WO2018081578A1 - Use of antibodies to timp-2 for the improvement of renal function - Google Patents

Use of antibodies to timp-2 for the improvement of renal function Download PDF

Info

Publication number
WO2018081578A1
WO2018081578A1 PCT/US2017/058787 US2017058787W WO2018081578A1 WO 2018081578 A1 WO2018081578 A1 WO 2018081578A1 US 2017058787 W US2017058787 W US 2017058787W WO 2018081578 A1 WO2018081578 A1 WO 2018081578A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
subject
antibodies
timp
administration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2017/058787
Other languages
English (en)
French (fr)
Inventor
Paul Mcpherson
John A. Kellum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Pittsburgh
Astute Medical Inc
Original Assignee
University of Pittsburgh
Astute Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Pittsburgh, Astute Medical Inc filed Critical University of Pittsburgh
Priority to CN201780076765.5A priority Critical patent/CN110352073A/zh
Priority to ES17865610T priority patent/ES2908239T3/es
Priority to US16/345,375 priority patent/US20190263926A1/en
Priority to JP2019522925A priority patent/JP7100030B2/ja
Priority to AU2017348365A priority patent/AU2017348365A1/en
Priority to EP17865610.4A priority patent/EP3532101B1/en
Publication of WO2018081578A1 publication Critical patent/WO2018081578A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3015Breast
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/38Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against protease inhibitors of peptide structure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/74Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving hormones or other non-cytokine intercellular protein regulatory factors such as growth factors, including receptors to hormones and growth factors
    • G01N33/746Erythropoetin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/54F(ab')2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Definitions

