JP2007197891A - Spun-bond nonwoven fabric - Google Patents

Spun-bond nonwoven fabric Download PDF

Info

Publication number
JP2007197891A
JP2007197891A JP2006345285A JP2006345285A JP2007197891A JP 2007197891 A JP2007197891 A JP 2007197891A JP 2006345285 A JP2006345285 A JP 2006345285A JP 2006345285 A JP2006345285 A JP 2006345285A JP 2007197891 A JP2007197891 A JP 2007197891A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
fiber
strength
flatness
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006345285A
Other languages
Japanese (ja)
Inventor
Hiroyuki Sakamoto
浩之 坂本
Takashi Koida
貴史 恋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2006345285A priority Critical patent/JP2007197891A/en
Publication of JP2007197891A publication Critical patent/JP2007197891A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spun-bond nonwoven fabric excellent in strengths of the nonwoven fabric in a specific direction by improving surface flatness and maintaining fiber strengths without using a binder. <P>SOLUTION: The spun-bond nonwoven fabric is prepared by opening a continuous fiber comprising a polyethylene terephthalate as a main component, subsequently conjugately integrating the opened fiber by heat pressure adhesion. In the nonwoven fabric, the ratio of flatness of a fiber cross section of the top surface layer over the flatness of the fiber cross section of the inner layer is ≥1.1, tensile strength in vertical direction per grammage is ≥3 times than that in lateral direction and the tensile strength in the vertical strength per thickness is ≥2000N/5cm×mm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、不織布の表面平滑性と特定方向に特に強い引張強力などが要求される分野、例えば、電線押さえ巻きテープ、印刷基材、ハウスラップなどの分野において有用なスパンボンド不織布に関するものである。   The present invention relates to a spunbond nonwoven fabric that is useful in fields where surface smoothness of the nonwoven fabric and particularly strong tensile strength in a specific direction are required, for example, fields such as wire holding tapes, printing substrates, and house wraps. .

電線押さえ巻きテープなどに特に要求される性能は、引張強力、シース材との剥離を容易にする表面の緻密さ及び表面平滑性、さらに巻き上げ量を増加できるという経済上の理由から薄くて強いという性能も要求されている。   The performance required especially for wire holding tapes, etc. is said to be thin and strong for economic reasons that the tensile strength, surface density and surface smoothness that facilitates peeling from the sheath material, and the amount of winding can be increased. Performance is also required.

従来、ポリエチレンテレフタレートスパンボンド不織布において、表面平滑で薄くて強い不織布を得るには、例えば、特許文献1の如く扁平断面糸を用いて加熱圧着接合強度を向上させる方法が知られている。しかしながら、電線押さえ巻きテープに必要とされる強力及び表面平滑性は、前記先行技術の方法だけでは確保できなかった。電線押さえ巻きテープに適した不織布を得る方法として、特許文献2及び特許文献3には、扁平断面糸に加えて、接着剤の併用、いわゆる樹脂加工による方法が示されている。このように、従来は、ポリエチレンテレフタレートスパンボンド不織布において、表面平滑で、薄くて強い不織布を得るには、加熱圧着による接合のみでは強力及び平滑性が不足するため、樹脂加工を併用する必要があった。   Conventionally, a method of improving thermocompression bonding strength using flat cross-sectional yarns as disclosed in Patent Document 1, for example, is known in order to obtain a thin, strong and smooth nonwoven fabric in a polyethylene terephthalate spunbond nonwoven fabric. However, the strength and surface smoothness required for the wire holding tape cannot be ensured only by the prior art method. As a method for obtaining a non-woven fabric suitable for a wire holding tape, Patent Document 2 and Patent Document 3 disclose a method using a combination of an adhesive, so-called resin processing, in addition to a flat section yarn. Thus, in the past, in polyethylene terephthalate spunbonded nonwoven fabrics, in order to obtain a thin, strong nonwoven fabric with a smooth surface, it is necessary to use resin processing together because the strength and smoothness are insufficient only by joining by thermocompression bonding. It was.

樹脂加工を併用しないノーバインダータイプの、表面が平滑で、薄くて強い不織布を得る方法として、特許文献4及び特許文献5には、還元粘度の高いポリエステルからなる繊度の低い扁平断面糸を用いて部分熱圧着する方法が示されている。この方法では、異型断面による繊維の強力低下を、還元粘度を高くして繊維強力を維持したにもかかわらず、ノーバインダーで、且つ、薄くするために圧縮率を高めて熱圧着しているため、薄く且つ表面の平滑性は向上するが、繊維の損傷が大きくなることでの強力低下が著しくなり、実質的には強力が低下する問題がある。   As a method for obtaining a non-binder type non-binder type non-binder type with a smooth surface, thin and strong nonwoven fabric, Patent Document 4 and Patent Document 5 use flat cross-sectional yarns of low fineness made of polyester with high reduced viscosity. A method of partial thermocompression bonding is shown. In this method, the strength reduction of the fiber due to the irregular cross section is a no-binder and the thermocompression bonding is performed by increasing the compression ratio in order to reduce the thickness even though the reduced viscosity is increased and the fiber strength is maintained. Although it is thin and the smoothness of the surface is improved, there is a problem that the strength is significantly reduced due to the large damage of the fiber, and the strength is substantially reduced.

上述の如く、ノーバインダーで、表面の平滑性を向上させ、且つ、繊維の強力も保持して不織布強力も優れたスパンボンド不織布は得られていないのが現状である。   As described above, the present situation is that no spunbonded nonwoven fabric has been obtained that has no binder, improves the surface smoothness, retains the strength of the fibers, and has excellent nonwoven fabric strength.

特公昭57−24427号公報Japanese Patent Publication No.57-24427 特開昭55−32342号公報JP-A-55-32342 特開昭57−56564号公報JP-A-57-56564 特開2001−89963号公報JP 2001-89963 A 特開2001−140157号公報JP 2001-140157 A

本発明は従来技術の課題を背景になされたもので、ノーバインダーで、表面の平滑性を向上させ、且つ、繊維の強力も保持して、特定方向の不織布強力が優れたスパンボンド不織布を提案するものである。   The present invention was made against the background of the problems of the prior art, and proposes a spunbonded nonwoven fabric that has a non-binder, improves surface smoothness, retains fiber strength, and has excellent nonwoven strength in a specific direction. To do.

本発明者らは上記課題を解決するため、鋭意研究した結果、繊維強力の高い断面形状の繊維を用い、不織布内層の繊維の損傷をできるだけ抑制する方法で不織布強力を向上できることを知見し、遂に本発明を完成するに到った。   As a result of diligent research to solve the above-mentioned problems, the present inventors have found that the strength of the nonwoven fabric can be improved by using a fiber having a high fiber strength in a cross-sectional shape and suppressing damage to the fibers of the inner layer of the nonwoven fabric as much as possible. The present invention has been completed.

