WO2018079538A1 - 止血材 - Google Patents

止血材 Download PDF

Info

Publication number
WO2018079538A1
WO2018079538A1 PCT/JP2017/038325 JP2017038325W WO2018079538A1 WO 2018079538 A1 WO2018079538 A1 WO 2018079538A1 JP 2017038325 W JP2017038325 W JP 2017038325W WO 2018079538 A1 WO2018079538 A1 WO 2018079538A1
Authority
WO
WIPO (PCT)
Prior art keywords
agent
gelatin
hemostatic material
group
gelatin derivative
Prior art date
Application number
PCT/JP2017/038325
Other languages
English (en)
French (fr)
Inventor
田口 哲志
Original Assignee
国立研究開発法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人物質・材料研究機構 filed Critical 国立研究開発法人物質・材料研究機構
Publication of WO2018079538A1 publication Critical patent/WO2018079538A1/ja
Priority to US16/396,561 priority Critical patent/US11052171B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • A61L24/10Polypeptides; Proteins
    • A61L24/104Gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/32Proteins, polypeptides; Degradation products or derivatives thereof, e.g. albumin, collagen, fibrin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/0005Ingredients of undetermined constitution or reaction products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • A61L24/10Polypeptides; Proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/04Materials for stopping bleeding

Definitions

  • the present invention relates to a hemostatic material, and more particularly to a hemostatic material containing a gelatin derivative to which a hydrophobic group is bonded.
  • the hemostatic material is a material for stopping bleeding by applying it to surgical incisions, skin wounds, and the like, and is used in various surgical operations such as respiratory surgery, digestive surgery, cardiovascular surgery, oral surgery and the like.
  • the main hemostatic materials currently used include collagen-based hemostatic materials, gelatin-based hemostatic materials, and fibrin-based hemostatic materials.
  • Collagen hemostatic materials include calf dermis-derived atelocollagen spun into cotton fibers, cross-linked with a polyepoxy compound, and then sheeted (Integran (trademark), Koken Co., Ltd.) . Further, as a gelatin hemostatic material, there is one using a combination of crosslinked particulate gelatin and human thrombin (Froseal (trademark), Baxter). These hemostatic materials have a problem that the labor of cross-linking collagen, gelatin, sheet formation or particle formation is troublesome. Moreover, since human thrombin is obtained from a blood product, there is a risk of viral infection.
  • gelatin-resorcin mixed solution and formalin solution are mixed and applied to the bleeding site, and then crosslinked at the site.
  • formalin has a problem that it has a tissue toxicity due to a cross-linking reaction with proteins in the living body.
  • the fibrin-based hemostatic material utilizes the phenomenon that fibrinogen is polymerized into fibrin in the second stage of blood coagulation in the living body and becomes entangled with the platelet thrombus generated in the first stage of blood coagulation to strengthen the thrombus and stop hemostasis.
  • fibrin also has adhesiveness to tissues such as blood vessels, it has an effect of suppressing blood leakage (hereinafter referred to as “sealing effect”) as a result of adhering the tissues of the anastomosis part or the damaged part.
  • This sealing effect is sometimes called a hemostatic effect, but this is an effect different from the blood coagulation effect.
  • a sealant (Bio Glue (trademark), manufactured by CryoLife, Inc.) using bovine serum albumin cross-linked with glutaraldehyde has a sealing effect but does not have a blood coagulation effect, and is a hemostatic material in the present invention. do not do.
  • the collagen hemostatic material described above has a blood coagulation effect but does not have a sealing effect.
  • fibrin-based ones can utilize both the sealing effect and the blood coagulation effect, and therefore are actively being applied to clinical applications. , Johnson & Johnson).
  • Patent Document 1 a gelatin derivative (hereinafter sometimes referred to as “hydrophobized gelatin”) having a hydrophobic group bonded, which exhibits excellent adhesion to tissues.
  • hydrophobized gelatin a gelatin derivative having a hydrophobic group bonded, which exhibits excellent adhesion to tissues.
  • Patent Document 2 a gelatin derivative having a hydrophobic group bonded, which exhibits excellent adhesion to tissues.
  • the surgical sealant has excellent adhesion to tissue and is rapidly degraded in vivo after application.
  • the surgical sealant has been improved in terms of sterilization resistance, ease of production, safety, etc., and a surgical sealant having an excellent sealing effect has been developed (Patent Document 3).
  • the surgical sealant can be an excellent hemostatic material that can solve the problems in the conventional hemostatic material while further researching the surgical sealant, and completed the present invention. did.
  • a first agent comprising a gelatin derivative having a hydrophobic group bonded via an imino group, wherein the gelatin derivative has (a) a weight average molecular weight of 10,000 to 50,000, (B) the hydrophobic group is an alkyl group having 6 to 18 carbon atoms, and (c) the imino group / amino group (molar ratio) in the gelatin derivative is 1/99 to 30/70.
  • a hemostatic material comprising a first agent and (2) a second agent comprising a crosslinking agent for the gelatin derivative.
  • gelatin has been conventionally used as a hemostatic material, but there is no hemostatic material using hydrophobic gelatin.
  • Hydrophobized gelatin exhibits a blood coagulation effect that is significantly superior to that of raw material gelatin. Although this reason is not the meaning which limits this invention, it is thought that it is because affinity with the cell which exists in blood, such as erythrocytes, improves by hydrophobic group. Since the blood coagulation effect is exhibited without Ca ions, the hemostatic material of the present invention is useful even when a transfusion product is used.
  • the hemostatic material of the present invention also has an excellent sealing effect as described above, which is superior in both effects as compared to a fibrin hemostatic material that also exhibits both a blood coagulation effect and a sealing effect, and the risk of virus infection. There is no sex.
  • the hemostatic material of the present invention is very useful in various surgical operations.
  • FIG. 1 shows FT-IR spectra of raw material gelatin and gelatin derivatives.
  • FIG. 2 is a graph showing a comparison of blood clotting time in vitro between Example 2 and Comparative Example 1.
  • 4 is a graph showing comparison of blood clotting times in Examples 1 to 5 and Comparative Example 1, and Examples 6 to 10 and Comparative Example 2 in vitro. It is a graph which shows the same comparison as FIG. 3a at the time of adding Ca ion.
  • 6 is a graph showing comparison of blood clotting times in Examples 11 to 15 and Comparative Example 3, and Examples 16 to 20 and Comparative Example 4 in vitro. It is a graph which shows the same comparison as FIG. 4a at the time of adding Ca ion.
  • 4 is a graph showing comparison of blood clotting times in Examples 21 to 25 and Comparative Example 5, and Examples 26 to 30 and Comparative Example 6 in vitro. It is a graph which shows the same comparison as FIG. 5a at the time of adding Ca ion. 4 is a graph showing comparison of blood clotting times in Examples 31 to 35 and Comparative Example 7, and Examples 36 to 40 and Comparative Example 8 in vitro. It is a graph which shows the same comparison as FIG. 6a at the time of adding Ca ion.
  • the first agent contains a gelatin derivative.
  • the gelatin derivative has a hydrophobic group bonded via an imino group, preferably —NH—, and has a structure represented by the following formula (1).
  • GltnNH—CHR 1 R 2 (1)
  • “Gltn” is a gelatin residue
  • R 1 is a hydrophobic group
  • R 2 is a hydrogen atom or a hydrophobic group.
  • N is mainly derived from the ⁇ -amino group of lysine (Lys) in gelatin.
  • R 2 is a hydrogen atom.
  • the NH structure of the formula (1) can be detected by, for example, a band near 3300 cm ⁇ 1 in the FT-IR spectrum.
  • FIG. 1 shows an FT-IR spectrum of a gelatin derivative (in which a pollen gelatin having an Mw of 13,000 is substituted with a dodecyl group, spectrum 1: derivatization rate: 4.2 mol%; spectrum 2: 8.9 mol%) It is shown in comparison with that of gelatin. As the amount of the hydrophobic group increases, it can be seen that vibration of C-H in the vicinity of the vibration and 2900 cm -1 of the N-H in the vicinity of 3300 cm -1 is stronger.
  • R 2 is a hydrophobic group, it may be the same as or different from R 1 .
  • the hydrophobic group is an alkyl group having 6 to 18 carbon atoms and may have a branch. Examples of the alkyl group include hexyl, octyl (or capryl), nonyl (or pelargornyl), decyl, dodecyl (or lauryl), tetradecyl (or myristyl).
