WO2018079543A1 - 通信装置 - Google Patents

通信装置 Download PDF

Info

Publication number
WO2018079543A1
WO2018079543A1 PCT/JP2017/038343 JP2017038343W WO2018079543A1 WO 2018079543 A1 WO2018079543 A1 WO 2018079543A1 JP 2017038343 W JP2017038343 W JP 2017038343W WO 2018079543 A1 WO2018079543 A1 WO 2018079543A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
resonator
wave
conductor
transmission wave
Prior art date
Application number
PCT/JP2017/038343
Other languages
English (en)
French (fr)
Inventor
泰彦 福岡
伸治 磯山
信樹 平松
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US16/344,361 priority Critical patent/US20190273304A1/en
Priority to EP17864406.8A priority patent/EP3531507A4/en
Priority to JP2018547684A priority patent/JPWO2018079543A1/ja
Publication of WO2018079543A1 publication Critical patent/WO2018079543A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/006Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver

Definitions

  • This disclosure relates to a communication device.
  • an antenna may be arranged so as not to overlap a battery (for example, Patent Document 1).
  • a communication apparatus includes an antenna and a wireless module that supplies electric power to the antenna and causes the antenna to emit an electromagnetic wave having a predetermined frequency band.
  • the communication device includes at least one structure portion having at least a part of a conductor surface, and at least one resonator.
  • the resonator includes a plurality of unit conductors.
  • the resonator has a resonance frequency band including a resonance frequency. At least one of the resonators is located between the conductor surface and the antenna.
  • the predetermined frequency band is included in the resonance frequency band.
  • FIG. 2A It is a perspective view which shows an example of the external appearance of the communication apparatus which concerns on one Embodiment. It is a top view of the communication apparatus of FIG. It is AA sectional drawing of FIG. 2A. It is a block diagram which shows the example of schematic structure of the communication apparatus which concerns on one Embodiment. It is a figure which shows the example in which a transmission wave is reflected by a resonator. It is a graph which shows the frequency characteristic of the phase difference of a transmission wave and a reflected wave. It is a graph which shows the frequency characteristic of the intensity ratio of the reflected wave with respect to a transmission wave. It is a figure which shows an example of the unit conductor which has a patch type pattern contained in a resonator.
  • FIG. 9B is a sectional view taken along line BB in FIG. 9A. It is an example of the top view of the communication apparatus which concerns on one Embodiment. It is CC sectional drawing of FIG. 10A. It is an example of the top view of the communication apparatus which concerns on one Embodiment.
  • FIG. 11B is a DD cross-sectional view of FIG. 11A. It is an example of the top view of the communication apparatus which concerns on one Embodiment. It is EE sectional drawing of FIG. 12A.
  • the antenna 10 is arranged so as not to overlap the battery 40. It can be larger than the battery 40. In this case, the communication device 1 is difficult to be miniaturized.
  • the communication device 1 includes an antenna 10, a wireless module 20, and a battery 40.
  • the communication device 1 may include various structures such as a housing, a heat sink, and a shield.
  • the battery 40 may be included in the structure part.
  • the battery 40 may be, for example, a button type battery or a coin type battery.
  • the battery 40 may be a rechargeable battery.
  • the battery 40 illustrated in FIG. 2B has a first surface 41, a second surface 42, and a side surface 43.
  • the first surface 41 and the second surface 42 are located on the positive direction side and the negative direction side of the Z axis, respectively. That is, the first surface 41 and the second surface 42 are located on opposite sides of the battery 40.
  • the side surface 43 has a ring shape and is located between the first surface 41 and the second surface 42.
  • the distance between the first surface 41 and the second surface 42 is also referred to as the height of the battery 40.
  • the area of the first surface 41 or the second surface 42 in plan view when the battery 40 is viewed in plan from the positive direction or negative direction of the Z axis is also referred to as the surface size of the battery 40.
  • the surface size of the battery 40 may be the longest dimension in the first surface 41 or the second surface 42. In the present embodiment, the surface size of the battery 40 is larger than the height of the battery 40.
  • the communication device 1 may further include a substrate 30.
  • the shape of the substrate 30 may be the same as or similar to the shape of the first surface 41 of the battery 40.
  • the antenna 10 and the wireless module 20 may be mounted on the substrate 30.
  • the substrate 30 may be positioned so as to overlap the first surface 41 of the battery 40 when viewed in plan from the height direction of the battery 40.
  • the substrate 30 may be positioned alongside the battery 40 in the height direction of the battery 40.
  • the battery 40 can occupy a larger area in the communication device 1 than the other components of the communication device 1 when the communication device 1 is viewed in plan from the Z-axis direction.
  • the size of the communication device 1 when the communication device 1 is viewed in plan from the Z-axis direction is also referred to as a surface size of the communication device 1. It can be said that the surface size of the battery 40 occupies most of the surface size of the communication device 1. Since the substrate 30 is positioned so as to overlap the first surface 41 or the second surface 42 that defines the surface size of the battery 40 as viewed from the Z-axis direction, the surface size of the communication device 1 can be reduced.
  • the antenna 10 radiates electromagnetic waves based on electric power including input current or voltage.
  • the antenna 10 may be included in the wireless module 20.
  • the antenna 10 may be separate from the wireless module 20.
  • the antenna 10 may be mounted on the substrate 30.
  • the antenna 10 may be mounted on the first surface 41 of the battery 40.
  • the antenna 10 may be a conductor located on the substrate 30.
  • the antenna 10 may be a conductor located in the substrate 30.
  • the antenna 10 may be a chip antenna located on the substrate 30.
  • the antenna 10 may be a metal sheet antenna located on the substrate 30.
  • the wireless module 20 supplies electric power including current or voltage to the antenna 10 and causes the antenna 10 to emit electromagnetic waves.
  • the wireless module 20 may be mounted on the substrate 30.
  • the wireless module 20 may be mounted on the first surface 41 of the battery 40.
  • At least a part of the surface of the battery 40 may have a property of a conductor having high electrical conductivity.
  • the conductor may include a material whose electrical conductivity decreases with increasing temperature.
  • the conductor may include a metal.
  • the conductor may include gold, silver, copper, platinum, nickel, cadmium lead, selenium, manganese, tin, vanadium, or lithium.
  • a surface having the properties of a conductor is also referred to as a conductor surface.
  • the first surface 41 of the battery 40 is a conductor surface.
  • the first surface 41 is also referred to as a conductor surface 41. It is assumed that the conductor surface 41 is grounded. It can be said that the structure including the battery 40 has a conductor surface at least partially.
  • the antenna 10 may be positioned so as to overlap the conductor surface 41 when viewed in plan from the Z-axis direction.
  • the communication device 1 further includes a resonator 50 between the antenna 10 and the conductor surface 41.
  • the resonator 50 includes a unit conductor 55 (see FIGS. 7A, 7B, and 7C) that resonates and reflects the electromagnetic wave according to the incident electromagnetic wave, and a conductor layer 56 (on the side closer to the battery 40 than the unit conductor 55). 4).