  • Metalloproteinase inhibitor 2 (human precursor Swiss-Prot P16035, also known as "Tissue inhibitor of metalloproteinases 2" and "TIMP2”) is a secreted protein which complexes with metalloproteinases and irreversibly inactivates them by binding to their catalytic zinc cofactor.
  • TIMP2 is known to act on MMP-1, MMP-2, MMP-3, MMP- 7, MMP-8, MMP-9, MMP-10, MMP- 13, MMP-14, MMP-15, MMP-16 and MMP- 19.
  • TIMP2 reportedly suppresses the proliferation of endothelial cells.
  • the encoded protein has been suggested to have a role in the maintenance of tissue homeostasis by suppressing the proliferation of quiescent tissues in response to angiogenic factors, and by inhibiting protease activity in tissues undergoing remodeling.
  • WO2010/048346 and WO2011/075744 each of which is hereby incorporated by reference in its entirety including all tables, figures and claims, describe the use of TIMP2 for evaluating the renal status of a subject both individually and in multimarker panels.
  • ⁇ 2 levels measured by immunoassay are shown to correlate to risk stratification, diagnosis, staging, prognosis, classifying and monitoring of renal status.
  • AKI Acute kidney injury
  • AKI is staged for severity according to the following criteria:
  • RIFLE criteria move beyond ARF.
  • “Failure” serum creatinine increased 3.0 fold from baseline OR creatinine >355 ⁇ / ⁇ (with a rise of >44) or urine output below 0.3 ml/kg/hr for 24 h or anuria for at least 12 hours;
  • ERD end stage renal disease— the need for dialysis for more than 3 months.
  • TIMP-2 Metalloproteinase inhibitor 2
  • the present invention provides methods for improving kidney function in a subject, most preferably a human subject, in need thereof comprising:
  • TRIP-2 Metalloproteinase inhibitor 2
  • the administration of the anti-TIMP-2 antibody is performed optionally in association with one or more further therapeutic agents or therapeutic procedures indicated for the improvement of kidney function, in an amount sufficient to improve kidney function.
  • additional treatment modalities are described in detail hereinafter.
  • a subject in need thereof is a subject having chronic kidney disease (CKD) or that exhibits one or more symptoms of CKD.
  • CKD chronic kidney disease
  • AKI acute kidney injury
  • a subject in need thereof is a subject identified as being at increased risk of AKI.
  • a subject may be identified as being at increased risk based on an existing diagnosis of one or more of congestive heart failure, preeclampsia, eclampsia, diabetes mellitus, hypertension, coronary artery disease, proteinuria, renal insufficiency, glomerular filtration below the normal range, cirrhosis, serum creatinine above the normal range, sepsis, injury to renal function, or reduced renal function.
  • the subject is characterized as having diabetic nephropathy (DN) or exhibiting one or more symptoms of DN.
  • DN diabetic nephropathy
  • such a subject may be identified as being at increased risk based on the subject undergoing or having undergone major vascular surgery, coronary artery bypass, or other cardiac surgery, and/or has received one or more of NS AIDs, cyclosporines, tacrolimus, aminoglycosides, foscarnet, ethylene glycol, hemoglobin, myoglobin, ifosfamide, heavy metals, methotrexate, radiopaque contrast agents, or streptozotocin.
  • NS AIDs cyclosporines
  • tacrolimus aminoglycosides
  • foscarnet ethylene glycol
  • hemoglobin hemoglobin
  • myoglobin myoglobin
  • ifosfamide heavy metals
  • methotrexate methotrexate
  • radiopaque contrast agents or streptozotocin
  • such a subject may be identified as being at increased risk based on a biomarker result.
  • the biomarker result comprises one or more of a measured urinary TIMP-2 concentration and a measured urinary Insulin-like growth factor-binding protein 7 (IGFBP7) concentration, and most preferably a combined result calculated from a measured urinary TIMP-2 concentration and a measured urinary IGFBP7 concentration, such as a [TIMP-2]x[IGFBP7] result.
  • IGFBP7 Insulin-like growth factor-binding protein 7
  • the subject is characterized as at or below AKIN stage 1 ; the subject is characterized as at or below AKIN stage 2, or the subject is characterized as at or below AKIN stage 3.
  • administration of the anti-TIMP-2 antibody results in an improvement in estimated glomerular filtration rate (eGFR) of the subject.
  • eGFR estimated glomerular filtration rate
  • administration of the anti-TIMP-2 antibody reduces the level of serum creatinine in the subject.
  • administration of the anti-TIMP-2 antibody is parenteral, such as intravenous, intraarterial, or subcutaneous.
  • administration of the anti-TIMP-2 antibody is an IgG, an Fab fragment, an F(ab')2, or an scFv. This list is not meant to be limiting.
  • the anti-TIMP-2 antibody is humanized or fully human.
  • the one or more further therapeutic agents or therapeutic procedures indicated for the improvement of kidney function comprise one or more treatments selected from the group consisting of renal replacement therapy, management of fluid overload, administration of a caspase inhibitor, administration of minocycline, administration of a Poly ADP-ribose polymerase inhibitor, administration of an iron chelator, administration of a treatment for sepsis in a subject in need thereof, administration of insulin, administration of erythropoietin, and administration of a vasodilator.
  • FIG. 1 shows kidney tissue injury as measured by histology in a mouse cecal ligation and puncture sepsis model following treatment with anti-TIMP2 as compared to untreated sepsis animals.
  • FIG. 2 shows kidney function as measured by serum creatinine in a mouse cecal ligation and puncture sepsis model following treatment with anti-TIMP2 as compared to untreated sepsis animals.
  • Metalloproteinase inhibitor 2 and "TIMP-2” refer to one or more polypeptides present in a biological sample that are derived from the Metalloproteinase inhibitor 2 precursor (human precursor: Swiss-Prot P16035 (SEQ ID NO: 10)).
  • subject refers to a human or non-human organism.
  • methods and compositions described herein are applicable to both human and veterinary disease.
  • a subject is preferably a living organism, the invention described herein may be used in post-mortem analysis as well.
  • Preferred subjects are humans, and most preferably "patients,” which as used herein refers to living humans that are receiving medical care for a disease or condition. This includes persons with no defined illness who are being investigated for signs of pathology.
  • diagnosis refers to methods by which the skilled artisan can estimate and/or determine the probability ("a likelihood") of whether or not a patient is suffering from a given disease or condition.
  • diagnosis includes using the results of an assay, most preferably an immunoassay, for a kidney injury marker of the present invention, optionally together with other clinical characteristics, to arrive at a diagnosis (that is, the occurrence or nonoccurrence) of an acute renal injury or ARF for the subject from which a sample was obtained and assayed. That such a diagnosis is "determined” is not meant to imply that the diagnosis is 100% accurate. Many biomarkers are indicative of multiple conditions.
  • a measured biomarker level on one side of a predetermined diagnostic threshold indicates a greater likelihood of the occurrence of disease in the subject relative to a measured level on the other side of the predetermined diagnostic threshold.
  • a prognostic risk signals a probability ("a likelihood") that a given course or outcome will occur.
  • a level or a change in level of a prognostic indicator which in turn is associated with an increased probability of morbidity (e.g., worsening renal function, future ARF, or death) is referred to as being "indicative of an increased likelihood" of an adverse outcome in a patient.
  • the term "antibody” as used herein refers to a peptide or polypeptide derived from, modeled after or substantially encoded by an immunoglobulin gene or
  • immunoglobulin genes capable of specifically binding an antigen or epitope. See, e.g. Fundamental Immunology, 3rd Edition, W.E. Paul, ed., Raven Press, N.Y. (1993); Wilson (1994; J. Immunol. Methods 175:267-273; Yarmush (1992) J. Biochem. Biophys. Methods 25:85-97.
  • antibody includes antigen-binding portions, i.e., "antigen binding sites,” (e.g., fragments, subsequences, complementarity determining regions (CDRs)) that retain capacity to bind antigen, including (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CHI domains; (ii) a F(ab')2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CHI domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) a dAb fragment (Ward et al., (1989) Nature 341:544-546), which consists of a VH domain; and (vi) an isolated complementarity determining region (CDR).
  • Antigen binding sites e.g., fragments, subs
  • IgG antibodies are IgG antibodies.
  • IgG as used herein is meant a polypeptide belonging to the class of antibodies that are substantially encoded by a recognized immunoglobulin gamma gene. In humans this class comprises IgGl, IgG2, IgG3, and IgG4. In mice this class comprises IgGl, IgG2a, IgG2b, IgG3.
  • the known Ig domains in the IgG class of antibodies are VH, Cyl, C 2, Cy3, VL, and CL.
  • IgG is the preferred class for therapeutic antibodies for several practical reasons. IgG antibodies are stable, easily purified, and able to be stored under conditions that are practical for pharmaceutical supply chains.
  • Fc receptor or FcRn
  • Antibodies are immunological proteins that bind a specific antigen. In most mammals, including humans and mice, antibodies are constructed from paired heavy and light polypeptide chains. The light and heavy chain variable regions show significant sequence diversity between antibodies, and are responsible for binding the target antigen. Each chain is made up of individual immunoglobulin (Ig) domains, and thus the generic term immunoglobulin is used for such proteins.
  • the present invention includes anti-TIMP-2 antigen-binding fragments and methods of use thereof. As used herein, unless otherwise indicated, "antibody fragment” or "antigen-binding fragment” refers to antigen-binding fragments of antibodies, i.e.
  • antibody fragments that retain the ability to bind specifically to the antigen bound by the full-length antibody, e.g. fragments that retain one or more CDR regions.
  • antigen-binding fragments include, but are not limited to, Fab, Fab', F(ab')2, and Fv fragments; diabodies; linear antibodies; single-chain antibody molecules, e.g., sc-Fv; nanobodies; and multispecific antibodies formed from antibody fragments (e.g., bispecific antibodies, etc.).
  • the present invention includes anti-TIMP-2 Fab fragments and methods of use thereof.
  • a "Fab fragment” is comprised of one light chain and the CHI and variable regions of one heavy chain. The heavy chain of a Fab molecule cannot form a disulfide bond with another heavy chain molecule.
  • An "Fab fragment” can be the product of papain cleavage of an antibody.
  • the present invention includes anti-TIMP-2 antibodies and antigen-binding fragments thereof which comprise an Fc region and methods of use thereof.
  • An "Fc" region contains two heavy chain fragments comprising the CHI and CH2 domains of an antibody. The two heavy chain fragments are held together by two or more disulfide bonds and by hydrophobic interactions of the CH3 domains.
  • the present invention includes anti-TIMP-2 Fab' fragments and methods of use thereof.
  • a "Fab' fragment” contains one light chain and a portion or fragment of one heavy chain that contains the VH domain and the C HI domain and also the region between the C H I and C H 2 domains, such that an interchain disulfide bond can be formed between the two heavy chains of two Fab' fragments to form a F(ab') 2 molecule.
  • the present invention includes anti-TIMP-2 F(ab')2 fragments and methods of use thereof.
  • a "F(ab')2 fragment” contains two light chains and two heavy chains containing a portion of the constant region between the CHI and CH2 domains, such that an interchain disulfide bond is formed between the two heavy chains.
  • a F(ab') 2 fragment thus is composed of two Fab' fragments that are held together by a disulfide bond between the two heavy chains.
  • a "F(ab') 2 fragment” can be the product of pepsin cleavage of an antibody.
  • the present invention includes anti-TIMP-2 Fv fragments and methods of use thereof.
  • the "Fv region” comprises the variable regions from both the heavy and light chains, but lacks the constant regions.
  • the present invention includes anti-TIMP-2 scFv fragments and methods of use thereof.
  • the term "single-chain Fv” or “scFv” antibody refers to antibody fragments comprising the VH and VL domains of an antibody, wherein these domains are present in a single polypeptide chain.
  • the Fv polypeptide further comprises a polypeptide linker between the VH and VL domains which enables the scFv to form the desired structure for antigen-binding.