  • R 1 is a linear alkyl group having 6 to 15 carbon atoms, more preferably 7 to 13 carbon atoms, and most preferably 7 to 11 carbon atoms
  • R 2 is a hydrogen atom.
  • the derivatization ratio in the gelatin derivative is 1 to 30 mol%, preferably 1 to 20 mol%, more preferably mol% of the imino group to which the hydrophobic group is bonded to the amount of amino group in the raw material gelatin. 5 to 10 mol%.
  • the imino group / amino group (molar ratio) in the obtained gelatin derivative is 1/99 to 30/70, preferably 1/99 to 20/80, more preferably 5/95 to 10/90.
  • the derivatization rate can be determined by quantifying the amount of amino groups in the raw material gelatin after binding the hydrophobic groups with the 2,4,6-trinitrobenzenesulfonic acid method, or by NMR or the like. It can be determined by identifying and quantifying sex groups.
  • the gelatin derivative has a weight average molecular weight (Mw) of 10,000 to 50,000, preferably 10,000 to 40,000, more preferably 20,000 to 35,000. Within the above range, excellent electron beam sterilization resistance is exhibited.
  • Mw weight average molecular weight
  • the molecular weight can be measured by gel permeation chromatography (GPC) according to a conventional method.
  • the raw material gelatin may be any of gelatin derived from natural origin, chemical synthesis, fermentation, or genetic recombination.
  • gelatin derived from natural sources such as cattle, pigs, fish, more preferably cold water fish such as Thai and cod, most preferably cod, particularly walleye gelatin.
  • Cold water fish-derived gelatin has a lower imino acid content than gelatin such as pigs, and can provide a hemostatic material with excellent room temperature to low temperature fluidity even at high concentrations.
  • the raw material gelatin may be either acid-treated gelatin or alkali-treated gelatin. Alkali-processed gelatin is preferable.
  • the molecular weight range of the gelatin may be a range in which the gelatin derivative falls within the above-mentioned average molecular weight (Mw) range.
  • the first agent may contain non-derivatized gelatin in addition to the gelatin derivative.
  • the gelatin the above-mentioned various gelatins can be used.
  • the amount of non-derivatized gelatin is 0 to 99 wt%, preferably 0 to 50 wt% of the total weight with the gelatin derivative.
  • the first agent further contains an aqueous solvent, and it is preferable from the viewpoint of convenience that the gelatin derivative is dissolved or dispersed in the aqueous solvent and used as an aqueous solution (hereinafter, sometimes simply referred to as “aqueous solution”).
  • aqueous solution various kinds of inorganic salt buffers such as ultrapure water, physiological saline, boric acid, phosphoric acid, carbonic acid, or a mixture thereof can be used.
  • a borate buffer solution having a pH of 8 to 11, more preferably a pH of 9 to 10, and most preferably 9.3 to 9.7 is used.
  • the aqueous solvent is used in such an amount that the gelatin derivative is 10 to 80 w / v%, preferably 15 to 30 w / v%.
  • the ionic strength at this time is 0.01 to 0.5M, preferably 0.05 to 0.2.
  • the total weight with the gelatin derivative is such an amount that the above concentration is achieved.
  • the second agent is a gelatin derivative crosslinking agent, and reacts with the gelatin derivative to form a structure insoluble in body fluids such as water and blood.
  • the crosslinking agent at least one of those having at least two functional groups reactive with amino groups in gelatin, mainly primary amino groups in the side chain, in the molecule is used.
  • cross-linking agents include polybasic acids, aldehyde compounds, acid anhydrides, dithiocarbonates and diisothiocyanates activated with genipin, N-hydroxysuccinimide or N-hydroxysulfosuccinimide.
  • Polybasic acids include tartaric acid, citric acid, malic acid, glutaric acid, glutamic acid, aspartic acid, oxaloacetic acid, cis-aconitic acid, 2-ketoglutaric acid, polytartaric acid, polycitric acid, polymalic acid, polyglutamic acid, polyaspartic acid And those having these carboxyl groups esterified, such as disuccinimidyl glutarate (DSG), disuccinimidyl suberate (DSS), disuccinimidyl tartrate (DST), etc. are used. be able to.
  • DSG disuccinimidyl glutarate
  • DSS disuccinimidyl suberate
  • DST disuccinimidyl tartrate
  • a polybasic acid ester of polyethylene glycol or polyethylene glycol ether, wherein at least one of the carboxyl groups of the polybasic acid that has not reacted with polyethylene glycol is active esterified for example 4, 7, 10, 13 , 16-pentaoxanonadecanedioic acid di (N-succinimidyl), and polyethylene glycol di (succinimidyl succinate) represented by the following formula (SS-PEG-SS): (N is the number at which Mn is about 20,000); Further, pentaerythritol-polyethylene glycol ether tetrasuccinimidyl glutarate (4S-PEG) represented by the following formula: (N is a number such that Mw is about 3,000 to 30,000, preferably 5,000 to 27,000, more preferably 15,000 to 25,000); Is mentioned.
  • aldehyde compound examples include aldehyde group-introduced polysaccharides in which two or more aldehyde groups are introduced in one molecule, such as aldehyde group-introduced starch, aldehyde group-introduced dextran, and aldehyde group-introduced hyaluronic acid.
  • aldehyde group-introduced starch aldehyde group-introduced starch
  • aldehyde group-introduced dextran aldehyde group-introduced hyaluronic acid.
  • Glutaric anhydride, maleic anhydride, and succinic anhydride examples include hexamethylene diisothiocyanate.
  • the activated polyethylene glycol polybasic acid ester and aldehyde group-introduced polysaccharide are preferably used.
  • crosslinking agents have a functional group in the crosslinking agent, for example, an ester group activated with N-hydroxysuccinimide, in an amount of 0.1 to 3 equivalents, preferably 0. It is provided in an amount of 2 to 2 equivalents, more preferably 0.3 to 1.5 equivalents, most preferably 0.3 to 0.8 equivalents. You may use the mixture of 2 or more types of crosslinking agents, In that case, let them be the quantity from which the total equivalent becomes the said range.
  • the second agent further includes an aqueous solvent for dissolving the crosslinking agent.
  • the cross-linking agent and the aqueous solvent are provided in separate containers, and when used, after about 2 hours before use, an appropriate amount of both is mixed to form an aqueous solution (hereinafter sometimes simply referred to as “aqueous solution”). It is preferable to use it.
  • aqueous solution aqueous solution
  • a phosphate buffer having a pH of 3 to 8, more preferably a pH of 4 to 6 is used.
  • the ionic strengths of both aqueous solvents are adjusted so that the pH is about 8 to about 10.
  • the first agent aqueous solution is a borate buffer solution having a pH of 9 and an ionic strength of 0.05 to 0.1
  • the second agent aqueous solution is a phosphate buffer solution having a pH of 4 and an ionic strength of 0.01 to 0.03.
  • the first agent aqueous solution may be a borate buffer solution having a pH of 10 and an ionic strength of 0.05 to 0.1
  • the second agent aqueous solution may be a phosphate buffer solution having a pH of 4 and an ionic strength of 0.01 to 0.07.
  • the equivalent of the functional group in the second agent relative to the equivalent of the amino group in the first agent falls within the above range. It is adjusted to become. You may use the mixture of 2 or more types of crosslinking agents, In that case, let them be the quantity from which the sum total becomes the said range.
  • the first agent and / or the second agent may further contain various additives in amounts that do not impair the object of the present invention.
  • the additive include a colorant, a pH adjuster, a viscosity adjuster, and a preservative.
  • a colorant such as brilliant blue is added to the first or second agent aqueous solution so that the application site of the hemostatic material can be easily understood.
  • the addition amount may be, for example, 10 to 100 ⁇ g / mL.
  • the hemostatic material of the present invention can be obtained by separately preparing the first agent and the second agent.
  • Method for preparing first agent (1) Preparation of Raw Material Gelatin Aqueous Solution Starting material gelatin is heated in an amount of 5 to 50 wt / v% at 40 to 90 ° C. and dissolved in an aqueous solvent.
  • aqueous solvent a mixture of water and a water-soluble organic solvent is used.
  • water-soluble organic solvent alcohols, esters and the like having 1 to 3 carbon atoms can be used, and ethanol is preferably used.
  • a derivatizing agent having a hydrophobic group to be introduced is added to the gelatin aqueous solution obtained in the step (1), and the mixture is reacted for a predetermined time.
  • an aldehyde or ketone having the hydrophobic group such as dodecanal, tetradecanal, or decylethylketone is used.
