WO2018079635A1 - Spunbond nonwoven fabric and method for manufacturing same - Google Patents

Spunbond nonwoven fabric and method for manufacturing same Download PDF

Info

Publication number
WO2018079635A1
WO2018079635A1 PCT/JP2017/038602 JP2017038602W WO2018079635A1 WO 2018079635 A1 WO2018079635 A1 WO 2018079635A1 JP 2017038602 W JP2017038602 W JP 2017038602W WO 2018079635 A1 WO2018079635 A1 WO 2018079635A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
spunbonded nonwoven
degrees
tensile strength
filament
Prior art date
Application number
PCT/JP2017/038602
Other languages
French (fr)
Japanese (ja)
Inventor
仁 溝上
松浦 博幸
拓史 小林
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020197010948A priority Critical patent/KR102242725B1/en
Priority to JP2018514481A priority patent/JP7070404B2/en
Publication of WO2018079635A1 publication Critical patent/WO2018079635A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • D04H3/147Composite yarns or filaments

Definitions

  • the present invention relates to a spunbonded nonwoven fabric suitable for use as a house wrap material.
  • a ventilation layer method is widely used in which a ventilation layer is provided between an outer wall material and a heat insulating material, and moisture that has entered the wall body is released to the outside through the ventilation layer.
  • This ventilation layer construction method is a spunbond nonwoven fabric as a house wrap material that is a moisture permeable waterproof sheet that has both waterproof properties to prevent rainwater from entering outside the building and moisture permeability that allows moisture generated inside the wall to escape to the outside. Is used.
  • the moisture permeable waterproof sheet As the moisture permeable waterproof sheet, a house wrap material in which a polyethylene perforated film and a nonwoven fabric are laminated and integrated is widely used.
  • the strength and the like of this sheet are regulated by Japanese Industrial Standards JIS A6111: 2004. is there.
  • the tensile strength of both vertical and horizontal is defined to be 100 N / 5 cm or more.
  • the tensile strength of the spunbonded nonwoven fabric is important.
  • the vertical tensile strength is stronger than the horizontal tensile strength, an improvement in the horizontal tensile strength is particularly required.
  • House wrap material is fixed and applied to the ground with spelling needles (also known as tucker needles and staples), and has excellent long-term durability and weather resistance under high and low temperature conditions, and can be easily torn during construction. Not mechanical strength is required.
  • spelling needles also known as tucker needles and staples
  • Patent Document 1 a house wrap material having one surface smoothness and a strong tear strength in the vertical direction has been proposed in order to improve the adhesiveness to the waterproof tape.
  • an object of the present invention is to provide a spunbonded nonwoven fabric having excellent horizontal tensile strength and good formation and quality, and a method for producing the same.
  • the spunbonded nonwoven fabric of the present invention is a spunbonded nonwoven fabric partially formed by thermocompression bonding composed of thermoplastic continuous filaments, and the fiber orientation degree distribution peak of the filament with respect to the vertical direction of the nonwoven fabric is 10 to 50
  • the spunbonded nonwoven fabric is characterized in that the nonwoven fabric has a tensile strength warp / width ratio of 1.3 to 1.8.
  • the fiber ratio with a fiber orientation of 10 to 50 degrees is 60 to 80%.
  • the horizontal tensile strength per unit weight is 2.2 N / 5 cm / (g / m 2 ) or more.
  • the thermoplastic continuous filament is a composite filament in which a low melting point polymer having a melting point lower than the melting point of the high melting point polymer is disposed around the high melting point polymer. is there.
  • the spunbonded nonwoven fabric of the present invention has a partial thermocompression bonding portion with an area ratio of 8 to 30%.
  • the spunbonded nonwoven fabric can be used as a house wrap material.
  • the method for producing a spunbonded nonwoven fabric according to the present invention is a method for producing a spunbonded nonwoven fabric characterized by sequentially performing the following (a) to (d).
  • (b) The obtained filament is 5 to 25 with respect to the web traveling direction.
  • the spunbonded nonwoven fabric of the present invention has excellent horizontal tensile strength, is excellent in formation and quality, and has stable and excellent mechanical strength. As a result, the spunbond nonwoven fabric of the present invention can be easily torn even when subjected to a large load, such as when a strong wind blows after being fixed and constructed on a base with a spelling needle in use as a house wrap material. There is nothing.
  • a spunbonded nonwoven fabric having excellent horizontal tensile strength, excellent formation and quality, and stably having excellent mechanical strength is easily produced. can do.
  • FIG. 1 is a schematic view of a production process of a spunbonded nonwoven fabric showing an embodiment of the present invention.
  • FIG. 2 is a schematic view of a nozzle that oscillates at a predetermined angle with respect to the web traveling direction according to an embodiment of the present invention.
  • the spunbonded nonwoven fabric of the present invention is a spunbonded nonwoven fabric partially formed by thermocompression bonding composed of thermoplastic continuous filaments, and the fiber orientation degree distribution peak of the filament with respect to the vertical direction of the nonwoven fabric is 10 to 50
  • the spunbonded nonwoven fabric is characterized in that the nonwoven fabric has a tensile strength warp / width ratio of 1.3 to 1.8.
  • the fiber orientation degree distribution peak of the thermoplastic continuous filament with respect to the longitudinal direction of the nonwoven fabric is 10 to 50 degrees.
  • the angle is preferably 15 to 45 degrees, more preferably 20 to 40 degrees.
  • the peak of the fiber orientation degree is smaller than 10 degrees, the vertical / horizontal ratio of the tensile strength increases, and it is not easy to improve the horizontal tensile strength.
  • the peak of the fiber orientation degree is larger than 50 degrees, the vertical tensile strength decreases.
  • the above-mentioned “fiber orientation degree” means an average inclination angle (acute angle) of the filament with respect to the vertical direction. More specifically, for example, 15 small sample pieces are randomly collected from a non-woven fabric, photographed 100 to 1000 times with a scanning electron microscope, and 15 pieces from each sample, totaling 225 fibers, The inclination angle (acute angle) when the direction is 0 degree and the horizontal direction is 90 degrees is measured, and the first decimal place of those average values is rounded off.
  • the vertical direction of the spunbond nonwoven fabric of the present invention refers to a direction orthogonal to the width direction (horizontal direction) in a nonwoven fabric having a width or a nonwoven fabric having a known width direction. Even if the position of both the horizontal direction (the direction of width) and the vertical direction (the direction perpendicular to the width direction) is known in cut samples, it is possible to distinguish which is the horizontal direction and which is the vertical direction. In the case where there is not, in the spunbonded nonwoven fabric, since the tensile strength is generally stronger in the vertical direction than in the horizontal direction, the direction having the higher tensile strength can be set as the vertical direction. Further, when the width direction is not known at all with a cut sample or the like, the vertical direction can be determined by the following method.
  • tensile tests are performed on cut samples every 45 °. Subsequently, tensile tests are performed every 15 ° between the two strongest directions. In addition, tensile tests are performed every 5 ° between the two strongest directions. Finally, a tensile test is performed every 1 ° in the two strongest directions, and the direction having the strongest tensile strength is defined as the vertical direction.
  • the tensile strength warp / width ratio of the spunbonded nonwoven fabric of the present invention is important to be 1.3 to 1.8, preferably 1.32 to 1.75, more preferably 1.35 to 1.70. .
  • the tensile strength vertical / horizontal ratio is obtained by dividing the vertical tensile strength by the horizontal tensile strength.
  • the spunbonded nonwoven fabric of the present invention preferably has a tensile strength (hereinafter also referred to as a horizontal tensile strength) in the horizontal direction (width direction of the nonwoven fabric) of 90 N / 5 cm or more.
  • a horizontal tensile strength hereinafter also referred to as a horizontal tensile strength
  • the horizontal tensile strength is set to 90 N / 5 cm or more, more preferably 95 N / 5 cm or more, excellent mechanical strength suitable for house wrap material applications can be obtained, and after fixing and constructing with a spelling needle, it is strong. It is prevented from being easily broken without being able to withstand the load when the wind blows.
  • the horizontal tensile strength is preferably 150 N / 5 cm or less, more preferably 145 N / 5 cm or less, whereby excellent mechanical strength suitable for house wrap materials can be obtained for both vertical and horizontal.
  • said horizontal tensile strength is measured based on 6.3 "standard time” of 6.3 "tensile strength and elongation rate" of JIS L1913: 2010 "General nonwoven fabric test method”.
  • the fiber ratio of the fiber orientation degree of the spunbonded nonwoven fabric of the present invention is preferably 60 to 80%, more preferably 60 to 75%, and further preferably 60 to 70%.
  • the fiber ratio of the fiber orientation degree of 10 to 50 degrees to 60 to 80% it is possible to obtain a spunbonded nonwoven fabric having excellent mechanical strength in both vertical and horizontal directions and having good formation and quality. Can do.
  • the horizontal tensile strength per unit weight of the spunbonded nonwoven fabric of the present invention is preferably 2.2 N / 5 cm / (g / m 2 ) or more, more preferably 2.3 (N / 5 cm) / (g / cm 2). ) Or more, more preferably 2.4 (N / 5 cm) / (g / cm 2 ) or more.
  • the horizontal tensile strength per unit weight is obtained by dividing the horizontal tensile strength by the basis weight.
  • the horizontal tensile strength per unit weight By setting the horizontal tensile strength per unit weight to 2.2 N / 5 cm / (g / m 2 ) or more, excellent mechanical strength suitable for house wrap material use can be obtained. Further, the horizontal tensile strength per unit weight is preferably 3.8 (N / 5 cm) / (g / cm 2 ) or less, more preferably 3.7 (N / 5 cm) / (g / cm 2 ) or less. Thus, in use as a house wrap, it is possible to achieve both mechanical strength and handleability that can be put to practical use.
  • the thermoplastic continuous filament constituting the spunbonded nonwoven fabric of the present invention is preferably a composite filament in which a low melting point polymer having a melting point lower than the melting point of the high melting point polymer is disposed around the high melting point polymer. .
  • the mechanical strength suitable for use as a house wrap material can be provided.
  • the filaments constituting the nonwoven fabric are firmly bonded to each other, and the number of adhesion points in the nonwoven fabric is also higher than that obtained by mixing fibers made of a low melting point polymer. Therefore, the dimensional stability and durability as a spunbonded nonwoven fabric can be improved.
  • thermoplastic continuous filament examples include polyester, polyamide, polyolefin, and a mixture or copolymer thereof. Of these, polyester is preferred because it is more excellent in durability such as mechanical strength, heat resistance, water resistance and chemical resistance.
  • Polyester consists of an acid component and an alcohol component.
  • the acidic component include aromatic carboxylic acids such as terephthalic acid, isophthalic acid, and phthalic acid, aliphatic dicarboxylic acids such as adipic acid and sebacic acid, and alicyclic dicarboxylic acids such as cyclohexanecarboxylic acid.
  • the alcohol component ethylene glycol, diethylene glycol, polyethylene glycol, or the like can be used.
  • polyesters include polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, polylactic acid, polybutylene succinate, and copolymers thereof.
  • a biodegradable resin is also preferable because it can be easily discarded after use and has a low environmental impact.
  • the biodegradable resin include polylactic acid, polybutylene succinate, polycaprolactone, polyethylene succinate, polyglycolic acid, polyhydroxybutyrate and the like.
  • polylactic acid is preferable because it is a plant-derived resin that does not deplete petroleum resources, has relatively high mechanical properties and heat resistance, and low manufacturing costs.
  • the difference in melting point between the high melting point polymer and the low melting point polymer is preferably 10 to 140 ° C. Desirable thermal adhesiveness can be obtained by setting the difference in melting point to 10 ° C. or higher, more preferably 20 ° C. or higher, and further preferably 30 ° C. or higher. In addition, by controlling the temperature to 140 ° C. or lower, more preferably 120 ° C. or lower, and further preferably 100 ° C. or lower, it is possible to prevent the low melting point polymer component from fusing to the thermocompression-bonding roll during thermocompression bonding, thereby reducing productivity. Can do.
  • the melting point of the high melting point polymer in the composite fiber is preferably 160 to 320 ° C.
  • the temperature is preferably 160 ° C. or higher, more preferably 170 ° C. or higher, and further preferably 180 ° C. or higher, the shape stability is excellent even in a processing step where heat is applied. Moreover, it suppresses that productivity is reduced by consuming a great deal of heat energy for melting at the time of producing the long-fiber nonwoven fabric by setting it to 320 ° C. or less, more preferably 300 ° C. or less, and even more preferably 280 ° C. or less. Can do.
  • high melting point polymer / low melting point polymer examples include polyethylene terephthalate / polybutylene terephthalate, polyethylene terephthalate / polytrimethylene terephthalate, polyethylene terephthalate / polylactic acid, Examples thereof include polyethylene terephthalate / copolymerized polyethylene terephthalate.
  • a copolymerization component of copolymerized polyethylene terephthalate isophthalic acid or the like is preferable.
  • the proportion of the low melting point polymer in the composite fiber is preferably 10 to 70% by mass. Desirable thermal adhesiveness can be obtained by setting the content to 10% by mass or more, more preferably 15% by mass or more, and further preferably 20% by mass or more. Moreover, 70 mass% or less, More preferably, it is 60 mass% or less, More preferably, it can suppress that fusion
  • Examples of the composite form of such a composite fiber include a concentric core-sheath type, an eccentric core-sheath type, a sea-island type, and a bimetal type.
  • the concentric core-sheath type is preferable in that the fibers can be firmly bonded to each other by thermocompression bonding.
  • examples of the cross-sectional shape of the thermoplastic continuous filament include a circular shape, a flat shape, a polygonal shape, a multi-leaf shape such as an X shape and a Y shape, and a hollow shape.
  • the low melting point polymer component is present in the vicinity of the outer peripheral portion of the fiber cross-section so that it can contribute to thermocompression bonding.
  • the crystal bond agent, matting agent, lubricant, pigment, fungicide, antibacterial agent, flame retardant, hydrophilic agent and the like may be added to the spunbond nonwoven fabric of the present invention.
  • metal oxides such as titanium oxide have the effect of improving the adhesion of long fiber nonwoven fabrics by increasing the thermal conductivity, and the mold release property between the thermocompression roll and web.
  • an aliphatic bisamide such as ethylenebisstearic acid amide and / or an alkyl-substituted aliphatic monoamide, which has an effect of improving the adhesion stability by increasing the number.
  • These various additives may be present in the thermoplastic continuous filament or may be present on the surface of the thermoplastic continuous filament.
  • the fiber diameter of the thermoplastic continuous filament is preferably 10 to 24 ⁇ m.
  • the thickness is preferably 10 ⁇ m or more, more preferably 12 ⁇ m or more, it is possible to obtain a nonwoven fabric excellent in basis weight uniformity and mechanical strength.
  • the thickness not more than 24 ⁇ m, more preferably not more than 22 ⁇ m, it is possible to suppress excessive penetration of the hot melt resin used for bonding to the polyethylene perforated film into the nonwoven fabric when manufacturing the house wrap material. It is possible, and the adhesive strength between the film and the nonwoven fabric is also good, which is preferable as a house wrap material.
  • the average single fiber diameter of each fiber is in the above range.
  • the spunbonded nonwoven fabric of the present invention is partially thermocompression bonded.
  • the fibers can be integrated to obtain mechanical strength that can withstand long-term use as a house wrap material.
  • the spunbond nonwoven fabric of the present invention preferably has a partial thermocompression bonding portion with an area ratio of 8 to 30%.
  • the area ratio By setting the area ratio to 8% or more, more preferably 9% or more, and even more preferably 10% or more, the strength of the nonwoven fabric can be improved, and surface fuzz can be suppressed. Further, by setting the area ratio to 30% or less, more preferably 28% or less, and still more preferably 24% or less, it is possible to appropriately leave voids between the fibers and suppress a decrease in tensile elongation and tear strength of the nonwoven fabric. it can.
  • the partial thermocompression bonding part is formed such that at least one surface of the sheet forms a recess, and the thermoplastic continuous filaments constituting the nonwoven fabric are fused together by heat and pressure. That is, the portion where the thermoplastic continuous filaments are fused and aggregated compared to other portions is the partial thermocompression bonding portion.
  • the area ratio of the partial thermocompression bonding part is the ratio of the partial thermocompression bonding part over the entire surface of the spunbond nonwoven fabric, and when the partial thermocompression bonding part forms a pattern pattern by arranging repeating units, It is obtained by dividing the area of the partial thermocompression bonding part contained in one repeating unit by the area of the repeating unit.
  • the area ratio of the partial thermocompression bonding part uses the surface observation image of the spunbonded nonwoven fabric with a scanning electron microscope, or the surface shape data with a non-contact type shape measuring instrument such as a shape analysis laser microscope or 3D shape measuring machine. Or can be calculated.
  • the area ratio of the partial thermocompression bonding part is obtained by averaging the area ratios measured at least at five or more repeating units.
  • the mechanical strength such as tensile strength and tear strength of the spunbond nonwoven fabric of the present invention varies depending on the basis weight of the nonwoven fabric.
  • the basis weight of the spunbonded nonwoven fabric of the present invention is not limited to a specific value, but is preferably 30 to 60 g / m 2 . By setting the basis weight to 30 g / m 2 or more, more preferably 35 g / m 2 or more, a spunbonded nonwoven fabric excellent in mechanical strength and suitable for use as a house wrap material can be obtained.
  • a basis weight of 60 g / m 2 or less, more preferably 55 g / m 2 or less, when used as a house wrap material it becomes a weight suitable for an operator to hold in the hand during construction.
  • the rigidity is not too strong, and it is excellent in handleability during construction. Moreover, it can suppress that a loud sound comes out at the time of wind blowing.
  • the basis weight uniformity of the spunbonded nonwoven fabric of the present invention varies depending on the fiber diameter of the thermoplastic continuous filament.
  • the basis weight CV of the spunbonded nonwoven fabric of the present invention is preferably 14.0% or less. By setting the basis weight CV to 14.0% or less, more preferably 13.0% or less, and even more preferably 12.0% or less, it is excellent in formation and mechanical strength, has little variation in physical properties, and is used as a house wrap material. A spunbonded nonwoven fabric that stably satisfies the physical properties required for use can be obtained.
  • the basis weight CV is preferably 2.0% or more, more preferably 2.5% or more, and further preferably 3.0% or more, so that the interval in the width direction of the filament spray nozzle in the cloth making process is extremely reduced. It is possible to prevent the manufacturing process from becoming complicated by narrowing or introducing a complicated fiber opening device.
  • the method for producing a spunbonded nonwoven fabric according to the present invention is a method for producing a spunbonded nonwoven fabric characterized by sequentially performing the following (a) to (d).
  • (b) The obtained filament is 5 to 25 with respect to the web traveling direction.
  • the method for producing a spunbonded nonwoven fabric of the present invention is obtained by melting and extruding a thermoplastic polymer from a spinneret 1 and then pulling and stretching it by an ejector 2 and an air soccer 3 to make a thermoplastic continuous filament. Then, this is sent out from the nozzle 4 and charged and opened by the charging means 5 and then deposited on the moving collection surface 6. Thereby, it forms in the fiber web 7 with said filament.
  • the spinning speed of the thermoplastic continuous filament is preferably 3500 m / min or more.
  • the spinning speed is preferably 6000 m / min or less, more preferably 5500 m / min or less, and even more preferably 5000 m / min or less to prevent the fibers from being excessively oriented and crystallized. Strength can be imparted.
  • the nozzle 4 is directed to an angle ( ⁇ ) within a range of 5 to 25 degrees to the left or right with respect to the web traveling direction (longitudinal direction D).
  • the filament is opened by swinging the nozzle 4, and the angle ⁇ is a central angle when the nozzle 4 is swung.
  • the angle ⁇ is 5 degrees or more, preferably 8 degrees or more, more preferably 10 degrees or more, so that the fiber orientation degree distribution peak is 10 degrees or more, and the horizontal tensile strength is excellent. It can be a non-woven fabric with good formation and quality.
