WO2018079677A1 - Concentrated solar power generation device - Google Patents

Concentrated solar power generation device Download PDF

Info

Publication number
WO2018079677A1
WO2018079677A1 PCT/JP2017/038771 JP2017038771W WO2018079677A1 WO 2018079677 A1 WO2018079677 A1 WO 2018079677A1 JP 2017038771 W JP2017038771 W JP 2017038771W WO 2018079677 A1 WO2018079677 A1 WO 2018079677A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentrating solar
solar cell
power generation
concentrating
tracking
Prior art date
Application number
PCT/JP2017/038771
Other languages
French (fr)
Japanese (ja)
Inventor
誠和 中谷
山田 昇
Original Assignee
株式会社サンマリオン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サンマリオン filed Critical 株式会社サンマリオン
Publication of WO2018079677A1 publication Critical patent/WO2018079677A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/10Cleaning arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a concentrating solar power generation device.
  • Patent Document 5 a solar power generation device including the tracking device as described above has been proposed.
  • a general tracking device is large in order to realize a structure excellent in wind resistance, but the solar cell load is not large for that. For this reason, a distributed movable type tracking device has also been proposed, but the mechanism of the tracking device is complicated and the cost increases. In addition, the tracking device has a large problem during installation and transportation.
  • a conventional general tracking device uses a component having no or very low light transmission as its constituent member. Then, for example, when a concentrating solar cell panel capable of transmitting incident scattered light is controlled by a general tracking device, the scattered light transmitted through the concentrating solar cell panel is transmitted to the tracking device. The utility value of the concentrating solar cell panel which cannot transmit and can transmit scattered light will fall.
  • an object of the present invention is provided with a concentrating solar cell panel and a dispersion movable tracking device, and is capable of condensing direct light at high magnification, and at the same time, scattered light.
  • the concentrating solar power generation device (hereinafter, also referred to as “concentrating solar power generation device ⁇ ”) A plurality of concentrating solar panels arranged in an array and converting sunlight into electric power; A driving device for driving the plurality of concentrating solar cell panels; A control device for controlling the drive amount of the drive device so that the plurality of concentrating solar cell panels track a preset solar orbit, A concentrating solar power generation device including a tracking device, Each of the concentrating solar cell panels (hereinafter also referred to as “concentrating solar cell panel ⁇ ”) A concentrator that collects sunlight; A highly transmissive plate that receives the sunlight collected by the condenser and transmits at least a scattered light component of the sunlight; A plurality of solar cells that receive the sunlight collected by the condenser and generate power; and A circuit provided on a part of the surface of the highly transmissive plate and electrically connectable to the solar battery cell; Each of the solar cells is dispersedly disposed on the surface of the highly transmissive plate, The solar cell
  • a concentrating solar power generation device (hereinafter, also referred to as “concentrating solar power generation device ⁇ ”) A plurality of concentrating solar panels arranged in an array and converting sunlight into electric power; A driving device for driving the plurality of concentrating solar cell panels; A control device for controlling the drive amount of the drive device so that the plurality of concentrating solar cell panels track a preset solar orbit, A concentrating solar power generation device including a tracking device, Each of the concentrating solar cell panels (hereinafter also referred to as “concentrating solar cell panel ⁇ ”) A concentrator that collects sunlight; A highly transmissive plate that receives the sunlight collected by the condenser and transmits at least a scattered light component of the sunlight; A plurality of solar cells that receive the sunlight collected by the condenser and generate power; and A circuit provided on a part of the surface of the highly transmissive plate and electrically connectable to the solar battery cell; Each of the solar cells is dispersedly disposed on the surface opposite to the light receiving surface of the high transmitt
  • a concentrating solar power generation device (hereinafter, also referred to as “concentrating solar power generation device ⁇ ”), A plurality of concentrating solar panels arranged in an array and converting sunlight into electric power; A driving device for driving the plurality of concentrating solar cell panels; A control device for controlling the drive amount of the drive device so that the plurality of concentrating solar cell panels track a preset solar orbit, A concentrating solar power generation device including a tracking device, Each of the concentrating solar cell panels (hereinafter also referred to as “concentrating solar cell panel ⁇ ”) A concentrator that collects sunlight; A plurality of solar cells that receive the sunlight collected by the condenser and generate power; and A circuit electrically connectable to the solar cell, The plurality of solar cells are arranged in a distributed manner in the concentrating solar cell panel, with spaces provided between them.
  • the total light receiving area of the solar battery cell is 10% or less of the total sunlight incident area
  • the tracking device is Made of a material that transmits the scattered light component from the sunlight,
  • a plurality of trackers each mounting the plurality of concentrating solar cell panels;
  • Each of the plurality of trackers is A holding member for mounting the concentrating solar cell panel;
  • the plurality of concentrating solar cell panels are centrally controlled by one control device via the plurality of trackers.
  • the concentrating solar power generation device ⁇ is provided with the concentrating solar cell panel ⁇ , and the concentrating solar power generation device ⁇ is provided with the concentrating solar cell panel ⁇ .
  • the concentrating solar power generation device ⁇ is provided with a concentrating solar cell panel ⁇ . Scattering caused by concentrating solar cell panels ⁇ , ⁇ , and ⁇ , especially by concentrating solar cell panels ⁇ and ⁇ , such as a decrease in conversion efficiency due to temperature rise in conventional concentrating solar cell panels Light can be transmitted at a high rate.
  • the concentrating solar cell panels ⁇ , ⁇ , and ⁇ particularly according to the concentrating solar cell panels ⁇ and ⁇ , it is not possible with a normal non-condensing solar cell panel or a low-magnification concentrating solar cell panel.
  • the incident light it is possible to use the scattered light for purposes other than power generation, and it is also possible to generate power by condensing direct light at a high magnification.
  • the concentrating solar cell panels ⁇ , ⁇ , and ⁇ have a high heat dissipation characteristic in which a decrease in the condensing rate is suppressed as much as possible even when the focal point is misaligned.
  • the concentrating solar cell panels ⁇ , ⁇ , and ⁇ if another low-cost solar cell is installed on the lower surface side of the solar cell, it is possible to generate power from scattered light and further increase the power generation amount. it can.
  • each of the trackers on which the concentrating solar cell panels ⁇ , ⁇ , and ⁇ are mounted can be driven by the driving device.
  • the concentrating solar power generation devices ⁇ , ⁇ , and ⁇ that are distributed and movable and have a tracking device with a simple structure can be realized at low cost.
  • Each of the plurality of trackers drives at least three points on the holding member based on the controlled driving amount of the driving device, so that the concentrating solar cell panel is set in advance.
  • Tracking It is preferable that the driving device includes at least three driving units that respectively drive the at least three points of the holding member.
  • the concentrating solar cell panel ⁇ is simple in structure. , ⁇ , and ⁇ can be more accurately tracked to the solar orbit.
  • the tracking mechanism is A support column supporting the holding member; A base portion that supports the support portion, It is preferable that a ring for connecting the holding member and the support column is further provided.
  • the holding member and the support column are connected by the ring, the holding member is driven smoothly through the ring.
  • the concentrating solar cell panels ⁇ , ⁇ , and ⁇ can be more accurately tracked in the solar orbit.
  • a gantry on which the tracking device is mounted further comprises a rectangular case made of a transparent member provided to cover the entire tracking device, It is preferable that at least one surface of the case is inclined.
  • a cleaning device for cleaning the light receiving side surface of each of the concentrating solar cell panels is further provided above the plurality of concentrating solar cell panels.
  • the light receiving side surfaces of the concentrating solar cell panels ⁇ , ⁇ , and ⁇ are maintained in a cleaner state, and the concentrating solar power generation devices ⁇ , ⁇ , and ⁇ have higher power generation efficiency.
  • the direct light can be blocked at a higher ratio, and the scattered light can be transmitted more efficiently.
  • the plurality of tracking devices are preferably driven simultaneously by one control device via the driving device.
  • a plurality of tracking devices can be centrally controlled via one control device, and a concentrating solar power generation device ⁇ , ⁇ , and ⁇ having a plurality of tracking devices with a simple structure is realized. can do.
  • the present invention it is possible to collect direct light at a high magnification and generate power with high efficiency and to cut off at a high ratio, and at the same time, it can efficiently transmit scattered light and be used for multiple purposes.
  • a concentrating solar power generation apparatus that is small in size, excellent in installation convenience and transportability in transportation, and having an open feeling at low cost.
  • FIG. 1A and 1B are schematic explanatory views showing a configuration example of a concentrating solar cell panel according to Example 1, where FIG. 1A is a plan view and FIG. 1B is a cross-sectional view.
  • FIG. 2 is a diagram illustrating a result of predicting the temperature of the solar battery cell by thermal analysis simulation in Example 1.
  • FIG. 3 is a schematic explanatory diagram illustrating a configuration example of a concentrating solar cell panel according to Example 2, in which (a) is a plan view and (b) is a cross-sectional view.
  • FIG. 4 is a schematic explanatory diagram illustrating a configuration example of a concentrating solar cell panel according to Example 3, where (a) is a plan view and (b) is a cross-sectional view.
  • FIG. 1A and 1B are schematic explanatory views showing a configuration example of a concentrating solar cell panel according to Example 1, where FIG. 1A is a plan view and FIG. 1B is a cross-sectional view.
  • FIG. 2 is
  • FIG. 5 is a schematic explanatory diagram (cross-sectional view) showing a configuration example of a concentrating solar cell panel according to Example 4.
  • FIG. 6 is a schematic explanatory diagram illustrating a configuration example of the concentrating solar cell panel according to Examples 5 and 6, where (a) is a cross-sectional view of the concentrating solar cell panel, and (b) is a cross-sectional view of the cell package.
  • FIG. 3C is a cross-sectional view of the cell package.
  • FIG. 7 is a schematic explanatory view illustrating a configuration example of a concentrating solar cell panel according to Example 7, in which (a) is a cross-sectional view and (b) is a plan view.
  • FIG. 6 is a schematic explanatory diagram illustrating a configuration example of the concentrating solar cell panel according to Examples 5 and 6, where (a) is a cross-sectional view of the concentrating solar cell panel, and (b) is a cross-sectional view of the cell package.
  • FIG. 3C is
  • FIG. 8 is a schematic explanatory diagram illustrating a configuration example of a concentrating solar cell panel according to Example 8, where (a) is a cross-sectional view of the concentrating solar cell panel, and (b) is a cross-sectional view of the cell package. is there.
  • FIG. 9 is a schematic explanatory diagram illustrating a configuration example of a concentrating solar cell panel according to Example 9, in which (a) is a plan view and (b) is a cross-sectional view.
  • FIG. 10 is a schematic explanatory diagram illustrating an example of the tracking device that configures the concentrating solar power generation device according to the embodiment of the present invention.
  • FIG. 11 is a schematic explanatory diagram showing an example of the structure of a tracker constituting the tracking device in an embodiment of the present invention.
  • FIG. 12 is a schematic explanatory view showing a structure example of a folded state of the tracker constituting the tracking device in one embodiment of the present invention, and (a) is a diagram seen from substantially above the tracker. ) Is a diagram seen from the lateral direction of the tracker.
  • FIG. 13 is a schematic explanatory diagram showing an example of a wiring / transmission shaft structure for realizing control of the tracking device constituting the concentrating solar power generation device according to the embodiment of the present invention.
  • FIG. 14 is a schematic explanatory diagram illustrating an example of a wiring / transmission shaft structure for realizing control of the tracking device that configures the concentrating solar power generation device according to the embodiment of the present invention.
  • FIG. 12 is a schematic explanatory view showing a structure example of a folded state of the tracker constituting the tracking device in one embodiment of the present invention, and (a) is a diagram seen from substantially above the tracker. ) Is a diagram seen from the lateral direction of the tracker.
  • FIG. 15 is a schematic explanatory diagram illustrating an example of the tracking device that configures the concentrating solar power generation device according to the embodiment of the present invention.
  • FIG. 16 is a schematic explanatory diagram illustrating a configuration example of a concentrating solar power generation device including a plurality of tracking devices according to an embodiment of the present invention.
  • FIG. 17 is a schematic explanatory diagram illustrating an example of a tracking device that constitutes a concentrating solar power generation device including a cleaning device according to an embodiment of the present invention.
  • FIG. 16 is a schematic explanatory diagram illustrating a configuration example of a concentrating solar power generation device including a plurality of tracking devices according to an embodiment of the present invention.
  • FIG. 17 is a schematic explanatory diagram illustrating an example of a tracking device that constitutes a concentrating solar power generation device including a cleaning device according to an embodiment of the present invention.
  • FIG. 18 is a diagram three-dimensionally illustrating a configuration example of a concentrating solar power generation device according to an embodiment of the present invention, and (a) is a diagram of the concentrating solar power generation device including a tracking device, (B) is a figure of the concentrating solar power generation device provided with the some tracking apparatus.
  • FIG. 19 is a diagram three-dimensionally showing an example of mounting the concentrating solar power generation device according to one embodiment of the present invention.
  • FIG. 20 is a schematic explanatory diagram illustrating a configuration example of a ribbon used for the tracker of the tracking device that configures the concentrating solar power generation device according to the embodiment of the present invention, and (a) is a straight line before winding.
  • the state figure and (b) are the figure of the state wound up.
  • FIG. 21 is the schematic of the tracking apparatus which comprises the concentrating solar power generation device which concerns on one Embodiment of this invention used for the experiment example, (a) is a schematic top view of a tracking apparatus, (b) Is a schematic side view of the tracking device in the longitudinal direction, and (c) is a schematic side view of the tracking device in the short direction.
  • FIG. 22 is a schematic perspective view of a solar cell module used in the experimental example, in which no light-shielding object is disposed.
  • FIG. 23 is a schematic perspective view of a solar cell module used in the experimental example in which the tracking device shown in FIG. 21 is arranged.
  • FIG. 24 is a schematic perspective view of a solar cell module used in the experimental example and provided with a light blocking object.
  • FIG. 25 is an IV curve showing the results of a sunlight transmission / light-shielding experiment performed using each of the solar cell modules shown in FIGS.
  • the concentrating solar power generation devices ⁇ and ⁇ are collectively referred to as a concentrating solar power generation device I, and the concentrating solar power generation device ⁇ is also referred to as a concentrating solar power generation device II. .
  • the concentrating solar power generation apparatus ⁇ is at least: (1) A plurality of concentrating solar cell panels ⁇ arranged in an array and converting sunlight into electric power, (2) a driving device for driving a plurality of concentrating solar cell panels ⁇ ; (3) a control device that controls the drive amount of the drive device so that the plurality of concentrating solar cell panels ⁇ track a preset solar orbit, (4) A tracking device is provided.
  • the concentrating solar power generation apparatus ⁇ is at least: (1) A plurality of concentrating solar cell panels ⁇ arranged in an array and converting sunlight into electric power; (2) a driving device for driving a plurality of concentrating solar cell panels ⁇ ; (3) a control device that controls the drive amount of the drive device so that the plurality of concentrating solar cell panels ⁇ track a preset solar orbit; (4) A tracking device is provided.
  • the concentrating solar power generation device ⁇ is at least: (1) a plurality of concentrating solar cell panels ⁇ arranged in an array and converting sunlight into electric power; (2) a driving device for driving a plurality of concentrating solar cell panels ⁇ , (3) a control device that controls the drive amount of the drive device so that a plurality of concentrating solar cell panels ⁇ track a preset solar orbit, (4) A tracking device is provided.
  • Each of the concentrating solar cell panel ⁇ provided in the concentrating solar power generation device ⁇ and each of the concentrating solar cell panel ⁇ provided in the concentrating solar power generation device ⁇ is at least the following: (1-1) to (1-4) are provided.
  • the concentrating solar cell panels ⁇ and ⁇ are collectively referred to as a concentrating solar cell panel I.
  • (1-1) A collector for collecting sunlight (1-2)
  • a circuit provided on a part of the surface of the high transmission plate and electrically connectable to the solar cells
  • each of the solar battery cells is dispersedly arranged on the surface of the high transmission plate.
  • the total light receiving area of the solar battery cell is 10% or less of the total sunlight incident area
  • the light receiving area of the high transmission plate is 80% or more of the total sunlight incident area.
  • the total light receiving area of each member that is arranged on the high transmission plate and is connected to the solar cell to constitute the electric circuit is It is preferably set to less than 10% of the total sunlight incident area. If the total light receiving area of the solar battery cell exceeds 10% of the total sunlight incident area, it becomes difficult to produce a target concentrating solar battery panel I with ultra-high magnification.
  • the light-receiving area of the high-transmitting plate is less than 80% of the total sunlight incident area, not only is the scattered light used for other purposes other than power generation, but it remains in the panel without being transmitted. Scattered light becomes extra heat, increasing the risk of adversely affecting the equipment in the panel.
  • the concentrating solar cell panel I will be described in detail based on examples shown in the drawings.
  • the concentrating solar cell panel I used for this invention is not limited to these Examples at all.
  • FIG. 1 is a schematic explanatory diagram illustrating a configuration example of the concentrating solar cell panel ⁇ according to the first embodiment.
  • Fig.1 (a) shows the top view of the concentrating solar cell panel 10 (10a).
  • FIG. 1B shows a cross-sectional view of the concentrating solar cell panel 10 (10a) taken along the line AA ′ of FIG.
  • the concentrating solar cell panel 10 a includes a concentrator (cell-sealed concentrator) 11 that condenses sunlight, a high transmission plate 12, It is comprised from the photovoltaic cell 13, the metal film 14, the metal wire 15 which electrically connects the photovoltaic cells 13 and 13, and the lead wire 16 which takes out the generated electric power of a group of photovoltaic cells 13 outside. ing.
  • a concentrator cell-sealed concentrator
  • the high transmission plate 12 is preferably made of a material having a sunlight transmittance of 80% or more, and a plate material made of a resin such as an acrylic resin or a polycarbonate resin can be used in addition to a glass plate.
  • the metal film 14 is preferably made of a material having high electrical conductivity, and for example, a metal such as copper, aluminum, or gold can be used. Moreover, not only a metal but a material with high electrical conductivity can be used as the metal film 14.
  • the metal film 14 is formed in close contact with the surface of the high transmission plate 12 on the collector 11 side, and two metal films 14 a and 14 b are formed on one island 13.
  • the back electrode (in this case, the + electrode) of the solar battery cell 13 is formed in close contact with the surface of the one metal film 14a on the collector 11 side. Further, a metal wire 15 is bonded from the surface electrode (here, the negative electrode) of the solar battery cell 13 to the surface of the other metal film 14b.
  • the circuit connection configuration as described above is employed in order to improve productivity, but the present invention is not necessarily limited thereto. You may employ
  • the metal wire 15 for example, a metal having high electrical conductivity such as copper, aluminum, or gold can be used.
  • the solar cells 13 are electrically connected in 4 series and 4 parallel (4 ⁇ 4 array), and are connected to the negative and positive lead wires 16 and 16 attached to the elongated metal films 14t and 14t at both ends. The generated power can be taken out.
  • a thin strip-shaped metal plate or the like can also be used as the metal wire 15, in addition to a thin wire having a diameter of several tens of microns used for wire bonding.
  • the series and parallel connection patterns can be arbitrarily set according to the level of current and voltage to be extracted.
  • the circuit includes the metal film 14 and the metal wire 15, and the metal film 14 dispersively disperses on the surface of the high transmission plate 12 while supporting the solar cell 13.
  • the metal wire 15 is installed in close contact with the highly transmissive plate 12 so as to be electrically insulated, and the metal wire 15 electrically connects between the metal film 14 and the solar battery cell 13 to form a series or parallel electric circuit. It is composed.
  • the concentrator 11 is placed so that all the constituent members of the solar cell 13 on the concentrator 11 side of the high transmission plate 12, the metal film 14, and the metal wire 15 are sealed with the material of the concentrator 11.
  • the light receiving side surface of the condenser 11 is a dome-shaped lens array.
  • the material of the collector 11 is suitably a transparent acrylic resin, a transparent silicone resin, glass, or the like. In such a collector 11, the incident light beam is refracted only once at the boundary surface between air having a low refractive index and a lens array having a high refractive index. Suitable for light magnification.
  • a concentrator 11 manufactured in advance by injection molding or the like, and other constituent members using another transparent material having a refractive index substantially equal to the refractive index of the material of the concentrator 11 and having an adhesive action The same effect can be obtained even when these are joined.
  • the direct light L1 is transmitted by the concentrator 11 as shown in FIG. It is condensed on the battery cell 13 and converted into electricity.
  • the scattered light L2 incident from all directions is not condensed on the solar battery cell 13, and most of the light passes through (transmits) the high transmission plate 12.
  • the ratio of the circuit area is preferably less than 10%.
  • the photovoltaic cell 13 what has the cell conversion efficiency at the time of condensing of 35% or more, such as a compound type multi-junction solar cell, is preferable.
  • the solar cells 13 are preferably as small as possible.
  • the focal length FL shown in FIG. 1B is shortened, and the overall height of the condenser 11 can be suppressed low.
  • the amount of light absorption inside the collector 11 is reduced, and the light transmission is improved.
  • the size of the solar battery cell 13 is reduced, the temperature reached by the solar battery cell 13 is lowered due to the effect of the heat source being dispersed, as shown in the thermal analysis simulation result described later (see FIG. 2). Efficiency and long-term reliability are improved.
  • a solar battery cell 13 having a size of 1 mm ⁇ 1 mm or less, more preferably 0.5 mm ⁇ 0.5 mm or less. This size is similar to that of an LED chip, and there is an advantage that an LED mounting technology can be applied (applied).
  • a material having high electrical insulation may be inserted between the metal film 14 and the high transmission plate 12. Further, the metal wire 15 may be coated with a material having high electrical insulation.
  • various bonding methods such as a plating method, a brazing method, a solid phase bonding method, a welding method, and a molten metal bonding method are employed in addition to using a highly conductive adhesive. be able to.
  • the direct light L1 is a substantially parallel sunlight ray (viewing angle ⁇ 0.256 ° to ⁇ 5 °) that is directly incident from the sun's photosphere and its vicinity, and the scattered light L2 is scattered by fine particles or gas in the atmosphere. Sun rays entering from the whole sky.
  • the direct light L1 can be condensed at a high magnification by a lens or a mirror, but the scattered light L2 has a characteristic that it can only be weakly condensed due to thermodynamic limitations.
  • direct light L1 accounts for about 60% of the annual solar radiation
  • scattered light L2 accounts for the remaining 40%.
  • direct light L1 which accounts for about 60% of the amount of solar radiation
  • direct light L1 is collected in an ultra-high efficiency solar cell 13 having a cell conversion efficiency of about 40% (more than 50% is expected in the future). While generating light, it transmits most of the scattered light L2, which accounts for about 40% of the amount of solar radiation per year.
  • the scattered light L2 does not hit the solar battery cell 13 and is transmitted, but since the conversion efficiency of the solar battery cell 13 is high and a tracking device described later is provided, The amount of received direct light L1 increases.
  • the concentrating solar cell panel 10a As a result, in the concentrating solar cell panel 10a, a power generation amount that is greater than that of the conventional solar cell panel is realized even from the direct light L1. And since most of the scattered light L2 permeate
  • Example 2 the result of having predicted the temperature of the photovoltaic cell 13 by thermal analysis simulation in Example 1 is shown.
  • the scattered light transmittance of 70% is Example 1 (the present invention), and for comparison, a conventional example of scattered light transmittance of 0% is also shown.
  • the analysis conditions of this thermal analysis are as follows.
  • Direct light 600 W / m 2
  • Scattered light 400 W / m 2 Outside temperature: 25 °C
  • Convective heat transfer coefficient h 5.7 W / m 2 K (no wind)
  • Geometric condensing magnification 300 times When the cell size is 1 mm ⁇ 1 mm, the light receiving surface size is 17.32 mm ⁇ 17.32 mm, and the geometric light condensing is obtained by dividing the light receiving surface area by the cell area. The magnification is 300 times. Therefore, the light receiving area (including the circuit area) of the highly transmissive plate 12 is 90% or more of the total sunlight incident area.
  • the circuit of the metal film 14 is usually opaque, considering this, 80% or more is set as the light receiving (transmitting) area of the high transmission plate 12 effective for transmission.
  • this light receiving (transmitting) area 80% is multiplied by the sunlight transmittance 90% of the material of the high transmission plate 12, the scattered light transmittance is about 70%.
  • Example 1 the present invention
  • the cell temperature is about 100 ° C., which satisfies the temperature use condition of a compound multi-junction solar cell or the like.
  • the cell size is made small (for example, 0.5 mm x 0.5 mm)
  • it turns out that cell temperature falls further. This is because the cell peripheral length (heat dissipating surface) with respect to the cell area increases by reducing the cell size and the heat resistance is reduced by reducing the lens focal length, etc. Because it is done.
  • FIG. 3 is a schematic explanatory diagram illustrating a configuration example of the concentrating solar cell panel ⁇ according to the second embodiment.
  • Fig.3 (a) shows the top view of the concentrating solar cell panel 10 (10b).
  • FIG. 3B shows a cross-sectional view of the concentrating solar cell panel 10 (10b) taken along the line BB ′ in FIG.
  • the concentrating solar cell panel 10b is comprised from the same member as the concentrating solar cell panel 10a which concerns on Example 1, in the electrical connection of the photovoltaic cells 13 and 13, shorten the metal wire 15, Instead, the metal film 14 is lengthened.
  • the area of the opaque portion is slightly increased as compared with the concentrating solar cell panel 10a according to Example 1, but it is easy to reduce the series resistance of the connection circuit. In the case of a high current, the conversion efficiency can be maintained.
  • FIG. 4 is a schematic explanatory diagram illustrating a configuration example of the concentrating solar cell panel ⁇ according to the third embodiment.
  • Fig.4 (a) shows the top view of the concentrating solar cell panel 10 (10c).
  • FIG. 4B is a cross-sectional view of the concentrating solar cell panel 10 (10c) taken along the line CC ′ in FIG.
  • the concentrating solar panel 10c is different from the concentrating solar panel 10a according to the first embodiment and the concentrating solar panel 10b according to the second embodiment. 13 and 13 are different in electrical connection method.
  • the collector 11 will be explained. Unlike Example 1 and 2, in Example 3, the air layer 17 exists between the surface which mounted the collector 11 and the photovoltaic cell 13 as shown in FIG.4 (b). Due to the presence of the air layer 17, incident light rays are refracted at the interface between the collector material (lens material) having a high refractive index and the air having a low refractive index when exiting from the collector 11. The direction changes. Therefore, such a separate concentrator 11 is suitable when the light condensing magnification is as high as about 300 times or more. Further, as the separate type condenser 11, a thin condenser such as a Fresnel lens is suitable.
  • the third embodiment has a configuration in which a transparent conductive film (for example, an ITO film) 18 bears most of the electrical connection.
  • a transparent conductive film for example, an ITO film
  • two metal films 14 a and 14 b are formed in an island shape with respect to one solar battery cell 13, but transparent between the metal films 14 a and 14 b and the high transmission plate 12.
  • the conductive film 18 is patterned by sputtering or the like.
  • the solar cells 13 and 13 are electrically connected to each other by the metal wire 15.
  • the transparent conductive film 18 electrically connects the solar cells 13 and 13 to each other. Connected to.
  • the circuit includes the metal film 14, the metal wire 15, and the transparent conductive film 18, and the metal film 14 supports the solar battery cell 13 and the surface of the highly transmissive plate 12.
  • the metal wire 15 and the transparent conductive film 18 are electrically connected between the metal film 14 and the solar battery cell 13 so as to be dispersed and in close contact with the highly transmissive plate 12. Connected to form a series or parallel electric circuit.
  • a complicated series-parallel connection circuit can be formed relatively easily by patterning, and the transmittance can be further improved as compared with the first and second embodiments.
  • the solar cells 13 may be directly disposed on the transparent conductive film 18 without providing the metal films 14a and 14b.
  • a layer made of another material is inserted between both members. May be.
  • FIG. 5 is a schematic explanatory diagram illustrating a configuration example of the concentrating solar cell panel ⁇ according to the fourth embodiment, and shows a cross-sectional view of the concentrating solar cell panel 10 (10d).
  • Example 4 a low-cost non-condensing solar cell 23 is installed on the lower surface side of the high transmission plate 12 in the concentrating solar cell panel 10b according to Example 2.
  • transmitted the highly transmissive board 12 of the concentrating solar cell panel 10d can be converted into electricity. That is, unlike the first to third embodiments, in the fourth embodiment, the scattered light L2 transmitted through the high transmission plate 12 is used to further improve the total power generation amount of the concentrating solar power generation device ⁇ . be able to.
  • FIGS. 6A and 6B are schematic explanatory diagrams illustrating a configuration example of the concentrating solar cell panel ⁇ according to the fifth embodiment.
  • Fig.6 (a) shows sectional drawing of the concentrating solar cell panel 10 (10e).
  • FIG. 6B shows a cross-sectional view of the cell package 30 (30e1).
  • the concentrating solar cell panel has an extremely high magnification, the panel is easily out of focus even with a slight tracking error due to the tracking mechanism provided in the concentrating solar power generation device. For this reason, it is desirable that the ultrahigh-magnification concentrating solar panel be provided with a structure capable of ensuring and maintaining condensing on the solar cells even when the focus is slightly deviated. .
  • the concentrating solar cell panel 10e according to Example 5 is an example of a panel that can sufficiently secure and maintain the condensing light on the solar cells 13 regardless of a slight shift in focus.
  • the method of mounting the solar battery cell 13 on the metal film circuit is as follows. As shown in FIGS. 6A and 6B, the solar battery cell 13 and members such as the light receiving guide 31, the conductive cell mounting member (die attach member) 32, the insulator 33, and the conductive bridge 34 are previously provided. A plurality of integrated cell packages 30e1 are prepared (in a separate process), and a structure in which positive and negative electrode planes are connected to the lower surface of the cell package 30e1 (in this embodiment, the lower surface of the conductive bridge 34) is provided. At this time, the light receiving guide 31 and the conductive bridge 34 are also insulated by the insulator.
  • Adhesion is completed by mounting the cell package 30e1 on the metal film 14 in which the solder 35 has been applied in advance to the connection locations and heating in a reflow furnace or the like.
  • Such a mounting method is suitable for mass production because a large number of cell packages 30e1 can be mounted at high speed by a robot or the like.
  • the light receiving guide 31 in the cell package 30e1 further includes a reflecting surface 31a that reflects the sunlight collected by the condenser 11 and guides it to the light receiving surface of the solar battery cell 13.
  • the illustrated reflecting surface 31 a is an inclined surface that is inclined while narrowing toward the solar battery cell 13.
  • the inclined surface is preferably a quadrangular pyramid when the solar battery cell 13 has a quadrangular shape, and preferably has a conical shape when the solar battery cell 13 has a circular shape.
  • a rotational composite paraboloid shape or the like may be used.
  • the reflecting surface 31a it is preferable to use aluminum, silver or the like and perform a treatment such as vapor deposition or plating with high reflectance so that the mirror reflectance is 80% or more.
  • FIG. 6A and 6C are schematic explanatory diagrams illustrating a configuration example of the concentrating solar cell panel ⁇ according to the sixth embodiment.
  • Fig.6 (a) shows sectional drawing of the concentrating solar cell panel 10 (10e).
  • FIG. 6C shows a cross-sectional view of the cell package 30 (30e2).
  • the concentrating solar cell panel 10e according to the sixth embodiment focuses light on the solar cells 13 regardless of a slight shift in focus. It is an example of a panel that not only can be sufficiently secured and maintained, but also has improved and improved heat dissipation performance.
  • the cell package 30e2 according to the sixth embodiment has substantially the same configuration as that of the cell package 30e1 according to the fifth embodiment. However, as shown in FIG.
  • the heat dissipating fin 36 having a part of the guide 31 (preferably made of aluminum) protruded is provided. In order to improve the heat radiation performance while maintaining the transmittance, the heat radiation fin 36 is projected so that the projection surface of the heat radiation fin 36 substantially overlaps the metal film 14 when the cell package 30e2 is viewed from directly above. 36 is preferably arranged.
  • FIG. 7 is a schematic explanatory diagram illustrating a configuration example of the concentrating solar cell panel ⁇ according to the seventh embodiment.
  • Fig.7 (a) shows sectional drawing of the concentrating solar cell panel 10 (10f).
  • FIG.7 (b) shows the top view of the concentrating solar cell panel 10 (10f).
  • Example 7 aims to further reduce the temperature of the solar battery cell 13 as in Example 6 above.
  • the honeycomb structure material 37 is disposed on the lower surface of the high transmission plate 12. It is affixed to.
  • the material of the honeycomb structure material 37 may be a transparent resin or the like in addition to a metal such as aluminum. When metal is used, it becomes opaque, so it is necessary to suppress the height (thickness) of the honeycomb structure material 37. Further, the installation of the honeycomb structure material 37 increases the heat radiation area.
  • FIGS. 8A and 8B are schematic explanatory diagrams illustrating a configuration example of the concentrating solar cell panel ⁇ according to the eighth embodiment.
  • Fig.8 (a) shows sectional drawing of the concentrating solar cell panel 10 (10g).
  • FIG. 8B shows a cross-sectional view of the cell package 30 (30g).
  • the heat dissipation performance of the concentrating solar cell panel 10g according to Example 8 is promoted and improved. It is an example of the made panel.
  • the thickness of a high transmission plate such as a glass plate is required to be about 3 to 5 mm in order to ensure the rigidity of the concentrating solar cell panel.
  • the solar battery cell is likely to reach a high temperature because the thermal resistance between the solar battery cell, the high transmission plate and the outside air is high.
  • Reference numeral 34 b denotes a conductor that connects the conductive bridge 34 and the metal film 14.
  • the thickness of the sealing material 38 can be arbitrarily adjusted without worrying about panel rigidity.
  • the distance LB from the position of the cell 13 to the outside air can be much shorter.
  • the thermal radiation amount of the concentrating solar cell panel 10g can be increased, and the temperature of the solar cell 13 is reduced.
  • a heat radiating fin a heat spreader or the like (none of which is shown) in the vicinity of the cell package 30g.
  • a heat spreader it is preferable to use a thin film having a high thermal conductivity in the surface direction, such as a graphene sheet.
  • the outside air side surface of the sealing material 38 can be subjected to a treatment such as antifouling coating and a hard coat resistant to scratches.
  • Each of the concentrating solar cell panels ⁇ included in the concentrating solar power generation device ⁇ includes at least the following (1′-1) to (1′-3).
