WO2018079196A1 - Oil-free screw compressor - Google Patents

Oil-free screw compressor Download PDF

Info

Publication number
WO2018079196A1
WO2018079196A1 PCT/JP2017/035651 JP2017035651W WO2018079196A1 WO 2018079196 A1 WO2018079196 A1 WO 2018079196A1 JP 2017035651 W JP2017035651 W JP 2017035651W WO 2018079196 A1 WO2018079196 A1 WO 2018079196A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
bearing
motor
chamber
rotor
Prior art date
Application number
PCT/JP2017/035651
Other languages
French (fr)
Japanese (ja)
Inventor
昇 壷井
中村 元
濱田 克徳
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201780065618.8A priority Critical patent/CN109844320B/en
Publication of WO2018079196A1 publication Critical patent/WO2018079196A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • This disclosure relates to an oil-free screw compressor.
  • the oil-free screw compressor includes a pair of male and female screw rotors and a motor for rotationally driving the screw rotor.
  • the screw rotor and the motor are mechanically connected via a rotating shaft member.
  • the rotating shaft member is rotatably supported by a bearing, and lubricating oil is supplied to the bearing for lubrication and cooling.
  • the oil-free screw compressor disclosed in Patent Document 1 is provided with a seal structure that prevents the lubricating oil lubricated by the bearing from entering the motor chamber.
  • the non-contact type oil cutting which is the seal structure of Patent Document 1 is complicated and expensive. Even when the seal structure is provided, the lubricating oil may enter the motor chamber. For example, in the case where the screw rotor of the compressor is configured to pressurize toward the motor side, the pressure difference between the discharge pressure and the motor chamber causes the lubricating oil to blow into (intrude into) the motor chamber. It may occur remarkably. Thus, even when a high-cost seal structure is provided, it is difficult to completely prevent the lubricating oil from entering the motor chamber.
  • the embodiment of the present invention has been made under such circumstances, and the object thereof is to eliminate the need for a seal structure for preventing the intrusion of lubricating oil into the motor chamber and to collect oil in the motor chamber. It is providing the oil-free screw compressor which can prevent.
  • An oil-free screw compressor has a rotor shaft, both ends of the rotor shaft are supported by a first bearing and a second bearing, a motor shaft, Both ends of the motor shaft are supported by a third bearing and a fourth bearing, demarcate a motor that rotates the screw rotor, a rotor chamber in which the screw rotor is accommodated, and a discharge port is provided on the motor side.
  • a rotor casing a motor casing in which the motor is housed; a motor casing integrally connected to the rotor casing; and provided between the rotor chamber and the motor chamber; Oil is drained from at least one of the connection chamber in which the motor shaft is mechanically connected, the communication portion that connects the motor chamber and the connection chamber, and the motor chamber and the connection chamber.
  • An oil tank that stores lubricating oil, an oil cooler that cools the lubricating oil, and an oil pump. The oil pump causes the lubricating oil to flow, and the oil tank An oil line that supplies the lubricating oil to the two bearings, the third bearing, and the fourth bearing and forcibly circulates the lubricating oil back to the oil tank through the oil drainage portion.
  • the discharge port is provided on the motor side of the rotor casing for the convenience of design.
  • the motor chamber and the connection chamber are connected by the communication part, and the oil drain part which drains oil from at least one of a motor chamber and a connection chamber is provided. Accordingly, the lubricating oil that has entered the motor chamber flows out of the motor chamber through the communication portion or the oil drain portion, and is therefore returned to the oil tank through the oil line without accumulating in the motor chamber.
  • oil can be prevented from accumulating in the motor chamber without providing a seal structure for preventing the lubricating oil from entering the motor chamber as found in conventional oil-free screw compressors.
  • the power loss of the motor due to the agitation resistance of the lubricating oil can be prevented.
  • the communication part is configured to circulate the lubricating oil provided for lubrication by the third bearing from the motor chamber to the connection chamber, and the drainage part is provided for lubrication by the fourth bearing.
  • the communication part is configured to circulate the lubricating oil provided for lubrication by the second bearing from the connection chamber to the motor chamber, and the drainage part is provided for lubrication by the fourth bearing.
  • the communication portion is configured to circulate the lubricating oil provided for lubrication by the third bearing and the fourth bearing from the motor chamber to the connection chamber, and the drainage portion includes the second bearing and the second bearing.
  • the communication portion is configured to circulate the lubricating oil provided for lubrication by the second bearing and the third bearing from the connection chamber to the motor chamber, and the oil draining portion is the second oil portion.
  • You may have the 5th oil exhaust port which drains the said lubricating oil with which it lubricated with the bearing, the said 3rd bearing, and the said 4th bearing from the said motor chamber.
  • the oil line connected to the oil tank The number can be reduced and the structure can be simplified. Furthermore, as the number of oil lines connected to the oil tank decreases, the oil tank can be reduced in size.
  • the third bearing and the fourth bearing are both open-type bearings, and the lubricating oil used for lubrication by the third bearing and the fourth bearing is caused to flow in the motor axial direction to enter the motor chamber. It may be allowed to flow.
  • the stator winding provided in the motor shaft or the motor is provided with the third bearing and the fourth bearing. It can be cooled with the lubricating oil used for lubrication with the bearing.
  • the third bearing and the fourth bearing may be ball bearings, for example.
  • the motor shaft and the rotor shaft may be mechanically connected by a disk type coupling.
  • the motor chamber and the connection chamber communicate with each other through the communication portion, and the oil-free screw compressor includes an oil drain portion that drains oil from at least one of the motor chamber and the connection chamber. Accordingly, it is possible to eliminate the need for a seal structure for preventing the lubricating oil from entering the motor chamber and to prevent the oil from accumulating in the motor chamber.
  • the fragmentary sectional view of the oil free screw compressor concerning a 1st embodiment.
  • the exploded perspective view of a disk type coupling The fragmentary sectional view of the oil free screw compressor concerning a 2nd embodiment.
  • the fragmentary sectional view of the oil free screw compressor concerning a 3rd embodiment.
  • the fragmentary sectional view of the oil free screw compressor concerning a 4th embodiment.
  • the oil-free screw compressor 1 includes a compression unit 10 in which a screw rotor 11 is arranged, a motor unit 20 in which a motor 21 is arranged, and a connection unit 30 that connects them. .
  • the oil-free screw compressor 1 drives the screw rotor 11 of the compression unit 10 by the motor 21 of the motor unit 20 to suck and compress the gas and discharge it.
  • the compression unit 10 includes a pair of male and female screw rotors 11 having a rotor shaft 12, a first bearing 13 and a second bearing 14 that support both ends of the rotor shaft 12, and a rotor casing that accommodates these and defines a rotor chamber 10a. 15.
  • the screw rotor 11 has a female rotor and a male rotor, and compresses gas by engaging with each other in an oil-free state in the rotor chamber 10a.
  • a male rotor and its rotor shaft 12 are shown, but the male rotor and the female rotor each have a rotor shaft 12.
  • Timing gears 16 that are meshed with each other are attached to the shaft ends of the rotor shaft 12 on the side opposite to the motor unit 20 (left side in the drawing).
  • the rotor shaft 12 of the male rotor is rotationally driven by a motor 21.
  • the rotor shaft 12 of the female rotor rotates via the timing gear 16 so as to be synchronized with the rotor shaft 12 of the male rotor.
  • Both end portions of the rotor shaft 12 can be rotated by a first bearing 13 located on the opposite side (left side in the figure) to the motor unit 20 side and a second bearing 14 located on the motor part 20 side (right side in the figure). It is supported.
  • the end portion of the rotor shaft 12 supported by the second bearing 14 extends through the rotor casing 15 to the connection portion 30.
  • the first bearing 13 includes a roller bearing 13a and a ball bearing 13b.
  • the second bearing 14 includes a roller bearing 14a and a ball bearing 14b.
  • the first bearing 13 and the second bearing 14 are open so that lubricating oil can be circulated and lubricated.
  • a gas seal portion (not shown) and an oil seal portion (not shown) are provided between the first bearing 13 and the screw rotor 11 and between the second bearing 14 and the screw rotor 11 from the screw rotor 11 side. It is provided in order toward the bearings 13 and 14 side.
  • the rotor casing 15 is provided with a suction port 15a on the lower side in the drawing with the screw rotor 11 interposed therebetween, and a discharge port 15b on the upper side in the drawing. Further, in the direction in which the rotor shaft 12 extends, the suction port 15a is formed on the side opposite to the motor unit 20 (left side in the drawing), and the discharge port 15b is formed on the motor unit 20 side (right side in the drawing). By forming the discharge port 15b on the motor unit 20 side, the thrust load generated in the screw rotor 11 and the rotor shaft 12 is generated in the direction away from the motor unit 20 (left direction in the figure).
  • the rotor casing 15 is formed with an oil supply passage 15 c for supplying lubricating oil to the second bearing 14.
  • the motor unit 20 includes a motor 21 having a motor shaft 22 and a motor casing 25 that houses the motor 21 and defines a motor chamber 20a. Further, both ends of the motor shaft 22 are supported by a third bearing 23 and a fourth bearing 24.
  • the motor unit 20 and the connection unit 30 are partitioned by a connection casing 32 to be described later, that is, the motor casing 25 is open to the connection unit 30 side (left side in the drawing). Therefore, the fourth bearing 24 is accommodated in the motor casing 25, but the third bearing 23 is accommodated in the connection casing 32.
  • the motor unit 20 and the connection unit 30 may be partitioned by the motor casing 25, and in this case, the third bearing 23 and the fourth bearing 24 are both accommodated in the motor casing 25.
  • the motor 21 is a drive source for rotating the screw rotor 11.
  • the rotation speed of the motor 21 is controlled by an inverter (not shown), and the motor 21 is operated at a high speed rotation exceeding 20000 rpm, for example.
  • the motor 21 has a rotor 21a and a stator 21b.
  • the rotor 21a is fixed to the outer peripheral portion of the motor shaft 22, and the stator 21b is arranged apart from the rotor 21a.
  • Each part in the motor 21 is insulated with an epoxy resin or an epoxy resin varnish in order to prevent poor insulation even when lubricating oil enters the motor chamber 20a.
  • Both end portions of the motor shaft 22 are rotatably supported by a third bearing 23 located on the compression unit 10 side (left side in the drawing) and a fourth bearing 24 located on the opposite side (right side in the drawing) from the compression unit 10.
  • the end portion of the motor shaft 22 supported by the third bearing 23 extends to the connection portion 30 through a connection casing 32 described later.
  • the third bearing 23 and the fourth bearing 24 are both constituted by ball bearings 23a and 24a.
  • the third bearing 23 and the fourth bearing 24 are open so that lubricating oil can be circulated and lubricated.
  • the third bearing 23 and the fourth bearing 24 are configured to cause lubricating oil provided for lubrication to flow in the axial direction of the motor shaft 22 and to flow into the motor chamber 20a, as will be described later.
  • an oil supply passage 25a for supplying lubricating oil to the fourth bearing 24 is formed. Further, a first oil discharge port (oil discharge portion) 25b for discharging the lubricating oil from the motor chamber 20a is provided at the bottom of the motor casing 25 and in the vicinity of the fourth bearing 24.
  • a cooling jacket 26 is disposed in the motor casing 25. The cooling jacket 26 is used for cooling the motor 21 from the outer peripheral side by flowing a fluid such as water.
  • connection unit 30 is provided between the compression unit 10 and the motor unit 20.
  • the connection unit 30 includes a coupling 31 that mechanically connects the rotor shaft 12 and the motor shaft 22, and a connection casing 32 that defines a connection chamber 30 a and accommodates the coupling 31.
  • the coupling 31 of this embodiment is a disk-type coupling.
  • the coupling 31 includes hub portions 31a and 31b that fix the rotor shaft 12 and the motor shaft 22, plate springs 31c and 31d as buffer members, and a spacer 31e. In the attached state, these are inserted through the rotor shaft 12 and the motor shaft 22, and are arranged in the order of the hub portion 31a, the leaf spring 31c, the spacer 31e, the leaf spring 31d, and the hub portion 31b from the compression portion 10 side. Things are screwed together.
  • connection casing 32 an oil supply passage 32a for supplying lubricating oil to the third bearing 23 is formed.
  • the bottom of the connection casing 32 is provided with a second oil discharge port (oil discharge portion) 32b for discharging the lubricant from the connection chamber 30a.
  • a communication portion 32 c that connects the motor chamber 20 a and the connection chamber 30 a is provided at the bottom of the connection casing 32.
  • the communication portion 32c is a hole that is provided at a position where the motor chamber 20a and the connection chamber 30a are separated, and connects the two chambers to circulate the lubricating oil.
  • the connection casing 32 is screwed to the rotor casing 15 and the motor casing 25, respectively.
  • connection casing 32 is configured separately from the rotor casing 15 and the motor casing 25.
  • connection casing 32 is integrated with the rotor casing 15 or the motor casing 25 without providing the connection casing 32 as a separate body. It may be configured.
  • connection casing 32 may be provided with an opening 17 for accessing the connection chamber 30a.
  • an opening 17 for accessing the connection chamber 30a.
  • the rotor shaft 12 is supported at both ends by the first bearing 13 and the second bearing 14, and the motor shaft 22 is supported at both ends by the third bearing 23 and the fourth bearing 24. Therefore, it is easy to determine the bearing load in each of the bearings 13, 14, 23, and 24, and this configuration is useful in design.
  • the rotor shaft 12 and the motor shaft 22 are not necessarily separate from each other, and may be configured such that the coupling 31 is not required as a unit.
  • the oil-free screw compressor 1 includes oil lines 40a to 40g (see the alternate long and short dash lines) for lubricating and cooling the second bearing 14, the third bearing 23, and the fourth bearing 24.
  • An oil line for lubricating and cooling the first bearing 13 is not shown.
  • the oil lines 40a to 40g are provided with an oil tank 41 for storing lubricating oil, an oil cooler 42 for cooling the lubricating oil, and an oil pump 43.
  • the oil tank 41 and the oil cooler 42 are connected by an oil line 40a.
  • the oil cooler 42 and the oil pump 43 are connected by an oil line 40b.
  • the oil pump 43 and the oil supply passages 15c, 25a, and 32a are connected by oil lines 40c, 40d, and 40e, respectively.
  • the first and second oil discharge ports 25b and 32b and the oil tank 41 are connected by oil lines 40f and 40g, respectively.
  • the lubricating oil is caused to flow by the oil pump 43, and the lubricating oil is supplied from the oil tank 41 to the second bearing 14, the third bearing 23, and the fourth bearing 24.
  • the lubricating oil is forcibly circulated so that the lubricating oil is returned to the oil tank 41 through the first oil outlet 25b and the second oil outlet 32b.
  • the oil tank 41 is directly below the first and second oil outlets 25b and 32b so that the lubricating oil can be dropped into the oil tank 41 from the first oil outlet 25b and the second oil outlet 32b. Is arranged.
  • the flow direction of the lubricating oil is also defined in the communication portion 32c, and the lubricating oil flows from the motor chamber 20a to the connection chamber 30a in the communication portion 32c.
  • This flow direction is defined according to the differential pressure between the flow pressure generated by the oil pump 43 and the internal pressure of the oil tank 41.
  • the communication portion 32c of the present embodiment does not have a special configuration that regulates the flow direction like a valve, but is merely a through hole, and the communication portion 32c is caused by the flow pressure in the oil lines 40a to 40g.
  • the direction of lubricant flow is defined.
  • Lubricating oil is stored in the oil tank 41.
  • the lubricating oil stored in the oil tank 41 obtains a flow pressure from the oil pump 43 and flows to the oil cooler 42 through the oil line 40a.
  • the lubricating oil cooled by the oil cooler 42 flows to the oil supply passages 15c, 25a, and 32a through the oil line 40b and the oil lines 40c to 40e, passes through the oil supply passages 15c, 25a, and 32a, and passes through the second bearing 14 and the third bearing. 23 and the fourth bearing 24, respectively.
  • the lubricating oil supplied to the second bearing 14 flows into the connection chamber 30a after being used for lubrication, and further flows out of the connection chamber 30a via the second oil discharge port 32b, and is then supplied to the oil tank through the oil line 40g. Return to 41.
  • the lubricating oil supplied to the third bearing 23 flows in the axial direction of the motor shaft 22 and flows into the motor chamber 20a after being used for lubrication, and further from the motor chamber 20a to the connection chamber via the communication portion 32c.
  • 30a flows out of the connection chamber 30a through the second oil discharge port 32b, and returns to the oil tank 41 through the oil line 40g.
  • the lubricating oil supplied to the fourth bearing 24 flows in the axial direction of the motor shaft 22 and flows into the motor chamber 20a after being used for lubrication, and further flows into the motor chamber 20a via the first oil outlet 25b. And then returns to the oil tank 41 through the oil line 40f.
  • the discharge port 15b is provided on the motor unit 20 side of the rotor casing 15 for the convenience of design.
  • the motor chamber 20a and the connection chamber 30a communicate with each other through the communication portion 32c, and the first oil drain port 25b that drains oil from the motor chamber 20a and the second oil that drains from the connection chamber 30a.
  • An oil drain port 32b is provided. Accordingly, since the lubricating oil that has entered the motor chamber 20a flows out of the motor chamber 20a through the first oil outlet 25b and the communication portion 32c, the oil tank does not accumulate in the motor chamber 20a, and does not accumulate in the motor chamber 20a. Return to 41. In this way, oil is prevented from accumulating in the motor chamber 20a without providing a seal structure for preventing the lubricating oil from entering the motor chamber 20a as found in conventional oil-free screw compressors. In addition, the power loss of the motor 21 due to the stirring resistance of the lubricating oil in the motor chamber 20a can be prevented.
  • the communication portion 32c since the communication portion 32c is provided, the lubricating oil provided for lubrication by the second bearing 14 and the third bearing 23 can be drained from one second oil drain port 32b, and therefore connected to the oil tank 41.
  • the number of oil lines can be reduced and the structure can be simplified.
  • the motor shaft 22 or the motor chamber 20a is connected to the third bearing 23.
  • the fourth bearing 24 can be cooled with lubricating oil used for lubrication. In other words, if the lubricating oil provided for lubrication by the third bearing 23 and the fourth bearing 24 is caused to flow into the connection chamber 30a, the motor shaft 22 and the like cannot be directly cooled, and the lubricating oil cannot be effectively used. .
  • the disk-type coupling 31 is used for the connection between the rotor shaft 12 and the motor shaft 22, it is not necessary to supply lubricating oil to the coupling 31. Moreover, the attachment and removal of the coupling 31 are easy, and maintenance is easy.
  • FIG. 3 shows the oil-free screw compressor 1 of the second embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the communication part 32c distributes the lubricating oil provided for lubrication by the second bearing 14 from the connection chamber 30a to the motor chamber 20a. That is, the flow direction of the lubricating oil in the communication portion 32c is different from that in the first embodiment.
  • the communication portion 32 c is a simple through hole, and the flow direction of the lubricating oil in the communication portion 32 c is defined according to the differential pressure between the flow pressure generated by the oil pump 43 and the internal pressure of the oil tank 41. ing.
  • the 3rd oil exhaust port (oil exhaust part) 25c and the oil line 40h is provided.
  • the third oil discharge port 25c is provided in the bottom of the motor casing 25 and in the vicinity of the third bearing 23, and the lubricating oil provided for lubrication by the second bearing 14 and the third bearing 23 is discharged from the motor chamber 20a. Oil.
  • the third oil discharge port 25c is connected to the oil tank 41 through the oil line 40h.
  • the lubricating oil provided for lubrication by the second bearing 14 and the third bearing 23 can be drained from one third drain port 25c, the number of oil lines connected to the oil tank 41 is increased. Can be reduced, and the structure can be simplified.
  • FIG. 4 shows the oil-free screw compressor 1 of the third embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the motor casing 25 is not provided with the first oil outlet 25b (see FIG. 1) and the oil line 40f (see FIG. 1). That is, the lubricating oil is not sent directly from the motor chamber 20a to the oil tank 41, and all the lubricating oil in the motor chamber 20a flows into the connection chamber 30a through the communication portion 32c. Therefore, in this embodiment, an oil guiding groove 26a for guiding the lubricating oil provided for lubrication by the fourth bearing 24 to the communicating portion 32c is formed. As shown in detail in the cross-sectional view of FIG. 4, the oil guide groove 26a is a groove formed on the inner surface of the bottom of the cooling jacket 26 and the outer surface of the lower portion of the stator 21b.
  • the oil guide groove 26a By forming the oil guide groove 26a, the stirring resistance due to the lubricating oil flowing to the communication portion 32c does not occur, and the power loss of the motor 21 can be prevented.
  • the oil guide groove 26a is formed in the cooling jacket 26 and the stator 21b, but may be formed in any of the cooling jacket 26, the motor casing 25, and the stator 21b.
  • a fourth oil discharge port (oil discharge portion) 32d for discharging the lubricating oil provided for lubrication by the second bearing 14, the third bearing 23 and the fourth bearing 24 from the connection chamber 30a;
  • An oil line 40i is provided.
  • the fourth oil discharge port 32d is connected to the oil tank 41 through the oil line 40i.
  • the oil tank 41 since the lubricating oil provided for lubrication by the second bearing 14, the third bearing 23, and the fourth bearing 24 is drained from one fourth drain port 32d, the oil tank 41 The number of oil lines to be connected can be reduced, and the structure can be simplified. Furthermore, as the number of oil lines connected to the oil tank 41 decreases, the oil tank 41 can be reduced in size compared to the first and second embodiments.
  • FIG. 5 shows an oil-free screw compressor 1 according to the fourth embodiment.
  • the same components as those in the third embodiment are denoted by the same reference numerals and description thereof is omitted.
  • connection casing 32 is not provided with the fourth oil outlet 32d (see FIG. 4) and the oil line 40i (see FIG. 4), and the bottom of the motor casing 25 is not provided.
  • a fifth oil discharge port (oil discharge portion) 25d and an oil line 40j are provided for discharging the lubricant used for lubrication by the second bearing 14, the third bearing 23, and the fourth bearing 24 from the motor chamber 20a.
  • the fifth oil discharge port 25d is connected to the oil tank 41 through the oil line 40j. That is, the lubricating oil is not sent directly from the connection chamber 30a to the oil tank 41, and the lubricating oil in the connection chamber 30a flows to the motor chamber 20a through the communication portion 32c.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

An oil-free screw compressor (1) is provided with: a screw rotor (11); a motor (21); a rotor casing (15) that defines a rotor chamber (10a); a motor casing (25) that defines a motor chamber (20a); a connection chamber (30a) provided between the rotor chamber (10a) and the motor chamber (20a); a communication part (32c) that connects the motor chamber (20a) and the connection chamber (30a); a second oil discharge port (32b) that discharges oil from the connection chamber (30a); and an oil line that forcibly circulates a lubricant oil by causing an oil pump (43) to flow the lubricant oil so as to supply the lubricant oil from an oil tank (41) to a second bearing (14), a third bearing (23), and a fourth bearing (24), and to return the lubricant oil to the oil tank (41) via a first oil discharge port (25b) and the second oil discharge port (32b).

Description

オイルフリースクリュ圧縮機Oil-free screw compressor
 本開示は、オイルフリースクリュ圧縮機に関する。 This disclosure relates to an oil-free screw compressor.
 圧縮機の種類の一つとして、オイルフリースクリュ圧縮機がある。オイルフリースクリュ圧縮機は、雌雄一対のスクリュロータと、スクリュロータを回転駆動するためのモータとを備える。モータからスクリュロータへの動力伝達のために、スクリュロータおよびモータは回転軸部材を介して機械的に接続されている。回転軸部材は軸受によって回転可能に支持されており、軸受には潤滑および冷却のために潤滑油が供給される。 One type of compressor is an oil-free screw compressor. The oil-free screw compressor includes a pair of male and female screw rotors and a motor for rotationally driving the screw rotor. In order to transmit power from the motor to the screw rotor, the screw rotor and the motor are mechanically connected via a rotating shaft member. The rotating shaft member is rotatably supported by a bearing, and lubricating oil is supplied to the bearing for lubrication and cooling.
 軸受の潤滑に供された油がモータ内(モータ室内)に浸入すると、モータ室内に油が溜まり、溜まった油により撹拌抵抗が生じるため、モータの動力ロスが発生する。これを防止するために、例えば特許文献1に開示されているオイルフリースクリュ圧縮機では、軸受で潤滑に供された潤滑油がモータ室内に浸入することを防止するシール構造が設けられている。 When oil used for bearing lubrication enters the motor (motor chamber), the oil accumulates in the motor chamber, and stirring oil is generated by the accumulated oil, resulting in motor power loss. In order to prevent this, for example, the oil-free screw compressor disclosed in Patent Document 1 is provided with a seal structure that prevents the lubricating oil lubricated by the bearing from entering the motor chamber.
特開2002-168184号公報JP 2002-168184 A
 しかし、特許文献1のシール構造である非接触式油きりは複雑であり、コストが高い。また、シール構造を設けた場合でも潤滑油がモータ室内に浸入することがある。例えば、圧縮機のスクリュロータがモータ側に向けて加圧するように構成されているような場合には、吐出圧とモータ室内との圧力差によって、潤滑油のモータ室内への吹き抜け(浸入)が顕著に発生することがある。このように、高コストのシール構造を設けた場合でも潤滑油のモータ室内への浸入を完全に防止することは困難である。 However, the non-contact type oil cutting which is the seal structure of Patent Document 1 is complicated and expensive. Even when the seal structure is provided, the lubricating oil may enter the motor chamber. For example, in the case where the screw rotor of the compressor is configured to pressurize toward the motor side, the pressure difference between the discharge pressure and the motor chamber causes the lubricating oil to blow into (intrude into) the motor chamber. It may occur remarkably. Thus, even when a high-cost seal structure is provided, it is difficult to completely prevent the lubricating oil from entering the motor chamber.
 本発明の実施形態はこうした状況の下になされたものであって、その目的は、潤滑油のモータ室内への浸入を防止するためのシール構造を不要とすると共に、モータ室内に油が溜まることを防止できるオイルフリースクリュ圧縮機を提供することである。 The embodiment of the present invention has been made under such circumstances, and the object thereof is to eliminate the need for a seal structure for preventing the intrusion of lubricating oil into the motor chamber and to collect oil in the motor chamber. It is providing the oil-free screw compressor which can prevent.
 本発明の実施形態に係るオイルフリースクリュ圧縮機は、ロータ軸を有し、前記ロータ軸の両端部が第1軸受と第2軸受とで支持されたスクリュロータと、モータ軸を有し、前記モータ軸の両端部が第3軸受と第4軸受とで支持され、前記スクリュロータを回転させるモータと、前記スクリュロータが収容されたロータ室を画定し、前記モータ側に吐出口が設けられたロータケーシングと、前記モータが収容されたモータ室を画定し、前記ロータケーシングと一体的に接続されたモータケーシングと、前記ロータ室と前記モータ室との間に設けられ、内部で前記ロータ軸と前記モータ軸とが機械的に接続されている接続室と、前記モータ室と前記接続室とを連通している連通部と、前記モータ室および前記接続室の少なくとも一方から排油する排油部と、潤滑油を溜めるオイルタンクと、前記潤滑油を冷却するオイルクーラと、オイルポンプとが設けられており、前記オイルポンプにより前記潤滑油を流動させ、前記オイルタンクから前記第2軸受と前記第3軸受と前記第4軸受とに対して前記潤滑油を供給し、前記排油部を通じて前記オイルタンクに前記潤滑油を戻すように強制循環させているオイルラインとを備える。 An oil-free screw compressor according to an embodiment of the present invention has a rotor shaft, both ends of the rotor shaft are supported by a first bearing and a second bearing, a motor shaft, Both ends of the motor shaft are supported by a third bearing and a fourth bearing, demarcate a motor that rotates the screw rotor, a rotor chamber in which the screw rotor is accommodated, and a discharge port is provided on the motor side. A rotor casing; a motor casing in which the motor is housed; a motor casing integrally connected to the rotor casing; and provided between the rotor chamber and the motor chamber; Oil is drained from at least one of the connection chamber in which the motor shaft is mechanically connected, the communication portion that connects the motor chamber and the connection chamber, and the motor chamber and the connection chamber. An oil tank that stores lubricating oil, an oil cooler that cools the lubricating oil, and an oil pump. The oil pump causes the lubricating oil to flow, and the oil tank An oil line that supplies the lubricating oil to the two bearings, the third bearing, and the fourth bearing and forcibly circulates the lubricating oil back to the oil tank through the oil drainage portion.
 この構成によれば、設計上の有用性からロータケーシングのモータ側に吐出口が設けられている。しかし、従来のオイルフリースクリュ圧縮機に見られるような潤滑油のモータ室内への浸入を防止するためのシール構造は設けられていない。そのため、軸受の潤滑に供された潤滑油が吐出圧によってモータ室内に浸入する。これに対し、上記構成では、モータ室と接続室とが連通部により連通しており、モータ室および接続室の少なくとも一方から排油する排油部が設けられている。従って、モータ室内に浸入した潤滑油は、連通部または排油部によってモータ室外に流出するため、モータ室内に溜まることなくオイルラインを通じてオイルタンクに戻される。このようにして、従来のオイルフリースクリュ圧縮機に見られるような潤滑油のモータ室内への浸入を防止するためのシール構造を設けることなく、モータ室内に油が溜まることを防止でき、モータ室内における潤滑油の撹拌抵抗によるモータの動力ロスを防止できる。 こ の According to this configuration, the discharge port is provided on the motor side of the rotor casing for the convenience of design. However, there is no seal structure for preventing the lubricating oil from entering the motor chamber as found in conventional oil-free screw compressors. Therefore, the lubricating oil provided for bearing lubrication enters the motor chamber by the discharge pressure. On the other hand, in the said structure, the motor chamber and the connection chamber are connected by the communication part, and the oil drain part which drains oil from at least one of a motor chamber and a connection chamber is provided. Accordingly, the lubricating oil that has entered the motor chamber flows out of the motor chamber through the communication portion or the oil drain portion, and is therefore returned to the oil tank through the oil line without accumulating in the motor chamber. In this way, oil can be prevented from accumulating in the motor chamber without providing a seal structure for preventing the lubricating oil from entering the motor chamber as found in conventional oil-free screw compressors. The power loss of the motor due to the agitation resistance of the lubricating oil can be prevented.
 前記連通部は、前記第3軸受で潤滑に供された前記潤滑油を前記モータ室から前記接続室に流通させるものであり、前記排油部は、前記第4軸受で潤滑に供された前記潤滑油を前記モータ室から排油する第1排油口と、前記第2軸受と前記第3軸受とで潤滑に供された前記潤滑油を前記接続室から排油する第2排油口とを有してもよい。 The communication part is configured to circulate the lubricating oil provided for lubrication by the third bearing from the motor chamber to the connection chamber, and the drainage part is provided for lubrication by the fourth bearing. A first oil discharge port for discharging lubricating oil from the motor chamber; a second oil discharge port for discharging the lubricating oil provided for lubrication by the second bearing and the third bearing from the connection chamber; You may have.
 この構成によれば、第2軸受と第3軸受とで潤滑に供された潤滑油を1つの第2排油口から排油できるため、オイルタンクに接続するオイルラインの数を減らすことができ、構造を簡素化できる。 According to this configuration, since the lubricating oil provided for lubrication by the second bearing and the third bearing can be drained from one second drain port, the number of oil lines connected to the oil tank can be reduced. , Can simplify the structure.
 前記連通部は、前記第2軸受で潤滑に供された前記潤滑油を前記接続室から前記モータ室に流通させるものであり、前記排油部は、前記第4軸受で潤滑に供された前記潤滑油を前記モータ室から排油する第1排油口と、前記第2軸受と前記第3軸受とで潤滑に供された前記潤滑油を前記モータ室から排油する第3排油口とを有してもよい。 The communication part is configured to circulate the lubricating oil provided for lubrication by the second bearing from the connection chamber to the motor chamber, and the drainage part is provided for lubrication by the fourth bearing. A first drain port for draining lubricant oil from the motor chamber; and a third drain port for draining the lubricant oil lubricated by the second bearing and the third bearing from the motor chamber; You may have.
 この構成によれば、第2軸受と第3軸受とで潤滑に供された潤滑油を1つの第3排油口から排油できるため、オイルタンクに接続するオイルラインの数を減らすことができ、構造を簡素化できる。 According to this configuration, since the lubricating oil provided for lubrication by the second bearing and the third bearing can be drained from one third drain port, the number of oil lines connected to the oil tank can be reduced. , Can simplify the structure.
 前記連通部は、前記第3軸受と前記第4軸受とで潤滑に供された前記潤滑油を前記モータ室から前記接続室に流通させるものであり、前記排油部は、前記第2軸受と前記第3軸受と前記第4軸受とで潤滑に供された前記潤滑油を前記接続室から排油する第4排油口を有してもよい。または、前記連通部は、前記第2軸受と前記第3軸受とで潤滑に供された前記潤滑油を前記接続室から前記モータ室に流通させるものであり、前記排油部は、前記第2軸受と前記第3軸受と前記第4軸受とで潤滑に供された前記潤滑油を前記モータ室から排油する第5排油口を有してもよい。 The communication portion is configured to circulate the lubricating oil provided for lubrication by the third bearing and the fourth bearing from the motor chamber to the connection chamber, and the drainage portion includes the second bearing and the second bearing. You may have the 4th oil drain port which drains the lubricating oil with which it lubricated with the said 3rd bearing and the said 4th bearing from the said connection chamber. Alternatively, the communication portion is configured to circulate the lubricating oil provided for lubrication by the second bearing and the third bearing from the connection chamber to the motor chamber, and the oil draining portion is the second oil portion. You may have the 5th oil exhaust port which drains the said lubricating oil with which it lubricated with the bearing, the said 3rd bearing, and the said 4th bearing from the said motor chamber.
 この構成によれば、第2軸受と第3軸受と第4軸受とで潤滑に供された潤滑油を1つの第3排油口から排油しているため、オイルタンクに接続するオイルラインの数を減らすことができ、構造を簡素化できる。さらに、オイルタンクに接続するオイルラインの数の減少に伴い、オイルタンクを小型化できる。 According to this configuration, since the lubricating oil provided for lubrication by the second bearing, the third bearing, and the fourth bearing is drained from one third drain port, the oil line connected to the oil tank The number can be reduced and the structure can be simplified. Furthermore, as the number of oil lines connected to the oil tank decreases, the oil tank can be reduced in size.
 前記第3軸受および前記第4軸受は、共に開放形の軸受であり、前記第3軸受と前記第4軸受とで潤滑に供した前記潤滑油を前記モータ軸方向へ流動させ、前記モータ室内に流入させてもよい。 The third bearing and the fourth bearing are both open-type bearings, and the lubricating oil used for lubrication by the third bearing and the fourth bearing is caused to flow in the motor axial direction to enter the motor chamber. It may be allowed to flow.
 この構成によれば、第3軸受と第4軸受とで潤滑に供した潤滑油をモータ室のモータ軸方向へ流出させるため、モータ軸またはモータが備える固定子巻線を第3軸受と第4軸受とで潤滑に供した潤滑油で冷却できる。換言すれば、仮に第3軸受と第4軸受とで潤滑に供した潤滑油を接続室内に流入させると、モータ軸等を冷却できず、潤滑油を有効利用できない。なお、第3軸受および第4軸受は、例えば玉軸受であってもよい。 According to this configuration, since the lubricating oil used for lubrication by the third bearing and the fourth bearing flows out in the motor shaft direction of the motor chamber, the stator winding provided in the motor shaft or the motor is provided with the third bearing and the fourth bearing. It can be cooled with the lubricating oil used for lubrication with the bearing. In other words, if the lubricating oil used for lubrication by the third bearing and the fourth bearing is caused to flow into the connection chamber, the motor shaft and the like cannot be cooled, and the lubricating oil cannot be effectively used. The third bearing and the fourth bearing may be ball bearings, for example.
 前記モータ軸および前記ロータ軸は、ディスク型カップリングによって機械的に接続されていてもよい。 The motor shaft and the rotor shaft may be mechanically connected by a disk type coupling.
 この構成によれば、ロータ軸とモータ軸との接続にディスク型カップリングを採用しているため、カップリングへの潤滑油の供給が不要である。また、カップリングの取り付けおよび取り外しも容易であり、メンテナンスが容易である。 こ の According to this configuration, since the disk-type coupling is used for connecting the rotor shaft and the motor shaft, it is not necessary to supply lubricating oil to the coupling. In addition, the attachment and removal of the coupling is easy, and maintenance is easy.
 本発明の実施形態に係るオイルフリースクリュ圧縮機は、モータ室と接続室とが連通部により連通しており、モータ室および接続室の少なくとも一方から排油する排油部を備えている。従って、潤滑油のモータ室内への浸入を防止するためのシール構造を不要とすると共に、モータ室内に油が溜まることを防止できる。 In the oil-free screw compressor according to the embodiment of the present invention, the motor chamber and the connection chamber communicate with each other through the communication portion, and the oil-free screw compressor includes an oil drain portion that drains oil from at least one of the motor chamber and the connection chamber. Accordingly, it is possible to eliminate the need for a seal structure for preventing the lubricating oil from entering the motor chamber and to prevent the oil from accumulating in the motor chamber.
第1実施形態に係るオイルフリースクリュ圧縮機の部分断面図。The fragmentary sectional view of the oil free screw compressor concerning a 1st embodiment. ディスク型カップリングの分解斜視図。The exploded perspective view of a disk type coupling. 第2実施形態に係るオイルフリースクリュ圧縮機の部分断面図。The fragmentary sectional view of the oil free screw compressor concerning a 2nd embodiment. 第3実施形態に係るオイルフリースクリュ圧縮機の部分断面図。The fragmentary sectional view of the oil free screw compressor concerning a 3rd embodiment. 第4実施形態に係るオイルフリースクリュ圧縮機の部分断面図。The fragmentary sectional view of the oil free screw compressor concerning a 4th embodiment.
 以下、添付図面を参照して本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
(第1実施形態)
 図1に示すように、オイルフリースクリュ圧縮機1は、スクリュロータ11が配置されている圧縮部10と、モータ21が配置されているモータ部20と、これらを接続する接続部30とを備える。オイルフリースクリュ圧縮機1は、モータ部20のモータ21によって圧縮部10のスクリュロータ11を駆動してガスを吸い込み圧縮して吐出する。
(First embodiment)
As shown in FIG. 1, the oil-free screw compressor 1 includes a compression unit 10 in which a screw rotor 11 is arranged, a motor unit 20 in which a motor 21 is arranged, and a connection unit 30 that connects them. . The oil-free screw compressor 1 drives the screw rotor 11 of the compression unit 10 by the motor 21 of the motor unit 20 to suck and compress the gas and discharge it.
 圧縮部10は、ロータ軸12を有する雌雄一対のスクリュロータ11と、ロータ軸12の両端を支持する第1軸受13および第2軸受14と、これらを収容し、ロータ室10aを画定するロータケーシング15とを備える。 The compression unit 10 includes a pair of male and female screw rotors 11 having a rotor shaft 12, a first bearing 13 and a second bearing 14 that support both ends of the rotor shaft 12, and a rotor casing that accommodates these and defines a rotor chamber 10a. 15.
 スクリュロータ11は雌ロータと雄ロータとを有しており、ロータ室10a内でこれらが無給油状態で互いに噛合することによってガスを圧縮する。図1では、雄ロータとそのロータ軸12とが示されているが、雄ロータと雌ロータとにはそれぞれロータ軸12がある。モータ部20と反対側(図において左側)のロータ軸12の各軸端には、互いに噛合するタイミングギヤ16が取り付けられている。通常は、雄ロータのロータ軸12がモータ21によって回転駆動される。さらにタイミングギヤ16を介して、雄ロータのロータ軸12と同期するように雌ロータのロータ軸12が回転する。 The screw rotor 11 has a female rotor and a male rotor, and compresses gas by engaging with each other in an oil-free state in the rotor chamber 10a. In FIG. 1, a male rotor and its rotor shaft 12 are shown, but the male rotor and the female rotor each have a rotor shaft 12. Timing gears 16 that are meshed with each other are attached to the shaft ends of the rotor shaft 12 on the side opposite to the motor unit 20 (left side in the drawing). Usually, the rotor shaft 12 of the male rotor is rotationally driven by a motor 21. Furthermore, the rotor shaft 12 of the female rotor rotates via the timing gear 16 so as to be synchronized with the rotor shaft 12 of the male rotor.
 ロータ軸12の両端部は、モータ部20側と反対側(図において左側)に位置する第1軸受13と、モータ部20側(図において右側)に位置する第2軸受14とによって回転可能に支持されている。第2軸受14によって支持されているロータ軸12の端部は、ロータケーシング15を貫通して接続部30まで延びている。第1軸受13は、ころ軸受13aと、玉軸受13bとによって構成されている。第2軸受14は、ころ軸受14aと、玉軸受14bとによって構成されている。第1軸受13,第2軸受14は、潤滑油を流通させて潤滑できるように開放形である。なお、第1軸受13とスクリュロータ11との間および第2軸受14とスクリュロータ11との間には、ガスシール部(不図示)およびオイルシール部(不図示)が、スクリュロータ11側から各軸受13,14側に向かって順に設けられている。 Both end portions of the rotor shaft 12 can be rotated by a first bearing 13 located on the opposite side (left side in the figure) to the motor unit 20 side and a second bearing 14 located on the motor part 20 side (right side in the figure). It is supported. The end portion of the rotor shaft 12 supported by the second bearing 14 extends through the rotor casing 15 to the connection portion 30. The first bearing 13 includes a roller bearing 13a and a ball bearing 13b. The second bearing 14 includes a roller bearing 14a and a ball bearing 14b. The first bearing 13 and the second bearing 14 are open so that lubricating oil can be circulated and lubricated. A gas seal portion (not shown) and an oil seal portion (not shown) are provided between the first bearing 13 and the screw rotor 11 and between the second bearing 14 and the screw rotor 11 from the screw rotor 11 side. It is provided in order toward the bearings 13 and 14 side.
 ロータケーシング15には、スクリュロータ11を挟んで、図において下側に吸込口15aが設けられており、図において上側に吐出口15bが設けられている。また、ロータ軸12が延びる方向において、吸込口15aはモータ部20と反対側(図において左側)に形成されており、吐出口15bはモータ部20側(図において右側)に形成されている。吐出口15bがモータ部20側に形成されていることで、スクリュロータ11およびロータ軸12に発生するスラスト荷重はモータ部20から離れる方向(図において左方向)に発生する。即ち、このスラスト荷重はオイルフリースクリュ圧縮機1の外側へ向かって発生するため、スラスト荷重を抑止するためのバランスピストンなどの部材を外側から取り付けることができ、吐出口15bをモータ部20側に設ける構成は設計上有用である。また、ロータケーシング15には、第2軸受14に潤滑油を供給するための給油路15cが形成されている。 The rotor casing 15 is provided with a suction port 15a on the lower side in the drawing with the screw rotor 11 interposed therebetween, and a discharge port 15b on the upper side in the drawing. Further, in the direction in which the rotor shaft 12 extends, the suction port 15a is formed on the side opposite to the motor unit 20 (left side in the drawing), and the discharge port 15b is formed on the motor unit 20 side (right side in the drawing). By forming the discharge port 15b on the motor unit 20 side, the thrust load generated in the screw rotor 11 and the rotor shaft 12 is generated in the direction away from the motor unit 20 (left direction in the figure). That is, since this thrust load is generated toward the outside of the oil-free screw compressor 1, a member such as a balance piston for suppressing the thrust load can be attached from the outside, and the discharge port 15b is connected to the motor unit 20 side. The provided configuration is useful in design. The rotor casing 15 is formed with an oil supply passage 15 c for supplying lubricating oil to the second bearing 14.