  • the reaction temperature is 30 to 80 ° C. and the reaction time is 0.5 to 12 hours.
  • Gelatin can be obtained.
  • the amount of aldehyde used is 1 to 4 times the stoichiometric amount corresponding to the desired derivatization rate. More preferably, it is 1 to 2 times.
  • the Schiff base is reduced to form the structure of the above formula (1).
  • known reducing agents such as sodium cyanoborohydride (NaBH 3 CN), sodium triacetoxyborohydride (NaBH (OAc) 3 ), 2-picoline borane, pyridine borane and the like can be used. Of these, 2-picoline borane is preferred. Picoline borane is stable, and it is possible to perform the reductive amination reaction of aldehyde or ketone in one step (one pot) in an aqueous solvent. Also, yields of 80-90% can be achieved, which is significantly higher than that of 70-75% sodium cyanoborohydride.
  • the amount of 2-picoline borane used is preferably 1 to 3 equivalents relative to the equivalent amount of the derivatized drug.
  • step (3) Purification The reaction solution obtained in step (2) is added to a large excess of a poor solvent such as cold ethanol to precipitate the gelatin derivative. The precipitate is filtered off and washed with ethanol or the like to obtain the final product.
  • a poor solvent such as cold ethanol
  • first agent It is preferable to dissolve the gelatin derivative obtained in step (3) in an aqueous solvent such as borate buffer in an amount in the above range. If desired, underivatized gelatin and other additives may be added.
  • the obtained first agent is filled into a predetermined container such as a plastic dispenser such as polypropylene.
  • a plastic dispenser such as polypropylene.
  • an aqueous solution of the first agent is filled into one of a double syringe type dispenser or the like that can be used when applying the hemostatic material to the affected part and can mix both agents at the tip part.
  • Each said crosslinking agent illustrated as a 2nd agent may synthesize
  • the crosslinker is dissolved in the aqueous solvent after a period of time.
  • the first agent in the form of an aqueous solution filled in the dispenser, the cross-linking agent in powder form filled in the vial, and the aqueous solvent for dissolving the cross-linking agent filled in the bottle are each radiation sterilized.
  • the crosslinking agent (second agent active ingredient) and an aqueous solvent (second agent solvent) for dissolving the crosslinking agent filled in the bottle are each radiation sterilized.
  • the radiation examples include electron beams, gamma rays, and bremsstrahlung, and electron beam sterilization is preferable.
  • the absorbed dose may be 25 kGy or more, which is widely used in the past (14th revised Japanese Pharmacopoeia, Part 2, Reference Information, page 1235, right column, 2.2 Radiation Law), preferably It is 25 kGy to 45 kGy.
  • a combination of the sterilized first agent, the predetermined amount of the second agent and the aqueous solvent, and instructions describing the method of use may be provided as a kit of hemostatic material, or according to the user's request May be provided in quantities and combinations.
  • the hemostatic material of the present invention can be applied to incisions, skin wounds and the like in various surgical operations such as respiratory surgery, digestive surgery, cardiovascular surgery, oral surgery and the like. This is particularly effective for a hepatectomy that requires hemostasis. It can also be used as an embolic material for the purpose of coagulating blood in a cerebral aneurysm or varicose vein, or in cancer embolization therapy.
  • the second agent is preferably made into an aqueous solution immediately before use. The concentration of the crosslinking agent at that time is as already described.
  • Gelatin derivatives 1 to 10 shown in Table 1 were prepared.
  • gelatin derivative 2 will be described.
  • the number of carbon atoms shown in the “hydrophobic group” is the total number of carbon atoms in CHR 1 R 2 of the above formula (1).
  • a stoichiometric amount of 1.5 equivalents of decanal corresponding to a derivatization rate of 10 mol% with respect to the amino group of gelatin is dissolved in 5 mL ethanol, mixed with the gelatin solution, and then about 1.5 equivalents of decanal.
  • 2-picoline borane was added and stirred for 18 hours.
  • the reaction solution was dropped into 10 times volume of cold ethanol of the reaction solution to reprecipitate the produced gelatin derivative, followed by suction filtration.
  • the precipitate was placed in cold ethanol of about 5 times volume of the obtained precipitate, washed with stirring for 1 hour, and then suction filtered.
  • gelatin derivatives were prepared in the same manner as described above except that the Mw and derivatization rate of walleye pollack-derived gelatin was changed and octanal or undecanal was used instead of decanal.
  • the obtained gelatin derivative was dissolved in 0.1 M borate buffer solution at pH 9.0 or 9.5 at 15 w / v%, and the resulting solution was filled into a 2 mL polypropylene double syringe dispenser, Each first agent was used.
  • the total volume of blood and hemostatic material is 1 mL, and the blood volume is 250 ⁇ L (volume ratio of hemostatic material 0.75), 500 ⁇ L (volume ratio of hemostatic material 0.5), and 750 ⁇ L (volume ratio of hemostatic material 0.25). Each volume ratio was measured three times to obtain an average value. The same measurement was performed for Comparative Example 1. The results are shown in Table 4 and FIG.
  • FIG. 2 is a graph showing comparison of blood clotting time in vivo between Example 2 and Comparative Example 1.
  • the ratio of the hemostatic material increased (the ratio of hemostatic agent 0.75)
  • the blood coagulation time was almost the same regardless of whether gelatin was induced or whether Ca ions were present.
  • the blood coagulation time was remarkably increased as the amount of the hemostatic material was decreased.
  • the blood coagulation time of Example 2 showed a short blood coagulation time without being affected by the presence or absence of Ca ions. This indicates that if hydrophobized gelatin is used, a sufficient blood coagulation effect can be obtained even when the blood coagulation action of fibrin in the blood cannot be expected.
  • FIG. 3A is Comparative Example 1, and “Org” in the center is Comparative Example 2. It is. Further, “Ca ( ⁇ )” in FIG. 3a and the like indicates a case where no Ca ion is added, and “Ca (+)” in FIG. 3b and the like indicates a case where Ca ion is added.
  • the hemostatic material of most examples had faster blood clotting compared to the comparative example which differed only in that gelatin was not derivatized.
  • Some hemostatic materials with a hydrophobic group with a large number of carbons were slower to coagulate than the comparative examples, but these groups have a higher affinity for epithelial tissues and are therefore considered to be more rapidly coagulated in vivo.
  • the hemostatic material of Example 8 has substantially the same clotting time as that of Comparative Example 2 in FIG. 3A, but the amount of bleeding in vivo described later is significantly higher than that of Comparative Example 2 as shown in Table 5. There were few.
  • Example 8 and Comparative Example 2 were measured at room temperature according to the following procedure in accordance with the evaluation method of Murakami et al. (Colloids and Surfaces B: Biointerfaces 65 (2008) 186-189). Comparison was made according to the amount of bleeding.
  • a 7-week-old rat (Wister rat, average body weight about 300 g) injected intraperitoneally with sodium pentobarbital (Somnopentyl (trademark), Dainippon Sumitomo Pharma Co., Ltd.) was fixed on a medical cork board, and the abdomen An incision was made.
  • the reference value is the value of the fibrin hemostatic material (Tisseel® VH (trademark), Baxter) described in the above-mentioned document by Murakami et al. (Page 188, right column).
  • the hemostatic material of Example 8 had significantly less blood loss (w1-w3) than the hemostatic material using non-derivatized gelatin (Comparative Example 2), and an excellent blood coagulation effect was confirmed.
  • the amount of bleeding in Example 8 was about 3 times the reference value, mice with an average body weight of 24.3 g were used in this document, whereas rats with an average body weight of 300 g were used in this experiment.
  • the hemostatic material of the present invention is comprehensively superior to the fibrin-based hemostatic material because of its strong adhesion to tissue and membrane strength.
  • the hemostatic material of the present invention has an excellent blood coagulation effect, and is very useful for clinical surgery such as cardiovascular surgery, digestive surgery, respiratory surgery, orthopedic surgery, oral surgery and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Materials For Medical Uses (AREA)
  • Medicinal Preparation (AREA)