  • the present invention includes anti-TIMP-2 domain antibodies and methods of use thereof.
  • a "domain antibody” is an immunologically functional immunoglobulin fragment containing only the variable region of a heavy chain or the variable region of a light chain.
  • two or more VH regions are covalently joined with a peptide linker to create a bivalent domain antibody.
  • the two VH regions of a bivalent domain antibody may target the same or different antigens.
  • the present invention includes anti-TIMP-2 bivalent antibodies and methods of use thereof.
  • a "bivalent antibody” comprises two antigen-binding sites. In some instances, the two binding sites have the same antigen specificities. However, bivalent antibodies may be bispecific (see below).
  • the present invention includes anti-TIMP-2 camelized single domain antibodies and methods of use thereof.
  • antibodies herein also include camelized single domain antibodies. See, e.g., Muyldermans et al. (2001) Trends Biochem. Sci. 26:230; Reichmann et al. (1999) /. Immunol. Methods 231 :25; WO 94/04678; WO 94/25591 ; U.S. Pat. No. 6,005,079).
  • the present invention provides single domain antibodies comprising two VH domains with modifications such that single domain antibodies are formed.
  • the present invention includes anti-TIMP-2 diabodies and methods of use thereof.
  • diabodies refers to small antibody fragments with two antigen-binding sites, which fragments comprise a heavy chain variable domain (VH) connected to a light chain variable domain (VL) in the same polypeptide chain (VH-VL or VL-VH).
  • VH heavy chain variable domain
  • VL light chain variable domain
  • VH-VL or VL-VH VH-VL or VL-VH
  • linker that is too short to allow pairing between the two domains on the same chain, the domains are forced to pair with the complementary domains of another chain and create two antigen -binding sites.
  • Diabodies are described more fully in, e.g. , EP 404,097; WO 93/11161; and Holliger et al. (1993) Proc. Natl. Acad. Sci. USA 90: 6444-6448.
  • the term "specifically binds" is not intended to indicate that an antibody binds exclusively to its intended target since, as noted above, an antibody binds to any polypeptide displaying the epitope(s) to which the antibody binds. Rather, an antibody "specifically binds” if its affinity for its intended target is about 5-fold greater when compared to its affinity for a non-target molecule which does not display the appropriate epitope(s).
  • the affinity of the antibody will be at least about 5 fold, preferably 10 fold, more preferably 25-fold, even more preferably 50-fold, and most preferably 100- fold or more, greater for a target molecule than its affinity for a non-target molecule.
  • Preferred antibodies bind with affinities of at least about 10 7 M “1 , and preferably between about 10 8 M “1 to about 10 9 M “1 , about 10 9 M “1 to about 10 10 M “1 , or about 10 10 M “1 to about 10 12 M “1 .
  • r/c is plotted on the Y-axis versus r on the X-axis, thus producing a Scatchard plot.
  • Antibody affinity measurement by Scatchard analysis is well known in the art. See, e.g., van Erp et al, J. Immunoassay 12: 425-43, 1991 ; Nelson and Griswold, Comput. Methods Programs Biomed. 27: 65-8, 1988.
  • Antibodies of the invention may be further characterized by epitope mapping, so that antibodies and epitopes may be selected that have the greatest clinical utility in the immunoassays described herein.
  • epitope refers to an antigenic determinant capable of specific binding to an antibody. Epitopes usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and usually have specific three dimensional structural characteristics, as well as specific charge
  • Conformational and nonconformational epitopes are distinguished in that the binding to the former but not the latter is lost in the presence of denaturing solvents.
  • an epitope is targeted which is present on the target molecule, but is partially or totally absent on non-target molecules.
  • the antibody scaffold can be a mixture of sequences from different species.
  • the antibody may be a chimeric antibody and/or a humanized antibody.
  • both “chimeric antibodies” and “humanized antibodies” refer to antibodies that combine regions from more than one species.
  • “chimeric antibodies” traditionally comprise variable region(s) from a mouse (or rat, in some cases) and the constant region(s) from a human.
  • Humanized antibodies generally refer to non-human antibodies that have had the variable-domain framework regions swapped for sequences found in human antibodies.
  • the entire antibody, except the CDRs is encoded by a polynucleotide of human origin or is identical to such an antibody except within its CDRs.
  • the CDRs some or all of which are encoded by nucleic acids originating in a non- human organism, are grafted into the beta-sheet framework of a human antibody variable region to create an antibody, the specificity of which is determined by the engrafted CDRs.
  • the humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region, typically that of a human immunoglobulin, and thus will typically comprise a human Fc region. Humanized antibodies can also be generated using mice with a genetically engineered immune system.
  • Humanization methods include but are not limited to methods described in Jones et al., 1986, Nature 321:522-525; Riechmann et al., 1988; Nature 332:323-329; Verhoeyen et al., 1988, Science, 239: 1534-1536; Queen et al., 1989, Proc Natl Acad Sci, USA
  • the parent antibody has been affinity matured, as is known in the art.
  • Structure-based methods may be employed for humanization and affinity maturation, for example as described in U.S. Ser. No. 11/004,590.
  • Selection based methods may be employed to humanize and/or affinity mature antibody variable regions, including but not limited to methods described in Wu et al., 1999, J. Mol. Biol. 294: 151-162; Baca et al., 1997, J. Biol. Chem. 272(16): 10678-10684; Rosok et al., 1996, J. Biol. Chem. 271(37): 22611- 22618; Rader et al., 1998, Proc. Natl. Acad. Sci.
  • the antibody is a fully human antibody.
  • Fully human antibody or “complete human antibody” refers to a human antibody having the gene sequence of an antibody derived from a human chromosome. Fully human antibodies may be obtained, for example, using transgenic mice (Bruggemann et al., 1997, Curr Opin Biotechnol 8:455-458) or human antibody libraries coupled with selection methods (Griffiths et al., 1998, Curr Opin Biotechnol 9: 102-108).
  • Monoclonal antibody preparations can be produced using a wide variety of techniques known in the art including the use of hybridoma, recombinant, and phage display technologies, or a combination thereof.
  • monoclonal antibodies can be produced using hybridoma techniques including those known in the art and taught, for example, in Harlow et al., ANTIBODIES: A LABORATORY MANUAL, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988); Hammerling, et al., in: MONOCLONAL ANTIBODIES AND T-CELL HYBRIDOMAS, pp. 563-681 (Elsevier, N.Y., 1981) (both of which are incorporated by reference in their entireties).
  • the term “monoclonal antibody” as used herein is not limited to antibodies produced through hybridoma technology.
  • the term “monoclonal antibody” refers to an antibody that is derived from a single clone, including any eukaryotic, prokaryotic, or phage clone, and not the method by which it is produced.
  • Monoclonal antibodies derived from animals other than rats and mice offer unique advantages. Many protein targets relevant to signal transduction and disease are highly conserved between mice, rats and humans, and can therefore be recognized as self- antigens by a mouse or rat host, making them less immunogenic. This problem may be avoided when using rabbit as a host animal. See, e.g., Rossi et al., Am. J. Clin. Pathol., 124, 295-302, 2005.
  • mice can be immunized with an antigen of interest or a cell expressing such an antigen.
  • an immune response e.g., antibodies specific for the antigen are detected in the mouse serum
  • the mouse spleen is harvested and splenocytes isolated.
  • the splenocytes are then fused by well known techniques to any suitable myeloma cells.
  • Hybridomas are selected and cloned by limiting dilution.
  • the hybridoma clones are then assayed by methods known in the art for cells that secrete antibodies capable of binding the antigen.
  • Ascites fluid which generally contains high levels of antibodies, can be generated by inoculating mice intraperitoneally with positive hybridoma clones.
  • Adjuvants that can be used in the methods of antibody generation include, but are not limited to, protein adjuvants; bacterial adjuvants, e.g., whole bacteria (BCG, Corynebacterium parvum, Salmonella minnesota) and bacterial components including cell wall skeleton, trehalose dimycolate, monophosphoryl lipid A, methanol extractable residue (MER) of tubercle bacillus, complete or incomplete Freund's adjuvant; viral adjuvants; chemical adjuvants, e.g., aluminum hydroxide, iodoacetate and cholesteryl hemisuccinateor; naked DNA adjuvants.
  • protein adjuvants e.g., whole bacteria (BCG, Corynebacterium parvum, Salmonella minnesota) and bacterial components including cell wall skeleton, trehalose dimycolate, monophosphoryl lipid A, methanol extractable residue (MER) of tubercle bacillus, complete or incomplete
  • adjuvants that can be used in the methods of the invention include, Cholera toxin, paropox proteins, MF-59 (Chiron Corporation; See also Bieg et al. (1999) "GAD65 And Insulin B Chain Peptide (9-23) Are Not Primary Autoantigens In The Type 1 Diabetes Syndrome Of The BB Rat," Autoimmunity, 31(1): 15-24, which is incorporated herein by reference), MPL® (Corixa Corporation; See also Lodmell et al. (2000) "DNA Vaccination Of Mice against Rabies Virus: Effects Of The Route Of Vaccination And The Adjuvant Monophosphoryl Lipid A (MPL)," Vaccine, 18: 1059-1066; Johnson et al. (1999) "3-O-Desacyl Monophosphoryl Lipid A Derivatives: Synthesis And Immunostimulant Activities," Journal of Medicinal
  • a basic concept of phage display methods is the establishment of a physical association between DNA encoding a polypeptide to be screened and the polypeptide. This physical association is provided by the phage particle, which displays a polypeptide as part of a capsid enclosing the phage genome which encodes the polypeptide.
  • the establishment of a physical association between polypeptides and their genetic material allows simultaneous mass screening of very large numbers of phage bearing different polypeptides.
  • Phage displaying a polypeptide with affinity to a target bind to the target and these phage are enriched by affinity screening to the target. The identity of polypeptides displayed from these phage can be determined from their respective genomes.
  • polypeptide identified as having a binding affinity for a desired target can then be synthesized in bulk by conventional means. See, e.g., U.S. Patent No. 6,057,098, which is hereby incorporated in its entirety, including all tables, figures, and claims.
  • the antibodies that are generated by these methods may then be selected by first screening for affinity and specificity with the purified polypeptide of interest and, if required, comparing the results to the affinity and specificity of the antibodies with polypeptides that are desired to be excluded from binding.
  • the screening procedure can involve immobilization of the purified polypeptides in separate wells of microtiter plates. The solution containing a potential antibody or groups of antibodies is then placed into the respective microtiter wells and incubated for about 30 min to 2 h.
  • microtiter wells are then washed and a labeled secondary antibody (for example, an anti-mouse antibody conjugated to alkaline phosphatase if the raised antibodies are mouse antibodies) is added to the wells and incubated for about 30 min and then washed. Substrate is added to the wells and a color reaction will appear where antibody to the immobilized polypeptide(s) are present.
  • a labeled secondary antibody for example, an anti-mouse antibody conjugated to alkaline phosphatase if the raised antibodies are mouse antibodies
  • the antibodies so identified may then be further analyzed for affinity and specificity in the assay design selected.
  • the purified target protein acts as a standard with which to judge the sensitivity and specificity of the immunoassay using the antibodies that have been selected. Because the binding affinity of various antibodies may differ; certain antibody pairs (e.g., in sandwich assays) may interfere with one another sterically, etc., assay performance of an antibody may be a more important measure than absolute affinity and specificity of an antibody.
  • Antibodies can also be produced using transgenic mice which are incapable of expressing functional endogenous immunoglobulins, but which can express human immunoglobulin genes.
  • the human heavy and light chain immunoglobulin gene complexes may be introduced randomly or by homologous recombination into mouse embryonic stem cells.