  • the concentrating solar cell panel ⁇ is also referred to as a concentrating solar cell panel II.
  • (1'-1) Concentrator for concentrating sunlight
  • (1'-2) A plurality of solar cells
  • (1'-3) solar cells that receive sunlight collected by the concentrator and generate electric power Circuits that can be electrically connected to cells
  • the plurality of solar cells are arranged in a distributed manner with spaces therebetween.
  • the total light receiving area of the solar battery cell is 10% or less of the total sunlight incident area.
  • the total light receiving area (total area that blocks the incident of scattered light from sunlight other than solar cells) of each member that constitutes an electric circuit connected to the solar cells is less than 10% of the total sunlight incident area It is preferable that it is set to. If the total light receiving area of the solar battery cell exceeds 10% of the total sunlight incident area, it becomes difficult to produce a target concentrating solar battery panel II with a super-high magnification.
  • the concentrating solar cell panel II basically has a structure in which a highly transmissive plate is removed from the structure of the concentrating solar cell panel I, and the material and arrangement of its constituent members are the concentrating solar cell. It may be the same as that of panel I.
  • FIG. 9 is a schematic explanatory diagram illustrating a configuration example of the concentrating solar cell panel ⁇ according to the ninth embodiment.
  • Fig.9 (a) shows the top view of the concentrating solar cell panel 10 (10h).
  • FIG. 9B shows a cross-sectional view of the concentrating solar cell panel 10 (10h) taken along the line HH ′ of FIG. 9A.
  • the concentrating solar cell panel ⁇ according to Example 9 has a structure in which the high-transmitting plate 12 is removed from the structure of the concentrating solar cell panel ⁇ according to Example 1 illustrated in FIG. 1, for example.
  • a concentrating solar panel 10 shown in FIG. 9 includes a concentrator (cell-sealed concentrator) 11 that condenses sunlight, a solar cell 13, a metal film 14, and a solar cell 13. , 13 are electrically connected to each other, and a lead wire 16 that takes out a group of generated power of the solar battery cell 13 to the outside.
  • the plurality of metal films 14 and the solar cells 13 on the surfaces thereof are respectively provided on the surface of the support member 19b.
  • the plurality of support members 19b are arranged in a housing (not shown) of the concentrating solar cell panel 10 with a space 19a provided therebetween.
  • the metal film 14 is formed in close contact with the surface of the support member 19b on the collector 11 side, and two metal films 14a and 14b are formed in an island shape with respect to one solar cell 13. And the back surface electrode (here + electrode) of the photovoltaic cell 13 is closely_contact
  • the circuit connection configuration as described above is employed in order to improve productivity, but the present invention is not necessarily limited thereto. You may employ
  • the circuit includes a metal film 14 and a metal wire 15, and the metal wire 15 electrically connects the metal film 14 and the solar battery cell 13 to provide electric power in series or in parallel.
  • the circuit is configured.
  • the collector 11 is formed so that all the constituent members of the solar battery cell 13, the metal film 14, and the metal wire 15 are sealed with the material of the collector 11.
  • the light-receiving side surface of the condenser 11 is a dome-shaped lens array.
  • the direct light L1 is transmitted by the concentrator 11 as shown in FIG. It is condensed on the battery cell 13 and converted into electricity.
  • the scattered light L2 incident from all directions is not condensed on the solar cells 13, and most of the light passes through the space 19 a between the solar cells 13.
  • the support member 19b may be arrange
  • a member made of a resin such as an acrylic resin or a polycarbonate resin in addition to a glass member can be used as the support member 19b.
  • the ratio of the circuit area is preferably less than 10%.
  • the direct light L1 is collected and generated on the ultra-high efficiency solar cell 13 having a cell conversion efficiency of about 40%, while most of the scattered light L2 is transmitted.
  • the scattered light L2 does not hit the solar battery cell 13 and is transmitted, but since the conversion efficiency of the solar battery cell 13 is high and a tracking device described later is provided, The amount of received direct light L1 increases.
  • the concentrating solar cell panel 10h a power generation amount that is greater than that of the conventional solar cell panel is realized even from the direct light L1 alone.
  • the concentrating solar power generation device ⁇ can be used for other applications that require sunlight as described later. It is.
  • the concentrating solar cell panel 10h is a new concentrating solar cell panel that can distribute precious sunlight to power generation and other uses without waste.
  • FIG. 10 is a schematic explanatory view showing an example of the tracking device constituting the concentrating solar power generation device according to the embodiment of the present invention.
  • the tracking device 500 includes a plurality of trackers 100 on which each of the concentrating solar cell panels 10 arranged in an array is mounted.
  • the tracking device 500 is disposed on a gantry 20a provided on a base 20c via a column 20b.
  • the size of the tracker 100 is preferably about 10 cm to 50 cm square, for example, and the size of the tracker 500 is preferably about 1 m ⁇ 2 m, for example.
  • each of the concentrating solar cell panels 10 mounted on the tracking device 500 is inclined upward toward the north side, but the gantry 20a may be inclined in other directions. You don't have to.
  • the number of concentrating solar cell panels 10 arranged in an array, the size of the tracker 100, the size of the tracking device 500, etc. are merely examples, and these are shown in FIG. It is not limited to.
  • the tracking device 500 is made of a material that transmits a scattered light component that has passed through the highly transmissive plate 12 provided in the concentrating solar cell panel 10 or a scattered light component that has passed through the space 19 a between the solar cells 13.
  • the plurality of trackers 100 provided in the tracking device 500 are preferably made of a material having a sunlight transmittance of 80% or more, like the high-transmitting plate 12, and other than glass, such as acrylic resin, polycarbonate resin, and the like. Resin can be used.
  • the tracking device 500 is made of a material that transmits the scattered light component that has passed through the high-transmitting plate 12 or the scattered light component that has passed through the space 19a between the solar cells 13, the tracking device 500 In addition, the scattered light can be transmitted efficiently, and the utility value of the concentrating solar cell panel 10 capable of transmitting the scattered light can be further increased.
  • the tracking device 500 is arranged in the concentrating solar power generation device according to the present embodiment in that the utility value of the concentrating solar cell panel 10 capable of transmitting scattered light as described above is further increased.
  • the gantry 20a, the support column 20b, and the base 20c also transmit the scattered light component that has passed through the highly transmissive plate 12 or the scattered light component that has passed through the space 19a between the solar cells 13. It is preferable that it is comprised with the material to do.
  • FIG. 11 is a schematic explanatory diagram illustrating an example of the structure of the tracker 100 included in the tracking device 500 in the present embodiment.
  • FIG. 12 is a schematic explanatory diagram illustrating an example of the structure of the tracker 100 that configures the tracking device 500 in the folded state in the embodiment.
  • FIG. 12A is a view of the tracker 100 viewed from substantially above.
  • FIG. 12B is a diagram of the tracker 100 viewed from a substantially lateral direction.
  • FIG. 13 is a schematic explanatory diagram illustrating an example of a wiring / transmission shaft structure for realizing control of the tracking device 500 configuring the concentrating solar power generation device according to the present embodiment.
  • a concentrating solar power generation apparatus includes a tracking device 500 that includes a plurality of concentrators 100 shown in FIG.
  • the driving device 450 shown in FIG. 13 that drives the optical solar cell panel 10 and the drive amount of the driving device 450 are controlled so that the plurality of concentrating solar cell panels 10 track a preset solar orbit.
  • it has the control apparatus 400 shown in FIG.
  • the tracker 100 is connected to the holding member 110, for example, a T-shaped holding member 110 (consisting of a 110a portion and a 110b portion) on which the concentrating solar cell panel 10 is mounted on the upper surface. And a tracking mechanism.
  • the tracking mechanism is installed and used on the gantry 20a shown in FIG. 10 in a state where the concentrating solar cell panel 10 is mounted on the holding member 110 to be connected.
  • the tracker 100 drives the at least three points of the holding member 110 based on the controlled driving amount of the driving device 450, so that the concentrating solar cell panel 10 is preset. Configured to track the solar orbit.
  • the shape of the holding member 110 is T-shaped.
  • the three points on the T-shaped holding member 110 include, for example, three end portions (corresponding to the first drive point, the second drive point, and the third drive point).
  • the first end A and the second end B as a pair of ends facing each other include, for example, a first ribbon AT and a second end as shown in FIG.
  • the ribbons BT are respectively attached by screws, for example.
  • wire CT is attached to the 3rd end C as the remaining end via the opening Ch, for example.
  • elastic members such as a spring, for example in wire CT.
  • such a configuration is not required for the wire CT portion to be precisely controlled as to the first ribbon AT and the second ribbon BT, but the first ribbon AT and the second ribbon BT. This is because it is effective that an elastic member such as a spring is interposed in order to return the ribbon BT to the original position at a necessary timing.
  • the driving device 450 shown in FIG. 13 performs winding of each of the first ribbon AT and the second ribbon BT, for example, a first driving device 450a (first motor) that is a servo motor and a second driving.
  • a device 450b (second motor) and a third driving device 450c (third motor), for example, a stepping motor, for winding the wire CT are provided.
  • the control device 400 also controls the amount of winding of each of the first drive device 450a, the second drive device 450b, and the third drive device 450c (three drive units of the drive device 450).
  • a load provision member which provides a load to a 3rd drive point can be used instead of a 3rd motor as the 3rd drive device 450c.
  • a constant load spring for applying a constant load can be provided.
  • the tip of the constant load spring may be attached to the third end C without providing the wire CT.
  • the control device 400 controls the amount of winding of the first driving device 450a and the second driving device 450b and the third driving device 450c. The load applied by the driving device 450c is controlled.
  • the third driving device 450c when the third driving device 450c is composed of the load applying member, the remaining one of the three points is returned to the original position from the position where the other two points are driven, for example. Since it only needs to be driven, it can be realized with a structure that does not require precise position control unlike the control of the other two points.
  • each of the trackers 100 on which the concentrating solar cell panel 10 is mounted is driven by the driving device 450.
  • the driving device 450 can do. That is, the concentrating solar cell panel 10 can be more accurately tracked in the solar orbit by a structure in which the positions of the three points on the holding member 110 are controlled and driven.
  • a concentrating solar power generation device that is a distributed movable type and includes a tracking device 500 having a simple structure can be realized at low cost.
  • one control device 400 includes a plurality of concentrating solar cell panels 10 via the plurality of tracking units 100. Central control is possible.
  • the shape of a holding member is not limited to T shape. Absent.
  • the holding member can be of various shapes and can be mounted with a concentrating solar cell panel and can be driven by controlling the position of at least three of them. preferable. Further, as in the present embodiment, the position to be controlled and driven is not limited to three points, and may be four or more points. The number of ribbons, wires, and the like can be appropriately increased according to the number of positions to be controlled and driven.
  • the tracking mechanism includes a support column 150 that supports the holding member 110 and a base unit 210 that supports the support unit 150, and the base unit 210 is interposed via the attachment unit 200. It is installed on the gantry 20a.
  • the attachment unit 200 is shown as being provided in one set corresponding to the tracker 100. However, the attachment unit 200 is attached so that a plurality of trackers 100 are connected and installed on the gantry 20a.
  • the part 200 has a stretched structure.
  • the support column 150 is integrally formed with a head 130 having an opening and a shoulder 140 continuous with the head 130.
  • the holding member 110 and the support column 150 are coupled to each other so that the ring 120 passing through the opening in the head 130 is connected to the bottom of the support column 150.
  • the holding member 110 and the support column 150 are connected by the ring 120 that passes through the opening of the head 130, the driving of the holding member 110 is smoothly performed via the ring 120.
  • the concentrating solar cell panel 10 can be more accurately tracked in the solar orbit.
  • the base portion 210 is provided with a first guide 190a and a second guide 190b for passing the first ribbon AT and the second ribbon BT, respectively, and a protruding portion having an opening portion 230c for passing the wire CT.
  • 230 is further provided.
  • the first ribbon AT and the second ribbon BT can be accurately wound through the first guide 190a and the second guide 190b.
  • the wire CT can be accurately wound through the opening 230c of the protrusion 230.
  • the first ribbon AT, the second ribbon BT, and the wire CT are connected to, for example, the first traction point 320a, the second traction point 330a, and the third traction point 340a in FIG. And is driven by the drive amount of the drive device 450 controlled by the control device 400.
  • the support column 150 is provided with a pair of shoulder portions 140 that limit the driving amount of the holding member 110.
  • the first solar panel AT, the second ribbon BT, and the wire CT are wound with a controlled driving amount so that the concentrating solar cell panel 10 tracks a preset solar trajectory.
  • the holding member 110 is driven.
  • one of the first end A and the second end B, which is a pair of end portions moves according to the driving amount, and the ring 120 that connects the holding member 110 includes the head portion 130.
  • the holding member 110 has a role of preventing the entire holding member 110 from falling down by moving along the moving direction of the pair of end portions in the opening.
  • the shoulder 140 has a shape protruding in the left-right direction (defined as) perpendicular to the up-down direction (defined as) from the support 150 to the head 130.
  • the angle with respect to the up-down direction in the left-right direction of the shape that protrudes is, for example, an angle that becomes a vertical shape, and may be any angle that can prevent the holding member 110 from falling down, and is not particularly limited. Absent.
  • the tracker 100 is further formed with a wall portion 155 that holds the lower portion of the column portion 150 so as to cover, for example, three directions.
  • the base portion 210 is provided with a groove portion 210 h that can accommodate the column portion 150.
  • a penetrating member 220t for example, a screw
  • the support unit 150 allows the tracker 100 to function as a concentrating solar power generation device. It is possible to maintain an upright state during use.
  • the tracker 100 is transported as a concentrating solar power generation device, for example, before assembling, for example, a diagram viewed from a substantially upward direction in FIG.
  • FIG. 12A a diagram viewed from a substantially lateral direction in FIG.
  • the penetrating member 220t is removed, and the strut portion 150 is tilted through a structure in which the pair of support portions 170r at the bottom portion of the wall portion 155 sandwich the rotating structure 160s at the bottom portion of the strut portion 150, and stored in the groove portion 210h. It becomes possible to make it.
  • Each of the trackers 100 having the structure described in FIG. 11 and FIG. 12 is arranged in an array so as to support each concentrating solar cell panel 10.
  • FIG. 13 for example, eight concentrating solar cell panels 10 are shown, but this is for convenience of explanation, and the number and the number of trackers on which the concentrating solar panel 10 is mounted are limited to this. is not.
  • a tracking device 500 including the plurality of trackers 100 is connected to a driving device 450 that drives a plurality of concentrating solar cell panels 10, and the driving device 450 includes a plurality of driving devices 450.
  • a control device 400 for controlling the drive amount of the drive device 450 is connected so that the concentrating solar cell panel 10 tracks a preset solar orbit.
  • the driving device 450 includes first to third driving devices 450a to 450c.
  • the first driving device 450a is, for example, a servo motor, and is connected to the first driving shaft 320, and the first ribbon AT attached to the first end A of the holding member 110 of the tracker 100 is attached to the first driving device 450a. It is possible to wind at the first traction point 320a.
  • the second driving device 450b is, for example, a servo motor, and is connected to the second driving shaft 330, and the second ribbon BT attached to the second end B of the holding member 110 of the tracker 100 is attached to the second driving device 450b. It is possible to wind at the second traction point 330a.
  • the third driving device 450c is, for example, a stepping motor, and the third CT pulls the wire CT attached to the third end C of the holding member 110 of the tracker 100 via the third driving shaft 340. At point 340a, winding is enabled.
  • the control device 400 includes a calculation unit 410, a processing unit 420, and a storage unit 430.
  • tracking information regarding the concentrating solar cell panel 10 for example, the installation position of the concentrating solar cell panel 10 so that the plurality of concentrating solar cell panels 10 track a preset solar orbit.
  • Information calculated from the latitude, longitude, altitude information, date and time information, and the like is stored in the storage unit 430.
  • the spatial coordinate position of the holding member 110 (For example, the spatial coordinate position of the 1st edge part A, the 2nd edge part B, and the 3rd edge part C is defined from the position of the base point D).
  • the tracking information extracted from the storage unit 430, the winding lengths of the first ribbon AT, the second ribbon BT, and the wire CT are calculated, and the driving unit 450 is instructed through the processing unit 420.
  • the spatial coordinate position of the holding member 110, various tracking information, the information such as the length and thickness of each ribbon and wire used, and the driving based on them The calculation of the driving amount instructed to the device 450 can be realized by a known technique.
  • the electric power acquired from the plurality of concentrating solar cell panels 10 Is sent to the power conditioner 510 through the electric wires 350 and 360, where it is converted from DC power to AC power and transmitted to the transformer 520.
  • the transformer 520 transmits the AC power converted by the power conditioner 510 to the power system 530 that is a load.
  • the power conditioner 510 includes a converter unit, an inverter unit, and a voltage control unit (all not shown).
  • the converter unit constitutes a booster circuit that boosts the DC voltage output from the plurality of trackers 100. Further, output voltage data corresponding to the operation instruction information for each tracker 100 is accumulated in the converter unit.
  • the inverter unit constitutes an inverter circuit that converts DC power output from the converter unit into AC power.
  • the voltage control unit performs MPPT (maximum power point tracking control) control.
  • the MPPT control is also called a mountain climbing method, and the voltage control unit adjusts the output voltage of each tracker so that the output power (operating point) of each tracker 100 approaches the maximum power point.
  • the concentrating solar power generation apparatus there are a plurality of electric lines 350 and 360 (first electric lines and second electric lines) that acquire electricity from the concentrating solar cell panel 10.
  • the shadow control unit 310 transmits each of the trackers 100 arranged in one of the two directions perpendicularly intersecting among the plurality of trackers 100 through the signal lines (in FIG. 13, the plurality of trackers).
  • Each of the trackers 100 arranged in the vertical direction of 100 is connected continuously.
  • the shadow control unit 310 controls the electrical connection of the electric lines 350 and 360 to the tracker 100 by the power line switching unit 370 in consideration of the shadow portion applied to the concentrating solar cell panel 10.
  • the shadow control unit 310 performs shadow control via the processing unit 420 based on the information on the shadow portion of the concentrating solar cell panel 10 calculated from the tracking information stored in the storage unit 430 by the control device 400.
  • the unit 310 is instructed. In this way, among the plurality of concentrating solar cell panels 10, the concentrating solar cell panel 10 that is in the shadow and the concentrating solar cell panel 10 that is not in the shadow are appropriate by the two electric lines. It is possible to avoid the influence of the overall rate-determining by the amount of power generation current of the concentrating solar cell panel 10 that is controlled and shaded.
  • the voltage control based on the MPPT control enables parallel control of the concentrating solar cell panel 10, and appropriate control in the power line switching unit 370 to the wiring structure to be serially controlled by controlling both voltage and current. Switching is possible, and a concentrating solar power generation device with a high concentration rate can be realized.
  • the shadow of the concentrating solar cell panel 10 is controlled. Since the amount of generated current can be in any number of stages, it is possible to improve the performance by providing three or more electric wires and controlling in stages.
  • a heat sink (not shown) that supports the concentrating solar cell panel 10 is provided on the upper surface of the holding member 110 on which the concentrating solar cell panel 10 is mounted. It is good also as a structure.
  • a metal having high thermal conductivity such as aluminum or copper is used for the heat sink, and the heat sink and the concentrating solar cell panel 10 are thermally coupled to each other so that the heat concentrating solar cell panel 10 is likely to rise. The temperature can be suppressed by the heat dissipation structure.
  • the wire CT attached to the third end C of the holding member 110 is wound around the third traction point 340a via the third drive shaft 340.
  • the ribbon (the first ribbon AT attached to the first end A and the second ribbon BT attached to the second end B, as well as the ribbon (first 3 ribbons) can also be used.
  • a ribbon (third ribbon) can be used instead of the load applying member. If it does in this way, in addition to 1st ribbon AT and 2nd ribbon BT, the 3rd ribbon can also be wound up by rotation.
  • the third driving device 450c can use a servo motor, for example.
  • FIG. 14 is a schematic explanatory diagram showing an example of a wiring / transmission shaft structure for realizing control of the tracking device 500 constituting the concentrating solar power generation device according to the present embodiment.
  • the third drive device 450 c is connected to the third drive shaft 340, and the third drive shaft 340 is rotated in the lateral direction, whereby the holding member for the tracker 100 is retained.
  • the ribbon attached to the third end C at 110 can be taken up at the third traction point 340a.
  • the concentrating solar power generation device can be provided with a cover (rectangular case) made of a transparent member that covers the entire gantry (the entire tracking device).
  • FIG. 15 is a schematic explanatory diagram illustrating an example of the tracking device that configures the concentrating solar power generation device according to the present embodiment.
  • a cover 550 made of a transparent member is provided on the gantry 20a so as to cover the whole.
  • the cover 550 has, for example, a protruding portion 500b so that an inclined surface 500a is formed at an end located on the south side in the drawing.
  • the inclined surface 500a is formed on at least one appropriate surface of the cover 550, a concentrating solar power generation device with excellent wind resistance can be realized.
  • a solar cell panel that is not a normal tracking is installed below the inclined surface 500a, boosted to a predetermined voltage by MPPT control, and connected in parallel with other solar cell panels, or current It is also possible to connect in series by controlling.
  • the cover 550 covering the entire tracking device 500 is also made of a material that transmits the scattered light component that has passed through the highly transmissive plate 12 or the scattered light component that has passed through the space 19a between the solar cells 13. It is preferable to be configured.
  • FIG. 16 is a schematic explanatory diagram illustrating a configuration example of a concentrating solar power generation device including a plurality of tracking devices 500 according to the present embodiment.
  • the first to ninth orders are arranged in order from the west side to the east side and from the north side to the south side.
  • the first tracking device 500 is arranged, the first tracking device 500 is inclined on the north surface and the west surface, the second tracking device 500 is inclined on the north surface, and the third tracking device 500 is the north surface and the east surface.
  • the fourth tracking device 500 has an inclined surface on the west surface, the fifth tracking device 500 has no inclined surface, the sixth tracking device 500 has an inclined surface on the east surface, and the seventh tracking device 500 has a south surface.
  • the west surface is inclined, the eighth tracking device 500 is preferably provided with an inclined surface on the south surface, and the ninth tracking device 500 is provided with inclined surfaces on the south surface and the east surface.
  • the concentrating solar power generation device shown in FIG. 16 includes a plurality of tracking devices 500 connected to each other, and a plurality of tracking devices 500 are simultaneously driven by a single control device 400 via a driving device 450.
  • the first, second, and third drive shafts 320, 330, and 340 that are connected to the first, second, and third drive devices 450a, 450b, and 450c from the outside.
  • the concentrating solar power generation device may further include a cleaning device for cleaning the light receiving side surface of the concentrating solar cell panel on the upper side of the plurality of concentrating solar cell panels. it can.
  • FIG. 17 is a schematic explanatory view showing an example of the tracking device constituting the concentrating solar power generation device including the cleaning device according to an embodiment of the present invention, and the concentrating solar shown in FIG. It is a figure of an example further provided with the cleaning apparatus in one Example of the tracking apparatus which comprises a photovoltaic device.
  • a tracking device 500 arranged on a gantry 20 a provided on a base 20 c via a support 20 b includes a plurality of tracking units 100, and the plurality of tracking units 100.
  • Each has a concentrating solar cell panel 10 mounted thereon, and a cleaning device 600 is provided above the plurality of concentrating solar cell panels 10.
  • the cleaning device 600 includes a pair of guide rails 600b and 600b, and a cleaning body 600a that moves on the concentrating solar cell panel 10 while being guided by the guide rails 600b and 600b.
  • the pair of guide rails 600b and 600b are provided in the vicinity of both ends of the tracking device 500 so as to be parallel to the longitudinal direction of the tracking device 500 in which the plurality of concentrating solar cell panels 10 are arranged.
  • the cleaning body 600a includes, for example, a plurality of wiper members (not shown) inside the frame, and one of the tracking devices 500 is moved along the guide rails 600b and 600b by a moving means (not shown) such as a wheel.
  • the plurality of concentrating solar cell panels 10 are moved from the end in the direction of the outlined arrow.
  • the cleaning body 600a When the cleaning body 600a arrives at the other end of the tracking device 500, the cleaning body 600a turns and moves on the plurality of concentrating solar cell panels 10 in the direction opposite to the direction of the white arrow. By repeating the movement of the cleaning body 600a, the light receiving side surfaces of the plurality of concentrating solar cell panels 10 are cleaned.
  • the plurality of wiper members provided in the cleaning body 600a may be made of a general rubber and is not particularly limited. By using such a rubber wiper member, it is possible to remove contamination on the light receiving side surface without scratching the concentrating solar cell panel 10.
  • the movement of the cleaning body 600a on the plurality of concentrating solar cell panels 10 can be appropriately controlled by the control device 400 of the concentrating solar power generation device.
  • the control device 400 In the case where a plurality of tracking devices 500 connected to each other are provided and one control device 400 is a concentrating solar power generation device that simultaneously drives the plurality of tracking devices 500 via the driving device 450, the tracking device 500 is used.
  • Each of the plurality of concentrating solar cell panels 10 is provided with a cleaning device 600, and the movement of each cleaning body 600a of the plurality of cleaning devices 600 is also controlled by the one control device 400 at a time. be able to.
  • the light receiving side surface of the concentrating solar cell panel 10 is maintained in a cleaner state.
  • the efficiency is higher, the direct light can be blocked at a higher ratio, and the scattered light can be transmitted more efficiently.
  • FIG. 18 is a diagram three-dimensionally showing a configuration example of a concentrating solar power generation device according to an embodiment of the present invention.
  • FIG. 18A shows, for example, a driving device 450 (first to third driving devices) in a configuration example of a concentrating solar power generation device including one tracking device 500 (with a cover 550) shown in FIG. 450a to 450c and first to third drive shafts 320 to 340) are illustrated in three dimensions.
  • FIG. 18B shows, for example, a driving device 450 (first to third driving devices) in a configuration example of a concentrating solar power generation device including a plurality of tracking devices 500 (with a cover 550) shown in FIG.
  • 450a to 450c and first to third drive shafts 320 to 340 are illustrated in three dimensions.
  • such a configuration makes it possible to implement the concentrating solar power generation device according to the present embodiment.
  • each structure shown to Fig.18 (a) and (b) is as having demonstrated previously. Therefore, the description will not be repeated.
  • FIG. 19 is a diagram showing a three-dimensional implementation example of the concentrating solar power generation device according to the embodiment of the present invention.
  • a concentrating solar power generation device (a driving device is not shown) provided with one tracking device 500 (with a cover 550) shown in FIG. 15 is installed on the roof, and viewed from below the roof. An example is shown.
  • the concentrating solar power generation apparatus according to the present embodiment is excellent in convenience during installation and portability during transportation.
  • the concentrating solar power generation apparatus can be easily installed on a roof such as a bus stop or a park rest area. Can be installed. And under the roof where the concentrating solar power generation apparatus according to this embodiment is installed in this way, direct light is blocked at a high ratio, and a feeling of opening is given.
  • the roof of the bus stop or the park rest area for example, a non-concentrating solar cell on the lower surface side of the high transmission plate 12, such as the concentrating solar cell panel 10d according to Example 4 shown in FIG.
  • a concentrating solar power generation apparatus provided with a concentrating solar cell panel in which 23 is installed.
  • the tracking device 500 illustrated in FIG. 10 has a size of about 1 m ⁇ 2 m. Therefore, if such a tracking device 500 is used, a concentrating solar power generation device including one of the tracking devices 500 is provided. It can be easily installed on the roofs of bus stops and park rest areas.
  • the concentrating solar power generation apparatus according to the present embodiment can be easily installed on, for example, agricultural land in addition to the roofs of the bus stops and park rest areas.
  • agricultural land or the like where the concentrating solar power generation apparatus according to this embodiment is installed direct light is condensed at a high magnification and power generation with high efficiency is possible, and at the same time, weak scattered light is used for agriculture. Is possible.
  • a plurality of tracking devices 500 connected to each other such as a concentrating solar power generation device shown in FIG. It is preferable to install a concentrating solar power generation apparatus that is provided and driven simultaneously.
  • FIG. 20 is a schematic explanatory diagram illustrating a configuration example of a ribbon used for the tracker of the tracking device that configures the concentrating solar power generation device according to the embodiment of the present invention.
  • Fig.20 (a) is a figure of the linear state before winding up a ribbon.
  • FIG. 20B is a diagram illustrating a state where the ribbon is wound up.
  • the double-edged ribbon DT is provided with a plurality of teeth 900a on both upper and lower surfaces in the figure, and the outer side when the double-edged ribbon DT is wound up.
  • the interval D1 between the plurality of teeth is larger than the interval D2 between the plurality of teeth on the inner side (corresponding to the upper side in the drawing) when the double-edged ribbon DT is wound. Furthermore, as shown in FIG. 20 (b), the distance D3 (distance between the upper surfaces of adjacent teeth) on the outside when the double-edged ribbon DT is wound is determined by the double-edged ribbon DT being wound. It is equal to a plurality of tooth intervals D2 on the inner side (corresponding to the upper side in the drawing) of the straight line state (the state of FIG. If it does in this way, the bending by the slip of a ribbon can be suppressed more.
  • the concentrating solar cell panel constituting the concentrating solar power generation device constituting the concentrating solar power generation device according to one embodiment of the present invention.
  • only the direct light from the sun is collected and incident on the solar cell, while the scattered light is It passes through a highly transmissive plate or passes through a space between solar cells. Since the tracking device provided in the concentrating solar power generation device is made of a material that transmits the scattered light, the direct light is condensed at a high magnification to generate power with high efficiency, and at a high ratio. At the same time it can be blocked, it is also possible to transmit scattered light efficiently and use it for multiple purposes, and an open feeling can be obtained.
  • FIG. 21 is a schematic view of a tracking device that constitutes a concentrating solar power generation device according to an embodiment of the present invention, where (a) is a schematic top view of the tracking device, and (b) is a longitudinal direction of the tracking device. (C) is a schematic side view of the tracking device in the short direction.
  • the tracking device is basically a transparent tracking device having the same configuration as the tracking device shown in FIG. 10, and includes six trackers on which each of the concentrating solar cell panels can be mounted.
  • the bottom size is 380 mm ⁇ 580 mm, and 12 columns of 10 mm ⁇ 30 mm are connected.
  • the structural members are made of a transparent acrylic resin that transmits scattered light from sunlight (irradiated light), and some of the members use a high-definition 3D printer Agilista (Agilista-3200, manufactured by Keyence Corporation). It is a molded product manufactured by
  • FIG. 22 is a schematic perspective view of a solar cell module in which no light shielding object is disposed
  • FIG. 23 is a schematic perspective view of a solar cell module in which the transparent tracking device is disposed
  • FIG. 24 is a solar cell in which a light shielding object is disposed. It is a schematic perspective view of a module.
  • FIG. 25 is an IV curve showing the results of a sunlight transmission / light-shielding experiment performed using each of the solar cell modules. Solid line results with transparent tracking device (transparent tracking device shading IV curve), long broken line results without shading (no shading IV curve), short dashed line results with shading (all shading IV Curve).
  • Isc is a value determined by the amount of received light.
  • the ratio of the amount of received light is the ratio of Isc of the solar cell module with light shielding by arranging the transparent tracking device or the light shielding material to Isc of the solar cell module without light shielding without the light shielding.
  • the solar cell module a plurality of solar cells are connected in series. Of the plurality of solar cells connected in series in this way, the solar cell with the most shadow is the rate limiting factor. That is, it should be noted that what is substantially shown is the ratio of the amount of received light in the solar cell in which the amount of light has been reduced most by the shadow. For this reason, in the solar cell module in which the light shielding member is arranged, Isc is a value close to 0 A, although a part of the plurality of solar cells is shaded.
  • the light irradiated by the solar simulator was not all direct light, but also included scattered light as well as direct light, but the ratio of the two could not be specified.
  • the ratio of the received light amount of the solar cell module was about 0.05.
  • the ratio of the Isc (2.34A) of the solar cell module in which the transparent tracking device is arranged was arranged to the Isc (5.16A) of the solar cell module in which the light shielding material is not arranged, that is, the sun in which the transparent tracking device is arranged.
  • the ratio of the received light amount of the battery module was about 0.45.
  • the ratio of the amount of received light is almost zero.
  • the transparent tracking device constituting the concentrating solar power generation device according to one embodiment of the present invention is arranged on the solar cell module, the ratio of the received light amount is a high value close to 50%.
  • the plurality of solar cells have a rate-determining rate, and the measured value of Isc is based on the solar cell that contributes to power generation. Therefore, the actual Isc is larger than the measured value. Therefore, the ratio of the actual received light amount of the solar cell module in which the transparent tracking device is arranged is a high value that is larger than 0.45 and exceeds 50%.
  • the tracking device constituting the concentrating solar power generation device according to one embodiment of the present invention has excellent light transmittance, and transmits sunlight even if a concentrating solar cell panel is disposed. It was confirmed in the present experimental example that this can be achieved.
  • the concentrating solar power generation device according to the present invention is suitable as a solar power generation device for a relatively small installation target.