即ち本発明は、以下の通りである。
1.ポリエチレンテレフタレートを主成分とした連続繊維が開繊された後、熱圧着により接合一体化されてなる不織布において、該不織布の構成繊維の固有粘度が0.62以上であって、最表層の繊維断面の扁平度と内層の繊維断面の扁平度との比が1.1以上であり、目付当りの縦方向の引張強度が横方向の引張強度の3倍以上、厚み当り縦方向の引張強度が2000N/5cm・mm以上であることを特徴とするスパンボンド不織布。
2.単繊維の繊度が0.5dtex〜4dtex、目付当りの縦方向の引張強度が4N/(5cm)/(g/m2)以上、伸度が40%以下である上記1記載のスパンボンド不織布。
That is, the present invention is as follows.
1. After the continuous fiber mainly composed of polyethylene terephthalate is opened, the nonwoven fabric is joined and integrated by thermocompression bonding, and the inherent viscosity of the constituent fiber of the nonwoven fabric is 0.62 or more, and the fiber cross section of the outermost layer The ratio between the flatness of the inner layer and the flatness of the fiber cross section of the inner layer is 1.1 or more, the tensile strength in the vertical direction per basis weight is at least three times the tensile strength in the horizontal direction, and the tensile strength in the vertical direction per thickness is 2000 N A spunbonded nonwoven fabric characterized by having a thickness of / 5 cm · mm or more.
2. 2. The spunbonded nonwoven fabric according to 1 above, wherein the single fiber has a fineness of 0.5 to 4 dtex, a tensile strength in the machine direction per unit weight of 4 N / (5 cm) / (g / m 2 ) or more, and an elongation of 40% or less.

本発明のスパンボンド不織布は、表面の平滑化は表層の繊維を扁平化せしめるが、不織布内層の繊維は扁平化させずに損傷をできるだけ抑制する方法で繊維強力を保持させ、特定方向の強力を向上させるのに、繊維配列を直列化させて構成しているので、ノーバインダーで、表面の平滑性を向上させ、且つ、繊維の強力も保持して、特定方向の不織布強力が優れたスパンボンド不織布であるので、より高強力化が要求される電線用押さえ巻きテープ、印刷基材、ハウスラップなどの用途に安価な基布として提供できる不織布である。   In the spunbonded nonwoven fabric of the present invention, the surface smoothing flattens the fibers of the surface layer, but the fibers of the inner layer of the nonwoven fabric retain the fiber strength by a method that suppresses damage as much as possible without flattening, and strengthen the strength in a specific direction. Spunbond with excellent non-woven fabric strength in a specific direction, because the fiber arrangement is arranged in series for improvement, no binder, improving surface smoothness and maintaining fiber strength Since it is a nonwoven fabric, it is a nonwoven fabric that can be provided as an inexpensive base fabric for uses such as press-wound tapes for electric wires, printing base materials, and house wraps that require higher strength.

以下、本発明を詳細に説明する。
本発明の不織布は、ポリエチレンテレフタレートを主成分とした不織布であることが好ましい。ポリエチレンテレフタレートは価格と強度のバランスに優れ、また連続繊維が開繊された後、熱圧着により接合一体化されてなる不織布であれば、柔軟性・強度等の物性に優れるからである。
Hereinafter, the present invention will be described in detail.
The nonwoven fabric of the present invention is preferably a nonwoven fabric mainly composed of polyethylene terephthalate. This is because polyethylene terephthalate has an excellent balance between price and strength, and is excellent in physical properties such as flexibility and strength if it is a nonwoven fabric that is joined and integrated by thermocompression bonding after the continuous fibers are opened.

本発明においてポリエチレンテレフタレートを主成分とするとは、エチレンテレフタレート単位を90モル%以上含有する組成であり、好ましくは含有率98%以上、より好ましくは含有率99%以上である。   In the present invention, the main component of polyethylene terephthalate is a composition containing 90 mol% or more of ethylene terephthalate units, preferably 98% or more, more preferably 99% or more.

本発明の不織布を構成するポリエチレンテレフタレート長繊維は、力学特性を保持するために固有粘度が0.62以上が好ましい。固有粘度が0.62以下では、紡糸時の配向結晶化を生起する引取速度が高くなるので、4000m/分〜5500m/分の引取速度範囲では低収縮化及び力学特性の付与が不充分となるので好ましくない。理由は明確ではないが、配向結晶化が不充分となり、シースコア構造化によるシース部の結晶化によるコア部の拘束力が劣るためではないかと推測される。他方、固有粘度が1.4を越える場合、4000m/分〜5500m/分で配向結晶化が進み過ぎてボイドを発生し、低比重化するため、力学特性の低下を招き好ましくない。本発明のより好ましい固有粘度は0.63〜0.8である。   The polyethylene terephthalate long fibers constituting the nonwoven fabric of the present invention preferably have an intrinsic viscosity of 0.62 or more in order to maintain mechanical properties. When the intrinsic viscosity is 0.62 or less, the take-up speed that causes orientational crystallization at the time of spinning becomes high. Therefore, in the take-up speed range of 4000 m / min to 5500 m / min, low shrinkage and imparting of mechanical properties are insufficient. Therefore, it is not preferable. The reason is not clear, but it is presumed that the orientation crystallization becomes insufficient and the binding force of the core portion due to the crystallization of the sheath portion due to the seascore structure is inferior. On the other hand, if the intrinsic viscosity exceeds 1.4, oriented crystallization proceeds excessively at 4000 m / min to 5500 m / min to generate voids and lower the specific gravity. The more preferable intrinsic viscosity of the present invention is 0.63 to 0.8.

本発明の不織布は、連続繊維が開繊積層された後、バインダー成分を用いないで熱圧着により接合一体化されていることが好ましい。連続繊維とすることにより、特定方向への繊維の配列コントロールが可能となり、一方向に特に強い強力を付与することができるからである。また、連続繊維を開繊することにより、不織布の斑が顕著に向上し、高い均質性が得られる。また、熱圧着による一体化により、表面の平滑性と圧縮充填による不織布の形態を保持して、繊維の強力を生かした不織布強力の発現が可能となる。ニードルパンチ等の機械的交絡処理による不織布形態形成では、繊維の損傷が大きくなり、不織布強力の低下をおこすので好ましくない。   The nonwoven fabric of the present invention is preferably joined and integrated by thermocompression bonding without using a binder component after continuous fibers are spread and laminated. This is because by using continuous fibers, it is possible to control the arrangement of fibers in a specific direction, and to impart particularly strong strength in one direction. Moreover, by opening the continuous fibers, the unevenness of the nonwoven fabric is remarkably improved and high homogeneity is obtained. Further, by integration by thermocompression, it is possible to maintain the smoothness of the surface and the shape of the nonwoven fabric by compression filling, and to develop the strength of the nonwoven fabric utilizing the strength of the fibers. Forming a nonwoven fabric by mechanical entanglement such as a needle punch is not preferable because fiber damage increases and the strength of the nonwoven fabric is reduced.

本発明の不織布は、最表層の繊維断面の扁平度と内層の繊維断面の扁平度との比(以下扁平度比:(最表層の繊維断面の扁平度)/(内層の繊維断面の扁平度))が1.1以上であることが好ましい。本願発明者らは、最表層の繊維のみを扁平とすることにより、優れた平滑性が得られ、一方内層を略円形とすることにより、強度の高い不織布が得られることを見出したからである。より好ましい扁平度比は、1.2以上、更に好ましい扁平度比は1.5以上、最も好ましい扁平度比は1.7以上である。なお、本発明でいう扁平度とは、繊維断面の長軸と短軸の長さの比(扁平度=長軸の長さ/短軸の長さ)をいう。   The nonwoven fabric of the present invention has a ratio of the flatness of the fiber cross section of the outermost layer and the flatness of the fiber cross section of the inner layer (hereinafter referred to as flatness ratio: (flatness of the fiber cross section of the outermost layer) / (flatness of the fiber cross section of the inner layer). )) Is preferably 1.1 or more. This is because the inventors of the present application have found that excellent smoothness can be obtained by flattening only the outermost fiber, and that a non-woven fabric having high strength can be obtained by making the inner layer substantially circular. A more preferred flatness ratio is 1.2 or more, a further preferred flatness ratio is 1.5 or more, and a most preferred flatness ratio is 1.7 or more. The flatness referred to in the present invention refers to the ratio of the major axis to the minor axis length of the fiber cross section (flatness = long axis length / minor axis length).