  • the human variable region, constant region, and diversity region may be introduced into mouse embryonic stem cells in addition to the human heavy and light chain genes.
  • immunoglobulin genes may be rendered non-functional separately or simultaneously with the introduction of human immunoglobulin loci by homologous recombination.
  • homozygous deletion of the JH region prevents endogenous antibody production.
  • the modified embryonic stem cells are expanded and microinjected into blastocysts to produce chimeric mice.
  • the chimeric mice are then bred to produce homozygous offspring which express human antibodies.
  • the transgenic mice are immunized using conventional methodologies with a selected antigen, e.g., all or a portion of a polypeptide of the invention.
  • Monoclonal antibodies directed against the antigen can be obtained from the immunized, transgenic mice using conventional hybridoma technology.
  • the vector for the production of the antibody may be produced by recombinant DNA technology using techniques well known in the art. Methods which are well known to those skilled in the art can be used to construct expression vectors containing the antibody coding sequences and appropriate transcriptional and
  • An expression vector comprising the nucleotide sequence of an antibody can be transferred to a host cell by conventional techniques (e.g., electroporation, liposomal transfection, and calcium phosphate precipitation) and the transfected cells are then cultured by conventional techniques to produce the antibody of the invention.
  • the expression of the antibody is regulated by a constitutive, an inducible or a tissue, specific promoter.
  • Eukaryotic and prokaryotic host cells including mammalian cells as hosts for expression of the antibodies or fragments or immunoglobulin chains disclosed herein are well known in the art and include many immortalized cell lines available from the American Type Culture Collection (ATCC).
  • CHO Chinese hamster ovary
  • NSO Chinese hamster ovary
  • SP2 cells
  • HeLa HeLa cells
  • BHK baby hamster kidney
  • COS monkey kidney cells
  • human hepatocellular carcinoma cells ⁇ e.g. , Hep G2
  • A549 cells 3T3 cells
  • HEK-293 cells a number of other cell lines.
  • Mammalian host cells include human, mouse, rat, dog, monkey, pig, goat, bovine, horse and hamster cells. Cell lines of particular preference are selected through determining which cell lines have high expression levels.
  • Other cell lines that may be used are insect cell lines, such as Sf9 cells, amphibian cells, bacterial cells, plant cells and fungal cells.
  • Fungal cells include yeast and filamentous fungus cells including, for example, Pichia pastoris, Pichia finlandica, Pichia trehalophila, Pichia koclamae, Pichia membranaefaciens, Pichia minuta (Ogataea minuta, Pichia lindneri), Pichia opuntiae, Pichia thermotolerans, Pichia salictaria, Pichia guercuum, Pichia pijperi, Pichia stiptis, Pichia methanolica, Pichia sp.,
  • Saccharomyces cerevisiae Saccharomyces sp., Hansenula polymorpha, Kluyveromyces sp., Kluyveromyces lactis, Candida albicans, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae, Trichoderma reesei, Chrysosporium lucknowense, Fusarium sp., Fusarium gramineum, Fusarium venenatum, Physcomitrella patens and Neurospora crassa.
  • Pichia sp. any Saccharomyces sp., Hansenula polymorpha, any Kluyveromyces sp., Candida albicans, any Aspergillus sp., Trichoderma reesei, Chrysosporium lucknowense, any Fusarium sp., Yarrowia lipolytica, and Neurospora crassa.
  • the antibodies are produced by culturing the host cells for a period of time sufficient to allow for expression of the antibody or fragment or chain in the host cells or secretion of the into the culture medium in which the host cells are grown.
  • host-expression vector systems may be utilized to express the antibodies of the invention.
  • Such host-expression systems represent vehicles by which the coding sequences of the antibodies may be produced and subsequently purified, but also represent cells which may, when transformed or transfected with the appropriate nucleotide coding sequences, express the antibodies of the invention in situ.
  • These include, but are not limited to, microorganisms such as bacteria (e.g., E. coli and B.
  • subtilis transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing immunoglobulin coding sequences; yeast (e.g., Saccharomyces pichia) transformed with recombinant yeast expression vectors containing immunoglobulin coding sequences; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing the immunoglobulin coding sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus (CaMV) and tobacco mosaic virus (TMV)) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing immunoglobulin coding sequences; or mammalian cell systems (e.g., COS, CHO, BHK, 293, 293T, 3T3 cells, lymphotic cells (see U.S.
  • mammalian cell systems e.g., COS,
  • Per C.6 cells rat retinal cells developed by Crucell harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter).
  • mammalian cells e.g., metallothionein promoter
  • mammalian viruses e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter.
  • a number of expression vectors may be advantageously selected depending upon the use intended for the antibody being expressed. For example, when a large quantity of such a protein is to be produced, for the generation of pharmaceutical compositions of an antibody, vectors which direct the expression of high levels of fusion protein products that are readily purified may be desirable.
  • vectors include, but are not limited, to the E. coli expression vector pUR278 (Ruther et al. (1983) "Easy Identification Of cDNA Clones," EMBO J.
  • pGEX vectors may also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST).
  • GST glutathione S-transferase
  • fusion proteins are soluble and can easily be purified from lysed cells by adsorption and binding to a matrix glutathione-agarose beads followed by elution in the presence of free gluta-thione.
  • the pGEX vectors are designed to include thrombin or factor Xa protease cleavage sites so that the cloned target gene product can be released from the GST moiety.
  • Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes.
  • the virus grows in Spodoptera frugiperda cells.
  • the antibody coding sequence may be cloned individually into nonessential regions (e.g., the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (e.g., the polyhedrin promoter).
  • a number of viral-based expression systems may be utilized.
  • the antibody coding sequence of interest may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence.
  • This chimeric gene may then be inserted in the adenovirus genome by in vitro or in vivo recombination. Insertion in a non-essential region of the viral genome (e.g., region El or E3) will result in a recombinant virus that is viable and capable of expressing the immunoglobulin molecule in infected hosts, (see e.g., see Logan et al.
  • a host cell strain may be chosen which modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products may be important for the function of the protein.
  • Different host cells have characteristic and specific mechanisms for the post-translational processing and modification of proteins and gene products. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed.
  • eukaryotic host cells which possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene product may be used.
  • Such mammalian host cells include but are not limited to CHO, VERY, BHK, Hela, COS, MDCK, 293, 293T, 3T3, WI38, BT483, Hs578T, HTB2, BT20 and T47D, CRL7030 and Hs578Bst.
  • cell lines which stably express an antibody of the invention may be engineered.
  • host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker.
  • appropriate expression control elements e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.
  • engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media.
  • the selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines.
  • This method may advantageously be used to engineer cell lines which express the antibodies of the invention. Such engineered cell lines may be particularly useful in screening and evaluation of compounds that interact directly or indirectly with the antibodies of the invention.
  • a number of selection systems may be used, including but not limited to the herpes simplex virus thymidine kinase (Wigler et al. (1977) "Transfer Of Purified Herpes Virus Thymidine Kinase Gene To Cultured Mouse Cells," Cell 11 :223-232),
  • hypoxanthine-guanine phosphoribosyltransferase (Szybalska et al. (1962) "Genetics Of Human Cess Line. IV. DNA-Mediated Heritable Transformation Of A Biochemical Trait," Proc. Natl. Acad. Sci. (U.S.A.) 48:2026-2034), and adenine phosphoribosyltransferase (Lowy et al. (1980) "Isolation Of Transforming DNA: Cloning The Hamster Aprt Gene," Cell 22:817-823) genes can be employed in tk-, hgprt- or aprt- cells, respectively.
  • antimetabolite resistance can be used as the basis of selection for the following genes: dhfr, which confers resistance to methotrexate (Wigler et al. (1980) "Transformation Of Mammalian Cells With An Amplfiable Dominant-Acting Gene," Proc. Natl. Acad. Sci. (U.S.A.) 77:3567-3570; O'Hare et al. (1981) "Transformation Of Mouse Fibroblasts To Methotrexate Resistance By A Recombinant Plasmid Expressing A Prokaryotic
  • the expression levels of an antibody of the invention can be increased by vector amplification (for a review, see Bebbington and Hentschel, "The Use Of Vectors Based On Gene Amplification For The Expression Of Cloned Genes In Mammaian Cells," in DNA CLONING, Vol. 3. (Academic Press, New York, 1987)).
  • vector amplification for a review, see Bebbington and Hentschel, "The Use Of Vectors Based On Gene Amplification For The Expression Of Cloned Genes In Mammaian Cells," in DNA CLONING, Vol. 3. (Academic Press, New York, 1987)
  • increase in the level of inhibitor present in culture of host cell will increase the number of copies of the marker gene. Since the amplified region is associated with the nucleotide sequence of the antibody, production of the antibody will also increase (Crouse et al. (1983) "Expression And Amplification Of Engineered Mouse Dihydrofolate Reductase Minigenes," Mol. Cell. Biol. 3:257
  • the host cell may be co-transfected with two expression vectors of the invention, the first vector encoding a heavy chain derived polypeptide and the second vector encoding a light chain derived polypeptide.
  • the two vectors may contain identical selectable markers which enable equal expression of heavy and light chain polypeptides.
  • a single vector may be used which encodes both heavy and light chain polypeptides.
  • the light chain should be placed before the heavy chain to avoid an excess of toxic free heavy chain (Proudfoot (1986) "Expression And Amplification Of Engineered Mouse Dihydrofolate Reductase Minigenes," Nature 322:562-565; Kohler (1980) "Immunoglobulin Chain Loss In Hybridoma Lines," Proc. Natl. Acad. Sci. (U.S.A.) 77:2197-2199).
  • the coding sequences for the heavy and light chains may comprise cDNA or genomic DNA.
  • glycoproteins produced in a particular cell line or transgenic animal will have a glycosylation pattern that is characteristic for glycoproteins produced in the cell line or transgenic animal. Therefore, the particular glycosylation pattern of an antibody will depend on the particular cell line or transgenic animal used to produce the antibody.
  • all antibodies encoded by the nucleic acid molecules provided herein, or comprising the amino acid sequences provided herein comprise the instant invention, independent of the glycosylation pattern the antibodies may have.
  • antibodies with a glycosylation pattern comprising only non-fucosylated N- glycans may be advantageous, because these antibodies have been shown to typically exhibit more potent efficacy than their fucosylated counterparts both in vitro and in vivo ⁇ See for example, Shinkawa et al, J. Biol. Chem. 278: 3466-3473 (2003); U.S. Patent Nos. 6,946,292 and 7,214,775). These antibodies with non-fucosylated N-glycans are not likely to be immunogenic because their carbohydrate structures are a normal component of the population that exists in human serum IgG.
  • the antibody of the invention may be purified by any method known in the art for purification of an antibody, for example, by chromatography (e.g., ion exchange, affinity, particularly by affinity for the specific antigen after Protein A, and sizing column chromatography), centrifugation, differential solubility, or by any other standard technique for the purification of proteins.
  • chromatography e.g., ion exchange, affinity, particularly by affinity for the specific antigen after Protein A, and sizing column chromatography
  • centrifugation e.g., centrifugation, differential solubility, or by any other standard technique for the purification of proteins.
  • the present invention relates in part to administration of anti-TIMP-2 antibodies to patients diagnosed with AKI.
  • AKI acute renal (or kidney) injury