  • the angle ⁇ is 25 degrees or less, preferably 20 degrees or less, more preferably 15 degrees or less, so that the fiber orientation degree distribution peak is 50 degrees or less and the tensile strength in the vertical direction is reduced. (Hereinafter, also referred to as vertical tensile strength) can be suppressed.
  • the angle ( ⁇ ) of the nozzle 4 can be individually set within a range of 5 to 25 degrees, but when the nozzles are arranged in a line in a direction perpendicular to the web traveling direction (longitudinal direction D), It is preferable that the direction in which all the nozzles face is unified in the right direction or the left direction. By doing in this way, it can prevent that filaments interfere and formation is deteriorated. Furthermore, when arranging a plurality of nozzles as described above, it is preferable that at least one row of nozzles is directed rightward and at least one row of nozzles is directed leftward.
  • the nozzle 4 is continuously swung at a predetermined angle ( ⁇ ) of ⁇ 10 degrees or more around the direction of the angle ⁇ .
  • the filament passes through the continuously oscillating nozzle 4 and is then charged and opened by the charging means 5 to become a fiber web.
  • the oscillation angle ⁇ is ⁇ 10 degrees or more, preferably ⁇ 13 degrees or more, More preferably, by setting it to ⁇ 16 degrees or more, it is possible to reduce the number of bundle-like fibers and improve the formation of the fiber web after being deposited on the conveyor. Thereby, the dispersion
  • the swing angle ⁇ of the nozzle 4 is ⁇ 25 degrees or less, more preferably ⁇ 23 degrees or less, and further preferably ⁇ 20 degrees or less with respect to the angle ⁇ , so that the nozzle 4 is deposited on the moving collection surface.
  • the fiber web 7 is formed, it is possible to suppress the occurrence of defects such as web curling.
  • the number of oscillations (reciprocations) per second of the continuously oscillating nozzle 4 is preferably 1.0 or more, more preferably 1.5 or more, and even more preferably 2.0 or more, The formation of the fiber web after being deposited on the conveyor can be improved. Further, the number of oscillations (reciprocations) per second is preferably 6.0 times or less, more preferably 5.5 times or less, and even more preferably 5.0 times or less, so that the thermoplastic continuous filament can be used as a nozzle. Therefore, it is possible to prevent the fibers from being bundled and to suppress the deterioration of the formation.
  • thermoplastic continuous filament is not limited at all, but charging by a corona discharge method or charging by frictional charging with a metal is preferable.
  • the speed of the moving conveyor is preferably 3 m / min or more, more preferably 4 m / min or more, and even more preferably 5 m / min or more. It can prevent the productivity from becoming low. Moreover, the speed of the moving conveyor is preferably 100 m / min or less, more preferably 90 m / min or less, and even more preferably 80 m / min or less, thereby suppressing the drawback that the web on the moving collection surface is curled. It is possible to prevent the sheet from being taken on a roll and the transportability is deteriorated.
  • adhesion by an embossing roll heated to a predetermined temperature or adhesion by an ultrasonic oscillator can be preferably employed.
  • adhesion by a hot embossing roll heated to a predetermined temperature is preferable in terms of improving the strength of the nonwoven fabric.
  • thermocompression bonding When thermocompression bonding is performed by the embossing roll 9, a portion where the thermoplastic continuous filaments are fused and aggregated by the convex portion of the embossing roll 9 becomes a thermocompression bonding portion.
  • the embossing roll 9 is not limited to a specific shape or structure as long as the nonwoven fabric can be partially thermocompression bonded.
  • a roll 9 a having a predetermined pattern of protrusions only on the upper side (or lower side) can be used, and a flat roll 9 b having no irregularities on the peripheral surface can be used for the other rolls.
  • the thermocompression bonding portion refers to a portion in which the thermoplastic continuous filaments of the nonwoven fabric are aggregated by thermocompression bonding between the convex portion of one roll 9a and the flat peripheral surface of the other roll 9b.
  • the embossing roll 9 includes, for example, a pair of upper roll 9a and lower roll 9b having a plurality of parallel ridges formed on the surface, and both rolls 9a and 9b face each other.
  • a protrusion provided so that the protrusions of the upper roll 9a and the protrusions of the lower roll 9b cross each other can be used.
  • the partial thermocompression bonding portion refers to a portion in which the thermoplastic continuous filaments of the nonwoven fabric are aggregated by thermocompression bonding with the ridges of the upper roll 9a and the ridges of the lower roll 9b.
  • thermocompression bonding section a portion sandwiched between the convex strip of the upper roll 9a and the concave groove of the lower roll 9b, or the concave groove of the upper roll 9a and the convex strip of the lower roll 9b is included in the thermocompression bonding section here. I can't.
  • the embossing roll 9 composed of a pair of rolls 9a and 9b having a plurality of ridges on the surface
  • the parallelogram or rectangular heat is formed by the ridges of the upper roll 9a and the ridges of the lower roll 9b. It is preferable to form the pressure-bonding portion because the nonwoven fabric can be favorably bonded without peeling off.
  • the heating temperature of the embossing roll 9 is preferably a melting point of ⁇ 60 ° C. to a melting point of ⁇ 5 ° C. with respect to the melting point of the polymer having the lowest melting point among the polymers forming the thermoplastic continuous filament.
  • the heating temperature of the embossing roll 9 is set to the above melting point ⁇ 60 ° C. or more, more preferably the above melting point ⁇ 50 ° C. or more, the thermal bonding can be efficiently performed and the transverse tensile strength can be improved.
  • the heating temperature of the embossing roll 9 is set to the above melting point ⁇ 5 ° C. or less, more preferably the above melting point ⁇ 10 ° C.
  • the roll fouling caused by the fibers being fused to the embossing roll 9 during the production of the nonwoven it is possible to suppress fusion of non-woven fabric surface fibers other than the partially thermocompression-bonded portion.
  • the texture is not too stiff, it is excellent in handling at the time of construction, and it has moderate suppleness, so it suppresses the generation of loud noise when blowing in the wind it can.
  • thermocompression bonding portion any shape other than a circle, a triangle, a quadrangle, a parallelogram, an ellipse, a rhombus and the like can be adopted.
  • the arrangement of the thermocompression bonding parts may be one regularly arranged at equal intervals, one randomly arranged, or a mixture of different shapes. Among these, from the viewpoint of uniformity of the nonwoven fabric, those in which the thermocompression bonding portions are arranged at equal intervals are preferable.
  • a pair of flat rolls 8a as shown in FIG. You may perform a press-contact process by 8b.
  • the above-mentioned pressure contact treatment with the flat roll 8b is not limited as long as the flat roll 8b is brought into contact with the fiber web 7, but heat treatment for bringing the heated flat roll 8b into contact with the fiber web 7 is preferable.
  • the surface temperature of the flat roll 8b in this heat treatment is preferably 30 to 120 ° C. lower than the melting point of the polymer having the lowest melting point constituting the filament existing on the surface of the fiber web 7. That is, when this melting point is (Tm), the surface temperature of the flat roll 8b is preferably (Tm-30) to (Tm-120) ° C, more preferably (Tm-40) to (Tm-110) ° C. (Tm-50) to (Tm-100) ° C. is most preferable. When the surface temperature of the flat roll 8b is lower than (Tm ⁇ 120) ° C., the heat treatment of the fiber web (7) becomes insufficient, and the target sheet thickness cannot be obtained and the adhesion becomes insufficient.
  • a method for bringing the flat roll 8b into contact with the flat roll 8b As a method for bringing the flat roll 8b into contact with the flat roll 8b, a method in which the fiber web is continuously brought into contact with the flat roll 8b and heat-treated as shown in FIG. 1 or a method in which heat treatment is performed by being sandwiched between a pair of flat rolls is used. it can.
  • Intrinsic viscosity IV The intrinsic viscosity IV of the polyethylene terephthalate resin was measured by the following method. 8 g of a sample was dissolved in 100 ml of orthochlorophenol, and a relative viscosity ⁇ r was determined by the following formula using an Ostwald viscometer at a temperature of 25 ° C.
  • viscosity of polymer solution
  • ⁇ 0 viscosity of orthochlorophenol
  • t drop time of solution (seconds)
  • d density of the solution (g / cm 3 )
  • t 0 Fall time of orthochlorophenol (seconds)
  • Degree of fiber orientation A small sample of 15 pieces was randomly collected from the nonwoven fabric, and a 500 times magnification photograph was taken with a scanning electron microscope. A total of 225 fibers, 15 from each sample, was set to a vertical direction of 0 degree and a horizontal direction of 90 degrees. The angle when measured in degrees was measured, and the first degree after the decimal point was rounded off to obtain the fiber orientation degree.
  • Weight per unit area (%) 16 pieces of 5cm x 5cm pieces are collected in the vertical and horizontal directions, and a total of 256 pieces are collected. The mass of each sample (nonwoven fabric) is measured, and the average value of the obtained values is converted per unit area. The first decimal place was rounded off to determine the basis weight of the nonwoven fabric. Based on this basis weight, the CV value was calculated by the following formula, and the second decimal place was rounded off.
  • C basis weight CV (%) (standard deviation of basis weight) / (average value of basis weight) ⁇ 100.
  • Example 1 (Fiber web) A core component was obtained by drying a polyethylene terephthalate resin having an intrinsic viscosity of 0.65 and a melting point of 260 ° C. and containing 0.3% by mass of titanium oxide to a moisture content of 50 ppm or less.
  • a sheath component is obtained by drying a copolymerized polyethylene terephthalate resin containing an intrinsic viscosity of IV 0.66, an isophthalic acid copolymerization rate of 10 mol%, a melting point of 230 ° C., and containing 0.2% by mass of titanium oxide to a moisture content of 50 ppm or less. did.
  • the core component was melted at 295 ° C. and the sheath component was melted at 280 ° C., and the composite ratio of core / sheath was 80/20 in mass ratio to form a concentric core-sheath type with a circular cross section. After spinning, spinning with an air soccer at a spinning speed of 4300 m / min was made into a thermoplastic continuous filament.
  • this filament is passed through a nozzle swinging at an angle ⁇ of ⁇ 18 degrees around the angle ⁇ , with the angle ⁇ directed to the right by 15 degrees with respect to the web traveling direction, and a metal collision plate installed at the nozzle outlet
  • the filaments were made to collide with each other, and the fibers were charged and opened by frictional charging, and collected as a fiber web on a moving conveyor (moving collection surface).
  • the moving speed of the conveyor was adjusted so that the collected fiber web had a basis weight of 40 g / m 2 .
  • the fiber web is thermocompression bonded at a flat roll surface temperature of 150 ° C. and a linear pressure of 60 kg / cm with a pair of upper and lower flat rolls, and then with a pair of embossing rolls under conditions of a surface temperature of 190 ° C. and a linear pressure of 70 kg / cm. Partial thermocompression was applied.
  • the embossing roll used is composed of an upper roll in which a plurality of ridges arranged in parallel on the surface are formed annularly in the circumferential direction, and a lower roll in which a plurality of ridges are formed in a spiral on the surface. Become.
  • thermocompression bonding position where both rolls face each other, the ridges of the upper roll and the ridges of the lower roll are crossed, and the crimping part is thermocompression bonded between the ridges of the upper roll and the ridges of the lower roll.
  • the area ratio with respect to the whole nonwoven fabric is adjusted to 18%.
  • a spunbonded nonwoven fabric having a fiber diameter of 16 ⁇ m and a basis weight of 40 g / m 2 was obtained.
  • the obtained spunbonded nonwoven fabric had a fiber orientation degree distribution peak of 35 degrees, a transverse tensile strength of 106 N / 5 cm, and a tensile strength warp / width ratio of 1.37.
  • the results are shown in Table 1.
  • Example 2 The fiber web was collected in the same manner as in Example 1 except that the angle ⁇ was directed 10 degrees to the left with respect to the web traveling direction, and a nozzle that swung ⁇ 18 degrees around the angle ⁇ was passed. Thereafter, a spunbonded nonwoven fabric having a fiber diameter of 16 ⁇ m and a basis weight of 40 g / m 2 was obtained by the same thermocompression treatment as in Example 1. The resulting spunbonded nonwoven fabric of Example 2 had a fiber orientation degree distribution peak of 30 degrees, a transverse tensile strength of 97 N / 5 cm, and a tensile strength warp / width ratio of 1.54.
  • Example 3 The fiber web was collected in the same manner as in Example 1 except that the angle ⁇ was directed rightward by 5 degrees with respect to the web traveling direction, and a nozzle that swung ⁇ 18 degrees around the angle ⁇ was passed. Thereafter, a spunbonded nonwoven fabric having a fiber diameter of 16 ⁇ m and a basis weight of 40 g / m 2 was obtained by the same thermocompression treatment as in Example 1. The obtained spunbonded nonwoven fabric of Example 3 had a fiber orientation degree distribution peak of 25 degrees, a horizontal tensile strength of 93 N / 5 cm, and a tensile strength vertical / horizontal ratio of 1.67.
  • Example 4 The fiber web was collected in the same manner as in Example 1 except that the angle ⁇ was directed rightward by 10 degrees with respect to the web traveling direction, and the nozzle was swung at ⁇ 20 degrees around the angle ⁇ . Thereafter, a spunbonded nonwoven fabric having a fiber diameter of 16 ⁇ m and a basis weight of 40 g / m 2 was obtained by the same thermocompression treatment as in Example 1. The resulting spunbonded nonwoven fabric of Example 4 had a fiber orientation degree distribution peak of 40 degrees, a horizontal tensile strength of 95 N / 5 cm, and a tensile strength vertical / horizontal ratio of 1.53.
  • Example 5 The discharge amount is adjusted so that the fiber diameter becomes 14 ⁇ m, the angle ⁇ is turned 10 degrees to the left with respect to the web traveling direction, the nozzle swinging ⁇ 13 degrees around the angle ⁇ is passed, and the basis weight is 40 g.
  • the fiber web was collected in the same manner as in Example 1 except that the moving speed of the conveyor for collecting the fiber web was adjusted to be / m 2 . Thereafter, a spunbonded nonwoven fabric having a fiber diameter of 14 ⁇ m and a basis weight of 40 g / m 2 was obtained by the same thermocompression treatment as in Example 1.
  • the resulting spunbonded nonwoven fabric of Example 5 had a fiber orientation degree distribution peak of 15 degrees, a transverse pulling strength of 105 N / 5 cm, and a tensile strength warp / width ratio of 1.79.
  • Example 6 The fiber web was collected in the same manner as in Example 5 except that the angle ⁇ was directed to the left at 15 degrees with respect to the web traveling direction, and the nozzle was swung at ⁇ 13 degrees around the angle ⁇ . Thereafter, a spunbonded nonwoven fabric having a fiber diameter of 14 ⁇ m and a basis weight of 40 g / m 2 was obtained by the same thermocompression treatment as in Example 1. The obtained spunbonded nonwoven fabric of Example 6 had a fiber orientation degree distribution peak of 20 degrees, a transverse pulling strength of 110 N / 5 cm, and a tensile strength warp / width ratio of 1.68.
  • Example 7 The fiber web was collected in the same manner as in Example 5 except that the angle ⁇ was directed to the left by 12 degrees with respect to the web traveling direction, and the nozzle was swung at ⁇ 15 degrees around the angle ⁇ . Thereafter, an embossing roll having a regular convex portion of a circular pattern on the upper side and a flat roll having no irregularities on the lower side, and a fiber diameter of 14 ⁇ m by a thermocompression treatment with an area ratio of the pressure-bonding part to be thermocompression bonded to 10%. A spunbonded nonwoven fabric having a basis weight of 40 g / m 2 was obtained. The obtained spunbonded nonwoven fabric of Example 7 had a fiber orientation degree distribution peak of 15 degrees, a horizontal tensile strength of 100 N / 5 cm, and a tensile strength vertical / horizontal ratio of 1.75.
  • Example 8 The fiber web was collected in the same manner as in Example 1 except that the moving speed of the conveyor for collecting the fiber web was adjusted so that the basis weight was 55 g / m 2 . Thereafter, a spunbonded nonwoven fabric having a fiber diameter of 16 ⁇ m and a basis weight of 55 g / m 2 was obtained by the same thermocompression treatment as in Example 1. The spunbonded nonwoven fabric obtained in Example 8 had a fiber orientation degree distribution peak of 36 degrees, a transverse tensile strength of 138 N / 5 cm, and a tensile strength warp / width ratio of 1.69.
  • Example 1 The fiber web was collected in the same manner as in Example 1 except that the nozzle was swung at an angle ⁇ of 0 ° and an angle ⁇ of ⁇ 18 ° with respect to the web traveling direction. Thereafter, a spunbonded nonwoven fabric having a fiber diameter of 16 ⁇ m and a basis weight of 40 g / m 2 was obtained by the same thermocompression treatment as in Example 1. The obtained spunbonded nonwoven fabric of Comparative Example 1 had a fiber orientation degree distribution peak of 5 degrees, a horizontal tensile strength of 85 N / 5 cm, and a tensile strength vertical / horizontal ratio of 2.00.
  • Example 2 The fiber web was collected in the same manner as in Example 1 except that the nozzle was swung at an angle ⁇ of 0 degree and about ⁇ 25 degrees about the angle ⁇ with respect to the web traveling direction. Thereafter, a spunbonded nonwoven fabric having a fiber diameter of 16 ⁇ m and a basis weight of 40 g / m 2 was obtained by the same thermocompression treatment as in Example 1. The obtained spunbonded nonwoven fabric of Comparative Example 2 had a fiber orientation degree distribution peak of 8 degrees, a horizontal tensile strength of 130 N / 5 cm, and a tensile strength vertical / horizontal ratio of 1.22.
  • Example 3 The discharge amount is adjusted so that the fiber diameter is 14 ⁇ m, and the nozzle is swung at an angle ⁇ of 0 degree with respect to the web traveling direction and ⁇ 13 degrees around the angle ⁇ , and the basis weight is 40 g / m 2.
  • the fiber web was collected in the same manner as in Example 5 except that the moving speed of the conveyor for collecting the fiber web was adjusted. Thereafter, a spunbonded nonwoven fabric having a fiber diameter of 14 ⁇ m and a basis weight of 40 g / m 2 was obtained by the same thermocompression treatment as in Example 1.
  • the resulting spunbonded nonwoven fabric of Comparative Example 3 had a fiber orientation degree distribution peak of 2 degrees, a transverse tensile strength of 89 N / 5 cm, and a tensile strength warp / width ratio of 2.13.
  • Example 4 The fiber web was collected in the same manner as in Example 1 except that the angle ⁇ was directed to the right direction of 30 degrees with respect to the web traveling direction, and the nozzle was swung at ⁇ 18 degrees around the angle ⁇ . Thereafter, a spunbonded nonwoven fabric having a fiber diameter of 16 ⁇ m and a basis weight of 40 g / m 2 was obtained by the same thermocompression treatment as in Example 1. The obtained spunbonded nonwoven fabric of Comparative Example 4 had a fiber orientation degree distribution peak of 55 degrees, a horizontal tensile strength of 110 N / 5 cm, and a tensile strength vertical / horizontal ratio of 1.18.
  • Example 5 The discharge amount is adjusted so that the fiber diameter is 14 ⁇ m, the angle ⁇ is directed leftward by 30 degrees with respect to the web traveling direction, the nozzle swinging ⁇ 13 degrees around the angle ⁇ is passed, and the basis weight is 40 g.
  • the fiber web was collected in the same manner as in Example 5 except that the moving speed of the conveyor for collecting the fiber web was adjusted to be / m 2 . Thereafter, a spunbonded nonwoven fabric having a fiber diameter of 14 ⁇ m and a basis weight of 40 g / m 2 was obtained by the same thermocompression treatment as in Example 1.
  • the obtained spunbonded nonwoven fabric of Comparative Example 5 had a fiber orientation degree distribution peak of 50 degrees, a horizontal tensile strength of 115 N / 5 cm, and a tensile strength vertical / horizontal ratio of 1.17.
  • the characteristics of the spunbonded nonwoven fabrics of the above examples and comparative examples are shown in Table 1 below.
  • each of the spunbond nonwoven fabrics of Examples 1 to 8 has a fiber orientation degree distribution peak of 10 to 50 degrees and a tensile strength warp / width ratio of 1.3 to 1.8. Since it satisfies, it is a spunbonded nonwoven fabric having excellent horizontal tensile strength, good formation and quality, and suitable as a house wrap material.
  • the spunbonded nonwoven fabrics of Comparative Examples 1 and 3 all have a fiber orientation degree distribution peak of less than 10 degrees, and the tensile strength warp / width ratio does not satisfy 1.3 to 1.8.
  • the horizontal tensile strength was low and it was not suitable as a house wrap material.
  • the spunbonded nonwoven fabrics of Comparative Examples 2, 4, and 5 had many wrinkling defects and were not suitable as house wrap materials because they could not obtain good quality.
  • the spunbonded nonwoven fabric of the present invention is useful as a house wrap material because it has excellent horizontal tensile strength and has both texture and quality.
  • the use of the spunbonded nonwoven fabric of the present invention is not limited to the above, for example, industrial materials such as filters, filter base materials, electric wire holding materials, wallpaper, roof covering materials, sound insulation materials, heat insulating materials, Building materials such as sound-absorbing materials, wrapping materials, bag materials, signboard materials, living materials such as printing base materials, grass protection sheets, drainage materials, ground reinforcement materials, sound insulation materials, sound-absorbing materials, etc., solid materials, light shielding It can be used for agricultural materials such as seats, vehicle materials such as ceiling materials, and spare tire cover materials.