また、本発明の不織布の最表層の繊維の扁平度は2.0以上であることが好ましい。2.0以上であれば優れた平滑性を有する不織布が得られるからである。より好ましくは3.0以上、更に好ましくは4.0以上である。なお、本発明にいう最表層の繊維とは外界に面している繊維をいう。   The flatness of the outermost fiber layer of the nonwoven fabric of the present invention is preferably 2.0 or more. It is because the nonwoven fabric which has the outstanding smoothness will be obtained if it is 2.0 or more. More preferably, it is 3.0 or more, More preferably, it is 4.0 or more. In the present invention, the outermost layer fiber means a fiber facing the outside.

更に、本発明の内層の繊維の扁平度は1〜1.8であることが好ましい。かかる範囲であれば、優れた強度を有する不織布が得られるからである。より好ましくは1〜1.5、更に好ましくは1〜1.3である。なお、本発明にいう内層の繊維とは、不織布断面写真に中心線を引き、かかる中心線に接触する繊維をいう。   Furthermore, the flatness of the fibers of the inner layer of the present invention is preferably 1 to 1.8. This is because a nonwoven fabric having excellent strength can be obtained within such a range. More preferably, it is 1-1.5, More preferably, it is 1-1.3. In addition, the fiber of the inner layer said to this invention means the fiber which draws a center line in the nonwoven fabric cross-sectional photograph, and contacts this center line.

本発明の不織布において、扁平度比を1.1以上とする手段は特に限定されず、扁平糸と丸断面糸を積層一体化する方法等であってもよいが、丸断面糸からなる不織布をフラットローラー等で加圧し、表層を扁平化する方法が特に好ましい。かかる方法によって最表層が扁平化された不織布の表面は、表層に単に扁平糸を用いた場合に比しても優れた平滑性が実現できるからである。   In the nonwoven fabric of the present invention, the means for setting the flatness ratio to 1.1 or more is not particularly limited, and may be a method of laminating and integrating flat yarns and round cross-section yarns. A method of applying pressure with a flat roller or the like to flatten the surface layer is particularly preferable. This is because the surface of the nonwoven fabric whose outermost layer is flattened by such a method can realize excellent smoothness even when compared with the case where flat yarn is simply used for the surface layer.

また上記加圧は熱圧着であることが好ましく、不織布を構成する繊維の融点から10〜50℃低い温度で加圧することにより、表面層のみを特に扁平化し、扁平度比が高い不織布が得られ易くなる。より好ましくは、繊維の融点から10〜40℃低い温度、更に好ましくは繊維の融点から10〜30℃低い温度である。   The pressurization is preferably thermocompression bonding, and by pressing at a temperature 10 to 50 ° C. lower than the melting point of the fibers constituting the nonwoven fabric, only the surface layer is flattened, and a nonwoven fabric with a high flatness ratio is obtained. It becomes easy. More preferably, the temperature is 10 to 40 ° C. lower than the melting point of the fiber, more preferably 10 to 30 ° C. lower than the melting point of the fiber.

本発明の不織布は、目付当りの縦方向の引張強度が横方向の引張強度の3倍以上(以下縦横引張強度比)であることが好ましい。かかる要件を満たせば、特に、電線押え巻きテープ、印刷基材用途等に適合できるからである。すなわち、電線押え巻きテープ等特殊用途においては、縦方向への高いレベルの強力が必要であると同時に軽量化も必要である一方、横方向の強力は縦方向程の強力は必要とされていない。そして、不織布は、繊維配列によって縦方向と横方向のバランスの調整が可能であり、縦方向の強度を特に重視した設計とすることにより、織物等に比して強度が低い不織布であっても、軽量で電線押え巻きテープ等の用途に用いるに耐える強度特性が得られる。   In the nonwoven fabric of the present invention, the tensile strength in the longitudinal direction per basis weight is preferably 3 times or more (hereinafter referred to as the longitudinal-lateral tensile strength ratio) of the tensile strength in the transverse direction. This is because, if this requirement is satisfied, it can be particularly adapted to wire holding tapes, printing substrate applications, and the like. In other words, in special applications such as wire-wound tape, a high level of strength in the vertical direction is required and at the same time weight reduction is required, but the strength in the horizontal direction is not as strong as the vertical direction. . And, the nonwoven fabric can be adjusted in the balance between the longitudinal direction and the transverse direction depending on the fiber arrangement, and even if the nonwoven fabric has a lower strength than a woven fabric or the like by adopting a design that emphasizes the strength in the longitudinal direction. It is lightweight and provides strength properties that can be used for applications such as wire holding tape.

縦横引張強度比を上記範囲にする方法は特に限定されないが、直交配列では縦方向に配列させる繊維本数を多くし、横方向に配列させる繊維本数を少なくして、縦横の強力バランスを設定するのが好ましい。より好ましい範囲は3.0倍〜5倍、更に好ましくは、3.5倍〜4倍である。不織布の縦強力を高くするには、繊維の配列を縦方向に多く配列させる必要がある。ランダム配列では、縦方向に繊維の配列角度を狭くして縦横の強力バランスを設定するのが好ましい。例えば、縦方向の強力を横方向の強力の3倍〜4倍高くする場合は、繊維配列角度は、縦方向に対し20°〜5°になるよう設定するのが好ましい。繊維の配列角度を2°以内にすると横方向の強力が極端に低下するので好ましくない。   The method of setting the longitudinal / lateral tensile strength ratio in the above range is not particularly limited, but in the orthogonal arrangement, the number of fibers arranged in the longitudinal direction is increased and the number of fibers arranged in the transverse direction is decreased to set the strength balance in the longitudinal and lateral directions. Is preferred. A more preferable range is 3.0 to 5 times, and still more preferably 3.5 to 4 times. In order to increase the longitudinal strength of the nonwoven fabric, it is necessary to arrange a large number of fibers in the longitudinal direction. In the random arrangement, it is preferable to set the strength balance in the vertical and horizontal directions by narrowing the fiber arrangement angle in the vertical direction. For example, when the strength in the vertical direction is increased 3 to 4 times the strength in the horizontal direction, the fiber arrangement angle is preferably set to 20 ° to 5 ° with respect to the vertical direction. If the fiber arrangement angle is within 2 °, the transverse strength is extremely lowered, which is not preferable.

本発明不織布は、薄く且つ強度の高い不織布とするために、厚み当り縦方向の引張強度が2000N/5cm・mm以上であることが好ましい。かかる厚み当りの縦方向引張強度を有する不織布は、薄く且つ縦方向の強度が高いテープとすることができるため、良好な押し巻きの仕上がりとなり、更には巻きが長いテープが得られ、電線を被覆する際に端部が少なく、実用におけるトラブルを低減できるからである。より好ましい厚みあたりの縦方向の引張強度は、2500N/5cm・mm以上であり、更に好ましくは3000N/5cm・mm以上であり、最も好ましくは3500N/5cm・mm以上である。厚みあたりの縦方向の引張強度は大きいほどよいと言えるが、通常6000N/5cm・mm以下である。   In order to make the nonwoven fabric of the present invention thin and high in strength, the tensile strength in the longitudinal direction per thickness is preferably 2000 N / 5 cm · mm or more. Such a nonwoven fabric having a longitudinal tensile strength per thickness can be made into a thin tape having a high longitudinal strength, resulting in a good push-winding finish, and furthermore, a tape with a long winding is obtained, covering the electric wire. This is because there are few edges when doing so, and trouble in practical use can be reduced. More preferably, the tensile strength in the longitudinal direction per thickness is 2500 N / 5 cm · mm or more, more preferably 3000 N / 5 cm · mm or more, and most preferably 3500 N / 5 cm · mm or more. Although it can be said that the higher the tensile strength in the longitudinal direction per thickness, the better.