  • ARF acute renal (or kidney) failure
  • patients may present with renal dysfunction without an available baseline measure of renal function for use in this comparison. In such an event, one may estimate a baseline serum creatinine value by assuming the patient initially had a normal GFR.
  • Glomerular filtration rate is the volume of fluid filtered from the renal (kidney) glomerular capillaries into the Bowman's capsule per unit time. Glomerular filtration rate (GFR) can be calculated by measuring any chemical that has a steady level in the blood, and is freely filtered but neither reabsorbed nor secreted by the kidneys. GFR is typically expressed in units of ml/min:
  • GFR or eGFR glomerular filtration rate
  • creatinine is a metabolite of creatine, which is found in muscle). It is freely filtered by the glomerulus, but also actively secreted by the renal tubules in very small amounts such that creatinine clearance overestimates actual GFR by 10-20%. This margin of error is acceptable considering the ease with which creatinine clearance is measured.
  • Creatinine clearance can be calculated if values for creatinine's urine concentration (Ucr), urine flow rate (V), and creatinine's plasma concentration (PQ) are known. Since the product of urine concentration and urine flow rate yields creatinine's excretion rate, creatinine clearance is also said to be its excretion rate (U&xV) divided by its plasma concentration. This is commonly represented mathematically as:
  • the CCr is often corrected for the body surface area (BSA) and expressed compared to the average sized man as ml/min/1.73 m2. While most adults have a BSA that approaches 1.7 (1.6- 1.9), extremely obese or slim patients should have their CCr corrected for their actual BSA:
  • a I is associated with significant morbidity and mortality, and because no specific treatment is available to reverse AKI, early recognition and management is paramount. Indeed, recognition of patients at risk for AKI, or with possible AKI but prior to clinical manifestations, is likely to result in better outcomes than treating only established AKI.
  • the present invention relates in part to administration of anti-TIMP-2 antibodies to patients at high risk of imminent (within 72 hours, and more preferably 48, 24, 18, or 12 hours) AKI.
  • High-risk patients include those with risk factors for acute kidney injury (AKI) but have normal GFR. For example, they may include patients who have diabetes and hypertension or are taking medications such as nonsteroidal anti-inflammatory drugs or angiotensin-converting enzyme inhibitors.
  • Patients with prerenal AKI are those with prerenal urinary indices and failure of autoregulatory mechanisms that lead to a decrease in GFR (e.g., dehydration). These individuals have the potential for rapid reversal of their prerenal condition. During this period, injury to brush border of proximal tubule cells may be present but undetectable. However, with novel biomarkers, identification of early injury and treatment is possible. Patients with AKI may represent an extension from severe prerenal AKI.
  • AKI may not be preceded by a prerenal state (e.g., sepsis, exposure to nephrotoxins).
  • Serum creatinine is a late marker and will detect AKI after substantial injury is present. At this point, intervention may be too late.
  • KDIGO Clinical Practice Guideline for Acute Kidney Injury (Kidney Intl. 2 (Suppl 1), 2012, which is incorporated by reference in its entirety including all appendices, provides a description of risk assessment for AKI, particularly in Chapter 2.2 and Appendix D.
  • Risk factors include hydration state, hypoalbuminemia, advanced age, female gender, black race, presence of CKD, diabetes, heart disease, sepsis, or pulmonary disease, exposure to certain medications and contrast agents that are nephrotoxic, cardiac surgery, etc.
  • SCr Serum creatinine measurement
  • biomarkers which have been used to assess AKI include serum and urinary Cy statin C, serum and urinary neutrophil gelatinase- associated lipocalin, urinary Kidney Injury Molecule 1, Interleukin-18, Liver-type fatty acid binding protein, and N-acetyl-P-D-glucosaminidase.
  • insulin-like growth factor binding protein 7 [TIMP-2] x
  • the antibody or antigen-binding fragment thereof is admixed with a pharmaceutically acceptable carrier or excipient. See, e.g. , Remington's Pharmaceutical Sciences and U.S. Pharmacopeia: National Formulary, Mack Publishing Company, Easton, PA (1984).
  • Formulations of therapeutic and diagnostic agents may be prepared by mixing with acceptable carriers, excipients, or stabilizers in the form of, e.g. , lyophilized powders, slurries, aqueous solutions or suspensions (see, e.g. , Hardman, et al. (2001) Goodman and Gilman 's The Pharmacological Basis of Therapeutics, McGraw-Hill, New York, NY; Gennaro (2000) Remington: The Science and Practice of Pharmacy,
  • Toxicity and therapeutic efficacy of the antibodies of the invention, administered alone or in combination with another therapeutic agent can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population).
  • the dose ratio between toxic and therapeutic effects is the therapeutic index (LD50/ ED50).
  • the data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in human.
  • the dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity.
  • the dosage may vary within this range depending upon the dosage form employed and the route of
  • a further therapeutic agent that is administered to a subject in association with an anti-TIMP-2 antibody or antigen-binding fragment thereof of the invention in accordance with the Physicians' Desk Reference 2003 (Thomson Healthcare; 57th edition (November 1 , 2002)).
  • the mode of administration can vary. Routes of administration include oral, rectal, transmucosal, intestinal, parenteral; intramuscular, subcutaneous, intradermal, intramedullary, intrathecal, direct intraventricular, intravenous, intraperitoneal, intranasal, intraocular, inhalation, insufflation, topical, cutaneous, transdermal, or intra-arterial.
  • the anti-TIMP-2 antibodies or antigen-binding fragments thereof of the invention can be administered by an invasive route such as by injection.
  • an anti-TIMP-2 antibody or antigen- binding fragment thereof, or pharmaceutical composition thereof is administered intravenously, subcutaneously, intramuscularly, intraarterially, or by inhalation, aerosol delivery.
  • Administration by non-invasive routes e.g. , orally; for example, in a pill, capsule or tablet) is also within the scope of the present invention.
  • the present invention provides a vessel (e.g., a plastic or glass vial, e.g., with a cap or a chromatography column, hollow bore needle or a syringe cylinder) comprising any of the antibodies or antigen-binding fragments of the invention or a pharmaceutical composition thereof.
  • a vessel e.g., a plastic or glass vial, e.g., with a cap or a chromatography column, hollow bore needle or a syringe cylinder
  • an injection device comprising any of the antibodies or antigen-binding fragments of the invention or a pharmaceutical composition thereof.
  • An injection device is a device that introduces a substance into the body of a patient via a parenteral route, e.g. , intramuscular, subcutaneous or intravenous.
  • an injection device may be a syringe (e.g. , pre-filled with the
  • an injection device that comprises an antibody or antigen-binding fragment thereof of the present invention or a pharmaceutical composition thereof is an intravenous (IV) injection device.
  • IV intravenous
  • a device includes the antibody or fragment or a pharmaceutical composition thereof in a cannula or
  • trocar/needle which may be attached to a tube which may be attached to a bag or reservoir for holding fluid (e.g. , saline; or lactated ringer solution comprising NaCl, sodium lactate, KC1, CaCb and optionally including glucose) introduced into the body of the patient through the cannula or trocar/needle.
  • fluid e.g. , saline; or lactated ringer solution comprising NaCl, sodium lactate, KC1, CaCb and optionally including glucose
  • the antibody or fragment or a pharmaceutical composition thereof may, in an embodiment of the invention, be introduced into the device once the trocar and cannula are inserted into the vein of a subject and the trocar is removed from the inserted cannula.
  • the IV device may, for example, be inserted into a peripheral vein (e.g.
  • an injection device is an autoinjector; a jet injector or an external infusion pump.
  • a jet injector uses a high-pressure narrow jet of liquid which penetrate the epidermis to introduce the antibody or fragment or a pharmaceutical composition thereof to a patient' s body.
  • External infusion pumps are medical devices that deliver the antibody or fragment or a pharmaceutical composition thereof into a patient' s body in controlled amounts.
  • External infusion pumps may be powered electrically or mechanically.
  • Different pumps operate in different ways, for example, a syringe pump holds fluid in the reservoir of a syringe, and a moveable piston controls fluid delivery, an elastomeric pump holds fluid in a stretchable balloon reservoir, and pressure from the elastic walls of the balloon drives fluid delivery.
  • a peristaltic pump a set of rollers pinches down on a length of flexible tubing, pushing fluid forward.
  • fluids can be delivered from multiple reservoirs at multiple rates.
  • compositions disclosed herein may also be administered with a needleless hypodermic injection device; such as the devices disclosed in U.S . Patent Nos. 6,620, 135; 6,096,002; 5,399, 163 ; 5,383,851; 5,312,335; 5,064,413 ;
  • Such needleless devices comprising the pharmaceutical composition are also part of the present invention.
  • the pharmaceutical compositions disclosed herein may also be administered by infusion.
  • Examples of well- known implants and modules for administering the pharmaceutical compositions include those disclosed in: U.S. Patent No. 4,487,603, which discloses an implantable micro- infusion pump for dispensing medication at a controlled rate; U.S. Patent No. 4,447,233, which discloses a medication infusion pump for delivering medication at a precise infusion rate; U.S. Patent No. 4,447,224, which discloses a variable flow implantable infusion apparatus for continuous drug delivery; U.S. Patent. No.
  • the administration regimen depends on several factors, including the serum or tissue turnover rate of the therapeutic antibody or antigen-binding fragment, the level of symptoms, the immunogenicity of the therapeutic antibody, and the accessibility of the target cells in the biological matrix.
  • the administration regimen delivers sufficient therapeutic antibody or fragment to effect improvement in the target disease state, while simultaneously minimizing undesired side effects.
  • the amount of biologic delivered depends in part on the particular therapeutic antibody and the severity of the condition being treated. Guidance in selecting appropriate doses of therapeutic antibodies or fragments is available (see, e.g. , Wawrzynczak (1996) Antibody Therapy, Bios Scientific Pub.
  • Determination of the appropriate dose is made by the clinician, e.g. , using parameters or factors known or suspected in the art to affect treatment. Generally, the dose begins with an amount somewhat less than the optimum dose and it is increased by small increments thereafter until the desired or optimum effect is achieved relative to any negative side effects.
  • Important diagnostic measures include those of symptoms of, e.g., the inflammation or level of inflammatory cytokines produced. In general, it is desirable that a biologic that will be used is derived from the same species as the animal targeted for treatment, thereby minimizing any immune response to the reagent. In the case of human subjects, for example, humanized and fully human antibodies are may be desirable.
  • Antibodies or antigen-binding fragments thereof disclosed herein may be provided by continuous infusion, or by doses administered, e.g., daily, 1-7 times per week, weekly, bi-weekly, monthly, bimonthly, quarterly, semiannually, annually etc.
  • Doses may be provided, e.g., intravenously, subcutaneously, topically, orally, nasally, rectally, intramuscular, intracerebrally, intraspinally, or by inhalation.
  • a total weekly dose is generally at least 0.05 ⁇ g/kg body weight, more generally at least 0.2 ⁇ g kg, 0.5 ⁇ g/kg, 1 iig/ g, 10 ⁇ g/kg, 100 ⁇ g kg, 0.25 mg/kg, 1.0 mg kg, 2.0 mg/kg, 5.0 mg/ml, 10 mg kg, 25 mg/kg, 50 mg kg or more (see, e.g. , Yang, et al. (2003) New Engl. J. Med. 349:427-434; Herold, et al. (2002) New Engl. J. Med. 346: 1692- 1698; Liu, et al. (1999) /. Neurol. Neurosurg. Psych. 67:451-456; Portielji, et al. (20003) Cancer Immunol.
  • Doses may also be provided to achieve a pre-determined target concentration of anti-TIMP-2 antibody in the subject' s serum, such as 0.1, 0.3, 1, 3, 10, 30, 100, 300 ⁇ g/ml or more.