  • the conductor layer 56 may fill all or part of the resonator 50 with a conductor.
  • the resonator 50 can reflect the electromagnetic wave radiated from the antenna 10.
  • the electromagnetic wave radiated from the antenna 10 is also referred to as a transmission wave 12 (see FIG. 4).
  • the transmission wave 12 is difficult to reach the conductor surface 41.
  • the conductor layer 56 fills the entire resonator 50 with a conductor, the transmission wave 12 is completely reflected by the resonator 50 and does not reach the conductor surface 41.
  • the antenna 10 may be located on the substrate 30 or in the substrate 30.
  • the resonator 50 may be located closer to the battery 40 than the conductor serving as the antenna 10. In a plan view from the height direction of the battery 40, the resonator 50 may be positioned in a wider range than the conductor serving as the antenna 10. In plan view from the height direction of the battery 40, at least a part of the resonator 50 may be located around the antenna 10.
  • the resonator 50 may be provided in the wireless module 20.
  • the resonator 50 may be provided on the substrate 30.
  • the resonator 50 may be provided on the first surface 41 of the battery 40.
  • one resonator 50 may be located in any one of the antenna 10, the wireless module 20, the substrate 30, and the battery 40.
  • the plurality of resonators 50 may be located in any one of the antenna 10, the wireless module 20, the substrate 30, and the battery 40, or may be located in a plurality.
  • the plurality of resonators 50 may be positioned so as to overlap each other in plan view from the Z-axis direction.
  • the plurality of resonators 50 may be positioned such that at least a part of each other overlaps in a plan view from the Z-axis direction.
  • the plurality of resonators 50 may be positioned so as not to overlap each other in plan view from the Z-axis direction.
  • At least some of the plurality of resonators 50 may be positioned so as to overlap the antenna 10 in a plan view from the Z-axis direction.
  • the plurality of resonators 50 may have different sizes in plan view from the Z-axis direction.
  • the communication device 1 may further include a control device 32, a storage device 34, and a sensor 36.
  • the control device 32, the storage device 34, and the sensor 36 may be mounted on the substrate 30.
  • the control device 32 may be communicably connected to the wireless module 20, the storage device 34, and the sensor 36.
  • the antenna 10 may be electrically connected to the wireless module 20.
  • the battery 40 can supply power to each component of the communication device 1.
  • the control device 32 generates a transmission signal to be transmitted from the communication device 1.
  • the control device 32 may acquire measurement data from the sensor 36.
  • the control device 32 may generate a transmission signal based on the measurement data.
  • the control device 32 may be configured as a processor, for example.
  • the control device 32 may include one or more processors.
  • the processor may include a general-purpose processor that reads a specific program and executes a specific function, and a dedicated processor specialized for a specific process.
  • a dedicated processor may include an application specific IC.
  • the IC for specific applications is also called ASIC (Application Specific Specific Integrated Circuit).
  • the processor may include a programmable logic device.
  • the programmable logic device is also called PLD (Programmable Logic Device).
  • the PLD may include an FPGA (Field-Programmable Gate Array).
  • the control device 32 may be one of SoC (System-on-a-Chip) and SiP (System-In-a-Package) in which one or a plurality of processors cooperate.
  • the control device 32 may store various information, a program for operating each component of the communication device 1, or the like in the storage device 34.
  • the storage device 34 may be composed of, for example, a semiconductor memory.
  • the storage device 34 may function as a work memory for the control device 32.
  • the storage device 34 may be included in the control device 32.
  • the sensor 36 is, for example, a speed sensor, an acceleration sensor, a gyro sensor, a rotation angle sensor, an illuminance sensor, a geomagnetic sensor, a temperature sensor, a humidity sensor, an atmospheric pressure sensor, an illuminance sensor, or a GPS (Global Positioning System) signal receiver. May include.
  • the wireless module 20 may include a device capable of performing wireless communication such as Bluetooth (registered trademark) or wireless LAN (Local Area Network).
  • the wireless module 20 may include a processor.
  • the wireless module 20 may include a DSP (Digital Signal Processing) circuit.
  • the wireless module 20 may be configured to execute the function of the control device 32.
  • the wireless module 20 may include a control device 32.
  • the wireless module 20 may include a storage device 34.
  • the wireless module 20 may acquire a transmission signal from the control device 32.
  • the wireless module 20 may generate a transmission signal.
  • the wireless module 20 can supply power based on the transmission signal to the antenna 10 to cause the antenna 10 to radiate the transmission wave 12.
  • the wireless module 20 can supply power to the antenna 10 via voltage or current.
  • the transmission wave 12 can be generated by modulating a carrier wave having a predetermined frequency according to the signal.
  • the transmission wave 12 may have a predetermined frequency band.
  • the predetermined frequency band may include the frequency of the carrier wave. When the frequency of the carrier wave is about 2.5 GHz, the width of the predetermined frequency band may be 1 MHz or 20 MHz.
  • the width of the predetermined frequency band may be a sufficiently small value as compared with the frequency of the carrier wave.
  • the antenna 10 can radiate at least a part of the transmission wave 12 in the positive direction and the negative direction of the Z-axis.
  • the positive direction of the Z-axis is a direction from right to left.
  • At least a part of the transmission wave 12 can travel in the negative direction of the Z-axis as the transmission wave 12a.
  • At least a part of the transmission wave 12 traveling in the negative direction of the Z axis can travel toward the conductor surface 41 of the battery 40.
  • the transmission wave 12 a can enter the resonator 50.
  • At least a part of the transmission wave 12 a can pass through the resonator 50 and enter the conductor surface 41 of the battery 40 as the transmission wave 12 b.
  • At least a part of the transmission wave 12 can travel in the positive direction of the Z-axis as the transmission wave 12c.
  • the transmission wave 12 a incident on the resonator 50 can be reflected as a reflected wave 52 by the resonator 50.
  • the transmission wave 12a can cause the resonator 50 to resonate.
  • the reflected wave 52 can be radiated from the resonator 50 due to the resonance.
  • the resonator 50 can reflect the transmission wave 12 a as the reflected wave 52.
  • the phase difference between the transmitted wave 12a and the reflected wave 52 can have frequency characteristics.
  • the horizontal axis of FIG. 5 represents the frequencies of the transmission wave 12a and the reflected wave 52.
  • 5 represents the phase difference between the transmission wave 12a and the reflected wave 52.
  • the phase difference when the surface of the resonator 50 on the antenna 10 side is the observation point is simply referred to as “phase difference”.
  • the resonator 50 has a resonance frequency.
  • the resonance frequency is a frequency at which the phase difference between the transmission wave 12a and the reflected wave 52 becomes 0 degrees. 5, the resonance frequency is represented by f r.
  • the resonator 50 has a resonance frequency band defined as a predetermined frequency range.
  • the resonance frequency band is a frequency band between the first frequency and the second frequency.
  • the first frequency is a frequency at which the phase difference between the transmission wave 12a and the reflected wave 52 is +90 degrees.
