WO2018079500A1 - 結晶性シリコチタネートの製造方法 - Google Patents

結晶性シリコチタネートの製造方法 Download PDF

Info

Publication number
WO2018079500A1
WO2018079500A1 PCT/JP2017/038229 JP2017038229W WO2018079500A1 WO 2018079500 A1 WO2018079500 A1 WO 2018079500A1 JP 2017038229 W JP2017038229 W JP 2017038229W WO 2018079500 A1 WO2018079500 A1 WO 2018079500A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystalline silicotitanate
mixed gel
sodium
potassium
molar ratio
Prior art date
Application number
PCT/JP2017/038229
Other languages
English (en)
French (fr)
Inventor
慎介 宮部
英治 野口
木ノ瀬 豊
Original Assignee
日本化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化学工業株式会社 filed Critical 日本化学工業株式会社
Publication of WO2018079500A1 publication Critical patent/WO2018079500A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/32Alkali metal silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange

Definitions

  • the present invention relates to a method for producing crystalline silicotitanate particularly useful as an adsorbent for cesium and / or strontium.
  • coprecipitation treatment is known as a treatment technique for wastewater containing radioactive substances (see Patent Document 1 below).
  • the coprecipitation treatment is not effective, and at present, adsorption removal by an inorganic adsorbent such as zeolite is performed (see Patent Document 2 below).
  • Non-Patent Document 1 when radioactive cesium and radioactive strontium flow into seawater, an increase in the sodium concentration of seawater components acts to suppress the ion exchange reaction between cesium and the adsorbent (see Non-Patent Document 1 below). The problem is known. Although not described in Non-Patent Document 1 below, an increase in the sodium concentration of the seawater component also acts to suppress the ion exchange reaction between strontium and the adsorbent.
  • Crystalline silicotitanate is one of the inorganic adsorbents studied so far for the adsorption of cesium and / or strontium. Crystalline silicotitanates are known in a plurality of compositions such as those having a Ti / Si molar ratio of 1: 1, 5:12, and 2: 1. In addition, Ti / Si It is known that crystalline silicotitanate exists in a molar ratio of 4: 3.
  • products 3B and 3C produced by hydrothermal treatment using an alkoxide of Ti (OET) 4 as a Ti source and colloidal silica as a Si source are three-dimensional from the X-ray diffraction pattern.
  • Non-Patent Document 3 discloses a crystalline silicotitanate having a Ti / Si molar ratio of 4: 3, titanium tetrachloride as a Ti source, and a mixed solution containing highly dispersed SiO 2 powder as a Si source. It describes that it was manufactured by heat treatment. This document describes that the synthesized crystalline silicotitanate has strontium ion exchange capacity.
  • an object of the present invention is to provide a crystalline silicotitanate having a Ti / Si molar ratio of 4: 3 as a crystalline silicotitanate having high adsorption performance for cesium and strontium even in seawater. It is to provide an advantageous manufacturing method.
  • M 2 O / Hydrothermal synthesis is performed using a mixed gel having a SiO 2 molar ratio of preferably 0.6 to 1.1.
  • the method for producing crystalline silicotitanate to be provided by the present invention has a general formula; M 4 Ti 4 Si 3 O 16 ⁇ nH 2 O (wherein M represents Na and K. n represents 0 to 8).
  • crystalline silicotitanate having excellent adsorption and removal characteristics of cesium and strontium in seawater can be produced by an industrially advantageous method.
  • FIG. 1 is an X-ray diffraction chart of the crystalline silicotitanate obtained in Example 1.
  • FIG. 2 is an X-ray diffraction chart of the crystalline silicotitanate obtained in Example 2.
  • FIG. 3 is an X-ray diffraction chart of the crystalline silicotitanate obtained in Example 3.
  • FIG. 4 is an X-ray diffraction chart of the crystalline silicotitanate obtained in Example 4.
  • FIG. 5 is an X-ray diffraction chart of the crystalline silicotitanate obtained in Example 5.
  • 6 is an X-ray diffraction chart of the crystalline silicotitanate obtained in Comparative Example 1.
  • FIG. 7 is an X-ray diffraction chart of the crystalline silicotitanate obtained in Comparative Example 2.
  • FIG. 1 is an X-ray diffraction chart of the crystalline silicotitanate obtained in Example 1.
  • FIG. 2 is an X-ray dif
  • M 4 Ti 4 Si 3 O 16 ⁇ nH 2 O (wherein M represents an alkali metal of Na and K.
  • n represents a number of 0 to 8).
  • crystalline silicotitanate a more detailed composition is not clear, but the general formula: (Na x K (1-x) ) 4 Ti 4 Si 3 O 16 ⁇ nH 2 O (wherein x exceeds 0) The present inventors presume that the number is less than 1.
  • the present invention provides a first step of mixing a silicic acid source, a sodium compound, a potassium compound, titanium tetrachloride, and water to obtain a mixed gel, and a first step of reacting the mixed gel obtained in the first step under atmospheric pressure. It has two steps.
  • silicate source used in the first step examples include sodium silicate.
  • active silicic acid obtained by carrying out cation exchange of the alkali silicate namely, alkali metal salt of silicic acid is also mentioned.
  • Active silicic acid is obtained by cation exchange by bringing an aqueous alkali silicate solution into contact with, for example, a cation exchange resin.
  • a sodium silicate aqueous solution usually called water glass (water glass No. 1 to No. 4 etc.) is preferably used. This is relatively inexpensive and can be easily obtained.
  • an aqueous potassium silicate solution is suitable as a raw material.
  • the aqueous alkali silicate solution is diluted with water as necessary.
  • the cation exchange resin used when preparing the active silicic acid can be appropriately selected from known ones and is not particularly limited.
  • the alkali silicate aqueous solution is diluted with water so that the silica has a concentration of 3% by mass or more and 10% by mass or less.
  • a strong acidic or weakly acidic cation exchange resin to dealkalize. Further, if necessary, it can be deanioned by contacting with an OH type strongly basic anion exchange resin.
  • an active silicic acid aqueous solution is prepared.
  • various proposals have already been made, and any known contact conditions can be adopted in the present invention.
  • Examples of the sodium compound used in the first step include water-soluble inorganic sodium salts such as sodium hydroxide and sodium carbonate.
  • water-soluble inorganic sodium salts such as sodium hydroxide and sodium carbonate.
  • sodium hydroxide when sodium carbonate is used, carbon dioxide gas is generated. Therefore, it is preferable to use sodium hydroxide that does not generate such gas from the viewpoint of smoothly promoting the neutralization reaction.
  • Examples of the potassium compound include water-soluble inorganic potassium salts such as potassium hydroxide and potassium carbonate.
  • potassium hydroxide when potassium carbonate is used, carbon dioxide gas is generated. Therefore, it is preferable to use potassium hydroxide that does not generate such gas from the viewpoint of smoothly promoting the neutralization reaction.
  • the addition ratio of the potassium compound is the ratio of K to the total number of moles of M converted to oxide (M 2 O) when the number of moles of M defined below is converted to oxide in the mixed gel.
  • oxides (K 2 O) molar ratio of (K 2 O / M 2 O ) preferably greater than 0 to 0.6, more preferably 0.1 to 0.6, particularly preferably 0.2
  • Addition of a sodium compound and a potassium compound so as to be 0.4 or less is preferable from the viewpoint of obtaining a crystalline silicotitanate with further improved cesium and strontium adsorption performance.
  • the amount of sodium or potassium contained in the sodium silicate or potassium silicate is included in the calculation of the number of moles of M.
  • titanium tetrachloride is used as a titanium source.