本発明では、連続繊維を開繊積層し、連続してフラットロールによる熱圧着を完了するか、連続繊維を開繊積層した段階で、形態固定のためエンボス加工を施して巻き取り、次いで、フラットロールによる加工を施して熱圧着を完了することができる。この場合は、エンボス加工の圧着面積は、は少なくとも30%未満、好ましくは20%未満、より好ましくは、10%〜15%である。圧着面積率が30%以上の場合、繊維にかかるダメージの影響が大きく、十分なシート強力を得ることが困難となる。   In the present invention, continuous fibers are spread and laminated, and thermocompression bonding with a flat roll is continuously completed, or continuous fibers are spread and laminated, and embossing is performed to fix the shape, and then flattening is performed. The thermocompression bonding can be completed by processing with a roll. In this case, the crimping area for embossing is at least less than 30%, preferably less than 20%, more preferably 10% to 15%. When the pressure-bonding area ratio is 30% or more, the influence of damage on the fiber is large, and it becomes difficult to obtain sufficient sheet strength.

本発明不織布の単繊維の繊度は、特には限定されないが、繊度が0.4dtex未満では、不織布の張り腰がなくなり加工工程で問題がでる場合があり、繊度が5dtexを超える場合は、熱圧着による一体化が不充分となる場合があるので、本発明での好ましい単繊維の繊度は0.5dtex〜4dtex、より好ましくは1dtex〜3dtexである。   The fineness of the single fiber of the nonwoven fabric of the present invention is not particularly limited, but if the fineness is less than 0.4 dtex, there may be a problem in the processing process due to lack of tension of the nonwoven fabric, and if the fineness exceeds 5 dtex, thermocompression bonding In some cases, the fineness of the preferred single fiber in the present invention is 0.5 dtex to 4 dtex, and more preferably 1 dtex to 3 dtex.

本発明不織布を構成する連続繊維を熱圧着する場合において、圧着一体化する前の繊維の断面形状は、特には限定されないが、異型断面化すると製糸段階でも繊維の強力低下が著しい場合があり、本発明では、好ましくは扁平度が1.8未満の断面形状であり、最も好ましくは扁平度1の丸断面である。   In the case of thermocompression bonding the continuous fibers constituting the nonwoven fabric of the present invention, the cross-sectional shape of the fiber before the pressure-integrating integration is not particularly limited. In the present invention, a cross-sectional shape with a flatness of less than 1.8 is preferred, and a round cross-section with a flatness of 1 is most preferred.

本発明不織布の目付当りの縦方向での引張強度及び伸度は特には限定されないが、目付当りの縦方向の引張強度が3N/(5cm)/(g/m2)未満では、必要な巻張力を付与できない場合があり、伸度は、50%を超えるとテープに伸びが発生して工程トラブルになる場合があり、又、伸度が10%未満では、テープが工程中で破断しやすくなる場合がある。本発明では、目付当りの縦方向の引張強度は、4N/(5cm)/(g/m2)以上、伸度が40%以下であることが好ましい。より好ましくは、目付当りの縦方向の引張強度は、5N/(5cm)/(g/m2)以上、伸度は25%〜40%である。 The tensile strength and elongation in the longitudinal direction per unit weight of the nonwoven fabric of the present invention are not particularly limited, but if the tensile strength in the longitudinal direction per unit weight is less than 3 N / (5 cm) / (g / m 2 ), the necessary winding In some cases, tension cannot be applied. If the elongation exceeds 50%, the tape may be stretched, resulting in a process trouble. If the elongation is less than 10%, the tape is likely to break in the process. There is a case. In the present invention, the tensile strength in the longitudinal direction per basis weight is preferably 4 N / (5 cm) / (g / m 2 ) or more and the elongation is 40% or less. More preferably, the longitudinal tensile strength per basis weight is 5 N / (5 cm) / (g / m 2 ) or more, and the elongation is 25% to 40%.

本発明不織布の嵩密度は、特には限定されないが、電線押さえ巻きテープに供する場合は薄さも必要となる。嵩密度が300kg/m3以下では、嵩高過ぎて押し巻き機能が低下する場合がある。又、1500kg/m3を超えるとフィルム化して、本発明不織布の内層での繊維形態が大きく変形して強度保持が悪くなる場合がある。本発明での好ましい嵩密度は、400kg/m3〜1200kg/m3、より好ましくは、600kg/m3〜1000kg/m3である。なお、所望により、クッション材機能も付加して使用する場合はこの限りではなく、250kg/m3以下の不織布も提供できる。 The bulk density of the nonwoven fabric of the present invention is not particularly limited, but it is also necessary to be thin when used for a wire holding tape. If the bulk density is 300 kg / m 3 or less, it may be too bulky to lower the push-winding function. Moreover, when it exceeds 1500 kg / m < 3 >, it may turn into a film and the fiber form in the inner layer of this invention nonwoven fabric may deform | transform large, and intensity | strength maintenance may worsen. Preferred bulk density of the present invention, 400kg / m 3 ~1200kg / m 3, more preferably from 600kg / m 3 ~1000kg / m 3 . If desired, the cushioning material function is not limited to this, and a nonwoven fabric of 250 kg / m 3 or less can be provided.

本発明不織布の160℃での乾熱収縮率は、特には限定されないが、電線押さえ巻きテープ用途では、乾熱収縮率が5%を超えると、テープのラミネート加工時、及び/又は、電線のシース被覆加工時の加熱により収縮変形してしまう場合がある。本発明不織布では、好ましい乾熱収縮率は3.5%以下、より好ましくは2%以下である。   The dry heat shrinkage rate of the nonwoven fabric of the present invention at 160 ° C. is not particularly limited. However, in the case of wire holding tape use, if the dry heat shrinkage rate exceeds 5%, the tape is laminated and / or There is a case where the film is contracted and deformed by heating at the time of sheath coating. In the nonwoven fabric of the present invention, the preferable dry heat shrinkage is 3.5% or less, more preferably 2% or less.

本発明不織布の厚みは、特には限定されない。例えば、電線押さえ巻きテープ用途では、所望に応じて、40μm〜150μmの範囲で、上述の不織布特性を満足する範囲で設定するのが望ましい。   The thickness of the nonwoven fabric of the present invention is not particularly limited. For example, in the case of wire holding tape use, it is desirable to set in the range satisfying the above-mentioned nonwoven fabric characteristics within a range of 40 μm to 150 μm as desired.