Abstract

Provided is a spunbond nonwoven fabric having superior transverse tensile strength and excellent texture and quality. This spunbond nonwoven fabric comprises thermoplastic continuous filaments and is formed by partial thermocompression bonding, said spunbond nonwoven fabric being characterized in that the peak for fiber orientation distribution for the filaments in the vertical direction of the nonwoven fabric is at 10 – 50° and the vertical/transverse ratio for tensile strength of the nonwoven fabric is 1.3 – 1.8.

Description

スパンボンド不織布およびその製造方法Spunbond nonwoven fabric and method for producing the same
 本発明は、ハウスラップ材としての使用に適したスパンボンド不織布に関するものである。 The present invention relates to a spunbonded nonwoven fabric suitable for use as a house wrap material.
 近年の木造住宅等の建築では、外壁材と断熱材との間に通気層を設け、壁体内に侵入した湿気を、通気層を通して外部に放出する通気層工法が普及している。この通気層工法には、建物外部からの雨水の浸入を防止する防水性と、壁体内に生じる湿気を外部に逃がす透湿性とを兼ね備えた、透湿防水シートであるハウスラップ材としてスパンボンド不織布が使用されている。 In recent construction of wooden houses and the like, a ventilation layer method is widely used in which a ventilation layer is provided between an outer wall material and a heat insulating material, and moisture that has entered the wall body is released to the outside through the ventilation layer. This ventilation layer construction method is a spunbond nonwoven fabric as a house wrap material that is a moisture permeable waterproof sheet that has both waterproof properties to prevent rainwater from entering outside the building and moisture permeability that allows moisture generated inside the wall to escape to the outside. Is used.
 透湿防水シートは、ポリエチレン有孔フィルムと不織布が積層一体化されてなるハウスラップ材等が普及しており、このシートの強度等を規定しているのが、日本工業規格JIS A6111:2004である。JIS規格には、引張強力のタテ、ヨコとも100N/5cm以上が規定され、この規格値を満足するには、スパンボンド不織布の引張強力が重要となる。一般的にヨコ引張強力よりもタテ引張強力が強いため、特にヨコ引張強力の向上が要求される。 As the moisture permeable waterproof sheet, a house wrap material in which a polyethylene perforated film and a nonwoven fabric are laminated and integrated is widely used. The strength and the like of this sheet are regulated by Japanese Industrial Standards JIS A6111: 2004. is there. According to the JIS standard, the tensile strength of both vertical and horizontal is defined to be 100 N / 5 cm or more. To satisfy this standard value, the tensile strength of the spunbonded nonwoven fabric is important. Generally, since the vertical tensile strength is stronger than the horizontal tensile strength, an improvement in the horizontal tensile strength is particularly required.
 ハウスラップ材は、つづり針(タッカー用針、ステープルともいう)により下地に固定、施工され、長期間における耐久性や、高温低温条件下での耐候性に優れることと、施工時に簡単に破れたりしない機械的強度とが要求される。 House wrap material is fixed and applied to the ground with spelling needles (also known as tucker needles and staples), and has excellent long-term durability and weather resistance under high and low temperature conditions, and can be easily torn during construction. Not mechanical strength is required.
 従来、このようなハウスラップ材に用いる不織布として、防水テープとの粘着性を良くするため、一方の表面平滑性とタテ方向に強い引裂強力を有するハウスラップ材が提案されている(特許文献1参照。)。 Conventionally, as a non-woven fabric used for such a house wrap material, a house wrap material having one surface smoothness and a strong tear strength in the vertical direction has been proposed in order to improve the adhesiveness to the waterproof tape (Patent Document 1). reference.).
日本国特開2014-40677号公報Japanese Unexamined Patent Publication No. 2014-40677
 しかしながら、この特許文献に記載の発明は、ウェブの進行方向(不織布の長手方向)に対して揺動するノズルの角度を、例えば60度とすることで、ヨコ配向傾向となりヨコ方向の引張強度を高くする。この結果、移動捕集面上のウェブが捲くれる欠点が発生し、ハウスラップ材用不織布として、安定的に優れた地合や品位を有するものではないという課題があることを本発明者らは見出した。 However, in the invention described in this patent document, when the angle of the nozzle that swings with respect to the traveling direction of the web (longitudinal direction of the nonwoven fabric) is set to 60 degrees, for example, the orientation tends to be horizontal, and the tensile strength in the horizontal direction is increased. Make it high. As a result, the present inventors have a problem that the web on the moving collection surface is crawled, and there is a problem that the nonwoven fabric for house wrap material does not have a stable texture or quality. I found it.
 そこで本発明の目的は、ヨコ引張強力に優れ、且つ、地合や品位が良好なスパンボンド不織布およびその製造方法を提供することにある。 Therefore, an object of the present invention is to provide a spunbonded nonwoven fabric having excellent horizontal tensile strength and good formation and quality, and a method for producing the same.
 本発明のスパンボンド不織布は、熱可塑性連続フィラメントより構成される部分的に熱圧着されてなるスパンボンド不織布であって、前記不織布のタテ方向に対する前記フィラメントの繊維配向度分布のピークが10~50度にあり、前記不織布の引張強力タテ/ヨコ比が1.3~1.8であることを特徴とする、スパンボンド不織布である。 The spunbonded nonwoven fabric of the present invention is a spunbonded nonwoven fabric partially formed by thermocompression bonding composed of thermoplastic continuous filaments, and the fiber orientation degree distribution peak of the filament with respect to the vertical direction of the nonwoven fabric is 10 to 50 The spunbonded nonwoven fabric is characterized in that the nonwoven fabric has a tensile strength warp / width ratio of 1.3 to 1.8.
 本発明のスパンボンド不織布の好ましい態様によれば、繊維配向度10~50度の繊維割合が60~80%である。 According to a preferred embodiment of the spunbonded nonwoven fabric of the present invention, the fiber ratio with a fiber orientation of 10 to 50 degrees is 60 to 80%.
 本発明のスパンボンド不織布の好ましい態様によれば、目付当たりのヨコ引張強力が2.2N/5cm/(g/m)以上である。 According to a preferred embodiment of the spunbonded nonwoven fabric of the present invention, the horizontal tensile strength per unit weight is 2.2 N / 5 cm / (g / m 2 ) or more.
 本発明のスパンボンド不織布の好ましい態様によれば、熱可塑性連続フィラメントが、高融点重合体の周りに該高融点重合体の融点よりも低い融点を有する低融点重合体を配した複合型フィラメントである。 According to a preferred embodiment of the spunbond nonwoven fabric of the present invention, the thermoplastic continuous filament is a composite filament in which a low melting point polymer having a melting point lower than the melting point of the high melting point polymer is disposed around the high melting point polymer. is there.
 本発明のスパンボンド不織布の好ましい態様によれば、面積比率8~30%の部分的熱圧着部を有する。 According to a preferred embodiment of the spunbonded nonwoven fabric of the present invention, it has a partial thermocompression bonding portion with an area ratio of 8 to 30%.
 本発明のスパンボンド不織布の好ましい態様によれば、前記スパンボンド不織布を用いてハウスラップ材とすることができる。 According to a preferred aspect of the spunbonded nonwoven fabric of the present invention, the spunbonded nonwoven fabric can be used as a house wrap material.
 本発明のスパンボンド不織布の製造方法は、下記(a)~(d)を順次実施することを特徴とするスパンボンド不織布の製造方法である。
(a)熱可塑性重合体を紡糸口金から溶融押し出し後、これをエアサッカーにより牽引、延伸して熱可塑性連続フィラメントを得る工程
(b)得られたフィラメントをウェブ進行方向に対して、5~25度の方向に向けた噴射ノズルを±10~±25度の範囲内で揺動し、フィラメントを開繊させる工程
(c)開繊したフィラメントを移動するコンベア上に堆積させて繊維ウェブを形成する工程
(d)得られた繊維ウェブに部分的熱圧着を施す工程
The method for producing a spunbonded nonwoven fabric according to the present invention is a method for producing a spunbonded nonwoven fabric characterized by sequentially performing the following (a) to (d).
(A) Step of obtaining a thermoplastic continuous filament by drawing and stretching the thermoplastic polymer from a spinneret and then drawing and stretching it with an air soccer (b) The obtained filament is 5 to 25 with respect to the web traveling direction. The step of swinging the spray nozzle directed in the direction of degrees within a range of ± 10 to ± 25 degrees to open the filament (c) depositing the opened filament on a moving conveyor to form a fiber web Step (d) Step of applying partial thermocompression to the obtained fiber web
 本発明のスパンボンド不織布は、優れたヨコ引張強力を備え、地合や品位に優れており、安定的に優れた機械的強度を有している。この結果、本発明のスパンボンド不織布は、ハウスラップ材としての使用において、つづり針により下地に固定、施工された後、強い風が吹き込んだ時等、大きな荷重を受けても簡単に破れてしまうことがない。 The spunbonded nonwoven fabric of the present invention has excellent horizontal tensile strength, is excellent in formation and quality, and has stable and excellent mechanical strength. As a result, the spunbond nonwoven fabric of the present invention can be easily torn even when subjected to a large load, such as when a strong wind blows after being fixed and constructed on a base with a spelling needle in use as a house wrap material. There is nothing.
 本発明のスパンボンド不織布の製造方法によれば、優れたヨコ引張強力を備え、地合や品位に優れており、安定的に優れた機械的強度を有しているスパンボンド不織布を容易に製造することができる。 According to the method for producing a spunbonded nonwoven fabric of the present invention, a spunbonded nonwoven fabric having excellent horizontal tensile strength, excellent formation and quality, and stably having excellent mechanical strength is easily produced. can do.
図1は、本発明の実施形態を示す、スパンボンド不織布の製造工程の概略図である。FIG. 1 is a schematic view of a production process of a spunbonded nonwoven fabric showing an embodiment of the present invention. 図2は、本発明の実施形態の、ウェブ進行方向に対して所定の角度で揺動するノズルの概略図である。FIG. 2 is a schematic view of a nozzle that oscillates at a predetermined angle with respect to the web traveling direction according to an embodiment of the present invention.
 本発明のスパンボンド不織布は、熱可塑性連続フィラメントより構成される部分的に熱圧着されてなるスパンボンド不織布であって、前記不織布のタテ方向に対する前記フィラメントの繊維配向度分布のピークが10~50度にあり、前記不織布の引張強力タテ/ヨコ比が1.3~1.8であることを特徴とする、スパンボンド不織布である。 The spunbonded nonwoven fabric of the present invention is a spunbonded nonwoven fabric partially formed by thermocompression bonding composed of thermoplastic continuous filaments, and the fiber orientation degree distribution peak of the filament with respect to the vertical direction of the nonwoven fabric is 10 to 50 The spunbonded nonwoven fabric is characterized in that the nonwoven fabric has a tensile strength warp / width ratio of 1.3 to 1.8.
 本発明のスパンボンド不織布は、不織布のタテ方向に対する熱可塑性連続フィラメントの繊維配向度分布のピークが10~50度にあることが重要である。好ましくは15~45度、より好ましくは20~40度である。この繊維配向度のピークが10度よりも小さいと、引張強力のタテ/ヨコ比が大きくなり、ヨコ引張強力を向上することが容易でない。一方、この繊維配向度のピークが50度よりも大きいと、タテ引張強力が低下する。 In the spunbond nonwoven fabric of the present invention, it is important that the fiber orientation degree distribution peak of the thermoplastic continuous filament with respect to the longitudinal direction of the nonwoven fabric is 10 to 50 degrees. The angle is preferably 15 to 45 degrees, more preferably 20 to 40 degrees. When the peak of the fiber orientation degree is smaller than 10 degrees, the vertical / horizontal ratio of the tensile strength increases, and it is not easy to improve the horizontal tensile strength. On the other hand, if the peak of the fiber orientation degree is larger than 50 degrees, the vertical tensile strength decreases.
 ここで、上記の「繊維配向度」とは、タテ方向に対するフィラメントの平均的な傾斜角度(鋭角)をいう。より具体的には、例えば、不織布からランダムに小片サンプル15個を採取し、走査型電子顕微鏡で100~1000倍の写真を撮影し、各サンプルから15本ずつ、計225本の繊維について、タテ方向を0度とし、ヨコ方向を90度とした時の傾斜角度(鋭角)を測定し、それらの平均値の小数点以下第一位を四捨五入して求められる。上記で測定した繊維一本一本の傾斜角度の小数点以下第一位を四捨五入して、整数表記の傾斜角度とし、横軸に繊維の傾斜角度、縦軸に度数をとってグラフ化し、最も度数の多い傾斜角度を「繊維配向度分布のピーク」とした。 Here, the above-mentioned “fiber orientation degree” means an average inclination angle (acute angle) of the filament with respect to the vertical direction. More specifically, for example, 15 small sample pieces are randomly collected from a non-woven fabric, photographed 100 to 1000 times with a scanning electron microscope, and 15 pieces from each sample, totaling 225 fibers, The inclination angle (acute angle) when the direction is 0 degree and the horizontal direction is 90 degrees is measured, and the first decimal place of those average values is rounded off. Round off the first decimal place of the inclination angle of each fiber measured above to obtain an integer inclination angle, graph the fiber inclination angle on the horizontal axis and the frequency on the vertical axis, The inclination angle with a large amount was defined as “peak of fiber orientation distribution”.
 本発明のスパンボンド不織布のタテ方向とは、幅なりの不織布あるいは幅なりの方向が既知である不織布においては、幅方向(ヨコ方向)と直交する方向を指す。カットサンプル等でヨコ方向(幅なりの方向)とタテ方向(幅なりの方向と直交する方向)の両方向の位置はわかっても、いずれがヨコ方向でいずれがタテ方向であるかの区別がつかない場合には、スパンボンド不織布では一般的にタテ方向の方がヨコ方向よりも引張強力が強いことから、引張強力が強い方をタテ方向とすることができる。さらに、カットサンプル等で幅なりの方向が全くわからない場合には、以下の方法でタテ方向を確定することができる。 The vertical direction of the spunbond nonwoven fabric of the present invention refers to a direction orthogonal to the width direction (horizontal direction) in a nonwoven fabric having a width or a nonwoven fabric having a known width direction. Even if the position of both the horizontal direction (the direction of width) and the vertical direction (the direction perpendicular to the width direction) is known in cut samples, it is possible to distinguish which is the horizontal direction and which is the vertical direction. In the case where there is not, in the spunbonded nonwoven fabric, since the tensile strength is generally stronger in the vertical direction than in the horizontal direction, the direction having the higher tensile strength can be set as the vertical direction. Further, when the width direction is not known at all with a cut sample or the like, the vertical direction can be determined by the following method.
 まずカットサンプルについて、45°おきに4通りの引張試験を実施する。続いて、これらのうち最も強い2つの方向の間で15°おきに引張試験を実施する。さらに最も強い2つの方向の間で5°おきに引張試験を実施する。最後に最も強い2つの方向で1°おきに引張試験を実施し、最も引張強力の強い方向をタテ方向とする。 First, four types of tensile tests are performed on cut samples every 45 °. Subsequently, tensile tests are performed every 15 ° between the two strongest directions. In addition, tensile tests are performed every 5 ° between the two strongest directions. Finally, a tensile test is performed every 1 ° in the two strongest directions, and the direction having the strongest tensile strength is defined as the vertical direction.
 本発明スパンボンド不織布の引張強力タテ/ヨコ比は1.3~1.8であることが重要であり、好ましくは1.32~1.75、より好ましくは1.35~1.70である。引張強力タテ/ヨコ比とは、タテ方向の引張強力をヨコ方向の引張強力で除して求められる。 The tensile strength warp / width ratio of the spunbonded nonwoven fabric of the present invention is important to be 1.3 to 1.8, preferably 1.32 to 1.75, more preferably 1.35 to 1.70. . The tensile strength vertical / horizontal ratio is obtained by dividing the vertical tensile strength by the horizontal tensile strength.
 本発明のスパンボンド不織布は、ヨコ方向(不織布の幅方向)の引張強力(以下、ヨコ引張強力ともいう。)が90N/5cm以上であることが好ましい。ヨコ引張強力を90N/5cm以上、より好ましくは95N/5cm以上とすることで、ハウスラップ材用途に適した優れた機械的強度が得られ、つづり針により下地に固定、施工された後、強い風が吹き込んだ時の荷重に耐えられず容易に破れてしまうことが防止される。 The spunbonded nonwoven fabric of the present invention preferably has a tensile strength (hereinafter also referred to as a horizontal tensile strength) in the horizontal direction (width direction of the nonwoven fabric) of 90 N / 5 cm or more. By setting the horizontal tensile strength to 90 N / 5 cm or more, more preferably 95 N / 5 cm or more, excellent mechanical strength suitable for house wrap material applications can be obtained, and after fixing and constructing with a spelling needle, it is strong. It is prevented from being easily broken without being able to withstand the load when the wind blows.
 また、ヨコ引張強力は150N/5cm以下が好ましく、より好ましくは145N/5cm以下とすることで、タテ、ヨコ共にハウスラップ材用途に適した優れた機械的強度が得られる。なお、上記のヨコ引張強力は、JIS L 1913:2010「一般不織布試験方法」の6.3「引張強さ及び伸び率」の6.3.1「標準時」に準拠して測定される。 In addition, the horizontal tensile strength is preferably 150 N / 5 cm or less, more preferably 145 N / 5 cm or less, whereby excellent mechanical strength suitable for house wrap materials can be obtained for both vertical and horizontal. In addition, said horizontal tensile strength is measured based on 6.3 "standard time" of 6.3 "tensile strength and elongation rate" of JIS L1913: 2010 "General nonwoven fabric test method".
 本発明のスパンボンド不織布の繊維配向度10~50度の繊維割合は60~80%であることが好ましく、より好ましくは60~75%、さらに好ましくは60~70%である。上記、繊維配向度10~50度の繊維割合を60~80%とすることにより、タテ、ヨコ共に優れた機械的強度が得られ、且つ、地合や品位が良好なスパンボンド不織布を得ることができる。 The fiber ratio of the fiber orientation degree of the spunbonded nonwoven fabric of the present invention is preferably 60 to 80%, more preferably 60 to 75%, and further preferably 60 to 70%. By setting the fiber ratio of the fiber orientation degree of 10 to 50 degrees to 60 to 80%, it is possible to obtain a spunbonded nonwoven fabric having excellent mechanical strength in both vertical and horizontal directions and having good formation and quality. Can do.
 本発明のスパンボンド不織布の目付当たりのヨコ引張強力は2.2N/5cm/(g/m)以上であることが好ましく、より好ましくは2.3(N/5cm)/(g/cm)以上、さらに好ましくは2.4(N/5cm)/(g/cm)以上である。目付当たりのヨコ引張強力とは、ヨコ引張強力を目付で除して求められる。 The horizontal tensile strength per unit weight of the spunbonded nonwoven fabric of the present invention is preferably 2.2 N / 5 cm / (g / m 2 ) or more, more preferably 2.3 (N / 5 cm) / (g / cm 2). ) Or more, more preferably 2.4 (N / 5 cm) / (g / cm 2 ) or more. The horizontal tensile strength per unit weight is obtained by dividing the horizontal tensile strength by the basis weight.
 目付当たりのヨコ引張強力が2.2N/5cm/(g/m)以上とすることにより、ハウスラップ材用途に適した優れた機械的強度が得られる。また、目付当たりのヨコ引張強力が3.8(N/5cm)/(g/cm)以下であることが好ましく、より好ましくは3.7(N/5cm)/(g/cm)以下とすることにより、ハウスラップとしての使用において、実用に供しうる機械強度と取扱い性を両立させることができる。 By setting the horizontal tensile strength per unit weight to 2.2 N / 5 cm / (g / m 2 ) or more, excellent mechanical strength suitable for house wrap material use can be obtained. Further, the horizontal tensile strength per unit weight is preferably 3.8 (N / 5 cm) / (g / cm 2 ) or less, more preferably 3.7 (N / 5 cm) / (g / cm 2 ) or less. Thus, in use as a house wrap, it is possible to achieve both mechanical strength and handleability that can be put to practical use.
 本発明のスパンボンド不織布を構成する熱可塑性連続フィラメントは、高融点重合体の周りに該高融点重合体の融点よりも低い融点を有する低融点重合体を配した複合型フィラメントであることが好ましい。そうすることにより、熱圧着により熱可塑性連続フィラメントが不織布内において強固に接着し、毛羽立ちを抑制することができる。また、ハウスラップ材としての使用に適した機械的強度を付与することができる。また、このような複合型フィラメントとすることにより、不織布を構成するフィラメント同士が強固に接着することに加え、低融点重合体からなる繊維を混繊させたものに比べ不織布における接着点の数も多くなるため、スパンボンド不織布としての寸法安定性、耐久性も向上させることができる。 The thermoplastic continuous filament constituting the spunbonded nonwoven fabric of the present invention is preferably a composite filament in which a low melting point polymer having a melting point lower than the melting point of the high melting point polymer is disposed around the high melting point polymer. . By doing so, a thermoplastic continuous filament adhere | attaches firmly in a nonwoven fabric by thermocompression bonding, and can suppress fuzzing. Moreover, the mechanical strength suitable for use as a house wrap material can be provided. Moreover, by using such composite filaments, the filaments constituting the nonwoven fabric are firmly bonded to each other, and the number of adhesion points in the nonwoven fabric is also higher than that obtained by mixing fibers made of a low melting point polymer. Therefore, the dimensional stability and durability as a spunbonded nonwoven fabric can be improved.
 上記の熱可塑性連続フィラメントを形成するポリマーとしては、例えばポリエステル、ポリアミド、ポリオレフィン、あるいはこれらの混合物や共重合体等を挙げることができる。なかでもポリエステルが、より機械的強度や耐熱性、耐水性、耐薬品性等の耐久性に優れることから好ましい。 Examples of the polymer that forms the thermoplastic continuous filament include polyester, polyamide, polyolefin, and a mixture or copolymer thereof. Of these, polyester is preferred because it is more excellent in durability such as mechanical strength, heat resistance, water resistance and chemical resistance.