Abstract

簡易且つ安全に製造することができ、ウイルス感染の危険性が無く、Caイオンが無くとも血液を凝固することができる止血材を提供する。 (1)イミノ基を介して、疎水性基が結合されてなるゼラチン誘導体を含む第1剤であって、該ゼラチン誘導体は (a)重量平均分子量が10,000~50,000であり、 (b)該疎水性基が炭素数6~18のアルキル基であり、且つ (c)該ゼラチン誘導体中のイミノ基/アミノ基(モル比)が1/99~30/70である、 第1剤、及び (2)該ゼラチン誘導体の架橋剤を含む第2剤 からなる止血材。

Description

止血材
 本発明は止血材に関し、詳細には疎水性基が結合されてなるゼラチン誘導体を含む止血材に関する。
 止血材は、外科切開口、皮膚創傷等に適用して出血を止めるための材料であり、呼吸器外科、消化器外科、心臓血管外科、口腔外科等、種々の外科手術において使用されている。現在、使用されている主な止血材としては、コラーゲン系止血材、ゼラチン系止血材及びフィブリン系止血材がある。
 コラーゲン系止血材としては、仔牛真皮由来のアテロコラーゲンを綿線維状に紡糸加工し、ポリエポキシ化合物で架橋処理した後、シート状にしたものがある(インテグラン(商標)、(株)高研)。また、ゼラチン系止血材としては、架橋された粒子状のゼラチンとヒトトロンビンを併用するものがある(Floseal(商標)、バクスター社)。これらの止血材は、コラーゲン又はゼラチンの架橋処理、シート化又は粒子化処理の手間が煩瑣であるという問題がある。また、ヒトトロンビンは血液製剤から得られるためウイルス感染の恐れがある。
 ゼラチン-レゾルシン混合液とホルマリン溶液を混合して出血部位に適用し、該部位で架橋させて使用するものもある。しかし、ホルマリンは、生体内のタンパク質とも架橋反応を起こして、組織毒性を有するという問題がある。
 フィブリン系止血材は、生体における血液凝固の第二段階において、フィブリノゲンが重合してフィブリンとなり、血液凝固の第一段階で生成する血小板血栓に絡み付いて該血栓を強固にして止血する現象を利用したものである。フィブリンは血管等の組織への接着性も有するため、吻合部や損傷部の組織を接着することによって、結果的に血液の漏出を抑制する効果(以下、「シーリング効果」という)も有する。このシーリング効果を止血効果と呼ぶ場合もあるが、これは血液凝固効果とは別異の効果である。例えばウシ血清アルブミンをグルタルアルデヒドで架橋して用いるシーラント(バイオグルー(商標)、CryoLife, Inc.製)は、シーリング効果を有するが、血液凝固効果は有さず、本発明における止血材には該当しない。一方、上述のコラーゲン系止血材は血液凝固効果を有するがシーリング効果は有しない。これらに対してフィブリン系のものは、シーリング効果と、血液凝固効果との双方を利用できることから、臨床への応用も盛んに試みられており、例えばTisseel VH(商標、バクスター社)、Evicel(商標、ジョンソン・エンド・ジョンソン社)等の製品がある。
 しかし、フィブリン系止血材は血液製剤から作られるため、ウイルス感染の恐れがある。また、フィブリノゲンが重合してフィブリンになるためにはCaイオンが存在しなければならず、上記製品にはトロンビン、第XIII因子に加えて塩化カルシウム溶液が備わってはいるものの、クエン酸ナトリウム等の抗血液凝固剤を含む血液を使用している場合には、十分な血液凝固効果を得ることが難しいという問題がある。
 ところで、本発明者は組織への優れた接着性を示す、疎水性基が結合されてなるゼラチン誘導体(以下「疎水化ゼラチン」という場合がある)を用いた外科用シーラントの開発を進めてきた(例えば特許文献1、特許文献2)。該外科用シーラントは、組織に対して優れた接着性を有し、適用後は生体内で速やかに分解される。さらに、該外科用シーラントを耐滅菌性、製造の簡易性及び安全性の点等で改良し、優れたシーリング効果を奏する外科用シーラントを開発した(特許文献3)。
WO2012/046717号 WO2014/112208号 特許第5995128号公報
 本発明者は、上記外科用シーラントについてさらに研究を進めて行く中で、該外科用シーラントが、上記従来の止血材における問題を解決できる、優れた止血材となることを見出し、本発明を完成した。
 即ち、本発明は、下記のものである:
(1)イミノ基を介して、疎水性基が結合されてなるゼラチン誘導体を含む第1剤であって、該ゼラチン誘導体は
(a)重量平均分子量が10,000~50,000であり、
(b)該疎水性基が炭素数6~18のアルキル基であり、且つ
(c)該ゼラチン誘導体中のイミノ基/アミノ基(モル比)が1/99~30/70である、
第1剤、及び
(2)該ゼラチン誘導体の架橋剤を含む第2剤
からなる止血材。
 上記背景技術の項で述べたとおり、従来、ゼラチンは止血材に利用されているが、疎水化ゼラチンを利用した止血材は無い。疎水化ゼラチンは、原料ゼラチンより顕著に優れた血液凝固効果を奏する。この理由は、本発明を限定する趣旨ではないが、疎水性基によって赤血球等の血液中に存在する細胞との親和性が向上するためであると考えられる。該血液凝固効果は、Caイオンが無くとも奏されるので、本発明の止血材は輸血製剤使用下においても有用である。さらに、本発明の止血材は、上述のとおり優れたシーリング効果も奏し、同じく血液凝固効果とシーリング効果の双方を奏するフィブリン系止血材に比べて、双方の効果において勝り、且つ、ウイルス感染の危険性もない。本発明の止血材は、種々の外科手術において大変有用である。
図1は、原料ゼラチン、及びゼラチン誘導体のFT-IRスペクトルである。 図2は、実施例2と比較例1のIn vitroでの血液凝固時間を比較して示すグラフである。 実施例1~5と比較例1、及び実施例6~10と比較例2のIn vitroでの血液凝固時間を比較して示すグラフである。 Caイオンを添加した場合の図3aと同様の比較を示すグラフである。 実施例11~15と比較例3、及び実施例16~20と比較例4のIn vitroでの血液凝固時間を比較して示すグラフである。 Caイオンを添加した場合の図4aと同様の比較を示すグラフである。 実施例21~25と比較例5、及び実施例26~30と比較例6のIn vitroでの血液凝固時間を比較して示すグラフである。 Caイオンを添加した場合の図5aと同様の比較を示すグラフである。 実施例31~35と比較例7、及び実施例36~40と比較例8のIn vitroでの血液凝固時間を比較して示すグラフである。 Caイオンを添加した場合の図6aと同様の比較を示すグラフである。
<第1剤>
 本発明の止血材において、第1剤はゼラチン誘導体を含む。該ゼラチン誘導体はイミノ基、好ましくは、-NH-、を介して結合された疎水性基を有し、下記式(1)で示される構造を有する。
 
GltnNH-CHR        (1)
 