以下に本発明不織布の製法の一例を示す。
固有粘度0.65以上、0.80以下のポリエチレンテレフタレートを真空乾燥して、少なくとも水分率を0.003重量%以下として紡糸に供することが推奨される。水分率が0.003条量%以上の場合は、水分による加水分解を生じて、本発明の望ましい固有粘度0.63以上の繊維を得られない場合があり好ましくない。本発明での好ましい水分率は0.002重量%以下である。乾燥工程を省略して、紡糸段階でベントより水分を除去する場合は、押出機で溶融される直前及び直後に高真空で水分を除去する方法が推奨される。なお、本発明不織布に必要な機能として、難燃性、耐光性、着色性等を所望される場合は、改質剤等を共重合させるか、後練り込みによる添加により改良されたポリエチレンテレフタレートを用いることができる。
Below, an example of the manufacturing method of this invention nonwoven fabric is shown.
It is recommended that polyethylene terephthalate having an intrinsic viscosity of 0.65 or more and 0.80 or less is vacuum-dried and used for spinning at a moisture content of 0.003% by weight or less. When the moisture content is 0.003% by weight or more, hydrolysis due to moisture may occur, and a fiber having a desirable intrinsic viscosity of 0.63 or more of the present invention may not be obtained. A preferable moisture content in the present invention is 0.002% by weight or less. When the drying process is omitted and moisture is removed from the vent at the spinning stage, a method of removing moisture at a high vacuum immediately before and after being melted by an extruder is recommended. In addition, as a function necessary for the nonwoven fabric of the present invention, when flame retardancy, light resistance, colorability, etc. are desired, a polyethylene terephthalate improved by copolymerization with a modifier or the like by post-kneading is used. Can be used.

ついで、常法により、溶融紡糸を行う。紡糸温度は、ポリエチレンテレフタレートの融点より15℃〜40℃高い温度が推奨される。好ましくは25℃〜35℃高い温度が推奨される。固有粘度が低い場合は低い紡糸温度設定、固有粘度が高い場合は高目に設定することが推奨できる。オリフィスから溶融ポリマーを吐出する。オリフィス形状は丸断面が推奨される。吐出量は引取速度に応じて所望の繊度となる最適量とするのが好ましい。本発明では、好ましい繊度が1dtexから3dtexであるから、引取速度が5000m/分であれば、単孔あたりの吐出量は0.5g/分〜1.5g/分とするのが好ましい。吐出するノズルは多数列の小さなノズルを必要個数設置しても良いし、多列の孔を有する一枚のノズルを用いてもよい。吐出された溶融線条は、冷却されつつ細化させてアスピレーター機能をもつエジェクターで引取り、搬送ネット上に振落として、所望の目付量及び所望の繊維配列状態に調整しつつ開繊積層したウエッブを形成する。   Subsequently, melt spinning is performed by a conventional method. The spinning temperature is recommended to be 15 ° C to 40 ° C higher than the melting point of polyethylene terephthalate. A temperature higher by 25 ° C to 35 ° C is recommended. If the intrinsic viscosity is low, it is recommended to set a low spinning temperature, and if the intrinsic viscosity is high, it is recommended to set a high spinning temperature. The molten polymer is discharged from the orifice. A round cross section is recommended for the orifice shape. The discharge amount is preferably an optimum amount that achieves a desired fineness according to the take-up speed. In the present invention, since the preferred fineness is 1 dtex to 3 dtex, when the take-up speed is 5000 m / min, the discharge rate per single hole is preferably 0.5 g / min to 1.5 g / min. As the nozzles to be ejected, a required number of small nozzles in multiple rows may be installed, or a single nozzle having multiple rows of holes may be used. The discharged molten filaments are cooled and thinned, taken up by an ejector having an aspirator function, shaken on a conveyance net, and spread and laminated while adjusting to a desired basis weight and a desired fiber arrangement state. Form a web.

繊維配列は、例えば、ランダム配列を本発明に適用する場合、オリフィス列数を多くして、搬送ネット速度を高速化することで、縦方向(搬送ネットの進行方向)に繊維配列度を良くする方法が推奨される。このとき、繊維は弾性回復限界内で遅延回復して力学特性が低下する場合がある。このため、本発明では、開繊積層したウエッブの遅延回復を直ちに抑制してウエッブ形態を固定する方法を推奨する。具体的には、引取りネットでの挟み込み固定化する方法や、押さえローラーによる固定化方法が例示できる。   For example, when the random arrangement is applied to the present invention, the fiber arrangement is increased in the longitudinal direction (the traveling direction of the conveyance net) by increasing the number of orifices and increasing the conveyance net speed. The method is recommended. At this time, the fiber may be delayed and recovered within the elastic recovery limit, resulting in deterioration of mechanical properties. For this reason, in the present invention, a method of fixing the web form by immediately suppressing the delayed recovery of the spread laminated web is recommended. Specifically, a method of pinching and fixing with a take-off net and a method of fixing with a pressing roller can be exemplified.

次いで、積層ウエッブは連続して、又は、非連続でエンボス加工を施される。
エンボス形状は所望する不織布表面の必要機能に応じて最適なものを選択して処理する。本発明での電線押え巻きテープ用途では、表面の平滑性が必要なためプレーンロールによる熱圧着が推奨される。
The laminated web is then embossed continuously or discontinuously.
The embossed shape is selected and processed according to the desired function of the desired nonwoven fabric surface. In the electric wire press-wound tape application in the present invention, since surface smoothness is required, thermocompression bonding with a plain roll is recommended.

次いで、所望の幅にスリットして、所望の長さと巻き径に巻き取り本発明のスパンボンド不織布がえられる。得られた本発明のスパンボンド不織布は、そのまま各種基布として提供できる。必要に応じ、次いで、樹脂コーティング加工やラミネート加工して、電線押さえ巻きテープ、印刷基材やハウスラップ用途等に供される。
なお、本発明における例示は、これらに限定されるものではない。
Next, it is slit to a desired width, wound to a desired length and winding diameter, and the spunbonded nonwoven fabric of the present invention is obtained. The obtained spunbonded nonwoven fabric of the present invention can be provided as it is as various base fabrics. If necessary, it is then subjected to resin coating or laminating and used for wire holding tapes, printing substrates, house wraps, and the like.
In addition, the illustration in this invention is not limited to these.

以下に本発明の実施例を示す。本発明は、実施例に限定されるものではない。   Examples of the present invention are shown below. The present invention is not limited to the examples.

次に実施例及び比較例を用いて、本発明を具体的に説明するが、実施例及び比較例中の特性値は以下の方法で測定した。   Next, the present invention will be specifically described with reference to examples and comparative examples. The characteristic values in the examples and comparative examples were measured by the following methods.

<単繊維の繊度>
不織布の任意の部位10箇所からサンプリングした試験片の切断面が観察できるように蒸着セットして、視差走査型電子顕微鏡にて、繊維軸を横切る方向にほぼ直角に切断されている任意の繊維50本について写真撮影し、写真を拡大して、各繊維の断面積を求め、それら値を平均して繊維の断面積を算出する。繊維密度を1.38g/cm3として長さ10,000mでの重量を計算して求める。
<Fineness of single fiber>
Arbitrary fibers 50 which are set by vapor deposition so that the cut surfaces of the specimens sampled from 10 arbitrary portions of the nonwoven fabric can be observed, and are cut substantially perpendicular to the direction crossing the fiber axis by a parallax scanning electron microscope. A photograph is taken of the book, the photograph is enlarged, the cross-sectional area of each fiber is obtained, and the cross-sectional area of the fiber is calculated by averaging these values. The fiber density is 1.38 g / cm 3 and the weight at a length of 10,000 m is calculated.