 ポリエステルは酸成分とアルコール成分とからなる。酸性分としては、テレフタル酸、イソフタル酸、フタル酸などの芳香族カルボン酸、アジピン酸、セバシン酸などの脂肪族ジカルボン酸、シクロヘキサンカルボン酸等の脂環族ジカルボン酸などを用いることができる。また、アルコール成分としては、エチレングリコール、ジエチレングリコール、ポリエチレングリコールなどを用いることができる。ポリエステルの例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレート、ポリ乳酸、ポリブチレンサクシネート、また、これらの共重合体等を挙げることができる。 Polyester consists of an acid component and an alcohol component. Examples of the acidic component include aromatic carboxylic acids such as terephthalic acid, isophthalic acid, and phthalic acid, aliphatic dicarboxylic acids such as adipic acid and sebacic acid, and alicyclic dicarboxylic acids such as cyclohexanecarboxylic acid. As the alcohol component, ethylene glycol, diethylene glycol, polyethylene glycol, or the like can be used. Examples of polyesters include polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, polylactic acid, polybutylene succinate, and copolymers thereof.
 また上記の熱可塑性連続フィラメントを形成するポリマーとしては、生分解性樹脂も、用済み後の廃棄が容易であり環境負荷が小さいことから好ましい。生分解性樹脂の例としては、ポリ乳酸、ポリブチレンサクシネート、ポリカプロラクトン、ポリエチレンサクシネート、ポリグリコール酸、ポリヒドロキシブチレート等が挙げられる。なかでもポリ乳酸は、石油資源を枯渇させない植物由来の樹脂であり、力学特性や耐熱性も比較的高く、製造コストも低いので好ましい。 As the polymer forming the thermoplastic continuous filament, a biodegradable resin is also preferable because it can be easily discarded after use and has a low environmental impact. Examples of the biodegradable resin include polylactic acid, polybutylene succinate, polycaprolactone, polyethylene succinate, polyglycolic acid, polyhydroxybutyrate and the like. Among these, polylactic acid is preferable because it is a plant-derived resin that does not deplete petroleum resources, has relatively high mechanical properties and heat resistance, and low manufacturing costs.
 上記の高融点重合体と低融点重合体との融点の差としては10~140℃が好ましい。融点の差を10℃以上、より好ましくは20℃以上、さらに好ましくは30℃以上とすることで、所望の熱接着性を得ることができる。また、140℃以下、より好ましくは120℃以下、さらに好ましくは100℃以下とすることで、熱圧着時に熱圧着ロールに低融点重合体成分が融着し生産性が低下することを抑制することができる。 The difference in melting point between the high melting point polymer and the low melting point polymer is preferably 10 to 140 ° C. Desirable thermal adhesiveness can be obtained by setting the difference in melting point to 10 ° C. or higher, more preferably 20 ° C. or higher, and further preferably 30 ° C. or higher. In addition, by controlling the temperature to 140 ° C. or lower, more preferably 120 ° C. or lower, and further preferably 100 ° C. or lower, it is possible to prevent the low melting point polymer component from fusing to the thermocompression-bonding roll during thermocompression bonding, thereby reducing productivity. Can do.
 また、上記複合繊維における高融点重合体の融点としては、160~320℃が好ましい。160℃以上、より好ましくは170℃以上、さらに好ましくは180℃以上とすることで、熱が加わる加工工程においても形態安定性に優れる。また、320℃以下、より好ましくは300℃以下、さらに好ましくは280℃以下とすることで、長繊維不織布製造時に溶融するための熱エネルギーを多大に消費し生産性が低下するのを抑制することができる。 The melting point of the high melting point polymer in the composite fiber is preferably 160 to 320 ° C. By setting the temperature to 160 ° C. or higher, more preferably 170 ° C. or higher, and further preferably 180 ° C. or higher, the shape stability is excellent even in a processing step where heat is applied. Moreover, it suppresses that productivity is reduced by consuming a great deal of heat energy for melting at the time of producing the long-fiber nonwoven fabric by setting it to 320 ° C. or less, more preferably 300 ° C. or less, and even more preferably 280 ° C. or less. Can do.
 かかる高融点重合体および低融点重合体の組み合わせ(高融点重合体/低融点重合体)の具体例としては、ポリエチレンテレフタレート/ポリブチレンテレフタレート、ポリエチレンテレフタレート/ポリトリメチレンテレフタレート、ポリエチレンテレフタレート/ポリ乳酸、ポリエチレンテレフタレート/共重合ポリエチレンテレフタレート等が挙げられる。共重合ポリエチレンテレフタレートの共重合成分としては、イソフタル酸等が好ましい。 Specific examples of the combination of the high melting point polymer and the low melting point polymer (high melting point polymer / low melting point polymer) include polyethylene terephthalate / polybutylene terephthalate, polyethylene terephthalate / polytrimethylene terephthalate, polyethylene terephthalate / polylactic acid, Examples thereof include polyethylene terephthalate / copolymerized polyethylene terephthalate. As a copolymerization component of copolymerized polyethylene terephthalate, isophthalic acid or the like is preferable.
 かかる複合繊維における低融点重合体の占める割合としては、10~70質量%が好ましい。10質量%以上、より好ましくは15質量%以上、さらに好ましくは20質量%以上とすることで、所望の熱接着性を得ることができる。また、70質量%以下、より好ましくは60質量%以下、さらに好ましくは50質量%以下とすることで、融着が進みすぎて引裂強力が低下することを抑制することができる。 The proportion of the low melting point polymer in the composite fiber is preferably 10 to 70% by mass. Desirable thermal adhesiveness can be obtained by setting the content to 10% by mass or more, more preferably 15% by mass or more, and further preferably 20% by mass or more. Moreover, 70 mass% or less, More preferably, it is 60 mass% or less, More preferably, it can suppress that fusion | bonding advances too much and tearing strength falls by setting it as 50 mass% or less.
 かかる複合繊維の複合形態としては例えば、同心芯鞘型、偏心芯鞘型、海島型、バイメタル型等を挙げることができる。なかでも同心芯鞘型が、熱圧着により繊維同士を強固に接着させることができる点で好ましい。 Examples of the composite form of such a composite fiber include a concentric core-sheath type, an eccentric core-sheath type, a sea-island type, and a bimetal type. Among these, the concentric core-sheath type is preferable in that the fibers can be firmly bonded to each other by thermocompression bonding.
 また、熱可塑性連続フィラメントの断面形状としては、円形、扁平、多角形、X型やY型等の多葉型、中空型等を挙げることができる。前記のような複合繊維で異形型の断面形状を採用する場合は、低融点重合体成分が熱圧着に寄与できるように繊維断面の外周部近傍に存在するのが好ましい。 Also, examples of the cross-sectional shape of the thermoplastic continuous filament include a circular shape, a flat shape, a polygonal shape, a multi-leaf shape such as an X shape and a Y shape, and a hollow shape. In the case of adopting a deformed cross-sectional shape in the composite fiber as described above, it is preferable that the low melting point polymer component is present in the vicinity of the outer peripheral portion of the fiber cross-section so that it can contribute to thermocompression bonding.
 本発明のスパンボンド不織布には、結晶核剤や艶消し剤、滑剤、顔料、防カビ剤、抗菌剤、難燃剤、親水剤等を添加してもよい。特に長繊維不織布の熱圧着成形の際、熱伝導性を増すことで長繊維不織布の接着性を向上させる効果がある酸化チタン等の金属酸化物や、熱圧着ロールとウェブ間の離型性を増すことで接着安定性を向上させる効果があるエチレンビスステアリン酸アミド等の脂肪族ビスアミド、および/またはアルキル置換型の脂肪族モノアミドを添加することが好ましい。これら各種の添加剤は、熱可塑性連続フィラメント中に存在させてもよいし、熱可塑性連続フィラメントの表面に存在させてもよい。 The crystal bond agent, matting agent, lubricant, pigment, fungicide, antibacterial agent, flame retardant, hydrophilic agent and the like may be added to the spunbond nonwoven fabric of the present invention. Especially when thermocompression molding of long fiber nonwoven fabrics, metal oxides such as titanium oxide have the effect of improving the adhesion of long fiber nonwoven fabrics by increasing the thermal conductivity, and the mold release property between the thermocompression roll and web. It is preferable to add an aliphatic bisamide such as ethylenebisstearic acid amide and / or an alkyl-substituted aliphatic monoamide, which has an effect of improving the adhesion stability by increasing the number. These various additives may be present in the thermoplastic continuous filament or may be present on the surface of the thermoplastic continuous filament.
 本発明において、熱可塑性連続フィラメントの繊維径としては10~24μmが好ましい。10μm以上、より好ましくは12μm以上とすることで、目付均一性、および機械的強度に優れた不織布を得ることができる。また、24μm以下、より好ましくは22μm以下とすることで、ハウスラップ材を製造する際に、ポリエチレン有孔フィルムとの貼り合わせに使用するホットメルト樹脂の不織布内部への過浸透を抑制することが可能であり、フィルムと不織布の接着強度も良好であり、ハウスラップ材として好ましいものである。尚、複数種類の繊維が混繊されている場合は、それぞれの繊維の平均単繊維径が上記範囲内であるのが好ましい。 In the present invention, the fiber diameter of the thermoplastic continuous filament is preferably 10 to 24 μm. By setting the thickness to 10 μm or more, more preferably 12 μm or more, it is possible to obtain a nonwoven fabric excellent in basis weight uniformity and mechanical strength. In addition, by making the thickness not more than 24 μm, more preferably not more than 22 μm, it is possible to suppress excessive penetration of the hot melt resin used for bonding to the polyethylene perforated film into the nonwoven fabric when manufacturing the house wrap material. It is possible, and the adhesive strength between the film and the nonwoven fabric is also good, which is preferable as a house wrap material. In addition, when multiple types of fibers are mixed, it is preferable that the average single fiber diameter of each fiber is in the above range.
 本発明のスパンボンド不織布は、部分的に熱圧着されてなることが重要である。部分的に熱圧着されてなることで、繊維同士を一体化させ、ハウスラップ材としての使用において長期の使用に耐え得る機械的強度が得られる。 It is important that the spunbonded nonwoven fabric of the present invention is partially thermocompression bonded. By being partially thermocompression bonded, the fibers can be integrated to obtain mechanical strength that can withstand long-term use as a house wrap material.
 本発明のスパンボンド不織布は、面積比率8~30%の部分的熱圧着部を有することが好ましい。面積比率を8%以上、より好ましくは9%以上、さらに好ましくは10%以上とすることで、不織布の強度が向上し、また表面の毛羽立ちを抑えることができる。また面積比率を30%以下、より好ましくは28%以下、さらに好ましくは24%以下とすることで、繊維間の空隙を適度に残し、不織布の引張伸度と引裂強力の低下を抑制することができる。 The spunbond nonwoven fabric of the present invention preferably has a partial thermocompression bonding portion with an area ratio of 8 to 30%. By setting the area ratio to 8% or more, more preferably 9% or more, and even more preferably 10% or more, the strength of the nonwoven fabric can be improved, and surface fuzz can be suppressed. Further, by setting the area ratio to 30% or less, more preferably 28% or less, and still more preferably 24% or less, it is possible to appropriately leave voids between the fibers and suppress a decrease in tensile elongation and tear strength of the nonwoven fabric. it can.
 ここで部分的熱圧着部とは、少なくともシート片面がくぼみを形成しており、不織布を構成する熱可塑性連続フィラメント同士が熱と圧力によって融着して形成されている。すなわち、他の部分に比べて熱可塑性連続フィラメントが融着して凝集している部分が部分的熱圧着部である。 Here, the partial thermocompression bonding part is formed such that at least one surface of the sheet forms a recess, and the thermoplastic continuous filaments constituting the nonwoven fabric are fused together by heat and pressure. That is, the portion where the thermoplastic continuous filaments are fused and aggregated compared to other portions is the partial thermocompression bonding portion.
 部分的熱圧着部の面積比率とは、スパンボンド不織布の表面全体における部分的熱圧着部の割合であり、繰り返し単位が配列することで部分的熱圧着部がパターン模様を形成している場合、1つの繰り返し単位に含まれる部分的熱圧着部の面積を、繰り返し単位の面積で除して求められるものである。部分的熱圧着部の面積比率は、走査型電子顕微鏡によるスパンボンド不織布の表面観察画像を用いたり、形状解析レーザ顕微鏡や3D形状測定機等の非接触式の形状測定機器による表面形状データを用いたりして算出することができる。部分的熱圧着部の面積比率は、少なくとも5箇所以上の繰り返し単位で測定した面積比率を平均して求められる。 The area ratio of the partial thermocompression bonding part is the ratio of the partial thermocompression bonding part over the entire surface of the spunbond nonwoven fabric, and when the partial thermocompression bonding part forms a pattern pattern by arranging repeating units, It is obtained by dividing the area of the partial thermocompression bonding part contained in one repeating unit by the area of the repeating unit. For the area ratio of the partial thermocompression bonding part, use the surface observation image of the spunbonded nonwoven fabric with a scanning electron microscope, or the surface shape data with a non-contact type shape measuring instrument such as a shape analysis laser microscope or 3D shape measuring machine. Or can be calculated. The area ratio of the partial thermocompression bonding part is obtained by averaging the area ratios measured at least at five or more repeating units.
 本発明のスパンボンド不織布の、引張強力や引裂強力などの機械的強度は、不織布の目付によっても異なる。本発明のスパンボンド不織布の目付としては、特定の値に限定されないが、30~60g/mが好ましい。目付を30g/m以上、より好ましくは35g/m以上とすることで、機械的強度に優れ、ハウスラップ材としての使用に適したスパンボンド不織布を得ることができる。また、目付を60g/m以下、より好ましくは55g/m以下とすることで、ハウスラップ材として使用する場合、施工時に作業者が手に持って作業する際に適した重量となり、不織布の剛性が強すぎず、施工時の取り扱い性に優れたものとなる。また、風の吹き込み時に大きな音が出ることを抑制できる。 The mechanical strength such as tensile strength and tear strength of the spunbond nonwoven fabric of the present invention varies depending on the basis weight of the nonwoven fabric. The basis weight of the spunbonded nonwoven fabric of the present invention is not limited to a specific value, but is preferably 30 to 60 g / m 2 . By setting the basis weight to 30 g / m 2 or more, more preferably 35 g / m 2 or more, a spunbonded nonwoven fabric excellent in mechanical strength and suitable for use as a house wrap material can be obtained. In addition, by using a basis weight of 60 g / m 2 or less, more preferably 55 g / m 2 or less, when used as a house wrap material, it becomes a weight suitable for an operator to hold in the hand during construction. The rigidity is not too strong, and it is excellent in handleability during construction. Moreover, it can suppress that a loud sound comes out at the time of wind blowing.
 本発明のスパンボンド不織布の目付均一性は、熱可塑性連続フィラメントの繊維径によっても異なる。本発明のスパンボンド不織布の目付CVは、14.0%以下が好ましい。目付CVを14.0%以下、より好ましくは13.0%以下、さらに好ましくは12.0%以下とすることで、地合と機械的強度に優れ、物性のばらつきが少なく、ハウスラップ材としての使用に必要な物性を安定して満足するスパンボンド不織布を得ることができる。また、目付CVは2.0%以上が好ましく、より好ましくは2.5%以上、さらに好ましくは3.0%以上とすることで、製布工程におけるフィラメント噴射ノズルの幅方向の間隔を極端に狭くしたり、煩雑な開繊装置を導入したりして製造工程が煩雑化することを防ぐことができる。 The basis weight uniformity of the spunbonded nonwoven fabric of the present invention varies depending on the fiber diameter of the thermoplastic continuous filament. The basis weight CV of the spunbonded nonwoven fabric of the present invention is preferably 14.0% or less. By setting the basis weight CV to 14.0% or less, more preferably 13.0% or less, and even more preferably 12.0% or less, it is excellent in formation and mechanical strength, has little variation in physical properties, and is used as a house wrap material. A spunbonded nonwoven fabric that stably satisfies the physical properties required for use can be obtained. Further, the basis weight CV is preferably 2.0% or more, more preferably 2.5% or more, and further preferably 3.0% or more, so that the interval in the width direction of the filament spray nozzle in the cloth making process is extremely reduced. It is possible to prevent the manufacturing process from becoming complicated by narrowing or introducing a complicated fiber opening device.
 本発明のスパンボンド不織布の製造方法は、下記(a)~(d)を順次実施することを特徴とするスパンボンド不織布の製造方法である。
(a)熱可塑性重合体を紡糸口金から溶融押し出し後、これをエアサッカーにより牽引、延伸して熱可塑性連続フィラメントを得る工程
(b)得られたフィラメントをウェブ進行方向に対して、5~25度の方向に向けた噴射ノズルを±10~±25度の範囲内で揺動し、フィラメントを開繊させる工程
(c)開繊したフィラメントを移動するコンベア上に堆積させて繊維ウェブを形成する工程
(d)得られた繊維ウェブに部分的熱圧着を施す工程
The method for producing a spunbonded nonwoven fabric according to the present invention is a method for producing a spunbonded nonwoven fabric characterized by sequentially performing the following (a) to (d).
(A) Step of obtaining a thermoplastic continuous filament by drawing and stretching the thermoplastic polymer from a spinneret and then drawing and stretching it with an air soccer (b) The obtained filament is 5 to 25 with respect to the web traveling direction. The step of swinging the spray nozzle directed in the direction of degrees within a range of ± 10 to ± 25 degrees to open the filament (c) depositing the opened filament on a moving conveyor to form a fiber web Step (d) Step of applying partial thermocompression to the obtained fiber web
 本発明のスパンボンド不織布の製造方法は、例えば図1に示すように、熱可塑性重合体を紡糸口金1から溶融押し出し後、これをエジェクター2とエアサッカー3により牽引、延伸して熱可塑性連続フィラメントとし、これをノズル4から送り出して帯電手段5で帯電開繊したのち、移動捕集面6上に堆積させる。これにより、上記のフィラメントで繊維ウェブ7に形成される。 For example, as shown in FIG. 1, the method for producing a spunbonded nonwoven fabric of the present invention is obtained by melting and extruding a thermoplastic polymer from a spinneret 1 and then pulling and stretching it by an ejector 2 and an air soccer 3 to make a thermoplastic continuous filament. Then, this is sent out from the nozzle 4 and charged and opened by the charging means 5 and then deposited on the moving collection surface 6. Thereby, it forms in the fiber web 7 with said filament.
 上記熱可塑性連続フィラメントの紡糸速度は、3500m/分以上が好ましい。紡糸速度を3500m/分以上、より好ましくは3800m/分以上、さらに好ましくは4000m/分以上とすることで、熱圧着時にシートが収縮したり、シワが発生したり、ロールにシートが取られて搬送性が悪化したりすることを防ぐことができる。また、紡糸速度は6000m/分以下が好ましく、より好ましくは5500m/分以下、さらに好ましくは5000m/分以下とすることにより、繊維が過度に配向結晶化することを防ぎ、熱接着で実用に供しうる強度を付与することができる。 The spinning speed of the thermoplastic continuous filament is preferably 3500 m / min or more. By setting the spinning speed to 3500 m / min or more, more preferably 3800 m / min or more, and even more preferably 4000 m / min or more, the sheet shrinks or wrinkles during thermocompression, or the sheet is taken up by a roll. It is possible to prevent the transportability from deteriorating. In addition, the spinning speed is preferably 6000 m / min or less, more preferably 5500 m / min or less, and even more preferably 5000 m / min or less to prevent the fibers from being excessively oriented and crystallized. Strength can be imparted.
 上記のノズル4は、図2に示すように、ウェブ進行方向(長手方向D)に対し左右どちらかへ5~25度の範囲内の角度(α)に向けることが重要である。本発明のスパンボンド不織布の製造方法では、ノズル4を揺動させることでフィラメントを開繊させるが、前記角度αはノズル4を揺動させる際の中心角となる。角度αは5度以上であることが重要であり、好ましくは8度以上、より好ましくは10度以上とすることにより、繊維配向度分布のピークを10度以上にし、ヨコ引張強力に優れ、かつ地合や品位の良好な不織布とすることができる。一方、角度αは25度以下とすることが重要であり、好ましくは20度以下、より好ましくは15度以下とすることにより、繊維配向度分布のピークを50度以下にし、タテ方向の引張強力(以降、タテ引張強力ともいう。)の低下を抑制することができる。 As shown in FIG. 2, it is important that the nozzle 4 is directed to an angle (α) within a range of 5 to 25 degrees to the left or right with respect to the web traveling direction (longitudinal direction D). In the method for producing a spunbonded nonwoven fabric of the present invention, the filament is opened by swinging the nozzle 4, and the angle α is a central angle when the nozzle 4 is swung. It is important that the angle α is 5 degrees or more, preferably 8 degrees or more, more preferably 10 degrees or more, so that the fiber orientation degree distribution peak is 10 degrees or more, and the horizontal tensile strength is excellent. It can be a non-woven fabric with good formation and quality. On the other hand, it is important that the angle α is 25 degrees or less, preferably 20 degrees or less, more preferably 15 degrees or less, so that the fiber orientation degree distribution peak is 50 degrees or less and the tensile strength in the vertical direction is reduced. (Hereinafter, also referred to as vertical tensile strength) can be suppressed.
 上記のノズル4の角度(α)は、5~25度の範囲内で個別に設定することができるが、ウェブ進行方向(長手方向D)と直交する方向にノズルを一列に配列する場合は、全てのノズルの向く方向が右方向または左方向に統一されていることが好ましい。このようにすることにより、フィラメント同士が干渉して地合が悪化することを防ぐことができる。さらに上記のようなノズルを複数列配列する場合は、少なくとも一列のノズルが右方向に向き、かつ少なくとも一列のノズルが左方向に向いていることが好ましい。このようにすることにより、地合や品位の良好な不織布とし、端部の目付が低下したり、ウェブ進行方向(長手方向D)に対する右斜め方向と左斜め方向の引張強力に差が生じたりすることを抑制することができる。 The angle (α) of the nozzle 4 can be individually set within a range of 5 to 25 degrees, but when the nozzles are arranged in a line in a direction perpendicular to the web traveling direction (longitudinal direction D), It is preferable that the direction in which all the nozzles face is unified in the right direction or the left direction. By doing in this way, it can prevent that filaments interfere and formation is deteriorated. Furthermore, when arranging a plurality of nozzles as described above, it is preferable that at least one row of nozzles is directed rightward and at least one row of nozzles is directed leftward. By doing in this way, it is set as a nonwoven fabric with good formation and quality, and the basis weight of the end portion is reduced, or there is a difference in tensile strength between the right oblique direction and the left oblique direction with respect to the web traveling direction (longitudinal direction D). Can be suppressed.
