JPS6025541B2 - High-strength nonwoven fabric made of fine fibers and method for producing the same - Google Patents

High-strength nonwoven fabric made of fine fibers and method for producing the same

Info

Publication number
JPS6025541B2
JPS6025541B2 JP51112923A JP11292376A JPS6025541B2 JP S6025541 B2 JPS6025541 B2 JP S6025541B2 JP 51112923 A JP51112923 A JP 51112923A JP 11292376 A JP11292376 A JP 11292376A JP S6025541 B2 JPS6025541 B2 JP S6025541B2
Authority
JP
Japan
Prior art keywords
fibers
strength
nonwoven fabric
stretching
web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51112923A
Other languages
Japanese (ja)
Other versions
JPS5338767A (en
Inventor
光之助 松本
忠 田村
章 森田
茂 今安
悦郎 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Vilene Co Ltd
Original Assignee
Japan Vilene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Vilene Co Ltd filed Critical Japan Vilene Co Ltd
Priority to JP51112923A priority Critical patent/JPS6025541B2/en
Publication of JPS5338767A publication Critical patent/JPS5338767A/en
Publication of JPS6025541B2 publication Critical patent/JPS6025541B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Description

【発明の詳細な説明】 本発明は微細繊維よりなる高強度不織布に関し、更に詳
細には繊維が均一に分子配向した延伸された高分子重合
体の微細繊維よりなる高強度不織布に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-strength nonwoven fabric made of fine fibers, and more particularly to a high-strength nonwoven fabric made of fine fibers of a stretched polymer with uniform molecular orientation.

電解コンデンサー用のセパレ−ターやワニス含浸用、マ
ィカパッキング用の絶縁材基布として不織布を適用する
場合、繊密で厚みが50仏或は30山と極めて薄く、し
かも高強度なものが必要とされる。
When using non-woven fabric as a separator for electrolytic capacitors, varnish impregnation, or insulating base fabric for mica packing, it is necessary to use a fabric that is delicate, extremely thin with a thickness of 50 mm or 30 mm, and yet has high strength. It is said that

繊密で厚みを薄くするためには不織布の構成繊維を細く
することが有効であり、この際、高強度を実現するため
には繊維が短繊維であったり、分子配向してし、ない未
延伸繊維であってはならない。本発明によれば、平均繊
維直径10仏以下、特に2仏以下の延伸された連続繊維
からなる高強度不織布が得られ、しかも目付が小さく繊
密で厚みの薄いものが容易に得られ、これらは電解コン
デンサー用のセパレーターやワニス含浸用、マィカパッ
キング用等の絶縁材基布をはじめとし、各種テープ基材
、コーティング基布として極めて好適な不織布が得られ
る。
In order to make the nonwoven fabric thinner and thinner, it is effective to make the constituent fibers of the nonwoven fabric thinner.In this case, in order to achieve high strength, the fibers must be short fibers, have molecular orientation, or have no unwoven fibers. Must not be drawn fibers. According to the present invention, a high-strength nonwoven fabric made of drawn continuous fibers with an average fiber diameter of 10 mm or less, particularly 2 mm or less, can be obtained, and a dense and thin fabric with a small basis weight can be easily obtained. The nonwoven fabric is extremely suitable for use as a separator for electrolytic capacitors, insulation material base fabric for varnish impregnation, mica packing, etc., as well as various tape base materials and coating base fabrics.

従来より平均繊維直径10〆程度以下、特に2ム以下の
微細繊維から高強度な不織布を得ることは非常に困難で
あった。
Conventionally, it has been extremely difficult to obtain a high-strength nonwoven fabric from fine fibers with an average fiber diameter of about 10 mm or less, particularly 2 mm or less.