  • An anti-TIMP-2 antibody of the present invention is administered, e.g., subcutaneously or intravenously, on a weekly, biweekly, "every 4 weeks," monthly, bimonthly, or quarterly basis at 10, 20, 50, 80, 100, 200, 500, 1000 or 2500 mg/subject.
  • the term "effective amount" refer to an amount of an anti- TIMP-2 or antigen-binding fragment thereof of the invention that, when administered alone or in combination with an additional therapeutic agent to a cell, tissue, or subject, is effective to cause a measurable improvement in one or more symptoms of disease, for example cancer or the progression of cancer.
  • An effective dose further refers to that amount of the antibody or fragment sufficient to result in at least partial amelioration of symptoms, e.g., improved renal function or histology.
  • an effective dose refers to that ingredient alone.
  • an effective dose refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in
  • An effective amount of a therapeutic will result in an improvement of a diagnostic measure or parameter by at least 10%; usually by at least 20%; preferably at least about 30%; more preferably at least 40%, and most preferably by at least 50%.
  • An effective amount can also result in an improvement in a subjective measure in cases where subjective measures are used to assess disease severity.
  • the clinician can readily select a treatment regimen that is compatible with the diagnosis, such as initiating renal replacement therapy, withdrawing delivery of compounds that are known to be damaging to the kidney, kidney transplantation, delaying or avoiding procedures that are known to be damaging to the kidney, modifying diuretic
  • RRT is a blood purification system that substitutes for kidney function.
  • RRT is associated with risks and complications, as discussed above, and evidence suggests that RRT may be an independent risk factor for worse outcomes. From a risk-benefit perspective, RRT should be reserved for those patients deemed most likely to have persistent AKI and/or most likely not to recover. In this dichotomous construct, conservative management frequently represents the preferred clinical choice for many common clinical scenarios, including situations where clinical evidence, bedside evaluation, and objective data suggest a high likelihood for recovery from and/or non-persistence of AKI.
  • Conservative management is defined as medical interventions and approaches that address the dangerous and life-threatening manifestations of AKI without the use of RRT. These management strategies include - but are not limited to - the key
  • physiological and pathophysiological disturbances such as hypervolemia and fluid imbalances, acidosis and acid-base disorders, electrolyte disturbances (e.g. hyperkalemia), and uremia and severe azotemia.
  • Conservative management strategies consist of the following basic strategies:
  • Hemodynamic support a. Fluid therapy, including the use of crystalloids, and colloids b. Administration of vasopressor and vasoactive agents (commonly used vasopressor agents include the following: Norepinephrine, Epinephrine, Phenylephrine, Dopamine, Vasopressin) c. Diuretic therapy, including the use of loop and osmotic diuretics d. Treatment of acidosis and other acid-base abnormalities e. Treatment of potassium and other electrolyte disturbances and imbalances. f. Glycemic control and treatment of hyperglycemia. g. Nutritional support.
  • Interventions that cause potassium to shift from the extracellular space into the intracellular space 2) Interventions that stabilize membrane actions of potassium, and 3) Interventions that enhance potassium elimination. These interventions are often provided concurrently.
  • Elevated glucose due to stress hyperglycemia is frequently encountered in AKI and other critical illnesses, and while evidence remains controversial with respect to outcome benefit associated glycemic control, patients and populations likely to benefit, and desired glucose targets and the specific therapeutic approaches to achieve (relative) euglycemia, consensus and current standard of care suggest the following: use of insulin therapy to achieve a serum glucose level between 110 to 149 mg/dL (6.1 - 8.3 mmol/L) and above; and frequent monitoring of serum glucose.
  • Intermittent RRT includes hemodialysis and sustained low-efficiency dialysis, while continuous RRT refers to ultrafiltration (UF), Continuous Veno venous Hemofiltration (CVVH), Continuous Venovenous Hemodialysis (CVVHD), Continouus Venovenous Hemodiafiltration (CVVHDF), Continous Venovenous High-Flux Hemodialysis, and Continuous Arterial Venous Hemofiltration (CAVH).
  • UF ultrafiltration
  • CVVH Continuous Veno venous Hemofiltration
  • CVVHD Continuous Venovenous Hemodialysis
  • CVVHDF Continouus Venovenous Hemodiafiltration
  • CAVH Continuous Arterial Venous Hemofiltration
  • Monoclonal, polyclonal, and humanized antibodies can be prepared (see, e.g., Sheperd and Dean (eds.) (2000) Monoclonal Antibodies, Oxford Univ. Press, New York, NY; Kontermann and Dubel (eds.) (2001) Antibody Engineering, Springer- Verlag, New York; Harlow and Lane (1988) Antibodies A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 139-243; Carpenter, et al. (2000) .
  • Bifunctional antibodies are provided (see, e.g., Mack, et al. (1995) Proc. Natl. Acad. Sci. USA 92:7021-7025; Carter (2001) /. Immunol. Methods 248:7-15; Volkel, et al. (2001) Protein Engineering 14:815-823; Segal, et al. (2001) . Immunol. Methods 248: 1-6; Brennan, et al. (1985) Science 229:81-83; Raso, et al. (1997) . Biol. Chem. 272:27623; Morrison (1985) Science 229: 1202- 1207; Traunecker, et al. (1991) EMBO J. 10:3655- 3659; and U.S. Pat. Nos. 5,932,448, 5,532,210, and 6,129,914).
  • Multispecific antibodies are also provided (see, e.g. , Azzoni et al. (1998) . Immunol. 161 :3493; Kita et al. (1999) . Immunol. 162:6901 ; Merchant et al. (2000) J. Biol. Chem. 74:9115; Pandey et al. (2000) . Biol. Chem. 275:38633; Zheng et al. (2001) . Biol Chem. 276: 12999; Propst et al. (2000) J. Immunol. 165:2214; Long (1999) Ann. Rev. Immunol. 17:875); Labrijn et al., Proc. Natl.
  • Animals can be immunized with cells bearing the antigen of interest. Splenocytes can then be isolated from the immunized animals, and the splenocytes can fused with a myeloma cell line to produce a hybridoma (see, e.g. , Meyaard et al. (1997) Immunity 7:283-290; Wright et al. (2000) Immunity 13:233-242; Preston et al, supra; Kaithamana et al. (1999) /. Immunol. 163:5157-5164).
  • Antibodies can be conjugated, e.g., to small drug molecules, enzymes, liposomes, polyethylene glycol (PEG). Antibodies are useful for therapeutic, diagnostic, kit or other purposes, and include antibodies coupled, e.g. , to dyes, radioisotopes, enzymes, or metals, e.g., colloidal gold (see, e.g. , Le Doussal et al. (1991) /. Immunol. 146: 169-175; Gibellini et al. (1998) /. Immunol. 160:3891-3898; Hsing and Bishop (1999) J. Immunol. 162:2804-2811; Everts et al. (2002) J. Immunol. 168:883-889).
  • PEG polyethylene glycol
  • Methods for flow cytometry including fluorescence activated cell sorting (FACS), are available (see, e.g., Owens, et al. (1994) Flow Cytometry Principles for Clinical Laboratory Practice, John Wiley and Sons, Hoboken, NJ; Givan (2001) Flow Cytometry, 2 nd ed.; Wiley-Liss, Hoboken, NJ; Shapiro (2003) Practical Flow Cytometry, John Wiley and Sons, Hoboken, NJ).
  • Fluorescent reagents suitable for modifying nucleic acids, including nucleic acid primers and probes, polypeptides, and antibodies, for use, e.g. , as diagnostic reagents are available (Molecular Probes (2003) Catalogue, Molecular Probes, Inc., Eugene, OR; Sigma-Aldrich (2003) Catalogue, St. Louis, MO).
  • Example 1 Monoclonal Antibody development in rabbits
  • Female New Zealand Rabbits are immunized by subcutaneous injections (SQ) with antigen/adjuvant emulsions. Primary immunization is done with Complete Freund's Adjuvant and Incomplete Freund's Adjuvant is used for all subsequent boosts. Rabbits are injected SQ every three weeks at 250 ⁇ g protein antigen per rabbit (alternating two sites, hips and scapulas). A test bleed is taken from the marginal ear vein seven days after the second boost. This test bleed (immune sera) is tested by indirect ELISA assay to determine if immune response of the rabbit is adequate for monoclonal antibody development. The best responding rabbit is given a final SQ boost and four days later is euthanized via exsanguination.
  • B cells producing antibody of interest are identified by indirect ELISA on target antigen and immunoglobulin genes are isolated.
  • Heavy and light chains are cloned into separate mammalian expression vectors, transfected into HEK cells (transient transfection), and tissue culture supernatant containing rabbit monoclonal antibodies are harvested.
  • mice Female BALB/c mice (60 days old) are immunized by intraperitoneal injections ( ⁇ ) with antigen/adjuvant emulsions as per standard operating procedure. Primary immunization is done with Complete Freund's Adjuvant and Incomplete Freund' s Adjuvant is used for all subsequent boosts. Mice are injected IP every 3 weeks at 25 ⁇ g antigen per mouse (total volume 125 ⁇ per mouse). Test bleeds are done by saphenous vein lancing 7 to 10 days after the second boost. This test bleed (immune sera) is tested by indirect ELISA assay to determine if the immune response of mice is adequate for fusion.
  • mice The best 2 responding mice are given a final intravenous boost of 10 ⁇ g antigen per mouse in sterile saline via lateral tail vein. 4 days after the IV boost the mice are euthanized and the spleens are harvested. Lymphocytes isolated from the spleen are used in the fusion process to produce hybridomas using the method of Kohler, G.; Milstein, C. (1975). "Continuous cultures of fused cells secreting antibody of predefined specificity". Nature 256 (5517): 495-497. Hybridomas are generated using a PEG1500 fusion process.
  • V murine variable
  • FR region framework
  • the these human sequences are selected as the human frameworks onto which the CDRs for the mouse monocloncal are grafted.
  • PSTC Critical Path Institute's Predictive Safety Testing Consortium
  • NWG Nephrotoxicity Working Group
  • mice (20-24 weeks old, weight 25-30g) were purchased from Charles River Laboratories International, Inc. All procedures were approved by the Institutional Animal Care and Use Committee (IACUC) of the University of Pittsburgh Medical Center (UPMC). After an acclimation period of 1 week, mice were subjected to a cecal ligation and puncture surgery (CLP) to induce sepsis or laparotomy only (Sham) after anesthetized with isoflurane. Specifically, the cecum was exteriorized, ligated at 1/4 from the top, and punctured through 3 times with a 21-gage needle.
  • CLP cecal ligation and puncture surgery
  • a droplet of feces was extruded and the ligated and punctured cecum was replaced into the abdomen, and the abdominal wall closed.
  • a one-time administration of fluid resuscitation (saline 40ml/kg) was performed into the scruff of the neck
  • Ceftriaxone 25mg/kg and Metronidazole (12.5mg/kg) intraperitoneally applied immediately after surgery and every 12 hrs for 3 days. All animals were closely monitored and allowed free access to food and water during recovery. Mice were sacrificed 48 hours post the surgery and the kidney tissues harvested and blood samples obtained for further measurements.
  • Antibody TIMP2(NB 172-77) is a monoclonal F(ab')2
  • Antibody TIMP2(NB251-47) is a polyclonal goat IgG.
  • the CLP animals were randomized to three groups eight hours post the CLP surgery: CLP (treated with vehicle placebo), CLP+ intraperitoneal injection with anti-TIMP2 antibody NB 172-77, 5mg/kg), CLP+ intraperitoneal injection with anti-TIMP2 antibody NB251-47, 5mg/kg).
  • anti-TIMP2 treatment with TIMP2(NB 172-77) significantly decreased the extent of kidney tissue injuries compared to untreated sepsis animals (two tailed T-test, P value 0.046).
  • anti-TIMP2 treatment has no effect on the kidney functions measured by serum creatinine (Fig. 2).
  • TIMP2 facilitates kidney tissue damage during sepsis independent of serum creatinine level.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Obesity (AREA)
  • Diabetes (AREA)
  • Biophysics (AREA)
  • Virology (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Endocrinology (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
PCT/US2017/058787 2016-10-28 2017-10-27 Use of antibodies to timp-2 for the improvement of renal function Ceased WO2018081578A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201780076765.5A CN110352073A (zh) 2016-10-28 2017-10-27 针对timp-2的抗体用于改善肾功能的用途
ES17865610T ES2908239T3 (es) 2016-10-28 2017-10-27 Uso de anticuerpos contra timp-2 para la mejora de la función renal
US16/345,375 US20190263926A1 (en) 2016-10-28 2017-10-27 Use of Antibodies to TIMP-2 for the Improvement of Renal Function
JP2019522925A JP7100030B2 (ja) 2016-10-28 2017-10-27 腎機能の改善のためのtimp-2に対する抗体の使用
AU2017348365A AU2017348365A1 (en) 2016-10-28 2017-10-27 Use of antibodies to TIMP-2 for the improvement of renal function
EP17865610.4A EP3532101B1 (en) 2016-10-28 2017-10-27 Use of antibodies to timp-2 for the improvement of renal function