 このとき、上記のノズル4は、図2に示すように、角度αの方向を中心に±10度以上の所定の角度(θ)で、連続して揺動させることが重要である。上記のフィラメントは、この連続揺動するノズル4を通過したのち上記の帯電手段5で帯電開繊されて繊維ウェブとなるが、揺動角度θを±10度以上、好ましくは±13度以上、より好ましくは±16度以上とすることにより、束状の繊維を少なくし、コンベア上に堆積させた後の繊維ウェブの地合を向上させることができる。これにより、繊維ウェブの機械強度のバラツキを低減させることができる。一方、上記のノズル4の揺動角度θは、角度αに対して±25度以下、より好ましくは±23度以下、さらに好ましくは±20度以下とすることで、移動捕集面上に堆積させて繊維ウェブ7を形成する際に、ウェブが捲れる欠点等の発生を抑制することができる。 At this time, as shown in FIG. 2, it is important that the nozzle 4 is continuously swung at a predetermined angle (θ) of ± 10 degrees or more around the direction of the angle α. The filament passes through the continuously oscillating nozzle 4 and is then charged and opened by the charging means 5 to become a fiber web. The oscillation angle θ is ± 10 degrees or more, preferably ± 13 degrees or more, More preferably, by setting it to ± 16 degrees or more, it is possible to reduce the number of bundle-like fibers and improve the formation of the fiber web after being deposited on the conveyor. Thereby, the dispersion | variation in the mechanical strength of a fiber web can be reduced. On the other hand, the swing angle θ of the nozzle 4 is ± 25 degrees or less, more preferably ± 23 degrees or less, and further preferably ± 20 degrees or less with respect to the angle α, so that the nozzle 4 is deposited on the moving collection surface. Thus, when the fiber web 7 is formed, it is possible to suppress the occurrence of defects such as web curling.
 上記連続揺動するノズル4の1秒あたりの揺動(往復)数は、1.0回以上が好ましく、より好ましくは1.5回以上、さらに好ましくは2.0回以上とすることで、コンベア上に堆積させた後の繊維ウェブの地合を向上させることができる。また、1秒あたりの揺動(往復)数は、6.0回以下が好ましく、より好ましくは5.5回以下、さらに好ましくは5.0回以下とすることで、熱可塑性連続フィラメントがノズルの速度に追従させることができるため、繊維が束状になることを防ぎ地合の悪化を抑制することができる。 The number of oscillations (reciprocations) per second of the continuously oscillating nozzle 4 is preferably 1.0 or more, more preferably 1.5 or more, and even more preferably 2.0 or more, The formation of the fiber web after being deposited on the conveyor can be improved. Further, the number of oscillations (reciprocations) per second is preferably 6.0 times or less, more preferably 5.5 times or less, and even more preferably 5.0 times or less, so that the thermoplastic continuous filament can be used as a nozzle. Therefore, it is possible to prevent the fibers from being bundled and to suppress the deterioration of the formation.
 上記熱可塑性連続フィラメントの帯電方法は何ら制限されるものではないが、コロナ放電法による帯電や、金属との摩擦帯電による帯電が好ましいものである。 The charging method of the thermoplastic continuous filament is not limited at all, but charging by a corona discharge method or charging by frictional charging with a metal is preferable.
 本発明のスパンボンド不織布の製造方法において、上記移動するコンベアの速度は、3m/min以上が好ましく、より好ましくは4m/min以上、さらに好ましくは5m/min以上とすることで、能力が低下し、生産性が低いものになることを防ぐことができる。また、移動するコンベアの速度は、100m/min以下が好ましく、より好ましくは90m/min以下、さらに好ましくは80m/min以下とすることで、移動捕集面上のウェブが捲くれる欠点を抑制したり、ロールにシートが取られて搬送性が悪化したりすることを防ぐことができる。 In the method for producing a spunbonded nonwoven fabric of the present invention, the speed of the moving conveyor is preferably 3 m / min or more, more preferably 4 m / min or more, and even more preferably 5 m / min or more. It can prevent the productivity from becoming low. Moreover, the speed of the moving conveyor is preferably 100 m / min or less, more preferably 90 m / min or less, and even more preferably 80 m / min or less, thereby suppressing the drawback that the web on the moving collection surface is curled. It is possible to prevent the sheet from being taken on a roll and the transportability is deteriorated.
 本発明のスパンボンド不織布の製造方法において、部分的熱圧着部を設ける手段としては、所定温度に加熱したエンボスロールによる接着や、超音波発振装置による接着を好ましく採用することができる。特に所定温度に加熱した熱エンボスロールによる接着は、不織布の強度を向上させる点で好ましい。 In the method for producing a spunbonded nonwoven fabric of the present invention, as a means for providing a partial thermocompression bonding part, adhesion by an embossing roll heated to a predetermined temperature or adhesion by an ultrasonic oscillator can be preferably employed. In particular, adhesion by a hot embossing roll heated to a predetermined temperature is preferable in terms of improving the strength of the nonwoven fabric.
 エンボスロール9により熱圧着を施す際、エンボスロール9の凸部により熱可塑性連続フィラメントが互いに融着して凝集する部分が熱圧着部となる。このエンボスロール9は、上記の不織布を部分的に熱圧着できるものであればよく、特定の形状や構造の物に限定されない。例えば図1に示すように、上側(または下側)のみに所定のパターンの凸部を有するロール9aを用い、他のロールは周面に凹凸の無いフラットロール9bを用いることができる。この場合においては、熱圧着部とは一方のロール9aの上記の凸部と他方のロール9bのフラットな周面とで熱圧着されて、不織布の熱可塑性連続フィラメントが凝集された部分をいう。 When thermocompression bonding is performed by the embossing roll 9, a portion where the thermoplastic continuous filaments are fused and aggregated by the convex portion of the embossing roll 9 becomes a thermocompression bonding portion. The embossing roll 9 is not limited to a specific shape or structure as long as the nonwoven fabric can be partially thermocompression bonded. For example, as shown in FIG. 1, a roll 9 a having a predetermined pattern of protrusions only on the upper side (or lower side) can be used, and a flat roll 9 b having no irregularities on the peripheral surface can be used for the other rolls. In this case, the thermocompression bonding portion refers to a portion in which the thermoplastic continuous filaments of the nonwoven fabric are aggregated by thermocompression bonding between the convex portion of one roll 9a and the flat peripheral surface of the other roll 9b.
 また、上記のエンボスロール9には、例えば、表面に複数の平行に配置された凸条が形成されている一対の上側ロール9aと下側ロール9bからなり、両ロール9a、9bが互いに対面する熱圧着位置では、その上側ロール9aの凸条とその下側ロール9bの凸条とが互いに交叉するように設けられているものを用いることができる。この場合、部分的熱圧着部とは上側ロール9aの凸条と下側ロール9bの凸条とで熱圧着されて不織布の熱可塑性連続フィラメントが凝集された部分をいう。この場合、上側ロール9aの凸条と下側ロール9bの凹溝、あるいは上側ロール9aの凹溝と下側ロール9bの凸条とで挟持される部分は、ここでいう熱圧着部には含まれない。この、表面に複数の凸条を備えた一対のロール9a、9bからなるエンボスロール9を用いた場合、上側ロール9aの凸条と下側ロール9bの凸条とで平行四辺形や矩形の熱圧着部を形成することが、不織布を剥離することなく良好に接着させることができるので、好ましい。 In addition, the embossing roll 9 includes, for example, a pair of upper roll 9a and lower roll 9b having a plurality of parallel ridges formed on the surface, and both rolls 9a and 9b face each other. In the thermocompression bonding position, a protrusion provided so that the protrusions of the upper roll 9a and the protrusions of the lower roll 9b cross each other can be used. In this case, the partial thermocompression bonding portion refers to a portion in which the thermoplastic continuous filaments of the nonwoven fabric are aggregated by thermocompression bonding with the ridges of the upper roll 9a and the ridges of the lower roll 9b. In this case, a portion sandwiched between the convex strip of the upper roll 9a and the concave groove of the lower roll 9b, or the concave groove of the upper roll 9a and the convex strip of the lower roll 9b is included in the thermocompression bonding section here. I can't. When the embossing roll 9 composed of a pair of rolls 9a and 9b having a plurality of ridges on the surface is used, the parallelogram or rectangular heat is formed by the ridges of the upper roll 9a and the ridges of the lower roll 9b. It is preferable to form the pressure-bonding portion because the nonwoven fabric can be favorably bonded without peeling off.
 上記のエンボスロール9の加熱温度としては、熱可塑性連続フィラメントを形成する重合体のうち最も融点の低いものの融点に対して、融点-60℃~融点-5℃とすることが好ましい。このエンボスロール9の加熱温度を上記の融点-60℃以上、より好ましくは上記の融点-50℃以上とすることで、熱接着を効率良く行うことができ、ヨコ引張強力を向上させることができる。一方、エンボスロール9の加熱温度を上記の融点-5℃以下、より好ましくは上記の融点-10℃以下とすることで、不織布製造時に繊維がエンボスロール9に融着することで発生するロール汚れの抑制が可能であり、また、部分的熱圧着部以外の不織布表面繊維の融着を抑制できる。これにより、ハウスラップ材として用いた際に風合いが堅すぎず、施工時の取り扱い性に優れたものとなり、また、適度のしなやかさを備えるので、風の吹き込み時に大きな音が発生することを抑制できる。 The heating temperature of the embossing roll 9 is preferably a melting point of −60 ° C. to a melting point of −5 ° C. with respect to the melting point of the polymer having the lowest melting point among the polymers forming the thermoplastic continuous filament. When the heating temperature of the embossing roll 9 is set to the above melting point −60 ° C. or more, more preferably the above melting point −50 ° C. or more, the thermal bonding can be efficiently performed and the transverse tensile strength can be improved. . On the other hand, when the heating temperature of the embossing roll 9 is set to the above melting point −5 ° C. or less, more preferably the above melting point −10 ° C. or less, the roll fouling caused by the fibers being fused to the embossing roll 9 during the production of the nonwoven In addition, it is possible to suppress fusion of non-woven fabric surface fibers other than the partially thermocompression-bonded portion. As a result, when used as a house wrap material, the texture is not too stiff, it is excellent in handling at the time of construction, and it has moderate suppleness, so it suppresses the generation of loud noise when blowing in the wind it can.
 熱圧着部の形状としては、円形、三角形、四角形、平行四辺形、楕円形、菱形などのほか、任意の形状を採用することができる。また熱圧着部の配列としては、等間隔に規則的に配されたもの、ランダムに配されたもの、異なる形状が混在したものでもよい。なかでも不織布の均一性の点から、熱圧着部分が等間隔に配されたものが好ましい。 As the shape of the thermocompression bonding portion, any shape other than a circle, a triangle, a quadrangle, a parallelogram, an ellipse, a rhombus and the like can be adopted. In addition, the arrangement of the thermocompression bonding parts may be one regularly arranged at equal intervals, one randomly arranged, or a mixture of different shapes. Among these, from the viewpoint of uniformity of the nonwoven fabric, those in which the thermocompression bonding portions are arranged at equal intervals are preferable.
 本発明のスパンボンド不織布の製造方法では、得られた繊維ウェブに部分的熱圧着を施す前に、搬送性を改善することなどを目的に、図1に示すように、一対のフラットロール8a、8bにより圧接処理を施しても良い。 In the method for producing the spunbonded nonwoven fabric of the present invention, a pair of flat rolls 8a, as shown in FIG. You may perform a press-contact process by 8b.
 上記のフラットロール8bによる圧接処理は、フラットロール8bを繊維ウェブ7に接触させるものであれば何ら制限されるものではないが、加熱したフラットロール8bを繊維ウェブ7に接触させる熱処理加工が好ましい。 The above-mentioned pressure contact treatment with the flat roll 8b is not limited as long as the flat roll 8b is brought into contact with the fiber web 7, but heat treatment for bringing the heated flat roll 8b into contact with the fiber web 7 is preferable.
 この熱処理加工におけるフラットロール8bの表面温度は、繊維ウェブ7の表面に存在するフィラメントを構成する、最も融点の低い重合体の融点より30~120℃低いことが好ましい。即ち、この融点を(Tm)とした場合、フラットロール8bの表面温度は、(Tm-30)~(Tm-120)℃が好ましく、(Tm-40)~(Tm-110)℃がより好ましく、(Tm-50)~(Tm-100)℃が最も好ましい。フラットロール8bの表面温度が(Tm-120)℃よりも低い場合は、繊維ウェブ(7)の熱処理が不十分となって、目的のシート厚さが得られない問題や、接着が不十分となり、搬送性改善の効果が得られず好ましくない。また、フラットロール8bの表面温度が(Tm-30)℃よりも高い場合には、熱処理が強くなりすぎ、表層部の構成繊維が融着状態となり、十分な機械的強度を得られず好ましくない。 The surface temperature of the flat roll 8b in this heat treatment is preferably 30 to 120 ° C. lower than the melting point of the polymer having the lowest melting point constituting the filament existing on the surface of the fiber web 7. That is, when this melting point is (Tm), the surface temperature of the flat roll 8b is preferably (Tm-30) to (Tm-120) ° C, more preferably (Tm-40) to (Tm-110) ° C. (Tm-50) to (Tm-100) ° C. is most preferable. When the surface temperature of the flat roll 8b is lower than (Tm−120) ° C., the heat treatment of the fiber web (7) becomes insufficient, and the target sheet thickness cannot be obtained and the adhesion becomes insufficient. This is not preferable because the effect of improving the transportability cannot be obtained. On the other hand, when the surface temperature of the flat roll 8b is higher than (Tm-30) ° C., the heat treatment becomes too strong, and the constituent fibers of the surface layer portion are in a fused state, and a sufficient mechanical strength cannot be obtained. .
 上記のフラットロール8bと接触させる方法としては、図1のように繊維ウェブをフラットロール8bに連続的に接触させて熱処理する方法や、一対のフラットロールに挟み込んで熱処理する方法などを用いることができる。 As a method for bringing the flat roll 8b into contact with the flat roll 8b, a method in which the fiber web is continuously brought into contact with the flat roll 8b and heat-treated as shown in FIG. 1 or a method in which heat treatment is performed by being sandwiched between a pair of flat rolls is used. it can.
 次に、実施例により、本発明のスパンボンド不織布をより具体的に説明するが、本発明はこれらの実施例に記載のものに限定されるものではない。なお、実施例と比較例における各特性値は、次の測定方法により測定した。 Next, the examples of the spunbonded nonwoven fabric of the present invention will be described more specifically by way of examples. However, the present invention is not limited to those described in these examples. In addition, each characteristic value in an Example and a comparative example was measured with the following measuring method.
(1)融点(℃)
 パーキンエルマ社製示差走査型熱量計DSC-2型を用い、昇温速度20℃/分の条件で測定し、得られた融解吸熱曲線において極値を与える温度を融点とした。また示差走査型熱量計において融解吸熱曲線が極値を示さない樹脂については、ホットプレート上で加熱し、顕微鏡観察により樹脂が完全に溶融した温度を融点とした。
(1) Melting point (° C)
Using a differential scanning calorimeter DSC-2 manufactured by Perkin Elma Co., Ltd., measurement was performed under the condition of a heating rate of 20 ° C./min, and the temperature giving an extreme value in the obtained melting endotherm curve was defined as the melting point. Further, for a resin whose melting endotherm curve does not show an extreme value in a differential scanning calorimeter, the resin was heated on a hot plate, and the temperature at which the resin was completely melted by microscopic observation was taken as the melting point.
(2)固有粘度IV
 ポリエチレンテレフタレート樹脂の固有粘度IVは以下の方法で測定した。
 オルソクロロフェノール100mlに対し試料8gを溶解し、温度25℃においてオストワルド粘度計を用いて相対粘度ηを下記式により求めた。
  η=η/η=(t×d)/(t×d
 ここで、η:ポリマー溶液の粘度
     η:オルソクロロフェノールの粘度
     t:溶液の落下時間(秒)
     d:溶液の密度(g/cm
     t:オルソクロロフェノールの落下時間(秒)
     d:オルソクロロフェノールの密度(g/cm
である。
 ついで、得られた相対粘度ηから下記式
  IV=0.0242η+0.2634
により、固有粘度IVを算出した。
(2) Intrinsic viscosity IV
The intrinsic viscosity IV of the polyethylene terephthalate resin was measured by the following method.
8 g of a sample was dissolved in 100 ml of orthochlorophenol, and a relative viscosity η r was determined by the following formula using an Ostwald viscometer at a temperature of 25 ° C.
η r = η / η 0 = (t × d) / (t 0 × d 0 )
Where η: viscosity of polymer solution η 0 : viscosity of orthochlorophenol t: drop time of solution (seconds)
d: density of the solution (g / cm 3 )
t 0 : Fall time of orthochlorophenol (seconds)
d 0 : Orthochlorophenol density (g / cm 3 )
It is.
Then, from the obtained relative viscosity η r , the following formula IV = 0.0242 η r +0.2634
Thus, the intrinsic viscosity IV was calculated.
(3)平均単繊維径(μm)
 不織布からランダムに小片サンプル10個を採取し、走査型電子顕微鏡で500~7000倍の写真を撮影し、各サンプルから10本ずつ、計100本の繊維の直径を測定し、それらの平均値の小数点以下第一位を四捨五入して求めた。
(3) Average single fiber diameter (μm)
Ten small sample samples were taken at random from the non-woven fabric, photographed with a scanning electron microscope at a magnification of 500 to 7000 times, the diameter of 100 fibers, 10 from each sample, were measured, and the average Calculated by rounding off the first decimal place.
(4)目付(g/m
 50cm×50cmの不織布を3個採取して、各試料の重量をそれぞれ測定し、得られた値の平均値を単位面積当たりに換算し、小数点以下第一位を四捨五入した。
(4) Weight per unit (g / m 2 )
Three 50 cm × 50 cm nonwoven fabrics were sampled, the weight of each sample was measured, the average value of the obtained values was converted per unit area, and the first decimal place was rounded off.
(5)繊維配向度(度)
 不織布からランダムに小片サンプル15個を採取し、走査型電子顕微鏡で500倍の写真を撮影し、各サンプルから15本ずつ、計225本の繊維について、タテ方向を0度とし、ヨコ方向を90度とした時の角度を測定し、それらの平均値の小数点以下第一位を四捨五入して繊維配向度を求めた。
(5) Degree of fiber orientation (degree)
A small sample of 15 pieces was randomly collected from the nonwoven fabric, and a 500 times magnification photograph was taken with a scanning electron microscope. A total of 225 fibers, 15 from each sample, was set to a vertical direction of 0 degree and a horizontal direction of 90 degrees. The angle when measured in degrees was measured, and the first degree after the decimal point was rounded off to obtain the fiber orientation degree.
(6)引張強力(N/5cm)
 JIS L 1913:2010「一般不織布試験方法」の、6.3「引張強さ及び伸び率」の6.3.1「標準時」に準拠し、以下の方法で引張強力を測定した。不織布のタテ方向、ヨコ方向について、長さ300mm×幅50mmの試験片を10点採取した。試験片を定速伸長型引張試験機にて、つかみ間隔200mm、引張速度200±10mm/minで引張試験を実施し、破断するまでの最大荷重時の強さ(N)を0.1Nの位まで求め、これを引張強力(N/5cm)とした。
(6) Tensile strength (N / 5cm)
In accordance with 6.3 “Standard time” of 6.3 “Tensile strength and elongation” of JIS L 1913: 2010 “General nonwoven fabric test method”, the tensile strength was measured by the following method. Ten specimens having a length of 300 mm and a width of 50 mm were collected in the vertical direction and the horizontal direction of the nonwoven fabric. The test piece is subjected to a tensile test with a constant speed extension type tensile tester at a gripping interval of 200 mm and a tensile speed of 200 ± 10 mm / min, and the strength (N) at the maximum load until breaking is about 0.1N. This was determined as the tensile strength (N / 5 cm).
(7)目付CV(%)
タテ方向、ヨコ方向に5cm×5cmの小片をそれぞれ16個ずつ、合計256個採取して、各試料(不織布)の質量をそれぞれ測定し、得られた値の平均値を単位面積当たりに換算し、小数点以下第一位を四捨五入し、不織布の目付を求めた。この目付をもとに、以下の式によりCV値を計算し、小数点以下第二位を四捨五入した。
・目付CV(%)=(目付の標準偏差)/(目付の平均値)×100。
(7) Weight per unit area (%)
16 pieces of 5cm x 5cm pieces are collected in the vertical and horizontal directions, and a total of 256 pieces are collected. The mass of each sample (nonwoven fabric) is measured, and the average value of the obtained values is converted per unit area. The first decimal place was rounded off to determine the basis weight of the nonwoven fabric. Based on this basis weight, the CV value was calculated by the following formula, and the second decimal place was rounded off.
C basis weight CV (%) = (standard deviation of basis weight) / (average value of basis weight) × 100.
(8)品位評価
 幅方向200cm、長手方向1000mのロールにおいて、捲くれる欠点の発生個数を目視でカウントし、以下のような判断基準で表面品位を評価した。判定基準は「◎」と「○」を合格とした。捲くれる欠点とは、移動するコンベア上に堆積させた繊維ウェブが搬送中に気流などの影響を受け、表層のみが捲くれ上がり、折り返された状態で熱圧着されることによって、目付の濃い部分と目付の薄い部分が隣接して発生する欠点である。
 ◎:捲くれる欠点の発生なし
 ○:捲くれる欠点の発生個数が1個
 △:捲くれる欠点の発生個数が2個以上3個以下
 ×:捲くれる欠点の発生個数が4個以上
(8) Quality evaluation In a roll of 200 cm in the width direction and 1000 m in the longitudinal direction, the number of occurrences of defects that wrinkle was visually counted, and the surface quality was evaluated according to the following criteria. Judgment criteria were “◎” and “○” as acceptable. Wrinkle defects are those where the fiber web deposited on the moving conveyor is affected by the air flow during transportation, and only the surface layer is rolled up and thermocompression bonded in a folded state, resulting in a dark area This is a disadvantage that a portion with a thin basis weight is generated adjacently.