例えばスパンポンデット法の微細繊維不織布製造技術で
あるメルトプローィング法では、高分子重合体の溶融粘
度をかなり下げて鉄糸しなければならないため微細な繊
維を得ようとすれば、それだけ繊維の切断によるショッ
ト(溶融玉)の発生が多く、又得られた繊維も分子配向
を併わない強度の小さいものしか得られない。又、通常
の紙糸法による繊維から不織布を作る場合は、紡糸、ド
ラフト、延伸、切断、ウェブ形成、ウェブ結合という工
程が必要であり、微細繊維の場合は、繊維延伸時の糸切
れ等の工程上のトラブルが多く発生し直径10〃程度以
下の微細繊維不撒布をつくることは困難である。混合紡
糸繊維等を用いてウェブを形成し、次いで一部の成分を
綾出して微細繊維を残す方法も考えられるが、技術的に
も困難であり経済的にも不利である。本発明は上記の点
に鑑みなされたものであり、本発明の製造方法は、高分
子重合体を溶融してオリフィスから紡糸しながら周囲か
ら高温気流を噴射して紡糸した繊維を搬送細化し、次い
で紡糸した繊維が未だ自己粘着性を有する間に織糸の射
出方向に対して5〜80oの傾斜角度を有する移動補集
面上に集積することにより、繊維を橘集面移動方向に配
列させて繊維ウェブを形成し、次いでこの繊維ウェブを
同方向に延伸することを特徴とする平均繊維直径が10
仏以下の延伸された高分子重合体の微細繊維から成る高
強度不織布の製造方法である。つまり本発明の製造方法
は、紡糸した繊維をある程度高温噴出気流により細化し
、次いで抜糸した繊維が一定方向に配列するよう特殊な
橋集手段により集積しながら繊維間を自己結合させて繊
維ウヱブを形成し、鉄糸の際不充分だった繊維の延伸、
即ち分子配向をウェブ形成後、ウェブを繊維の配列方向
に延伸することにより、構成繊維を更に延伸して微細化
すると同時に分子配向を生じさせて強度のある不織布を
得ようとするものである。
For example, in the melt-plowing method, which is a technology for producing fine fiber nonwoven fabric using the spunpond method, the melt viscosity of the high molecular weight polymer must be considerably lowered to produce fine fibers. Shots (molten balls) are often generated due to cutting, and the fibers obtained have only low strength without molecular orientation. In addition, when making nonwoven fabrics from fibers using the normal paper yarn method, the processes of spinning, drafting, stretching, cutting, web formation, and web bonding are necessary. Many troubles occur during the process, and it is difficult to produce fine fiber-free fabric with a diameter of about 10 mm or less. A method can be considered in which a web is formed using mixed spun fibers or the like, and then some of the components are rolled out to leave fine fibers, but this method is technically difficult and economically disadvantageous. The present invention has been made in view of the above points, and the manufacturing method of the present invention includes melting a high molecular weight polymer and spinning it from an orifice while injecting high-temperature airflow from the surroundings to transport and finely spun the spun fiber, Next, while the spun fibers still have self-adhesive properties, they are stacked on a moving collecting surface having an inclination angle of 5 to 80 degrees with respect to the weaving yarn injection direction, thereby aligning the fibers in the moving direction of the collecting surface. to form a fibrous web, and then stretch this fibrous web in the same direction.
This is a method for producing a high-strength nonwoven fabric made of fine fibers of a stretched high molecular weight polymer. In other words, in the manufacturing method of the present invention, the spun fibers are thinned to a certain extent by a high-temperature jet air stream, and then the extracted fibers are accumulated using a special bridging means so that they are arranged in a certain direction, and the fibers are self-bonded to form a fiber web. Forming and drawing the fibers into iron threads, which were insufficient
That is, after forming a web with molecular orientation, the web is stretched in the fiber arrangement direction, thereby further stretching the constituent fibers to make them finer and at the same time causing molecular orientation to obtain a strong nonwoven fabric.

そして、このような本発明の製造方法によれば平均繊維
直径が10仏以下で、均一に分子配向するように延伸さ
れた実質的に連続した微細繊維から成り、且つ該微細繊
維の大部分が一定方向に配列されて、談繊維の配列方向
の強度と、該方向と直角万向の強度との比が15以上で
あることを特徴とする高強度不織布が得られる。
According to the manufacturing method of the present invention, the fibers have an average fiber diameter of 10 French or less, are composed of substantially continuous fine fibers stretched so as to have uniform molecular orientation, and most of the fine fibers are A high-strength nonwoven fabric is obtained which is characterized in that the fibers are arranged in a certain direction and the ratio of the strength in the direction in which the fibers are arranged and the strength in all directions perpendicular to the direction is 15 or more.

次に本発明を工程に従って詳細に説明する。Next, the present invention will be explained in detail according to the steps.

本発明に使用する高分子重合体としては溶融紡糸可能な
ものならば何んでも良く、例えばポIJオレフィン系、
ポリアミド系、ポリエステル系の高分子重合体をはじめ
、ポリ塩化ビニル、ポリスチレン、ポリカーボネート等
の高分子重合体、またはこれらの混合物或いは各種共重
合体が使用できる。これらの高分子重合体を押出機に供
給し、加熱溶融状態で多数のオリフィスから級糸しなが
らオリフィスの周囲から高温気流を噴出して紡糸した繊
維を搬送紙化する。
The polymer used in the present invention may be any polymer that can be melt-spun, such as poly-IJ olefin,
High molecular weight polymers such as polyamide-based and polyester-based high molecular weight polymers, polyvinyl chloride, polystyrene, polycarbonate, mixtures thereof, and various copolymers can be used. These high molecular weight polymers are supplied to an extruder, and in a heated and molten state, they are passed through a number of orifices while high-temperature airflow is ejected from around the orifices, and the spun fibers are made into paper.

この場合、溶融した高分子重合体を直線上に並ぶ多数の
オリフィスから紡糸し、オリフィスの両側に接するスリ
ットから高温気流を噴出する所謂メルトブローィング法
によるのが良い。この方法によれば紙糸された繊維が気
流により層状に平行に搬送されるため均一に細化される
。」本発明においては、紡糸した繊維を高温気流により
搬送するため繊維は半溶融状態で紬化され、得られた繊
維は分子配向の併わない未延伸繊維となる特徴がある。
In this case, it is preferable to use the so-called melt blowing method, in which a molten polymer is spun through a number of orifices arranged in a straight line, and a high-temperature air stream is blown out from slits in contact with both sides of the orifices. According to this method, the fibers made into paper threads are conveyed in parallel in layers by the airflow, so that they are uniformly thinned. In the present invention, the spun fibers are conveyed by high-temperature airflow, so that the fibers are ponged in a semi-molten state, and the resulting fibers are characterized by being undrawn fibers with no molecular orientation.