上式において、「Gltn」はゼラチン残基であり、Rは疎水性基であり、Rは水素原子又は疎水性基である。Nは、ゼラチン中の主としてリジン(Lys)のε-アミノ基由来である。好ましくは、Rが水素原子である。該式(1)のNH構造は、例えばFT‐IRスペクトルにおいて3300cm-1付近のバンドにより検出することができる。図1は、ゼラチン誘導体(Mw13、000のスケトウダラゼラチンをドデシル基で置換したもの、スペクトル1:誘導化率4.2モル%;スペクトル2:8.9モル%)のFT-IRスペクトルを、原料ゼラチンのそれと比較して示すものである。疎水性基の量が増えるにつれ、3300cm-1付近のN-Hの振動及び2900cm-1付近のC-Hの振動が強くなっていることが分かる。
 Rが疎水性基である場合、Rと同じでも互いに異なっていてもよい。疎水性基は、炭素数6~18のアルキル基であり、分岐を有していてもよい。該アルキル基の例としては、ヘキシル基、オクチル基(又はカプリル基)、ノニル基(又はペラルゴルニル基)、デシル基、ドデジシル基(又はラウリル基)、テトラデシル基(又はミリスチル基)等が挙げられる。好ましくは、Rが炭素数6~15、より好ましくは7~13、最も好ましくは7~11の直鎖アルキル基であり、Rが水素原子である。
 該ゼラチン誘導体中の誘導化率は、疎水性基が結合されたイミノ基の、原料ゼラチン中のアミノ基量に対するモル%で、1~30モル%、好ましくは1~20モル%、より好ましくは5~10モル%である。言い換えれば、得られたゼラチン誘導体におけるイミノ基/アミノ基(モル比)は、1/99~30/70、好ましくは1/99~20/80、より好ましくは5/95~10/90である。該誘導化率は、原料ゼラチン中のアミノ基と、疎水性基を結合した後のアミノ基量を、2,4,6-トリニトロベンゼンスルホン酸法によって定量することで、或いは、NMR等により疎水性基の同定及び定量を行うことによって求めることができる。
 該ゼラチン誘導体は、重量平均分子量(Mw)が10,000~50,000、好ましくは10,000~40,000、より好ましくは20,000~35,000である。前記範囲内において、優れた耐電子線滅菌性を示す。該分子量は、ゲル浸透クロマトグラフィー(GPC)により定法に従い測定することができる。
 原料ゼラチンは、天然由来、化学合成、発酵法、又は遺伝子組換えにより得られるゼラチンのいずれであってもよい。好ましくは、天然由来、例えばウシ、ブタ、魚由来のゼラチンであり、より好ましくは冷水魚由来、例えばタイ及びタラ、最も好ましくはタラ、特にスケトウダラのゼラチンが使用される。冷水魚由来のゼラチンはブタ等のゼラチンに比べて、イミノ酸の含有量が少なく、高濃度でも常温~低温流動性に優れた止血材を与えることができる。
 該原料ゼラチンは酸処理ゼラチン、アルカリ処理ゼラチンのいずれであってもよい。好ましくはアルカリ処理ゼラチンである。また、該ゼラチンの分子量の範囲は、ゼラチン誘導体が上述の平均分子量(Mw)の範囲となるような範囲であればよい。
 第1剤は、上記ゼラチン誘導体に加えて、誘導体化されていないゼラチンを含んでもよい。該ゼラチンとしては、上述の各種ゼラチンを用いることができる。誘導体化されていないゼラチンの量は、ゼラチン誘導体との合計重量の0~99wt%であり、好ましくは、0~50wt%である。
 第1剤は、水性溶媒をさらに含み、該ゼラチン誘導体を該水性溶媒に溶解又は分散して水性溶液(以下、単に「水溶液」という場合がある)として供されることが利便性の点で好ましい。該水性溶媒としては、超純水、生理食塩水、ホウ酸、リン酸、炭酸等各種無機塩緩衝液又はこれらの混合物を用いることができる。好ましくはpH8~11、より好ましくはpH9~10、最も好ましくは9.3~9.7のホウ酸緩衝液が使用される。該水性溶媒は、ゼラチン誘導体が10~80w/v%、好ましくは15~30w/v%となるような量で使用される。この時のイオン強度は、0.01~0.5M、好ましくは、0.05~0.2である。誘導体化されていないゼラチンを含む場合には、ゼラチン誘導体との合計重量が上記濃度となる量である。
<第2剤>
本発明において、第2剤はゼラチン誘導体の架橋剤であり、ゼラチン誘導体と反応して、水、血液等の体液に不溶性の構造体を形成する。該架橋剤としては、ゼラチン中のアミノ基、主として側鎖の第一級アミノ基、と反応性の官能基を分子中に少なくとも2つ以上有するものの少なくとも一種が使用される。架橋剤の例としては、ゲニピン、N-ヒドロキシスクシンイミドもしくはN-ヒドロキシスルホスクシンイミドで活性化された多塩基酸、アルデヒド化合物、酸無水物、ジチオカーボネート及びジイソチオシアンネートが挙げられる。
 多塩基酸としては、酒石酸、クエン酸、リンゴ酸、グルタル酸、グルタミン酸、アスパラギン酸、オキサロ酢酸、cis-アコニット酸、2-ケトグルタル酸、ポリ酒石酸、ポリクエン酸、ポリリンゴ酸、ポリグルタミン酸、ポリアスパラギン酸等が例示され、これらのカルボキシル基が活性エステル化されたもの、例えばジスクシンイミジルグルタレート(DSG)、ジスクシンイミジルスベレート(DSS)、ジスクシンイミジルタートレート(DST)等を使用することができる。
 また、ポリエチレングリコールもしくはポリエチレングリコールエーテルの、多塩基酸エステルで、該多塩基酸の、ポリエチレングリコールと反応していないカルボキシル基の少なくとも1つが活性エステル化されたもの、例えば4,7,10,13,16-ペンタオキサノナデカン二酸ジ(N-スクシンイミジル)、及び下記式で表されるポリエチレングリコール ジ(スクシンイミジル スクシネート)(SS-PEG-SS):
Figure JPOXMLDOC01-appb-C000001
(nはMnが約20,000となる数);
さらに、下記式で表されるペンタエリスリトール‐ポリエチレングリコールエーテル テトラスクシンイミジル グルタレート(4S-PEG):
Figure JPOXMLDOC01-appb-C000002
(nはMwが約3,000~30,000、好ましくは5,000~27,000、より好ましくは15,000~25,000となる数);
が挙げられる。
 アルデヒド化合物としては、1分子中に2つ以上のアルデヒド基が導入された、アルデヒド基導入多糖類、例えばアルデヒド基導入デンプン、アルデヒド基導入デキストラン、及びアルデヒド基導入ヒアルロン酸が、酸無水物としては、無水グルタル酸、無水マレイン酸、及び無水コハク酸が、ジイソチオシアンネートとしてはヘキサメチレンジイソチオシアネート等が例示される。これらのうち、上記活性化ポリエチレングリコール多塩基酸エステル、及びアルデヒド基導入多糖類が好ましく使用される。
 これらの架橋剤は、ゼラチン誘導体のアミノ基1当量に対して、該架橋剤中の官能基、例えばN-ヒドロキシスクシンイミドで活性化されたエステル基、が0.1~3当量、好ましくは0.2~2当量、より好ましくは0.3~1.5当量、最も好ましくは0.3~0.8当量となる量で供される。2種以上の架橋剤の混合物を用いてもよく、その場合はそれらの合計当量が上記範囲となる量とする。
 第2剤も、該架橋剤を溶解するための水性溶媒をさらに含むことが好ましい。但し、該架橋剤と該水性溶媒とを別々の容器で供し、使用に際して、使用の約2時間前以後に、両者を適量混合して水性溶液(以下、単に「水溶液」という場合がある)として使用することが好ましい。該水性溶媒については、第1剤について上記したものを使用することができる。好ましくは、pH3~8、より好ましくはpH4~6のリン酸緩衝液が使用される。最も好ましくは、第1剤の水溶液と第2剤の水溶液を同体積で混合した際に、pHが約8~約10となるように双方の水性溶媒のイオン強度が調整される。例えば、第1剤水溶液をpH9、イオン強度0.05~0.1のホウ酸緩衝液とし、第2剤水溶液をpH4、イオン強度0.01~0.03のリン酸緩衝液とすることで、同体積で混合した際に上記範囲のpHとすることができる。又は、第1剤水溶液をpH10、イオン強度0.05~0.1のホウ酸緩衝溶液として、第2剤水溶液をpH4、イオン強度0.01~0.07のリン酸緩衝溶液としてもよい。
第2剤は、第1剤中のアミノ基の当量に対する第2剤中の官能基の当量、即ち(第2剤中の官能基当量/第1剤中のアミノ基当量)が、上記範囲になるように調整される。2種以上の架橋剤の混合物を用いてもよく、その場合はそれらの合計が上記範囲となる量とする。
<添加剤>
 上記第1剤及び/又は第2剤は、各種添加剤を本発明の目的を阻害しない量でさらに含んでよい。該添加剤としては、着色料、pH調整剤、粘度調整剤、保存剤等が挙げられる。好ましくは、止血材の適用箇所が分かり易いように、第1剤あるいは2剤水溶液中に着色料、例えばブリリアントブルーを添加する。添加量は、例えば10~100μg/mLであってよい。
<製造方法>
 本発明の止血材は、第1剤と第2剤を個別に調製することによって得ることができる。
[第1剤の調製法]
(1)原料ゼラチン水性溶液の調製
 出発材料のゼラチンを5~50wt/v%となる量で、40~90℃で加熱して水性溶媒に溶解する。該水性溶媒としては、水と水溶性有機溶媒との混合物を用いる。該水溶性有機溶媒としては、炭素数1~3のアルコール、エステル等を用いることができ、好ましくはエタノールが使用される。
(2)誘導体化
 工程(1)で得られたゼラチン水溶液に、導入する疎水性基を有する誘導体化薬剤を添加し、所定時間撹拌して反応させる。該誘導体化薬剤としては、該疎水性基を有するアルデヒドもしくはケトン、例えばドデカナール、テトラデカナール、デシルエチルケトンが使用される。反応温度は30~80℃、反応時間は0.5~12時間であり、通常、撹拌するだけでゼラチンのアミノ基にシッフ塩基(~N=CR)を介してアルキル基が結合されたゼラチンを得ることができる。アルデヒドの使用量は、所望の誘導化率に相当する化学量論量に対して1~4倍とする。より好ましくは、1~2倍とする。
 次いで、該シッフ塩基を還元して上記式(1)の構造とする。還元剤としてはシアノ水素化ホウ素ナトリウム(NaBHCN)、水素化トリアセトキシホウ素ナトリウム(NaBH(OAc))、2-ピコリンボラン、ピリジンボラン等の、公知の還元剤を使用することができる。これらのうち、2-ピコリンボランが好ましい。ピコリンボランは安定性であり、水性溶媒中でアルデヒドもしくはケトンの還元アミノ化反応を一段(ワンポット)で行うことが可能である。また、80~90%の収率を達成することができ、これはシアノ水素化ホウ素ナトリウムが70~75%であるのに比べて顕著に高い。2-ピコリンボランの使用量は、誘導体化薬剤の当量に対して1~3当量であることが好ましい。
(3)精製
 工程(2)で得られた反応溶液を、大過剰の貧溶媒、例えば冷エタノールに加えて、ゼラチン誘導体を沈殿させる。該沈殿を濾別した後、エタノール等で洗浄して、最終生成物を得る。
(4)第1剤の調製
 工程(3)で得られたゼラチン誘導体を、ホウ酸緩衝液等の水性溶媒に上述の範囲となる量で溶解することが好ましい。所望により、誘導体化されていないゼラチン、その他添加剤を添加してよい。得られた第1剤を、例えばポリプロピレン等のプラスチック製ディスペンサ等の所定の容器に充填する。好ましくは、止血材を患部に適用する際に使用する、先端部で両剤を混合することができるダブルシリンジ型ディスペンサ等の一方に第1剤の水溶液を充填する。
[第2剤の調製法]