<固有粘度
不織布の任意の部位から不織布片をサンプリングし、テトラクロルエタン/フェノール(40部/60部重量比)混合溶媒に1g/100ml溶解させ、30℃雰囲気で粘度管にて測定し、0%濃度に換算した固有粘度(dl/g)を求める。
<Intrinsic Viscosity Nonwoven fabric pieces are sampled from any part of the nonwoven fabric, dissolved in a tetrachloroethane / phenol (40 parts / 60 parts by weight) mixed solvent in an amount of 1 g / 100 ml, measured in a viscosity tube at 30 ° C., 0 The intrinsic viscosity (dl / g) converted to% concentration is determined.

<扁平度比>
不織布の最表層部と中層部の繊維断面形状を単繊維の繊度測定時に求めた断面形状より短軸と長軸の長さの値を測定して扁平度(扁平度=長軸の長さ/短軸の長さ)を最表層(最表層扁平度fs)及び中層部(中層扁平度fi)ごとにn=20の平均値として算出する。求めた最表層部の扁平度と中層部の扁平度の比(扁平度比=fs/fi)を求め、扁平度比とする。
<Flatness ratio>
The fiber cross-sectional shape of the outermost layer portion and the middle layer portion of the nonwoven fabric is measured by measuring the length of the short axis and the long axis from the cross-sectional shape obtained when measuring the fineness of the single fiber, and the flatness (flatness = length of the long axis / The minor axis length) is calculated as an average value of n = 20 for each outermost layer (outermost layer flatness fs) and middle layer portion (middle layer flatness fi). The ratio of the obtained flatness of the outermost layer portion and the flatness of the middle layer portion (flatness ratio = fs / fi) is obtained and used as the flatness ratio.

<厚さ>
JIS−L1906(2000)に準拠して測定。
<Thickness>
Measured according to JIS-L1906 (2000).

<目付(単位面積当りの質量)>
JIS−L1906(2000)に準拠して測定。
<Weight per unit (mass per unit area)>
Measured according to JIS-L1906 (2000).

<嵩密度>
JIS−L1906(2000)に準拠して測定した厚み(t:m)及び単位面積当りの質量(m2)より、見掛け密度(ρ)を下記式にて単位はkg/m3にて求める。
ρ=m2/t
<Bulk density>
From the thickness (t: m) measured according to JIS-L1906 (2000) and the mass per unit area (m 2 ), the apparent density (ρ) is determined by the following formula in units of kg / m 3 .
ρ = m 2 / t

<不織布の引張強度(強さ)と伸度(伸び率)>
JIS−L1906(2000)に準拠して測定。
<Tensile strength (strength) and elongation (elongation) of nonwoven fabric>
Measured according to JIS-L1906 (2000).

<縦強度/横強度比>
上記方法にて測定した縦強度と横強度の比として求める。
<Longitudinal strength / lateral strength ratio>
It is determined as the ratio between the longitudinal strength and the lateral strength measured by the above method.

<実施例1>
水分率0.002重量%に乾燥した固有粘度0.68のポリエチレンテレフタレート(以下PETと略す)を紡糸温度290℃にて、オリフィス径φ0.2mmのノズルより、単孔吐出量1g/分で紡糸し、ノズル下50mmより25℃の空気を風速0.4m/秒にて冷却しつつ、ノズル下1.6mの点に設置したエジェクターで糸速5000m/分の速度で吸引させつつ引取り、下方1.5mの30m/分の速度で移動している引取ネット面へ繊維束を開繊させつつ振り落とし積層した。ネット面に積層されたウエッブは、次いで、圧着面積率25%のエンボスローラーにて、240℃で線圧2Nfにて仮留のエンボス加工して巻き取ったスパンボンド不織布は、目付45g/m2、厚み0.20mmで、縦方向の引張強度135N/5cm、伸度35%、横方向の引張強度47N/5cm、伸度41%であった。
次いで、温度240℃にて、フラットロールによる圧着処理を施し得られたスパンボンド不織布の特性を表1に示す。
<Example 1>
Polyethylene terephthalate (hereinafter abbreviated as PET) dried to a moisture content of 0.002% by weight with a viscosity of 0.68 is spun at a spinning temperature of 290 ° C. with a nozzle having an orifice diameter of 0.2 mm at a discharge rate of 1 g / min. Then, while cooling the air at 25 ° C. from 50 mm below the nozzle at a wind speed of 0.4 m / sec, the air is drawn down while being sucked at a yarn speed of 5000 m / min by an ejector installed at a point 1.6 m below the nozzle. The fiber bundle was spun off and laminated on the surface of the take-up net moving at a speed of 30 m / min, 1.5 m. Next, the web laminated on the net surface is a spunbonded nonwoven fabric wound up by embossing with temporary embossing at 240 ° C. and a linear pressure of 2 Nf with an embossing roller with a crimping area ratio of 25%, and the basis weight is 45 g / m 2. The thickness was 0.20 mm, the tensile strength in the longitudinal direction was 135 N / 5 cm, the elongation was 35%, the tensile strength in the transverse direction was 47 N / 5 cm, and the elongation was 41%.
Next, Table 1 shows the characteristics of the spunbonded nonwoven fabric obtained by performing the pressure-bonding treatment with a flat roll at a temperature of 240 ° C.

実施例1は表面の平滑性もよく、巻き付け時の破断がなく、巻き上がりが良好となる電線押し巻きテープ基布に適したスパンボンド不織布である。   Example 1 is a spunbonded nonwoven fabric suitable for a wire wound tape base fabric that has good surface smoothness, no breakage during winding, and good winding.

<実施例2>
積層ウエッブの目付を35g/m2となるように開繊積層した以外、実施例1と同様にして得たスパンボンド不織布の特性を表1に示す。
実施例2は実施例1と同様に、表面の平滑性が良好で、巻き付け時の破断がなく、巻き上がりが良好となる電線押し巻きテープ基布に適したスパンボンド不織布である。
<Example 2>
Table 1 shows the characteristics of the spunbonded nonwoven fabric obtained in the same manner as in Example 1 except that the laminated web was spread and laminated so that the basis weight of the laminated web was 35 g / m 2 .
As in Example 1, Example 2 is a spunbonded nonwoven fabric suitable for an electric wire wound tape base fabric having good surface smoothness, no breakage during winding, and good winding.

<実施例3>
幅0.05mm、長さ0.5mmの矩形断面オリフィスノズルより、固有粘度0.74のPETを295℃にて単孔吐出量1.5g/分で紡糸し、開繊積層ウエッブ目付を10g/m2とし、仮エンボスの圧着面積率は5%とした以外、実施例1と同様にして仮留エンボスした扁平断面繊維からなるスパンボンド不織布を得た。
単孔吐出量1.5g/分とし、仮エンボスの圧着面積率を5%とした以外、実施例2と同様にして仮エンボスしたスパンボンド不織布を得た。
次いで、仮留エンボスした扁平断面繊維からなるスパンボンド不織布を上下に積層して、3層構造の仮留エンボスしたスパンボンド不織布を、圧着面積率25%の仮留エンボス加工を施し接合一体化した後、温度245℃にて、フラットロールによる圧着処理を施し得られたスパンボンド不織布の特性を表1に示す。
実施例3は、表層が扁平繊維で構成され、内層は丸断面繊維で構成されており、表面の平滑性が良好で、巻き付け時の破断がなく、巻き上がりが良好となる電線押し巻きテープ基布に適したスパンボンド不織布である。
<Example 3>
From a rectangular cross-section orifice nozzle having a width of 0.05 mm and a length of 0.5 mm, PET having an intrinsic viscosity of 0.74 is spun at 295 ° C. with a single-hole discharge rate of 1.5 g / min, and the spread laminated web basis weight is 10 g / A spunbonded nonwoven fabric made of flat cross-section fibers embossed temporarily was obtained in the same manner as in Example 1 except that m 2 was used and the crimped area ratio of temporary emboss was 5%.
A temporarily bonded embossed spunbond nonwoven fabric was obtained in the same manner as in Example 2 except that the single-hole discharge rate was 1.5 g / min and the crimped area ratio of the temporary emboss was 5%.
Next, a spunbond nonwoven fabric composed of flat cross-section fibers embossed temporarily is laminated on the top and bottom, and the spunbond nonwoven fabric embossed with a three-layer structure is subjected to a temporary embossing with a crimping area ratio of 25% and joined and integrated. Table 1 shows the properties of the spunbonded nonwoven fabric obtained by applying a pressure bonding treatment with a flat roll at a temperature of 245 ° C.
In Example 3, the surface layer is composed of flat fibers, the inner layer is composed of round cross-section fibers, the surface smoothness is good, there is no breakage at the time of winding, and the winding is good. Spunbond nonwoven fabric suitable for fabrics.