◎: No flaws are generated. ○: One defect is generated. △: Two or more defects are generated. ×: Four or more defects are generated.
[実施例1]
 (繊維ウェブ)
 固有粘度IV0.65、融点260℃であり、酸化チタンを0.3質量%含むポリエチレンテレフタレート樹脂を水分率50ppm以下に乾燥したものを芯成分とした。また、固有粘度IV0.66、イソフタル酸共重合率10モル%、融点230℃であり、酸化チタンを0.2質量%含む共重合ポリエチレンテレフタレート樹脂を水分率50ppm以下に乾燥したものを鞘成分とした。
[Example 1]
(Fiber web)
A core component was obtained by drying a polyethylene terephthalate resin having an intrinsic viscosity of 0.65 and a melting point of 260 ° C. and containing 0.3% by mass of titanium oxide to a moisture content of 50 ppm or less. In addition, a sheath component is obtained by drying a copolymerized polyethylene terephthalate resin containing an intrinsic viscosity of IV 0.66, an isophthalic acid copolymerization rate of 10 mol%, a melting point of 230 ° C., and containing 0.2% by mass of titanium oxide to a moisture content of 50 ppm or less. did.
 上記の芯成分を295℃、鞘成分を280℃で溶融し、芯/鞘の複合比を質量比で80/20として円形断面の同心芯鞘型に複合し、口金温度300℃で細孔より紡出した後、エアサッカーにより紡糸速度4300m/分で紡糸して、熱可塑性連続フィラメントとした。そしてこのフィラメントを、ウェブ進行方向に対し角度αを15度の右方向に向け、角度αを中心に±18度の角度θで揺動するノズルに通過させ、ノズル出口に設置された金属衝突板へフィラメントを衝突させて摩擦帯電により繊維を帯電して開繊させ、移動するコンベア(移動捕集面)上に、繊維ウェブとして捕集した。このとき捕集した繊維ウェブが目付40g/mとなるように、コンベアの移動速度を調整した。 The core component was melted at 295 ° C. and the sheath component was melted at 280 ° C., and the composite ratio of core / sheath was 80/20 in mass ratio to form a concentric core-sheath type with a circular cross section. After spinning, spinning with an air soccer at a spinning speed of 4300 m / min was made into a thermoplastic continuous filament. Then, this filament is passed through a nozzle swinging at an angle θ of ± 18 degrees around the angle α, with the angle α directed to the right by 15 degrees with respect to the web traveling direction, and a metal collision plate installed at the nozzle outlet The filaments were made to collide with each other, and the fibers were charged and opened by frictional charging, and collected as a fiber web on a moving conveyor (moving collection surface). The moving speed of the conveyor was adjusted so that the collected fiber web had a basis weight of 40 g / m 2 .
 (熱圧着)
 上記繊維ウェブを上下1対のフラットロールにてフラットロール表面温度150℃、線圧60kg/cmで熱圧着させた後、一対のエンボスロールにより、表面温度190℃、線圧70kg/cmの条件で部分的熱圧着を施した。用いたエンボスロールは、表面に複数の平行に配置された凸条が周方向へ環状に形成されている上側のロールと、表面に複数の凸条が螺旋状に形成されている下側ロールからなる。両ロールが互いに対面する熱圧着位置では、上側ロールの凸条と下側ロールの凸条とが交叉させてあり、上側ロールの凸条と下側ロールの凸条とで熱圧着される圧着部の、不織布全体に対する面積比率が18%となるよう調整してある。
(Thermo-compression bonding)
The fiber web is thermocompression bonded at a flat roll surface temperature of 150 ° C. and a linear pressure of 60 kg / cm with a pair of upper and lower flat rolls, and then with a pair of embossing rolls under conditions of a surface temperature of 190 ° C. and a linear pressure of 70 kg / cm. Partial thermocompression was applied. The embossing roll used is composed of an upper roll in which a plurality of ridges arranged in parallel on the surface are formed annularly in the circumferential direction, and a lower roll in which a plurality of ridges are formed in a spiral on the surface. Become. At the thermocompression bonding position where both rolls face each other, the ridges of the upper roll and the ridges of the lower roll are crossed, and the crimping part is thermocompression bonded between the ridges of the upper roll and the ridges of the lower roll. The area ratio with respect to the whole nonwoven fabric is adjusted to 18%.
 上記の処理により、繊維径16μm、目付40g/mのスパンボンド不織布を得た。得られたスパンボンド不織布は、繊維配向度分布のピークが35度、ヨコ引張強力が106N/5cm、引張強力タテ/ヨコ比が1.37であった。結果は表1に示す。 By the above treatment, a spunbonded nonwoven fabric having a fiber diameter of 16 μm and a basis weight of 40 g / m 2 was obtained. The obtained spunbonded nonwoven fabric had a fiber orientation degree distribution peak of 35 degrees, a transverse tensile strength of 106 N / 5 cm, and a tensile strength warp / width ratio of 1.37. The results are shown in Table 1.
[実施例2]
 ウェブ進行方向に対し角度αを10度の左方向に向け、角度αを中心に±18度で揺動するノズルを通過させた以外は実施例1と同様にして、繊維ウェブを捕集した。
 その後、実施例1と同様の熱圧着処理により、繊維径16μm、目付40g/mのスパンボンド不織布を得た。得られた実施例2のスパンボンド不織布は、繊維配向度分布のピークが30度、ヨコ引張強力が97N/5cm、引張強力タテ/ヨコ比が1.54であった。
[Example 2]
The fiber web was collected in the same manner as in Example 1 except that the angle α was directed 10 degrees to the left with respect to the web traveling direction, and a nozzle that swung ± 18 degrees around the angle α was passed.
Thereafter, a spunbonded nonwoven fabric having a fiber diameter of 16 μm and a basis weight of 40 g / m 2 was obtained by the same thermocompression treatment as in Example 1. The resulting spunbonded nonwoven fabric of Example 2 had a fiber orientation degree distribution peak of 30 degrees, a transverse tensile strength of 97 N / 5 cm, and a tensile strength warp / width ratio of 1.54.
[実施例3]
 ウェブ進行方向に対し角度αを5度の右方向に向け、角度αを中心に±18度で揺動するノズルを通過させた以外は実施例1と同様にして、繊維ウェブを捕集した。
 その後、実施例1と同様の熱圧着処理により、繊維径16μm、目付40g/mのスパンボンド不織布を得た。得られた実施例3のスパンボンド不織布は、繊維配向度分布のピークが25度、ヨコ引張強力が93N/5cm、引張強力タテ/ヨコ比が1.67であった。
[Example 3]
The fiber web was collected in the same manner as in Example 1 except that the angle α was directed rightward by 5 degrees with respect to the web traveling direction, and a nozzle that swung ± 18 degrees around the angle α was passed.
Thereafter, a spunbonded nonwoven fabric having a fiber diameter of 16 μm and a basis weight of 40 g / m 2 was obtained by the same thermocompression treatment as in Example 1. The obtained spunbonded nonwoven fabric of Example 3 had a fiber orientation degree distribution peak of 25 degrees, a horizontal tensile strength of 93 N / 5 cm, and a tensile strength vertical / horizontal ratio of 1.67.
[実施例4]
 ウェブ進行方向に対し角度αを10度の右方向に向け、角度αを中心に±20度で揺動するノズルを通過させた以外は実施例1と同様にして、繊維ウェブを捕集した。
 その後、実施例1と同様の熱圧着処理により、繊維径16μm、目付40g/mのスパンボンド不織布を得た。得られた実施例4のスパンボンド不織布は、繊維配向度分布のピークが40度、ヨコ引張強力が95N/5cm、引張強力タテ/ヨコ比が1.53であった。
[Example 4]
The fiber web was collected in the same manner as in Example 1 except that the angle α was directed rightward by 10 degrees with respect to the web traveling direction, and the nozzle was swung at ± 20 degrees around the angle α.
Thereafter, a spunbonded nonwoven fabric having a fiber diameter of 16 μm and a basis weight of 40 g / m 2 was obtained by the same thermocompression treatment as in Example 1. The resulting spunbonded nonwoven fabric of Example 4 had a fiber orientation degree distribution peak of 40 degrees, a horizontal tensile strength of 95 N / 5 cm, and a tensile strength vertical / horizontal ratio of 1.53.
[実施例5]
 繊維径が14μmとなるよう吐出量を調整し、ウェブ進行方向に対し角度αを10度の左方向に向け、角度αを中心に±13度で揺動するノズルを通過させ、また目付が40g/mとなるよう繊維ウェブを捕集するコンベアの移動速度を調整した以外は実施例1と同様にして、繊維ウェブを捕集した。
 その後、実施例1と同様の熱圧着処理により、繊維径14μm、目付40g/mのスパンボンド不織布を得た。得られた実施例5のスパンボンド不織布は、繊維配向度分布のピークが15度、ヨコ引強力が105N/5cm、引張強力タテ/ヨコ比が1.79であった。
[Example 5]
The discharge amount is adjusted so that the fiber diameter becomes 14 μm, the angle α is turned 10 degrees to the left with respect to the web traveling direction, the nozzle swinging ± 13 degrees around the angle α is passed, and the basis weight is 40 g. The fiber web was collected in the same manner as in Example 1 except that the moving speed of the conveyor for collecting the fiber web was adjusted to be / m 2 .
Thereafter, a spunbonded nonwoven fabric having a fiber diameter of 14 μm and a basis weight of 40 g / m 2 was obtained by the same thermocompression treatment as in Example 1. The resulting spunbonded nonwoven fabric of Example 5 had a fiber orientation degree distribution peak of 15 degrees, a transverse pulling strength of 105 N / 5 cm, and a tensile strength warp / width ratio of 1.79.
[実施例6]
 ウェブ進行方向に対し角度αを15度の左方向に向け、角度αを中心に±13度で揺動するノズルを通過させた以外は実施例5と同様にして、繊維ウェブを捕集した。
 その後、実施例1と同様の熱圧着処理により、繊維径14μm、目付40g/mのスパンボンド不織布を得た。得られた実施例6のスパンボンド不織布は、繊維配向度分布のピークが20度、ヨコ引強力が110N/5cm、引張強力タテ/ヨコ比が1.68であった。
[Example 6]
The fiber web was collected in the same manner as in Example 5 except that the angle α was directed to the left at 15 degrees with respect to the web traveling direction, and the nozzle was swung at ± 13 degrees around the angle α.
Thereafter, a spunbonded nonwoven fabric having a fiber diameter of 14 μm and a basis weight of 40 g / m 2 was obtained by the same thermocompression treatment as in Example 1. The obtained spunbonded nonwoven fabric of Example 6 had a fiber orientation degree distribution peak of 20 degrees, a transverse pulling strength of 110 N / 5 cm, and a tensile strength warp / width ratio of 1.68.
[実施例7]
 ウェブ進行方向に対し角度αを12度の左方向に向け、角度αを中心に±15度で揺動するノズルを通過させた以外は実施例5と同様にして、繊維ウェブを捕集した。
 その後、上側に円形パターンの規則的な凸部を有するエンボスロール、下側に凹凸の無いフラットロールを用い、熱圧着される圧着部の面積比率を10%とした熱圧着処理により、繊維径14μm、目付40g/mのスパンボンド不織布を得た。得られた実施例7のスパンボンド不織布は、繊維配向度分布のピークが15度、ヨコ引張強力が100N/5cm、引張強力タテ/ヨコ比が1.75であった。
[Example 7]
The fiber web was collected in the same manner as in Example 5 except that the angle α was directed to the left by 12 degrees with respect to the web traveling direction, and the nozzle was swung at ± 15 degrees around the angle α.
Thereafter, an embossing roll having a regular convex portion of a circular pattern on the upper side and a flat roll having no irregularities on the lower side, and a fiber diameter of 14 μm by a thermocompression treatment with an area ratio of the pressure-bonding part to be thermocompression bonded to 10%. A spunbonded nonwoven fabric having a basis weight of 40 g / m 2 was obtained. The obtained spunbonded nonwoven fabric of Example 7 had a fiber orientation degree distribution peak of 15 degrees, a horizontal tensile strength of 100 N / 5 cm, and a tensile strength vertical / horizontal ratio of 1.75.
[実施例8]
 目付が55g/mとなるよう繊維ウェブを捕集するコンベアの移動速度を調整した以外は実施例1と同様にして、繊維ウェブを捕集した。
 その後、実施例1と同様の熱圧着処理により、繊維径16μm、目付55g/mのスパンボンド不織布を得た。得られた実施例8のスパンボンド不織布は、繊維配向度分布のピークが36度、ヨコ引張強力が138N/5cm、引張強力タテ/ヨコ比が1.69であった。
[Example 8]
The fiber web was collected in the same manner as in Example 1 except that the moving speed of the conveyor for collecting the fiber web was adjusted so that the basis weight was 55 g / m 2 .
Thereafter, a spunbonded nonwoven fabric having a fiber diameter of 16 μm and a basis weight of 55 g / m 2 was obtained by the same thermocompression treatment as in Example 1. The spunbonded nonwoven fabric obtained in Example 8 had a fiber orientation degree distribution peak of 36 degrees, a transverse tensile strength of 138 N / 5 cm, and a tensile strength warp / width ratio of 1.69.
[比較例1]
 ウェブ進行方向に対し角度αを0度、角度αを中心に±18度で揺動するノズルを通過させた以外は実施例1と同様にして、繊維ウェブを捕集した。
 その後、実施例1と同様の熱圧着処理により、繊維径16μm、目付40g/mのスパンボンド不織布を得た。得られた比較例1のスパンボンド不織布は、繊維配向度分布のピークが5度、ヨコ引張強力が85N/5cm、引張強力タテ/ヨコ比が2.00であった。
[Comparative Example 1]
The fiber web was collected in the same manner as in Example 1 except that the nozzle was swung at an angle α of 0 ° and an angle α of ± 18 ° with respect to the web traveling direction.
Thereafter, a spunbonded nonwoven fabric having a fiber diameter of 16 μm and a basis weight of 40 g / m 2 was obtained by the same thermocompression treatment as in Example 1. The obtained spunbonded nonwoven fabric of Comparative Example 1 had a fiber orientation degree distribution peak of 5 degrees, a horizontal tensile strength of 85 N / 5 cm, and a tensile strength vertical / horizontal ratio of 2.00.
[比較例2]
 ウェブ進行方向に対し角度αを0度、角度αを中心に±25度で揺動するノズルを通過させた以外は実施例1と同様にして、繊維ウェブを捕集した。
 その後、実施例1と同様の熱圧着処理により、繊維径16μm、目付40g/mのスパンボンド不織布を得た。得られた比較例2のスパンボンド不織布は、繊維配向度分布のピークが8度、ヨコ引張強力が130N/5cm、引張強力タテ/ヨコ比が1.22であった。
[Comparative Example 2]
The fiber web was collected in the same manner as in Example 1 except that the nozzle was swung at an angle α of 0 degree and about ± 25 degrees about the angle α with respect to the web traveling direction.
Thereafter, a spunbonded nonwoven fabric having a fiber diameter of 16 μm and a basis weight of 40 g / m 2 was obtained by the same thermocompression treatment as in Example 1. The obtained spunbonded nonwoven fabric of Comparative Example 2 had a fiber orientation degree distribution peak of 8 degrees, a horizontal tensile strength of 130 N / 5 cm, and a tensile strength vertical / horizontal ratio of 1.22.
[比較例3]
 繊維径が14μmとなるよう吐出量を調整し、ウェブ進行方向に対し角度αを0度、角度αを中心に±13度で揺動するノズルを通過させ、また目付が40g/mとなるよう繊維ウェブを捕集するコンベアの移動速度を調整した以外は実施例5と同様にして、繊維ウェブを捕集した。
 その後、実施例1と同様の熱圧着処理により、繊維径14μm、目付40g/mのスパンボンド不織布を得た。得られた比較例3のスパンボンド不織布は、繊維配向度分布のピークが2度、ヨコ引張強力が89N/5cm、引張強力タテ/ヨコ比が2.13であった。
[Comparative Example 3]
The discharge amount is adjusted so that the fiber diameter is 14 μm, and the nozzle is swung at an angle α of 0 degree with respect to the web traveling direction and ± 13 degrees around the angle α, and the basis weight is 40 g / m 2. The fiber web was collected in the same manner as in Example 5 except that the moving speed of the conveyor for collecting the fiber web was adjusted.
Thereafter, a spunbonded nonwoven fabric having a fiber diameter of 14 μm and a basis weight of 40 g / m 2 was obtained by the same thermocompression treatment as in Example 1. The resulting spunbonded nonwoven fabric of Comparative Example 3 had a fiber orientation degree distribution peak of 2 degrees, a transverse tensile strength of 89 N / 5 cm, and a tensile strength warp / width ratio of 2.13.
[比較例4]
 ウェブ進行方向に対し角度αを30度の右方向に向け、角度αを中心に±18度で揺動するノズルを通過させた以外は実施例1と同様にして、繊維ウェブを捕集した。
 その後、実施例1と同様の熱圧着処理により、繊維径16μm、目付40g/mのスパンボンド不織布を得た。得られた比較例4のスパンボンド不織布は、繊維配向度分布のピークが55度、ヨコ引張強力が110N/5cm、引張強力タテ/ヨコ比が1.18であった。
[Comparative Example 4]
The fiber web was collected in the same manner as in Example 1 except that the angle α was directed to the right direction of 30 degrees with respect to the web traveling direction, and the nozzle was swung at ± 18 degrees around the angle α.
Thereafter, a spunbonded nonwoven fabric having a fiber diameter of 16 μm and a basis weight of 40 g / m 2 was obtained by the same thermocompression treatment as in Example 1. The obtained spunbonded nonwoven fabric of Comparative Example 4 had a fiber orientation degree distribution peak of 55 degrees, a horizontal tensile strength of 110 N / 5 cm, and a tensile strength vertical / horizontal ratio of 1.18.
[比較例5]
 繊維径が14μmとなるよう吐出量を調整し、ウェブ進行方向に対し角度αを30度の左方向に向け、角度αを中心に±13度で揺動するノズルを通過させ、また目付が40g/mとなるよう繊維ウェブを捕集するコンベアの移動速度を調整した以外は実施例5と同様にして、繊維ウェブを捕集した。
 その後、実施例1と同様の熱圧着処理により、繊維径14μm、目付40g/mのスパンボンド不織布を得た。得られた比較例5のスパンボンド不織布は、繊維配向度分布のピークが50度、ヨコ引張強力が115N/5cm、引張強力タテ/ヨコ比が1.17であった。
 上記の各実施例と比較例のスパンボンド不織布の特性を、次の表1に示す。
[Comparative Example 5]
The discharge amount is adjusted so that the fiber diameter is 14 μm, the angle α is directed leftward by 30 degrees with respect to the web traveling direction, the nozzle swinging ± 13 degrees around the angle α is passed, and the basis weight is 40 g. The fiber web was collected in the same manner as in Example 5 except that the moving speed of the conveyor for collecting the fiber web was adjusted to be / m 2 .
Thereafter, a spunbonded nonwoven fabric having a fiber diameter of 14 μm and a basis weight of 40 g / m 2 was obtained by the same thermocompression treatment as in Example 1. The obtained spunbonded nonwoven fabric of Comparative Example 5 had a fiber orientation degree distribution peak of 50 degrees, a horizontal tensile strength of 115 N / 5 cm, and a tensile strength vertical / horizontal ratio of 1.17.
The characteristics of the spunbonded nonwoven fabrics of the above examples and comparative examples are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~8の各スパンボンド不織布は、いずれも繊維配向度分布のピークが10~50度であり、引張強力タテ/ヨコ比は1.3~1.8を満たしているため、優れたヨコ引張強力を有し、また地合や品位が良好なスパンボンド不織布であり、ハウスラップ材として適したものであった。 As shown in Table 1, each of the spunbond nonwoven fabrics of Examples 1 to 8 has a fiber orientation degree distribution peak of 10 to 50 degrees and a tensile strength warp / width ratio of 1.3 to 1.8. Since it satisfies, it is a spunbonded nonwoven fabric having excellent horizontal tensile strength, good formation and quality, and suitable as a house wrap material.
 これに対し、比較例1、3のスパンボンド不織布は、いずれも繊維配向度分布のピークが10度未満にあり、引張強力タテ/ヨコ比は1.3~1.8を満たすものではなく、ヨコ引張強力が低くハウスラップ材として適したものではなかった。また、比較例2,4,5のスパンボンド不織布は、捲くれる欠点の発生が多く、良好な品位を得られずハウスラップ材として適したものではなかった。 On the other hand, the spunbonded nonwoven fabrics of Comparative Examples 1 and 3 all have a fiber orientation degree distribution peak of less than 10 degrees, and the tensile strength warp / width ratio does not satisfy 1.3 to 1.8. The horizontal tensile strength was low and it was not suitable as a house wrap material. In addition, the spunbonded nonwoven fabrics of Comparative Examples 2, 4, and 5 had many wrinkling defects and were not suitable as house wrap materials because they could not obtain good quality.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更および変形が可能であることは、当業者にとって明らかである。なお本出願は、2016年10月27日付で出願された日本特許出願(特願2016-210317)に基づいており、その全体が引用により援用される。 Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application (Japanese Patent Application No. 2016-210317) filed on Oct. 27, 2016, which is incorporated by reference in its entirety.
 本発明のスパンボンド不織布はヨコ引張強力に優れ地合や品位を併せ持つので、ハウスラップ材として有用である。また、本発明のスパンボンド不織布の用途は、上記に限定されるものではなく、例えば、フィルター、フィルター基材、電線押え巻材等の工業資材、壁紙、屋根下葺材、遮音材、断熱材、吸音材等の建築資材、ラッピング材、袋材、看板材、印刷基材等の生活資材、防草シート、排水材、地盤補強材、遮音材、吸音材等の土木資材、べたがけ材、遮光シート等の農業資材、天井材、およびスペアタイヤカバー材等の車輌資材等に用いることができる。 The spunbonded nonwoven fabric of the present invention is useful as a house wrap material because it has excellent horizontal tensile strength and has both texture and quality. In addition, the use of the spunbonded nonwoven fabric of the present invention is not limited to the above, for example, industrial materials such as filters, filter base materials, electric wire holding materials, wallpaper, roof covering materials, sound insulation materials, heat insulating materials, Building materials such as sound-absorbing materials, wrapping materials, bag materials, signboard materials, living materials such as printing base materials, grass protection sheets, drainage materials, ground reinforcement materials, sound insulation materials, sound-absorbing materials, etc., solid materials, light shielding It can be used for agricultural materials such as seats, vehicle materials such as ceiling materials, and spare tire cover materials.
  1…紡糸口金
  2…エジェクター
  3…エアサッカー
  4…ノズル
  5…帯電手段
  6…移動捕集面
  7…繊維ウェブ
 8a、8b…フラットロール
  9…エンボスロール
 9a…一方のロール(上側ロール)
 9b…他方のロール(下側ロール)
 10…不織布
 11…加熱圧接部
  α…ノズル角度
  θ…揺動角度
  D…ウェブ進行方向(長手方向)
DESCRIPTION OF SYMBOLS 1 ... Spinneret 2 ... Ejector 3 ... Air soccer 4 ... Nozzle 5 ... Charging means 6 ... Moving collection surface 7 ... Fiber web 8a, 8b ... Flat roll 9 ... Embossing roll 9a ... One roll (upper roll)
9b ... the other roll (lower roll)
DESCRIPTION OF SYMBOLS 10 ... Nonwoven fabric 11 ... Heat-pressing part (alpha) ... Nozzle angle (theta) ... Swing angle D ... Web advancing direction (longitudinal direction)