第2剤として例示した上記各架橋剤は、公知の方法で合成してもよいし、市販されているものを使用してもよい。該架橋剤と、それを溶解するための、例えばリン酸緩衝液等の水性溶媒を別々の容器、例えば架橋剤をガラス製のバイアルに、水性溶媒をプラスチックボトルに入れて供し、使用する約2時間前以降に該架橋剤を該水性溶媒に溶解する。
<放射線滅菌>
次いで、ディスペンサに充填された水溶液の形態の第1剤、バイアルに充填された粉末形態の架橋剤、及びボトルに充填された該架橋剤を溶解するための水性溶媒を夫々放射線滅菌する。あるいは、バイアルに充填された粉末形態のゼラチン誘導体(第1剤有効成分)、及びボトルに充填された該ゼラチン誘導体を溶解するための水性溶媒(第1剤溶媒)、バイアルに充填された粉末形態の架橋剤(第2剤有効成分)、及びボトルに充填された該架橋剤を溶解するための水性溶媒(第2剤溶媒)を夫々放射線滅菌する。該放射線としては、電子線、ガンマ線、制動放射線が挙げられ、電子線滅菌が好ましい。吸収線量としては、従来広く用いられている(第十四改正日本薬局方、第二部、参考情報、第1235頁、右欄、2.2 放射線法)25kGyか、それ以上であればよく、好ましくは25kGy~45kGyである。滅菌された第1剤と、第2剤及び水性溶媒の所定量と、使用方法を記載する指示書と組み合わされて、止血材のキットとして供されてもよいし、使用者の要求に応じた量及び組み合わせで供されてもよい。
<組織への適用方法>
 本発明の止血材は、呼吸器外科、消化器外科、心臓血管外科、口腔外科等、種々の外科手術における切開口、皮膚創傷等に適用することができる。特に止血を必要とする肝切除部には有効である。また、塞栓材として脳動脈瘤あるいは静脈瘤内の血液を凝固する目的で、或いは癌の塞栓療法において使用することもできる。止血材の適用方法の一例としては、上述のとおり第2剤を、好ましくは使用直前に水溶液とする。その際の架橋剤の濃度は、既に述べたとおりである。得られた第2剤水溶液を、既に第1剤水溶液が充填されているダブルシリンジ型ディスペンサの空いている方のシリンジに充填してプランジャーを押圧することによって、又は、ダブルシリンジを備えるエアアシストスプレーで噴霧して、患部に施与する。
 以下、本発明を実施例により説明するが、本発明はこれらに限定されるものではない。
[実施例1~40]
<第1剤の調製>
 表1に示すゼラチン誘導体1~10を調製した。例としてゼラチン誘導体2について説明する。なお、表1において「疎水性基」に示す炭素数は上記式(1)のCHR全体の炭素数である。
 スケトウダラ由来のゼラチン(Mw=20,000、新田ゼラチン(株)製)100gを水350mLに溶解し、得られた水溶液にエタノール140mLを加えて50℃にて撹拌した。ゼラチンのアミノ基に対して、誘導化率10モル%に相当する化学量論量の1.5当量のデカナールを5mLエタノールに溶解して、ゼラチン溶液に混合し、次いでデカナールの約1.5当量の2-ピコリンボランを加えて、18時間撹拌した。反応溶液の10倍体積量の冷エタノール中に該反応溶液を滴下して、生成されたゼラチン誘導体を再沈殿させ、吸引ろ過を行った。得られた沈殿物の約5倍体積量の冷エタノール中に該沈殿物を入れ、1時間撹拌しながら洗浄後吸引ろ過を行った。この洗浄を3回行った後、2日間真空乾燥して、デシル基が導入された白色のゼラチン誘導体を、収率約84%で得た。誘導化率は、トリニトロベンゼンスルホン酸を用いた比色法により確認した。
 スケトウダラ由来のゼラチンのMw及び誘導化率を変え、デカナールに代えてオクタナール又はウンデカナールを用いたことを除き、上述の方法と同様の方法で、他のゼラチン誘導体を調製した。
Figure JPOXMLDOC01-appb-T000003
 得られたゼラチン誘導体を、pH9.0又はpH9.5の0.1Mホウ酸緩衝液に、15w/v%で溶解し、得られた溶液を、2mLのポリプロピレン製ダブルシリンジ型ディスペンサに充填し、各第1剤とした。
<第2剤の調製>
 第2剤として、ペンタエリスリトール‐ポリエチレングリコールエーテル テトラスクシンイミジル グルタレート(4S-PEG、Mw=20,000又は10,000、Sigma-Aldrich社製)を用いた。下記各評価の直前に、ブリリアントブルーを100μg/mLで含むpH4のリン酸緩衝液に、第1剤と同体積用いた場合に、第1剤の残存アミノ基に対して4S-PEGのスクシンイミドエステル基の当量比(モル比)が0.5となる量の4S-PEGを溶解し、得られた水溶液を第1剤と同じディスペンサの空いている方のシリンジに収納して第2剤とした。以上のようにして表2に示す実施例1~40の止血材を得た。
Figure JPOXMLDOC01-appb-T000004
[比較例1~8]
 第1剤として、誘導化していないゼラチン(Mw=20,000又は35,000)を用いたことを除き、実施例と同様にして表3に示す比較用止血材を調製した。
Figure JPOXMLDOC01-appb-T000005
[評価]
1.In vitroでの血液凝固速度の評価
 5mLガラスバイアルに、血液(豚全血、輸血用クエン酸ナトリウム0.324%(12.6mM)含む)を入れ、そこに実施例2の止血材を添加した後、直ちに長さ15mmのテフロンコートされた撹拌子を入れ、該バイアルを37℃に加熱したホットプレート上に置いて、280rpmで撹拌し、血液の凝固により該撹拌子が回転しなくなるまでの時間を測定した。血液と止血材の合計体積を1mLとし、血液量を250μL(止血材の体積割合0.75)、500μL(止血材の体積割合0.5)、750μL(止血材の体積割合0.25)とし、各体積割合について3回測定を行い、平均値を求めた。比較例1についても同様の測定を行った。結果を表4、及び図2に示す。
2.In vitroでのCaイオン添加時の血液凝固速度の評価
 豚全血に、251.9mMの塩化カルシウム水溶液を、豚全血に対して体積比1/20量(豚全血中Ca濃度0.048wt%に相当)添加して混合した後に、止血材を添加したことを除き、評価1と同様の方法で撹拌子が回転しなくなるまでの時間を測定した。比較例1についても同様の測定を行った。結果を表4及び図2に示す。
Figure JPOXMLDOC01-appb-T000006
 図2は、実施例2と比較例1のIn vivoでの血液凝固時間を比較して示すグラフである。止血材の割合が多くなる(止血剤の割合0.75)と、ゼラチンの誘導化の有無、Caイオンの有無によらず、血液凝固時間はほぼ同じであった。Caイオンが添加されていない場合、比較例1は止血材量が低くなるにつれて血液凝固時間が顕著に長くなった。これに対して、実施例2の血液凝固時間はCaイオンの有無の影響を受けることなく、短い血液凝固時間を示した。この事は、疎水化ゼラチンを用いれば、血液中のフィブリンの血液凝固作用が期待できない場合であっても、十分な血液凝固効果が得られることを示す。
3.止血材の体積割合0.5におけるIn vitroでの血液凝固速度の評価
 実施例1、3~40の止血材についても、上記1及び2と同様の方法で血液凝固時間を測定し、疎水性基の炭素数、誘導化率、ゼラチンの分子量、ホウ酸緩衝液のpH、架橋剤の分子量、及びCaイオンの有無の血液凝固速度への影響を調べた。そのうち、止血材の体積割合が0.5の場合の結果を、図3a~図6bのグラフに示す。各図において、「Org」はゼラチンを誘導化していない点でのみ異なる比較例を意味し、例えば図3aの左端の「Org」は比較例1であり、中央部の「Org」は比較例2である。また、図3a等の「Ca(-)」はCaイオンを添加していない場合であり、図3b等の「Ca(+)」はCaイオンを添加した場合を示す。
 図3a~図6bに示すとおり、ほとんどの実施例の止血材は、ゼラチンが誘導化されていない点でのみ異なる比較例と比べて、血液凝固が速かった。疎水性基の炭素数が大きい止血材のなかには、比較例よりも凝固が遅いものもあったが、これらの基は上皮組織への親和性が高いので、in vivoでは凝固がより速くなると考えられる。例えば、実施例8の止血材は、図3aでは比較例2とほぼ同程度の凝固時間であるが、表5に示すとおり、後述するIn vivoでの出血量は比較例2に比べて顕著に少なかった。
また、種々の要因のうち、第1剤のpH及び第2剤の分子量が血液凝固時間に対する影響が大きいことが分かった。例えば、第1剤のpHが9.5(図4a)の場合、同pHが9.0(図3a)の場合に比べて、総ての例で血液凝固が速かった。また、第2剤の分子量が20,000の場合(図3a)、10,000の場合(図5a)より血液凝固が速かった。ここから、これらの要因を調整することで、所望の血液凝固速度に調整することが可能であることが分かる。
Caイオンが添加された場合、特に第2剤の分子量が小さい場合、却って血液凝固が遅い傾向があったが、その理由については不明である。
4.In vivoでの出血量による評価
 実施例8、比較例2の血液凝固効果を、村上らの評価法(Colloids and Surfaces B:Biointerfaces 65(2008)186-189)に準じて、下記手順により室温における出血量により比較した。
(1)ペントバルビタールナトリウム(ソムノペンチル(商標)、大日本住友薬品(株))を腹腔内注射した7週齢のラット(Wisterラット、平均体重約300g)を医療用コルク板上に固定し、腹部を切開した。
(2)漿液を注意深く除去した後、肝臓の下に予め重さを測定した濾紙を、及び該濾紙の下にパラフィルム(登録商標)を敷いた。パラフィルムは、次第ににじみ出る漿液を濾紙が吸収するのを防止する。
(3)コルク板を水平位置から約45°傾けて肝臓から濾紙へと血が流れるようにした。
(4)ラットの肝臓を、消毒した針(18G、38mm、テルモ社製)で突き刺した直後、止血材を施与して3分間放置した後、濾紙の重さ(mg)を測定した(w1)。
(5)参照実験として、肝臓を針で突き刺さずに止血材を施与し、3分間放置した後の濾紙の重さを測定した(w3)。
(6)出血量(w1-w3)(mg)を求めて比較した。結果を表5に示す。
 なお、今回は止血材間の比較を目的とするので、止血材を使用しない場合の出血量(w2)の測定は割愛した。
Figure JPOXMLDOC01-appb-T000007
 表5において、参考値は村上らの上記文献に記載のフィブリン系止血材(Tisseel VH(商標)、バクスター社)の値である(第188頁、右欄)。同表に示すとおり、実施例8の止血材は誘導化していないゼラチンを用いた止血材(比較例2)より顕著に出血量(w1-w3)が少なく、優れた血液凝固効果が確認された。実施例8の出血量は参考値の約3倍であったが、同文献では平均体重24.3gのマウスが使用されているのに対し、今回の実験では平均体重300gのラットを用いた点、及び止血材自体の使用量も約2.5倍量(340.7/137.0 )であった点を考慮し、使用量当たりの出血量((w1-w3)/w3)で比べると両者はほぼ同等であり、また体重当たりの出血量は、実施例8は0.39(mg/g)であり参考値1.80(mg/g)に比べて顕著に少ない。血液凝固速度も速く、上記特許第5995128号に示したとおり、組織への接着力及び膜強度も強いことから、本発明の止血材は総合的にフィブリン系止血材より優れる。
 本発明の止血材は優れた血液凝固効果を奏し、心臓血管外科、消化器外科、呼吸器外科、整形外科、口腔外科等、臨床手術での使用に大変有用である。