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662414479P 2016-10-28 2016-10-28
US62/414,479 2016-10-28

Publications (1)

Publication Number Publication Date
WO2018081578A1 true WO2018081578A1 (en) 2018-05-03

Family

ID=62024058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2017/058787 Ceased WO2018081578A1 (en) 2016-10-28 2017-10-27 Use of antibodies to timp-2 for the improvement of renal function

Country Status (7)

Country Link
US (1) US20190263926A1 (enExample)
EP (1) EP3532101B1 (enExample)
JP (1) JP7100030B2 (enExample)
CN (1) CN110352073A (enExample)
AU (1) AU2017348365A1 (enExample)
ES (1) ES2908239T3 (enExample)
WO (1) WO2018081578A1 (enExample)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10823733B2 (en) 2008-10-21 2020-11-03 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
US10823742B2 (en) 2010-06-23 2020-11-03 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
US10830773B2 (en) 2009-12-20 2020-11-10 Astute Medical, Inc. Methods for prognosis of future acute renal injury and acute renal failure
US10935548B2 (en) 2011-12-08 2021-03-02 Astute Medical, Inc. Methods for diagnosis and prognosis of renal injury and renal failure using insulin-like growth factor-binding protein 7 and metalloproteinase inhibitor 2
US11099194B2 (en) 2013-01-17 2021-08-24 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
US11229676B2 (en) 2013-12-03 2022-01-25 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
US11243217B2 (en) 2016-06-06 2022-02-08 Astute Medical, Inc. Management of acute kidney injury using insulin-like growth factor-binding protein 7 and tissue inhibitor of metalloproteinase 2
US11243202B2 (en) 2015-04-09 2022-02-08 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
US11346846B2 (en) 2017-02-06 2022-05-31 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
US11718682B2 (en) 2017-04-05 2023-08-08 Astute Medical, Inc. Assays for TIMP2 having improved performance in biological samples

Citations (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US459007A (en) 1891-09-08 Porte
US4439196A (en) 1982-03-18 1984-03-27 Merck & Co., Inc. Osmotic drug delivery system
US4447233A (en) 1981-04-10 1984-05-08 Parker-Hannifin Corporation Medication infusion pump
US4447224A (en) 1982-09-20 1984-05-08 Infusaid Corporation Variable flow implantable infusion apparatus
US4487603A (en) 1982-11-26 1984-12-11 Cordis Corporation Implantable microinfusion pump system
US4596556A (en) 1985-03-25 1986-06-24 Bioject, Inc. Hypodermic injection apparatus
WO1988001649A1 (en) 1986-09-02 1988-03-10 Genex Corporation Single polypeptide chain binding molecules
US4790824A (en) 1987-06-19 1988-12-13 Bioject, Inc. Non-invasive hypodermic injection device
US4941880A (en) 1987-06-19 1990-07-17 Bioject, Inc. Pre-filled ampule and non-invasive hypodermic injection device assembly
US4946778A (en) 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
EP0404097A2 (de) 1989-06-22 1990-12-27 BEHRINGWERKE Aktiengesellschaft Bispezifische und oligospezifische, mono- und oligovalente Rezeptoren, ihre Herstellung und Verwendung
US5064413A (en) 1989-11-09 1991-11-12 Bioject, Inc. Needleless hypodermic injection device
WO1992011018A1 (en) 1990-12-19 1992-07-09 Protein Design Labs, Inc. Improved humanized immunoglobulins
WO1993011161A1 (en) 1991-11-25 1993-06-10 Enzon, Inc. Multivalent antigen-binding proteins
US5260203A (en) 1986-09-02 1993-11-09 Enzon, Inc. Single polypeptide chain binding molecules
WO1994004678A1 (en) 1992-08-21 1994-03-03 Casterman Cecile Immunoglobulins devoid of light chains
US5312335A (en) 1989-11-09 1994-05-17 Bioject Inc. Needleless hypodermic injection device
WO1994025591A1 (en) 1993-04-29 1994-11-10 Unilever N.V. PRODUCTION OF ANTIBODIES OR (FUNCTIONALIZED) FRAGMENTS THEREOF DERIVED FROM HEAVY CHAIN IMMUNOGLOBULINS OF $i(CAMELIDAE)
US5383851A (en) 1992-07-24 1995-01-24 Bioject Inc. Needleless hypodermic injection device
US5413923A (en) 1989-07-25 1995-05-09 Cell Genesys, Inc. Homologous recombination for universal donor cells and chimeric mammalian hosts
US5532210A (en) 1994-06-08 1996-07-02 E. I. Du Pont De Nemours And Company High temperature superconductor dielectric slow wave structures for accelerators and traveling wave tubes
US5545806A (en) 1990-08-29 1996-08-13 Genpharm International, Inc. Ransgenic non-human animals for producing heterologous antibodies
US5569825A (en) 1990-08-29 1996-10-29 Genpharm International Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
WO1996034096A1 (en) 1995-04-28 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1996033735A1 (en) 1995-04-27 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
US5571698A (en) 1988-09-02 1996-11-05 Protein Engineering Corporation Directed evolution of novel binding proteins
US5625126A (en) 1990-08-29 1997-04-29 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
US5633425A (en) 1990-08-29 1997-05-27 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5661016A (en) 1990-08-29 1997-08-26 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
WO1998024893A2 (en) 1996-12-03 1998-06-11 Abgenix, Inc. TRANSGENIC MAMMALS HAVING HUMAN IG LOCI INCLUDING PLURAL VH AND Vλ REGIONS AND ANTIBODIES PRODUCED THEREFROM
US5807715A (en) 1984-08-27 1998-09-15 The Board Of Trustees Of The Leland Stanford Junior University Methods and transformed mammalian lymphocyte cells for producing functional antigen-binding protein including chimeric immunoglobulin
US5814318A (en) 1990-08-29 1998-09-29 Genpharm International Inc. Transgenic non-human animals for producing heterologous antibodies
US5821337A (en) 1991-06-14 1998-10-13 Genentech, Inc. Immunoglobulin variants
US5859205A (en) 1989-12-21 1999-01-12 Celltech Limited Humanised antibodies
US5932448A (en) 1991-11-29 1999-08-03 Protein Design Labs., Inc. Bispecific antibody heterodimers
US5939598A (en) 1990-01-12 1999-08-17 Abgenix, Inc. Method of making transgenic mice lacking endogenous heavy chains
US6005079A (en) 1992-08-21 1999-12-21 Vrije Universiteit Brussels Immunoglobulins devoid of light chains
US6054297A (en) 1991-06-14 2000-04-25 Genentech, Inc. Humanized antibodies and methods for making them
US6057098A (en) 1997-04-04 2000-05-02 Biosite Diagnostics, Inc. Polyvalent display libraries
US6096002A (en) 1998-11-18 2000-08-01 Bioject, Inc. NGAS powered self-resetting needle-less hypodermic jet injection apparatus and method
US6129914A (en) 1992-03-27 2000-10-10 Protein Design Labs, Inc. Bispecific antibody effective to treat B-cell lymphoma and cell line
US6329511B1 (en) 1998-12-01 2001-12-11 Protein Design Labs, Inc. Humanized antibodies to γ-interferon
US6620135B1 (en) 1998-08-19 2003-09-16 Weston Medical Limited Needleless injectors
US6946292B2 (en) 2000-10-06 2005-09-20 Kyowa Hakko Kogyo Co., Ltd. Cells producing antibody compositions with increased antibody dependent cytotoxic activity
US7214775B2 (en) 1999-04-09 2007-05-08 Kyowa Hakko Kogyo Co., Ltd. Method of modulating the activity of functional immune molecules
WO2010048346A1 (en) 2008-10-21 2010-04-29 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
WO2011075744A1 (en) 2009-12-20 2011-06-23 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
US20150355196A1 (en) * 2013-01-17 2015-12-10 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
US20160281083A1 (en) * 2010-09-30 2016-09-29 Nitto Denko Corporation Modulation of timp1 and timp2 expression
US20160297893A1 (en) * 2013-08-07 2016-10-13 Astute Medical, Inc. Assays for timp2 having improved performance in biological samples

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110007084B (zh) 2013-12-03 2022-11-18 阿斯图特医药公司 用于肾损伤和肾衰竭的诊断和预后的方法和组合物

Patent Citations (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US459007A (en) 1891-09-08 Porte
US4447233A (en) 1981-04-10 1984-05-08 Parker-Hannifin Corporation Medication infusion pump
US4439196A (en) 1982-03-18 1984-03-27 Merck & Co., Inc. Osmotic drug delivery system
US4447224A (en) 1982-09-20 1984-05-08 Infusaid Corporation Variable flow implantable infusion apparatus
US4487603A (en) 1982-11-26 1984-12-11 Cordis Corporation Implantable microinfusion pump system
US5807715A (en) 1984-08-27 1998-09-15 The Board Of Trustees Of The Leland Stanford Junior University Methods and transformed mammalian lymphocyte cells for producing functional antigen-binding protein including chimeric immunoglobulin
US4596556A (en) 1985-03-25 1986-06-24 Bioject, Inc. Hypodermic injection apparatus
WO1988001649A1 (en) 1986-09-02 1988-03-10 Genex Corporation Single polypeptide chain binding molecules
US5260203A (en) 1986-09-02 1993-11-09 Enzon, Inc. Single polypeptide chain binding molecules
US4941880A (en) 1987-06-19 1990-07-17 Bioject, Inc. Pre-filled ampule and non-invasive hypodermic injection device assembly
US4790824A (en) 1987-06-19 1988-12-13 Bioject, Inc. Non-invasive hypodermic injection device
US4946778A (en) 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
US5571698A (en) 1988-09-02 1996-11-05 Protein Engineering Corporation Directed evolution of novel binding proteins
US5585089A (en) 1988-12-28 1996-12-17 Protein Design Labs, Inc. Humanized immunoglobulins
US5693761A (en) 1988-12-28 1997-12-02 Protein Design Labs, Inc. Polynucleotides encoding improved humanized immunoglobulins
US5693762A (en) 1988-12-28 1997-12-02 Protein Design Labs, Inc. Humanized immunoglobulins
US6180370B1 (en) 1988-12-28 2001-01-30 Protein Design Labs, Inc. Humanized immunoglobulins and methods of making the same
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
EP0404097A2 (de) 1989-06-22 1990-12-27 BEHRINGWERKE Aktiengesellschaft Bispezifische und oligospezifische, mono- und oligovalente Rezeptoren, ihre Herstellung und Verwendung
US5413923A (en) 1989-07-25 1995-05-09 Cell Genesys, Inc. Homologous recombination for universal donor cells and chimeric mammalian hosts
US5312335A (en) 1989-11-09 1994-05-17 Bioject Inc. Needleless hypodermic injection device
US5064413A (en) 1989-11-09 1991-11-12 Bioject, Inc. Needleless hypodermic injection device
US5859205A (en) 1989-12-21 1999-01-12 Celltech Limited Humanised antibodies
US5939598A (en) 1990-01-12 1999-08-17 Abgenix, Inc. Method of making transgenic mice lacking endogenous heavy chains
US5633425A (en) 1990-08-29 1997-05-27 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5814318A (en) 1990-08-29 1998-09-29 Genpharm International Inc. Transgenic non-human animals for producing heterologous antibodies
US5625126A (en) 1990-08-29 1997-04-29 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
US5569825A (en) 1990-08-29 1996-10-29 Genpharm International Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5661016A (en) 1990-08-29 1997-08-26 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5545806A (en) 1990-08-29 1996-08-13 Genpharm International, Inc. Ransgenic non-human animals for producing heterologous antibodies
WO1992011018A1 (en) 1990-12-19 1992-07-09 Protein Design Labs, Inc. Improved humanized immunoglobulins
US5821337A (en) 1991-06-14 1998-10-13 Genentech, Inc. Immunoglobulin variants
US6054297A (en) 1991-06-14 2000-04-25 Genentech, Inc. Humanized antibodies and methods for making them
US6407213B1 (en) 1991-06-14 2002-06-18 Genentech, Inc. Method for making humanized antibodies
WO1993011161A1 (en) 1991-11-25 1993-06-10 Enzon, Inc. Multivalent antigen-binding proteins
US5932448A (en) 1991-11-29 1999-08-03 Protein Design Labs., Inc. Bispecific antibody heterodimers
US6129914A (en) 1992-03-27 2000-10-10 Protein Design Labs, Inc. Bispecific antibody effective to treat B-cell lymphoma and cell line
US5399163A (en) 1992-07-24 1995-03-21 Bioject Inc. Needleless hypodermic injection methods and device
US5383851A (en) 1992-07-24 1995-01-24 Bioject Inc. Needleless hypodermic injection device
US6005079A (en) 1992-08-21 1999-12-21 Vrije Universiteit Brussels Immunoglobulins devoid of light chains
WO1994004678A1 (en) 1992-08-21 1994-03-03 Casterman Cecile Immunoglobulins devoid of light chains
WO1994025591A1 (en) 1993-04-29 1994-11-10 Unilever N.V. PRODUCTION OF ANTIBODIES OR (FUNCTIONALIZED) FRAGMENTS THEREOF DERIVED FROM HEAVY CHAIN IMMUNOGLOBULINS OF $i(CAMELIDAE)
US5532210A (en) 1994-06-08 1996-07-02 E. I. Du Pont De Nemours And Company High temperature superconductor dielectric slow wave structures for accelerators and traveling wave tubes
WO1996033735A1 (en) 1995-04-27 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1996034096A1 (en) 1995-04-28 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1998024893A2 (en) 1996-12-03 1998-06-11 Abgenix, Inc. TRANSGENIC MAMMALS HAVING HUMAN IG LOCI INCLUDING PLURAL VH AND Vλ REGIONS AND ANTIBODIES PRODUCED THEREFROM
US6057098A (en) 1997-04-04 2000-05-02 Biosite Diagnostics, Inc. Polyvalent display libraries
US6620135B1 (en) 1998-08-19 2003-09-16 Weston Medical Limited Needleless injectors
US6096002A (en) 1998-11-18 2000-08-01 Bioject, Inc. NGAS powered self-resetting needle-less hypodermic jet injection apparatus and method
US6329511B1 (en) 1998-12-01 2001-12-11 Protein Design Labs, Inc. Humanized antibodies to γ-interferon
US7214775B2 (en) 1999-04-09 2007-05-08 Kyowa Hakko Kogyo Co., Ltd. Method of modulating the activity of functional immune molecules
US6946292B2 (en) 2000-10-06 2005-09-20 Kyowa Hakko Kogyo Co., Ltd. Cells producing antibody compositions with increased antibody dependent cytotoxic activity
WO2010048346A1 (en) 2008-10-21 2010-04-29 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
WO2011075744A1 (en) 2009-12-20 2011-06-23 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
US20160281083A1 (en) * 2010-09-30 2016-09-29 Nitto Denko Corporation Modulation of timp1 and timp2 expression
US20150355196A1 (en) * 2013-01-17 2015-12-10 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
US20160297893A1 (en) * 2013-08-07 2016-10-13 Astute Medical, Inc. Assays for timp2 having improved performance in biological samples