Claims (7)

  1.  熱可塑性連続フィラメントより構成される部分的に熱圧着されてなるスパンボンド不織布であって、前記不織布のタテ方向に対する前記フィラメントの繊維配向度分布のピークが10~50度にあり、前記不織布の引張強力タテ/ヨコ比が1.3~1.8であることを特徴とする、スパンボンド不織布。 A spunbonded nonwoven fabric that is partially thermocompression-bonded composed of thermoplastic continuous filaments, wherein the filament has a fiber orientation degree distribution peak in the vertical direction of 10 to 50 degrees with respect to the longitudinal direction of the nonwoven fabric. A spunbonded nonwoven fabric characterized by having a strong warp / width ratio of 1.3 to 1.8.
  2.  繊維配向度10~50度の繊維割合が60~80%である、請求項1に記載のスパンボンド不織布。 2. The spunbonded nonwoven fabric according to claim 1, wherein the fiber ratio of the fiber orientation degree is 10 to 50 degrees is 60 to 80%.
  3.  目付当たりのヨコ引張強力が2.2N/5cm/(g/m)以上である、請求項1または請求項2に記載のスパンボンド不織布。 The spunbonded nonwoven fabric according to claim 1 or 2, wherein the transverse tensile strength per unit weight is 2.2 N / 5 cm / (g / m 2 ) or more.
  4.  前記熱可塑性連続フィラメントが、高融点重合体の周りに該高融点重合体の融点よりも低い融点を有する低融点重合体を配した複合型フィラメントである、請求項1~請求項3のいずれか1項に記載のスパンボンド不織布。 4. The composite filament according to claim 1, wherein the thermoplastic continuous filament is a composite filament in which a low melting point polymer having a melting point lower than that of the high melting point polymer is arranged around the high melting point polymer. The spunbonded nonwoven fabric according to item 1.
  5.  前記スパンボンド不織布が、面積比率8~30%の部分的熱圧着部を有する、請求項1~請求項4のいずれか1項に記載のスパンボンド不織布。 The spunbond nonwoven fabric according to any one of claims 1 to 4, wherein the spunbond nonwoven fabric has a partial thermocompression bonding portion having an area ratio of 8 to 30%.
  6.  請求項1~請求項5のいずれか1項に記載のスパンボンド不織布を用いてなるハウスラップ材。 A house wrap material comprising the spunbonded nonwoven fabric according to any one of claims 1 to 5.
  7.  下記(a)~(d)を順次実施することを特徴とするスパンボンド不織布の製造方法。
    (a)熱可塑性重合体を紡糸口金から溶融押し出し後、これをエアサッカーにより牽引、延伸して熱可塑性連続フィラメントを得る工程
    (b)得られたフィラメントをウェブ進行方向に対して、5~25度の方向に向けた噴射ノズルを±10~±25度の範囲内で揺動し、フィラメントを開繊させる工程
    (c)開繊したフィラメントを移動するコンベア上に堆積させて繊維ウェブを形成する工程
    (d)得られた繊維ウェブに部分的熱圧着を施す工程
    A method for producing a spunbonded nonwoven fabric, wherein the following (a) to (d) are sequentially performed.
    (A) Step of obtaining a thermoplastic continuous filament by drawing and stretching the thermoplastic polymer from a spinneret and then drawing and stretching it with an air soccer (b) The obtained filament is 5 to 25 with respect to the web traveling direction. The step of swinging the spray nozzle directed in the direction of degrees within a range of ± 10 to ± 25 degrees to open the filament (c) depositing the opened filament on a moving conveyor to form a fiber web Step (d) Step of applying partial thermocompression to the obtained fiber web
PCT/JP2017/038602 2016-10-27 2017-10-26 Spunbond nonwoven fabric and method for manufacturing same WO2018079635A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197010948A KR102242725B1 (en) 2016-10-27 2017-10-26 Spunbond nonwoven fabric and its manufacturing method
JP2018514481A JP7070404B2 (en) 2016-10-27 2017-10-26 Manufacturing method of spunbonded non-woven fabric

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-210317 2016-10-27
JP2016210317 2016-10-27

Publications (1)

Publication Number Publication Date
WO2018079635A1 true WO2018079635A1 (en) 2018-05-03

Family

ID=62025026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038602 WO2018079635A1 (en) 2016-10-27 2017-10-26 Spunbond nonwoven fabric and method for manufacturing same

Country Status (4)

Country Link
JP (1) JP7070404B2 (en)
KR (1) KR102242725B1 (en)
TW (1) TW201819705A (en)
WO (1) WO2018079635A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112204193A (en) * 2018-05-31 2021-01-08 东丽株式会社 Non-woven fabric for wall decoration material and method for manufacturing same
WO2021200369A1 (en) * 2020-03-31 2021-10-07 東レ株式会社 Spun-bonded non-woven cloth
EP3812027A4 (en) * 2018-06-25 2022-04-20 Toray Industries, Inc. Spunbond nonwoven fabric for use in filters, and manufacturing method thereof
JP7405590B2 (en) 2019-12-12 2023-12-26 花王株式会社 Manufacturing method of nonwoven fabric

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202140885A (en) * 2020-04-24 2021-11-01 財團法人紡織產業綜合研究所 Down-including textile
JP2023539153A (en) * 2020-09-08 2023-09-13 コーロン インダストリーズ インク Spunbond nonwoven fabric containing no residual harmful substances and having improved opening quality, its manufacturing method, and manufacturing equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155764A (en) * 1984-01-25 1985-08-15 旭化成株式会社 Production of non-woven web
JPH09324356A (en) * 1996-06-07 1997-12-16 Teijin Ltd Production of filament web
JP2895960B2 (en) * 1989-11-08 1999-05-31 ファイバウエブ・ノース・アメリカ・インコーポレーテッド Method and apparatus for providing homodisperse filaments from spun filament bundles and resulting spunbonded fabric
JP2003147672A (en) * 2001-11-09 2003-05-21 Kobe Steel Ltd Nonwoven fabric-manufacturing apparatus and manufacturing method therefor
JP2006508262A (en) * 2002-11-27 2006-03-09 ポリフェルト・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method for producing geotextiles with constant isotropic properties from melt-spun filaments
JP2007197891A (en) * 2005-12-26 2007-08-09 Toyobo Co Ltd Spun-bond nonwoven fabric

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100889249B1 (en) * 2007-10-30 2009-03-17 주식회사 한스물산 House wrap film
JP2014040677A (en) 2012-08-21 2014-03-06 Toray Ind Inc Nonwoven fabric for house wrap material and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155764A (en) * 1984-01-25 1985-08-15 旭化成株式会社 Production of non-woven web
JP2895960B2 (en) * 1989-11-08 1999-05-31 ファイバウエブ・ノース・アメリカ・インコーポレーテッド Method and apparatus for providing homodisperse filaments from spun filament bundles and resulting spunbonded fabric
JPH09324356A (en) * 1996-06-07 1997-12-16 Teijin Ltd Production of filament web
JP2003147672A (en) * 2001-11-09 2003-05-21 Kobe Steel Ltd Nonwoven fabric-manufacturing apparatus and manufacturing method therefor
JP2006508262A (en) * 2002-11-27 2006-03-09 ポリフェルト・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method for producing geotextiles with constant isotropic properties from melt-spun filaments
JP2007197891A (en) * 2005-12-26 2007-08-09 Toyobo Co Ltd Spun-bond nonwoven fabric

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112204193A (en) * 2018-05-31 2021-01-08 东丽株式会社 Non-woven fabric for wall decoration material and method for manufacturing same
EP3812027A4 (en) * 2018-06-25 2022-04-20 Toray Industries, Inc. Spunbond nonwoven fabric for use in filters, and manufacturing method thereof
JP7405590B2 (en) 2019-12-12 2023-12-26 花王株式会社 Manufacturing method of nonwoven fabric
WO2021200369A1 (en) * 2020-03-31 2021-10-07 東レ株式会社 Spun-bonded non-woven cloth
JPWO2021200369A1 (en) * 2020-03-31 2021-10-07
CN115315547A (en) * 2020-03-31 2022-11-08 东丽株式会社 Spun-bonded non-woven fabric
JP7180761B2 (en) 2020-03-31 2022-11-30 東レ株式会社 spunbond nonwoven fabric

Also Published As

Publication number Publication date
JP7070404B2 (en) 2022-05-18
TW201819705A (en) 2018-06-01
KR20190066019A (en) 2019-06-12
KR102242725B1 (en) 2021-04-22
JPWO2018079635A1 (en) 2019-09-19

Similar Documents

Publication Publication Date Title
WO2018079635A1 (en) Spunbond nonwoven fabric and method for manufacturing same
JP4619947B2 (en) High strength nonwoven fabric
CN109642378B (en) Spun-bonded nonwoven fabric and method for producing same
JP5199537B2 (en) Polylactic acid based composite fiber and nonwoven fabric and cushion material using the same
JP2014040677A (en) Nonwoven fabric for house wrap material and method for producing the same
CN109642377B (en) Spun-bonded nonwoven fabric and method for producing same
JP7092193B2 (en) Non-woven fabric for curtains and its manufacturing method
JP7160094B2 (en) NONWOVEN FABRIC FOR WALL COVERING MATERIAL AND METHOD FOR MANUFACTURING SAME
JP2019210591A (en) Non-woven fabric for sash and manufacturing method thereof
JP4140996B2 (en) Polyester long fiber nonwoven fabric and method for producing the same
JP6822106B2 (en) Spunbonded non-woven fabric and its manufacturing method
JP4140997B2 (en) Polyester long fiber nonwoven fabric and method for producing the same
JP2017155385A (en) Nonwoven fabric for air cleaner
JP7409566B1 (en) Long-fiber nonwoven fabric, airbag packaging material containing the same, and method for producing long-fiber nonwoven fabric
JP6158117B2 (en) Nonwoven insulation
JPH07207566A (en) Laminated nonwoven fabric and its production
WO2023149388A1 (en) Non-woven fabric, production method for same, and construction material
JP2010216044A (en) Nonwoven fabric for phenol resin foam
WO2024024215A1 (en) Long fiber nonwoven fabric, airbag package including same, and method for producing long fiber nonwoven fabric
JP4211496B2 (en) Sound absorbing material component and sound absorbing material
JP2024065357A (en) Spunbond nonwoven fabric for asphalt roofing substrate, and asphalt roofing substrate
JPH09195458A (en) Waterproof sheet, manufacture, application, and execution method thereof
KR20220112773A (en) Spunbond nonwoven fabric, filter media for dust collector pleated filter, dust collector pleated filter and large air volume pulse jet type dust collector
JP2023097053A (en) Spun-bonded nonwoven fabric, sheet for skin material, and skin material
JP2023147960A (en) Non-woven fabric roll and manufacturing method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018514481

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17863376

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197010948

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17863376

Country of ref document: EP

Kind code of ref document: A1