  • other titanium compounds such as titanium oxide are used as the titanium source, unreacted titanium oxide tends to remain, and crystalline silicotitanate other than crystalline silicotitanate having a molar ratio of Ti: Si of 4: 3 is present. Easy to generate. Therefore, in the present invention, titanium tetrachloride is used as the titanium source.
  • the titanium tetrachloride used in the first step can be used without particular limitation as long as it is industrially available.
  • the addition amount of the silicic acid source and titanium tetrachloride may be set to an amount such that Ti / Si, which is the molar ratio of Ti derived from titanium tetrachloride and Si derived from the silicon source in the mixed gel, has a specific ratio. This is one of the characteristics of the method for producing crystalline silicotitanate.
  • Ti / Si which is the molar ratio of Ti derived from titanium tetrachloride and Si derived from the silicon source in the mixed gel.
  • This is one of the characteristics of the method for producing crystalline silicotitanate.
  • titanium tetrachloride is used as the titanium source, but the silicic acid source and titanium tetrachloride are added to the mixed solution in such an amount that the molar ratio of Ti / Si is 0.32. Yes.
  • the silicic acid source and titanium tetrachloride are added in such amounts that the Ti / Si molar ratio is 1.2 or more and 1.5 or less.
  • the Ti / Si molar ratio is 1.2 or more and 1.5 or less.
  • the total amount of the SiO 2 equivalent silicic acid source concentration and the TiO 2 equivalent titanium tetrachloride concentration in the mixed gel is preferably 1% by mass to 20% by mass, more preferably 2% by mass to 15% by mass, and more. It is preferably 5% by mass or more and 10% by mass or less from the viewpoint of obtaining a crystalline silicotitanate with a high yield.
  • the molar ratio of M 2 O / SiO 2 in the mixed gel is 3.8 to 5.0, preferably 4.0 to 5.0, particularly preferably 4.2 to 4.8.
  • the ratio of M 2 O / SiO 2 in the mixed gel within the range of the above molar ratio, even if the reaction is performed under atmospheric pressure, the X-ray diffraction is substantially reduced. It was found that a single phase with high crystallinity can be obtained with good yield. It has also been found that when this crystalline silicotitanate is used as an adsorbent, the adsorption performance of cesium and strontium becomes high.
  • the reason why the molar ratio of M 2 O / SiO 2 in the mixed gel is set in the above range is that the molar ratio of M 2 O / SiO 2 in the mixed gel is 3.8 or more.
  • the dissolution of the silica component is sufficient, and the crystallization is likely to proceed.
  • the M 2 O / SiO 2 molar ratio in the mixed gel is controlled to be 5.0 or less, thereby suppressing the dissolution of the silica from being dominant. This is because crystallization is facilitated and 9 titanate is hardly formed as a by-product.
  • the number of moles of M 2 O represents the number of sodium and potassium ions in the mixed gel in terms of oxides, in other words, alkali metal such as sodium and potassium and tetrachloride. It is obtained by removing the amount of sodium or potassium used in the neutralization reaction with titanium.
  • the “number of moles of M 2 O” in the present production method represents the above “number of moles of M” in terms of oxide, in other words, included in all raw materials added to the first step. Sodium and potassium expressed in terms of oxides.
  • the silicic acid source, sodium compound and potassium compound, and titanium tetrachloride can be added to the reaction system in the form of an aqueous solution, respectively. In some cases, it can be added in the form of a solid. Furthermore, in a 1st process, the density
  • the silicic acid source, sodium compound and potassium compound, and titanium tetrachloride can be added in various addition orders.
  • a mixed gel can be obtained by adding titanium tetrachloride to a mixture of a silicic acid source, a sodium compound and a potassium compound, and water (this addition order is simply referred to as “( 1) Implementation ”).
  • the implementation of (1) is preferable in terms of suppressing generation of chlorine from titanium tetrachloride.
  • an aqueous solution of activated silicic acid obtained by cation exchange of an alkali metal silicate, titanium tetrachloride,
  • activated silicic acid obtained by cation exchange of an alkali metal silicate, titanium tetrachloride
  • a mode in which a sodium compound and a potassium compound are added to a mixture of water can also be adopted.
  • a mixed gel can be obtained in the same manner as in the execution of (1) (this addition order may be simply referred to as “the execution of (2)” hereinafter).
  • Titanium tetrachloride can be added in the form of an aqueous solution or solid form.
  • sodium compounds and potassium compounds can also be added in the form of their aqueous solutions or solid forms.
  • the total concentration of sodium and potassium (M 2 O concentration) in the mixed gel is 5% by mass or more and 20% by mass or less, preferably 8% by mass or more. It is preferable to add so that it may become 12 mass% or less from a viewpoint with which a yield will become high and handling of mixed gel becomes easy.
  • the sodium component in the sodium silicate becomes the sodium source in the mixed gel at the same time. Accordingly, the “total concentration of sodium and potassium in the mixed gel” referred to here is counted as the sum of all sodium and potassium components in the mixed gel.
  • titanium tetrachloride stepwise or continuously as a titanium tetrachloride aqueous solution over a certain period of time in order to obtain a uniform gel.
  • a peristaltic pump etc. can be used suitably for addition of titanium tetrachloride.
  • the mixed gel obtained in the first step is preferably not less than 0.1 hour, more preferably not less than 0.5 hour and not more than 12 hour before the reaction is performed under atmospheric pressure, which is the second step described later.
  • aging is preferably performed at 10 ° C. or more and less than 70 ° C., more preferably 10 ° C. or more and 50 or less, and atmospheric pressure.
  • the aging step may be performed, for example, in a stationary state, but it is preferable to perform the stirring under stirring from the viewpoint of obtaining a more uniform product and preventing the formation of by-products.
  • the mixed gel obtained in the first step is subjected to a reaction under atmospheric pressure in the second step to obtain crystalline silicotitanate.
  • under atmospheric pressure means that the reaction proceeds with the reaction system open to the atmosphere.
  • a part of the medium water is evaporated and lost.
  • the evaporated water is converted into liquid water by a cooling means such as a condenser, and the reaction system is circulated.
  • the reaction may be carried out.
  • the reaction vessel may be lightly covered with aluminum foil or the like.
  • the reaction temperature in the second step is 70 ° C. or higher and 110 ° C. or lower, preferably 90 ° C. or higher and 110 ° C. or lower. This is because when the reaction temperature is lower than 70 ° C., crystallization does not proceed, whereas when the reaction temperature is higher than 110 ° C., the boiling point of the slurry is exceeded, and a pressure vessel, autoclave, etc. are required.
  • the reaction time in the second step is not critical in the present production method, and the reaction may be performed for a sufficient time until a single-phase crystalline silicotitanate is produced by X-ray diffraction.
  • crystalline silicotitanate having satisfactory physical properties can be produced preferably in 3 hours or more, more preferably in 6 hours or more and 48 hours or less.
  • water-containing crystalline silicotitanate is produced.
  • This water-containing crystalline silicotitanate can be dried, and the resulting dried product can be crushed or pulverized as necessary to form a powder (including granules).