Claims (7)

  1. (1)イミノ基を介して、疎水性基が結合されてなるゼラチン誘導体を含む第1剤であって、該ゼラチン誘導体は
    (a)重量平均分子量が10,000~50,000であり、
    (b)該疎水性基が炭素数6~18のアルキル基であり、且つ
    (c)該ゼラチン誘導体中のイミノ基/アミノ基(モル比)が1/99~30/70である、
    第1剤、及び
    (2)該ゼラチン誘導体の架橋剤を含む第2剤
    からなる止血材。
  2. 該ゼラチンが、冷水魚由来のゼラチンである、請求項1記載の止血材。
  3. 該冷水魚がスケトウダラである、請求項2記載の止血材。
  4. 該アルキル基が直鎖アルキル基である、請求項1~3のいずれか1項記載のアルキル基。
  5. 該架橋剤が、少なくとも2つの活性化されたエステル基を有する、ポリエチレングリコールエーテル多塩基酸エステルである、請求項1~4のいずれか1項記載の止血材。
  6. 該架橋剤が、重量平均分子量3,000~30,000を有するペンタエリスリトール‐ポリエチレングリコールエーテル テトラスクシンイミジル グルタレートである、請求項5記載の止血材。
  7. (該架橋剤の官能基の当量/該ゼラチン誘導体のアミノ基の当量)が0.1~3となる量で使用される、求項1~6のいずれか1項記載の止血材。
PCT/JP2017/038325 2016-10-26 2017-10-24 止血材 WO2018079538A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/396,561 US11052171B2 (en) 2016-10-26 2019-04-26 Method of hemostasis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-209262 2016-10-26
JP2016209262A JP2019216755A (ja) 2016-10-26 2016-10-26 止血材