Non-Patent Citations (123)

* Cited by examiner, † Cited by third party
Title
"Expression And Amplification Of Engineered Mouse Dihydrofolate Reductase Minigenes", NATURE, vol. 322, pages 562 - 565
"Physicians' Desk Reference", 1 November 2002, THOMSON HEALTHCARE
"Remington's Pharmaceutical Sciences and U.S. Pharmacopeia: National Formulary", 1984, MACK PUBLISHING COMPANY
"Sigma-Aldrich", CATALOGUE, 2003
AKI. JO ET AL., CLIN J AM SOC NEPHROL, vol. 2, 2007, pages 356 - 365
AMAR ET AL.: "Potential clinical implications of recent matrix metalloproteinase inhibitor design strategies", EXPERT REV PROTEOMICS, vol. 12, no. 5, 2015, pages 445 - 7, XP055484646 *
BAGSHAW ET AL., NEPHROL. DIAL. TRANSPLANT., vol. 23, 2008, pages 1203 - 1210
BALDRIDGE ET AL.: "Monophosphoryl Lipid A (MPL) Formulations For The Next Generation Of Vaccines", METHODS, vol. 19, 1999, pages 103 - 107, XP004466812, DOI: 10.1006/meth.1999.0834
BARBAS, NATURE MEDICINE, vol. 1, 1995, pages 837 - 839
BEBBINGTONHENTSCHEL: "DNA CLONING", vol. 3, 1987, ACADEMIC PRESS, article "The Use Of Vectors Based On Gene Amplification For The Expression Of Cloned Genes In Mammaian Cells"
BELLOMO ET AL., CRIT CARE, vol. 8, no. 4, 2004, pages R204 - 12
BENIAMINOVITZ ET AL., NEW ENGL. J. MED., vol. 343, 2000, pages 1594 - 1602
BIEG ET AL.: "GAD65 And Insulin B Chain Peptide (9-23) Are Not Primary Autoantigens In The Type 1 Diabetes Syndrome Of The BB Rat", AUTOIMMUNITY, vol. 31, no. 1, 1999, pages 15 - 24
BITTER ET AL.: "Expression And Secretion Vectors For Yeast", METHODS IN ENZYMOL, vol. 153, 1987, pages 516 - 544
BRENNAN ET AL., SCIENCE, vol. 229, 1985, pages 1202 - 1207
BRUGGEMANN ET AL., CURR OPIN BIOTECHNOL, vol. 8, 1997, pages 455 - 458
CARPENTER ET AL., J. IMMUNOL., vol. 165, 2000, pages 2214
CARTER ET AL., PROC NATL ACAD SCI USA, vol. 89, 1992, pages 4285 - 9
CHOTHIA ET AL., NATURE, vol. 342, 1989, pages 877 - 883
COLBERE-GARAPIN ET AL.: "A New Dominant Hybrid Selective Marker For Higher Eukaryotic Cells", J. MOL. BIOL., vol. 150, 1981, pages 1 - 14, XP024018978, DOI: 10.1016/0022-2836(81)90321-1
CROUSE ET AL.: "Expression And Amplification Of Engineered Mouse Dihydrofolate Reductase Minigenes", MOL. CELL. BIOL., vol. 3, 1983, pages 257 - 266
CWIRLA ET AL., PROC. NATL. ACAD. SCI. USA, vol. 87, 1990, pages 6378 - 82
DE BRUIN ET AL., NATURE BIOTECHNOL, vol. 17, 1999, pages 397 - 399
DE PASCALIS ET AL., J. IMMUNOL., vol. 168, 2002, pages 3076 - 3084
DESMYTER ET AL., J. BIOL. CHEM., vol. 276, 2001, pages 26285 - 26290
DEVLIN ET AL., SCIENCE, vol. 249, 1990, pages 386 - 88
ETON ET AL.: "Active Immunotherapy With Ultraviolet B-Irradiated Autologous Whole Melanoma Cells Plus DETOX In Patients With Metastatic Melanoma", CLIN. CANCER RES., vol. 4, no. 3, 1998, pages 619 - 627
FDA: "Histopathology was used as the gold standard that defined injury", REVIEW OF QUALIFICATION DATA FOR BIOMARKERS OF NEPHROTOXICITY SUBMITTED BY THE PREDICTIVE SAFETY TESTING CONSORTIUM, 2009, pages 13
FOOTEWINTER, J. MOL. BIOL., vol. 224, 1992, pages 487 - 499
GHOSH ET AL., NEW ENGL. J. MED., vol. 349, 2003, pages 427 - 434
GIBELLINI ET AL., J. IMMUNOL., vol. 160, 1998, pages 3891 - 3898
GIVAN: "Flow Cytometry", 2001, WILEY-LISS
GORMAN ET AL., PROC. NATL. ACAD. SCI. USA, vol. 88, 1991, pages 4181 - 4185
GRIFFITHS ET AL., CURR OPIN BIOTECHNOL, vol. 9, 1998, pages 102 - 108
GUNNERSON ET AL., J. TRAUMA ACUTE CARE SURG., vol. 80, 2016, pages 243 - 49
GUPTA ET AL.: "Adjuvants For Human Vaccines-Current Status, Problems And Future Prospects", VACCINE, vol. 13, no. 14, 1995, pages 1263 - 1276, XP004057427, DOI: 10.1016/0264-410X(95)00011-O
HARLOW ET AL.: "ANTIBODIES: A LABORATORY MANUAL", 1988, COLD SPRING HARBOR LABORATORY PRESS, pages: 139 - 243
HEROLD ET AL., NEW ENGL. J. MED., vol. 346, 2002, pages 1692 - 1698
HOLLIGER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 6444 - 6448
HOLLIGERHUDSON, NAT. BIOTECHNOL., vol. 23, 2005, pages 1126 - 1136
HOOGENBOOMCHAMES, IMMUNOL. TODAY, vol. 21, 2000, pages 371 - 377
IGMA-ALDRICH, CO., PRODUCTS FOR LIFE SCIENCE RESEARCH, ST. LOUIS, MO, vol. 1-4, 2001, pages 45 - 89
INOUYE ET AL.: "Up-Promoter Mutations In The Lpp Gene Of Escherichia coli", NUCLEIC ACIDS RES., vol. 13, 1985, pages 3101 - 3110, XP001316824
JOHNSON ET AL.: "3-O-Desacyl Monophosphoryl Lipid A Derivatives: Synthesis And Immunostimulant Activities", JOURNAL OF MEDICINAL CHEMISTRY, vol. 42, 1999, pages 4640 - 4649, XP002186005, DOI: 10.1021/jm990222b
JONES ET AL., NATURE, vol. 321, 1986, pages 522 - 525
JONG ET AL., PLOS BIOL, vol. 14, no. 1, 2016, pages e1002344
KAITHAMANA ET AL., J. IMMUNOL., vol. 162, 1999, pages 2804 - 2811
KAY ET AL.: "Phage Display of Peptides and Proteins: A Laboratory Manual", 1996, ACADEMIC PRESS
KELLUM, CRIT. CARE MED., vol. 36, 2008, pages 141 - 45
KOHLER, G.MILSTEIN, C.: "Continuous cultures of fused cells secreting antibody of predefined specificity", NATURE, vol. 256, no. 5517, 1975, pages 495 - 497, XP037052082, DOI: 10.1038/256495a0
KOHLER: "Immunoglobulin Chain Loss In Hybridoma Lines", PROC. NATL. ACAD. SCI. (U.S.A., vol. 77, 1980, pages 2197 - 2199
KRAUSS ET AL., PROTEIN ENGINEERING, vol. 16, no. 10, 2003, pages 753 - 759
LABRIJN ET AL., PROC. NATL. ACAD. SCI. USA, vol. 110, 2013, pages 5145 - 50
LE DOUSSAL ET AL., J. IMMUNOL., vol. 146, 1991, pages 169 - 175
LIU ET AL., J. NEUROL. NEUROSURG. PSYCH., vol. 67, 1999, pages 451 - 456
LODMELL ET AL.: "DNA Vaccination Of Mice Against Rabies Virus: Effects Of The Route Of Vaccination And The Adjuvant Monophosphoryl Lipid A (MPL", VACCINE, vol. 18, 2000, pages 1059 - 1066, XP002674827, DOI: 10.1016/S0264-410X(99)00352-7
LOGAN ET AL.: "Adenovirus Tripartite Leader Sequence Enhances Translation Of mRNAs Late After Infection", PROC. NATL. ACAD. SCI. (U.S.A., vol. 81, 1984, pages 3655 - 3659
LONBERG ET AL.: "Human Antibodies From Transgenic Mice", INT. REV. IMMUNOL., vol. 13, 1995, pages 65 - 93
LONG, ANN. REV. IMMUNOL., vol. 17, 1999, pages 875
LOPES ET AL.: "The RIFLE and AKIN classifications for acute Kidney injury a critical ana comprehensive review", CLIN KIDNEY J., vol. 6, no. 1, 2013, pages 8 - 14, XP055165125 *
LOWY ET AL.: "Isolation Of Transforming DNA: Cloning The Hamster Aprt Gene", CELL, vol. 22, 1980, pages 817 - 823, XP023912123, DOI: 10.1016/0092-8674(80)90558-9
MACK ET AL., PROC. NATL. ACAD. SCI. USA, vol. 92, 1995, pages 7021 - 7025
MALECKI ET AL., PROC. NATL. ACAD. SCI. USA, vol. 99, 2002, pages 213 - 218
MENDEZ ET AL., NATURE GENETICS, vol. 15, 1997, pages 146 - 156
MENNE ET AL., BIOINFORMATICS APPLICATIONS NOTE, vol. 16, 2000, pages 741 - 742
MENNE ET AL., BIOINFORMATICS, vol. 16, 2000, pages 741 - 742
MERCHANT ET AL., J. BIOL. CHEM., vol. 275, 2000, pages 38633
MEYAARD ET AL., IMMUNITY, vol. 7, 1997, pages 283 - 290
MILGROM, NEW ENGL. J. MED., vol. 341, 1999, pages 1966 - 1973
MORGAN ET AL.: "Human gene therapy", ANN. REV. BIOCHEM., vol. 62, 1993, pages 191 - 217, XP002031972, DOI: 10.1146/annurev.bi.62.070193.001203
MULLIGAN ET AL.: "Selection For Animal Cells That Express The Escherichia coli Gene Coding For Xanthine-Guanine Phosphoribosyltransferase", PROC. NATL. ACAD. SCI. (U.S.A., vol. 78, 1981, pages 2072 - 2076
MULLIGAN: "The Basic Science Of Gene Therapy", SCIENCE, vol. 260, 1993, pages 926 - 932, XP002925334, DOI: 10.1126/science.8493530
MUYLDERMANS ET AL., TRENDS BIOCHEM. SCI., vol. 26, 2001, pages 230
NELSONGRISWOLD, COMPUT. METHODS PROGRAMS BIOMED., vol. 27, 1988, pages 65 - 8
O'CONNOR ET AL., PROTEIN ENG, vol. 11, 1998, pages 321 - 8
O'HARE ET AL.: "Transformation Of Mouse Fibroblasts To Methotrexate Resistance By A Recombinant Plasmid Expressing A Prokaryotic Dihydrofolate Reductase", PROC. NATL. ACAD. SCI. (U.S.A., vol. 78, 1981, pages 1527 - 1531, XP055600445
OSTERMANN ET AL.: "Acute kidney injury 2016: diagnosis and diagnostic workup", CRIT CARE., vol. 20, no. 1, September 2016 (2016-09-01), pages 299, XP055484647 *
OWENS ET AL.: "Flow Cytometry Principles for Clinical Laboratory Practice", 1994, JOHN WILEY AND SONS
PORTIELJI ET AL., CANCER IMMUNOL. IMMUNOTHER., vol. 52, pages 151 - 144
PRESTA ET AL., CANCER RES., vol. 57, no. 20, 1997, pages 4593 - 9
QUEEN ET AL., PROC NATL ACAD SCI, USA, vol. 86, 1989, pages 10029 - 33
RADER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 95, 1998, pages 8910 - 8915
RASO ET AL., J. BIOL. CHEM., vol. 272, no. 16, 1997, pages 27623 - 10684
REICHMANN ET AL., J. IMMUNOL. METHODS, vol. 231, 1999, pages 177 - 189
RICCI ET AL., KIDNEY INT, vol. 73, 2008, pages 538 - 546
RIECHMANN ET AL., NATURE, vol. 332, 1988, pages 323 - 329
ROGUSKA ET AL., PROC. NATL. ACAD. SCI. USA, vol. 113, 1994, pages 969 - 973
ROQUE ET AL., BIOTECHNOL. PROG., vol. 20, 2004, pages 639 - 654
ROSOK ET AL., J. BIOL. CHEM., vol. 271, no. 37, 1996, pages 22611 - 22618
ROSSI ET AL., AM. J. CLIN. PATHOL., vol. 124, 2005, pages 295 - 302
RUTHER ET AL.: "Easy Identification Of cDNA Clones", EMBO J, vol. 2, 1983, pages 1791 - 1794, XP055413083, DOI: 10.1002/j.1460-2075.1983.tb01659.x
SAMBROOK ET AL.: "GENE TRANSFER AND EXPRESSION, A LABORATORY MANUAL", 1990, COLD SPRING HARBOR LABORATORY
SANTERRE ET AL.: "Expression Of Prokaryotic Genes For Hygromycin B And G418 Resistance As Dominant-Selection Markers In Mouse L Cells", GENE, vol. 30, 1984, pages 147 - 156, XP025696524, DOI: 10.1016/0378-1119(84)90115-X
See also references of EP3532101A4
SEGAL ET AL., J. IMMUNOL. METHODS, vol. 248, 2001, pages 1 - 15
SHAPIRO: "Practical Flow Cytometry", 2003, MOLECULAR PROBES, INC., article "Molecular Probes"
SHIBA ET AL.: "Chronic kidney disease and heart failure - Bidirectional close link and common therapeutic goal", J CARDIOL., vol. 57, no. 1, 2011, pages 8 - 17, XP027576265 *
SHINKAWA ET AL., J. BIOL. CHEM., vol. 278, 2003, pages 3466 - 3473
SLAMON ET AL., NEW ENGL. J. MED., vol. 344, 2001, pages 783 - 792
SZYBALSKA ET AL.: "Genetics Of Human Cess Line. IV. DNA-Mediated Heritable Transformation Of A Biochemical Trait", PROC. NATL. ACAD. SCI. (U.S.A., vol. 48, 1962, pages 2026 - 2034
TACHIBANA ET AL.: "Altered Reactivity Of Immunoglobutin Produced By Human-Human Hybridoma Cells Transfected By pSV2-Neo Gene", CYTOTECHNOLOGY, vol. 6, no. 3, 1991, pages 219 - 226
TANG ET AL., J. BIOL. CHEM., vol. 274, 1999, pages 27371 - 27378
TOLSTOSHEV: "Gene Therapy, Concepts, Current Trials And Future Directions", ANN. REV. PHARMACOL. TOXICOL., vol. 32, 1993, pages 573 - 596
TRAUNECKER ET AL., EMBO J, vol. 10, 1991, pages 3655 - 3659
TSURUSHITAVASQUEZ: "Molecular Biology of B Cells", 2004, ELSEVIER SCIENCE, article "Humanization of Monoclonal Antibodies", pages: 533 - 545
VAIDYA ET AL., NAT. BIOTECHNOL., vol. 28, 2010, pages 478 - 85
VAN ERP ET AL., J. IMMUNOASSAY, vol. 12, 1991, pages 425 - 43
VAN HEEKE ET AL.: "Expression Of Human Asparagine Synthetase In Escherichia coli", J. BIOL. CHEM., vol. 24, 1989, pages 5503 - 5509, XP002438811
VAUGHAN ET AL., NATURE BIOTECHNOL, vol. 14, 1996, pages 309 - 314
VERHOEYEN ET AL., SCIENCE, vol. 239, 1988, pages 1534 - 1536
VOLKEL ET AL., PROTEIN ENGINEERING, vol. 14, 2001, pages 815 - 823
VON HEIJNE, EUR. J. BIOCHEM., vol. 133, 1983, pages 17 - 21
VON HEIJNE, NUCLEIC ACIDS RES, vol. 14, 1986, pages 4683 - 4690
WIGLER ET AL.: "Transfer Of Purified Herpes Virus Thymidine Kinase Gene To Cultured Mouse Cells", CELL, vol. 11, 1977, pages 223 - 232, XP023910928, DOI: 10.1016/0092-8674(77)90333-6
WIGLER ET AL.: "Transformation Of Mammalian Cells With An Amplfiable Dominant-Acting Gene", PROC. NATL. ACAD. SCI. (U.S.A., vol. 77, 1980, pages 3567 - 3570
WILSON, J. IMMUNOL. METHODS, vol. 175, 1994, pages 267 - 273
WREN ET AL., COMPUT. METHODS PROGRAMS BIOMED, vol. 68, 2002, pages 177 - 181
WRIGHT ET AL., IMMUNITY, vol. 13, 2000, pages 233 - 242
WU ET AL., J. MOL. BIOL., vol. 294, 1999, pages 151 - 162
WU: "Monoclonal Antibodies and Peptide Therapy in Autoimmune Diseases", vol. 217, 1993, JOHN WILEY & SONS
YAN ET AL.: "Expression of MMP-2 and TIMP-1 in Renal Tissue of Patients with Chronic Active Antibody-mediated Renal Graft Rejection", DIAGN PATHOL., vol. 7, no. 141, 2012, pages 1 - 6, XP021137264 *
YARMUSH, J. BIOCHEM. BIOPHYS. METHODS, vol. 25, 1992, pages 85 - 97
ZHENG ET AL., J. BIOL CHEM., vol. 276, 2001, pages 12999

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10823733B2 (en) 2008-10-21 2020-11-03 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
US11754566B2 (en) 2008-10-21 2023-09-12 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
US10830773B2 (en) 2009-12-20 2020-11-10 Astute Medical, Inc. Methods for prognosis of future acute renal injury and acute renal failure
US11262363B2 (en) 2009-12-20 2022-03-01 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
US12123882B2 (en) 2009-12-20 2024-10-22 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
US11761967B2 (en) 2010-06-23 2023-09-19 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
US10823742B2 (en) 2010-06-23 2020-11-03 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
US10935548B2 (en) 2011-12-08 2021-03-02 Astute Medical, Inc. Methods for diagnosis and prognosis of renal injury and renal failure using insulin-like growth factor-binding protein 7 and metalloproteinase inhibitor 2
US11099194B2 (en) 2013-01-17 2021-08-24 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
US12019080B2 (en) 2013-01-17 2024-06-25 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
US11229676B2 (en) 2013-12-03 2022-01-25 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
US11243202B2 (en) 2015-04-09 2022-02-08 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
US11243217B2 (en) 2016-06-06 2022-02-08 Astute Medical, Inc. Management of acute kidney injury using insulin-like growth factor-binding protein 7 and tissue inhibitor of metalloproteinase 2
US11346846B2 (en) 2017-02-06 2022-05-31 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
US11718682B2 (en) 2017-04-05 2023-08-08 Astute Medical, Inc. Assays for TIMP2 having improved performance in biological samples

Also Published As

Publication number Publication date
EP3532101A1 (en) 2019-09-04
ES2908239T3 (es) 2022-04-28
EP3532101B1 (en) 2021-12-08
US20190263926A1 (en) 2019-08-29
AU2017348365A1 (en) 2019-05-23
CN110352073A (zh) 2019-10-18
JP7100030B2 (ja) 2022-07-12
EP3532101A4 (en) 2020-06-10
JP2019533695A (ja) 2019-11-21

Similar Documents

Publication Publication Date Title
EP3532101B1 (en) Use of antibodies to timp-2 for the improvement of renal function
US11718682B2 (en) Assays for TIMP2 having improved performance in biological samples
KR101518144B1 (ko) 매트릭스 메탈로프로테이나제 9에 대한 항체
US20240124569A1 (en) Antibodies and assays for ccl14
TW201333034A (zh) 新穎抗人類ctgf抗體
US20250346653A1 (en) Bispecific antibodies and method of treating ocular disease
US20150191541A1 (en) Antibodies that recognize iapp
JP7676356B2 (ja) 新規bssl抗体
AU2020300544B2 (en) Antibodies and assays for CCL14
EP3211007B1 (en) Pharmaceutical composition for treating crohn's disease
US20250289873A1 (en) Complement factor h related 4-specific antibodies and uses thereof
WO2023212294A1 (en) Angiopoietin-related protein 7-specific antibodies and uses thereof
CA3250574A1 (en) Bispecific antibodies and methods of treating ocular disease

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865610

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019522925

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017348365

Country of ref document: AU

Date of ref document: 20171027

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017865610

Country of ref document: EP

Effective date: 20190528