  • the hydrous crystalline silicotitanate may be extruded from an aperture member having a plurality of apertures to obtain a rod-shaped molded body, and the obtained rod-shaped molded body may be dried to be molded into a columnar shape.
  • the dried rod-shaped molded body may be formed into a spherical shape, or may be pulverized or pulverized into particles.
  • pulverization refers to an operation of loosening a collection of fine particles.
  • the pulverization is an operation in which a mechanical force is applied to the loosened solid particles to further reduce the particle size.
  • Examples of the shape of the hole formed in the opening member include a circle, a triangle, a polygon, and an annulus.
  • the true circle equivalent diameter of the opening is preferably 0.1 mm or more and 10 mm or less, and more preferably 0.3 mm or more and 5 mm or less.
  • the true circle equivalent diameter here is a diameter of a circle calculated from the area when the area of one hole is defined as a circular area.
  • the drying temperature after extrusion molding can be, for example, 50 ° C. or more and 200 ° C. or less.
  • the drying time can be 1 hour or more and 120 hours or less.
  • the dried rod-shaped molded body can be used as an adsorbent as it is, or it can be used after lightly loosening. Moreover, you may grind
  • the powdery crystalline silicotitanate obtained by these various methods is preferably further classified and then used as an adsorbent from the viewpoint of increasing the adsorption efficiency of cesium and / or strontium.
  • a first sieve having a nominal opening prescribed in JISZ8801-1 of 1000 ⁇ m or less, particularly 710 ⁇ m or less.
  • it is also preferable to carry out using the 2nd sieve whose said nominal opening is 100 micrometers or more, especially 300 micrometers or more.
  • M 4 Ti 4 Si 3 O 16 ⁇ nH 2 O (wherein M represents Na and K.
  • n represents a number of 0 to 8).
  • the crystalline silicotitanate represented by is obtained as a substantially single phase X-ray diffraction.
  • a crystalline silicotitanate having a Ti: Si molar ratio of 4: 3 is obtained, while crystals having a Ti: Si molar ratio other than 4: 3 are obtained.
  • Silicotitanate Na 4 Ti 9 O 20 ⁇ mH 2 O, K 4 Ti 9 O 20 ⁇ mH 2 O, (Na y K (1-y) ) 4 Ti 9 O 20 ⁇ mH 2 O (wherein One feature is that titanate by-products such as y is greater than 0 and less than 1 and m is a number from 0 to 10 are not substantially observed by X-ray diffraction.
  • the second feature of the crystalline silicotitanate obtained by the production method of the present invention is that it does not contain titanium oxide as an impurity.
  • the crystalline silicotitanate obtained by the production method of the present invention has high adsorption performance for cesium and strontium even in seawater. Using this characteristic, the crystalline silicotitanate can be molded according to a conventional method as necessary, and the resulting molded product can be suitably used as an adsorbent for cesium and / or strontium.
  • a method of encapsulating crystalline silicotitanate by dripping into a liquid containing a curing agent such as calcium chloride, a method of attaching and coating a crystalline silicotitanate powder on the surface of a resin core, formed of natural fiber or synthetic fiber examples thereof include a method in which a powdery crystalline silicotitanate or a powdery adsorbent containing the same is attached to the surface and / or inside of the formed sheet-like substrate and fixed to form a sheet.
  • Examples of the granulation method include known methods such as stirring and mixing granulation, rolling granulation, extrusion granulation, crushing granulation, fluidized bed granulation, spray drying granulation (spray drying), A compression granulation etc. can be mentioned.
  • a binder and a solvent may be added and mixed as necessary.
  • binder known ones such as polyvinyl alcohol, polyethylene oxide, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, carboxymethylcellulose, hydroxypropylmethylcellulose, methylcellulose, ethylcellulose, starch, cornstarch, molasses, lactose, gelatin , Dextrin, gum arabic, alginic acid, polyacrylic acid, glycerin, polyethylene glycol and polyvinylpyrrolidone.
  • solvent various solvents such as an aqueous solvent and an organic solvent can be used.
  • the granulated product obtained by granulating the water-containing crystalline silicotitanate obtained by the production method of the present invention is suitable as an adsorbent for a water treatment system having an adsorption vessel and an adsorption tower filled with a radioactive substance adsorbent.
  • adsorbent for a water treatment system having an adsorption vessel and an adsorption tower filled with a radioactive substance adsorbent.
  • the shape and size of the granular product obtained by granulating the water-containing crystalline silicotitanate is filled in an adsorption vessel or packed tower, and treated water containing cesium and / or strontium is passed through. It is preferable to adjust appropriately so that it may adapt to.
  • the granulated product obtained by granulating the water-containing crystalline silicotitanate obtained by the production method of the present invention is recovered by magnetic separation from water containing cesium and / or strontium by further containing magnetic particles therein. It can be used as a possible adsorbent.
  • magnetic particles include powders of metals such as iron, nickel and cobalt, or powders of magnetic alloys based on these metals, and metal oxides such as iron sesquioxide, iron sesquioxide, cobalt-added iron oxide, barium ferrite and strontium ferrite. Examples thereof include powders of physical magnetic materials.
  • the granulation operation described above may be performed in a state where magnetic particles are contained.
  • the crystalline silicotitanate obtained by the production method of the present invention includes, for example, cesium and strontium adsorbents, as well as metal ions such as Pb, Cu, Zn, Cd, Hg, Co, Ni, Fe, Mn, and Ag. It can also be used as an adsorbent.
  • X-ray diffraction Bruker D8 AdvanceS was used. Cu-K ⁇ was used as the radiation source. The measurement conditions were a tube voltage of 40 kV, a tube current of 40 mA, and a scanning speed of 0.1 ° / sec. ICP-AES: Varian 720-ES was used. Cs and Sr adsorption tests were conducted with a measurement wavelength of cesium (Cs) of 697.327 nm and a measurement wavelength of strontium (Sr) of 216.596 nm. The standard sample used was a Cs: 120 ppm aqueous solution containing 0.3% NaCl and a Sr: 30 ppm aqueous solution containing 0.3% NaCl.
  • Cs cesium
  • Sr strontium
  • Examples 1 to 5 and Comparative Examples 1 and 2 (1) First Step Sodium silicate, 48% caustic soda aqueous solution, 48% caustic potassium aqueous solution and pure water were mixed in the amounts shown in Tables 1 and 2 and stirred to obtain a mixed aqueous solution. To this mixed aqueous solution, the amount of titanium tetrachloride aqueous solution shown in Tables 1 and 2 was continuously added with a peristaltic pump over 0.5 hours to produce a mixed gel. The mixed gel was aged with stirring at room temperature (25 ° C.) for 1 hour after the addition of the aqueous titanium tetrachloride solution.
  • the crystalline silicotitanate of Examples 1 to 5 obtained by this production method is superior in the adsorption performance of cesium compared to the crystalline silicotitanate of Comparative Examples 1 to 3. I understand that. Further, the adsorption capacity of the crystalline silicotitanate of Examples 1 to 5 obtained by this production method is superior to that of the crystalline silicotitanate of Comparative Examples 1 and 2, and the water of Comparative Example 3 is used. It can be seen that it has an adsorption capacity equal to or higher than that of commercially available crystalline silicotitanate obtained by thermal synthesis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

海水中においてセシウム及びストロンチウムの吸着性能の高い結晶性シリコチタネートを工業的に有利に製造すること。 ケイ酸源と、ナトリウム化合物と、カリウム化合物と、四塩化チタンと、水 とを混合して混合ゲルを得る第一工程と、得られた混合ゲルを反応させる第二工程とを有する。第一工程において、Ti/Si=1.2以上1.5以下で、且つMO/SiO=3.8以上5.0以下(式中、MはNa及びKを示す。)となるように、ケイ酸源、ナトリウム化合物、カリウム化合物及び四塩化チタンを添加する。第二工程において70~110℃で大気圧下に反応を行う。

Description

結晶性シリコチタネートの製造方法
本発明は、特にセシウム及び/又はストロンチウムの吸着剤として有用な結晶性シリコチタネートの製造方法に関する。
従来、放射性物質を含む排水の処理技術としては共沈処理が知られている(下記特許文献1参照)。しかし、水溶性である放射性セシウム及び放射性ストロンチウムについては、前記共沈処理は有効ではなく、現在、ゼオライトなどの無機系吸着剤による吸着除去が行われている(下記特許文献2参照)。
しかしながら、海水中に放射性セシウム及び放射性ストロンチウムが流出した場合においては、海水成分のナトリウム濃度の増加はセシウムと吸着剤とのイオン交換反応を抑制する方向に作用する(下記非特許文献1参照)といった問題が知られている。また、下記非特許文献1には記載されていないが、海水成分のナトリウム濃度の増加はストロンチウムと吸着剤とのイオン交換反応を抑制する方向にも作用する。
セシウム及び/又はストロンチウムの吸着性についてこれまでに研究されている無機系吸着剤の一つとして、結晶性シリコチタネートが挙げられる。結晶性シリコチタネートは、Ti/Siモル比が1:1のもの、5:12のもの、2:1のもの等、複数種類の組成のものが知られているが、その他に、Ti/Siモル比が4:3である結晶性シリコチタネートが存在することが知られている。非特許文献2には、Ti源としてTi(OET)というアルコキシドを用い、Si源としてコロイダルシリカを用いて水熱処理により製造される製造物3B及び3Cは、そのX線回折パターンから、三次元的な八員環構造を有していること、この構造の結晶性シリコチタネートは、理想的にはMTiSi16(MはNa、K等)で表される組成を有することを報告し、この構造の結晶性シリコチタネートにGracetitanium silicate(GTS-1)と名付けている。また、非特許文献3にはTi/Siモル比が4:3である結晶性シリコチタネートを、Ti源として四塩化チタンを含有し、Si源として高分散SiO粉末を含有する混合溶液に水熱処理を施すことにより製造した旨が記載されている。同文献には、合成した結晶性シリコチタネートが、ストロンチウムイオン交換能を有する旨が記載されている。
 また、先に本出願人も、セシウム及び/又はストロンチウムの吸着剤としてTi/Siモル比が4:3である結晶性シリコチタネートを提案した(例えば、特許文献3ないし5参照)。
特開昭62-266499号公報 特開2013-57599号公報 特開2016-74548号公報 特開2016-3151号公報 WO2015/146962号パンフレット
JAEA-Research 2011-037 ZEOLITES,1990,Vol 10,November/December 藤原 恵子、"ヒートポンプ吸着剤としてのマイクロポーラスクリスタルの改質と評価"、[online]、[2016年10月23日検索]、インターネット<URL:https://kaken.nii.ac.jp/file/KAKENHI-PROJECT-21560846/21560846seika.pdf>
 従来、Ti/Siモル比が4:3である結晶性シリコチタネートを製造する場合、水熱合成が行われている。しかし、水熱合成には比較的多大なエネルギーが必要とされることから、省エネルギー・省コストであり、且つ環境に配慮した工業的に有利な方法の開発が望まれている。
 したがって、本発明の課題は、Ti/Siモル比が4:3である結晶性シリコチタネートとして、海水中においてもセシウム及びストロンチウムの吸着性能の高い結晶性シリコチタネートを、省エネルギー・省コストで、工業的に有利な製造方法を提供することにある。
 前記の特許文献3で提案されている結晶性シリコチタネートの製造方法では、混合ゲルに含まれるTiとSiとのモル比がTi/Si=1.2以上1.5以下で、MO/SiOのモル比が好ましくは0.6以上1.1以下の混合ゲルを用い、水熱合成を行っている。この製造方法に基づき本発明者が鋭意研究を重ねた結果、MO/SiOのモル比がこれより高い特定範囲にある混合ゲルを用いることにより、意外にも、大気圧下に反応を行っても、結晶性に優れた結晶性シリコチタネートが得られることが見出された。また、このようにして製造された結晶性シリコチタネートは、海水中においてもセシウム及びストロンチウムの吸着性能が高いものであることが見出された。本発明は、これらの知見に基づき完成したものである。
 すなわち、本発明が提供しようとする結晶性シリコチタネートの製造方法は、一般式;MTiSi16・nHO(式中、MはNa及びKを示す。nは0~8の数を示す。)で表される結晶性シリコチタネートの製造方法であって、
 ケイ酸源と、ナトリウム化合物と、カリウム化合物と、四塩化チタンと、水とを混合して混合ゲルを得る第一工程と、
 第一工程により得られた混合ゲルを反応させる第二工程とを有し、
 第一工程において、混合ゲルに含まれるTiとSiとのモル比がTi/Si=1.2以上1.5以下で、且つMOとSiOのモル比がMO/SiO=3.8以上5.0以下となるように、ケイ酸源、ナトリウム化合物、カリウム化合物及び四塩化チタンを添加し、
 第二工程において70℃以上110℃以下で大気圧下に反応を行うものである。
 本発明によれば、海水中においてセシウム及びストロンチウムの吸着除去特性に優れた結晶性シリコチタネートを工業的に有利な方法で製造することができる。
図1は、実施例1で得られた結晶性シリコチタネートのX線回折チャートである。 図2は、実施例2で得られた結晶性シリコチタネートのX線回折チャートである。 図3は、実施例3で得られた結晶性シリコチタネートのX線回折チャートである。 図4は、実施例4で得られた結晶性シリコチタネートのX線回折チャートである。 図5は、実施例5で得られた結晶性シリコチタネートのX線回折チャートである。 図6は、比較例1で得られた結晶性シリコチタネートのX線回折チャートである。 図7は、比較例2で得られた結晶性シリコチタネートのX線回折チャートである。
 以下、本発明の結晶性シリコチタネートの製造方法について、その好ましい形態に基づいて説明する。本発明の製造方法は、Ti:Siのモル比=4:3である一般式;MTiSi16・nHO(式中、MはNa及びKを示す。nは0~8の数を示す。)で表されるX線回折的に実質的に単相の結晶性シリコチタネートを製造するものである。一般式中MはNa及びKを示すことから、本発明に従い製造される結晶性シリコチタネートは、ナトリウム及びカリウムの双方を含有するものである。
 なお、一般式;MTiSi16・nHO(式中、MはNa及びKのアルカリ金属を示す。式中、nは0~8の数を示す。)で表される結晶性シリコチタネートにおいて、更に詳細な組成物については定かではないが、一般式;(Na(1-x)TiSi16・nHO(式中、xは0超1未満の数を示す。)であると本発明者らは推測している。したがって、本発明において実質的に単相のMTiSi16・nHOとは、X線回折的にこれらのTi:Si=4:3のモル比の結晶性シリコチタネートが主成分として観察され、主成分以外の結晶性シリコチタネートや、NaTi20・mHO、KTi20・mHO、(Na(1-y)Ti20・mHO(式中、yは0超1未満の数を示す。)、TiO等のチタン酸塩の副性物の明らかな回折ピークが観察されないことを意味する。
 本発明は、ケイ酸源、ナトリウム化合物、カリウム化合物、四塩化チタン、及び水を混合して混合ゲルを得る第一工程と、第一工程により得られた混合ゲルを大気圧下に反応させる第二工程とを有するものである。
 第一工程において用いられるケイ酸源としては、例えば、ケイ酸ナトリウムが挙げられる。また、ケイ酸アルカリ(すなわちケイ酸のアルカリ金属塩)をカチオン交換することにより得られる活性ケイ酸も挙げられる。
 活性ケイ酸は、ケイ酸アルカリ水溶液を例えばカチオン交換樹脂に接触させてカチオン交換して得られるものである。ケイ酸アルカリ水溶液の原料としては、通常水ガラス(水ガラス1号~4号等)と呼ばれるケイ酸ナトリウム水溶液が好適に用いられる。このものは比較的安価であり、容易に手に入れることができる。また、Naイオンを嫌う半導体用途では、ケイ酸カリウム水溶液が原料としてふさわしい。固体状のメタケイ酸アルカリを水に溶かしてケイ酸アルカリ水溶液を調製する方法もある。メタケイ酸アルカリは晶析工程を経て製造されるので、不純物の少ないものがある。ケイ酸アルカリ水溶液は、必要に応じて水で希釈して使用する。
 活性ケイ酸を調製するときに使用するカチオン交換樹脂は、公知のものを適宜選択して使用することができ、特に制限されない。ケイ酸アルカリ水溶液とカチオン交換樹脂との接触工程では、例えばケイ酸アルカリ水溶液をシリカが濃度3質量%以上10質量%以下となるように水に希釈し、次いで、希釈したケイ酸アルカリ水溶液をH型強酸性又は弱酸性カチオン交換樹脂に接触させて脱アルカリする。更に必要に応じてOH型強塩基性アニオン交換樹脂に接触させて脱アニオンすることができる。この工程によって、活性ケイ酸水溶液が調製される。ケイ酸アルカリ水溶液とカチオン交換樹脂との接触条件の詳細については、従来、様々な提案が既にあり、本発明ではそれら公知のいかなる接触条件も採用することができる。
 第一工程において用いられるナトリウム化合物としては、例えば、水酸化ナトリウム及び炭酸ナトリウム等の水溶性無機ナトリウム塩が挙げられる。これらのナトリウム化合物のうち、炭酸ナトリウムを用いると炭酸ガスが発生するため、そのようなガスの発生がない水酸化ナトリウムを用いることが、中和反応を円滑に進める観点から好ましい。
 また、カリウム化合物としては、例えば、水酸化カリウム及び炭酸カリウム等の水溶性無機カリウム塩が挙げられる。これらのカリウム化合物のうち、炭酸カリウムを用いると炭酸ガスが発生するため、そのようなガスの発生がない水酸化カリウムを用いることが、中和反応を円滑に進める観点から好ましい。
 第一工程においてカリウム化合物の添加割合は、混合ゲル中において、以下に定義されるMのモル数を酸化物換算したときに、Mの酸化物換算(MO)の総モル数に対するKの酸化物換算(KO)のモル比(KO/MO)で、好ましくは0より大きく0.6以下、更に好ましくは0.1以上0.6以下、特に好ましくは0.2以上0.4以下となるように、ナトリウム化合物及びカリウム化合物を添加することが、セシウム及びストロンチウムの吸着性能が、更に向上した結晶性シリコチタネートが得られる観点から好ましい。ここで混合ゲル中のMのモル数は、以下の式で表される。
 Mのモル数=(ナトリウム化合物由来のナトリウムのモル数)+(カリウム化合物由来のカリウムのモル数)
 なお、上述したケイ酸源としてケイ酸ソーダ又はケイ酸カリを用いる場合、該ケイ酸ソーダやケイ酸カリ中に含まれるナトリウムやカリウムの量は、Mのモル数の算出に含める。この場合、Mのモル数は下記の式で求められる。
 Mのモル数=(ケイ酸ソーダ由来のナトリウムのモル数)+(ケイ酸カリ由来のカリウムのモル数)+(ケイ酸ソーダ以外のナトリウム化合物由来のナトリウムのモル数)+(ケイ酸カリ以外のカリウム化合物由来のカリウムのモル数)
 本発明の結晶性シリコチタネートの製造方法においては、チタン源として四塩化チタンを用いることも特徴の一つである。酸化チタン等の他のチタン化合物をチタン源とした場合には、未反応の酸化チタンが残存しやすく、またTi:Siのモル比が4:3の結晶性シリコチタネート以外の結晶性シリコチタネートが生成しやすい。そこで本発明ではチタン源として四塩化チタンを用いている。
 第一工程において用いられる四塩化チタンは、工業的に入手可能なものであれば、特に制限なく用いることができる。
 ケイ酸源及び四塩化チタンの添加量を、混合ゲル中の四塩化チタン由来のTiとケイ素源由来のSiとのモル比であるTi/Siが特定比となる量とすることも、本発明の結晶性シリコチタネートの製造方法の特徴の一つである。例えば、非特許文献3においては、チタン源として四塩化チタンを用いているが、ケイ酸源及び四塩化チタンは、Ti/Siのモル比が0.32となる量で混合溶液に添加されている。これに対し、本発明では、Ti/Siのモル比が1.2以上1.5以下となるような量でケイ酸源及び四塩化チタンを添加する。本発明者らが検討した結果、混合ゲル中のTi/Siモル比を前記のモル範囲に設定することで、結晶性シリコチタネートとして結晶化度の高いものが得られやすい。そして、この結晶性シリコチタネートを吸着剤として用いた場合に、特にセシウム及びストロンチウムの吸着性能が向上することを本発明者は見出した。この観点から、混合ゲル中のTi/Siの比は、1.3以上1.4以下であることがより好ましい。
 また、混合ゲルに占めるSiO換算のケイ酸源濃度とTiO換算の四塩化チタン濃度の総量が好ましくは1質量%以上20質量%以下、更に好ましくは2質量%以上15質量%以下、より好ましくは5質量%以上10質量%以下であることが、収率よく結晶性シリコチタネートが得られる観点から好ましい。
 第一工程において、混合ゲル中のMO/SiOのモル比が3.8以上5.0以下、好ましくは4.0以上5.0以下、特に好ましくは4.2以上4.8以下とすることも本発明の結晶性シリコチタネートの製造方法の特徴の一つである。本発明者が検討した結果、混合ゲル中のMO/SiOの比を前記のモル比の範囲に設定することで、大気圧下に反応を行ってもX線回折的に実質的に単相で、結晶化度の高いものが収率よく得られることが判明した。また、この結晶性シリコチタネートを吸着剤として用いた場合にセシウム及びストロンチウムの吸着性能が高いものになることも判明した。
 本製造方法において、混合ゲル中のMO/SiOのモル比を前記の範囲に設定する理由は、混合ゲル中のMO/SiOのモル比が3.8以上にすることで、シリカ成分の溶解が十分となり結晶化が進みやすくなり、一方、混合ゲル中のMO/SiOのモル比を5.0以下にすることで、シリカの溶解が優位になることが抑制されて結晶化が容易になり、また、9チタン酸塩が副生しにくくなるからである。
 なお、前記の特許文献3では、MOのモル数は、混合ゲル中のナトリウム及びカリウムのイオン数を酸化物換算で表したもの、換言すれば、ナトリウムやカリウム等のアルカリ金属と四塩化チタンとの中和反応により使用されたナトリウムやカリウムの量を除いて求められるものである。これとは異なり、本製造方法の「MOのモル数」は、前記「Mのモル数」を酸化物換算で表したもの、換言すれば、第一工程に添加したすべての原料に含まれるナトリウム及びカリウムを酸化物換算で表したものである。
 第一工程において、ケイ酸源、ナトリウム化合物及びカリウム化合物、並びに四塩化チタンは、それぞれ水溶液の形態で反応系に添加することができる。場合によっては固体の形態で添加することもできる。更に第一工程では、得られた混合ゲルに対して、純水を用いて該混合ゲルの濃度を調整することができる。特に、本製造方法では、混合ゲル中のHO/MOのモル比が50以上150以下、好ましくは60以上100以下、特に好ましくは60以上85以下とすることで収率が高くなる観点から好ましい。しかも、混合ゲルがスラリーとなるため撹拌効率や混合ゲルの取扱いが容易となる観点から好ましい。
 第一工程において、ケイ酸源、ナトリウム化合物及びカリウム化合物、並びに四塩化チタンは、種々の添加順序で添加することができる。例えば(1)ケイ酸源、ナトリウム化合物及びカリウム化合物、並びに水を混合したものに、四塩化チタンを添加することにより混合ゲルを得ることができる(この添加順序のことを、以下、単に「(1)の実施」ということもある。)。この(1)の実施は、四塩化チタンから塩素の発生を抑える点で好ましい。
 第一工程における別の添加順序として、(2)ケイ酸アルカリ金属塩をカチオン交換することによって得られる活性ケイ酸(以下、単に「活性ケイ酸」ということもある。)水溶液と四塩化チタンと水とを混合したものに、ナトリウム化合物及びカリウム化合物を添加する、という態様を採用することもできる。この添加順序を採用しても、(1)の実施と同様に混合ゲルを得ることができる(この添加順序のことを、以下、単に「(2)の実施」ということもある。)。四塩化チタンはその水溶液の形態又は固体の形態で添加することができる。同様に、ナトリウム化合物及びカリウム化合物も、その水溶液の形態又は固体の形態で添加することができる。
(1)及び(2)の実施において、ナトリウム化合物及びカリウム化合物は、混合ゲル中のナトリウム及びカリウムの合計濃度(MO濃度)が5質量%以上20質量%以下、好ましくは8質量%以上12質量%以下となるように添加されることが収率が高くなり、また、混合ゲルの取扱いが容易となる観点から好ましい。
 なお、ケイ酸源としてケイ酸ナトリウムを用いた場合は、ケイ酸ナトリウム中のナトリウム成分は、同時に混合ゲル中のナトリウム源となる。したがって、ここでいう「混合ゲル中のナトリウム及びカリウムの合計濃度」とは、混合ゲル中のすべてのナトリウム成分とカリウム成分の和として計数される。
 (1)及び(2)の実施において、ナトリウム化合物及びカリウム化合物は、混合ゲル中のナトリウム及びカリウムの合計濃度(MO濃度)がNaO換算で0.5質量%以上15.0質量%以下、特に0.7質量%以上13.0質量%以下となるように添加されることがTi:Si=4:3のモル比の結晶性シリコチタネート以外の結晶性シリコチタネートが副生するのを抑制する観点から好ましい。混合ゲルにおけるナトリウム及びカリウムの合計のNaO換算の濃度は、以下の式で計算される。
 混合ゲルにおけるナトリウム及びカリウムの合計のNaO換算の濃度(質量%)=[({NaO質量}+{KO質量/94.2×62.0})/(混合ゲル全質量)]×100
 (1)及び(2)の実施において、四塩化チタンの添加は、均一なゲルを得るために、一定の時間をかけて、且つ四塩化チタン水溶液として段階的又は連続的に行うことが望ましい。このため、四塩化チタンの添加にはペリスタポンプ等を好適に用いることができる。
 第一工程により得られた混合ゲルは、後述する第二工程である大気圧下で反応を行う前に、好ましくは0.1時間以上、更に好ましくは0.5時間以上12時間以下の時間にわたり、好ましくは10℃以上70℃未満、更に好ましくは10℃以上50以下で大気圧下に熟成を行うことが、均一な生成物を得る点で好ましい。熟成工程は、例えば静置状態で行ってもよいが、より均一な生成物が得られ、また、副生物の生成を防ぐ観点から撹拌下に行うことが好ましい。
 本発明においては第一工程において得られた前記混合ゲルを、第二工程で大気圧下での反応に付して結晶性シリコチタネートを得る。本発明において「大気圧下」とは、反応系を大気下に開放した状態で反応を進行させることである。反応系を大気下に開放することに起因して、媒体である水の一部が蒸発して失われるところ、蒸発した水をコンデンサ等の冷却手段によって液体の水にして、反応系を環流して反応を行ってもよい。なお、実験室レベルでは、反応容器にアルミホイル等で軽く蓋をする程度でもよい。
 第二工程における反応温度は70℃以上110℃以下、好ましくは90℃以上110℃以下である。この理由は、反応温度が70℃より小さくなると結晶化が進行しなくなり、一方、反応温度が110℃より大きくなるとスラリーの沸点を超えてしまい、耐圧容器・オートクレーブ等が必要となるからである。
 第二工程における反応時間は、本製造方法において臨界的ではなく、X線回折的に単相の結晶性シリコチタネートが生成するまで十分な時間反応を行えばよい。多くの場合、好ましくは3時間以上、更に好ましくは6時間以上48時間以下で、満足すべき諸物性を有する結晶性シリコチタネートを生成させることができる。
 第二工程を行うことによって含水状態の結晶性シリコチタネートが生成する。この含水状態の結晶性シリコチタネートを乾燥させ、得られた乾燥物を必要により解砕又は粉砕して粉末状(粒状を含む)とすることができる。また、含水状態の結晶性シリコチタネートを複数の開孔が形成された開孔部材から押出成形して棒状成形体を得、得られた該棒状成形体を乾燥させて柱状に成形してもよい。更に、乾燥させた該棒状成形体を球状に成形してもよいし、解砕又は粉砕して粒子状としてもよい。後者の場合、つまり含水状態の結晶性シリコチタネートを乾燥する前に押出成形を行うことで、後述する分級方法により回収される結晶性シリコチタネートの収率を高めることができる。ここで、解砕とは、細かい粒子が集まって一塊になっているものをほぐす操作をいう。粉砕とは、ほぐされた固体粒子に対して機械的な力を作用させ、粒径を更に細かくする操作をいう。
 開孔部材に形成された孔の形状としては、例えば円形、三角形、多角形及び環形等を挙げることができる。開孔の真円換算径は0.1mm以上10mm以下が好ましく、0.3mm以上5mm以下がより好ましい。ここでいう真円換算径は、孔一つの面積を円面積とした場合の該面積から算出される円の直径のことである。押出成形後の乾燥温度は例えば50℃以上200℃以下とすることができる。乾燥時間は1時間以上120時間以下とすることができる。
 乾燥させた棒状成形体は、そのままでも吸着剤として用いることができるし、軽くほぐして用いてもよい。また乾燥後の棒状成形体は粉砕して用いてもよい。これら各種の方法で得られた粉末状の結晶性シリコチタネートは、更に分級してから吸着剤として用いることが、セシウム及び/又はストロンチウムの吸着効率を高める等の観点から好ましい。分級は、例えばJISZ8801-1に規定する公称目開きが1000μm以下、特に710μm以下の第1の篩を用いることが好ましい。また前記の公称目開きが100μm以上、特に300μm以上の第2の篩を用いて行うことも好ましい。更に、これら第1及び第2の篩を用いて行うことが好ましい。
 本発明の製造方法によれば、一般式;MTiSi16・nHO(式中、MはNa及びKを示す。式中、nは0~8の数を示す。)で表される結晶性シリコチタネートがX線回折的に実質的に単相のものとして得られる。これらの一般式から明らかなように本製造方法によれば、Ti:Siのモル比が4:3である結晶性シリコチタネートが得られる一方、Ti:Siのモル比が4:3以外の結晶性シリコチタネートや、NaTi20・mHO、KTi20・mHO、(Na(1-y)Ti20・mHO(式中、yは0超1未満の数を示し、mは0~10の数を示す)等のチタン酸塩の副生物がX線回折的に実質的に観察されないことも特徴の一つである。
 本発明の製造方法で得られる結晶性シリコチタネートの第二の特徴は、不純物として酸化チタンを含まない点にある。酸化チタンを含まないことは、前記結晶性シリコチタネートをX線回折測定して得られる回折ピーク中に、酸化チタンのピークである2θ=25°が検出されないことによって確認することができる。
 本発明の製造方法で得られる結晶性シリコチタネートは、海水中においてもセシウム及びストロンチウムの吸着性能が高い。この特性を利用して、この結晶性シリコチタネートを必要に応じて常法に従い成形加工し、それによって得られた成形体をセシウム及び/又はストロンチウムの吸着剤として好適に用いることができる。
 前記の成形加工としては、例えば粉末状の結晶性シリコチタネート又はそれを含む粉末状の吸着剤を顆粒状に成形するための造粒加工や、粉末状の結晶性シリコチタネートをスラリー化した後、塩化カルシウム等の硬化剤を含む液中に滴下して結晶性シリコチタネートをカプセル化する方法、樹脂芯材の表面に結晶性シリコチタネートの粉末を添着被覆処理する方法、天然繊維又は合成繊維で形成されたシート状基材の表面及び/又は内部に粉末状の結晶性シリコチタネート又はそれを含む粉末状の吸着剤を付着させて固定化してシート状にする方法などを挙げることができる。
 前記の造粒加工の方法としては、公知の方法が挙げられ、例えば撹拌混合造粒、転動造粒、押出造粒、破砕造粒、流動層造粒、噴霧乾燥造粒(スプレードライ)、圧縮造粒等を挙げることができる。造粒の過程において必要に応じバインダーや溶媒を添加、混合してもよい。バインダーとしては、公知のもの、例えばポリビニルアルコール、ポリエチレンオキサイド、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、エチルセルロース、デンプン、コーンスターチ、糖蜜、乳糖、ゼラチン、デキストリン、アラビアゴム、アルギン酸、ポリアクリル酸、グリセリン、ポリエチレングリコール及びポリビニルピロリドン等を挙げることができる。溶媒としては水性溶媒や有機溶媒等各種のものを用いることができる。
 本発明の製造方法によって得られる含水状態の結晶性シリコチタネートを造粒加工した顆粒状のものは、放射性物質吸着剤を充填してなる吸着容器及び吸着塔を有する水処理システムの吸着剤として好適に使用することができる。この場合、含水状態の結晶性シリコチタネートを造粒加工して得られる顆粒状のものの形状や大きさは、吸着容器や充填塔に充填して、セシウム及び/又はストロンチウムを含む処理水を通水するのに適応するように適宜調整することが好ましい。
 本発明の製造方法によって得られる含水状態の結晶性シリコチタネートを造粒加工した顆粒状のものは、これに更に磁性粒子を含有させることにより、セシウム及び/又はストロンチウムを含む水から磁気分離で回収可能な吸着剤として使用することができる。磁性粒子としては、例えば鉄、ニッケル及びコバルト等の金属又はこれらを主成分とする磁性合金の粉末、並びに四三酸化鉄、三二酸化鉄、コバルト添加酸化鉄、バリウムフェライト及びストロンチウムフェライト等の金属酸化物系磁性体の粉末が挙げられる。含水状態の結晶性シリコチタネートを造粒加工した顆粒状のものに磁性粒子を含有させる方法として
は、例えば、前述した造粒加工操作を磁性粒子を含有させた状態で行えばよい。
 本発明の製造方法によって得られた結晶性シリコチタネートは、セシウム及びストロンチウムの吸着剤の他、例えば、Pb、Cu、Zn、Cd、Hg、Co、Ni、Fe、Mn及びAg等の金属イオンの吸着剤としても用いることができる。
 以下に、実施例及び比較例により本発明を具体的に説明する。しかし、本発明はこれらに限定されるものではない。特に断らない限り「%」は「質量%」を表す。実施例及び比較例で使用した評価装置及び使用材料は以下のとおりである。
<評価装置>
 X線回折:Bruker社 D8 AdvanceSを用いた。線源としてCu-Kαを用いた。測定条件は、管電圧40kV、管電流40mA、走査速度0.1°/secとした。
 ICP-AES:Varian社720-ESを用いた。
 セシウム(Cs)の測定波長は697.327nm、ストロンチウム(Sr)の測定波長は216.596nmとしてCs及びSrの吸着試験を行った。標準試料はNaClを0.3%含有したCs:120ppmの水溶液、及びNaClを0.3%含有したSr:30ppmの水溶液を使用した。
<使用材料>
・ケイ酸ソーダ:日本化学工業株式会社製(SiO:28.96%、NaO:9.37%、HO:61.67%、SiO/NaO=3.1)
・苛性カリ水溶液:工業用48%水酸化カリウム(KO:40.3%、HO:59.7%)
・苛性ソーダ水溶液:工業用48%水酸化ナトリウム(NaO:37.2%、HO:62.8%)
・四塩化チタン水溶液:株式会社大阪チタニウムテクノロジーズ製36.48%水溶液
・模擬海水:Cs及びSrをそれぞれ100ppm含有した0.3%NaCl水溶液を模擬海水とした。模擬海水の調製は0.3%NaCl水溶液にCs及びSrがそれぞれ100ppmとなるように塩化Cs及び塩化Srを溶解させて調整した。
  〔実施例1ないし5並びに比較例1及び2〕
(1)第一工程
 ケイ酸ソーダ、48%苛性ソーダ水溶液、48%苛性カリ水溶液及び純水を表1及び表2に示す量で混合し撹拌して混合水溶液を得た。この混合水溶液に、表1及び表2に示す量の四塩化チタン水溶液をペリスタポンプで0.5時間にわたって連続的に添加して混合ゲルを製造した。当該混合ゲルは、四塩化チタン水溶液の添加後、1時間にわたり室温(25℃)で撹拌下に熟成した。
(2)第二工程
 第一工程で得られた混合ゲルをビーカーに入れ、ビーカーの口をアルミホイルで軽く蓋をした後1時間かけて表1及び表2に示す温度まで昇温した後、この温度を維持しながら撹拌下に反応を行った。反応時間は、表1及び表2に示すとおりとした。反応後のスラリーをろ過、洗浄、乾燥して塊状の結晶性シリコチタネートを得た。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例及び比較例で得られた結晶性シリコチタネートのX線回折構造から判断される組成を以下の表3に示す。また、X線回折チャートを図1ないし7に示す。更に、X線回折分析で2θ=10~13°に観察される結晶性シリコチタネートに由来するメーンピークのピーク強度を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 図1ないし図7及び表3の結果より、各実施例で得られた結晶性シリコチタネートはX線回折的にTi:Siのモル比=4:3の結晶性シリコチタネートであり、また該結晶性シリコチタネートが実質的に単相で得られていることが分かる。また、各実施例で得られた結晶性シリコチタネートは、比較例1及び2の結晶性シリコチタネートと比べて、結晶性が顕著に優れていることが分かる。
 <Cs及びSr吸着試験>
 実施例1ないし5並びに比較例1及び2で得られた塊状の結晶性シリコチタネートを乳鉢で粉砕し100μmの篩で分級して粉末状とした(<100μm)。この顆粒状の吸着剤を、100mlのポリ容器に0.05g取り、模擬海水100.00gを添加して蓋をした後、内容物を振り混ぜた。ポリ容器の倒立及び正立の動作を10回行い内容物を振り混ぜた。その後、静置して1時間経過した後、再び内容物を振り混ぜた。引き続き、内容物を約50ml抜き出し、これを5Cのろ紙でろ過し、ろ過によって得られたろ液を採取した。また、残りの50mlはそのまま静置し、更に23時間後(最初に振り混ぜてから24時間後)に再び振り混ぜた。そして内容物を5Cのろ紙でろ過し、ろ過によって得られたろ液を採取した。採取されたろ液を対象として、ICP-AESを用い、ろ液中のCs及びSrの含有量を測定し、下記式により、分配係数Kdを求めた。また、水熱合成により得られた市販の結晶性シリコチタネートを比較例3として同様な試験を行った。その結果を表4に併記した。
 分配係数Kd=(C-C)/C×(V/m)
 ここでC:Cs及びSrの浸漬前の各濃度。
      C:吸着剤添加から24時間後のCs及びSrの各濃度。
      V:ポリ容器中の試験液の溶液量(ml)。
      m:吸着剤の重量(g)。
Figure JPOXMLDOC01-appb-T000004
 表4に示す結果から明らかなとおり、本製造方法で得られた実施例1ないし5の結晶性シリコチタネートは、比較例1ないし3の結晶性シリコチタネートと比べてセシウムの吸着性能が優れていることが分かる。
 また、本製造方法で得られた実施例1ないし5の結晶性シリコチタネートのストロンチウムの吸着能は、比較例1及び2の結晶性シリコチタネートと比べて優れており、また、比較例3の水熱合成により得られた市販の結晶性シリコチタネートと比べて同等又はそれ以上の吸着能を有することが分かる。