  • the second frequency is a frequency at which the phase difference between the transmission wave 12a and the reflected wave 52 is ⁇ 90 degrees.
  • the resonance frequency band is also called a resonance frequency band.
  • the predetermined frequency range includes a resonance frequency. In FIG. 5, the first and second frequencies are represented by f 1 and f 2 , respectively.
  • the phase difference between the transmitted wave 12a and the reflected wave 52 can be 0 degrees at the resonance frequency.
  • the phase difference between the transmission wave 12a and the reflected wave 52 can approach 0 degrees as it approaches the resonance frequency.
  • the phase difference between the transmitted wave 12a and the reflected wave 52 can be 0 degrees or close to 0 degrees in the vicinity of the resonance frequency.
  • the phase difference between the transmitted wave 12a in the frequency band included in the resonance frequency band and the reflected wave 52 can be within a range of ⁇ 90 degrees to +90 degrees at each frequency.
  • the width of the resonance frequency band determined based on the first and second frequencies may be, for example, 100 MHz or more when the resonance frequency is about 2.5 GHz.
  • the intensity ratio of the reflected wave 52 to the transmission wave 12a can have a frequency characteristic.
  • the horizontal axis in FIG. 6 represents the frequencies of the transmission wave 12a and the reflected wave 52.
  • 6 represents the intensity ratio of the reflected wave 52 to the transmission wave 12a.
  • the intensity ratio is expressed in units of decibel (dB).
  • dB decibel
  • the intensity ratio is 0 dB
  • the intensity of the reflected wave 52 is the same as the intensity of the transmission wave 12a.
  • the intensity ratio is smaller than 0 dB
  • the intensity of the reflected wave 52 is lower than the intensity of the transmission wave 12a.
  • the resonance frequency is represented by f r.
  • the first and second frequencies are represented by f 1 and f 2 , respectively.
  • the intensity ratio of the reflected wave 52 to the transmission wave 12a at the resonance frequency is smaller than the intensity ratio of the reflected wave 52 to the transmission wave 12a at other frequencies.
  • the intensity ratio of the reflected wave 52 to the transmission wave 12a in the resonance frequency band is smaller than the intensity ratio of the reflection wave 52 to the transmission wave 12a at a frequency outside the range of the resonance frequency band.
  • the decrease in the intensity ratio is caused by a loss due to a current flowing in a conductor included in the resonator 50 during resonance.
  • the resonator 50 may include a plurality of unit conductors 55. At least a part of the unit conductor 55 can resonate at the resonance frequency of the resonator 50. At least a part of the unit conductor 55 can resonate near the resonance frequency of the resonator 50. At least a part of the unit conductor 55 can resonate in the vicinity of the resonance frequency (fr) of the resonator 50.
  • 7A, 7B, and 7C are diagrams illustrating an example of the shape of the unit conductor 55 included in the resonator 50.
  • FIG. FIG. 7A represents a patch pattern.
  • FIG. 7B represents a loop pattern.
  • FIG. 7C represents a cross-type pattern.
  • One resonator 50 may include unit conductors 55 having a plurality of shapes.
  • the plurality of resonators 50 may include unit conductors 55 having different shapes.
  • the size of the unit conductor 55 may vary depending on the shape.
  • the size of the unit conductor 55 may be a size capable of resonating at the resonance frequency of the resonator 50 or a frequency near the resonance frequency.
  • the size of the unit conductor 55 may include a range of 1/10 to 1/20 of the wavelength of the transmission wave 12, for example.
  • the unit conductor 55 may be a conductive material, for example.
  • the unit conductor 55 may be a metal thin film, for example.
  • the plurality of unit conductors 55 may be two-dimensionally arranged in one layer or each of the plurality of layers.
  • the plurality of unit conductors 55 may be arranged in a grid in each of one layer or a plurality of layers.
  • the shape of the lattice is not limited to a square.
  • the plurality of unit conductors 55 may be arranged in a grid in each of one layer or a plurality of layers.
  • the plurality of unit conductors 55 may be arranged in one row in each of one layer or a plurality of layers.
  • the plurality of unit conductors 55 included in one resonator 50 may be arranged in a row with at least one layer, and may be arranged in a lattice with at least one layer.
  • the unit conductors 55 may be arranged one-dimensionally.
  • the unit conductors 55 may be arranged two-dimensionally.
  • the unit conductors 55 may be periodically arranged.
  • a region surrounded by a broken line shown in FIGS. 7A, 7B, and 7C may represent a pitch when the unit conductors 55 are periodically arranged.
  • the unit conductors 55 may be arranged in three dimensions.
  • One resonator 50 may be a laminated body of one layer in which a plurality of unit conductors 55 are two-dimensionally arranged.
  • the structure in which the unit conductors 55 are arranged infinitely in two dimensions can function as a frequency selection surface.
  • the frequency selective surface is also called FSS (FrequencyequSelective Surface).
  • the FSS can function as an artificial magnetic conductor when combined with an electrically grounded part.
  • the artificial magnetic conductor is also referred to as AMC (Artificial Magnetic Conductor).
  • AMC can reflect incident electromagnetic waves with substantially the same phase.
  • the resonator 50 may be an FSS.
  • the resonator 50 can function as an AMC depending on the combination with the conductor surface 41 of the battery 40.
  • the resonator 50 can function as an AMC in combination with a conductor included in the substrate 30.
  • the resonator 50 can function as an AMC by a combination with a grounding portion different from the conductor surface 41.
  • the resonator 50 may include an electrically grounded part.
  • the resonance When the resonance is strong, the current flowing through the conductor included in the resonator 50 is large. When the current flowing through the conductor is large, the energy loss can be greater due to resistance loss in the conductor. In other words, the intensity of the reflected wave 52 can be reduced due to the strong resonance.
  • the transmission wave 12 b incident on the conductor surface 41 of the battery 40 is reflected by the conductor surface 41 and radiated as a reflected wave 44.
  • the reflected wave 44 travels in the positive direction of the Z axis.
  • the phase difference between the reflected wave 44 and the transmission wave 12b is about 180 degrees.
  • the resonator 50 can prevent the transmission wave 12 having a frequency included in the resonance frequency band from moving toward the conductor surface 41 of the battery 40.
  • the communication device 1 may include a single layer resonator 50.
  • the communication device 1 may include resonators 50 having two or more layers. By increasing the number of layers of the resonator 50, the transmittance of the transmission wave 12 can be further lowered.
  • the phase of the reflected wave 52 in the resonator 50 reaches the antenna 10. It may be considered that the phase of the reflected wave 52 is the same. In this case, the phase difference between the transmission wave 12c traveling in the positive direction of the Z axis and the reflected wave 52 reaching the antenna 10 and further traveling in the same direction as the transmission wave 12c is in the range of ⁇ 90 degrees to +90 degrees. It can be inside. As a result, the transmission wave 12c and the reflected wave 52 can travel in the positive direction of the Z axis without weakening each other.
  • the quarter length of the wavelength of the transmission wave 12 is about 30 mm.
  • the distance between the antenna 10 and the resonator 50 may be 1 mm or less, for example. In this case, the distance between the antenna 10 and the resonator 50 hardly restricts the size reduction of the communication device 1.