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/396,561 Continuation US11052171B2 (en) 2016-10-26 2019-04-26 Method of hemostasis

Publications (1)

Publication Number Publication Date
WO2018079538A1 true WO2018079538A1 (ja) 2018-05-03

Family

ID=62024901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038325 WO2018079538A1 (ja) 2016-10-26 2017-10-24 止血材

Country Status (3)

Country Link
US (1) US11052171B2 (ja)
JP (1) JP2019216755A (ja)
WO (1) WO2018079538A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071429A1 (ja) 2018-10-04 2020-04-09 国立研究開発法人物質・材料研究機構 血管新生促進剤、及び治療方法
WO2020137903A1 (ja) 2018-12-26 2020-07-02 国立研究開発法人物質・材料研究機構 粉体、創傷被覆材、癒着防止材、止血材、及び紛体の製造方法
WO2021054233A1 (ja) 2019-09-18 2021-03-25 国立研究開発法人物質・材料研究機構 生体組織接着シート、生体組織補強材料キット、及び、生体組織接着シートの製造方法
WO2021054232A1 (ja) 2019-09-18 2021-03-25 国立研究開発法人物質・材料研究機構 生体組織接着シート、生体組織補強材料キット、及び、生体組織接着シートの製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11998654B2 (en) 2018-07-12 2024-06-04 Bard Shannon Limited Securing implants and medical devices
JPWO2021261080A1 (ja) * 2020-06-26 2021-12-30
CN115025274B (zh) * 2021-03-04 2023-03-17 海宁侏罗纪生物科技有限公司 一种医用组织粘合胶及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09103479A (ja) * 1995-10-13 1997-04-22 Gunze Ltd 医用材料及びその製造法
JP2010521994A (ja) * 2006-12-15 2010-07-01 ライフボンド リミテッド ゼラチン−トランスグルタミナーゼ止血ドレッシング及びシーラント
JP2012095769A (ja) * 2010-10-29 2012-05-24 Gunze Ltd 医療用接着剤及び医療用材料
WO2014112208A1 (ja) * 2013-01-18 2014-07-24 独立行政法人物質・材料研究機構 組織接着剤及びその製造方法
JP5995128B1 (ja) * 2016-01-20 2016-09-21 国立研究開発法人物質・材料研究機構 外科用シーラント

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002357878A (ja) * 2000-12-27 2002-12-13 Fuji Photo Film Co Ltd 修飾ゼラチン、これを用いたハロゲン化銀写真乳剤および写真感光材料
US8314211B2 (en) * 2009-04-07 2012-11-20 George Falus Tissue sealant for use in non compressible hemorrhage
JP5594633B2 (ja) 2010-10-05 2014-09-24 独立行政法人物質・材料研究機構 2成分系組織接着剤及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09103479A (ja) * 1995-10-13 1997-04-22 Gunze Ltd 医用材料及びその製造法
JP2010521994A (ja) * 2006-12-15 2010-07-01 ライフボンド リミテッド ゼラチン−トランスグルタミナーゼ止血ドレッシング及びシーラント
JP2012095769A (ja) * 2010-10-29 2012-05-24 Gunze Ltd 医療用接着剤及び医療用材料
WO2014112208A1 (ja) * 2013-01-18 2014-07-24 独立行政法人物質・材料研究機構 組織接着剤及びその製造方法
JP5995128B1 (ja) * 2016-01-20 2016-09-21 国立研究開発法人物質・材料研究機構 外科用シーラント

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAGUCHI, TETSUSHI: "Development trend for medical adhesive having high biocompatibility", ENGINEERING MATERIALS, vol. 63, no. 6, 1 June 2015 (2015-06-01), pages 44 - 50, ISSN: 0452-2834 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071429A1 (ja) 2018-10-04 2020-04-09 国立研究開発法人物質・材料研究機構 血管新生促進剤、及び治療方法
EP3862016A4 (en) * 2018-10-04 2023-01-25 National Institute for Materials Science ANGIOGENESIS PROMOTER AND THERAPEUTIC METHOD
WO2020137903A1 (ja) 2018-12-26 2020-07-02 国立研究開発法人物質・材料研究機構 粉体、創傷被覆材、癒着防止材、止血材、及び紛体の製造方法
WO2021054233A1 (ja) 2019-09-18 2021-03-25 国立研究開発法人物質・材料研究機構 生体組織接着シート、生体組織補強材料キット、及び、生体組織接着シートの製造方法
WO2021054232A1 (ja) 2019-09-18 2021-03-25 国立研究開発法人物質・材料研究機構 生体組織接着シート、生体組織補強材料キット、及び、生体組織接着シートの製造方法
US20220331477A1 (en) * 2019-09-18 2022-10-20 National Institute For Materials Science Biological tissue adhesive sheet, biological tissue reinforcement material kit, and method for producing biological tissue adhesive sheet

Also Published As

Publication number Publication date
US11052171B2 (en) 2021-07-06
JP2019216755A (ja) 2019-12-26
US20190247537A1 (en) 2019-08-15

Similar Documents

Publication Publication Date Title
WO2018079538A1 (ja) 止血材
JP5995128B1 (ja) 外科用シーラント
AU2012318257B2 (en) Hemostatic compositions
AU2012318258B2 (en) Hemostatic compositions
KR102143252B1 (ko) 지혈 조성물
WO2006080523A1 (ja) 自己分解性を有する医療用2液反応型接着剤、及び医療用樹脂
TW200824726A (en) Rapidly acting dry sealant and methods for use and manufacture
JPWO2009057802A1 (ja) β−1,3−グルカン由来ポリアルデヒド/ポリアミンハイドロゲル
US11583611B2 (en) Biocompatible phase invertible proteinaceous compositions and methods for making and using the same
Xing et al. Injectable hydrogel based on modified gelatin and sodium alginate for soft-tissue adhesive
CN110801528A (zh) 一种硬脊膜封合水凝胶及其制备方法与应用
JP4585743B2 (ja) 生体内分解吸収性粘着性医用材料
WO2016117569A1 (ja) 外科用シーラント
KR102029926B1 (ko) 풀루란을 이용한 하이드로젤 지혈제 및 그 제조방법
JPWO2020050102A1 (ja) 癒着防止材
CN110180017A (zh) 一种多功能双组份水凝胶组织粘合剂的制备方法
JP2018515216A (ja) 止血組成物
Yadav et al. Polymer-based biomaterials and their applications in tissue adhesives
CN114366847B (zh) 一种快速止血冻干纤维气凝胶及其制备方法和应用
JP2023161851A (ja) 接着剤、創傷被覆材、癒着防止材、止血材、シーラント、及び噴霧キット
KR20230057168A (ko) 케라틴 결합 피브리노겐 하이드로겔을 유효성분으로 포함하는 지혈제 조성물
KR20230156213A (ko) 과산화아연을 이용한 젤라틴 기반 아연이온 방출 생체활성 조직접착 하이드로젤의 제조방법 및 이의 생의학적 용도
Monteiro et al. Biomaterials Advances
JP2003275293A (ja) イオン結合性生体組織接着剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17865549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP