉科技有限公司 一种可调式激光雷达天线

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111130656A (zh) * 2019-12-25 2020-05-08 深圳市宏电技术股份有限公司 终端天线调整方法、网关天线调整方法及相关设备
CN111856513A (zh) * 2020-07-31 2020-10-30 中国南方电网有限责任公司 卫星观测值获取方法、装置、计算机设备和存储介质
CN112333561B (zh) * 2020-10-28 2023-03-21 Oppo广东移动通信有限公司 网络设备
CN112713401B (zh) * 2020-12-22 2022-11-29 西安新里技术有限公司 5g新体制天线电路板
CN116706511A (zh) * 2022-02-28 2023-09-05 荣耀终端有限公司 一种无线路由器及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2571003Y (zh) * 2002-07-22 2003-09-03 王郑发 双天线控制装置
US20130050021A1 (en) * 2011-08-25 2013-02-28 Fimax Technology Limited Wireless cable
CN203289427U (zh) * 2013-04-25 2013-11-13 浙江工业大学 具有自追踪自适应功能的无线通信装置
CN105593065A (zh) * 2013-05-17 2016-05-18 Fybr有限责任公司 分布式遥感系统网关
CN205488551U (zh) * 2016-04-12 2016-08-17 刘萍 一种可调转向的短波广播天线

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201199546Y (zh) * 2008-05-09 2009-02-25 上海良友(集团)有限公司 一种旋转式组合天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2571003Y (zh) * 2002-07-22 2003-09-03 王郑发 双天线控制装置
US20130050021A1 (en) * 2011-08-25 2013-02-28 Fimax Technology Limited Wireless cable
CN203289427U (zh) * 2013-04-25 2013-11-13 浙江工业大学 具有自追踪自适应功能的无线通信装置
CN105593065A (zh) * 2013-05-17 2016-05-18 Fybr有限责任公司 分布式遥感系统网关
CN205488551U (zh) * 2016-04-12 2016-08-17 刘萍 一种可调转向的短波广播天线

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108993247A (zh) * 2018-09-18 2018-12-14 东莞市琅菱机械有限公司 一种单驱动机构带动的内外反转搅拌装置
CN108993247B (zh) * 2018-09-18 2024-04-26 东莞市琅菱机械有限公司 一种单驱动机构带动的内外反转搅拌装置
US11936118B2 (en) 2019-01-30 2024-03-19 New H3C Technologies Co., Ltd. Antenna system and network device
CN110838622A (zh) * 2019-01-30 2020-02-25 新华三技术有限公司 天线系统及网络设备
CN113659313A (zh) * 2021-08-27 2021-11-16 上海移远通信技术股份有限公司 一种天线机械扫描装置和用户终端设备
CN113825261A (zh) * 2021-09-06 2021-12-21 Oppo广东移动通信有限公司 网关设备
WO2023030528A1 (zh) * 2021-09-06 2023-03-09 Oppo广东移动通信有限公司 网关设备及其壳体
CN115473844B (zh) * 2022-09-14 2023-10-13 河南捷茂电子科技有限公司 一种通信网络连接用路由器组件
CN115473844A (zh) * 2022-09-14 2022-12-13 河南捷茂电子科技有限公司 一种通信网络连接用路由器组件
CN116742319A (zh) * 2023-08-03 2023-09-12 荣耀终端有限公司 电子设备
CN116742319B (zh) * 2023-08-03 2023-11-21 荣耀终端有限公司 电子设备
CN117907978A (zh) * 2024-03-07 2024-04-19 沈阳才誉科技有限公司 一种可调式激光雷达天线
CN117907978B (zh) * 2024-03-07 2024-05-14 沈阳才誉科技有限公司 一种可调式激光雷达天线

Also Published As

Publication number Publication date
CN108701897A (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
WO2018082072A1 (zh) 定向天线旋转机构及网关设备
US20200281054A1 (en) Electrodeless dimming and toning fill lamp
CN104683567B (zh) 移动终端和移动终端的控制方法
WO2021169688A1 (zh) 客户前置设备
US7856206B2 (en) System and method for manually adjustable directional antenna
CN104466347A (zh) 移动终端
CN105371223A (zh) 一种匀光智能led灯
CN105307306A (zh) 一种智能led灯
JPH10145126A (ja) 設備機器用アンテナ
KR20030035381A (ko) 안테나 각도조절이 가능한 휴대폰
CN105258067B (zh) 一种设有太阳能电池板的智能led灯
WO2019192176A1 (zh) 一种无线电力传输及无线通讯的舞台灯光万向切割系统
CN206522657U (zh) 一种提高室内WiFi网速的台灯
WO2019101105A1 (zh) 天线组件、终端设备及改善天线辐射性能的方法
CN213333196U (zh) 云台及移动平台
JP5260419B2 (ja) アンテナ
JP2003188628A (ja) アンテナ装置
CN103414021A (zh) 不需要旋转关节的360°扫描天线
CN105387353A (zh) 一种设有挂耳的智能led灯
WO2016072159A1 (ja) アクティブアンテナシステム
WO2013071708A1 (zh) 天线装置及终端
JPWO2009017106A1 (ja) 反射鏡アンテナ及びその給電方法並びに通信システム
WO2006029307A2 (en) System and method for manually adjustable directional antenna
KR101672139B1 (ko) 회전형 안테나 및 이를 이용한 안테나의 빔 방향 조정방법
CN210958394U (zh) 一种无线路由器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920587

Country of ref document: EP

Kind code of ref document: A1