  • the transmission wave 12 can have a predetermined frequency band.
  • the resonance frequency band of the resonator 50 includes a predetermined frequency band
  • the phase difference between the transmission wave 12a and the reflected wave 52 can be within a range of ⁇ 90 degrees to +90 degrees in each frequency component of the transmission wave 12.
  • the transmission wave 12 can travel in the positive direction of the Z axis without being weakened by the reflected wave 52.
  • the resonance frequency of the resonator 50 When the resonance frequency of the resonator 50 is included in the predetermined frequency band, at least a part of the frequency components of the transmission wave 12 can resonate with the resonator 50.
  • the width of the resonance frequency band tends to be wider than the predetermined frequency band of the transmission wave 12.
  • the phase difference between the transmission wave 12a and the reflected wave 52 is ⁇ 90 degrees to +90 in each frequency component of the transmission wave 12.
  • the transmission wave 12 can travel in the positive direction of the Z axis without being weakened by the reflected wave 52.
  • the communication device 2 does not include the resonator 50.
  • the transmission wave 12 b traveling in the negative direction of the Z axis is incident on the conductor surface 41 of the battery 40.
  • the transmission wave 12a is reflected by the conductor surface 41 and travels as a reflected wave 44 in the positive direction of the Z axis.
  • the phase difference between the reflected wave 44 and the transmitted wave 12a is about 180 degrees.
  • the positive direction of the Z-axis is a direction from right to left.
  • the phase of the reflected wave 44 reflected by the conductor surface 41 is May be considered to be the same as the phase of the reflected wave 44 arriving at.
  • the phase difference between the transmitted wave 12c traveling in the positive direction of the Z-axis and the reflected wave 44 that reaches the antenna 10 and travels in the same direction as the transmitted wave 12c can be approximately 180 degrees.
  • the transmission wave 12c and the reflected wave 44 weaken each other.
  • the intensity of the transmission wave 12 radiated from the antenna 10 can be weakened.
  • the distance that the electromagnetic wave travels back and forth from the antenna 10 to the conductor surface 41 is 1 ⁇ 2 of the wavelength. That's it.
  • the phase is shifted by 180 degrees while the electromagnetic wave reciprocates from the antenna 10 to the conductor surface 41.
  • the transmitted wave 12c and the reflected wave 44 strengthen each other.
  • the distance from the antenna 10 and the conductor surface 41 is set to 1 ⁇ 4 of the wavelength of the transmission wave 12, thereby transmitting from the antenna 10.
  • the intensity of the wave 12 can be increased. For example, when the frequency of the transmission wave 12 is 2.5 GHz, the length of a quarter of the wavelength of the transmission wave 12 is about 30 mm.
  • the battery 40 is a button type battery, the height of the battery 40 is often less than 5 mm.
  • the size of the communication device 2 in the Z-axis direction is larger than the height of the battery 40. Can be.
  • the resonator 50 is not provided, the grounding state of the conductor surface 41 can be easily changed by the approach or contact of a human body or the like to the communication device 2.
  • the phase of the reflected wave 44 can easily change according to the change in the grounding state of the conductor surface 41. As a result, the intensity of the transmission wave 12 becomes difficult to stabilize.
  • the communication device 2 according to the comparative example that does not include the resonator 50, it is difficult to reinforce the transmission wave 12 from the antenna 10 and downsize the communication device 2. In the communication device 2 according to the comparative example, the intensity of the transmission wave 12 becomes difficult to stabilize.
  • the influence of the conductor surface 41 on the transmission wave 12 can be reduced by disposing an insulator layer between the antenna 10 and the conductor surface 41.
  • the insulator layer tends to be thicker than the resonator 50. That is, even when the insulator layer is disposed on the communication device 2 according to the comparative example, the communication device 2 is not easily downsized.
  • the communication device 1 may be configured such that the antenna 10 and the conductor surface 41 of the battery 40 do not overlap. In this way, regardless of whether or not the communication device 1 includes the resonator 50, the reflected wave 44 generated by reflecting the transmission wave 12 radiated from the antenna 10 can be reduced. Since the transmission wave 12 is not easily weakened by the reflected wave 44, the intensity of the transmission wave 12 is unlikely to decrease.
  • the antenna 10 may be positioned so as to overlap with a conductor positioned outside the communication device 1.
  • the communication device 1 can stabilize strength fluctuations caused by conductors located around the communication device 1.
  • the antenna 10 and the wireless module 20 may be mounted separately.
  • the antenna 10 and the wireless module 20 may be mounted on the substrate 30.
  • the resonator 50 may be provided on the surface of the antenna 10 on the side facing the battery 40.
  • the resonator 50 may have an area approximately equal to the area of the antenna 10 or may have a wider area.
  • the resonator 50 may be provided on the substrate 30.
  • the resonator 50 may be provided on the first surface 41 of the battery 40.
  • the degree of freedom of arrangement of the antenna 10 can be increased.
  • the antenna 10 may be included in the substrate 30.
  • the resonator 50 may be provided on the surface of the substrate 30 on the battery 40 side.
  • the resonator 50 may have an area approximately equal to the area of the antenna 10 or may have a wider area.
  • the resonator 50 may be provided on the first surface 41 of the battery 40.
  • the area of the antenna 10 can be increased.
  • the antenna 10 and the wireless module 20 may be stacked.
  • the resonator 50 may be provided on the surface of the antenna 10 on the battery 40 side.
  • the resonator 50 may have an area approximately equal to the area of the antenna 10 or may have a wider area.
  • the resonator 50 may be provided on the wireless module 20 or the substrate 30.
  • the resonator 50 may be provided on the first surface 41 of the battery 40.
  • the area of the antenna 10 can be increased by stacking the antenna 10 on the wireless module 20.
  • each component can be rearranged so as not to be logically contradictory, and a plurality of components or the like can be combined into one or divided.
  • descriptions such as “first” and “second” are identifiers for distinguishing the configuration.
  • the configurations distinguished by the description of “first” and “second” in the present disclosure can exchange numbers in the configurations.
  • the first frequency can exchange the identifiers “first” and “second” with the second frequency.
  • the identifier exchange is performed at the same time.
  • the configuration is distinguished even after the identifier is exchanged.
  • the identifier may be deleted.
  • the configuration from which the identifier is deleted is distinguished by a code. Based on only the description of identifiers such as “first” and “second” in the present disclosure, it should not be used as an interpretation of the order of the configuration, or as a basis for the existence of identifiers with smaller numbers.
  • the X axis, the Y axis, and the Z axis are provided for convenience of description and may be interchanged.
  • the configuration according to the present disclosure has been described using an orthogonal coordinate system configured by the X axis, the Y axis, and the Z axis.
  • the positional relationship between the components according to the present disclosure is not limited to the orthogonal relationship.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Support Of Aerials (AREA)
  • Details Of Aerials (AREA)
  • Transceivers (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