<実施例4>
固有粘度0.65のPETを用いた以外、実施例1と同様にして得られたスパンボンド不織布の特性を表1に示す。
実施例3は実施例1と同様に、表面の平滑性が良好で、巻き付け時の破断がなく、巻き上がりが良好となる電線押し巻きテープ基布に適したスパンボンド不織布である。
<Example 4>
Table 1 shows the properties of the spunbonded nonwoven fabric obtained in the same manner as in Example 1 except that PET having an intrinsic viscosity of 0.65 was used.
As in Example 1, Example 3 is a spunbonded nonwoven fabric suitable for a wire wound tape base fabric that has good surface smoothness, no breakage during winding, and good winding.

<比較例1>
幅0.05mm、長さ0.5mmの矩形断面オリフィスノズルを用いた以外、実施例1と同様にして得られたスパンボンド不織布の特性を表1に示す。
比較例1は、扁平断面繊維で構成されているので、丸断面繊維で構成された不織布に較べて力学特性がやや劣る、電線押し巻きテープ基布に使用可能だが、問題のあるスパンボンド不織布である。
<Comparative Example 1>
Table 1 shows the characteristics of the spunbonded nonwoven fabric obtained in the same manner as in Example 1 except that a rectangular cross-section orifice nozzle having a width of 0.05 mm and a length of 0.5 mm was used.
Since Comparative Example 1 is composed of flat cross-section fibers, the mechanical properties are slightly inferior to those of non-woven fabrics composed of round cross-section fibers. is there.

<比較例2>
実施例1の仮留エンボス加工したのみのスパンボンド不織布を電線押し巻きテープ基布に適合させようとした場合の例示である。
比較例2は、表面に毛羽立ちが多く平滑性が劣り、厚みが厚く、力学特性に劣るため、電線押し巻きテープ基布に不適合なスパンボンド不織布である。
<Comparative example 2>
It is the illustration at the time of trying to match the spunbond nonwoven fabric of Example 1 only by temporary embossing with the electric wire wound tape base fabric.
Comparative Example 2 is a spunbonded non-woven fabric that is incompatible with a wire wound tape base fabric because it has a lot of fuzz on the surface, is inferior in smoothness, is thick, and is inferior in mechanical properties.

<比較例3>
繊維をエジェクターで引き取り、ネットへ積層する際に、エジェクターとネットの中間に衝突板をもうけて、且つ、衝突板が繊維配列をランダム化させるため、遊動できるようにした装置を用いて、繊維配列をランダム化せしめた以外、実施例2と同様にして得られたスパンボンド不織布の特性を表1に示す。
比較例3は、表面平滑性は優れるが、縦方向の力学特性が劣り、電線押し巻きテープ基布に使用可能だが、問題のあるスパンボンド不織布である。
<Comparative Example 3>
When picking up the fibers with the ejector and laminating them on the net, a fiber arrangement is made using a device that has a collision plate between the ejector and the net, and the collision plate makes the fiber arrangement random so that it can move freely. Table 1 shows the properties of the spunbonded nonwoven fabric obtained in the same manner as in Example 2 except that is randomized.
Although the comparative example 3 is excellent in surface smoothness, it is inferior in the mechanical properties in the longitudinal direction and can be used as a wire wound tape base fabric, but it is a problematic spunbond nonwoven fabric.

<比較例4>
固有粘度0.57のPETを用いた以外、実施例1と同様にして得られたスパンボンド不織布の特性を表1に示す。
比較例1は、表面平滑性は優れるが、力学特性がやや劣り、電線押し巻きテープに使用可能だが、問題のあるスパンボンド不織布である。
<Comparative example 4>
Table 1 shows the properties of the spunbonded nonwoven fabric obtained in the same manner as in Example 1 except that PET having an intrinsic viscosity of 0.57 was used.
Comparative Example 1 is a spunbonded nonwoven fabric having a problem, although it has excellent surface smoothness but slightly inferior mechanical properties and can be used for a wire wound tape.

<比較例5>
積層ウエッブの目付を40g/m2になるよう積層し、仮留エンボスせずに、ペネ60でニードルパンチした以外、実施例1と同様にして、仮留ニードルパンチスパンボンド不織布を得た。
次いで、ラミネート加工機にて、不織布の片面に10g/m2となるようにポリビニルアルコールを積層して、引き続き、余熱ゾーンを通して樹脂を溶融させ、直ちに250℃のプレスローラーにて、樹脂を圧着含浸せしめて冷却し、樹脂加工されたスパンボンド不織布を得た。得られた不織布の特性を表1に示す。
比較例5は、ニードルパンチによる毛羽が、樹脂で充分に押えられず、平滑性はやや劣り、ニードルパンチによる繊維の損傷のためか、力学特性も劣り、電線押し巻きテープ基布に不適合なスパンボンド不織布である。
<Comparative Example 5>
A temporary bonded needle punched spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except that the laminated web was laminated so that the basis weight was 40 g / m 2 , and needle punched with the penet 60 without embossing temporarily.
Next, with a laminating machine, polyvinyl alcohol is laminated on one side of the nonwoven fabric so as to be 10 g / m 2, and then the resin is melted through a preheating zone and immediately impregnated with resin with a press roller at 250 ° C. It was allowed to cool, and a spunbonded nonwoven fabric processed with resin was obtained. Table 1 shows the properties of the obtained nonwoven fabric.
In Comparative Example 5, the fluff from the needle punch is not sufficiently pressed by the resin, the smoothness is slightly inferior, the fiber is damaged by the needle punch, the mechanical properties are also inferior, and the span is incompatible with the wire wound tape base fabric. Bond nonwoven fabric.

Figure 2007197891
Figure 2007197891

本発明のスパンボンド不織布は、表面の平滑化は表層の繊維を扁平化せしめるが、不織布内層の繊維は扁平化させずに損傷をできるだけ抑制する方法で繊維強力を保持させ、特定方向の強力を向上させるのに、繊維配列を直列化させて構成しているので、ノーバインダーで、表面の平滑性を向上させ、且つ、繊維の強力も保持して、特定方向の不織布強力が優れたスパンボンド不織布であるので、より高強力化が要求される電線押さえ巻きテープ基布、印刷基材、ハウスラップなどの用途に安価な基布として提供でき産業界に寄与すること大である。
In the spunbond nonwoven fabric of the present invention, surface smoothing flattens the surface fibers, but the fibers in the inner layer of the nonwoven fabric retain fiber strength by a method that suppresses damage as much as possible without flattening the fibers in a specific direction. Spunbond with excellent non-woven fabric strength in a specific direction, because the fiber arrangement is arranged in series for improvement, no binder, improving surface smoothness and maintaining fiber strength Since it is a non-woven fabric, it can be provided as an inexpensive base fabric for uses such as wire-wound tape base fabrics, printing base materials, and house wraps that require higher strength, and contributes to the industry.