このことは、後の重要な工程である繊維ウェブの延伸を
容易ならしめる要因である。この紙糸工程で注意しなけ
ればならない点は、微細な繊維を紡糸しようとすると繊
維の切断による多くのショットが発生し、最終的に得ら
れる不織布の外観はもとより、強度等の品質を低下させ
る点である。このショットは後の工程である繊維ウヱブ
の延伸の際に不均一延伸、切断等の問題を惹起するから
である。従って本発明の紙糸工程においては、ショット
の発生しないように、つまり紙糸時に繊維の切断が起こ
らないように紙糸することが好ましい。このようにして
級糸した繊維を高温気流により搬送し、未だ自己粘着性
を有する間に紡糸の射出方向に対して5〜80oの傾斜
角度を有する移動補集面上に集積し、繊維を実質的に補
集面移動方向に配列させる。
This is a factor that facilitates the subsequent drawing of the fibrous web, which is an important step. The point to be careful about in this paper thread process is that when spinning fine fibers, many shots occur due to fiber cutting, which deteriorates not only the appearance but also the strength and other qualities of the final nonwoven fabric. It is a point. This is because this shot causes problems such as uneven stretching and cutting during the subsequent stretching of the fiber web. Therefore, in the paper threading process of the present invention, it is preferable to thread the paper in such a way that shots do not occur, that is, the fibers are not cut during the paper threading process. The fibers graded in this way are conveyed by a high-temperature air stream, and while they still have self-adhesive properties, they are accumulated on a moving collecting surface having an inclination angle of 5 to 80 degrees with respect to the spinning injection direction, so that the fibers are substantially The collection surface is arranged in the direction of movement.

図によって説明すれば、紙糸された繊維1は未だ自己粘
着性を有する間に、紙糸の射出方向に対して5〜8びの
鏡斜角度aを有する矢印の方向に移動する捕集面2上に
集積されて繊維ゥェブ3を形成する。
To explain with the figure, while the fibers 1 made into paper threads still have self-adhesive properties, a collecting surface moves in the direction of the arrow having a mirror oblique angle a of 5 to 8 degrees with respect to the ejection direction of the paper threads. 2 to form a fiber web 3.

ここで禾だ自己粘着性を有する間に集積しなけれ‘まな
らないのは、楠集面への衝突点4で繊維を捕集面に軽く
粘着させ、又集積された繊維同士を相互に粘着させ、噴
出気流によって集積されたウェブを乱さないようにする
ためであり、又後の延伸工程に於いて均質に延伸される
ようにウェブに強度を付与すること及び得られた不織布
に優れた強度を付与することを効果的に果すためである
Here, the fibers must be accumulated while having a good self-adhesive property, so that the fibers lightly adhere to the collection surface at the collision point 4 on the camphori collection surface, and the accumulated fibers must also adhere to each other. This is to prevent the accumulated web from being disturbed by the ejected airflow, and to provide strength to the web so that it can be stretched uniformly in the subsequent stretching process, and to provide excellent strength to the obtained nonwoven fabric. This is to effectively accomplish the purpose of granting.

オリフィスから紙糸された後も繊維が自己粘着性を有す
るためには使用する高分子重合体、級糸条件によって異
なるが、一般にオリフィスから衝突点4までの距離を4
比か以内にするのが好ましい。紡糸した繊維を一定方向
に配列するよう集積するのは、2つ目の目的がある。1
つは強度のある不織布を得るためである。従釆のスパン
ボンデット法による場合は繊維がランダムの配列をとり
ながら集積され、そのため折角連続繊維で構成されてい
ても、その繊維が応力方向に配列していないため、繊維
自身の強度が不織布の強度に十分生かされない。もう1
つは繊維の各々が次の延伸工程にて均質に引き伸ばされ
、しかもその際ウヱブの幅引きをほとんど起こさないよ
うにするためである。ランダム配列の場合は、延伸の際
各繊維の延伸度合が異なり、また同時に延伸応力と直角
な方向に収縮する力が働くため、延伸倍率の増加と共に
大きくウヱブの幅引きを起こし、特に両端の耳部が中央
部より目付が大きく厚くなるというような不均質延伸と
なる欠点がある。繊維を燕集面移動方向に配列させるに
は、樋集面を射出方向に対して5o〜80oの角度で頃
斜させ、橘集面に沿って気流を流してやる必要がある。
In order for the fiber to remain self-adhesive even after it has been made into paper yarn from the orifice, the distance from the orifice to the collision point 4 is generally set at 4.
It is preferable to keep it within the range. There is a second purpose to assembling the spun fibers so that they are arranged in a certain direction. 1
One is to obtain a strong nonwoven fabric. In the conventional spunbond method, the fibers are stacked in a random arrangement, and even though they are made of continuous fibers, the fibers are not aligned in the stress direction, so the strength of the fibers themselves is lower than that of nonwoven fabrics. The strength of the team is not fully utilized. One more
The first purpose is to ensure that each of the fibers is uniformly stretched in the next drawing process, and that the width of the weave is hardly stretched at that time. In the case of random arrangement, the degree of stretching of each fiber differs during stretching, and at the same time, a shrinking force acts in a direction perpendicular to the stretching stress, so as the stretching ratio increases, the width of the weave increases, especially at the corners at both ends. There is a drawback that the stretching is non-uniform, such that the area has a larger basis weight and is thicker than the central area. In order to arrange the fibers in the direction of movement of the swallow collecting plane, it is necessary to tilt the gutter collecting plane at an angle of 5 to 80 degrees with respect to the injection direction and to flow the air flow along the swallow collecting plane.

50以下の場合には気流及び繊維の揺れにより衝突点4
の位置が不安定となり、従って均一な方向性ゥェブが得
られ難く、場合によっては気流が構築面に平行な状態で
通過するため全然橘集されない。
If it is less than 50, the collision point 4 is caused by the airflow and the shaking of the fibers.
The position of the airflow becomes unstable, making it difficult to obtain a uniform directional web, and in some cases, the airflow passes parallel to the construction surface and is not collected at all.