通信装置は、アンテナと、アンテナに電力を供給して、アンテナに所定の周波数帯を有する電磁波を放射させる無線モジュールと、少なくとも一部に導体面を有する構造部と、複数の単位導体を含み、共振周波数を含む共振周波数帯を有する少なくとも1つの共振器とを備え、少なくとも1つの共振器は、導体面とアンテナとの間に位置し、所定の周波数帯は、共振周波数帯に含まれる。

Description

通信装置 関連出願へのクロスリファレンス
 本出願は、日本国特許出願2016-208177号(2016年10月24日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。
 本開示は、通信装置に関する。
 従来、通信装置において、アンテナは電池と重ならないように配置されることがある(例えば、特許文献1等)。
特開2015-7815号公報
 本開示の一実施形態に係る通信装置は、アンテナと、前記アンテナに電力を供給して、前記アンテナに所定の周波数帯を有する電磁波を放射させる無線モジュールとを備える。前記通信装置は、少なくとも一部に導体面を有する少なくとも1つの構造部と、少なくとも1つの共振器とを備える。前記共振器は、複数の単位導体を含む。前記共振器は、共振周波数を含む共振周波数帯を有する。少なくとも1つの前記共振器は、前記導体面と前記アンテナとの間に位置する。前記所定の周波数帯は、前記共振周波数帯に含まれる。
一実施形態に係る通信装置の外観の一例を示す斜視図である。 図1の通信装置の平面図である。 図2AのA-A断面図である。 一実施形態に係る通信装置の概略構成例を示すブロック図である。 送信波が共振器で反射される例を示す図である。 送信波と反射波との位相差の周波数特性を示すグラフである。 送信波に対する反射波の強度比の周波数特性を示すグラフである。 共振器に含まれる、パッチ型のパターンを有する単位導体の一例を示す図である。 共振器に含まれる、ループ型のパターンを有する単位導体の一例を示す図である。 共振器に含まれる、クロス型のパターンを有する単位導体の一例を示す図である。 比較例に係る通信装置における送信波の反射を示す図である。 一実施形態に係る通信装置の平面図の一例である。 図9AのB-B断面図である。 一実施形態に係る通信装置の平面図の一例である。 図10AのC-C断面図である。 一実施形態に係る通信装置の平面図の一例である。 図11AのD-D断面図である。 一実施形態に係る通信装置の平面図の一例である。 図12AのE-E断面図である。
 通信装置1(図1参照)は、ボタン型電池等の扁平形状の電池40(図1参照)を内蔵する場合、アンテナ10(図1参照)が電池40と重ならないように配置されることによって、電池40よりも大きくなりうる。この場合、通信装置1は、小型化されにくい。
 図1、並びに、図2A及び図2Bに示されるように、一実施形態に係る通信装置1は、アンテナ10と、無線モジュール20と、電池40とを備える。
 通信装置1は、筐体、ヒートシンク、シールドなどの種々の構造部を備えてよい。電池40は、構造部に含まれてよい。電池40は、例えばボタン型電池又はコイン型電池等であってよい。電池40は、充電池であってよい。図2Bに例示される電池40は、第1の面41と、第2の面42と、側面43とを有する。第1の面41及び第2の面42はそれぞれ、Z軸の正の方向の側及び負の方向の側に位置する。つまり、第1の面41と第2の面42とは、電池40について互いに反対側に位置する。側面43は、リング状であり、第1の面41と第2の面42との間に位置する。第1の面41と第2の面42との間の距離は、電池40の高さともいう。電池40をZ軸の正の方向又は負の方向から平面視したときの第1の面41又は第2の面42の平面視における面積は、電池40の面サイズともいう。電池40の面サイズは、第1の面41又は第2の面42の中で最長の寸法であってよい。本実施形態において、電池40の面サイズは、電池40の高さと比較して大きいものとする。
 通信装置1は、基板30をさらに備えてよい。基板30の形状は、電池40の第1の面41の形状と同じ又は類似の形状であってよい。アンテナ10及び無線モジュール20は、基板30に実装されてよい。
 基板30は、電池40の高さ方向から平面視したときに、電池40の第1の面41に重なるように位置してよい。基板30は、電池40の高さ方向において、電池40と並んで位置してよい。電池40は、通信装置1をZ軸方向から平面視したときに、通信装置1において、通信装置1の他の構成部と比べて大きい面積を占めうる。通信装置1をZ軸方向から平面視したときの通信装置1のサイズは、通信装置1の面サイズともいう。電池40の面サイズは、通信装置1の面サイズのうちの大部分を占めるともいえる。電池40の面サイズを規定する第1の面41又は第2の面42にZ軸方向から見て重なるように基板30が位置することで、通信装置1の面サイズが小さくなりうる。
 アンテナ10は、入力される電流又は電圧を含む電力に基づく電磁波を放射する。アンテナ10は、無線モジュール20に含まれてよい。アンテナ10は、無線モジュール20と別体であってよい。アンテナ10は、基板30に実装されてよい。アンテナ10は、電池40の第1の面41の上に実装されてよい。アンテナ10は、基板30上に位置する導体であってよい。アンテナ10は、基板30中に位置する導体であってよい。アンテナ10は、基板30上に位置するチップアンテナであってよい。アンテナ10は、基板30上に位置するメタルシートアンテナであってよい。
 無線モジュール20は、アンテナ10に電流又は電圧を含む電力を供給し、アンテナ10に電磁波を放射させる。無線モジュール20は、基板30に実装されてよい。無線モジュール20は、電池40の第1の面41の上に実装されてよい。
 電池40の表面の少なくとも一部は、電気伝導率が高い導体の性質を有してよい。導体は、温度の上昇に伴って電気伝導率が低下する物質を含んでよい。導体は、金属を含んでよい。導体は、金、銀、銅、白金、ニッケル、カドミウム鉛、セレン、マンガン、錫、バナジウム、又はリチウム等を含んでよい。導体の性質を有する面は、導体面ともいう。本実施形態において、電池40の第1の面41が導体面であると仮定する。以下、第1の面41は、導体面41ともいう。導体面41は、接地されると仮定する。電池40を含む構造部は、少なくとも一部に導体面を有するともいえる。
 アンテナ10は、Z軸方向から平面視したときに、導体面41に重なるように位置してよい。通信装置1は、アンテナ10と導体面41との間に、共振器50をさらに備える。共振器50は、電磁波の入射に応じて共振し、電磁波を反射する単位導体55(図7A、図7B及び図7C参照)と、単位導体55よりも電池40に近い側にある導体層56(図4参照)とを有する。導体層56は共振器50の全体又は一部を導体で埋めてよい。共振器50は、アンテナ10から放射された電磁波を反射しうる。アンテナ10から放射された電磁波は、送信波12(図4参照)ともいう。共振器50が送信波12を反射する場合、送信波12は、導体面41に到達しにくくなる。導体層56が共振器50の全体を導体で埋める場合、送信波12は、共振器50で完全に反射され、導体面41に到達しない。
 アンテナ10は、基板30上又は基板30中に位置してよい。共振器50は、アンテナ10となる導体より電池40の近くに位置してよい。電池40の高さ方向からの平面視において、共振器50は、アンテナ10となる導体より広い範囲に位置してよい。電池40の高さ方向からの平面視において、共振器50の少なくとも一部は、アンテナ10の周囲に位置してよい。
 共振器50は、無線モジュール20に設けられてよい。共振器50は、基板30に設けられてよい。共振器50は、電池40の第1の面41の上に設けられてよい。共振器50が1つ設けられる場合、1つの共振器50は、アンテナ10、無線モジュール20、基板30、及び電池40のいずれか1つに位置してよい。複数の共振器50が設けられる場合、複数の共振器50は、アンテナ10、無線モジュール20、基板30、及び電池40のいずれか1つに位置してよいし、複数に位置してよい。複数の共振器50は、Z軸方向からの平面視において、互いに重なるように位置してよい。複数の共振器50は、Z軸方向からの平面視において、互いの少なくとも一部が重なるように位置してよい。複数の共振器50は、Z軸方向からの平面視において、互いに重ならないように位置してよい。複数の共振器50の少なくとも一部は、Z軸方向からの平面視において、アンテナ10と重なるように位置してよい。複数の共振器50はそれぞれ、Z軸方向からの平面視において、異なる大きさを有してよい。
 図3に示されるように、通信装置1は、制御装置32と、記憶装置34と、センサ36とをさらに備えてよい。制御装置32、記憶装置34及びセンサ36は、基板30に実装されてよい。制御装置32は、無線モジュール20と、記憶装置34と、センサ36とに通信可能に接続されてよい。アンテナ10は、無線モジュール20に電気的に接続されてよい。電池40は、通信装置1の各構成部に給電しうる。
 制御装置32は、通信装置1から送信する送信信号を生成する。制御装置32は、例えば、センサ36から測定データを取得してよい。制御装置32は、測定データに基づく送信信号を生成してよい。