Claims (2)

ポリエチレンテレフタレートを主成分とした連続繊維が開繊された後、熱圧着により接合一体化されてなる不織布において、該不織布の構成繊維の固有粘度が0.62以上であって、最表層の繊維断面の扁平度と内層の繊維断面の扁平度との比が1.1以上であり、目付当りの縦方向の引張強度が横方向の引張強度の3倍以上、厚み当り縦方向の引張強度が2000N/5cm・mm以上であることを特徴とするスパンボンド不織布。   After the continuous fiber mainly composed of polyethylene terephthalate is opened, the nonwoven fabric is joined and integrated by thermocompression bonding, and the inherent viscosity of the constituent fiber of the nonwoven fabric is 0.62 or more, and the fiber cross section of the outermost layer The ratio between the flatness of the inner layer and the flatness of the fiber cross section of the inner layer is 1.1 or more, the tensile strength in the vertical direction per basis weight is at least three times the tensile strength in the horizontal direction, and the tensile strength in the vertical direction per thickness is 2000 N A spunbonded nonwoven fabric characterized by having a thickness of / 5 cm · mm or more. 単繊維の繊度が0.5dtex〜4dtex、目付当りの縦方向の引張強度が4N/(5cm)/(g/m2)以上、伸度が40%以下であることを特徴とする請求項1記載のスパンボンド不織布。
The fineness of a single fiber is 0.5 dtex to 4 dtex, the tensile strength in the longitudinal direction per basis weight is 4 N / (5 cm) / (g / m 2 ) or more, and the elongation is 40% or less. The spunbond nonwoven fabric described.
JP2006345285A 2005-12-26 2006-12-22 Spun-bond nonwoven fabric Withdrawn JP2007197891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006345285A JP2007197891A (en) 2005-12-26 2006-12-22 Spun-bond nonwoven fabric

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005371778 2005-12-26
JP2006345285A JP2007197891A (en) 2005-12-26 2006-12-22 Spun-bond nonwoven fabric

Publications (1)

Publication Number Publication Date
JP2007197891A true JP2007197891A (en) 2007-08-09

Family

ID=38452762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006345285A Withdrawn JP2007197891A (en) 2005-12-26 2006-12-22 Spun-bond nonwoven fabric

Country Status (1)

Country Link
JP (1) JP2007197891A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183529A1 (en) * 2012-06-04 2013-12-12 東洋紡株式会社 Nonwoven fabric for reinforcing foam molded articles and product using same
JP2013249571A (en) * 2012-06-04 2013-12-12 Toyobo Co Ltd Nonwoven fabric for reinforcing foam molded article
JP2014012916A (en) * 2012-06-04 2014-01-23 Toyobo Co Ltd Nonwoven fabric for reinforcing foam molded article and product including the same
WO2018079635A1 (en) * 2016-10-27 2018-05-03 東レ株式会社 Spunbond nonwoven fabric and method for manufacturing same
CN115315547A (en) * 2020-03-31 2022-11-08 东丽株式会社 Spun-bonded non-woven fabric

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183529A1 (en) * 2012-06-04 2013-12-12 東洋紡株式会社 Nonwoven fabric for reinforcing foam molded articles and product using same
JP2013249571A (en) * 2012-06-04 2013-12-12 Toyobo Co Ltd Nonwoven fabric for reinforcing foam molded article
JP2014012916A (en) * 2012-06-04 2014-01-23 Toyobo Co Ltd Nonwoven fabric for reinforcing foam molded article and product including the same
CN104334782A (en) * 2012-06-04 2015-02-04 东洋纺株式会社 Nonwoven fabric for reinforcing foam molded articles and product using same
US20150132559A1 (en) * 2012-06-04 2015-05-14 Toyobo Co., Ltd. Nonwoven fabric for reinforcing foam molded articles and product using same
CN107034589A (en) * 2012-06-04 2017-08-11 东洋纺株式会社 A kind of molded foam reinforcement non-woven fabrics and the product using the non-woven fabrics
US10266976B2 (en) 2012-06-04 2019-04-23 Toyobo Co., Ltd. Nonwoven fabric for reinforcing foam molded articles and product using same
WO2018079635A1 (en) * 2016-10-27 2018-05-03 東レ株式会社 Spunbond nonwoven fabric and method for manufacturing same
JPWO2018079635A1 (en) * 2016-10-27 2019-09-19 東レ株式会社 Spunbond nonwoven fabric and method for producing the same
JP7070404B2 (en) 2016-10-27 2022-05-18 東レ株式会社 Manufacturing method of spunbonded non-woven fabric
CN115315547A (en) * 2020-03-31 2022-11-08 东丽株式会社 Spun-bonded non-woven fabric

Similar Documents

Publication Publication Date Title
JP4852104B2 (en) Heat resistant nonwoven fabric
JP5887799B2 (en) Manufacturing method of fiber sheet
US8623268B2 (en) Production method for filament non-woven fabric
KR102510597B1 (en) Meltblown nonwoven fabric, laminate using the same, manufacturing method of meltblown nonwoven fabric, and melt blown device
JP5272315B2 (en) Nonwoven fabric and underlay material comprising the nonwoven fabric
JP5464813B2 (en) Heat resistant fiber nonwoven fabric
WO2012165608A1 (en) Polyphenylene sulfide fibers and nonwoven fabric
JP2007197891A (en) Spun-bond nonwoven fabric
KR101113545B1 (en) Polypropylene spunbond nonwoven fabric and the preparing process thereof
JPS6025541B2 (en) High-strength nonwoven fabric made of fine fibers and method for producing the same
JP5591046B2 (en) Insulating nonwoven fabric and method for producing the same
JP2014083843A (en) Three-layer laminate and production method of the same
JP3767502B2 (en) Filter substrate and filter
JP2007169851A (en) Spunbond nonwoven fabric
JP2007169850A (en) Spunbond nonwoven fabric
JP2020006294A (en) Non-woven fabric for filter medium bonding and laminate non-woven fabric, and method for producing them
JP3193018B2 (en) Wire and cable holding tape
JP2018035471A (en) Melt-blown nonwoven fabric laminate, and method of manufacturing the same
JP3195188B2 (en) Composite sheet for waterproof coating fabric
KR102099413B1 (en) Non-woven Fabric for EMI Shielding Sheet and Method for Manufacturing The Same
JP2586104B2 (en) Non-woven fabric with good dimensional stability
JP3611123B2 (en) Asphalt waterproofing fabric and method for producing the same
KR100244623B1 (en) Hotmelt-adhesive fiber sheet and process for producing the same
JP7206812B2 (en) Glass fiber reinforced laminated nonwoven fabric for asphalt waterproof base fabric
JPH06330446A (en) Melt-blown non-woven fabric, production thereof and non-woven fabric composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20091222

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Effective date: 20110524

Free format text: JAPANESE INTERMEDIATE CODE: A761