800以上の場合には従釆スパンボッデットと同様に繊
維はループ状にしてランダムに集積され、決して方向性
ウェブにはならない。
In the case of 800 or more, the fibers are randomly accumulated in the form of loops as in the case of sub-spun bodets, and never become a directional web.

好ましい傾斜角度は20o〜60oであり、最適には2
50〜400である。蒲集面の材料は、噴出気流を煩斜
角度に沿って下方に整流する必要性から空気不透過性の
ものが適している。
The preferred angle of inclination is 20o to 60o, optimally 2o.
50-400. The material for the collecting surface is preferably air-impermeable because it is necessary to rectify the ejected airflow downward along the oblique angle.

しかし完全に不透過性である必要はなく約20メッシュ
以上の繊密なネットであれば十分本発明を実施し得るも
のである。好ましい材料としては耐熱性のある繊密な布
キャンパス等が良い。このようにして得られた繊維が一
方向に配列されたウェプは、更に繊維を微細にしかつ強
度を向上させるために、次いで繊維配列方向に延伸され
る。
However, it is not necessary that the net be completely impermeable, and the present invention can be carried out as long as it is a fine net of about 20 mesh or more. A preferable material is a heat-resistant, delicate fabric canvas. The thus obtained web with fibers arranged in one direction is then stretched in the direction of fiber arrangement in order to further refine the fibers and improve the strength.

繊維の自己粘着力が弱く、従ってウェブの強度が延伸に
耐えられない場合には、延伸前に熱圧力レンダーにてプ
レスしても良い。延伸は公知の方法、例えばローラー方
式等で行なわれ、袷延伸または熱延伸であってもよく、
それによって配列方向に少なくとも2倍以上延伸するの
が好ましい。延伸倍率は高分子重合体等によって異るが
、3〜5倍にて好適に行なわれる。繊維が延伸方向に配
列したウェプであるから、前述の如く繊維の各々が均一
に延伸され、またその際ウェブの幅引きや耳の部分が厚
くなるようなことはない。またこの延伸によって、従釆
ショットが発生して不可能であったような、平均繊維直
径2ム以下の連続繊維から成る不織布が可能である。例
えば直径3.7仏の連続繊維から成るウェブを4倍延伸
すれば、直径1.6ムの実質的に連続繊維から成る本発
明の不織布が得られる。こ)で実質的にというのは、こ
れ位繊維が微細になると一部延伸により繊維が切断する
ことは避けられないからである。しかし、たとえ切れて
も紡糸時に切断した時発生するショットのようなものは
形成されず、又、連続繊維よりなる不織布としての品質
や外観を低下させることはないので、本発明の効果を減
ずるものではない。この延伸により繊維を構成する重合
体高分子は分子配向を生じ、高強度が実現される。
If the self-adhesive strength of the fibers is weak and therefore the strength of the web cannot withstand stretching, it may be pressed using a hot pressure renderer before stretching. Stretching is performed by a known method such as a roller method, and may be cross-stretching or hot stretching.
Accordingly, it is preferable to stretch the film at least twice in the arrangement direction. Although the stretching ratio varies depending on the polymer, it is preferably 3 to 5 times. Since the web is a web in which the fibers are arranged in the drawing direction, each of the fibers is drawn uniformly as described above, and at this time, the web does not become wider or the edges become thicker. Furthermore, by this stretching, it is possible to produce a nonwoven fabric consisting of continuous fibers with an average fiber diameter of 2 mm or less, which was previously impossible due to the occurrence of secondary shot. For example, if a web made of continuous fibers with a diameter of 3.7 mm is stretched four times, a nonwoven fabric of the present invention made of substantially continuous fibers with a diameter of 1.6 mm is obtained. The term "substantially" is used here because when the fibers become this fine, it is inevitable that some of the fibers will be cut due to stretching. However, even if the fibers break, they will not form anything like the shot that occurs when cutting during spinning, and will not reduce the quality or appearance of a nonwoven fabric made of continuous fibers, so this will not reduce the effects of the present invention. isn't it. This stretching causes molecular orientation in the polymer constituting the fibers, achieving high strength.

いままでの説明から明らかな様に本発明の高強度不織布
は所謂一方向性不織布であり、繊維を一定方向に配列さ
せ、しかもその繊維を延伸により分子配向させ−定方向
に高強度を持たものである。そして、本発明において微
細繊維の大部分が一定方向に配列したということは、一
定方向に高強度を実現し得る程度に繊維を配列させると
いう意味であり、これは繊維の配列方向と該方向の直角
方向との強度比で裏付けられる。
As is clear from the above description, the high-strength nonwoven fabric of the present invention is a so-called unidirectional nonwoven fabric, in which fibers are arranged in a certain direction, and the fibers are molecularly oriented by stretching, and thus have high strength in a certain direction. It is. In the present invention, the fact that most of the fine fibers are arranged in a certain direction means that the fibers are arranged to such an extent that high strength can be achieved in a certain direction. This is supported by the strength ratio with the perpendicular direction.

この強度比は使用した高分子重合体、補集面の煩斜角度
、延伸倍率、繊維間の結合の度合によって変動するが、
この強度比が15以上となる程度までに繊維を配列させ
ることが好ましい。従来のカード機(流綿法)による一
方向性不織布の場合、この強度比は4〜1乳屋度あるが
、本発明の場合には頭斜した補集面と延伸との両方の作
用によりこの強度比を40〜50まで高めることが出来
る。次表に煩斜角度を延伸倍率がこの強度比、言い換え
れば繊維の配列にどのような影響を及ぼすかを示す。こ
の表から明らかなように、低倍率延伸の場合、この比は
傾斜角度によって左右されるが、高倍率になるに従って
煩斜角度の影響は少なくなる。
This strength ratio varies depending on the polymer used, the oblique angle of the collection plane, the stretching ratio, and the degree of bonding between fibers.
It is preferable to arrange the fibers to such an extent that this strength ratio is 15 or more. In the case of a unidirectional nonwoven fabric made by a conventional carding machine (flowing method), this strength ratio is 4 to 1 degrees, but in the case of the present invention, it is This intensity ratio can be increased to 40-50. The following table shows how the oblique angle and the stretching ratio affect this strength ratio, in other words, the arrangement of the fibers. As is clear from this table, in the case of low magnification stretching, this ratio is influenced by the tilt angle, but as the magnification increases, the influence of the tilt angle becomes less.

延伸の後、更に強固に繊維の交点を接着するため、高分
子重合体の軟化点以上で熱圧するか、または接着剤等で
含浸してもよい。しかし、集積段階での繊維の自己粘着
力が弱い場合でも、延伸によって繊維間の融着が更に極
めて強固に向上されるので、新たに接着手段を設ける必
要職まほとんどない。しかし熱寸法安定性が必要な場合
には緊張或いは弛緩状態で熱セットしたり、また厚みを
調整することが必要な場合にはカレンダーを通したりす
ることが好ましい。このように本発明方法によれば、平
均繊維直径10山以下の特に従来不可能とされているよ
うな直径2仏以下でも実質的に連続繊維から成る高強度
な不撒布が得られ、更に微細な繊維から成るため軽量で
繊密で極薄な不織布が得られる。
After stretching, in order to bond the intersections of the fibers more firmly, the fibers may be hot-pressed at a temperature higher than the softening point of the polymer, or may be impregnated with an adhesive or the like. However, even if the self-adhesive strength of the fibers is weak in the stacking stage, the fusion between the fibers can be further improved by stretching, so that there is almost no need to provide a new adhesive means. However, if thermal dimensional stability is required, it is preferable to heat set the material in a tensioned or relaxed state, or to pass it through a calendar if it is necessary to adjust the thickness. As described above, according to the method of the present invention, it is possible to obtain a high-strength non-dispersed fabric consisting essentially of continuous fibers, even when the average fiber diameter is 10 or less, especially 2 or less, which was considered impossible in the past. Because it is made of fibers, it is possible to obtain lightweight, delicate, and ultra-thin nonwoven fabrics.

また延伸による各繊維の分子配向性、結晶化が増大する
ことにより耐熱性、耐薬品性等の多くの耐性が向上し、
外観的にも非常に光沢が発現される。しかも工業的にも
延伸による幅引きがほとんど無く、全幅にわたって均質
に延伸されるため、品質がすこぶる安定し、かつ収率が
向上するところから、その貢献するところは大である。
このような本発明の方法によって得られた不織布は、電
解コンデンサー用のセパレータや、ワニス含浸用、マイ
カバツキング用等の絶縁材基布をはじめとし、各種テー
プ基材、コーティング基布として極めて好適に使用され
るものである。
In addition, by increasing the molecular orientation and crystallization of each fiber by stretching, many resistances such as heat resistance and chemical resistance are improved.
It also has a very glossy appearance. Furthermore, from an industrial perspective, there is almost no width reduction due to stretching, and the entire width is uniformly stretched, so the quality is extremely stable and the yield is improved, making it a great contribution.
The nonwoven fabric obtained by the method of the present invention is extremely suitable as a separator for electrolytic capacitors, an insulating base fabric for varnish impregnation, mica backing, etc., as well as various tape base materials and coating base fabrics. It is used for.

以下、実施例をもって本発明の内容を更に具体的に説明
するが、これらによって本発明は何ら限定されるもので
はない。実施例 1 ポリエチレンテレフタレートを押出機に供給して溶融し
、その溶融物を直線上に並ぶ24の固の孔径0.3脚か
ら成る温度280ooに加熱されたオリフィスから吐出
量12夕/分で級出し、それと共にオリフイスの両側に
接する0.4肋のスリットから温度350ooに加熱さ
れた圧力1.5k9/地の圧搾空気を噴出して紙出繊縦
を搬送細化し、次いで該繊維が未だ自己粘着性を有する
間に、衝突点まで15肌離れた該繊維の射出方向に対し
て3がの角度で傾斜した繊密な縦キャンパス瓶集面上に
衝突集積させた。
EXAMPLES The present invention will be explained in more detail below with reference to Examples, but the present invention is not limited to these in any way. Example 1 Polyethylene terephthalate was supplied to an extruder and melted, and the melt was discharged from an orifice heated to a temperature of 280 oo, consisting of 24 solid holes arranged in a straight line with a diameter of 0.3 mm, at a discharge rate of 12 pm/min. At the same time, compressed air heated to a temperature of 350 oo and at a pressure of 1.5 k9/ground is ejected from the 0.4 rib slits in contact with both sides of the orifice to convey and thin the paper fibers in the longitudinal direction. While still sticky, the fibers were collided and piled up on a fine vertical canvas bottle collecting surface inclined at an angle of 3 to the injection direction of the fibers, which was 15 skins away from the collision point.

繊維は自己粘着性を有するため繊維の交叉点で接着、か
つ瓶集面に粘着することによって乱れることなく噴出気
流の流れの方向に折りた)まれて配列し、ほとんど瓶集
面進行方向に対して平均繊維直径4仏の連続繊維が平行
に配列した目付50夕/あの繊維ウェブが形成された。
次いでこのウェブを橘集面から剥し、温度75qoのカ
レンダーにて熱プレスした後、温度90q0のローラー
延伸機を用いて繊維配列方向に4倍に延伸したところ、
幅引きをほとんど起こすことなく全幅にわたって各繊維
が均質に延伸分子配向され、非常に光択のある不織布が
得られた。
Since the fibers have self-adhesive properties, they adhere at the intersections of the fibers and adhere to the bottle collecting surface, so that they are folded and arranged in the direction of the flow of the ejected air flow without being disturbed, and are arranged almost in the direction of the bottle collecting surface. A fiber web with a fabric weight of 50 mm was formed in which continuous fibers with an average fiber diameter of 4 mm were arranged in parallel.
Next, this web was peeled off from the Tachibana collection surface, hot pressed in a calendar at a temperature of 75qo, and then stretched 4 times in the fiber arrangement direction using a roller stretching machine at a temperature of 90q0.
Each fiber was stretched and molecularly oriented uniformly over the entire width with almost no width stretching, resulting in a highly photo-selective nonwoven fabric.

この不織布は目付12.8夕/で、厚み30仏(マイク
ロメーターにて測定)、平均繊維直径2.0ムで、しか
も繊維は実質的に連続しており、従って不織布の引張強
度は3.8k9/15肋幅(繊維の配列方向)と非常に
強力なものとなり、そのため各種テープ基材やコーティ
ング基材として、また光択があり美しい点では装飾・包
装用等のIJボンテープとして好適に使用されるもので
あった。なお、繊維の配列方向と直角方向の強度は0.
11k9/15側幅であり、強度比は34.5であった
。また、この不織布は更に熱圧力レンダ−にてプレスし
たところ、繊維が微細なため従来にはなかった厚み13
仏という超薄手の不織布となり、マィカバッキング、ワ
ニス含浸用等の絶縁材基布として最適であった。
This non-woven fabric has a basis weight of 12.8 mm, a thickness of 30 mm (measured with a micrometer), and an average fiber diameter of 2.0 mm, and the fibers are substantially continuous, so the tensile strength of the non-woven fabric is 3.0 mm. It is extremely strong with a rib width of 8k9/15 (fiber alignment direction), and is therefore suitable for use as various tape base materials and coating base materials, as well as IJ bond tape for decoration and packaging because of its light selection and beauty. It was to be done. Note that the strength in the direction perpendicular to the fiber arrangement direction is 0.
The side width was 11k9/15, and the strength ratio was 34.5. In addition, when this nonwoven fabric was further pressed using a heat-pressure renderer, the fibers were so fine that it reached a thickness of 13 mm, which was previously unheard of.
It became an ultra-thin non-woven fabric called Buddha, and was ideal as a base fabric for insulating materials such as mica backing and varnish impregnation.

比較例 1 実施例1と同様に紙出された繊維を、該繊維の進行方向
に対して直角に横切る瓶集面上に衝突集積させた。
Comparative Example 1 In the same manner as in Example 1, paper-outed fibers were collided and accumulated on a bottle collecting surface that was perpendicular to the traveling direction of the fibers.

繊維は方向性をもつことなくループを描いてランダムに
集積され、目付50夕/〆の繊維ウヱブが形成された。
次いでこのウェプを温度7yoのカレンダーにて熱プレ
スした後、温度90午0のローラー延伸機を用いて4倍
に一触延伸した。
The fibers were randomly accumulated in a loop without any directionality, and a fiber web with a basis weight of 50 mm was formed.
Next, this web was hot-pressed using a calendar at a temperature of 7yo, and then stretched 4 times at one touch using a roller stretching machine at a temperature of 90:00.

しかしランダムウェブのために通常のフィルム延伸と同
様、延伸による幅引きが大きく両耳端部が厚くなるとい
う不均一延伸の問題を発生し、それと共に各繊維一本一
本の延伸度合も異なり、得られた不織布の物性値も非常
にバラッキの大きいものであった。一応得られた夫織布
の平均目付は15.5夕/れ平均繊維直径は2.8仏、
平均引張強度は2.6k9/15側幅(繊維の延伸方向
)であった。実施例 2 ポリプロピレンを押出機に供給して溶融し、その溶融物
を直線上に並ぶ24の固の孔径0.3肋から成る温度3
1000に加熱されたオリフイスから吐出量20夕/分
で紡出し、それと共にオリフィスの両側に接する0.4
肌のスリットから温度400ooに加熱された圧力1.
5kg/地の圧搾空気を噴出して紙出繊維を搬送織化し
、次いで該繊維が未だ自己粘着性を有する間に、衝沖犬
点まで25伽離れた該繊維の射出方向に対して25oの
角度で額斜した繊密な綿キャンパス補集面上に衝突集積
させた。
However, due to the random web, as with normal film stretching, there is a problem of uneven stretching in which the width is large due to stretching and the ends of both ends become thicker, and at the same time, the degree of stretching of each fiber is different. The physical properties of the obtained nonwoven fabric also varied greatly. The average basis weight of the obtained woven fabric was 15.5 mm, and the average fiber diameter was 2.8 mm.
The average tensile strength was 2.6k9/15 side width (fiber drawing direction). Example 2 Polypropylene was fed into an extruder and melted, and the melt was heated to a temperature 3.
Spinning is carried out at a discharge rate of 20/min from an orifice heated to 1,000 ℃, and at the same time 0.4
Pressure heated to a temperature of 400 oo from the skin slit 1.
The paper fibers are conveyed and woven by blowing out 5 kg/ground of compressed air, and then, while the fibers are still self-adhesive, the paper fibers are blown at 25° to the direction of injection of the fibers, which is 25 degrees away from the pier point. It was collided and accumulated on a delicate cotton canvas collection surface that was tilted at an angle.

繊維は自己粘着性を有するため、繊維の交叉点で接着し
、かつ補集面に粘着することによって乱れることなく噴
出気流の流れの方向に折りた)まれて配列し、ほとんど
補集面進行方行に対して平均繊維直径7山の連続繊維が
平行に配列した目付80夕/あの繊維ウェブが形成され
た。次いでこのウェブを構築面から剥し、温度90oo
のカレンダーにて熱プレスした後、温度10000のロ
ーラー延伸機を用いて繊維配列方向に4.5倍に延伸し
たところ、幅引きをほとんど起こすことなく全幅にわた
って各繊維が均質に延伸分子配向され、非常に光択のあ
る不織布が得られた。
Because the fibers have self-adhesive properties, they adhere at the intersections of the fibers and adhere to the collection surface, so that they are folded and arranged in the direction of the flow of the ejected air flow without being disturbed, and almost follow the direction of the collection surface. A fiber web with a fabric weight of 80 mm was formed in which continuous fibers with an average fiber diameter of 7 strands were arranged in parallel to each row. This web is then peeled off from the construction surface and heated to a temperature of 90 oo
After hot pressing in a calendar, the fibers were stretched 4.5 times in the fiber arrangement direction using a roller stretching machine at a temperature of 10,000, and each fiber was stretched and molecularly oriented uniformly over the entire width with almost no width stretching. A highly photosensitive nonwoven fabric was obtained.

この不織布は目付17.9夕/あ、厚み56仏(マイク
ロメーターにて測定)、平均繊維直径3.5仏で、しか
も連続繊維から成っているため引張強度4.6k9/1
5肋(繊維の配列方向)と非常に強力なものとなり、装
飾・包装用等のりボンテープとして好適に使用されるも
のであった。繊維の配列方向と直角方向の強度は0.1
1kg/15側幅であり、強度比は44.8であった。
また、この不織布をポリオキシェチレンノニルフェノー
ルェーテル(花王アトラス社製ェマルゲン810)にて
処理し、親水性を付与したものをアルミ電解コンデンサ
ーのセパレーターとして使用したところ、強度が強いた
めに作業性に優れ、また微細繊維から成るためインピー
ダンス、tan8が小さく極めて好適に使用されるもの
であった。
This non-woven fabric has a basis weight of 17.9 k/m, a thickness of 56 k/m (measured with a micrometer), an average fiber diameter of 3.5 k/1, and a tensile strength of 4.6 k9/1 since it is made of continuous fibers.
It was extremely strong with 5 ribs (in the direction of fiber arrangement) and was suitable for use as adhesive tape for decoration, packaging, etc. The strength in the direction perpendicular to the fiber arrangement direction is 0.1
The width was 1 kg/15, and the strength ratio was 44.8.
In addition, this nonwoven fabric was treated with polyoxyethylene nonylphenol ether (Emulgen 810 manufactured by Kao Atlas Co., Ltd.) to give it hydrophilic properties and was used as a separator for an aluminum electrolytic capacitor. Furthermore, since it is made of fine fibers, its impedance and tan8 are small, making it extremely suitable for use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法の工程側面図である。 FIG. 1 is a process side view of the manufacturing method of the present invention.

Claims (1)

【特許請求の範囲】 1 平均繊維直径が10μ以下で、均一に分子配向する
ように延伸された実質的に連続した微細繊維から成り、
且つ該微細繊維の大部分が一定方向に配列されて、該繊
維の配列方向の強度と、該方向と直角方向の強度との比
が15以上であることを特徴とする高強度不織布。 2 微細繊維の平均繊維直径が2μ以下であることを特
徴とする特許請求の範囲第1項記載の高強度不織布。 3 高分子重合体を溶融してオリフイスから紡糸しなが
ら周囲から高温気流を噴射して紡糸した繊維を搬送細化
し、次いで紡糸した繊維が未だ自己粘着性を有する間に
紡糸の射出方向に対して5〜80°の傾斜角度を有する
移動捕集面上に集積することにより、繊維を捕集面移動
方向に配列させて繊維ウエブを形成し、次いでこの繊維
ウエブを同方向に延伸することを特徴とする平均繊維直
径が10μ以下の延伸された高分子重合体の微細繊維か
ら成る高強度不織布の製造方法。
[Claims] 1. Consisting of substantially continuous fine fibers with an average fiber diameter of 10 μm or less and stretched so as to have uniform molecular orientation,
A high-strength nonwoven fabric characterized in that most of the fine fibers are arranged in a certain direction, and the ratio of the strength in the direction in which the fibers are arranged to the strength in a direction perpendicular to the direction is 15 or more. 2. The high-strength nonwoven fabric according to claim 1, wherein the average fiber diameter of the fine fibers is 2 μ or less. 3. While melting the polymer and spinning it from an orifice, a high-temperature air stream is injected from the surroundings to transport and thin the spun fibers, and then, while the spun fibers still have self-adhesive properties, they are The fibers are collected on a moving collection surface having an inclination angle of 5 to 80 degrees to form a fiber web by arranging the fibers in the direction of movement of the collection surface, and then this fiber web is stretched in the same direction. A method for producing a high-strength nonwoven fabric comprising fine fibers of a stretched polymer having an average fiber diameter of 10 μm or less.
JP51112923A 1976-09-22 1976-09-22 High-strength nonwoven fabric made of fine fibers and method for producing the same Expired JPS6025541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51112923A JPS6025541B2 (en) 1976-09-22 1976-09-22 High-strength nonwoven fabric made of fine fibers and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51112923A JPS6025541B2 (en) 1976-09-22 1976-09-22 High-strength nonwoven fabric made of fine fibers and method for producing the same

Publications (2)

Publication Number Publication Date
JPS5338767A JPS5338767A (en) 1978-04-10
JPS6025541B2 true JPS6025541B2 (en) 1985-06-19

Family

ID=14598863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51112923A Expired JPS6025541B2 (en) 1976-09-22 1976-09-22 High-strength nonwoven fabric made of fine fibers and method for producing the same

Country Status (1)

Country Link
JP (1) JPS6025541B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168727A (en) * 1996-12-02 1998-06-23 Toray Ind Inc Drawn nonwoven cloth and its production

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54147276A (en) * 1978-05-09 1979-11-17 Asahi Chemical Ind Nonnwoven fabric and production
JPS59199856A (en) * 1983-04-25 1984-11-13 東レ株式会社 Nonwoven sheet and production thereof
JPS60126365A (en) * 1983-12-14 1985-07-05 花王株式会社 Treatment of nonwoven fabric
US4988560A (en) * 1987-12-21 1991-01-29 Minnesota Mining And Manufacturing Company Oriented melt-blown fibers, processes for making such fibers, and webs made from such fibers
JP2587461B2 (en) * 1988-06-24 1997-03-05 三井石油化学工業株式会社 Nonwoven fabric manufacturing method
JPH0795501B2 (en) * 1990-07-04 1995-10-11 日本ケミコン株式会社 Electrolytic capacitor
JPH04326504A (en) * 1991-04-25 1992-11-16 Elna Co Ltd Electric double layer capacitor
JPH04338623A (en) * 1991-05-15 1992-11-25 Elna Co Ltd Electric double layer capacitor
US5320891A (en) * 1992-12-31 1994-06-14 Kimberly-Clark Corporation Particle barrier nonwoven material
JPH08224412A (en) * 1995-02-20 1996-09-03 Toray Ind Inc Nonwoven fabric, filter medium made from the same and these production
WO2010054943A1 (en) * 2008-11-13 2010-05-20 Oerlikon Textile Gmbh & Co. Kg Apparatus for producing a spunbonded fabric
JP5653775B2 (en) * 2011-01-28 2015-01-14 日本バイリーン株式会社 Nonwoven fabric manufacturing apparatus, nonwoven fabric manufacturing method, and nonwoven fabric
JP7427435B2 (en) * 2019-12-04 2024-02-05 Eneos株式会社 Long fiber nonwoven fabric
CN116397383B (en) * 2023-06-09 2023-08-22 称道新材料科技(上海)有限公司 Meltblown cloth with three-dimensional structure and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168727A (en) * 1996-12-02 1998-06-23 Toray Ind Inc Drawn nonwoven cloth and its production

Also Published As

Publication number Publication date
JPS5338767A (en) 1978-04-10

Similar Documents

Publication Publication Date Title
JPS6025541B2 (en) High-strength nonwoven fabric made of fine fibers and method for producing the same
JP3657700B2 (en) Method for producing high-quality nonwoven fabric
US3565729A (en) Non-woven fabric
JP4851681B2 (en) Meltblown web
US4217387A (en) Process for the manufacture of a non-woven web from synthetic filaments
US20170254005A1 (en) Forcespinning of fibers and filaments
WO2015008898A1 (en) Melt-blown fiber web having improved elasticity and cohesion, and manufacturing method therefor
US20090253329A1 (en) Heat-resistant nonwoven fabric
KR20010051790A (en) Cross laminated nonwoven fabric having intermediate layer
TWI633219B (en) Verfahren zur herstellung eines strukturierten mikrofilamentvliesstoffs
JP2007534854A (en) Manufacturing method of fine spunbond filament
RU2415208C1 (en) High-strength light nonwoven fabric from spunbonded web, method of its production and its application
CN102341536A (en) Production method for filament non-woven fabric
JPH03294558A (en) Interlaced non-woven fabric and production thereof
JP4113271B2 (en) Manufacturing method of longitudinally stretched nonwoven fabric
CN112359489A (en) Manufacturing equipment and manufacturing method of double-component spun-bonded non-woven fabric
US3856612A (en) Non-woven structures
US3796619A (en) Method of spray-spinning continuous tubular structures
CN113417078B (en) Preparation method of high-shrinkage orange-peel-type two-component spun-bonded spunlace microfiber leather base fabric
US20170298548A1 (en) Bulk fill material
JP4114681B2 (en) Non-woven fabric for nonwoven fabric and tufted carpet and tufted carpet
JP2007197891A (en) Spun-bond nonwoven fabric
US20030045196A1 (en) Composite nonwoven fabric having high strength and superior printability and fabrication method of the same
US3847729A (en) Deep-drawable plastic composite comprising plastic film on fibrous support
JP3702572B2 (en) Manufacturing method of long fiber nonwoven fabric