Claims (5)

  1.  一般式;MTiSi16・nHO(式中、MはNa及びKを示す。nは0~8の数を示す。)で表される結晶性シリコチタネートの製造方法であって、
     ケイ酸源と、ナトリウム化合物と、カリウム化合物と、四塩化チタンと、水とを混合して混合ゲルを得る第一工程と、
     第一工程により得られた混合ゲルを反応させる第二工程とを有し、
     第一工程において、混合ゲルに含まれるTiとSiとのモル比がTi/Si=1.2以上1.5以下で、且つMOとSiOのモル比がMO/SiO=3.8以上5.0以下となるように、ケイ酸源、ナトリウム化合物、カリウム化合物及び四塩化チタンを添加し、
     第二工程において70℃以上110℃以下で大気圧下に反応を行う、結晶性シリコチタネートの製造方法。
  2.  第一工程において、混合ゲルに含まれるTiとSiとのモル比がTi/Si=1.2以上1.5・BR>ネ下で、且つMOとSiOのモル比がMO/SiO=4.0以上5.0以下となるように、ケイ酸源、ナトリウム化合物、カリウム化合物及び四塩化チタンを添加する請求項1に記載の結晶性シリコチタネートの製造方法。
  3.  第一工程において、混合ゲル中のナトリウムとカリウムの酸化物換算(MO)の総モル数に対するカリウムの酸化物換算(KO)のモル比(KO/MO)が、0より大きく0.6以下である請求項1又は2に記載の結晶性シリコチタネートの製造方法。
  4.  第一工程において、混合ゲル中のナトリウムとカリウムの酸化物換算(MO)の総モル数に対する水のモル比(HO/MO)が、50以上150以下である請求項1ないし3のいずれか一項に記載の結晶性シリコチタネートの製造方法。
  5.  第一工程は、混合ゲルを10℃以上70℃未満で撹拌下に熟成する熟成工程を含む請求項1ないし4のいずれか一項に記載の結晶性シリコチタネートの製造方法。
PCT/JP2017/038229 2016-10-26 2017-10-24 結晶性シリコチタネートの製造方法 WO2018079500A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-210078 2016-10-26
JP2016210078A JP6808443B2 (ja) 2016-10-26 2016-10-26 結晶性シリコチタネートの製造方法

Publications (1)

Publication Number Publication Date
WO2018079500A1 true WO2018079500A1 (ja) 2018-05-03

Family

ID=62023526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038229 WO2018079500A1 (ja) 2016-10-26 2017-10-24 結晶性シリコチタネートの製造方法

Country Status (2)

Country Link
JP (1) JP6808443B2 (ja)
WO (1) WO2018079500A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4633217B1 (ja) * 1967-07-03 1971-09-29
WO2015146962A1 (ja) * 2014-03-27 2015-10-01 日本化学工業株式会社 吸着材及び結晶性シリコチタネートの製造方法
JP2016003151A (ja) * 2014-06-16 2016-01-12 日本化学工業株式会社 結晶性シリコチタネートの製造方法
JP2016074547A (ja) * 2014-10-02 2016-05-12 日本化学工業株式会社 結晶性シリコチタネートの製造方法
JP2016074548A (ja) * 2014-10-02 2016-05-12 日本化学工業株式会社 結晶性シリコチタネートの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4633217B1 (ja) * 1967-07-03 1971-09-29
WO2015146962A1 (ja) * 2014-03-27 2015-10-01 日本化学工業株式会社 吸着材及び結晶性シリコチタネートの製造方法
JP2016003151A (ja) * 2014-06-16 2016-01-12 日本化学工業株式会社 結晶性シリコチタネートの製造方法
JP2016074547A (ja) * 2014-10-02 2016-05-12 日本化学工業株式会社 結晶性シリコチタネートの製造方法
JP2016074548A (ja) * 2014-10-02 2016-05-12 日本化学工業株式会社 結晶性シリコチタネートの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YU , B. ET AL.: "Synthesis and crystallization kinetics of the novel ion exchanger Na4Ti4Si3O10 for cesium remova l", JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, vol. 273, no. 1, 2007, pages 109 - 114, XP019530888 *

Also Published As

Publication number Publication date
JP2018070401A (ja) 2018-05-10
JP6808443B2 (ja) 2021-01-06

Similar Documents

Publication Publication Date Title
JP5696244B1 (ja) 吸着材
JP6309699B2 (ja) 結晶性シリコチタネートを含む吸着剤の製造方法
JP2016195981A (ja) 吸着剤及び吸着剤の製造方法
JP6025795B2 (ja) 結晶性シリコチタネートの製造方法
KR102408127B1 (ko) 시티나카이트 구조를 가진 실리코티타네이트를 포함하는 조성물 및 그의 제조 방법
JP2016003151A (ja) 結晶性シリコチタネートの製造方法
WO2017141931A1 (ja) セシウム又は/及びストロンチウム吸着剤
JP5992646B2 (ja) アルカリ金属の9チタン酸塩の製造方法
JP6356567B2 (ja) 結晶性シリコチタネートの製造方法
JP5758057B1 (ja) 結晶性シリコチタネートの製造方法
WO2018079500A1 (ja) 結晶性シリコチタネートの製造方法
JP6812415B2 (ja) 金属イオン吸着剤
WO2016056530A1 (ja) 吸着材
JP6898744B2 (ja) 重金属イオン吸着剤
JP2017087172A (ja) ストロンチウム吸着剤及びセシウム吸着剤
JP2017136521A (ja) ストロンチウム吸着剤
TW201634394A (zh) 鹼金屬的9鈦酸鹽的製備方法及吸附劑

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17863373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17863373

Country of ref document: EP

Kind code of ref document: A1