Abstract

A concentrated solar power generation device comprises a plurality of concentrated solar cell panels, a drive device, a control device, and a tracking device. The panels are provided with a concentrator, a highly transmissive plate transmissive to a scattered light component, a plurality of solar battery cells, and circuitry. The cells have a total light reception area of not more than 10% of a total solar incident area. The highly transmissive plate has a light reception area of not less than 80% of the total solar incident area. The tracking device is transmissive to the scattered light component and provided with a plurality of trackers. The trackers are provided with a holder member and a tracking mechanism. The plurality of panels are centrally controlled by a single control device via the plurality of trackers.

Description

集光型太陽光発電装置Concentrating solar power generator
 本発明は、集光型太陽光発電装置に関する。 The present invention relates to a concentrating solar power generation device.
 従来から、非集光型太陽電池パネルや、レンズ、ミラー等の集光器を備えた集光型太陽電池パネルが種々開発されている。また、予め設定された太陽軌道を追尾するようにこれら太陽電池パネルを駆動する駆動装置と、該駆動装置の駆動量を予め設定された太陽軌道に合うように算出し、駆動装置を制御する制御装置とからなる追尾装置を備えた太陽光発電装置も開発されている(特許文献1~4)。 Conventionally, various non-condensing solar cell panels and concentrating solar cell panels equipped with condensers such as lenses and mirrors have been developed. Further, a driving device that drives these solar cell panels so as to track a preset solar orbit, and a control that controls the driving device by calculating a driving amount of the driving device so as to match the preset solar orbit A solar power generation device including a tracking device composed of a device has also been developed (Patent Documents 1 to 4).
 さらに近年では、直達光を高倍率で太陽電池セルに集光させることが可能なだけでなく、入射した散乱光を効率よく透過させ、多目的に利用することが可能な集光型太陽電池パネルと、前記のごとき追尾装置とを備えた太陽光発電装置も提案されている(特許文献5)。 Furthermore, in recent years, a concentrating solar cell panel that not only can direct light to be condensed on a solar cell at a high magnification but also efficiently transmits incident scattered light and can be used for multiple purposes. Also, a solar power generation device including the tracking device as described above has been proposed (Patent Document 5).
特開2003-324210号公報JP 2003-324210 A 特開2012-069610号公報JP 2012-0669610 A 特開2013-021286号公報JP 2013-021286 A 特開2014-095280号公報JP 2014-095280 A 特開2016-062931号公報JP 2016-062931 A
 一般的な追尾装置は、耐風性に優れた構造を実現するために装置が大がかりであるが、その割には太陽電池の積載量が多くない。そのため、分散可動型の追尾装置も提案されているが、該追尾装置は、機構が複雑であり、コストが上昇してしまう。また、該追尾装置は、設置時や搬送時の不具合が大きい。 A general tracking device is large in order to realize a structure excellent in wind resistance, but the solar cell load is not large for that. For this reason, a distributed movable type tracking device has also been proposed, but the mechanism of the tracking device is complicated and the cost increases. In addition, the tracking device has a large problem during installation and transportation.
 さらに、従来の一般的な追尾装置には、その構成部材として、光透過性がないか非常に低いものが用いられている。そうすると、例えば入射した散乱光を透過させることが可能な集光型太陽電池パネルを、一般的な追尾装置で追尾制御した場合、該集光型太陽電池パネルを透過した散乱光は、追尾装置を透過することができず、散乱光を透過させることが可能な集光型太陽電池パネルの利用価値が低下してしまう。 Furthermore, a conventional general tracking device uses a component having no or very low light transmission as its constituent member. Then, for example, when a concentrating solar cell panel capable of transmitting incident scattered light is controlled by a general tracking device, the scattered light transmitted through the concentrating solar cell panel is transmitted to the tracking device. The utility value of the concentrating solar cell panel which cannot transmit and can transmit scattered light will fall.
 以上の点に鑑み、本発明の目的は、集光型太陽電池パネルと分散可動型の追尾装置とを備えており、直達光を高倍率で集光することが可能であると同時に、散乱光を効率よく透過させ、多目的に利用することも可能なだけでなく、小型で設置時の利便性や搬送時の可搬性に優れ、低コストでの実現が可能な太陽光発電装置を提供することである。 In view of the above points, an object of the present invention is provided with a concentrating solar cell panel and a dispersion movable tracking device, and is capable of condensing direct light at high magnification, and at the same time, scattered light. Providing a solar power generation device that not only can be used efficiently and can be used for multiple purposes, but it is also compact and has excellent convenience during installation and portability during transportation, and can be realized at low cost. It is.
 本発明の一側面に係る集光型太陽光発電装置(以下、「集光型太陽光発電装置α」ともいう)は、
 アレイ状に配置され、太陽光を電力に変換する複数の集光型太陽電池パネルと、
 前記複数の集光型太陽電池パネルを駆動する駆動装置と、
 前記複数の集光型太陽電池パネルが予め設定された太陽軌道を追尾するように前記駆動装置の駆動量を制御する制御装置と、
 追尾装置と
を含む集光型太陽光発電装置であって、
 前記集光型太陽電池パネル(以下、「集光型太陽電池パネルα」ともいう)の各々は、
  太陽光を集光する集光器と、
  前記集光器によって集光された前記太陽光を受光して該太陽光の少なくとも散乱光成分を透過する高透過板と、
  前記集光器によって集光された前記太陽光を受光して発電する複数の太陽電池セルと、
  前記高透過板の表面の一部に設けられ、前記太陽電池セルに電気的に接続可能な回路と
を備え、
 前記太陽電池セルの各々は、前記高透過板の表面上に分散的に配置され、
 前記太陽電池セルと前記回路とは、前記集光器と前記高透過板との間に封止され、
 前記太陽電池セルの全受光面積は、太陽光総入射面積の10%以下であり、
 前記高透過板の受光面積は、太陽光総入射面積の80%以上であり、
 前記追尾装置は、
  前記高透過板を透過した散乱光成分を透過する材料からなり、
  前記複数の集光型太陽電池パネルの各々を搭載する複数の追尾子を備え、
 前記複数の追尾子の各々は、
  前記集光型太陽電池パネルを搭載する保持部材と、
  前記保持部材に連結する追尾機構と
を備え、
 前記複数の集光型太陽電池パネルは、前記複数の追尾子を介して、1つの前記制御装置により一元制御される
ことを特徴とする。
The concentrating solar power generation device according to one aspect of the present invention (hereinafter, also referred to as “concentrating solar power generation device α”)
A plurality of concentrating solar panels arranged in an array and converting sunlight into electric power;
A driving device for driving the plurality of concentrating solar cell panels;
A control device for controlling the drive amount of the drive device so that the plurality of concentrating solar cell panels track a preset solar orbit,
A concentrating solar power generation device including a tracking device,
Each of the concentrating solar cell panels (hereinafter also referred to as “concentrating solar cell panel α”)
A concentrator that collects sunlight;
A highly transmissive plate that receives the sunlight collected by the condenser and transmits at least a scattered light component of the sunlight;
A plurality of solar cells that receive the sunlight collected by the condenser and generate power; and
A circuit provided on a part of the surface of the highly transmissive plate and electrically connectable to the solar battery cell;
Each of the solar cells is dispersedly disposed on the surface of the highly transmissive plate,
The solar cell and the circuit are sealed between the collector and the high transmission plate,
The total light receiving area of the solar battery cell is 10% or less of the total sunlight incident area,
The light receiving area of the high transmission plate is 80% or more of the total sunlight incident area,
The tracking device is
It is made of a material that transmits the scattered light component that has passed through the high transmission plate,
A plurality of trackers each mounting the plurality of concentrating solar cell panels;
Each of the plurality of trackers is
A holding member for mounting the concentrating solar cell panel;
A tracking mechanism connected to the holding member,
The plurality of concentrating solar cell panels are centrally controlled by one control device via the plurality of trackers.
 本発明の別の側面に係る集光型太陽光発電装置(以下、「集光型太陽光発電装置β」ともいう)は、
 アレイ状に配置され、太陽光を電力に変換する複数の集光型太陽電池パネルと、
 前記複数の集光型太陽電池パネルを駆動する駆動装置と、
 前記複数の集光型太陽電池パネルが予め設定された太陽軌道を追尾するように前記駆動装置の駆動量を制御する制御装置と、
 追尾装置と
を含む集光型太陽光発電装置であって、
 前記集光型太陽電池パネル(以下、「集光型太陽電池パネルβ」ともいう)の各々は、
  太陽光を集光する集光器と、
  前記集光器によって集光された前記太陽光を受光して該太陽光の少なくとも散乱光成分を透過する高透過板と、
  前記集光器によって集光された前記太陽光を受光して発電する複数の太陽電池セルと、
  前記高透過板の表面の一部に設けられ、前記太陽電池セルに電気的に接続可能な回路と
を備え、
 前記太陽電池セルの各々は、前記高透過板の受光面とは反対側の面に分散的に配置され、
 前記太陽電池セルの全受光面積は、太陽光総入射面積の10%以下であり、
 前記高透過板の受光面積は、太陽光総入射面積の80%以上であり、
 前記集光器によって集光されかつ前記高透過板を透過した太陽光を反射させ、前記太陽電池セルの受光面へ案内する反射面を有する複数の受光ガイドをさらに備え、
 前記受光ガイドの各々と前記太陽電池セルの各々とが予め一体化され、複数のセルパッケージが構成され、
 前記複数のセルパッケージは、封止材によって前記高透過板の前記反対側の面上に分散的に封止され、
 前記追尾装置は、
  前記高透過板を透過した散乱光成分を透過する材料からなり、
  前記複数の集光型太陽電池パネルの各々を搭載する複数の追尾子を備え、
 前記複数の追尾子の各々は、
  前記集光型太陽電池パネルを搭載する保持部材と、
  前記保持部材に連結する追尾機構と
を備え、
 前記複数の集光型太陽電池パネルは、前記複数の追尾子を介して、1つの前記制御装置により一元制御される
ことを特徴とする。
A concentrating solar power generation device according to another aspect of the present invention (hereinafter, also referred to as “concentrating solar power generation device β”)
A plurality of concentrating solar panels arranged in an array and converting sunlight into electric power;
A driving device for driving the plurality of concentrating solar cell panels;
A control device for controlling the drive amount of the drive device so that the plurality of concentrating solar cell panels track a preset solar orbit,
A concentrating solar power generation device including a tracking device,
Each of the concentrating solar cell panels (hereinafter also referred to as “concentrating solar cell panel β”)
A concentrator that collects sunlight;
A highly transmissive plate that receives the sunlight collected by the condenser and transmits at least a scattered light component of the sunlight;
A plurality of solar cells that receive the sunlight collected by the condenser and generate power; and
A circuit provided on a part of the surface of the highly transmissive plate and electrically connectable to the solar battery cell;
Each of the solar cells is dispersedly disposed on the surface opposite to the light receiving surface of the high transmittance plate,
The total light receiving area of the solar battery cell is 10% or less of the total sunlight incident area,
The light receiving area of the high transmission plate is 80% or more of the total sunlight incident area,
A plurality of light receiving guides having a reflecting surface for reflecting the sunlight collected by the collector and transmitted through the highly transmissive plate and guiding it to the light receiving surface of the solar battery cell;
Each of the light receiving guides and each of the solar battery cells are integrated in advance to form a plurality of cell packages,
The plurality of cell packages are dispersedly sealed on the opposite surface of the highly transmissive plate by a sealing material,
The tracking device is
It is made of a material that transmits the scattered light component that has passed through the high transmission plate,
A plurality of trackers each mounting the plurality of concentrating solar cell panels;
Each of the plurality of trackers is
A holding member for mounting the concentrating solar cell panel;
A tracking mechanism connected to the holding member,
The plurality of concentrating solar cell panels are centrally controlled by one control device via the plurality of trackers.
 本発明のさらに別の側面に係る集光型太陽光発電装置(以下、「集光型太陽光発電装置γ」ともいう)は、
 アレイ状に配置され、太陽光を電力に変換する複数の集光型太陽電池パネルと、
 前記複数の集光型太陽電池パネルを駆動する駆動装置と、
 前記複数の集光型太陽電池パネルが予め設定された太陽軌道を追尾するように前記駆動装置の駆動量を制御する制御装置と、
 追尾装置と
を含む集光型太陽光発電装置であって、
 前記集光型太陽電池パネル(以下、「集光型太陽電池パネルγ」ともいう)の各々は、
  太陽光を集光する集光器と、
  前記集光器によって集光された前記太陽光を受光して発電する複数の太陽電池セルと、
  前記太陽電池セルに電気的に接続可能な回路と
を備え、
 前記複数の太陽電池セルは、前記集光型太陽電池パネルにおいて、各々の間に空間を設けて分散的に配置され、
 前記太陽電池セルの全受光面積は、太陽光総入射面積の10%以下であり、
 前記追尾装置は、
  前記太陽光からの散乱光成分を透過する材料からなり、
  前記複数の集光型太陽電池パネルの各々を搭載する複数の追尾子を備え、
 前記複数の追尾子の各々は、
  前記集光型太陽電池パネルを搭載する保持部材と、
  前記保持部材に連結する追尾機構と
を備え、
 前記複数の集光型太陽電池パネルは、前記複数の追尾子を介して、1つの前記制御装置により一元制御される
ことを特徴とする。
A concentrating solar power generation device according to still another aspect of the present invention (hereinafter, also referred to as “concentrating solar power generation device γ”),
A plurality of concentrating solar panels arranged in an array and converting sunlight into electric power;
A driving device for driving the plurality of concentrating solar cell panels;
A control device for controlling the drive amount of the drive device so that the plurality of concentrating solar cell panels track a preset solar orbit,
A concentrating solar power generation device including a tracking device,
Each of the concentrating solar cell panels (hereinafter also referred to as “concentrating solar cell panel γ”)
A concentrator that collects sunlight;
A plurality of solar cells that receive the sunlight collected by the condenser and generate power; and
A circuit electrically connectable to the solar cell,
The plurality of solar cells are arranged in a distributed manner in the concentrating solar cell panel, with spaces provided between them.
The total light receiving area of the solar battery cell is 10% or less of the total sunlight incident area,
The tracking device is
Made of a material that transmits the scattered light component from the sunlight,
A plurality of trackers each mounting the plurality of concentrating solar cell panels;
Each of the plurality of trackers is
A holding member for mounting the concentrating solar cell panel;
A tracking mechanism connected to the holding member,
The plurality of concentrating solar cell panels are centrally controlled by one control device via the plurality of trackers.
 このように、集光型太陽光発電装置αには集光型太陽電池パネルαが備えられており、集光型太陽光発電装置βには集光型太陽電池パネルβが備えられており、集光型太陽光発電装置γには集光型太陽電池パネルγが備えられている。集光型太陽電池パネルα、β、及びγにより、特に集光型太陽電池パネルα及びβにより、従来の集光型太陽電池パネルでは温度上昇による変換効率の低下等の要因となっていた散乱光を、高い比率で透過させることができる。 As described above, the concentrating solar power generation device α is provided with the concentrating solar cell panel α, and the concentrating solar power generation device β is provided with the concentrating solar cell panel β. The concentrating solar power generation device γ is provided with a concentrating solar cell panel γ. Scattering caused by concentrating solar cell panels α, β, and γ, especially by concentrating solar cell panels α and β, such as a decrease in conversion efficiency due to temperature rise in conventional concentrating solar cell panels Light can be transmitted at a high rate.
 集光型太陽電池パネルα、β、及びγによれば、特に集光型太陽電池パネルα及びβによれば、通常の非集光型太陽電池パネルや低倍率集光型太陽電池パネルでは不可能であった、入射光のうち、散乱光の発電以外の用途への利用が可能になるとともに、直達光の高倍率での集光による発電も可能になる。 According to the concentrating solar cell panels α, β, and γ, particularly according to the concentrating solar cell panels α and β, it is not possible with a normal non-condensing solar cell panel or a low-magnification concentrating solar cell panel. Among the incident light, it is possible to use the scattered light for purposes other than power generation, and it is also possible to generate power by condensing direct light at a high magnification.
 集光型太陽電池パネルα、β、及びγは、焦点の位置ずれがあった場合でも、集光率の低下が極力抑制され、かつ、高い放熱特性を有している。 The concentrating solar cell panels α, β, and γ have a high heat dissipation characteristic in which a decrease in the condensing rate is suppressed as much as possible even when the focal point is misaligned.
 集光型太陽電池パネルα、β、及びγにおいて、太陽電池セルの下面側に低コストの別の太陽電池を設置すれば、散乱光からも発電が可能となり、発電量をさらに増大させることができる。 In the concentrating solar cell panels α, β, and γ, if another low-cost solar cell is installed on the lower surface side of the solar cell, it is possible to generate power from scattered light and further increase the power generation amount. it can.
 集光型太陽光発電装置α、β、及びγによると、集光型太陽電池パネルα、β、及びγを搭載する追尾子の各々を駆動装置により駆動させることができる。このように、分散可動型であって、簡易な構造の追尾装置を備えた集光型太陽光発電装置α、β、及びγが、低コストで実現され得る。 According to the concentrating solar power generation devices α, β, and γ, each of the trackers on which the concentrating solar cell panels α, β, and γ are mounted can be driven by the driving device. As described above, the concentrating solar power generation devices α, β, and γ that are distributed and movable and have a tracking device with a simple structure can be realized at low cost.
 本実施形態に係る集光型太陽光発電装置α、β、及びγにおいて、
 前記複数の追尾子の各々は、前記駆動装置の前記制御された駆動量に基づいて、前記保持部材における少なくとも3点を駆動することにより、前記集光型太陽電池パネルが予め設定された太陽軌道を追尾し、
 前記駆動装置は、前記保持部材における前記少なくとも3点をそれぞれ駆動する少なくとも3つの駆動部からなる
ことが好ましい。
In the concentrating solar power generation devices α, β, and γ according to the present embodiment,
Each of the plurality of trackers drives at least three points on the holding member based on the controlled driving amount of the driving device, so that the concentrating solar cell panel is set in advance. Tracking
It is preferable that the driving device includes at least three driving units that respectively drive the at least three points of the holding member.
 このように、保持部材の少なくとも3点を駆動させることにより、さらには、3つの駆動部で該保持部材の3点を駆動させることにより、簡易な構造でありながら、集光型太陽電池パネルα、β、及びγをより正確に太陽軌道に追尾させることができる。 In this way, by driving at least three points of the holding member, and further by driving three points of the holding member with three driving units, the concentrating solar cell panel α is simple in structure. , Β, and γ can be more accurately tracked to the solar orbit.
 本実施形態に係る集光型太陽光発電装置α、β、及びγにおいて、
 前記追尾機構は、
  前記保持部材を支える支柱部と、
  前記支柱部を支える土台部と
を備え、
 前記保持部材と前記支柱部とを連結するリングがさらに設けられている
ことが好ましい。
In the concentrating solar power generation devices α, β, and γ according to the present embodiment,
The tracking mechanism is
A support column supporting the holding member;
A base portion that supports the support portion,
It is preferable that a ring for connecting the holding member and the support column is further provided.
 このようにすると、保持部材と支柱部とがリングによって連結しているため、リングを介して保持部材の駆動が円滑に行われる。その結果、集光型太陽電池パネルα、β、及びγをより正確に太陽軌道に追尾させることができる。 In this case, since the holding member and the support column are connected by the ring, the holding member is driven smoothly through the ring. As a result, the concentrating solar cell panels α, β, and γ can be more accurately tracked in the solar orbit.
 本実施形態に係る集光型太陽光発電装置α、β、及びγにおいて、
 前記追尾装置を搭載する架台と、
 前記架台の上に、前記追尾装置の全体を覆うように設けられた透明部材からなる矩形状のケースと
をさらに備えており、
 前記ケースの少なくとも一面が傾斜している
ことが好ましい。
In the concentrating solar power generation devices α, β, and γ according to the present embodiment,
A gantry on which the tracking device is mounted;
On the gantry, further comprises a rectangular case made of a transparent member provided to cover the entire tracking device,
It is preferable that at least one surface of the case is inclined.
 このようにすると、耐風性に優れた集光型太陽光発電装置α、β、及びγを実現することができる。 In this way, it is possible to realize the concentrating solar power generation devices α, β, and γ that are excellent in wind resistance.
 本実施形態に係る集光型太陽光発電装置α、β、及びγにおいて、
 前記複数の集光型太陽電池パネルの上部に、該集光型太陽電池パネルの各々の受光側表面を清掃する清掃装置がさらに設けられている
ことが好ましい。
In the concentrating solar power generation devices α, β, and γ according to the present embodiment,
It is preferable that a cleaning device for cleaning the light receiving side surface of each of the concentrating solar cell panels is further provided above the plurality of concentrating solar cell panels.
 このようにすると、集光型太陽電池パネルα、β、及びγの受光側表面がより清浄な状態で維持され、集光型太陽光発電装置α、β、及びγは、発電効率がより高く、より高比率で直達光を遮断することができ、散乱光をさらに効率よく透過させることもできる。 In this way, the light receiving side surfaces of the concentrating solar cell panels α, β, and γ are maintained in a cleaner state, and the concentrating solar power generation devices α, β, and γ have higher power generation efficiency. The direct light can be blocked at a higher ratio, and the scattered light can be transmitted more efficiently.
 本実施形態に係る集光型太陽光発電装置α、β、及びγにおいて、
 互いに連結した前記追尾装置を複数備え、
 前記複数の追尾装置は、前記駆動装置を介して、1つの前記制御装置により同時に駆動される
ことが好ましい。
In the concentrating solar power generation devices α, β, and γ according to the present embodiment,
A plurality of the tracking devices connected to each other;
The plurality of tracking devices are preferably driven simultaneously by one control device via the driving device.
 このようにすると、1つの制御装置を介して複数の追尾装置を一元制御することができ、簡易な構造の複数の追尾装置を備えた集光型太陽光発電装置α、β、及びγを実現することができる。 In this way, a plurality of tracking devices can be centrally controlled via one control device, and a concentrating solar power generation device α, β, and γ having a plurality of tracking devices with a simple structure is realized. can do.
 本発明によると、直達光を高倍率で集光して高効率で発電し、高比率で遮断することが可能であると同時に、散乱光を効率よく透過させ、多目的に利用することも可能なだけでなく、小型で設置時の利便性や搬送時の可搬性に優れ、開放感を有する集光型太陽光発電装置を、低コストで実現することができる。 According to the present invention, it is possible to collect direct light at a high magnification and generate power with high efficiency and to cut off at a high ratio, and at the same time, it can efficiently transmit scattered light and be used for multiple purposes. In addition, it is possible to realize a concentrating solar power generation apparatus that is small in size, excellent in installation convenience and transportability in transportation, and having an open feeling at low cost.
図1は、実施例1に係る集光型太陽電池パネルの構成例を示す概略説明図であり、(a)は平面図、(b)は断面図である。1A and 1B are schematic explanatory views showing a configuration example of a concentrating solar cell panel according to Example 1, where FIG. 1A is a plan view and FIG. 1B is a cross-sectional view. 図2は、実施例1において、太陽電池セルの温度を熱解析シミュレーションによって予測した結果を示す図である。FIG. 2 is a diagram illustrating a result of predicting the temperature of the solar battery cell by thermal analysis simulation in Example 1. 図3は、実施例2に係る集光型太陽電池パネルの構成例を示す概略説明図であり、(a)は平面図、(b)は断面図である。FIG. 3 is a schematic explanatory diagram illustrating a configuration example of a concentrating solar cell panel according to Example 2, in which (a) is a plan view and (b) is a cross-sectional view. 図4は、実施例3に係る集光型太陽電池パネルの構成例を示す概略説明図であり、(a)は平面図、(b)は断面図である。FIG. 4 is a schematic explanatory diagram illustrating a configuration example of a concentrating solar cell panel according to Example 3, where (a) is a plan view and (b) is a cross-sectional view. 図5は、実施例4に係る集光型太陽電池パネルの構成例を示す概略説明図(断面図)である。FIG. 5 is a schematic explanatory diagram (cross-sectional view) showing a configuration example of a concentrating solar cell panel according to Example 4. 図6は、実施例5及び6に係る集光型太陽電池パネルの構成例を示す概略説明図であり、(a)は集光型太陽電池パネルの断面図、(b)はセルパッケージの断面図、(c)はセルパッケージの断面図である。FIG. 6 is a schematic explanatory diagram illustrating a configuration example of the concentrating solar cell panel according to Examples 5 and 6, where (a) is a cross-sectional view of the concentrating solar cell panel, and (b) is a cross-sectional view of the cell package. FIG. 3C is a cross-sectional view of the cell package. 図7は、実施例7に係る集光型太陽電池パネルの構成例を示す概略説明図であり、(a)は断面図、(b)は平面図である。FIG. 7 is a schematic explanatory view illustrating a configuration example of a concentrating solar cell panel according to Example 7, in which (a) is a cross-sectional view and (b) is a plan view. 図8は、実施例8に係る集光型太陽電池パネルの構成例を示す概略説明図であり、(a)は集光型太陽電池パネルの断面図、(b)はセルパッケージの断面図である。FIG. 8 is a schematic explanatory diagram illustrating a configuration example of a concentrating solar cell panel according to Example 8, where (a) is a cross-sectional view of the concentrating solar cell panel, and (b) is a cross-sectional view of the cell package. is there. 図9は、実施例9に係る集光型太陽電池パネルの構成例を示す概略説明図であり、(a)は平面図、(b)は断面図である。FIG. 9 is a schematic explanatory diagram illustrating a configuration example of a concentrating solar cell panel according to Example 9, in which (a) is a plan view and (b) is a cross-sectional view. 図10は、本発明の一実施形態に係る集光型太陽光発電装置を構成する追尾装置の一実施例を示す概略説明図である。FIG. 10 is a schematic explanatory diagram illustrating an example of the tracking device that configures the concentrating solar power generation device according to the embodiment of the present invention. 図11は、本発明の一実施形態において追尾装置を構成する追尾子の構造例を示す概略説明図である。FIG. 11 is a schematic explanatory diagram showing an example of the structure of a tracker constituting the tracking device in an embodiment of the present invention. 図12は、本発明の一実施形態において追尾装置を構成する追尾子の折り畳まれた状態の構造例を示す概略説明図であり、(a)は追尾子の略上方から見た図、(b)は追尾子の略横方向から見た図である。FIG. 12 is a schematic explanatory view showing a structure example of a folded state of the tracker constituting the tracking device in one embodiment of the present invention, and (a) is a diagram seen from substantially above the tracker. ) Is a diagram seen from the lateral direction of the tracker. 図13は、本発明の一実施形態に係る集光型太陽光発電装置を構成する追尾装置の制御を実現するための配線・伝達軸構造例を示す概略説明図である。FIG. 13 is a schematic explanatory diagram showing an example of a wiring / transmission shaft structure for realizing control of the tracking device constituting the concentrating solar power generation device according to the embodiment of the present invention. 図14は、本発明の一実施形態に係る集光型太陽光発電装置を構成する追尾装置の制御を実現するための配線・伝達軸構造例を示す概略説明図である。FIG. 14 is a schematic explanatory diagram illustrating an example of a wiring / transmission shaft structure for realizing control of the tracking device that configures the concentrating solar power generation device according to the embodiment of the present invention. 図15は、本発明の一実施形態に係る集光型太陽光発電装置を構成する追尾装置の一実施例を示す概略説明図である。FIG. 15 is a schematic explanatory diagram illustrating an example of the tracking device that configures the concentrating solar power generation device according to the embodiment of the present invention. 図16は、本発明の一実施形態に係る、複数の追尾装置を備えた集光型太陽光発電装置の構成例を示す概略説明図である。FIG. 16 is a schematic explanatory diagram illustrating a configuration example of a concentrating solar power generation device including a plurality of tracking devices according to an embodiment of the present invention. 図17は、本発明の一実施形態に係る、清掃装置を備えた集光型太陽光発電装置を構成する追尾装置の一実施例を示す概略説明図である。FIG. 17 is a schematic explanatory diagram illustrating an example of a tracking device that constitutes a concentrating solar power generation device including a cleaning device according to an embodiment of the present invention. 図18は、本発明の一実施形態に係る集光型太陽光発電装置の構成例を立体的に示す図であり、(a)は追尾装置を備えた集光型太陽光発電装置の図、(b)は複数の追尾装置を備えた集光型太陽光発電装置の図である。FIG. 18 is a diagram three-dimensionally illustrating a configuration example of a concentrating solar power generation device according to an embodiment of the present invention, and (a) is a diagram of the concentrating solar power generation device including a tracking device, (B) is a figure of the concentrating solar power generation device provided with the some tracking apparatus. 図19は、本発明の一実施形態に係る集光型太陽光発電装置の実装例を立体的に示す図である。FIG. 19 is a diagram three-dimensionally showing an example of mounting the concentrating solar power generation device according to one embodiment of the present invention. 図20は、本発明の一実施形態に係る集光型太陽光発電装置を構成する追尾装置の追尾子に用いるリボンの構成例を示す概略説明図であり、(a)は巻き取る前の直線状態の図、(b)は巻き取った状態の図である。FIG. 20 is a schematic explanatory diagram illustrating a configuration example of a ribbon used for the tracker of the tracking device that configures the concentrating solar power generation device according to the embodiment of the present invention, and (a) is a straight line before winding. The state figure and (b) are the figure of the state wound up. 図21は、実験例に用いた、本発明の一実施形態に係る集光型太陽光発電装置を構成する追尾装置の概略図であり、(a)は追尾装置の概略上面図、(b)は追尾装置の長手方向の概略側面図、(c)は追尾装置の短手方向の概略側面図である。FIG. 21: is the schematic of the tracking apparatus which comprises the concentrating solar power generation device which concerns on one Embodiment of this invention used for the experiment example, (a) is a schematic top view of a tracking apparatus, (b) Is a schematic side view of the tracking device in the longitudinal direction, and (c) is a schematic side view of the tracking device in the short direction. 図22は、実験例に用いた、遮光物を配置していない太陽電池モジュールの概略斜視図である。FIG. 22 is a schematic perspective view of a solar cell module used in the experimental example, in which no light-shielding object is disposed. 図23は、実験例に用いた、図21に示す追尾装置を配置した太陽電池モジュールの概略斜視図である。FIG. 23 is a schematic perspective view of a solar cell module used in the experimental example in which the tracking device shown in FIG. 21 is arranged. 図24は、実験例に用いた、遮光物を配置した太陽電池モジュールの概略斜視図である。FIG. 24 is a schematic perspective view of a solar cell module used in the experimental example and provided with a light blocking object. 図25は、図22~24に示す各太陽電池モジュールを用いて行った、太陽光透過/遮光実験の結果を示すIVカーブである。FIG. 25 is an IV curve showing the results of a sunlight transmission / light-shielding experiment performed using each of the solar cell modules shown in FIGS.
 以下に、本発明の集光型太陽光発電装置について図面を参照しながら説明する。なお、本明細書において、集光型太陽光発電装置α及びβを併せて集光型太陽光発電装置Iといい、集光型太陽光発電装置γを集光型太陽光発電装置IIともいう。 Hereinafter, the concentrating solar power generation device of the present invention will be described with reference to the drawings. In this specification, the concentrating solar power generation devices α and β are collectively referred to as a concentrating solar power generation device I, and the concentrating solar power generation device γ is also referred to as a concentrating solar power generation device II. .
<集光型太陽光発電装置α>
 本発明の一実施形態に係る集光型太陽光発電装置αは、少なくとも、
(1)アレイ状に配置され、太陽光を電力に変換する複数の集光型太陽電池パネルαと、
(2)複数の集光型太陽電池パネルαを駆動する駆動装置と、
(3)複数の集光型太陽電池パネルαが予め設定された太陽軌道を追尾するように駆動装置の駆動量を制御する制御装置と、
(4)追尾装置と
を備えている。
<Concentrated solar power generator α>
The concentrating solar power generation apparatus α according to one embodiment of the present invention is at least:
(1) A plurality of concentrating solar cell panels α arranged in an array and converting sunlight into electric power,
(2) a driving device for driving a plurality of concentrating solar cell panels α;
(3) a control device that controls the drive amount of the drive device so that the plurality of concentrating solar cell panels α track a preset solar orbit,
(4) A tracking device is provided.
<集光型太陽光発電装置β>
 本発明の一実施形態に係る集光型太陽光発電装置βは、少なくとも、
(1)アレイ状に配置され、太陽光を電力に変換する複数の集光型太陽電池パネルβと、
(2)複数の集光型太陽電池パネルβを駆動する駆動装置と、
(3)複数の集光型太陽電池パネルβが予め設定された太陽軌道を追尾するように駆動装置の駆動量を制御する制御装置と、
(4)追尾装置と
を備えている。
<Concentrated solar power generation device β>
The concentrating solar power generation apparatus β according to an embodiment of the present invention is at least:
(1) A plurality of concentrating solar cell panels β arranged in an array and converting sunlight into electric power;
(2) a driving device for driving a plurality of concentrating solar cell panels β;
(3) a control device that controls the drive amount of the drive device so that the plurality of concentrating solar cell panels β track a preset solar orbit;
(4) A tracking device is provided.
<集光型太陽光発電装置γ>
 本発明の一実施形態に係る集光型太陽光発電装置γは、少なくとも、
(1)アレイ状に配置され、太陽光を電力に変換する複数の集光型太陽電池パネルγと、
(2)複数の集光型太陽電池パネルγを駆動する駆動装置と、
(3)複数の集光型太陽電池パネルγが予め設定された太陽軌道を追尾するように駆動装置の駆動量を制御する制御装置と、
(4)追尾装置と
を備えている。
<Concentrating solar power generator γ>
The concentrating solar power generation device γ according to one embodiment of the present invention is at least:
(1) a plurality of concentrating solar cell panels γ arranged in an array and converting sunlight into electric power;
(2) a driving device for driving a plurality of concentrating solar cell panels γ,
(3) a control device that controls the drive amount of the drive device so that a plurality of concentrating solar cell panels γ track a preset solar orbit,
(4) A tracking device is provided.
(1)集光型太陽電池パネルI
 集光型太陽光発電装置αに備えられる集光型太陽電池パネルαの各々、及び、集光型太陽光発電装置βに備えられる集光型太陽電池パネルβの各々は、いずれも、少なくとも以下の(1-1)~(1-4)を備えている。なお、本明細書において、集光型太陽電池パネルα及びβを併せて集光型太陽電池パネルIという。
(1-1)太陽光を集光する集光器
(1-2)集光器によって集光された太陽光を受光して太陽光の少なくとも散乱光成分を透過する高透過板
(1-3)集光器によって集光された太陽光を受光して発電する複数の太陽電池セル
(1-4)高透過板の表面の一部に設けられ、太陽電池セルに電気的に接続可能な回路
(1) Concentrating solar panel I
Each of the concentrating solar cell panel α provided in the concentrating solar power generation device α and each of the concentrating solar cell panel β provided in the concentrating solar power generation device β is at least the following: (1-1) to (1-4) are provided. In this specification, the concentrating solar cell panels α and β are collectively referred to as a concentrating solar cell panel I.
(1-1) A collector for collecting sunlight (1-2) A highly transmissive plate (1-3) that receives sunlight collected by the collector and transmits at least scattered light components of sunlight. ) A plurality of solar cells (1-4) for receiving sunlight generated by the condenser and generating electric power (1-4) A circuit provided on a part of the surface of the high transmission plate and electrically connectable to the solar cells
 ここで、前記太陽電池セルの各々は、前記高透過板の表面上に分散的に配置される。太陽電池セルの全受光面積は、太陽光総入射面積の10%以下であり、高透過板の受光面積は、太陽光総入射面積の80%以上であることを特徴とする。なお、高透過板上に配置され、太陽電池セルと接続して電気回路を構成する各部材の総受光面積(太陽電池セル以外に高透過板への散乱光の入射を遮る総面積)は、太陽光総入射面積の10%未満に設定されていることが好ましい。太陽電池セルの全受光面積が太陽光総入射面積の10%を超えると、目的とする超高倍率の集光型太陽電池パネルIの作製が困難となる。一方、高透過板の受光面積が太陽光総入射面積の80%未満になると、発電以外の他用途への散乱光の利用が不充分になるだけでなく、透過せずにパネル内に残存した散乱光が余分な熱となり、パネル内の機器に悪影響を及ぼす危険が増加する。 Here, each of the solar battery cells is dispersedly arranged on the surface of the high transmission plate. The total light receiving area of the solar battery cell is 10% or less of the total sunlight incident area, and the light receiving area of the high transmission plate is 80% or more of the total sunlight incident area. In addition, the total light receiving area of each member that is arranged on the high transmission plate and is connected to the solar cell to constitute the electric circuit (total area that blocks the incident of scattered light to the high transmission plate other than the solar cell) is It is preferably set to less than 10% of the total sunlight incident area. If the total light receiving area of the solar battery cell exceeds 10% of the total sunlight incident area, it becomes difficult to produce a target concentrating solar battery panel I with ultra-high magnification. On the other hand, when the light-receiving area of the high-transmitting plate is less than 80% of the total sunlight incident area, not only is the scattered light used for other purposes other than power generation, but it remains in the panel without being transmitted. Scattered light becomes extra heat, increasing the risk of adversely affecting the equipment in the panel.
 以下に、集光型太陽電池パネルIを図面に示す実施例に基づいて具体的に説明する。なお、本発明に用いる集光型太陽電池パネルIは、これらの実施例に何ら限定されるものではない。 Hereinafter, the concentrating solar cell panel I will be described in detail based on examples shown in the drawings. In addition, the concentrating solar cell panel I used for this invention is not limited to these Examples at all.
[実施例1]
 図1は、実施例1に係る集光型太陽電池パネルαの構成例を示す概略説明図である。図1(a)は、集光型太陽電池パネル10(10a)の平面図を示す。図1(b)は、図1(a)のA-A’線で破断した集光型太陽電池パネル10(10a)の断面図を示す。
[Example 1]
FIG. 1 is a schematic explanatory diagram illustrating a configuration example of the concentrating solar cell panel α according to the first embodiment. Fig.1 (a) shows the top view of the concentrating solar cell panel 10 (10a). FIG. 1B shows a cross-sectional view of the concentrating solar cell panel 10 (10a) taken along the line AA ′ of FIG.
(実施例1に係る集光型太陽電池パネルαの構造の概要)
 集光型太陽電池パネル10aは、図1(a)及び(b)に示すように、太陽光を集光する集光器(セル封止型集光器)11と、高透過板12と、太陽電池セル13と、金属膜14と、太陽電池セル13、13同士を電気的に接続する金属ワイヤー15と、太陽電池セル13の一群の発電電力を外部に取り出すリード線16と、から構成されている。
(Outline of the structure of the concentrating solar cell panel α according to Example 1)
As shown in FIGS. 1A and 1B, the concentrating solar cell panel 10 a includes a concentrator (cell-sealed concentrator) 11 that condenses sunlight, a high transmission plate 12, It is comprised from the photovoltaic cell 13, the metal film 14, the metal wire 15 which electrically connects the photovoltaic cells 13 and 13, and the lead wire 16 which takes out the generated electric power of a group of photovoltaic cells 13 outside. ing.
 高透過板12は、太陽光透過率が80%以上の材料からなることが好ましく、ガラス板のほか、アクリル系樹脂、ポリカーボネート系樹脂等の樹脂からなる板材を用いることができる。 The high transmission plate 12 is preferably made of a material having a sunlight transmittance of 80% or more, and a plate material made of a resin such as an acrylic resin or a polycarbonate resin can be used in addition to a glass plate.
 金属膜14は、電気伝導率が高い材料からなることが好ましく、例えば、銅、アルミニウム、金等の金属を用いることができる。また、金属に限らず、電気伝導率が高い材料であれば、金属膜14として用いることができる。なお、実施例1では、金属膜14は高透過板12の集光器11側の表面に密着して形成されており、1つの太陽電池セル13に対して2つの金属膜14a、14bを島状に形成し、一方の金属膜14aの集光器11側の表面には、太陽電池セル13の裏面電極(ここでは+極)が密着して形成されている。また、この太陽電池セル13の表面電極(ここでは-極)から、他方の金属膜14bの表面に金属ワイヤー15がボンディングされている。なお、実施例1では、生産性を向上させるために前記のごとき回路接続構成を採用したが、必ずしもこれに限定されない。金属膜14を前記のごとく分割せずに、1つの太陽電池セル13に対して1つの金属膜14を設置する構成を採用してもよい。 The metal film 14 is preferably made of a material having high electrical conductivity, and for example, a metal such as copper, aluminum, or gold can be used. Moreover, not only a metal but a material with high electrical conductivity can be used as the metal film 14. In Example 1, the metal film 14 is formed in close contact with the surface of the high transmission plate 12 on the collector 11 side, and two metal films 14 a and 14 b are formed on one island 13. The back electrode (in this case, the + electrode) of the solar battery cell 13 is formed in close contact with the surface of the one metal film 14a on the collector 11 side. Further, a metal wire 15 is bonded from the surface electrode (here, the negative electrode) of the solar battery cell 13 to the surface of the other metal film 14b. In the first embodiment, the circuit connection configuration as described above is employed in order to improve productivity, but the present invention is not necessarily limited thereto. You may employ | adopt the structure which installs one metal film 14 with respect to one photovoltaic cell 13, without dividing | segmenting the metal film 14 as mentioned above.
 金属ワイヤー15には、例えば、銅、アルミニウム、金等の電気伝導率の高い金属を用いることができる。実施例1では、太陽電池セル13が4直列及び4並列(4×4配列)に電気的に接続され、両端の細長い金属膜14t、14tに取り付けられた正負極のリード線16、16から外部に発電電力を取り出すことができる。金属ワイヤー15として、ワイヤーボンディングで使用される直径数十ミクロンの細線状のもの以外にも、薄い帯状の金属板等も用いることができる。直列及び並列の接続パターンは、取り出したい電流及び電圧のレベルに応じて任意に設定することができる。 For the metal wire 15, for example, a metal having high electrical conductivity such as copper, aluminum, or gold can be used. In the first embodiment, the solar cells 13 are electrically connected in 4 series and 4 parallel (4 × 4 array), and are connected to the negative and positive lead wires 16 and 16 attached to the elongated metal films 14t and 14t at both ends. The generated power can be taken out. As the metal wire 15, in addition to a thin wire having a diameter of several tens of microns used for wire bonding, a thin strip-shaped metal plate or the like can also be used. The series and parallel connection patterns can be arbitrarily set according to the level of current and voltage to be extracted.
 このように、集光型太陽電池パネル10aでは、回路が金属膜14と金属ワイヤー15とを含み、金属膜14が、太陽電池セル13を担持しながら高透過板12の表面に分散的にかつ高透過板12とは電気的に絶縁であるように密着して設置され、金属ワイヤー15は、金属膜14と太陽電池セル13との間を電気的に接続し、直列又は並列の電気回路を構成している。 Thus, in the concentrating solar cell panel 10 a, the circuit includes the metal film 14 and the metal wire 15, and the metal film 14 dispersively disperses on the surface of the high transmission plate 12 while supporting the solar cell 13. The metal wire 15 is installed in close contact with the highly transmissive plate 12 so as to be electrically insulated, and the metal wire 15 electrically connects between the metal film 14 and the solar battery cell 13 to form a series or parallel electric circuit. It is composed.
 高透過板12の集光器11側の太陽電池セル13と、金属膜14と、金属ワイヤー15との全ての構成部材を集光器11の材料で封止するように、集光器11を形成する。実施例1では、集光器11の受光側表面はドーム状のレンズアレイとなっている。実施例1において、集光器11の材料には、透明アクリル系樹脂、透明シリコーン系樹脂、ガラス等が適している。このような集光器11において、入射光線は、屈折率が低い空気と屈折率が高いレンズアレイとの境界面において1回しか屈折しないため、該集光器11は、約300倍未満の集光倍率に適している。なお、予め射出成形等で製作した集光器11と、該集光器11の材料の屈折率とほぼ等しい屈折率を有し、接着作用のある別の透明材料を用いた他の構成部材とを接合した場合も、同様の効果が得られる。 The concentrator 11 is placed so that all the constituent members of the solar cell 13 on the concentrator 11 side of the high transmission plate 12, the metal film 14, and the metal wire 15 are sealed with the material of the concentrator 11. Form. In the first embodiment, the light receiving side surface of the condenser 11 is a dome-shaped lens array. In Example 1, the material of the collector 11 is suitably a transparent acrylic resin, a transparent silicone resin, glass, or the like. In such a collector 11, the incident light beam is refracted only once at the boundary surface between air having a low refractive index and a lens array having a high refractive index. Suitable for light magnification. A concentrator 11 manufactured in advance by injection molding or the like, and other constituent members using another transparent material having a refractive index substantially equal to the refractive index of the material of the concentrator 11 and having an adhesive action The same effect can be obtained even when these are joined.
 このように構成した集光型太陽電池パネル10aを、後述する追尾装置(例えば、図10参照)に搭載すると、図1(b)に示すように、直達光L1は、集光器11によって太陽電池セル13に集光され、電気に変換される。一方、全方位から入射する散乱光L2は、太陽電池セル13には集光されず、その大半が高透過板12を通過(透過)する。 When the concentrating solar cell panel 10a configured as described above is mounted on a tracking device (see, for example, FIG. 10) to be described later, the direct light L1 is transmitted by the concentrator 11 as shown in FIG. It is condensed on the battery cell 13 and converted into electricity. On the other hand, the scattered light L2 incident from all directions is not condensed on the solar battery cell 13, and most of the light passes through (transmits) the high transmission plate 12.
 このとき、集光器11の受光面面積(太陽光総入射面積)に対して、受光面の内側に配置(封止)された不透明な金属膜14と金属ワイヤー15とが占める総投影面積(すなわち、回路面積)の割合を10%未満にすることが好ましい。これにより、太陽電池セル13の全受光面積を太陽光総入射面積の10%以下の超高倍率集光に設定した場合に、高透過板12の受光面積を太陽光総入射面積の80%以上とすることができる。また、太陽電池セル13としては、化合物型多接合太陽電池等の、集光時のセル変換効率が35%以上であるものが好ましい。 At this time, the total projected area occupied by the opaque metal film 14 and the metal wire 15 disposed (sealed) inside the light receiving surface with respect to the light receiving surface area (total sunlight incident area) of the condenser 11 ( In other words, the ratio of the circuit area is preferably less than 10%. Thereby, when the total light receiving area of the solar battery cell 13 is set to ultrahigh magnification condensing of 10% or less of the total sunlight incident area, the light receiving area of the high transmission plate 12 is 80% or more of the total sunlight incident area. It can be. Moreover, as the photovoltaic cell 13, what has the cell conversion efficiency at the time of condensing of 35% or more, such as a compound type multi-junction solar cell, is preferable.
 太陽電池セル13は、できる限り小面積のものが好ましい。太陽電池セル13の受光面サイズが小さくなると、図1(b)に示す焦点距離FLが短くなり、集光器11の全高を低く抑えることができる。その結果、集光器11内部での光吸収量が減少し、光透過性が向上する。さらに、太陽電池セル13のサイズが小さくなると、熱源が分散される効果により、後述の熱解析シミュレーション結果にも示すように(図2参照)、太陽電池セル13の到達温度が低下するため、変換効率及び長期信頼性が向上する。この観点から、1mm×1mm以下、さらには0.5mm×0.5mm以下の太陽電池セル13を用いることが好ましい。このサイズはLEDチップと同程度であり、LEDの実装技術を適用(応用)できるメリットもある。 The solar cells 13 are preferably as small as possible. When the light receiving surface size of the solar battery cell 13 is reduced, the focal length FL shown in FIG. 1B is shortened, and the overall height of the condenser 11 can be suppressed low. As a result, the amount of light absorption inside the collector 11 is reduced, and the light transmission is improved. Furthermore, when the size of the solar battery cell 13 is reduced, the temperature reached by the solar battery cell 13 is lowered due to the effect of the heat source being dispersed, as shown in the thermal analysis simulation result described later (see FIG. 2). Efficiency and long-term reliability are improved. From this viewpoint, it is preferable to use a solar battery cell 13 having a size of 1 mm × 1 mm or less, more preferably 0.5 mm × 0.5 mm or less. This size is similar to that of an LED chip, and there is an advantage that an LED mounting technology can be applied (applied).
 直列及び並列の接続パターンによって発電電圧が高くなる場合には、金属膜14と高透過板12との間に、電気絶縁性が高い材料を挿入してもよい。また、金属ワイヤー15に電気絶縁性が高い材料をコーティングする場合がある。金属膜14と高透過板12との密着には、高導電性接着剤を用いるほか、めっき法、ろう付け法、固相接合法、溶接法、溶湯接合法等の各種の接合方法を採用することができる。 When the generated voltage increases due to the series and parallel connection patterns, a material having high electrical insulation may be inserted between the metal film 14 and the high transmission plate 12. Further, the metal wire 15 may be coated with a material having high electrical insulation. For the adhesion between the metal film 14 and the high transmission plate 12, various bonding methods such as a plating method, a brazing method, a solid phase bonding method, a welding method, and a molten metal bonding method are employed in addition to using a highly conductive adhesive. be able to.
 地上に降り注ぐ太陽光は、主に直達光L1と散乱光L2とに分類することができる。直達光L1は、太陽の光球とその近傍から直接入射するほぼ平行な太陽光線(視野角±0.256°~±5°)であり、散乱光L2は、大気中の微粒子やガスによって散乱され、天空の全体から入射する太陽光線である。直達光L1は、レンズやミラーで高倍率集光することが可能であるが、散乱光L2は、熱力学的制限により、弱い集光しかできないという特性がある。 Sunlight falling on the ground can be mainly classified into direct light L1 and scattered light L2. The direct light L1 is a substantially parallel sunlight ray (viewing angle ± 0.256 ° to ± 5 °) that is directly incident from the sun's photosphere and its vicinity, and the scattered light L2 is scattered by fine particles or gas in the atmosphere. Sun rays entering from the whole sky. The direct light L1 can be condensed at a high magnification by a lens or a mirror, but the scattered light L2 has a characteristic that it can only be weakly condensed due to thermodynamic limitations.
 日本においては、年間日射量の約6割を直達光L1が占め、残りの約4割を散乱光L2が占める。本実施例1では、年間日射量の約6割を占める直達光L1を、セル変換効率が約40%(将来的には50%超が見込まれる)の超高効率の太陽電池セル13に集光して発電する一方、年間日射量の約4割を占める散乱光L2の大半を透過させる。従来の太陽電池パネルとは異なり、散乱光L2は太陽電池セル13に当たらず透過してしまうが、太陽電池セル13の変換効率が高いうえに、後述する追尾装置が設けられているので、より直達光L1の受光量が増大する。その結果、集光型太陽電池パネル10aでは、直達光L1だけからでも、従来の太陽電池パネル以上の発電量が実現される。しかも、散乱光L2の大半が高透過板12を透過するので、後述のとおり、集光型太陽光発電装置αは、太陽光を必要とする他の用途にも利用可能である。このように、集光型太陽電池パネル10aは、貴重な太陽光を発電と他の用途とに無駄なく振り分けることが可能な、新たな集光型太陽電池パネルである。 In Japan, direct light L1 accounts for about 60% of the annual solar radiation, and scattered light L2 accounts for the remaining 40%. In the first embodiment, direct light L1, which accounts for about 60% of the amount of solar radiation, is collected in an ultra-high efficiency solar cell 13 having a cell conversion efficiency of about 40% (more than 50% is expected in the future). While generating light, it transmits most of the scattered light L2, which accounts for about 40% of the amount of solar radiation per year. Unlike the conventional solar battery panel, the scattered light L2 does not hit the solar battery cell 13 and is transmitted, but since the conversion efficiency of the solar battery cell 13 is high and a tracking device described later is provided, The amount of received direct light L1 increases. As a result, in the concentrating solar cell panel 10a, a power generation amount that is greater than that of the conventional solar cell panel is realized even from the direct light L1. And since most of the scattered light L2 permeate | transmits the highly transmissive board 12, as mentioned later, the concentrating solar power generation device (alpha) can be utilized also for the other use which requires sunlight. Thus, the concentrating solar cell panel 10a is a new concentrating solar cell panel that can distribute precious sunlight between power generation and other uses without waste.
 図2に、実施例1において、太陽電池セル13の温度を熱解析シミュレーションによって予測した結果を示す。図2中、散乱光透過率70%が実施例1(本発明)であり、比較のために、散乱光透過率0%の従来例も図示している。本熱解析の解析条件は以下のとおりである。
直達光:600W/m
散乱光:400W/m
外気温:25℃
対流熱伝達率h:5.7W/mK(無風時)
幾何学的集光倍率:300倍
なお、セルサイズが1mm×1mmの場合には、受光面サイズは17.32mm×17.32mmであり、受光面面積をセル面積で除した幾何学的集光倍率は300倍となる。したがって、高透過板12の受光面積(回路面積も含む)は、太陽光総入射面積の90%以上となる。ただし、金属膜14の回路は通常不透明であるので、この分を考慮し、80%以上が透過に有効な高透過板12の受光(透過)面積とした。この受光(透過)面積80%に高透過板12の材料の太陽光透過率90%を乗じると、散乱光透過率は約70%となる。
In FIG. 2, the result of having predicted the temperature of the photovoltaic cell 13 by thermal analysis simulation in Example 1 is shown. In FIG. 2, the scattered light transmittance of 70% is Example 1 (the present invention), and for comparison, a conventional example of scattered light transmittance of 0% is also shown. The analysis conditions of this thermal analysis are as follows.
Direct light: 600 W / m 2
Scattered light: 400 W / m 2
Outside temperature: 25 ℃
Convective heat transfer coefficient h: 5.7 W / m 2 K (no wind)
Geometric condensing magnification: 300 times When the cell size is 1 mm × 1 mm, the light receiving surface size is 17.32 mm × 17.32 mm, and the geometric light condensing is obtained by dividing the light receiving surface area by the cell area. The magnification is 300 times. Therefore, the light receiving area (including the circuit area) of the highly transmissive plate 12 is 90% or more of the total sunlight incident area. However, since the circuit of the metal film 14 is usually opaque, considering this, 80% or more is set as the light receiving (transmitting) area of the high transmission plate 12 effective for transmission. When this light receiving (transmitting) area 80% is multiplied by the sunlight transmittance 90% of the material of the high transmission plate 12, the scattered light transmittance is about 70%.
 図2に示すように、実施例1(本発明)のセルサイズが1mm×1mmの場合には、セル温度が約100℃となり、化合物多接合型太陽電池セル等の温度使用条件を満たす。なお、本発明及び従来例において、そのセルサイズを小さくしていくと(例えば、0.5mm×0.5mm)、さらにセル温度が低下することが分かる。これは、セルサイズを小さくして分散配置することにより、セル面積に対するセル周囲長(放熱面)が増大することや、レンズ焦点距離の縮小によって熱抵抗が低減されること等により、放熱が促進されるからである。 As shown in FIG. 2, when the cell size of Example 1 (the present invention) is 1 mm × 1 mm, the cell temperature is about 100 ° C., which satisfies the temperature use condition of a compound multi-junction solar cell or the like. In addition, in this invention and a prior art example, when the cell size is made small (for example, 0.5 mm x 0.5 mm), it turns out that cell temperature falls further. This is because the cell peripheral length (heat dissipating surface) with respect to the cell area increases by reducing the cell size and the heat resistance is reduced by reducing the lens focal length, etc. Because it is done.
[実施例2]
 図3は、実施例2に係る集光型太陽電池パネルαの構成例を示す概略説明図である。図3(a)は、集光型太陽電池パネル10(10b)の平面図を示す。図3(b)は、図3(a)のB-B’線で破断した集光型太陽電池パネル10(10b)の断面図を示す。
[Example 2]
FIG. 3 is a schematic explanatory diagram illustrating a configuration example of the concentrating solar cell panel α according to the second embodiment. Fig.3 (a) shows the top view of the concentrating solar cell panel 10 (10b). FIG. 3B shows a cross-sectional view of the concentrating solar cell panel 10 (10b) taken along the line BB ′ in FIG.
(実施例2に係る集光型太陽電池パネルαの構造の概要)
 集光型太陽電池パネル10bは、実施例1に係る集光型太陽電池パネル10aと同じ部材から構成されるが、太陽電池セル13、13同士の電気的接続において、金属ワイヤー15を短くし、その代わりに金属膜14を長くしたものである。実施例2に係る集光型太陽電池パネル10bでは、実施例1に係る集光型太陽電池パネル10aよりも不透明な部分の面積は若干増大するが、接続回路の直列抵抗を低減させることが容易であり、高電流の場合において、変換効率を維持することができる。
(Outline of structure of concentrating solar cell panel α according to Example 2)
Although the concentrating solar cell panel 10b is comprised from the same member as the concentrating solar cell panel 10a which concerns on Example 1, in the electrical connection of the photovoltaic cells 13 and 13, shorten the metal wire 15, Instead, the metal film 14 is lengthened. In the concentrating solar cell panel 10b according to Example 2, the area of the opaque portion is slightly increased as compared with the concentrating solar cell panel 10a according to Example 1, but it is easy to reduce the series resistance of the connection circuit. In the case of a high current, the conversion efficiency can be maintained.
[実施例3]
 図4は、実施例3に係る集光型太陽電池パネルαの構成例を示す概略説明図である。図4(a)は、集光型太陽電池パネル10(10c)の平面図を示す。図4(b)は、図4(a)のC-C’線で破断した集光型太陽電池パネル10(10c)の断面図を示す。
[Example 3]
FIG. 4 is a schematic explanatory diagram illustrating a configuration example of the concentrating solar cell panel α according to the third embodiment. Fig.4 (a) shows the top view of the concentrating solar cell panel 10 (10c). FIG. 4B is a cross-sectional view of the concentrating solar cell panel 10 (10c) taken along the line CC ′ in FIG.
(実施例3に係る集光型太陽電池パネルαの構造の概要)
 集光型太陽電池パネル10cは、実施例1に係る集光型太陽電池パネル10a及び実施例2に係る集光型太陽電池パネル10bと比較して、集光器11のタイプと、太陽電池セル13、13同士の電気的接続方法が異なる。
(Outline of structure of concentrating solar cell panel α according to Example 3)
The concentrating solar panel 10c is different from the concentrating solar panel 10a according to the first embodiment and the concentrating solar panel 10b according to the second embodiment. 13 and 13 are different in electrical connection method.
 まず、集光器11について解説する。実施例1及び2とは異なり、実施例3では、図4(b)に示すように、集光器11と太陽電池セル13を実装した面との間には空気層17が存在する。この空気層17が存在することで、入射光線は、集光器11から射出する際に、屈折率が高い集光器の材料(レンズ材料)と屈折率が低い空気との境界面で屈折し、その方向が変わる。よって、このようなセパレート型の集光器11は、集光倍率が約300倍以上と高い場合に適する。また、セパレート型の集光器11としては、フレネルレンズ等の薄型の集光器が適している。 First, the collector 11 will be explained. Unlike Example 1 and 2, in Example 3, the air layer 17 exists between the surface which mounted the collector 11 and the photovoltaic cell 13 as shown in FIG.4 (b). Due to the presence of the air layer 17, incident light rays are refracted at the interface between the collector material (lens material) having a high refractive index and the air having a low refractive index when exiting from the collector 11. The direction changes. Therefore, such a separate concentrator 11 is suitable when the light condensing magnification is as high as about 300 times or more. Further, as the separate type condenser 11, a thin condenser such as a Fresnel lens is suitable.
 次いで、太陽電池セル13、13同士の電気的接続方法について解説する。実施例1及び2とは異なり、実施例3では、電気的接続の大部分を透明導電膜(例えば、ITO膜)18が担う構成となっている。実施例1と同様に、1つの太陽電池セル13に対して、2つの金属膜14a、14bが島状に形成されているが、金属膜14a、14bと高透過板12との間には透明導電膜18がスパッタリング等によってパターニングされている。実施例1では、金属ワイヤー15にて太陽電池セル13、13同士の電気的接続が行われているが、実施例3では、この透明導電膜18が、太陽電池セル13、13同士を電気的に接続している。 Next, a method for electrically connecting the solar cells 13 and 13 will be described. Unlike the first and second embodiments, the third embodiment has a configuration in which a transparent conductive film (for example, an ITO film) 18 bears most of the electrical connection. Similarly to Example 1, two metal films 14 a and 14 b are formed in an island shape with respect to one solar battery cell 13, but transparent between the metal films 14 a and 14 b and the high transmission plate 12. The conductive film 18 is patterned by sputtering or the like. In Example 1, the solar cells 13 and 13 are electrically connected to each other by the metal wire 15. In Example 3, the transparent conductive film 18 electrically connects the solar cells 13 and 13 to each other. Connected to.
 このように、集光型太陽電池パネル10cでは、回路が金属膜14と金属ワイヤー15と透明導電膜18とを含み、金属膜14が、太陽電池セル13を担持しながら高透過板12の表面に分散的にかつ高透過板12とは電気的に絶縁であるように密着して設置され、金属ワイヤー15及び透明導電膜18は、金属膜14と太陽電池セル13との間を電気的に接続し、直列又は並列の電気回路を構成している。 As described above, in the concentrating solar cell panel 10 c, the circuit includes the metal film 14, the metal wire 15, and the transparent conductive film 18, and the metal film 14 supports the solar battery cell 13 and the surface of the highly transmissive plate 12. The metal wire 15 and the transparent conductive film 18 are electrically connected between the metal film 14 and the solar battery cell 13 so as to be dispersed and in close contact with the highly transmissive plate 12. Connected to form a series or parallel electric circuit.
 なお、この電気的接続方法では、パターニングによって複雑な直並列接続回路を比較的容易に形成することが可能であり、また実施例1及び2よりも透過率をさらに向上させることができる。なお、金属膜14a、14bを設けず、太陽電池セル13を直接透明導電膜18上に設置してもよい。なお、透明導電膜18と金属膜14との接合、又は透明導電膜18と太陽電池セル13との接合を容易にするために、両部材の間に他の材料で構成された層を挿入してもよい。 In this electrical connection method, a complicated series-parallel connection circuit can be formed relatively easily by patterning, and the transmittance can be further improved as compared with the first and second embodiments. Note that the solar cells 13 may be directly disposed on the transparent conductive film 18 without providing the metal films 14a and 14b. In order to facilitate the bonding between the transparent conductive film 18 and the metal film 14 or the bonding between the transparent conductive film 18 and the solar battery cell 13, a layer made of another material is inserted between both members. May be.
 なお、実施例1~3で述べた集光器11と電気的接続方法との組み合わせには特に限定がない。例えば、実施例1の電気的接続方法と実施例3のセパレート型の集光器11とを組み合わせてもよい。 Note that there is no particular limitation on the combination of the condenser 11 and the electrical connection method described in the first to third embodiments. For example, you may combine the electrical connection method of Example 1, and the separate type | mold collector 11 of Example 3. FIG.
[実施例4]
 図5は、実施例4に係る集光型太陽電池パネルαの構成例を示す概略説明図であり、集光型太陽電池パネル10(10d)の断面図を示す。
[Example 4]
FIG. 5 is a schematic explanatory diagram illustrating a configuration example of the concentrating solar cell panel α according to the fourth embodiment, and shows a cross-sectional view of the concentrating solar cell panel 10 (10d).
 実施例4では、実施例2に係る集光型太陽電池パネル10bにおける高透過板12の下面側に、低コストの非集光型太陽電池23を設置している。これにより、集光型太陽電池パネル10dの高透過板12を透過した散乱光L2を電気に変換することができる。すなわち、先の実施例1~3とは異なり、実施例4では、高透過板12を透過した散乱光L2を、集光型太陽光発電装置αの総発電量をさらに向上させるために利用することができる。 In Example 4, a low-cost non-condensing solar cell 23 is installed on the lower surface side of the high transmission plate 12 in the concentrating solar cell panel 10b according to Example 2. Thereby, the scattered light L2 which permeate | transmitted the highly transmissive board 12 of the concentrating solar cell panel 10d can be converted into electricity. That is, unlike the first to third embodiments, in the fourth embodiment, the scattered light L2 transmitted through the high transmission plate 12 is used to further improve the total power generation amount of the concentrating solar power generation device α. be able to.
[実施例5]
 図6(a)及び(b)は、実施例5に係る集光型太陽電池パネルαの構成例を示す概略説明図である。図6(a)は、集光型太陽電池パネル10(10e)の断面図を示す。図6(b)は、セルパッケージ30(30e1)の断面図を示す。
[Example 5]
6A and 6B are schematic explanatory diagrams illustrating a configuration example of the concentrating solar cell panel α according to the fifth embodiment. Fig.6 (a) shows sectional drawing of the concentrating solar cell panel 10 (10e). FIG. 6B shows a cross-sectional view of the cell package 30 (30e1).
 通常、集光型太陽電池パネルが超高倍率になるほど、集光型太陽光発電装置に備えられた追尾機構による僅かな追尾誤差であっても、パネルの焦点がずれ易くなる。このため、超高倍率の集光型太陽電池パネルには、焦点が多少ずれた場合であっても、太陽電池セルへの集光の確保、維持が可能な構造を設けておくことが望まれる。実施例5に係る集光型太陽電池パネル10eは、焦点の多少のずれに係らず、太陽電池セル13への集光を充分に確保、維持することが可能なパネルの一例である。 Usually, as the concentrating solar cell panel has an extremely high magnification, the panel is easily out of focus even with a slight tracking error due to the tracking mechanism provided in the concentrating solar power generation device. For this reason, it is desirable that the ultrahigh-magnification concentrating solar panel be provided with a structure capable of ensuring and maintaining condensing on the solar cells even when the focus is slightly deviated. . The concentrating solar cell panel 10e according to Example 5 is an example of a panel that can sufficiently secure and maintain the condensing light on the solar cells 13 regardless of a slight shift in focus.
 太陽電池セル13を金属膜回路に実装する方法は、次のとおりである。図6(a)及び(b)のように、太陽電池セル13と、受光ガイド31、導電性セル取り付け部材(ダイアタッチ部材)32、絶縁体33、及び導電性ブリッジ34等の部材とを予め(別工程で)一体化したセルパッケージ30e1を複数用意し、セルパッケージ30e1の下面(本実施例5では、導電性ブリッジ34の下面)に正負の電極平面が接続される構造としておく。このとき、受光ガイド31と導電性ブリッジ34との間も絶縁体によって絶縁されている。このセルパッケージ30e1を、予め接続箇所にハンダ35を塗布しておいた金属膜14上にマウントし、リフロー炉等で加熱することによって接着が完了する。このような実装方法は、多数のセルパッケージ30e1の実装をロボット等で高速に行うことを可能にするため、大量生産に適している。 The method of mounting the solar battery cell 13 on the metal film circuit is as follows. As shown in FIGS. 6A and 6B, the solar battery cell 13 and members such as the light receiving guide 31, the conductive cell mounting member (die attach member) 32, the insulator 33, and the conductive bridge 34 are previously provided. A plurality of integrated cell packages 30e1 are prepared (in a separate process), and a structure in which positive and negative electrode planes are connected to the lower surface of the cell package 30e1 (in this embodiment, the lower surface of the conductive bridge 34) is provided. At this time, the light receiving guide 31 and the conductive bridge 34 are also insulated by the insulator. Adhesion is completed by mounting the cell package 30e1 on the metal film 14 in which the solder 35 has been applied in advance to the connection locations and heating in a reflow furnace or the like. Such a mounting method is suitable for mass production because a large number of cell packages 30e1 can be mounted at high speed by a robot or the like.
 また、セルパッケージ30e1内の受光ガイド31は、集光器11によって集光された太陽光を反射させて太陽電池セル13の受光面へ案内する反射面31aをさらに備える。図示した反射面31aは、太陽電池セル13に向かって狭まりながら傾斜した傾斜面である。この傾斜面は、太陽電池セル13が四角形状の場合は、四角錐形状であることが好ましく、太陽電池セル13が円形状の場合は、円錐形状であることが好ましい。そのほか、回転複合放物面形状等であってもよい。また反射面31aとしては、アルミニウム、銀等を用い、蒸着や高反射率のめっき等の処理を行って、その鏡面反射率を80%以上としたものが好ましい。これにより、集光器11によって集光された太陽光の焦点が、太陽電池セル13の発電有効面よりも若干ずれた場合であっても、受光ガイド31の反射面31aでの反射作用によって、一定割合の光を捕捉して太陽電池セル13に入射させることが可能となる。 The light receiving guide 31 in the cell package 30e1 further includes a reflecting surface 31a that reflects the sunlight collected by the condenser 11 and guides it to the light receiving surface of the solar battery cell 13. The illustrated reflecting surface 31 a is an inclined surface that is inclined while narrowing toward the solar battery cell 13. The inclined surface is preferably a quadrangular pyramid when the solar battery cell 13 has a quadrangular shape, and preferably has a conical shape when the solar battery cell 13 has a circular shape. In addition, a rotational composite paraboloid shape or the like may be used. Further, as the reflecting surface 31a, it is preferable to use aluminum, silver or the like and perform a treatment such as vapor deposition or plating with high reflectance so that the mirror reflectance is 80% or more. Thereby, even if the focal point of the sunlight condensed by the condenser 11 is slightly shifted from the power generation effective surface of the solar battery cell 13, due to the reflecting action on the reflecting surface 31 a of the light receiving guide 31, A certain percentage of light can be captured and incident on the solar cells 13.
[実施例6]
 図6(a)及び(c)は、実施例6に係る集光型太陽電池パネルαの構成例を示す概略説明図である。図6(a)は、集光型太陽電池パネル10(10e)の断面図を示す。図6(c)は、セルパッケージ30(30e2)の断面図を示す。
[Example 6]
6A and 6C are schematic explanatory diagrams illustrating a configuration example of the concentrating solar cell panel α according to the sixth embodiment. Fig.6 (a) shows sectional drawing of the concentrating solar cell panel 10 (10e). FIG. 6C shows a cross-sectional view of the cell package 30 (30e2).
 通常、例えば100倍以上といった高倍率の集光型太陽電池パネルの場合、その放熱性能をより強化、向上させることが望まれる。実施例6に係る集光型太陽電池パネル10eは、先の実施例5に係る集光型太陽電池パネル10eと同様に、焦点の多少のずれに係らず、太陽電池セル13への集光を充分に確保、維持することが可能なだけでなく、その放熱性能が促進、向上されたパネルの一例である。 Usually, in the case of a concentrating solar cell panel with a high magnification of, for example, 100 times or more, it is desired to further enhance and improve its heat dissipation performance. Similar to the concentrating solar cell panel 10e according to the fifth embodiment, the concentrating solar cell panel 10e according to the sixth embodiment focuses light on the solar cells 13 regardless of a slight shift in focus. It is an example of a panel that not only can be sufficiently secured and maintained, but also has improved and improved heat dissipation performance.
 実施例6に係るセルパッケージ30e2は、実施例5に係るセルパッケージ30e1と略同様の構成であるが、図6(c)に示すように、太陽電池セル13の温度の低減のために、受光ガイド31(好ましくは、アルミニウム製)の一部を突起させた放熱フィン36を備えていることを特徴とする。なお、透過率を維持しつつ放熱性能を向上させるために、セルパッケージ30e2を真上から見たとき、放熱フィン36の投影面が、金属膜14上にほぼ重なるになるように、該放熱フィン36を配置することが好ましい。 The cell package 30e2 according to the sixth embodiment has substantially the same configuration as that of the cell package 30e1 according to the fifth embodiment. However, as shown in FIG. The heat dissipating fin 36 having a part of the guide 31 (preferably made of aluminum) protruded is provided. In order to improve the heat radiation performance while maintaining the transmittance, the heat radiation fin 36 is projected so that the projection surface of the heat radiation fin 36 substantially overlaps the metal film 14 when the cell package 30e2 is viewed from directly above. 36 is preferably arranged.
[実施例7]
 図7は、実施例7に係る集光型太陽電池パネルαの構成例を示す概略説明図である。図7(a)は、集光型太陽電池パネル10(10f)の断面図を示す。図7(b)は、集光型太陽電池パネル10(10f)の平面図を示す。
[Example 7]
FIG. 7 is a schematic explanatory diagram illustrating a configuration example of the concentrating solar cell panel α according to the seventh embodiment. Fig.7 (a) shows sectional drawing of the concentrating solar cell panel 10 (10f). FIG.7 (b) shows the top view of the concentrating solar cell panel 10 (10f).
 実施例7では、先の実施例6と同様に、太陽電池セル13の温度のさらなる低減を目的としている。実施例7に係る集光型太陽電池パネル10fでは、高透過板12の厚さを小さくして熱抵抗を低減し、その剛性を維持するために、ハニカム構造材37を高透過板12の下面に貼付している。なお、ハニカム構造材37の材料は、アルミニウム等の金属のほか、透明樹脂等であってもよい。金属を用いた場合は、不透明となるので、ハニカム構造材37の高さ(厚さ)を抑える必要がある。また、ハニカム構造材37の設置によって、放熱面積も増大する。 Example 7 aims to further reduce the temperature of the solar battery cell 13 as in Example 6 above. In the concentrating solar cell panel 10f according to Example 7, in order to reduce the thermal resistance by reducing the thickness of the high transmission plate 12, and to maintain the rigidity thereof, the honeycomb structure material 37 is disposed on the lower surface of the high transmission plate 12. It is affixed to. In addition, the material of the honeycomb structure material 37 may be a transparent resin or the like in addition to a metal such as aluminum. When metal is used, it becomes opaque, so it is necessary to suppress the height (thickness) of the honeycomb structure material 37. Further, the installation of the honeycomb structure material 37 increases the heat radiation area.
[実施例8]
 図8(a)及び(b)は、実施例8に係る集光型太陽電池パネルβの構成例を示す概略説明図である。図8(a)は、集光型太陽電池パネル10(10g)の断面図を示す。図8(b)は、セルパッケージ30(30g)の断面図を示す。
[Example 8]
FIGS. 8A and 8B are schematic explanatory diagrams illustrating a configuration example of the concentrating solar cell panel β according to the eighth embodiment. Fig.8 (a) shows sectional drawing of the concentrating solar cell panel 10 (10g). FIG. 8B shows a cross-sectional view of the cell package 30 (30g).
 実施例8に係る集光型太陽電池パネル10gも、実施例6に係る集光型太陽電池パネル10e及び実施例7に係る集光型太陽電池パネル10fと同様に、その放熱性能が促進、向上されたパネルの一例である。 Similar to the concentrating solar cell panel 10e according to Example 6 and the concentrating solar cell panel 10f according to Example 7, the heat dissipation performance of the concentrating solar cell panel 10g according to Example 8 is promoted and improved. It is an example of the made panel.
 通常ガラス板等の高透過板の厚さは、集光型太陽電池パネルの剛性を確保するためには、3~5mm程度が必要である。このような高透過板の上側に太陽電池セルを配置すると、太陽電池セルと高透過板と外気との間の熱抵抗が高いため、太陽電池セルが高温になり易い。 In general, the thickness of a high transmission plate such as a glass plate is required to be about 3 to 5 mm in order to ensure the rigidity of the concentrating solar cell panel. When a solar battery cell is disposed on the upper side of such a high transmission plate, the solar battery cell is likely to reach a high temperature because the thermal resistance between the solar battery cell, the high transmission plate and the outside air is high.
 そこで、太陽電池セル13と高透過板12と外気との間の熱抵抗を格段に軽減するために、実施例8に係る集光型太陽電池パネル10gのように、高透過板12の下側(受光面とは反対側の面)に金属膜14と太陽電池セル13とを配置する構成とした。すなわち、実施例8に係る集光型太陽電池パネル10gでは、受光ガイド31等の部材と太陽電池セル13とを予め一体化したセルパッケージ30(30g)が複数構成され、封止材38によって該セルパッケージ30gが高透過板12の受光面とは反対側の面上に分散的に封止されている。なお、符号34bは、導電性ブリッジ34と金属膜14との間を接続する導電体を示す。 Therefore, in order to remarkably reduce the thermal resistance between the solar cells 13, the high transmission plate 12 and the outside air, like the concentrating solar cell panel 10 g according to Example 8, the lower side of the high transmission plate 12. It was set as the structure which arrange | positions the metal film 14 and the photovoltaic cell 13 in (the surface on the opposite side to a light-receiving surface). That is, in the concentrating solar cell panel 10g according to Example 8, a plurality of cell packages 30 (30g) in which a member such as the light receiving guide 31 and the solar cells 13 are integrated in advance are configured. The cell package 30g is dispersively sealed on the surface of the high transmission plate 12 opposite to the light receiving surface. Reference numeral 34 b denotes a conductor that connects the conductive bridge 34 and the metal film 14.
 実施例8に係る集光型太陽電池パネル10gでは、パネル剛性を気にせずに封止材38の厚さを任意に調整することができる。その結果、図8(b)に示すように、太陽電池セル13の位置から外気までの距離LAを、高透過板12の上側(表面上)に太陽電池セル13を配置した場合の該太陽電池セル13の位置から外気までの距離LB(図6(b)参照)よりも、格段に短くすることができる。これにより、集光型太陽電池パネル10gの放熱量を増大させることができ、太陽電池セル13の温度が低減する。 In the concentrating solar cell panel 10g according to Example 8, the thickness of the sealing material 38 can be arbitrarily adjusted without worrying about panel rigidity. As a result, as shown in FIG. 8 (b), the solar cell when the solar cell 13 is arranged on the upper side (on the surface) of the highly transmissive plate 12 with the distance LA from the position of the solar cell 13 to the outside air. The distance LB from the position of the cell 13 to the outside air (see FIG. 6B) can be much shorter. Thereby, the thermal radiation amount of the concentrating solar cell panel 10g can be increased, and the temperature of the solar cell 13 is reduced.
 また、セルパッケージ30gの近傍に、放熱フィン、ヒートスプレッダー等(いずれも図示せず)を付与することも可能である。ヒートスプレッダーには、グラフェンシート等の面方向の熱伝導率が高い薄膜等を使用することが好ましい。封止材38の外気側表面には、防汚コーティング、傷に強いハードコート等の処理を行うこともできる。 Also, it is possible to add a heat radiating fin, a heat spreader or the like (none of which is shown) in the vicinity of the cell package 30g. For the heat spreader, it is preferable to use a thin film having a high thermal conductivity in the surface direction, such as a graphene sheet. The outside air side surface of the sealing material 38 can be subjected to a treatment such as antifouling coating and a hard coat resistant to scratches.
(1’)集光型太陽電池パネルII
 集光型太陽光発電装置γに備えられる集光型太陽電池パネルγの各々は、少なくとも以下の(1’-1)~(1’-3)を備えている。なお、本明細書において、集光型太陽電池パネルγを集光型太陽電池パネルIIともいう。
(1’-1)太陽光を集光する集光器
(1’-2)集光器によって集光された太陽光を受光して発電する複数の太陽電池セル
(1’-3)太陽電池セルに電気的に接続可能な回路
(1 ') Concentrating solar cell panel II
Each of the concentrating solar cell panels γ included in the concentrating solar power generation device γ includes at least the following (1′-1) to (1′-3). In this specification, the concentrating solar cell panel γ is also referred to as a concentrating solar cell panel II.
(1'-1) Concentrator for concentrating sunlight (1'-2) A plurality of solar cells (1'-3) solar cells that receive sunlight collected by the concentrator and generate electric power Circuits that can be electrically connected to cells
 ここで、前記複数の太陽電池セルは、前記集光型太陽電池パネルIIにおいて、各々の間に空間を設けて分散的に配置される。太陽電池セルの全受光面積は、太陽光総入射面積の10%以下であることを特徴とする。なお、太陽電池セルと接続して電気回路を構成する各部材の総受光面積(太陽電池セル以外に太陽光からの散乱光の入射を遮る総面積)は、太陽光総入射面積の10%未満に設定されていることが好ましい。太陽電池セルの全受光面積が太陽光総入射面積の10%を超えると、目的とする超高倍率の集光型太陽電池パネルIIの作製が困難となる。 Here, in the concentrating solar cell panel II, the plurality of solar cells are arranged in a distributed manner with spaces therebetween. The total light receiving area of the solar battery cell is 10% or less of the total sunlight incident area. In addition, the total light receiving area (total area that blocks the incident of scattered light from sunlight other than solar cells) of each member that constitutes an electric circuit connected to the solar cells is less than 10% of the total sunlight incident area It is preferable that it is set to. If the total light receiving area of the solar battery cell exceeds 10% of the total sunlight incident area, it becomes difficult to produce a target concentrating solar battery panel II with a super-high magnification.
 集光型太陽電池パネルIIは、基本的に、集光型太陽電池パネルIの構造から高透過板が除かれた構造を有し、その構成部材の材料、配置等は、集光型太陽電池パネルIのものと同様であればよい。 The concentrating solar cell panel II basically has a structure in which a highly transmissive plate is removed from the structure of the concentrating solar cell panel I, and the material and arrangement of its constituent members are the concentrating solar cell. It may be the same as that of panel I.
[実施例9]
 図9は、実施例9に係る集光型太陽電池パネルγの構成例を示す概略説明図である。図9(a)は、集光型太陽電池パネル10(10h)の平面図を示す。図9(b)は、図9(a)のH-H’線で破断した集光型太陽電池パネル10(10h)の断面図を示す。
[Example 9]
FIG. 9 is a schematic explanatory diagram illustrating a configuration example of the concentrating solar cell panel γ according to the ninth embodiment. Fig.9 (a) shows the top view of the concentrating solar cell panel 10 (10h). FIG. 9B shows a cross-sectional view of the concentrating solar cell panel 10 (10h) taken along the line HH ′ of FIG. 9A.
(実施例9に係る集光型太陽電池パネルγの構造の概要)
 実施例9に係る集光型太陽電池パネルγは、例えば図1に示される実施例1に係る集光型太陽電池パネルαの構造から高透過板12が除かれた構造を有する。図9に示される集光型太陽電池パネル10は、太陽光を集光する集光器(セル封止型集光器)11と、太陽電池セル13と、金属膜14と、太陽電池セル13、13同士を電気的に接続する金属ワイヤー15と、太陽電池セル13の一群の発電電力を外部に取り出すリード線16と、から構成されている。複数の金属膜14及びその表面の太陽電池セル13は、各々支持部材19bの表面に設けられている。複数の支持部材19bは、集光型太陽電池パネル10の筐体(図示せず)内に、各々の間に空間19aを設けて配置されている。
(Outline of structure of concentrating solar cell panel γ according to Example 9)
The concentrating solar cell panel γ according to Example 9 has a structure in which the high-transmitting plate 12 is removed from the structure of the concentrating solar cell panel α according to Example 1 illustrated in FIG. 1, for example. A concentrating solar panel 10 shown in FIG. 9 includes a concentrator (cell-sealed concentrator) 11 that condenses sunlight, a solar cell 13, a metal film 14, and a solar cell 13. , 13 are electrically connected to each other, and a lead wire 16 that takes out a group of generated power of the solar battery cell 13 to the outside. The plurality of metal films 14 and the solar cells 13 on the surfaces thereof are respectively provided on the surface of the support member 19b. The plurality of support members 19b are arranged in a housing (not shown) of the concentrating solar cell panel 10 with a space 19a provided therebetween.
 実施例9では、金属膜14は支持部材19bの集光器11側の表面に密着して形成されており、1つの太陽電池セル13に対して2つの金属膜14a、14bを島状に形成し、一方の金属膜14aの集光器11側の表面には、太陽電池セル13の裏面電極(ここでは+極)が密着して形成されている。また、この太陽電池セル13の表面電極(ここでは-極)から、他方の金属膜14bの表面に金属ワイヤー15がボンディングされている。なお、実施例9では、生産性を向上させるために前記のごとき回路接続構成を採用したが、必ずしもこれに限定されない。金属膜14を前記のごとく分割せずに、1つの太陽電池セル13に対して1つの金属膜14を設置する構成を採用してもよい。 In Example 9, the metal film 14 is formed in close contact with the surface of the support member 19b on the collector 11 side, and two metal films 14a and 14b are formed in an island shape with respect to one solar cell 13. And the back surface electrode (here + electrode) of the photovoltaic cell 13 is closely_contact | adhered and formed in the surface at the side of the collector 11 of one metal film 14a. Further, a metal wire 15 is bonded from the surface electrode (here, the negative electrode) of the solar battery cell 13 to the surface of the other metal film 14b. In the ninth embodiment, the circuit connection configuration as described above is employed in order to improve productivity, but the present invention is not necessarily limited thereto. You may employ | adopt the structure which installs one metal film 14 with respect to one photovoltaic cell 13, without dividing | segmenting the metal film 14 as mentioned above.
 集光型太陽電池パネル10hでは、回路が金属膜14と金属ワイヤー15とを含み、金属ワイヤー15は、金属膜14と太陽電池セル13との間を電気的に接続し、直列又は並列の電気回路を構成している。 In the concentrating solar cell panel 10h, the circuit includes a metal film 14 and a metal wire 15, and the metal wire 15 electrically connects the metal film 14 and the solar battery cell 13 to provide electric power in series or in parallel. The circuit is configured.
 太陽電池セル13と、金属膜14と、金属ワイヤー15との全ての構成部材を集光器11の材料で封止するように、集光器11を形成する。実施例9では、集光器11の受光側表面はドーム状のレンズアレイとなっている。 The collector 11 is formed so that all the constituent members of the solar battery cell 13, the metal film 14, and the metal wire 15 are sealed with the material of the collector 11. In Example 9, the light-receiving side surface of the condenser 11 is a dome-shaped lens array.
 このように構成した集光型太陽電池パネル10hを、後述する追尾装置(例えば、図10参照)に搭載すると、図9(b)に示すように、直達光L1は、集光器11によって太陽電池セル13に集光され、電気に変換される。一方、全方位から入射する散乱光L2は、太陽電池セル13には集光されず、その大半が太陽電池セル13同士の間の空間19aを通過する。なお、このように太陽電池セル13同士の間の空間19aを通過した散乱光L2の光路に、支持部材19bが配置されている場合もあるので、該支持部材19bは、太陽光透過率が高い材料からなることが好ましい。例えば高透過板12の材料と同様に、ガラス部材のほか、アクリル系樹脂、ポリカーボネート系樹脂等の樹脂からなる部材を支持部材19bとして用いることができる。 When the concentrating solar cell panel 10h configured as described above is mounted on a tracking device (see, for example, FIG. 10) described later, the direct light L1 is transmitted by the concentrator 11 as shown in FIG. It is condensed on the battery cell 13 and converted into electricity. On the other hand, the scattered light L2 incident from all directions is not condensed on the solar cells 13, and most of the light passes through the space 19 a between the solar cells 13. In addition, since the support member 19b may be arrange | positioned in the optical path of the scattered light L2 which passed the space 19a between the photovoltaic cells 13 in this way, this support member 19b has high sunlight transmittance. It is preferable to consist of materials. For example, similarly to the material of the high transmission plate 12, a member made of a resin such as an acrylic resin or a polycarbonate resin in addition to a glass member can be used as the support member 19b.
 このとき、集光器11の受光面面積(太陽光総入射面積)に対して、受光面の内側に配置(封止)された不透明な金属膜14と金属ワイヤー15とが占める総投影面積(すなわち、回路面積)の割合を10%未満にすることが好ましい。これにより、太陽電池セル13の全受光面積を太陽光総入射面積の10%以下の超高倍率集光に設定した場合に、太陽電池セル13同士の間の空間19aにおける受光面積を太陽光総入射面積の80%以上とすることができる。 At this time, the total projected area occupied by the opaque metal film 14 and the metal wire 15 disposed (sealed) inside the light receiving surface with respect to the light receiving surface area (total sunlight incident area) of the condenser 11 ( In other words, the ratio of the circuit area is preferably less than 10%. Thereby, when the total light receiving area of the solar battery cells 13 is set to ultrahigh magnification condensing of 10% or less of the total sunlight incident area, the light receiving area in the space 19a between the solar battery cells 13 is changed to the total solar light receiving area. It can be 80% or more of the incident area.
 本実施例9では、直達光L1を、セル変換効率が約40%の超高効率の太陽電池セル13に集光して発電する一方、散乱光L2の大半を透過させる。従来の太陽電池パネルとは異なり、散乱光L2は太陽電池セル13に当たらず透過してしまうが、太陽電池セル13の変換効率が高いうえに、後述する追尾装置が設けられているので、より直達光L1の受光量が増大する。その結果、集光型太陽電池パネル10hでは、直達光L1だけからでも、従来の太陽電池パネル以上の発電量が実現される。しかも、散乱光L2の大半が太陽電池セル13同士の間の空間19aを通過するので、後述のとおり、集光型太陽光発電装置γは、太陽光を必要とする他の用途にも利用可能である。このように、集光型太陽電池パネル10hは、貴重な太陽光を発電と他の用途とに無駄なく振り分けることが可能な、新たな集光型太陽電池パネルである。 In the ninth embodiment, the direct light L1 is collected and generated on the ultra-high efficiency solar cell 13 having a cell conversion efficiency of about 40%, while most of the scattered light L2 is transmitted. Unlike the conventional solar battery panel, the scattered light L2 does not hit the solar battery cell 13 and is transmitted, but since the conversion efficiency of the solar battery cell 13 is high and a tracking device described later is provided, The amount of received direct light L1 increases. As a result, in the concentrating solar cell panel 10h, a power generation amount that is greater than that of the conventional solar cell panel is realized even from the direct light L1 alone. Moreover, since most of the scattered light L2 passes through the space 19a between the solar cells 13, the concentrating solar power generation device γ can be used for other applications that require sunlight as described later. It is. Thus, the concentrating solar cell panel 10h is a new concentrating solar cell panel that can distribute precious sunlight to power generation and other uses without waste.
(2)駆動装置、(3)制御装置、及び(4)追尾装置
 以下に、本発明に係る集光型太陽光発電装置Iにおける前記(1)集光型太陽電池パネルI以外の構成、及び本発明に係る集光型太陽光発電装置IIにおける前記(1’)集光型太陽電池パネルII以外の構成について説明する。(2)駆動装置、(3)制御装置、及び(4)追尾装置の構成は、本発明に係る集光型太陽光発電装置I及び集光型太陽光発電装置IIにおいて共通である。本発明に係る集光型太陽光発電装置では、特に、(4)追尾装置の構成に大きな特徴がある。
(2) Drive device, (3) Control device, and (4) Tracking device In the following, the configuration other than the (1) concentrating solar panel I in the concentrating solar power generation device I according to the present invention, and A configuration other than the (1 ′) concentrating solar cell panel II in the concentrating solar power generation device II according to the present invention will be described. The configurations of (2) the driving device, (3) the control device, and (4) the tracking device are common to the concentrating solar power generation device I and the concentrating solar power generation device II according to the present invention. The concentrating solar power generation device according to the present invention is particularly characterized by (4) the configuration of the tracking device.
 図10は、本発明の一実施形態に係る集光型太陽光発電装置を構成する追尾装置の一実施例を示す概略説明図である。例えば図10に示すように、追尾装置500は、アレイ状に配置される集光型太陽電池パネル10の各々を搭載する複数の追尾子100を備えている。追尾装置500は、基台20c上に支柱20bを介して設けられた架台20aの上に配置されている。追尾子100の大きさは、例えば10cm~50cm角程度であることが好ましく、追尾装置500の大きさは、例えば1m×2m程度であることが好ましい。図10では、架台20aは、追尾装置500上に搭載される集光型太陽電池パネル10の各々が北側に向かって上向きに傾斜しているが、他の方向へ傾斜していてもよく、傾斜していなくてもよい。なお、図10において、アレイ状に配置される集光型太陽電池パネル10の数、追尾子100の大きさ、追尾装置500の大きさ等は一例にすぎず、これらは図10に示されるものに限定されない。 FIG. 10 is a schematic explanatory view showing an example of the tracking device constituting the concentrating solar power generation device according to the embodiment of the present invention. For example, as shown in FIG. 10, the tracking device 500 includes a plurality of trackers 100 on which each of the concentrating solar cell panels 10 arranged in an array is mounted. The tracking device 500 is disposed on a gantry 20a provided on a base 20c via a column 20b. The size of the tracker 100 is preferably about 10 cm to 50 cm square, for example, and the size of the tracker 500 is preferably about 1 m × 2 m, for example. In FIG. 10, each of the concentrating solar cell panels 10 mounted on the tracking device 500 is inclined upward toward the north side, but the gantry 20a may be inclined in other directions. You don't have to. In FIG. 10, the number of concentrating solar cell panels 10 arranged in an array, the size of the tracker 100, the size of the tracking device 500, etc. are merely examples, and these are shown in FIG. It is not limited to.
 追尾装置500は、前記集光型太陽電池パネル10に備えられた高透過板12を透過した散乱光成分又は太陽電池セル13同士の間の空間19aを通過した散乱光成分を透過する材料で構成されている。追尾装置500に備えられる複数の追尾子100は、高透過板12と同様に、太陽光透過率が80%以上の材料からなることが好ましく、ガラスのほか、アクリル系樹脂、ポリカーボネート系樹脂等の樹脂を用いることができる。このように、追尾装置500が高透過板12を透過した散乱光成分又は太陽電池セル13同士の間の空間19aを通過した散乱光成分を透過する材料で構成されているので、追尾装置500からも散乱光を効率よく透過させることができ、散乱光を透過させることが可能な集光型太陽電池パネル10の利用価値をさらに高めることができる。 The tracking device 500 is made of a material that transmits a scattered light component that has passed through the highly transmissive plate 12 provided in the concentrating solar cell panel 10 or a scattered light component that has passed through the space 19 a between the solar cells 13. Has been. The plurality of trackers 100 provided in the tracking device 500 are preferably made of a material having a sunlight transmittance of 80% or more, like the high-transmitting plate 12, and other than glass, such as acrylic resin, polycarbonate resin, and the like. Resin can be used. Thus, since the tracking device 500 is made of a material that transmits the scattered light component that has passed through the high-transmitting plate 12 or the scattered light component that has passed through the space 19a between the solar cells 13, the tracking device 500 In addition, the scattered light can be transmitted efficiently, and the utility value of the concentrating solar cell panel 10 capable of transmitting the scattered light can be further increased.
 また、前記のごとく散乱光を透過させることが可能な集光型太陽電池パネル10の利用価値をさらに高める点で、本実施形態に係る集光型太陽光発電装置において、追尾装置500を配置するための架台20a、支柱20b、及び基台20cも、追尾装置500と同様に、高透過板12を透過した散乱光成分又は太陽電池セル13同士の間の空間19aを通過した散乱光成分を透過する材料で構成されていることが好ましい。 In addition, the tracking device 500 is arranged in the concentrating solar power generation device according to the present embodiment in that the utility value of the concentrating solar cell panel 10 capable of transmitting scattered light as described above is further increased. Similarly to the tracking device 500, the gantry 20a, the support column 20b, and the base 20c also transmit the scattered light component that has passed through the highly transmissive plate 12 or the scattered light component that has passed through the space 19a between the solar cells 13. It is preferable that it is comprised with the material to do.
 次に、図10に示した追尾装置500を備えた集光型太陽光発電装置について、図11~図13を参照しながら具体的に説明する。 Next, a concentrating solar power generation apparatus provided with the tracking device 500 shown in FIG. 10 will be specifically described with reference to FIGS.
 図11は、本実施形態において追尾装置500を構成する追尾子100の構造例を示す概略説明図である。図12は、本実施形態において追尾装置500を構成する追尾子100の折り畳まれた状態の構造例を示す概略説明図である。図12(a)は、追尾子100の略上方から見た図である。図12(b)は、追尾子100の略横方向から見た図である。図13は、本実施形態に係る集光型太陽光発電装置を構成する追尾装置500の制御を実現するための配線・伝達軸構造例を示す概略説明図である。 FIG. 11 is a schematic explanatory diagram illustrating an example of the structure of the tracker 100 included in the tracking device 500 in the present embodiment. FIG. 12 is a schematic explanatory diagram illustrating an example of the structure of the tracker 100 that configures the tracking device 500 in the folded state in the embodiment. FIG. 12A is a view of the tracker 100 viewed from substantially above. FIG. 12B is a diagram of the tracker 100 viewed from a substantially lateral direction. FIG. 13 is a schematic explanatory diagram illustrating an example of a wiring / transmission shaft structure for realizing control of the tracking device 500 configuring the concentrating solar power generation device according to the present embodiment.
 本発明の一実施形態に係る集光型太陽光発電装置は、複数の集光型太陽電池パネル10を搭載する、例えば図10に示す追尾子100を複数備えた追尾装置500と、複数の集光型太陽電池パネル10を駆動する、例えば図13に示す駆動装置450と、複数の集光型太陽電池パネル10が予め設定された太陽軌道を追尾するように駆動装置450の駆動量を制御する、例えば図13に示す制御装置400とを有している。 A concentrating solar power generation apparatus according to an embodiment of the present invention includes a tracking device 500 that includes a plurality of concentrators 100 shown in FIG. For example, the driving device 450 shown in FIG. 13 that drives the optical solar cell panel 10 and the drive amount of the driving device 450 are controlled so that the plurality of concentrating solar cell panels 10 track a preset solar orbit. For example, it has the control apparatus 400 shown in FIG.
 図11に示すように、追尾子100は、集光型太陽電池パネル10を上面に搭載する、例えばT字状の保持部材110(110a部分と110b部分とからなる)と、保持部材110に連結する追尾機構とを備えている。追尾機構は、連結する保持部材110上に集光型太陽電池パネル10が搭載された状態で、図10に示した架台20aに設置されて用いられる。 As shown in FIG. 11, the tracker 100 is connected to the holding member 110, for example, a T-shaped holding member 110 (consisting of a 110a portion and a 110b portion) on which the concentrating solar cell panel 10 is mounted on the upper surface. And a tracking mechanism. The tracking mechanism is installed and used on the gantry 20a shown in FIG. 10 in a state where the concentrating solar cell panel 10 is mounted on the holding member 110 to be connected.
 ここで、本実施形態では、追尾子100は、前記駆動装置450の制御された駆動量に基づいて、保持部材110における少なくとも3点を駆動することにより、集光型太陽電池パネル10が予め設定された太陽軌道を追尾するように構成されている。図11に示す一例では、保持部材110の形状はT字状である。該T字状の保持部材110における3点として、例えば3つの端部(第1の駆動点、第2の駆動点、及び第3の駆動点に対応する)がある。これら3つの端部のうち、互いに対抗する一対の端部としての第1の端部A及び第2の端部Bには、例えば図11に示すように、第1のリボンAT及び第2のリボンBTが、例えばネジによってそれぞれ取り付けられている。そして、残りの端部としての第3の端部Cには、ワイヤーCTが、例えば開口部Chを介して取り付けられている。なお、ワイヤーCTには、例えばバネ等の弾性部材(図示せず)を介在させることが好ましい。このような構成とするのは、後述するように、第1のリボンAT及び第2のリボンBTに対するような精密制御がワイヤーCT部分には要求されておらず、第1のリボンAT及び第2のリボンBTの位置を必要なタイミングで元に戻すためには、バネ等の弾性部材が介在していると効果的であるからである。 Here, in the present embodiment, the tracker 100 drives the at least three points of the holding member 110 based on the controlled driving amount of the driving device 450, so that the concentrating solar cell panel 10 is preset. Configured to track the solar orbit. In the example shown in FIG. 11, the shape of the holding member 110 is T-shaped. The three points on the T-shaped holding member 110 include, for example, three end portions (corresponding to the first drive point, the second drive point, and the third drive point). Among these three ends, the first end A and the second end B as a pair of ends facing each other include, for example, a first ribbon AT and a second end as shown in FIG. The ribbons BT are respectively attached by screws, for example. And wire CT is attached to the 3rd end C as the remaining end via the opening Ch, for example. In addition, it is preferable to interpose elastic members (not shown), such as a spring, for example in wire CT. As will be described later, such a configuration is not required for the wire CT portion to be precisely controlled as to the first ribbon AT and the second ribbon BT, but the first ribbon AT and the second ribbon BT. This is because it is effective that an elastic member such as a spring is interposed in order to return the ribbon BT to the original position at a necessary timing.
 図13に示す駆動装置450は、第1のリボンAT及び第2のリボンBTの各々の巻き取りを行う、例えばサーボモーターである第1の駆動装置450a(第1のモーター)及び第2の駆動装置450b(第2のモーター)と、ワイヤーCTの巻き取りを行う、例えばステッピングモーターである第3の駆動装置450c(第3のモーター)とを備えている。また、制御装置400は、第1の駆動装置450a、第2の駆動装置450b、及び第3の駆動装置450c(駆動装置450の3つの駆動部)の各々の巻き取り量を制御する。 The driving device 450 shown in FIG. 13 performs winding of each of the first ribbon AT and the second ribbon BT, for example, a first driving device 450a (first motor) that is a servo motor and a second driving. A device 450b (second motor) and a third driving device 450c (third motor), for example, a stepping motor, for winding the wire CT are provided. The control device 400 also controls the amount of winding of each of the first drive device 450a, the second drive device 450b, and the third drive device 450c (three drive units of the drive device 450).
 なお、第3の駆動装置450cとして、第3のモーターの代わりに、第3の駆動点に荷重を付与する荷重付与部材からなるものを用いることができる。該荷重付与部材として、一定の荷重を付与する定荷重バネを設けることができる。この場合、ワイヤーCTを設けることなく、定荷重バネの先端を第3の端部Cに取り付けてもよい。第3の駆動装置450cとして荷重付与部材からなるものを用いた場合には、制御装置400は、第1の駆動装置450a及び第2の駆動装置450bの巻き取り量を制御するとともに、第3の駆動装置450cが付与する荷重を制御する。 In addition, what consists of a load provision member which provides a load to a 3rd drive point can be used instead of a 3rd motor as the 3rd drive device 450c. As the load applying member, a constant load spring for applying a constant load can be provided. In this case, the tip of the constant load spring may be attached to the third end C without providing the wire CT. In the case where a load applying member is used as the third driving device 450c, the control device 400 controls the amount of winding of the first driving device 450a and the second driving device 450b and the third driving device 450c. The load applied by the driving device 450c is controlled.
 このように、第3の駆動装置450cとして荷重付与部材からなるものを用いると、3点のうちの残りの1点は、例えば他の2点が駆動された位置から元に戻すような場合に駆動させればよいので、前記他の2点の制御とは異なって精密な位置制御を行わなくてもよい構造で実現が可能である。 As described above, when the third driving device 450c is composed of the load applying member, the remaining one of the three points is returned to the original position from the position where the other two points are driven, for example. Since it only needs to be driven, it can be realized with a structure that does not require precise position control unlike the control of the other two points.
 このような構成により、本実施形態に係る追尾装置500を備えた集光型太陽光発電装置では、集光型太陽電池パネル10を搭載する追尾子100の各々を、駆動装置450により駆動させることができる。すなわち、保持部材110における3点の位置を制御して駆動させる構造により、集光型太陽電池パネル10をより正確に太陽軌道に追尾させることができる。このように、分散可動型であって、簡易な構造の追尾装置500を備えた集光型太陽光発電装置を、低コストで実現することができる。 With such a configuration, in the concentrating solar power generation apparatus including the tracking device 500 according to the present embodiment, each of the trackers 100 on which the concentrating solar cell panel 10 is mounted is driven by the driving device 450. Can do. That is, the concentrating solar cell panel 10 can be more accurately tracked in the solar orbit by a structure in which the positions of the three points on the holding member 110 are controlled and driven. As described above, a concentrating solar power generation device that is a distributed movable type and includes a tracking device 500 having a simple structure can be realized at low cost.
 本実施形態に係る簡易な構造の追尾装置500を備えた集光型太陽光発電装置では、1つの制御装置400が、複数の追尾子100を介して、複数の集光型太陽電池パネル10を一元制御することができる。 In the concentrating solar power generation apparatus provided with the tracking device 500 having a simple structure according to the present embodiment, one control device 400 includes a plurality of concentrating solar cell panels 10 via the plurality of tracking units 100. Central control is possible.
 なお、本実施形態では、保持部材110の形状がT字状である場合について説明したが、本発明の集光型太陽光発電装置において、保持部材の形状はT字状に限定されるものではない。保持部材として種々の形状のものを採用することができ、集光型太陽電池パネルを搭載可能な部材であって、そのうち少なくとも3点の位置を制御して駆動することができる構造であることが好ましい。また、本実施形態のように、制御して駆動する位置は3点に限定されるものではなく、4点以上であってもよい。制御して駆動する位置の数に応じて、適切に前記リボン、ワイヤー等の数を増加させることができる。 In addition, although this embodiment demonstrated the case where the shape of the holding member 110 was T shape, in the concentrating solar power generation device of this invention, the shape of a holding member is not limited to T shape. Absent. The holding member can be of various shapes and can be mounted with a concentrating solar cell panel and can be driven by controlling the position of at least three of them. preferable. Further, as in the present embodiment, the position to be controlled and driven is not limited to three points, and may be four or more points. The number of ribbons, wires, and the like can be appropriately increased according to the number of positions to be controlled and driven.
 ここで、追尾機構は、図11に示すように、保持部材110を支える支柱部150と、該支柱部150を支える土台部210とを備えており、該土台部210が取り付け部200を介して前記架台20aに設置される。なお、図面では、取り付け部200が追尾子100に対応して1組設けられているように示されているが、複数の追尾子100が連結して架台20a上に設置されるように、取り付け部200は延伸された構造となっている。 Here, as shown in FIG. 11, the tracking mechanism includes a support column 150 that supports the holding member 110 and a base unit 210 that supports the support unit 150, and the base unit 210 is interposed via the attachment unit 200. It is installed on the gantry 20a. In the drawing, the attachment unit 200 is shown as being provided in one set corresponding to the tracker 100. However, the attachment unit 200 is attached so that a plurality of trackers 100 are connected and installed on the gantry 20a. The part 200 has a stretched structure.
 支柱部150は、開口部を有する頭部130と、該頭部130に連続する肩部140と、一体的に形成されている。また、保持部材110と支柱部150とは、頭部130内の開口部を通過するリング120が支柱部150の底部に接続するようにして、互いに連結している。このようにすると、保持部材110と支柱部150とが、頭部130の開口部を通過するリング120によって連結しているため、リング120を介して保持部材110の駆動が円滑に行われる。その結果、集光型太陽電池パネル10をより正確に太陽軌道に追尾させることができる。 The support column 150 is integrally formed with a head 130 having an opening and a shoulder 140 continuous with the head 130. The holding member 110 and the support column 150 are coupled to each other so that the ring 120 passing through the opening in the head 130 is connected to the bottom of the support column 150. In this case, since the holding member 110 and the support column 150 are connected by the ring 120 that passes through the opening of the head 130, the driving of the holding member 110 is smoothly performed via the ring 120. As a result, the concentrating solar cell panel 10 can be more accurately tracked in the solar orbit.
 土台部210内には、前記第1のリボンAT及び第2のリボンBTをそれぞれ通す第1のガイド190a及び第2のガイド190bが備えられており、ワイヤーCTを通す開通部230cを有する突き出し部230をさらに備えている。このようにすると、第1のリボンAT及び第2のリボンBTが第1のガイド190a及び第2のガイド190bを通じて正確に巻き取られることが可能となる。さらに、ワイヤーCTが突き出し部230の開通部230cを通じて正確に巻き取られることが可能となる。ここで、これらの第1のリボンAT、第2のリボンBT、及びワイヤーCTは、例えば図13の第1の牽引点320a、第2の牽引点330a、及び第3の牽引点340aそれぞれに接続されており、制御装置400によって制御された駆動装置450の駆動量で駆動される。 The base portion 210 is provided with a first guide 190a and a second guide 190b for passing the first ribbon AT and the second ribbon BT, respectively, and a protruding portion having an opening portion 230c for passing the wire CT. 230 is further provided. In this way, the first ribbon AT and the second ribbon BT can be accurately wound through the first guide 190a and the second guide 190b. Furthermore, the wire CT can be accurately wound through the opening 230c of the protrusion 230. Here, the first ribbon AT, the second ribbon BT, and the wire CT are connected to, for example, the first traction point 320a, the second traction point 330a, and the third traction point 340a in FIG. And is driven by the drive amount of the drive device 450 controlled by the control device 400.
 本実施形態に係る集光型太陽光発電装置において、支柱部150には、保持部材110の駆動量を制限する一対の肩部140が設けられている。前述のとおり、第1のリボンAT、第2のリボンBT、及びワイヤーCTが制御された駆動量で巻き取られることで、集光型太陽電池パネル10が予め設定された太陽軌道を追尾するように、保持部材110が駆動する。肩部140は、例えば一対の端部である第1の端部A及び第2の端部Bのいずれか一方が駆動量に応じて移動し、保持部材110を連結するリング120が頭部130の開口部内を一対の端部の移動方向に沿って移動することで、保持部材110全体が倒れてしまうことを防止する役割を有する。すなわち、肩部140が壁になることで、集光型太陽電池パネル10を支える保持部材110が駆動方向から下に向かって倒れてしまうことを防止することができる。したがって、肩部140は、支柱部150から頭部130に向かう上下方向(と定義する)と垂直な左右方向(と定義する)に突き出すような形状を有している。なお、突き出すような形状の左右方向における上下方向に対する角度は、例えば垂直な形状となる角度であるほか、保持部材110が倒れることを防止できるような角度であればよく、特に限定されるものではない。 In the concentrating solar power generation apparatus according to the present embodiment, the support column 150 is provided with a pair of shoulder portions 140 that limit the driving amount of the holding member 110. As described above, the first solar panel AT, the second ribbon BT, and the wire CT are wound with a controlled driving amount so that the concentrating solar cell panel 10 tracks a preset solar trajectory. In addition, the holding member 110 is driven. For example, one of the first end A and the second end B, which is a pair of end portions, moves according to the driving amount, and the ring 120 that connects the holding member 110 includes the head portion 130. The holding member 110 has a role of preventing the entire holding member 110 from falling down by moving along the moving direction of the pair of end portions in the opening. That is, it is possible to prevent the holding member 110 that supports the concentrating solar cell panel 10 from falling down from the driving direction because the shoulder 140 becomes a wall. Therefore, the shoulder 140 has a shape protruding in the left-right direction (defined as) perpendicular to the up-down direction (defined as) from the support 150 to the head 130. In addition, the angle with respect to the up-down direction in the left-right direction of the shape that protrudes is, for example, an angle that becomes a vertical shape, and may be any angle that can prevent the holding member 110 from falling down, and is not particularly limited. Absent.
 図11に示すように、追尾子100には、支柱部150の下部を例えば3方向から覆うように保持する壁部155がさらに形成されている。一方、土台部210には、支柱部150を収納可能な溝部210hが設けられている。貫通孔220を介して壁部155から支柱部150を貫通する貫通部材220t(例えばネジ)が挿入されていることで、支柱部150によって、追尾子100は、集光型太陽光発電装置としての使用時に直立状態を保持することが可能となる。一方、追尾子100が集光型太陽光発電装置としての例えば組立前の搬送時には、例えば図12(a)の略上方向から見た図及び図12(b)の略横方向から見た図に示すように、前記貫通部材220tを取り外し、壁部155の底部の一対の支え部170rが支柱部150の底部の回動構造160sを挟み込む構造を通じて、支柱部150を傾倒させ、溝部210hに収納させることが可能となる。 As shown in FIG. 11, the tracker 100 is further formed with a wall portion 155 that holds the lower portion of the column portion 150 so as to cover, for example, three directions. On the other hand, the base portion 210 is provided with a groove portion 210 h that can accommodate the column portion 150. By inserting a penetrating member 220t (for example, a screw) penetrating the support column 150 from the wall 155 through the through hole 220, the support unit 150 allows the tracker 100 to function as a concentrating solar power generation device. It is possible to maintain an upright state during use. On the other hand, when the tracker 100 is transported as a concentrating solar power generation device, for example, before assembling, for example, a diagram viewed from a substantially upward direction in FIG. 12A and a diagram viewed from a substantially lateral direction in FIG. As shown in FIG. 3, the penetrating member 220t is removed, and the strut portion 150 is tilted through a structure in which the pair of support portions 170r at the bottom portion of the wall portion 155 sandwich the rotating structure 160s at the bottom portion of the strut portion 150, and stored in the groove portion 210h. It becomes possible to make it.
 このようにすると、複数の追尾子100の搬送時において、支柱部150が溝部210hに収納されることにより、追尾子100全体が折り畳まれたようなコンパクトな形態になる。よって、このような追尾子100は、搬送時の可搬性に非常に優れていると共に、設置時の利便性にも非常に優れている。 In this way, when the plurality of trackers 100 are transported, the support column 150 is housed in the groove portion 210h, so that the entire tracker 100 is folded in a compact form. Therefore, such a tracker 100 is very excellent in the portability at the time of conveyance, and is also very excellent in the convenience at the time of installation.
 次に、図13を参照しながら、本実施形態に係る集光型太陽光発電装置の駆動制御を実現するための配線・伝達軸構造について説明する。 Next, a wiring / transmission shaft structure for realizing drive control of the concentrating solar power generation device according to the present embodiment will be described with reference to FIG.
 図11及び図12で説明した構造を有する追尾子100の各々が、各集光型太陽電池パネル10を支持するように、アレイ状に配置されている。なお、図13では集光型太陽電池パネル10が例えば8個示されているが、これは説明の便宜上であって、その数及びそれを搭載する追尾子の数は、これに限定されるものではない。 Each of the trackers 100 having the structure described in FIG. 11 and FIG. 12 is arranged in an array so as to support each concentrating solar cell panel 10. In FIG. 13, for example, eight concentrating solar cell panels 10 are shown, but this is for convenience of explanation, and the number and the number of trackers on which the concentrating solar panel 10 is mounted are limited to this. is not.
 図13に示すように、前記複数の追尾子100を備える追尾装置500には、複数の集光型太陽電池パネル10を駆動する駆動装置450が接続されており、該駆動装置450には、複数の集光型太陽電池パネル10が予め設定された太陽軌道を追尾するように駆動装置450の駆動量を制御する制御装置400が接続されている。 As shown in FIG. 13, a tracking device 500 including the plurality of trackers 100 is connected to a driving device 450 that drives a plurality of concentrating solar cell panels 10, and the driving device 450 includes a plurality of driving devices 450. A control device 400 for controlling the drive amount of the drive device 450 is connected so that the concentrating solar cell panel 10 tracks a preset solar orbit.
 駆動装置450は、第1~第3の駆動装置450a~450cを含んでいる。第1の駆動装置450aは、例えばサーボモーターであり、第1の駆動軸320と連結しており、追尾子100の保持部材110における第1の端部Aに取り付けられた第1のリボンATを、第1の牽引点320aにて、巻き取ることを可能にする。 The driving device 450 includes first to third driving devices 450a to 450c. The first driving device 450a is, for example, a servo motor, and is connected to the first driving shaft 320, and the first ribbon AT attached to the first end A of the holding member 110 of the tracker 100 is attached to the first driving device 450a. It is possible to wind at the first traction point 320a.
 第2の駆動装置450bは、例えばサーボモーターであり、第2の駆動軸330と連結しており、追尾子100の保持部材110における第2の端部Bに取り付けられた第2のリボンBTを、第2の牽引点330aにて、巻き取ることを可能にする。 The second driving device 450b is, for example, a servo motor, and is connected to the second driving shaft 330, and the second ribbon BT attached to the second end B of the holding member 110 of the tracker 100 is attached to the second driving device 450b. It is possible to wind at the second traction point 330a.
 第3の駆動装置450cは、例えばステッピングモーターであり、追尾子100の保持部材110における第3の端部Cに取り付けられたワイヤーCTを、第3の駆動軸340を介して、第3の牽引点340aにて、巻き取ることを可能にする。 The third driving device 450c is, for example, a stepping motor, and the third CT pulls the wire CT attached to the third end C of the holding member 110 of the tracker 100 via the third driving shaft 340. At point 340a, winding is enabled.
 次に、制御装置400は、演算部410と処理部420と記憶部430とを備えている。制御装置400では、複数の集光型太陽電池パネル10が予め設定された太陽軌道を追尾するように、集光型太陽電池パネル10に関する追尾情報として、例えば集光型太陽電池パネル10の設置位置の緯度、経度、高度情報や、日時情報等から計算された情報を、記憶部430で保存しておく。そして、演算部410において、保持部材110の空間座標位置(例えば第1の端部A、第2の端部B、及び第3の端部Cの空間座標位置を、基点Dの位置から定める)と記憶部430から取り出した追尾情報とから、第1のリボンAT、第2のリボンBT、及びワイヤーCTの巻き取り長さを計算し、処理部420を通じて、駆動装置450に指示する。なお、演算部410での巻き取り長さの計算では、保持部材110の空間座標位置の把握や各種の追尾情報、用いる各リボンやワイヤーの長さや厚み等の情報の把握、それらに基づいた駆動装置450に指示する駆動量の計算は、公知の技術で実現できるものである。 Next, the control device 400 includes a calculation unit 410, a processing unit 420, and a storage unit 430. In the control apparatus 400, as tracking information regarding the concentrating solar cell panel 10, for example, the installation position of the concentrating solar cell panel 10 so that the plurality of concentrating solar cell panels 10 track a preset solar orbit. Information calculated from the latitude, longitude, altitude information, date and time information, and the like is stored in the storage unit 430. And in the calculating part 410, the spatial coordinate position of the holding member 110 (For example, the spatial coordinate position of the 1st edge part A, the 2nd edge part B, and the 3rd edge part C is defined from the position of the base point D). And the tracking information extracted from the storage unit 430, the winding lengths of the first ribbon AT, the second ribbon BT, and the wire CT are calculated, and the driving unit 450 is instructed through the processing unit 420. Note that in the calculation of the winding length in the calculation unit 410, the spatial coordinate position of the holding member 110, various tracking information, the information such as the length and thickness of each ribbon and wire used, and the driving based on them The calculation of the driving amount instructed to the device 450 can be realized by a known technique.
 このようにして、複数の集光型太陽電池パネル10が予め設定された太陽軌道を追尾する、本実施形態にて用いる追尾装置500では、複数の集光型太陽電池パネル10から取得される電力は、電気線350、360を通じて、パワーコンディショナ510に送られ、そこで、直流電力から交流電力に変換され、トランス520に送電される。トランス520は、パワーコンディショナ510で変換された交流電力を負荷である電力系統530に送電する。なお、パワーコンディショナ510は、コンバータ部、インバータ部、及び電圧制御部(いずれも図示せず)を有している。コンバータ部は、複数の追尾子100から出力された直流電圧を昇圧する昇圧回路を構成している。また、コンバータ部には、各追尾子100に対する動作指示情報に応じた出力電圧のデータが蓄積される。インバータ部は、コンバータ部から出力された直流電力を交流電力に変換するインバータ回路を構成している。電圧制御部は、MPPT(maximum power point tracing control)制御を行うものである。なお、MPPT制御は、山のぼり法ともいわれ、電圧制御部は、各追尾子100の出力電力(動作点)が最大電力点に近づくように、各追尾子の出力電圧を調整するものである。 In this way, in the tracking device 500 used in the present embodiment, in which the plurality of concentrating solar cell panels 10 track a preset solar trajectory, the electric power acquired from the plurality of concentrating solar cell panels 10 Is sent to the power conditioner 510 through the electric wires 350 and 360, where it is converted from DC power to AC power and transmitted to the transformer 520. The transformer 520 transmits the AC power converted by the power conditioner 510 to the power system 530 that is a load. The power conditioner 510 includes a converter unit, an inverter unit, and a voltage control unit (all not shown). The converter unit constitutes a booster circuit that boosts the DC voltage output from the plurality of trackers 100. Further, output voltage data corresponding to the operation instruction information for each tracker 100 is accumulated in the converter unit. The inverter unit constitutes an inverter circuit that converts DC power output from the converter unit into AC power. The voltage control unit performs MPPT (maximum power point tracking control) control. The MPPT control is also called a mountain climbing method, and the voltage control unit adjusts the output voltage of each tracker so that the output power (operating point) of each tracker 100 approaches the maximum power point.
 さらに、本実施形態に係る集光型太陽光発電装置において、集光型太陽電池パネル10からの電気を取得する電気線350、360(第1の電気線、第2の電気線)が、複数の追尾子100に連続して接続されている。また、影制御部310が、信号線を通じて、複数の追尾子100のうち垂直に交差する2つの方向のうちの1つの方向に配置された追尾子100の各々(図13では、複数の追尾子100のうち縦方向に配置された追尾子100の各々)に連続して接続されている。影制御部310は、集光型太陽電池パネル10にかかる影部分を考慮して、追尾子100に対する電気線350、360の電気的な接続を電力線切替部370にて制御する。影制御部310は、制御装置400が記憶部430に保存している前記追尾情報から計算された集光型太陽電池パネル10の影部分の情報に基づいて、処理部420を介して、影制御部310に指示を行う。このようにすると、複数の集光型太陽電池パネル10のうち、影になっている集光型太陽電池パネル10と影になっていない集光型太陽電池パネル10とが2つの電気線によって適切に制御され、影になっている集光型太陽電池パネル10の発電電流量に全体が律速されることによる影響を回避することができる。例えば、前記MPPT制御による電圧制御で、集光型太陽電池パネル10の並列制御が可能になるほか、電圧及び電流をともに制御することによる、直列制御する配線構造への電力線切替部370での適切な切り替えが可能になり、高集光率の集光型太陽光発電装置を実現することができる。なお、ここでは、2本の電気線350、360を設けて影になっている集光型太陽電池パネル10による影響を制御する場合について説明したが、集光型太陽電池パネル10に生じる影の程度で発電電流量は何段階にもなることから、3本以上の電気線を設けて段階的に制御し、性能を向上させることができる。 Furthermore, in the concentrating solar power generation apparatus according to the present embodiment, there are a plurality of electric lines 350 and 360 (first electric lines and second electric lines) that acquire electricity from the concentrating solar cell panel 10. Are continuously connected to the tracker 100. In addition, the shadow control unit 310 transmits each of the trackers 100 arranged in one of the two directions perpendicularly intersecting among the plurality of trackers 100 through the signal lines (in FIG. 13, the plurality of trackers). Each of the trackers 100 arranged in the vertical direction of 100 is connected continuously. The shadow control unit 310 controls the electrical connection of the electric lines 350 and 360 to the tracker 100 by the power line switching unit 370 in consideration of the shadow portion applied to the concentrating solar cell panel 10. The shadow control unit 310 performs shadow control via the processing unit 420 based on the information on the shadow portion of the concentrating solar cell panel 10 calculated from the tracking information stored in the storage unit 430 by the control device 400. The unit 310 is instructed. In this way, among the plurality of concentrating solar cell panels 10, the concentrating solar cell panel 10 that is in the shadow and the concentrating solar cell panel 10 that is not in the shadow are appropriate by the two electric lines. It is possible to avoid the influence of the overall rate-determining by the amount of power generation current of the concentrating solar cell panel 10 that is controlled and shaded. For example, the voltage control based on the MPPT control enables parallel control of the concentrating solar cell panel 10, and appropriate control in the power line switching unit 370 to the wiring structure to be serially controlled by controlling both voltage and current. Switching is possible, and a concentrating solar power generation device with a high concentration rate can be realized. In addition, although the case where two electric lines 350 and 360 are provided and the influence by the concentrating solar cell panel 10 in the shadow is controlled is described here, the shadow of the concentrating solar cell panel 10 is controlled. Since the amount of generated current can be in any number of stages, it is possible to improve the performance by providing three or more electric wires and controlling in stages.
 本実施形態にて用いる複数の追尾子100の各々において、集光型太陽電池パネル10を搭載する保持部材110の上面に、集光型太陽電池パネル10を支える放熱板(図示せず)を設ける構造としてもよい。ここで、放熱板にはアルミニウム、銅等の熱伝導性の高い金属を用い、放熱板と集光型太陽電池パネル10とを熱的に結合させ、集光型太陽電池パネル10において上昇しやすい温度を、放熱構造により抑制することができる。 In each of the plurality of trackers 100 used in the present embodiment, a heat sink (not shown) that supports the concentrating solar cell panel 10 is provided on the upper surface of the holding member 110 on which the concentrating solar cell panel 10 is mounted. It is good also as a structure. Here, a metal having high thermal conductivity such as aluminum or copper is used for the heat sink, and the heat sink and the concentrating solar cell panel 10 are thermally coupled to each other so that the heat concentrating solar cell panel 10 is likely to rise. The temperature can be suppressed by the heat dissipation structure.
 本実施形態にて用いる追尾子100では、保持部材110における第3の端部Cに取り付けられたワイヤーCTを、第3の駆動軸340を介して、第3の牽引点340aにて巻き取る構成例について説明したが、ワイヤーCTの代わりに、第1の端部Aに取り付けられた第1のリボンAT及び第2の端部Bに取り付けられた第2のリボンBTと同様に、リボン(第3のリボン)を用いることもできる。また、定荷重バネ等の荷重付与部材の先端を第3の端部Cに取り付けた構成例においても、該荷重付与部材の代わりにリボン(第3のリボン)を用いることができる。このようにすると、第1のリボンAT及び第2のリボンBTに加えて、第3のリボンも回転での巻き取りが可能となる。これらの場合、第1の駆動装置450a及び第2の駆動装置450bと同様に、第3の駆動装置450cは、例えばサーボモーターを用いることができる。 In the tracker 100 used in the present embodiment, the wire CT attached to the third end C of the holding member 110 is wound around the third traction point 340a via the third drive shaft 340. Although the example has been described, instead of the wire CT, the ribbon (the first ribbon AT attached to the first end A and the second ribbon BT attached to the second end B, as well as the ribbon (first 3 ribbons) can also be used. Also in the configuration example in which the tip of a load applying member such as a constant load spring is attached to the third end C, a ribbon (third ribbon) can be used instead of the load applying member. If it does in this way, in addition to 1st ribbon AT and 2nd ribbon BT, the 3rd ribbon can also be wound up by rotation. In these cases, similarly to the first driving device 450a and the second driving device 450b, the third driving device 450c can use a servo motor, for example.
 図14は、本実施形態に係る集光型太陽光発電装置を構成する追尾装置500の制御を実現するための配線・伝達軸構造例を示す概略説明図である。例えば図14に示すように、第3の駆動装置450cは、第3の駆動軸340と連結しており、該第3の駆動軸340を横方向に回転させることで、追尾子100の保持部材110における第3の端部Cに取り付けられたリボンを、第3の牽引点340aにて巻き取ることを可能にする。 FIG. 14 is a schematic explanatory diagram showing an example of a wiring / transmission shaft structure for realizing control of the tracking device 500 constituting the concentrating solar power generation device according to the present embodiment. For example, as shown in FIG. 14, the third drive device 450 c is connected to the third drive shaft 340, and the third drive shaft 340 is rotated in the lateral direction, whereby the holding member for the tracker 100 is retained. The ribbon attached to the third end C at 110 can be taken up at the third traction point 340a.
 また、本実施形態に係る集光型太陽光発電装置には、架台の全体(追尾装置の全体)を覆う、透明部材からなるカバー(矩形状のケース)を設けることができる。 Moreover, the concentrating solar power generation device according to the present embodiment can be provided with a cover (rectangular case) made of a transparent member that covers the entire gantry (the entire tracking device).
 図15は、本実施形態に係る集光型太陽光発電装置を構成する追尾装置の一実施例を示す概略説明図である。図15に示すように、具体的には、架台20aの上に、その全体を覆うように、透明部材からなるカバー550が設けられている。該カバー550は、例えば図示する南側に位置する端部において、傾斜面500aが形成されるように突出部500bを有している。このように、カバー550の適切な少なくとも一面で傾斜面500aが形成されているため、耐風性に優れた集光型太陽光発電装置を実現することができる。また、この場合、傾斜面500aの下側に、通常の追尾ではない太陽電池パネルを設置し、MPPT制御によって所定の電圧に昇圧し、他の太陽電池パネルと並列に接続すること、又は、電流を制御して直列に接続することも可能である。 FIG. 15 is a schematic explanatory diagram illustrating an example of the tracking device that configures the concentrating solar power generation device according to the present embodiment. As shown in FIG. 15, specifically, a cover 550 made of a transparent member is provided on the gantry 20a so as to cover the whole. The cover 550 has, for example, a protruding portion 500b so that an inclined surface 500a is formed at an end located on the south side in the drawing. Thus, since the inclined surface 500a is formed on at least one appropriate surface of the cover 550, a concentrating solar power generation device with excellent wind resistance can be realized. Also, in this case, a solar cell panel that is not a normal tracking is installed below the inclined surface 500a, boosted to a predetermined voltage by MPPT control, and connected in parallel with other solar cell panels, or current It is also possible to connect in series by controlling.
 なお、散乱光をより効率よく透過させ、散乱光を透過させることが可能な集光型太陽電池パネル10の利用価値をさらに高める点で、本実施形態に係る集光型太陽光発電装置において、追尾装置500の全体を覆うカバー550も、追尾装置500と同様に、高透過板12を透過した散乱光成分又は太陽電池セル13同士の間の空間19aを通過した散乱光成分を透過する材料で構成されていることが好ましい。 In the concentrating solar power generation device according to the present embodiment, in terms of further enhancing the utility value of the concentrating solar cell panel 10 capable of transmitting scattered light more efficiently and transmitting scattered light, Similarly to the tracking device 500, the cover 550 covering the entire tracking device 500 is also made of a material that transmits the scattered light component that has passed through the highly transmissive plate 12 or the scattered light component that has passed through the space 19a between the solar cells 13. It is preferable to be configured.
 また、次述する図16に示すように、本実施形態に係る集光型太陽光発電装置において、複数の追尾装置500が互いに連結される構造の場合でも同様に、耐風性を向上させるために傾斜面を適切な面に設けるとよい。図16は、本実施形態に係る、複数の追尾装置500を備えた集光型太陽光発電装置の構成例を示す概略説明図である。例えば、南北方向及び東西方向の三行三列にアレイ状に配置された9つの追尾装置500が連結された構造において、西側から東側へ、かつ、北側から南側へ位置する順に第1~第9の追尾装置500が配置されているとすると、第1の追尾装置500は北面と西面に傾斜面、第2の追尾装置500は北面に傾斜面、第3の追尾装置500は北面と東面に傾斜面、第4の追尾装置500は西面に傾斜面、第5の追尾装置500は傾斜面なし、第6の追尾装置500は東面に傾斜面、第7の追尾装置500は南面と西面に傾斜面、第8の追尾装置500は南面に傾斜面、第9の追尾装置500は南面と東面に傾斜面を設けるとよい。 In addition, as shown in FIG. 16 to be described below, in the concentrating solar power generation device according to the present embodiment, in order to improve wind resistance even in the case of a structure in which a plurality of tracking devices 500 are connected to each other. The inclined surface may be provided on an appropriate surface. FIG. 16 is a schematic explanatory diagram illustrating a configuration example of a concentrating solar power generation device including a plurality of tracking devices 500 according to the present embodiment. For example, in a structure in which nine tracking devices 500 arranged in an array in three rows and three columns in the north-south direction and the east-west direction are connected, the first to ninth orders are arranged in order from the west side to the east side and from the north side to the south side. If the first tracking device 500 is arranged, the first tracking device 500 is inclined on the north surface and the west surface, the second tracking device 500 is inclined on the north surface, and the third tracking device 500 is the north surface and the east surface. The fourth tracking device 500 has an inclined surface on the west surface, the fifth tracking device 500 has no inclined surface, the sixth tracking device 500 has an inclined surface on the east surface, and the seventh tracking device 500 has a south surface. The west surface is inclined, the eighth tracking device 500 is preferably provided with an inclined surface on the south surface, and the ninth tracking device 500 is provided with inclined surfaces on the south surface and the east surface.
 図16に示す集光型太陽光発電装置は、互いに連結した追尾装置500を複数備えており、1つの制御装置400によって、駆動装置450を介して複数の追尾装置500を同時に駆動させる。該集光型太陽光発電装置では、外部から第1、第2、第3の駆動装置450a、450b、450cの各々に接続する第1、第2、第3の駆動軸320、330、340の接続部分において、軸を分割して、例えばベルトとプーリーとで接続部分を構成することにより、第1~第3の駆動装置450a~450cによる駆動力を正確に伝達可能とし、集光型太陽光発電装置において生じ得る多少の高さのバラツキや位置のズレによる影響を回避することも可能である。 The concentrating solar power generation device shown in FIG. 16 includes a plurality of tracking devices 500 connected to each other, and a plurality of tracking devices 500 are simultaneously driven by a single control device 400 via a driving device 450. In the concentrating solar power generation device, the first, second, and third drive shafts 320, 330, and 340 that are connected to the first, second, and third drive devices 450a, 450b, and 450c from the outside. By dividing the shaft at the connecting portion and forming the connecting portion with, for example, a belt and a pulley, the driving force by the first to third driving devices 450a to 450c can be accurately transmitted, and the concentrated sunlight It is also possible to avoid the influence of slight height variations and positional deviations that may occur in the power generation device.
 また、本実施形態に係る集光型太陽光発電装置には、複数の集光型太陽電池パネルの上部に、該集光型太陽電池パネルの受光側表面を清掃する清掃装置をさらに設けることができる。 Moreover, the concentrating solar power generation device according to the present embodiment may further include a cleaning device for cleaning the light receiving side surface of the concentrating solar cell panel on the upper side of the plurality of concentrating solar cell panels. it can.
 図17は、本発明の一実施形態に係る、清掃装置を備えた集光型太陽光発電装置を構成する追尾装置の一実施例を示す概略説明図であり、図10に示す集光型太陽光発電装置を構成する追尾装置の一実施例において、さらに清掃装置を備えた一例の図である。例えば図17に示すように、基台20c上に支柱20bを介して設けられた架台20aの上に配置されている追尾装置500は、複数の追尾子100を備えており、複数の追尾子100各々には、集光型太陽電池パネル10が搭載されており、これら複数の集光型太陽電池パネル10の上部に、清掃装置600が備えられている。 FIG. 17 is a schematic explanatory view showing an example of the tracking device constituting the concentrating solar power generation device including the cleaning device according to an embodiment of the present invention, and the concentrating solar shown in FIG. It is a figure of an example further provided with the cleaning apparatus in one Example of the tracking apparatus which comprises a photovoltaic device. For example, as shown in FIG. 17, a tracking device 500 arranged on a gantry 20 a provided on a base 20 c via a support 20 b includes a plurality of tracking units 100, and the plurality of tracking units 100. Each has a concentrating solar cell panel 10 mounted thereon, and a cleaning device 600 is provided above the plurality of concentrating solar cell panels 10.
 清掃装置600は、一対のガイドレール600b、600bと、ガイドレール600b、600bに案内されて集光型太陽電池パネル10上を移動する清掃体600aとを備えている。一対のガイドレール600b、600bは、複数の集光型太陽電池パネル10が配置された追尾装置500の長手方向と平行になるように、追尾装置500の両端部近傍に設けられている。清掃体600aは、例えばフレームの内側に複数のワイパー部材(図示せず)を備えており、車輪等の移動手段(図示せず)によって、ガイドレール600b、600bに沿って追尾装置500の一方の端部から、白抜き矢印の方向に、複数の集光型太陽電池パネル10上を移動する。そして清掃体600aは、追尾装置500のもう一方の端部へと到着すると、折り返して白抜き矢印の方向と逆方向に、複数の集光型太陽電池パネル10上を移動する。この清掃体600aの移動の繰り返しにより、複数の集光型太陽電池パネル10の受光側表面が清掃される。 The cleaning device 600 includes a pair of guide rails 600b and 600b, and a cleaning body 600a that moves on the concentrating solar cell panel 10 while being guided by the guide rails 600b and 600b. The pair of guide rails 600b and 600b are provided in the vicinity of both ends of the tracking device 500 so as to be parallel to the longitudinal direction of the tracking device 500 in which the plurality of concentrating solar cell panels 10 are arranged. The cleaning body 600a includes, for example, a plurality of wiper members (not shown) inside the frame, and one of the tracking devices 500 is moved along the guide rails 600b and 600b by a moving means (not shown) such as a wheel. The plurality of concentrating solar cell panels 10 are moved from the end in the direction of the outlined arrow. When the cleaning body 600a arrives at the other end of the tracking device 500, the cleaning body 600a turns and moves on the plurality of concentrating solar cell panels 10 in the direction opposite to the direction of the white arrow. By repeating the movement of the cleaning body 600a, the light receiving side surfaces of the plurality of concentrating solar cell panels 10 are cleaned.
 清掃体600aに備えられた複数のワイパー部材は、一般的なゴム製のものであればよく、特に限定されるものではない。このようなゴム製のワイパー部材を用いることにより、集光型太陽電池パネル10に傷を付けることなく、その受光側表面の汚れを除去することができる。 The plurality of wiper members provided in the cleaning body 600a may be made of a general rubber and is not particularly limited. By using such a rubber wiper member, it is possible to remove contamination on the light receiving side surface without scratching the concentrating solar cell panel 10.
 複数の集光型太陽電池パネル10上での清掃体600aの移動は、集光型太陽光発電装置の制御装置400によって適宜制御することができる。なお、互いに連結した追尾装置500を複数備え、1つの制御装置400が、駆動装置450を介して、複数の追尾装置500を同時に駆動する集光型太陽光発電装置の場合には、追尾装置500ごとに、複数の集光型太陽電池パネル10の上部に清掃装置600が各々備えられるが、これら複数の清掃装置600の各清掃体600aの移動も、前記1つの制御装置400によって一斉に制御することができる。 The movement of the cleaning body 600a on the plurality of concentrating solar cell panels 10 can be appropriately controlled by the control device 400 of the concentrating solar power generation device. In the case where a plurality of tracking devices 500 connected to each other are provided and one control device 400 is a concentrating solar power generation device that simultaneously drives the plurality of tracking devices 500 via the driving device 450, the tracking device 500 is used. Each of the plurality of concentrating solar cell panels 10 is provided with a cleaning device 600, and the movement of each cleaning body 600a of the plurality of cleaning devices 600 is also controlled by the one control device 400 at a time. be able to.
 このように、清掃装置600を備えた集光型太陽光発電装置では、集光型太陽電池パネル10の受光側表面がより清浄な状態で維持され、該集光型太陽光発電装置は、発電効率がより高く、より高比率で直達光を遮断することができ、散乱光をさらに効率よく透過させることもできる。 Thus, in the concentrating solar power generation device provided with the cleaning device 600, the light receiving side surface of the concentrating solar cell panel 10 is maintained in a cleaner state. The efficiency is higher, the direct light can be blocked at a higher ratio, and the scattered light can be transmitted more efficiently.
 図18は、本発明の一実施形態に係る集光型太陽光発電装置の構成例を立体的に示す図である。図18(a)は、例えば図15に示した1つの追尾装置500(カバー550あり)を備えた集光型太陽光発電装置の構成例に、駆動装置450(第1~第3の駆動装置450a~450c、第1~第3の駆動軸320~340)を加えた例を立体的に表している。図18(b)は、例えば図16に示した複数の追尾装置500(カバー550あり)を備えた集光型太陽光発電装置の構成例に、駆動装置450(第1~第3の駆動装置450a~450c、第1~第3の駆動軸320~340)を加えた例を立体的に表している。例えばこのような構成により、本実施形態に係る集光型太陽光発電装置の実施が可能になる。なお、図18(a)及び(b)に示した各構成は、先に説明したとおりである。よって、その説明は繰り返さない。 FIG. 18 is a diagram three-dimensionally showing a configuration example of a concentrating solar power generation device according to an embodiment of the present invention. FIG. 18A shows, for example, a driving device 450 (first to third driving devices) in a configuration example of a concentrating solar power generation device including one tracking device 500 (with a cover 550) shown in FIG. 450a to 450c and first to third drive shafts 320 to 340) are illustrated in three dimensions. FIG. 18B shows, for example, a driving device 450 (first to third driving devices) in a configuration example of a concentrating solar power generation device including a plurality of tracking devices 500 (with a cover 550) shown in FIG. 450a to 450c and first to third drive shafts 320 to 340) are illustrated in three dimensions. For example, such a configuration makes it possible to implement the concentrating solar power generation device according to the present embodiment. In addition, each structure shown to Fig.18 (a) and (b) is as having demonstrated previously. Therefore, the description will not be repeated.
 図19は、本発明の一実施形態に係る集光型太陽光発電装置の実装例を立体的に示す図である。図19では、例えば図15に示した1つの追尾装置500(カバー550あり)を備えた集光型太陽光発電装置(駆動装置は図示せず)を屋根に設置し、屋根の下方から見た例を示している。 FIG. 19 is a diagram showing a three-dimensional implementation example of the concentrating solar power generation device according to the embodiment of the present invention. In FIG. 19, for example, a concentrating solar power generation device (a driving device is not shown) provided with one tracking device 500 (with a cover 550) shown in FIG. 15 is installed on the roof, and viewed from below the roof. An example is shown.
 本実施形態に係る集光型太陽光発電装置は、設置時の利便性や搬送時の可搬性に優れており、例えば図19に示すように、バス停や公園の休憩所等の屋根に容易に設置することができる。そして、このように本実施形態に係る集光型太陽光発電装置が設置された屋根の下では、直達光が高比率で遮断され、開放感が付与される。 The concentrating solar power generation apparatus according to the present embodiment is excellent in convenience during installation and portability during transportation. For example, as shown in FIG. 19, the concentrating solar power generation apparatus can be easily installed on a roof such as a bus stop or a park rest area. Can be installed. And under the roof where the concentrating solar power generation apparatus according to this embodiment is installed in this way, direct light is blocked at a high ratio, and a feeling of opening is given.
 なお、前記バス停や公園の休憩所等の屋根には、例えば図5に示す実施例4に係る集光型太陽電池パネル10dのような、高透過板12の下面側に非集光型太陽電池23を設置した集光型太陽電池パネルを備えた集光型太陽光発電装置を設置することが好ましい。これにより、直達光の高比率での遮断が可能なだけでなく、弱い散乱光も充分に遮断することができ、屋根の下は、より快適な状態が維持される。また、設置する集光型太陽光発電装置の大きさは、屋根の大きさに合わせて適宜調整すればよい。前述のとおり、例えば図10に示す追尾装置500は、1m×2m程度の大きさであるので、このような追尾装置500であれば、これを1つ備えた集光型太陽光発電装置を、バス停や公園の休憩所等の屋根に容易に設置することが可能である。 In addition, the roof of the bus stop or the park rest area, for example, a non-concentrating solar cell on the lower surface side of the high transmission plate 12, such as the concentrating solar cell panel 10d according to Example 4 shown in FIG. It is preferable to install a concentrating solar power generation apparatus provided with a concentrating solar cell panel in which 23 is installed. Thereby, not only the direct light can be blocked at a high ratio but also the weak scattered light can be sufficiently blocked, and a more comfortable state is maintained under the roof. Moreover, what is necessary is just to adjust the magnitude | size of the concentrating solar power generation device to install suitably according to the magnitude | size of a roof. As described above, for example, the tracking device 500 illustrated in FIG. 10 has a size of about 1 m × 2 m. Therefore, if such a tracking device 500 is used, a concentrating solar power generation device including one of the tracking devices 500 is provided. It can be easily installed on the roofs of bus stops and park rest areas.
 さらに本実施形態に係る集光型太陽光発電装置は、前記バス停、公園の休憩所等の屋根のほかにも、例えば農業用地等にも容易に設置することができる。本実施形態に係る集光型太陽光発電装置が設置された農業用地等では、直達光が高倍率で集光され、高効率での発電が可能であると同時に、弱い散乱光を農業に利用することが可能である。また、農業用地の場合、通常、前記バス停や公園の休憩所等の屋根よりも広範囲であるので、例えば図16に示す集光型太陽光発電装置のように、互いに連結した追尾装置500を複数備えており、これらが同時に駆動される集光型太陽光発電装置を設置することが好ましい。 Furthermore, the concentrating solar power generation apparatus according to the present embodiment can be easily installed on, for example, agricultural land in addition to the roofs of the bus stops and park rest areas. In agricultural land or the like where the concentrating solar power generation apparatus according to this embodiment is installed, direct light is condensed at a high magnification and power generation with high efficiency is possible, and at the same time, weak scattered light is used for agriculture. Is possible. In the case of agricultural land, since it is usually wider than the roof of the bus stop or park rest area, a plurality of tracking devices 500 connected to each other, such as a concentrating solar power generation device shown in FIG. It is preferable to install a concentrating solar power generation apparatus that is provided and driven simultaneously.
 また、以上において、本実施形態に係る集光型太陽光発電装置を構成する追尾装置500の追尾子100について、第1のリボンAT及び第2のリボンBTを用いた場合を説明し、ワイヤーCTの代わりにリボン(第3のリボン)の使用が可能であることを説明した。このような追尾子100において、例えば図20に示すように、リボンとして、両刃付きリボンDTを用いることもできる。 In the above description, the case where the first ribbon AT and the second ribbon BT are used for the tracker 100 of the tracking device 500 constituting the concentrating solar power generation device according to the present embodiment is described, and the wire CT It has been explained that a ribbon (third ribbon) can be used instead of. In such a tracker 100, as shown in FIG. 20, for example, a double-edged ribbon DT can be used as a ribbon.
 図20は、本発明の一実施形態に係る集光型太陽光発電装置を構成する追尾装置の追尾子に用いるリボンの構成例を示す概略説明図である。図20(a)は、リボンを巻き取る前の直線状態の図である。図20(b)は、リボンを巻き取った状態の図である。具体的には、両刃付きリボンDTは、図20(a)に示すように、図中上下両側の面に複数の歯900aが設けられており、両刃付きリボンDTが巻き取られた際の外側(図では下側に相当する)における複数の歯の間隔D1は、両刃付きリボンDTが巻き取られた際の内側(図では上側に相当する)における複数の歯の間隔D2よりも大きい。さらに、図20(b)に示すように、両刃付きリボンDTが巻き取られた際の外側における複数の歯の間隔D3(隣り合う歯の上面間の距離)は、両刃付きリボンDTが巻き取られる前の直線状態(図20(a)の状態)の内側(図では上側に相当する)における複数の歯の間隔D2と等しい。このようにすると、リボンの滑りによる撓みをより抑制することができる。 FIG. 20 is a schematic explanatory diagram illustrating a configuration example of a ribbon used for the tracker of the tracking device that configures the concentrating solar power generation device according to the embodiment of the present invention. Fig.20 (a) is a figure of the linear state before winding up a ribbon. FIG. 20B is a diagram illustrating a state where the ribbon is wound up. Specifically, as shown in FIG. 20A, the double-edged ribbon DT is provided with a plurality of teeth 900a on both upper and lower surfaces in the figure, and the outer side when the double-edged ribbon DT is wound up. The interval D1 between the plurality of teeth (corresponding to the lower side in the drawing) is larger than the interval D2 between the plurality of teeth on the inner side (corresponding to the upper side in the drawing) when the double-edged ribbon DT is wound. Furthermore, as shown in FIG. 20 (b), the distance D3 (distance between the upper surfaces of adjacent teeth) on the outside when the double-edged ribbon DT is wound is determined by the double-edged ribbon DT being wound. It is equal to a plurality of tooth intervals D2 on the inner side (corresponding to the upper side in the drawing) of the straight line state (the state of FIG. If it does in this way, the bending by the slip of a ribbon can be suppressed more.
[実験例]
<背景>
 集光型太陽光発電装置の集光型太陽電池パネルにおいては、非常に性能が高い太陽電池セルを用いることができる。しかし、先に記載したような追尾装置の問題により、このような集光型太陽電池パネルを備えた集光型太陽光発電装置は、未だ充分に普及していない。また、従来の追尾装置を備えた集光型太陽光発電装置では、基本的に直達光のみしか利用することができない。
[Experimental example]
<Background>
In the concentrating solar cell panel of the concentrating solar power generation device, a solar cell having extremely high performance can be used. However, due to the problem of the tracking device as described above, the concentrating solar power generation device provided with such a concentrating solar cell panel has not yet been widely spread. Moreover, in the concentrating solar power generation device provided with the conventional tracking device, basically only direct light can be used.
 本発明の一実施形態に係る集光型太陽光発電装置を構成する集光型太陽電池パネルでは、太陽からの直達光のみが集光され、太陽電池セルに入射し、一方、散乱光は、高透過板を透過するか、又は太陽電池セル同士の間の空間を通過する。そして、該集光型太陽光発電装置に備えられた追尾装置は、該散乱光を透過する材料でできているので、直達光を高倍率で集光して高効率で発電し、高比率で遮断することが可能であると同時に、散乱光を効率よく透過させて多目的に利用することも可能で、開放感を得ることができる。 In the concentrating solar cell panel constituting the concentrating solar power generation device according to one embodiment of the present invention, only the direct light from the sun is collected and incident on the solar cell, while the scattered light is It passes through a highly transmissive plate or passes through a space between solar cells. Since the tracking device provided in the concentrating solar power generation device is made of a material that transmits the scattered light, the direct light is condensed at a high magnification to generate power with high efficiency, and at a high ratio. At the same time it can be blocked, it is also possible to transmit scattered light efficiently and use it for multiple purposes, and an open feeling can be obtained.
<目的>
 本発明の一実施形態に係る集光型太陽光発電装置を構成する追尾装置が優れた光透過性を有することを確認するために、本実験例を実施した。
<Purpose>
In order to confirm that the tracking device constituting the concentrating solar power generation device according to one embodiment of the present invention has excellent light transmittance, the present experimental example was performed.
<方法及び結果>
 まず、図21に示す追尾装置を準備した。図21は、本発明の一実施形態に係る集光型太陽光発電装置を構成する追尾装置の概略図であり、(a)は追尾装置の概略上面図、(b)は追尾装置の長手方向の概略側面図、(c)は追尾装置の短手方向の概略側面図である。該追尾装置は、基本的に図10に示す追尾装置と同じ構成の透明追尾装置であり、集光型太陽電池パネル各々を搭載することができる6個の追尾子を備えている。底面サイズは380mm×580mmで、10mm×30mmの柱が12本連立っている。構造部材は、太陽光(照射光)からの散乱光を透過する透明なアクリル系樹脂製であり、一部の部材は、高精細3Dプリンタ アジリスタ(Agilista-3200、(株)キーエンス製)を用いて製造した成型品である。
<Method and results>
First, a tracking device shown in FIG. 21 was prepared. FIG. 21 is a schematic view of a tracking device that constitutes a concentrating solar power generation device according to an embodiment of the present invention, where (a) is a schematic top view of the tracking device, and (b) is a longitudinal direction of the tracking device. (C) is a schematic side view of the tracking device in the short direction. The tracking device is basically a transparent tracking device having the same configuration as the tracking device shown in FIG. 10, and includes six trackers on which each of the concentrating solar cell panels can be mounted. The bottom size is 380 mm × 580 mm, and 12 columns of 10 mm × 30 mm are connected. The structural members are made of a transparent acrylic resin that transmits scattered light from sunlight (irradiated light), and some of the members use a high-definition 3D printer Agilista (Agilista-3200, manufactured by Keyence Corporation). It is a molded product manufactured by
 次に、太陽電池モジュールを準備し、該太陽電池モジュールの上に前記透明追尾装置を配置した。一方、該太陽電池モジュールの上に遮光物を配置しない場合、及び、遮光物として前記追尾装置と同面積のベニヤ板(厚さ2.5mm)を該太陽電池モジュールの上に配置した場合を比較対象とした。図22は、遮光物を配置していない太陽電池モジュールの概略斜視図、図23は、前記透明追尾装置を配置した太陽電池モジュールの概略斜視図、及び図24は、遮光物を配置した太陽電池モジュールの概略斜視図である。 Next, a solar cell module was prepared, and the transparent tracking device was arranged on the solar cell module. On the other hand, a case where a light shielding object is not disposed on the solar cell module and a case where a veneer plate (thickness 2.5 mm) having the same area as the tracking device is disposed on the solar cell module as a light shielding object are to be compared. It was. FIG. 22 is a schematic perspective view of a solar cell module in which no light shielding object is disposed, FIG. 23 is a schematic perspective view of a solar cell module in which the transparent tracking device is disposed, and FIG. 24 is a solar cell in which a light shielding object is disposed. It is a schematic perspective view of a module.
 前記各太陽電池モジュールを用いてその性能を測定し、出力特性を表すIVカーブを求めた。その結果を表1及び図25に示す。測定に用いた装置、条件等は以下のとおりである。また、各略語は以下を示す。
Pm:最適動作点での出力(W)
Vpm:最適動作点での電圧(V)
Ipm:最適動作点での電流(I)
Voc:開放電圧(V)
Isc:短絡電流(A)
F.F.:曲線因子
The performance was measured using each of the solar cell modules, and an IV curve representing output characteristics was obtained. The results are shown in Table 1 and FIG. The equipment and conditions used for the measurement are as follows. Moreover, each abbreviation shows the following.
Pm: Output at the optimum operating point (W)
Vpm: Voltage at the optimum operating point (V)
Ipm: current at the optimum operating point (I)
Voc: Open circuit voltage (V)
Isc: Short circuit current (A)
F. F. : Curve factor
(測定日)
2017年10月3日
(太陽電池モジュール)
製造元:(株)ビームテック
Model:SP100
Pm:100W
Vpm:18.5V
Ipm:5.41A
Voc:22.4V
Isc:5.9A
Dimention:1210*540*35
(ソーラーシミュレーター)
製造元:岩崎電気(株)
形式:ESC0436-H134
(測定条件)
日射強度:1065W/m
温度:設定値20℃、測定値20.4℃
湿度:設定値20%、測定値24.5%
(IVカーブトレーサー)
製造元:英弘精機(株)
Model:EP-160
(measuring date)
October 3, 2017 (solar cell module)
Manufacturer: Beamtec Model: SP100
Pm: 100W
Vpm: 18.5V
Ipm: 5.41A
Voc: 22.4V
Isc: 5.9A
Dimension: 1210 * 540 * 35
(Solar simulator)
Manufacturer: Iwasaki Electric Co., Ltd.
Format: ESC0436-H134
(Measurement condition)
Solar radiation intensity: 1065 W / m 2
Temperature: set value 20 ° C, measured value 20.4 ° C
Humidity: Set value 20%, measured value 24.5%
(IV curve tracer)
Manufacturer: Eihiro Seiki Co., Ltd.
Model: EP-160
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図25は、前記各太陽電池モジュールを用いて行った、太陽光透過/遮光実験の結果を示すIVカーブである。実線が透明追尾装置ありの場合の結果(透明追尾装置遮光IVカーブ)、長破線が遮光物なしの場合の結果(遮光なしIVカーブ)、短破線が遮光物ありの場合の結果(全遮光IVカーブ)である。 FIG. 25 is an IV curve showing the results of a sunlight transmission / light-shielding experiment performed using each of the solar cell modules. Solid line results with transparent tracking device (transparent tracking device shading IV curve), long broken line results without shading (no shading IV curve), short dashed line results with shading (all shading IV Curve).
 ここで、Iscは受光光量によって決定される値である。すなわち、遮光物を配置していない遮光なしの太陽電池モジュールのIscに対する、透明追尾装置又は遮光物を配置したことによる遮光ありの太陽電池モジュールのIscの比率が、受光光量の割合になる。ただし、太陽電池モジュールにおいては、複数の太陽電池が直列接続されている。このように直列接続された複数の太陽電池のうち、律速となるのは最も影がかかる太陽電池である。すなわち、実質示されているのは、影により光量が最も減少した太陽電池における受光光量の割合である、という点に注意しなければならない。このため、遮光物を配置した太陽電池モジュールでは、複数の太陽電池のうち、影がかかっているのは一部分であるにも関わらず、Iscが0Aに近い値となっている。 Here, Isc is a value determined by the amount of received light. In other words, the ratio of the amount of received light is the ratio of Isc of the solar cell module with light shielding by arranging the transparent tracking device or the light shielding material to Isc of the solar cell module without light shielding without the light shielding. However, in the solar cell module, a plurality of solar cells are connected in series. Of the plurality of solar cells connected in series in this way, the solar cell with the most shadow is the rate limiting factor. That is, it should be noted that what is substantially shown is the ratio of the amount of received light in the solar cell in which the amount of light has been reduced most by the shadow. For this reason, in the solar cell module in which the light shielding member is arranged, Isc is a value close to 0 A, although a part of the plurality of solar cells is shaded.
 なお、ソーラーシミュレーターによる照射光は、すべてが直達光ではなく、直達光と共に散乱光も含んでいたが、両者の比率は特定できなかった。 Note that the light irradiated by the solar simulator was not all direct light, but also included scattered light as well as direct light, but the ratio of the two could not be specified.
 表1及び図25に示すとおり、遮光物を配置していない太陽電池モジュールのIsc(5.16A)に対する遮光物を配置した太陽電池モジュールのIsc(0.25A)の比率、すなわち遮光物を配置した太陽電池モジュールの受光光量の割合は、約0.05であった。これに対して、遮光物を配置していない太陽電池モジュールのIsc(5.16A)に対する透明追尾装置を配置した太陽電池モジュールのIsc(2.34A)の比率、すなわち透明追尾装置を配置した太陽電池モジュールの受光光量の割合は、約0.45であった。このように、太陽電池モジュールの上にベニヤ板のような遮光物を配置して完全に遮光してしまうと、当然のことながら、受光光量の割合はほぼゼロとなった。しかし、本発明の一実施形態に係る集光型太陽光発電装置を構成する透明追尾装置を太陽電池モジュールの上に配置しても、受光光量の割合は50%に近い高い値であった。なお、前記のとおり複数の太陽電池には律速があり、Iscの測定値は発電に寄与した太陽電池に基づくものであるので、実際のIscは測定値よりも大きい。よって、透明追尾装置を配置した太陽電池モジュールの実際の受光光量の割合は、0.45よりも大きく、50%を超える高い値である。 As shown in Table 1 and FIG. 25, the ratio of the Isc (0.25A) of the solar cell module in which the light shielding material is disposed to the Isc (5.16A) of the solar cell module in which the light shielding material is not disposed, that is, the light shielding material is disposed. The ratio of the received light amount of the solar cell module was about 0.05. On the other hand, the ratio of the Isc (2.34A) of the solar cell module in which the transparent tracking device is arranged to the Isc (5.16A) of the solar cell module in which the light shielding material is not arranged, that is, the sun in which the transparent tracking device is arranged. The ratio of the received light amount of the battery module was about 0.45. As described above, when a light shielding object such as a veneer plate is arranged on the solar cell module to completely shield the light, the ratio of the amount of received light is almost zero. However, even when the transparent tracking device constituting the concentrating solar power generation device according to one embodiment of the present invention is arranged on the solar cell module, the ratio of the received light amount is a high value close to 50%. As described above, the plurality of solar cells have a rate-determining rate, and the measured value of Isc is based on the solar cell that contributes to power generation. Therefore, the actual Isc is larger than the measured value. Therefore, the ratio of the actual received light amount of the solar cell module in which the transparent tracking device is arranged is a high value that is larger than 0.45 and exceeds 50%.
<結論>
 本発明の一実施形態に係る集光型太陽光発電装置を構成する追尾装置は、優れた光透過性を有しており、集光型太陽電池パネルが配置されていても、太陽光を透過させることができることが、本実験例において確認された。
<Conclusion>
The tracking device constituting the concentrating solar power generation device according to one embodiment of the present invention has excellent light transmittance, and transmits sunlight even if a concentrating solar cell panel is disposed. It was confirmed in the present experimental example that this can be achieved.
 以上、本発明の一実施形態に係る集光型太陽光発電装置について説明したが、本発明は本実施形態に限定されるものではなく、発明の範囲内で種々の形態の実施が可能である。 As mentioned above, although the concentrating solar power generation device which concerns on one Embodiment of this invention was demonstrated, this invention is not limited to this embodiment, Implementation of various forms is possible within the scope of the invention. .
 本発明に係る集光型太陽光発電装置は、比較的小規模な設置対象用の太陽光発電装置として好適である。 The concentrating solar power generation device according to the present invention is suitable as a solar power generation device for a relatively small installation target.
10  集光型太陽電池パネル
11  集光器
12  高透過板
13  太陽電池セル
30  セルパッケージ
31  受光ガイド
31a 反射面
100 追尾子
110 保持部材
400 制御装置
450 駆動装置
500 追尾装置

 
DESCRIPTION OF SYMBOLS 10 Concentrating type solar cell panel 11 Concentrator 12 Highly transmissive plate 13 Solar cell 30 Cell package 31 Light receiving guide 31a Reflecting surface 100 Tracking element 110 Holding member 400 Control device 450 Driving device 500 Tracking device

Claims (9)

  1.  アレイ状に配置され、太陽光を電力に変換する複数の集光型太陽電池パネルと、
     前記複数の集光型太陽電池パネルを駆動する駆動装置と、
     前記複数の集光型太陽電池パネルが予め設定された太陽軌道を追尾するように前記駆動装置の駆動量を制御する制御装置と、
     追尾装置と
    を含む集光型太陽光発電装置であって、
     前記集光型太陽電池パネルの各々は、
      太陽光を集光する集光器と、
      前記集光器によって集光された前記太陽光を受光して該太陽光の少なくとも散乱光成分を透過する高透過板と、
      前記集光器によって集光された前記太陽光を受光して発電する複数の太陽電池セルと、
      前記高透過板の表面の一部に設けられ、前記太陽電池セルに電気的に接続可能な回路と
    を備え、
     前記太陽電池セルの各々は、前記高透過板の表面上に分散的に配置され、
     前記太陽電池セルと前記回路とは、前記集光器と前記高透過板との間に封止され、
     前記太陽電池セルの全受光面積は、太陽光総入射面積の10%以下であり、
     前記高透過板の受光面積は、太陽光総入射面積の80%以上であり、
     前記追尾装置は、
      前記高透過板を透過した散乱光成分を透過する材料からなり、
      前記複数の集光型太陽電池パネルの各々を搭載する複数の追尾子を備え、
     前記複数の追尾子の各々は、
      前記集光型太陽電池パネルを搭載する保持部材と、
      前記保持部材に連結する追尾機構と
    を備え、
     前記複数の集光型太陽電池パネルは、前記複数の追尾子を介して、1つの前記制御装置により一元制御される
    ことを特徴とする、集光型太陽光発電装置。
    A plurality of concentrating solar panels arranged in an array and converting sunlight into electric power;
    A driving device for driving the plurality of concentrating solar cell panels;
    A control device for controlling the drive amount of the drive device so that the plurality of concentrating solar cell panels track a preset solar orbit,
    A concentrating solar power generation device including a tracking device,
    Each of the concentrating solar cell panels is
    A concentrator that collects sunlight;
    A highly transmissive plate that receives the sunlight collected by the condenser and transmits at least a scattered light component of the sunlight;
    A plurality of solar cells that receive the sunlight collected by the condenser and generate power; and
    A circuit provided on a part of the surface of the highly transmissive plate and electrically connectable to the solar battery cell;
    Each of the solar cells is dispersedly disposed on the surface of the highly transmissive plate,
    The solar cell and the circuit are sealed between the collector and the high transmission plate,
    The total light receiving area of the solar battery cell is 10% or less of the total sunlight incident area,
    The light receiving area of the high transmission plate is 80% or more of the total sunlight incident area,
    The tracking device is
    It is made of a material that transmits the scattered light component that has passed through the high transmission plate,
    A plurality of trackers each mounting the plurality of concentrating solar cell panels;
    Each of the plurality of trackers is
    A holding member for mounting the concentrating solar cell panel;
    A tracking mechanism connected to the holding member,
    The concentrating solar power generation apparatus, wherein the plurality of concentrating solar cell panels are centrally controlled by a single control device via the plurality of tracking elements.
  2.  アレイ状に配置され、太陽光を電力に変換する複数の集光型太陽電池パネルと、
     前記複数の集光型太陽電池パネルを駆動する駆動装置と、
     前記複数の集光型太陽電池パネルが予め設定された太陽軌道を追尾するように前記駆動装置の駆動量を制御する制御装置と、
     追尾装置と
    を含む集光型太陽光発電装置であって、
     前記集光型太陽電池パネルの各々は、
      太陽光を集光する集光器と、
      前記集光器によって集光された前記太陽光を受光して該太陽光の少なくとも散乱光成分を透過する高透過板と、
      前記集光器によって集光された前記太陽光を受光して発電する複数の太陽電池セルと、
      前記高透過板の表面の一部に設けられ、前記太陽電池セルに電気的に接続可能な回路と
    を備え、
     前記太陽電池セルの各々は、前記高透過板の受光面とは反対側の面に分散的に配置され、
     前記太陽電池セルの全受光面積は、太陽光総入射面積の10%以下であり、
     前記高透過板の受光面積は、太陽光総入射面積の80%以上であり、
     前記集光器によって集光されかつ前記高透過板を透過した太陽光を反射させ、前記太陽電池セルの受光面へ案内する反射面を有する複数の受光ガイドをさらに備え、
     前記受光ガイドの各々と前記太陽電池セルの各々とが予め一体化され、複数のセルパッケージが構成され、
     前記複数のセルパッケージは、封止材によって前記高透過板の前記反対側の面上に分散的に封止され、
     前記追尾装置は、
      前記高透過板を透過した散乱光成分を透過する材料からなり、
      前記複数の集光型太陽電池パネルの各々を搭載する複数の追尾子を備え、
     前記複数の追尾子の各々は、
      前記集光型太陽電池パネルを搭載する保持部材と、
      前記保持部材に連結する追尾機構と
    を備え、
     前記複数の集光型太陽電池パネルは、前記複数の追尾子を介して、1つの前記制御装置により一元制御される
    ことを特徴とする、集光型太陽光発電装置。
    A plurality of concentrating solar panels arranged in an array and converting sunlight into electric power;
    A driving device for driving the plurality of concentrating solar cell panels;
    A control device for controlling the drive amount of the drive device so that the plurality of concentrating solar cell panels track a preset solar orbit,
    A concentrating solar power generation device including a tracking device,
    Each of the concentrating solar cell panels is
    A concentrator that collects sunlight;
    A highly transmissive plate that receives the sunlight collected by the condenser and transmits at least a scattered light component of the sunlight;
    A plurality of solar cells that receive the sunlight collected by the condenser and generate power; and
    A circuit provided on a part of the surface of the highly transmissive plate and electrically connectable to the solar battery cell;
    Each of the solar cells is dispersedly disposed on the surface opposite to the light receiving surface of the high transmittance plate,
    The total light receiving area of the solar battery cell is 10% or less of the total sunlight incident area,
    The light receiving area of the high transmission plate is 80% or more of the total sunlight incident area,
    A plurality of light receiving guides having a reflecting surface for reflecting the sunlight collected by the collector and transmitted through the highly transmissive plate and guiding it to the light receiving surface of the solar battery cell;
    Each of the light receiving guides and each of the solar battery cells are integrated in advance to form a plurality of cell packages,
    The plurality of cell packages are dispersedly sealed on the opposite surface of the highly transmissive plate by a sealing material,
    The tracking device is
    It is made of a material that transmits the scattered light component that has passed through the high transmission plate,
    A plurality of trackers each mounting the plurality of concentrating solar cell panels;
    Each of the plurality of trackers is
    A holding member for mounting the concentrating solar cell panel;
    A tracking mechanism connected to the holding member,
    The concentrating solar power generation apparatus, wherein the plurality of concentrating solar cell panels are centrally controlled by a single control device via the plurality of tracking elements.
  3.  アレイ状に配置され、太陽光を電力に変換する複数の集光型太陽電池パネルと、
     前記複数の集光型太陽電池パネルを駆動する駆動装置と、
     前記複数の集光型太陽電池パネルが予め設定された太陽軌道を追尾するように前記駆動装置の駆動量を制御する制御装置と、
     追尾装置と
    を含む集光型太陽光発電装置であって、
     前記集光型太陽電池パネルの各々は、
      太陽光を集光する集光器と、
      前記集光器によって集光された前記太陽光を受光して発電する複数の太陽電池セルと、
      前記太陽電池セルに電気的に接続可能な回路と
    を備え、
     前記複数の太陽電池セルは、前記集光型太陽電池パネルにおいて、各々の間に空間を設けて分散的に配置され、
     前記太陽電池セルの全受光面積は、太陽光総入射面積の10%以下であり、
     前記追尾装置は、
      前記太陽光からの散乱光成分を透過する材料からなり、
      前記複数の集光型太陽電池パネルの各々を搭載する複数の追尾子を備え、
     前記複数の追尾子の各々は、
      前記集光型太陽電池パネルを搭載する保持部材と、
      前記保持部材に連結する追尾機構と
    を備え、
     前記複数の集光型太陽電池パネルは、前記複数の追尾子を介して、1つの前記制御装置により一元制御される
    ことを特徴とする、集光型太陽光発電装置。
    A plurality of concentrating solar panels arranged in an array and converting sunlight into electric power;
    A driving device for driving the plurality of concentrating solar cell panels;
    A control device for controlling the drive amount of the drive device so that the plurality of concentrating solar cell panels track a preset solar orbit,
    A concentrating solar power generation device including a tracking device,
    Each of the concentrating solar cell panels is
    A concentrator that collects sunlight;
    A plurality of solar cells that receive the sunlight collected by the condenser and generate power; and
    A circuit electrically connectable to the solar cell,
    The plurality of solar cells are arranged in a distributed manner in the concentrating solar cell panel, with spaces provided between them.
    The total light receiving area of the solar battery cell is 10% or less of the total sunlight incident area,
    The tracking device is
    Made of a material that transmits the scattered light component from the sunlight,
    A plurality of trackers each mounting the plurality of concentrating solar cell panels;
    Each of the plurality of trackers is
    A holding member for mounting the concentrating solar cell panel;
    A tracking mechanism connected to the holding member,
    The concentrating solar power generation apparatus, wherein the plurality of concentrating solar cell panels are centrally controlled by a single control device via the plurality of tracking elements.
  4.  前記複数の追尾子の各々は、前記駆動装置の前記制御された駆動量に基づいて、前記保持部材における少なくとも3点を駆動することにより、前記集光型太陽電池パネルが予め設定された太陽軌道を追尾する、
    請求項1~3のいずれか1つに記載の集光型太陽光発電装置。
    Each of the plurality of trackers drives at least three points on the holding member based on the controlled driving amount of the driving device, so that the concentrating solar cell panel is set in advance. Tracking
    The concentrating solar power generation device according to any one of claims 1 to 3.
  5.  前記駆動装置は、前記保持部材における前記少なくとも3点をそれぞれ駆動する少なくとも3つの駆動部からなる、
    請求項4に記載の集光型太陽光発電装置。
    The driving device includes at least three driving units that respectively drive the at least three points in the holding member.
    The concentrating solar power generation device according to claim 4.
  6.  前記追尾機構は、
      前記保持部材を支える支柱部と、
      前記支柱部を支える土台部と
    を備え、
     前記保持部材と前記支柱部とを連結するリングがさらに設けられている、
    請求項1~3のいずれか1つに記載の集光型太陽光発電装置。
    The tracking mechanism is
    A support column supporting the holding member;
    A base portion that supports the support portion,
    A ring connecting the holding member and the support column is further provided;
    The concentrating solar power generation device according to any one of claims 1 to 3.
  7.  前記追尾装置を搭載する架台と、
     前記架台の上に、前記追尾装置の全体を覆うように設けられた透明部材からなる矩形状のケースと
    をさらに備えており、
     前記ケースの少なくとも一面が傾斜している、
    請求項1~3のいずれか1つに記載の集光型太陽光発電装置。
    A gantry on which the tracking device is mounted;
    On the gantry, further comprises a rectangular case made of a transparent member provided to cover the entire tracking device,
    At least one surface of the case is inclined,
    The concentrating solar power generation device according to any one of claims 1 to 3.
  8.  前記複数の集光型太陽電池パネルの上部に、該集光型太陽電池パネルの各々の受光側表面を清掃する清掃装置がさらに設けられている、
    請求項1~3のいずれか1つに記載の集光型太陽光発電装置。
    A cleaning device for cleaning the light receiving side surface of each of the concentrating solar cell panels is further provided above the plurality of concentrating solar cell panels.
    The concentrating solar power generation device according to any one of claims 1 to 3.
  9.  互いに連結した前記追尾装置を複数備え、
     前記複数の追尾装置は、前記駆動装置を介して、1つの前記制御装置により同時に駆動される、
    請求項1~3のいずれか1つに記載の集光型太陽光発電装置。
    A plurality of the tracking devices connected to each other;
    The plurality of tracking devices are simultaneously driven by the one control device via the driving device.
    The concentrating solar power generation device according to any one of claims 1 to 3.
PCT/JP2017/038771 2016-10-26 2017-10-26 Concentrated solar power generation device WO2018079677A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-210025 2016-10-26
JP2016210025 2016-10-26

Publications (1)

Publication Number Publication Date
WO2018079677A1 true WO2018079677A1 (en) 2018-05-03

Family

ID=62025087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038771 WO2018079677A1 (en) 2016-10-26 2017-10-26 Concentrated solar power generation device

Country Status (2)

Country Link
JP (1) JP2018074157A (en)
WO (1) WO2018079677A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019204082A (en) * 2018-05-15 2019-11-28 株式会社サンマリオン Spherical layer structure condensing lens, spherical layer structure lens block, and condensation tracking photoelectric conversion device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2704326A1 (en) * 1993-04-22 1994-10-28 Saint Gobain Vitrage Int Glazing with selective light-occlusion
JP2005142373A (en) * 2003-11-06 2005-06-02 Daido Steel Co Ltd Condensing photovoltaic power generator
JP2011249667A (en) * 2010-05-28 2011-12-08 Nissei Corp Sunlight utilization panel
JP2016062931A (en) * 2014-09-15 2016-04-25 国立大学法人長岡技術科学大学 Condensation type solar battery module and condensation type photovoltaic power generation system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11125765A (en) * 1997-08-22 1999-05-11 Nippon Telegr & Teleph Corp <Ntt> Tracking type solar power generating device and sunshine tracking device
JP2003124495A (en) * 2001-10-18 2003-04-25 If Japan Kk Solar power generation system
JP2003324210A (en) * 2002-04-30 2003-11-14 Yoshitaka Karasawa Panel division type, sun-beam tracking solar panel system
JP4656981B2 (en) * 2005-03-31 2011-03-23 三洋電機株式会社 SOLAR CELL MODULE AND ITS MOUNTING DEVICE
CN101098113A (en) * 2006-06-29 2008-01-02 中国科学技术大学 Plane grid two-dimensional sun-tracing photovoltaic generator
TWI367315B (en) * 2009-03-03 2012-07-01 Univ Nat Taiwan High efficiency solar tracker designed by the focus track way with array type
TWI365711B (en) * 2009-07-10 2012-06-11 Lite On Green Technologies Inc Solar energy greenhouse
JP2013110266A (en) * 2011-11-21 2013-06-06 Panasonic Corp Trestle for solar cell panel, photovoltaic power generation device, and installation structure of photovoltaic power generation device
JP2013122960A (en) * 2011-12-09 2013-06-20 Crystal System:Kk Photovoltaic power generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2704326A1 (en) * 1993-04-22 1994-10-28 Saint Gobain Vitrage Int Glazing with selective light-occlusion
JP2005142373A (en) * 2003-11-06 2005-06-02 Daido Steel Co Ltd Condensing photovoltaic power generator
JP2011249667A (en) * 2010-05-28 2011-12-08 Nissei Corp Sunlight utilization panel
JP2016062931A (en) * 2014-09-15 2016-04-25 国立大学法人長岡技術科学大学 Condensation type solar battery module and condensation type photovoltaic power generation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019204082A (en) * 2018-05-15 2019-11-28 株式会社サンマリオン Spherical layer structure condensing lens, spherical layer structure lens block, and condensation tracking photoelectric conversion device
JP7378711B2 (en) 2018-05-15 2023-11-14 株式会社サンマリオン Spherical layer structure condensing lens, spherical layer structure lens mass, and condensing tracking photoelectric conversion device

Also Published As

Publication number Publication date
JP2018074157A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
US11652180B2 (en) Solar energy receiver
JP3174549B2 (en) Photovoltaic power generation device, photovoltaic power generation module, and method of installing photovoltaic power generation system
TWI466304B (en) Micro concentrators elastically coupled with spherical photovoltaic cells
JP4747663B2 (en) Concentrating solar power generator
US20100154866A1 (en) Hybrid solar power system
AU8830598A (en) Reflective concentrating solar cell assembly
WO2006120475A1 (en) Concentrating solar collector
JPWO2007055253A1 (en) Photoelectric conversion device
JP2016062931A (en) Condensation type solar battery module and condensation type photovoltaic power generation system
WO2009008996A2 (en) Design and fabrication of a local concentrator system
WO2008050392A1 (en) Concentrating photovoltaic apparatus
US9905718B2 (en) Low-cost thin-film concentrator solar cells
EP2319085A2 (en) A method circuit device assembly and system for converting solar radiation into electric current
WO2013047424A1 (en) Solar photovoltaic power generation device
KR20070104300A (en) Concentrating photovoltaic module structure
JP2014511472A (en) Energy conversion / heat collection system
CN114631259A (en) Hybrid receiver for concentrated photovoltaic-thermal power systems and related methods
WO2013002093A1 (en) Photovoltaic power generation device
WO2018079677A1 (en) Concentrated solar power generation device
JP4898145B2 (en) Concentrating solar cell module
EP2133928A2 (en) Reflective Light Concentrator
WO2010078375A1 (en) Economic solar electricity panel system
RU2395136C1 (en) Photovoltaic module
US20190353882A1 (en) Solar concentrator apparatus and solar collector array
WO2014037722A1 (en) Concentrated photovoltaic (cpv) cell module with secondary optical element and method of fabrication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01.08.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17865371

Country of ref document: EP

Kind code of ref document: A1