 制御装置32は、例えばプロセッサとして構成されてよい。制御装置32は、1以上のプロセッサを含んでよい。プロセッサは、特定のプログラムを読み込ませて特定の機能を実行する汎用のプロセッサ、及び特定の処理に特化した専用のプロセッサを含んでよい。専用のプロセッサは、特定用途向けICを含んでよい。特定用途向けICは、ASIC(Application Specific Integrated Circuit)ともいう。プロセッサは、プログラマブルロジックデバイスを含んでよい。プログラマブルロジックデバイスは、PLD(Programmable Logic Device)ともいう。PLDは、FPGA(Field-Programmable Gate Array)を含んでよい。制御装置32は、1つ又は複数のプロセッサが協働するSoC(System-on-a-Chip)、及びSiP(System In a Package)のいずれかであってよい。制御装置32は、記憶装置34に、各種情報、又は通信装置1の各構成部を動作させるためのプログラム等を格納してよい。
 記憶装置34は、例えば半導体メモリ等で構成されてよい。記憶装置34は、制御装置32のワークメモリとして機能してよい。記憶装置34は、制御装置32に含まれてよい。
 センサ36は、例えば、速度センサ、加速度センサ、ジャイロセンサ、回転角センサ、照度センサ、地磁気センサ、温度センサ、湿度センサ、気圧センサ、照度センサ、又はGPS(Global Positioning System)信号の受信装置等を含んでよい。
 無線モジュール20は、例えば、Bluetooth(登録商標)又は無線LAN(Local Area Network)等の無線通信を実行可能なデバイスを含んでよい。無線モジュール20は、プロセッサを含んでよい。無線モジュール20は、DSP(Digital Signal Processing)回路を含んでよい。無線モジュール20は、制御装置32の機能を実行可能に構成されてよい。無線モジュール20は、制御装置32を含んでよい。無線モジュール20は、記憶装置34を含んでよい。
 無線モジュール20は、制御装置32から送信信号を取得してよい。無線モジュール20は、送信信号を生成してよい。無線モジュール20は、送信信号に基づく電力をアンテナ10に供給して、アンテナ10に送信波12を放射させうる。無線モジュール20は、アンテナ10に対して、電圧又は電流を介して電力を供給しうる。送信波12は、所定の周波数を有する搬送波を信号に応じて変調することによって生成されうる。送信波12は、所定の周波数帯域を有してよい。所定の周波数帯域は、搬送波の周波数を含んでよい。搬送波の周波数が約2.5GHzである場合に、所定の周波数帯域の幅は、1MHz又は20MHz等であってよい。所定の周波数帯域の幅は、搬送波の周波数と比較して、十分に小さい値であってよい。
 図4に示されるように、アンテナ10は、送信波12の少なくとも一部をZ軸の正の方向及び負の方向に放射しうる。図4において、Z軸の正の方向は、右から左に向かう方向である。送信波12の少なくとも一部は、送信波12aとしてZ軸の負の方向に進みうる。Z軸の負の方向に進む送信波12の少なくとも一部は、電池40の導体面41に向けて進みうる。送信波12aは、共振器50に入射しうる。送信波12aの少なくとも一部は、共振器50を通過して、送信波12bとして電池40の導体面41に入射しうる。送信波12の少なくとも一部は、送信波12cとしてZ軸の正の方向に進みうる。
 共振器50に入射した送信波12aは、共振器50によって反射波52として反射されうる。送信波12aは、共振器50に共振を生じさせうる。共振によって、共振器50からは、反射波52が放射されうる。言い換えれば、共振器50は、送信波12aを反射波52として反射しうる。図5に示されるように、送信波12aと反射波52との位相差は、周波数特性を有しうる。図5の横軸は、送信波12a及び反射波52の周波数を表す。図5の縦軸は、送信波12aと反射波52との間の位相差を表す。本開示では、共振器50のアンテナ10の側の面を観測点としたときの位相差を単に「位相差」という。
 共振器50は、共振周波数を有する。共振周波数は、送信波12aと反射波52との間の位相差が0度となる周波数である。図5において、共振周波数はfで表される。
 共振器50は、所定の周波数の範囲として定められる共振周波数帯を有する。共振周波数帯は、第1の周波数及び第2の周波数の間の周波数帯である。第1の周波数は、送信波12aと反射波52との間の位相差が+90度である周波数である。第2の周波数は、送信波12aと反射波52との間の位相差が-90度である周波数である。共振周波数帯は、共振周波数域ともいう。所定の周波数の範囲は、共振周波数を含む。図5において、第1及び第2の周波数はそれぞれ、f及びfで表される。
 送信波12aと反射波52との間の位相差は、共振周波数において0度となりうる。送信波12aと反射波52との間の位相差は、共振周波数に近づくほど0度に近づきうる。送信波12aと反射波52との間の位相差は、共振周波数の近傍において0度又は0度に近くなりうる。共振周波数帯に含まれる周波数帯の送信波12aと反射波52との間の位相差は、各周波数において-90度~+90度の範囲内となりうる。
 第1及び第2の周波数に基づいて決定される共振周波数帯の幅は、例えば、共振周波数が約2.5GHzである場合に、100MHz以上であってよい。
 図6に示されるように、送信波12aに対する反射波52の強度比は、周波数特性を有しうる。図6の横軸は、送信波12a及び反射波52の周波数を表す。図6の縦軸は、送信波12aに対する反射波52の強度比を表す。強度比は、単位をデシベル(dB)として表される。強度比が0dBである場合、反射波52の強度は、送信波12aの強度と同じである。強度比が0dBより小さい場合、反射波52の強度は、送信波12aの強度より低い。図6において、共振周波数はfで表される。第1及び第2の周波数はそれぞれ、f及びfで表される。
 共振周波数における送信波12aに対する反射波52の強度比は、他の周波数における送信波12aに対する反射波52の強度比より小さい。共振周波数帯における送信波12aに対する反射波52の強度比は、共振周波数帯の範囲外の周波数における送信波12aに対する反射波52の強度比より小さい。強度比の低下は、共振時に共振器50に含まれる導体に流れる電流による損失等に起因する。
 共振器50は、複数の単位導体55を含んでよい。単位導体55の少なくとも一部は、共振器50の共振周波数で共振しうる。単位導体55の少なくとも一部は、共振器50の共振周波数の近傍で共振しうる。単位導体55の少なくとも一部は、共振器50の共振周波数(fr)の近傍で共振しうる。図7A、図7B及び図7Cは、共振器50に含まれる単位導体55の形状の一例を示す図である。図7Aは、パッチ型のパターンを表す。図7Bは、ループ型のパターンを表す。図7Cは、クロス型のパターンを表す。1つの共振器50は、複数の形状の単位導体55を含みうる。複数の共振器50は、互いに異なる形状の単位導体55を含みうる。
 単位導体55の大きさは、形状によって異なりうる。単位導体55の大きさは、共振器50の共振周波数、又は、共振周波数の近傍の周波数で共振できる大きさであってよい。単位導体55の大きさは、例えば、送信波12の波長の1/10から1/20の範囲が含まれてよい。単位導体55は、例えば導電性材料であってよい。単位導体55は、例えば金属の薄膜であってよい。
 複数の単位導体55は、1の層又は複数の層の各々に2次元配列してよい。複数の単位導体55は、1の層又は複数の層の各々に格子配列されてよい。格子の形状は、方形に限られない。複数の単位導体55は、1の層又は複数の層の各々に格子配列されてよい。複数の単位導体55は、1の層又は複数の層の各々で1列に並んでよい。1つの共振器50に含まれる複数の単位導体55は、少なくとも1つの層で1列に並び、少なくとも1つの層で格子配列されてよい。単位導体55は、一次元に配列されてよい。単位導体55は、二次元に配列されてよい。単位導体55は、周期的に配列されてよい。図7A、図7B及び図7Cに示される破線で囲まれた領域は、単位導体55が周期的に配列される場合のピッチを表してよい。単位導体55は、三次元に配列されてよい。1つの共振器50は、複数の単位導体55が二次元に配列された1つの層の積層体であってよい。
 単位導体55が二次元に周期的に無限個配列された構造は、周波数選択表面として機能しうる。周波数選択表面は、FSS(Frequency Selective Surface)ともいう。FSSは、電気的に接地された部分と組み合わせることによって、人工磁気導体として機能しうる。人工磁気導体は、AMC(Artificial Magnetic Conductor)ともいう。AMCは、入射した電磁波を略同位相で反射しうる。
 共振器50は、FSSであってよい。共振器50がFSSである場合、共振器50は、電池40の導体面41との組み合わせによって、AMCとして機能しうる。共振器50は、基板30に含まれる導体との組合せによって、AMCとして機能しうる。共振器50は、導体面41とは異なる接地部との組み合わせによって、AMCとして機能しうる。共振器50は、電気的に接地された部分を含んでよい。
 共振が強い場合、共振器50に含まれる導体に流れる電流が大きい。導体に流れる電流が大きい場合、導体での抵抗損失によって、エネルギー損失がより大きくなりうる。言い換えれば、共振が強いことによって、反射波52の強度が小さくなりうる。
 電池40の導体面41に入射する送信波12bは、導体面41で反射されて、反射波44として放射される。反射波44は、Z軸の正の方向に進む。
 反射波44と送信波12bとの間の位相差は、約180度である。
 送信波12の周波数が共振周波数に近いほど、共振器50で吸収されて共振する送信波12aが多くなりうる。送信波12の周波数が共振周波数に近いほど、共振器50を通過する送信波12bが少なくなりうる。言い換えれば、送信波12が共振器50の共振周波数帯に含まれる周波数を有する場合、共振器50は、送信波12の透過率を低くしうる。共振器50は、共振周波数帯に含まれる周波数を有する送信波12が電池40の導体面41に向かうことを妨げうる。通信装置1は、1層の共振器50を備えてよい。通信装置1は、2層以上の共振器50を備えてよい。共振器50の層の数が増えることによって、送信波12の透過率がより低くなりうる。
 アンテナ10と共振器50との間の距離が送信波12の波長の1/4の長さに対して無視できる程度に短い場合、共振器50における反射波52の位相は、アンテナ10に到達した反射波52の位相と同じであるとみなされてよい。この場合、Z軸の正の方向に進む送信波12cと、アンテナ10に到達してさらに送信波12cと同じ方向に進む反射波52との間の位相差は、-90度~+90度の範囲内となりうる。この結果、送信波12cと反射波52とは、互いに弱めあうことなく、Z軸の正の方向に進みうる。
 送信波12の周波数が2.5GHzである場合、送信波12の波長の1/4の長さは約30mmである。アンテナ10と共振器50との間の距離は、例えば1mm以下であってよい。この場合、アンテナ10と共振器50との間の距離は、通信装置1の小型化を制約しにくい。
 送信波12は、所定の周波数帯域を有しうる。共振器50の共振周波数帯が所定の周波数帯域を含む場合、送信波12の各周波数成分において、送信波12aと反射波52との間の位相差が-90度~+90度の範囲内となりうる。この場合、送信波12は、反射波52によって弱められることなく、Z軸の正の方向に進みうる。
 共振器50の共振周波数が所定の周波数帯域に含まれる場合、送信波12のうち少なくとも一部の周波数成分は、共振器50で共振しうる。共振周波数帯の幅は、送信波12の所定の周波数帯域の幅よりも広くなりやすい。共振周波数帯の幅が送信波12の所定の周波数帯域の幅よりも広い場合、送信波12の各周波数成分において、送信波12aと反射波52との間の位相差は、-90度~+90度の範囲内となりうる。この場合、送信波12は、反射波52によって弱められることなく、Z軸の正の方向に進みうる。
 図8に示されるように、比較例に係る通信装置2は、共振器50を備えない。共振器50に入射する送信波12aは存在しない。Z軸の負の方向に進む送信波12bは、電池40の導体面41に入射する。送信波12aは、導体面41で反射され、反射波44として、Z軸の正の方向に進む。反射波44と送信波12aとの間の位相差は、約180度である。図8において、Z軸の正の方向は、右から左に向かう方向である。
 アンテナ10と導体面41との間の距離が送信波12の波長の1/4の長さに対して無視できる程度に短い場合、導体面41で反射された反射波44の位相は、アンテナ10に到達した反射波44の位相と同じであるとみなされてよい。この場合、Z軸の正の方向に進む送信波12cと、アンテナ10に到達してさらに送信波12cと同じ方向に進む反射波44との間の位相差は、ほぼ180度となりうる。この結果、送信波12cと反射波44とは、互いに弱めあう。送信波12cと反射波44とが互いに弱めあうことによって、アンテナ10から放射される送信波12の強度は、弱くなりうる。
 アンテナ10と導体面41との間の距離が送信波12の波長の1/4の長さである場合、電磁波がアンテナ10から導体面41までを往復する距離は、波長の1/2の長さである。この場合、電磁波がアンテナ10から導体面41までを往復する間に位相が180度ずれる。導体面41で反射される際に位相が180度ずれることを考慮すると、送信波12cと反射波44とは互いに強めあう。言い換えれば、通信装置1が共振器50を備えない場合でも、アンテナ10と導体面41との間の距離が送信波12の波長の1/4の長さとされることによって、アンテナ10からの送信波12の強度が強くされうる。例えば、送信波12の周波数が2.5GHzである場合、送信波12の波長の1/4の長さは約30mmとなる。電池40の高さは、電池40がボタン型電池である場合、5mm未満であることが多い。
 送信波12cと反射波44とが互いに強めあうようにアンテナ10と導体面41との間の距離が設計された場合、通信装置2のZ軸方向のサイズは、電池40の高さと比べて大きくなりうる。共振器50を備えない場合、通信装置2に対する人体等の接近又は接触によって、導体面41の接地状態が容易に変化しうる。導体面41の接地状態の変化に応じて、反射波44の位相が容易に変化しうる。結果として、送信波12の強度は、安定しにくくなる。
 共振器50を備えない比較例に係る通信装置2においては、アンテナ10からの送信波12を強めることと、通信装置2を小型化することとが、両立されにくい。比較例に係る通信装置2において、送信波12の強度は、安定しにくくなる。
 比較例に係る通信装置2において、アンテナ10と導体面41との間に絶縁体層を配置することによって、送信波12に対する導体面41の影響が低減されうる。絶縁体層は、共振器50より厚くなりやすい。つまり、比較例に係る通信装置2に絶縁体層を配置した場合でも、通信装置2は小型化されにくい。
 図9A及び図9Bに示されるように、一実施形態に係る通信装置1は、アンテナ10と電池40の導体面41とが重ならないように構成されてよい。このようにすることで、通信装置1が共振器50を備えるか否かにかかわらず、アンテナ10から放射される送信波12が反射されて生じる反射波44が低減されうる。送信波12が反射波44によって弱められにくいことによって、送信波12の強度が低下しにくくなる。
 通信装置1に含まれる導体面41とアンテナ10とがずれて位置する場合であっても、アンテナ10は、通信装置1の外に位置する導体と重なって位置する場合がある。共振器50を備えることで、通信装置1は、周囲に位置する導体による強度の変動を安定化させうる。
 図10A及び図10Bに示されるように、一実施形態に係る通信装置1においては、アンテナ10と無線モジュール20とが別体として実装されてよい。アンテナ10と無線モジュール20とは、基板30の上に実装されてよい。共振器50は、アンテナ10の電池40に対向する側の面に設けられてよい。共振器50は、アンテナ10の面積と同程度の面積を有してよいし、より広い面積を有してよい。共振器50は、基板30に設けられてよい。共振器50は、電池40の第1の面41の上に設けられてよい。
 アンテナ10と無線モジュール20とが別体として設けられることによって、アンテナ10の配置の自由度が増しうる。
 図11A及び図11Bに示されるように、一実施形態に係る通信装置1においては、アンテナ10が基板30に含まれてよい。共振器50は、基板30の電池40の側の面に設けられてよい。共振器50は、アンテナ10の面積と同程度の面積を有してよいし、より広い面積を有してよい。共振器50は、電池40の第1の面41の上に設けられてよい。
 アンテナ10が基板30に含まれることによって、アンテナ10の面積は、大きくされうる。
 図12A及び図12Bに示されるように、一実施形態に係る通信装置1においては、アンテナ10と無線モジュール20とが積層されてよい。共振器50は、アンテナ10の電池40の側の面に設けられてよい。共振器50は、アンテナ10の面積と同程度の面積を有してよいし、より広い面積を有してよい。共振器50は、無線モジュール20又は基板30に設けられてよい。共振器50は、電池40の第1の面41の上に設けられてよい。
 アンテナ10が無線モジュール20に積層されることによって、アンテナ10の面積は、大きくされうる。
 本開示に係る構成は、以上説明してきた実施形態にのみ限定されるものではなく、幾多の変形又は変更が可能である。例えば、各構成部等に含まれる機能等は論理的に矛盾しないように再配置可能であり、複数の構成部等を1つに組み合わせたり、或いは分割したりすることが可能である。
 本開示に係る構成を説明する図は、模式的なものである。図面上の寸法比率等は、現実のものと必ずしも一致しない。
 本開示において「第1」及び「第2」等の記載は、当該構成を区別するための識別子である。本開示における「第1」及び「第2」等の記載で区別された構成は、当該構成における番号を交換することができる。例えば、第1の周波数は、第2の周波数と識別子である「第1」と「第2」とを交換することができる。識別子の交換は同時に行われる。識別子の交換後も当該構成は区別される。識別子は削除してよい。識別子を削除した構成は、符号で区別される。本開示における「第1」及び「第2」等の識別子の記載のみに基づいて、当該構成の順序の解釈、小さい番号の識別子が存在することの根拠に利用してはならない。
 本開示において、X軸、Y軸、及びZ軸は、説明の便宜上設けられたものであり、互いに入れ替えられてよい。本開示に係る構成は、X軸、Y軸、及びZ軸によって構成される直交座標系を用いて説明されてきた。本開示に係る各構成の位置関係は、直交関係にあると限定されるものではない。
 1、2 通信装置
 10 アンテナ
 12 送信波
 20 無線モジュール
 30 基板
 32 制御装置
 34 記憶装置
 40 電池
 41 第1の面(導体面)
 42 第2の面
 43 側面
 44 反射波
 50 共振器
 52 反射波
 55 単位導体
 56 導体層
 

Claims (3)

  1.  アンテナと、
     前記アンテナに電力を供給して、前記アンテナに所定の周波数帯を有する電磁波を放射させる無線モジュールと、
     少なくとも一部に導体面を有する少なくとも1つの構造部と、
     複数の単位導体を含み、共振周波数を含む共振周波数帯を有する少なくとも1つの共振器と
    を備え、
     少なくとも1つの前記共振器は、前記導体面と前記アンテナとの間に位置し、
     前記所定の周波数帯は、前記共振周波数帯に含まれる
    通信装置。
  2.  請求項1に記載の通信装置であって、
     前記共振周波数は、前記所定の周波数帯に含まれる、通信装置。
  3.  請求項1又は2に記載の通信装置であって、
     前記アンテナと、前記導体面との間に、複数の前記共振器が位置する、通信装置。
     
PCT/JP2017/038343 2016-10-24 2017-10-24 通信装置 WO2018079543A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/344,361 US20190273304A1 (en) 2016-10-24 2017-10-24 Communication apparatus
EP17864406.8A EP3531507A4 (en) 2016-10-24 2017-10-24 COMMUNICATION DEVICE
JP2018547684A JPWO2018079543A1 (ja) 2016-10-24 2017-10-24 通信装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-208177 2016-10-24
JP2016208177 2016-10-24

Publications (1)

Publication Number Publication Date
WO2018079543A1 true WO2018079543A1 (ja) 2018-05-03

Family

ID=62024128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038343 WO2018079543A1 (ja) 2016-10-24 2017-10-24 通信装置

Country Status (4)

Country Link
US (1) US20190273304A1 (ja)
EP (1) EP3531507A4 (ja)
JP (1) JPWO2018079543A1 (ja)
WO (1) WO2018079543A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020167604A (ja) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 アンテナ装置
CN114902491A (zh) * 2020-03-27 2022-08-12 京瓷株式会社 天线、无线通信模块、包裹领取装置以及包裹领取系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK3506656T3 (da) * 2017-12-29 2023-05-01 Gn Hearing As Høreinstrument omfattende et parasitisk batteri antenne-element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060607A (ja) * 2005-07-25 2007-03-08 Nec Tokin Corp ハイインピーダンスシート
JP2009153089A (ja) * 2007-05-08 2009-07-09 Asahi Glass Co Ltd 人工媒質、その製造方法およびアンテナ装置
JP2011244136A (ja) * 2010-05-17 2011-12-01 Nippon Telegr & Teleph Corp <Ntt> アンテナ装置
JP2014086952A (ja) * 2012-10-25 2014-05-12 Nippon Telegr & Teleph Corp <Ntt> アンテナ装置
JP2015046846A (ja) * 2013-08-29 2015-03-12 日本電信電話株式会社 アンテナ装置設計方法及びアンテナ装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7679577B2 (en) * 2006-06-09 2010-03-16 Sony Ericsson Mobile Communications Ab Use of AMC materials in relation to antennas of a portable communication device
KR102139217B1 (ko) * 2014-09-25 2020-07-29 삼성전자주식회사 안테나 장치
JPWO2018168699A1 (ja) * 2017-03-14 2020-01-16 日本電気株式会社 放熱機構及び無線通信装置
US20190097299A1 (en) * 2017-09-22 2019-03-28 Kymeta Corporation Integrated transceiver for antenna systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060607A (ja) * 2005-07-25 2007-03-08 Nec Tokin Corp ハイインピーダンスシート
JP2009153089A (ja) * 2007-05-08 2009-07-09 Asahi Glass Co Ltd 人工媒質、その製造方法およびアンテナ装置
JP2011244136A (ja) * 2010-05-17 2011-12-01 Nippon Telegr & Teleph Corp <Ntt> アンテナ装置
JP2014086952A (ja) * 2012-10-25 2014-05-12 Nippon Telegr & Teleph Corp <Ntt> アンテナ装置
JP2015046846A (ja) * 2013-08-29 2015-03-12 日本電信電話株式会社 アンテナ装置設計方法及びアンテナ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3531507A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020167604A (ja) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 アンテナ装置
JP7217429B2 (ja) 2019-03-29 2023-02-03 パナソニックIpマネジメント株式会社 アンテナ装置
CN114902491A (zh) * 2020-03-27 2022-08-12 京瓷株式会社 天线、无线通信模块、包裹领取装置以及包裹领取系统

Also Published As

Publication number Publication date
US20190273304A1 (en) 2019-09-05
JPWO2018079543A1 (ja) 2019-08-08
EP3531507A1 (en) 2019-08-28
EP3531507A4 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
CN107431271B (zh) 无线通信设备表面上的多频带天线
JP6347424B2 (ja) 無線モジュール
CN111193523B (zh) 计算设备、移动电话及用于计算设备的方法
WO2018079543A1 (ja) 通信装置
JP6132692B2 (ja) アンテナ装置
US20210399435A1 (en) Antenna, wireless communication module, and wireless communication device
CN104051440A (zh) 具有天线的半导体结构
JP2015095813A5 (ja)
CN115275557A (zh) 具有折叠天线模块的电子设备
US11387572B2 (en) Antenna element, array antenna, communication unit, mobile object, and base station
JP7309033B2 (ja) アンテナ
Sarkar et al. Smart antenna design for high‐speed moving vehicles with minimum return loss
US11843174B2 (en) Antenna element, array antenna, communication unit, mobile body, and base station
JP7483456B2 (ja) 通信機器、通信システムおよび制御方法
Ziolkowski Electrically small antenna advances for current 5G and evolving 6G and beyond wireless systems
JP5812462B2 (ja) チップ間通信システム及び半導体装置
US20220384952A1 (en) Antenna, wireless communication module, and wireless communication device
US11888231B2 (en) Antenna, wireless communication module, and wireless communication device
US20130043315A1 (en) RFID tag with open-cavity antenna structure
JP7122389B2 (ja) アンテナ、アレイアンテナ、無線通信モジュール、および無線通信機器
JP2004048762A (ja) スロットアンテナ装置およびこのアンテナ装置を用いた無線機
EP3665740B1 (en) Waveguide antenna magnetoelectric matching transition
Letavin et al. Simulation of 3600–3800 MHz frequency band antenna for fifth generation mobile communication
Chung et al. Multilayer integration of low-cost 60-GHz front-end transceiver on organic LCP
JP2019220792A (ja) アンテナ装置および無線装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864406

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018547684

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017864406

Country of ref document: EP