 モータ部20は、モータ軸22を有するモータ21と、モータ21を収容し、モータ室20aを画定するモータケーシング25とを備える。また、モータ軸22の両端は、第3軸受23と第4軸受24とによって支持されている。本実施形態では、モータ部20と接続部30は、後述する接続ケーシング32によって仕切られており、即ちモータケーシング25は接続部30側(図において左側)に開口している。そのため、第4軸受24はモータケーシング25内に収容されているが、第3軸受23は接続ケーシング32内に収容されている。ただし、モータ部20と接続部30は、モータケーシング25によって仕切られてもよく、この場合、第3軸受23と第4軸受24は、共にモータケーシング25内に収容される。 The motor unit 20 includes a motor 21 having a motor shaft 22 and a motor casing 25 that houses the motor 21 and defines a motor chamber 20a. Further, both ends of the motor shaft 22 are supported by a third bearing 23 and a fourth bearing 24. In the present embodiment, the motor unit 20 and the connection unit 30 are partitioned by a connection casing 32 to be described later, that is, the motor casing 25 is open to the connection unit 30 side (left side in the drawing). Therefore, the fourth bearing 24 is accommodated in the motor casing 25, but the third bearing 23 is accommodated in the connection casing 32. However, the motor unit 20 and the connection unit 30 may be partitioned by the motor casing 25, and in this case, the third bearing 23 and the fourth bearing 24 are both accommodated in the motor casing 25.
 モータ21は、スクリュロータ11を回転させるための駆動源である。モータ21は、図示しないインバータにより回転数制御され、例えば20000rpmを超える高速回転で運転される。モータ21は回転子21aと固定子21bとを有し、回転子21aはモータ軸22の外周部分に固定され、固定子21bは回転子21aの外側に離間して配置されている。モータ21内の各部は、モータ室20a内に潤滑油が浸入した場合にも絶縁不良を防止するために、エポキシ樹脂またはエポキシ樹脂系ワニスで絶縁されている。 The motor 21 is a drive source for rotating the screw rotor 11. The rotation speed of the motor 21 is controlled by an inverter (not shown), and the motor 21 is operated at a high speed rotation exceeding 20000 rpm, for example. The motor 21 has a rotor 21a and a stator 21b. The rotor 21a is fixed to the outer peripheral portion of the motor shaft 22, and the stator 21b is arranged apart from the rotor 21a. Each part in the motor 21 is insulated with an epoxy resin or an epoxy resin varnish in order to prevent poor insulation even when lubricating oil enters the motor chamber 20a.
 モータ軸22の両端部は、圧縮部10側(図において左側)に位置する第3軸受23と、圧縮部10と反対側(図において右側)に位置する第4軸受24とによって回転可能に支持されている。第3軸受23によって支持されているモータ軸22の端部は、後述する接続ケーシング32を貫通して接続部30まで延びている。第3軸受23および第4軸受24は、共に玉軸受23a,24aによって構成されている。第3軸受23および第4軸受24は、潤滑油を流通させて潤滑できるように開放形である。特に、第3軸受23および第4軸受24は、後述するようにそれぞれ潤滑に供した潤滑油をモータ軸22についての軸方向へ流動させ、モータ室20a内に流入させる構成となっている。 Both end portions of the motor shaft 22 are rotatably supported by a third bearing 23 located on the compression unit 10 side (left side in the drawing) and a fourth bearing 24 located on the opposite side (right side in the drawing) from the compression unit 10. Has been. The end portion of the motor shaft 22 supported by the third bearing 23 extends to the connection portion 30 through a connection casing 32 described later. The third bearing 23 and the fourth bearing 24 are both constituted by ball bearings 23a and 24a. The third bearing 23 and the fourth bearing 24 are open so that lubricating oil can be circulated and lubricated. In particular, the third bearing 23 and the fourth bearing 24 are configured to cause lubricating oil provided for lubrication to flow in the axial direction of the motor shaft 22 and to flow into the motor chamber 20a, as will be described later.
 モータケーシング25には、第4軸受24に潤滑油を供給するための給油路25aが形成されている。また、モータケーシング25の底部かつ第4軸受24の付近には、潤滑油をモータ室20aから排油するための第1排油口(排油部)25bが設けられている。また、モータケーシング25には、冷却ジャケット26が配設されている。冷却ジャケット26は、内部に水などの流体を流してモータ21をその外周側から冷却するためのものである。 In the motor casing 25, an oil supply passage 25a for supplying lubricating oil to the fourth bearing 24 is formed. Further, a first oil discharge port (oil discharge portion) 25b for discharging the lubricating oil from the motor chamber 20a is provided at the bottom of the motor casing 25 and in the vicinity of the fourth bearing 24. A cooling jacket 26 is disposed in the motor casing 25. The cooling jacket 26 is used for cooling the motor 21 from the outer peripheral side by flowing a fluid such as water.
 接続部30は、圧縮部10とモータ部20との間に設けられている。接続部30は、ロータ軸12とモータ軸22とを機械的に接続するカップリング31と、接続室30aを画定し、カップリング31を収容する接続ケーシング32とを備える。 The connection unit 30 is provided between the compression unit 10 and the motor unit 20. The connection unit 30 includes a coupling 31 that mechanically connects the rotor shaft 12 and the motor shaft 22, and a connection casing 32 that defines a connection chamber 30 a and accommodates the coupling 31.
 図2に詳細を示すように、本実施形態のカップリング31は、ディスク型カップリングである。カップリング31は、ロータ軸12およびモータ軸22を固定するハブ部31a,31bと、緩衝部材としての板バネ31c,31dと、スペーサ31eとを有する。これらは、取り付け状態では、ロータ軸12およびモータ軸22に挿通され、圧縮部10側から、ハブ部31a、板バネ31c、スペーサ31e、板バネ31d、およびハブ部31bの順に配置され、隣合うもの同士が互いに螺子止めされている。 As shown in detail in FIG. 2, the coupling 31 of this embodiment is a disk-type coupling. The coupling 31 includes hub portions 31a and 31b that fix the rotor shaft 12 and the motor shaft 22, plate springs 31c and 31d as buffer members, and a spacer 31e. In the attached state, these are inserted through the rotor shaft 12 and the motor shaft 22, and are arranged in the order of the hub portion 31a, the leaf spring 31c, the spacer 31e, the leaf spring 31d, and the hub portion 31b from the compression portion 10 side. Things are screwed together.
 接続ケーシング32には、第3軸受23に潤滑油を供給するための給油路32aが形成されている。また、接続ケーシング32の底部には、潤滑油を接続室30aから排油するための第2排油口(排油部)32bが設けられている。また、接続ケーシング32の底部には、モータ室20aと接続室30aとを連通する連通部32cが設けられている。具体的には、連通部32cは、モータ室20aと接続室30aとが区分される位置に設けられ、両室内を接続して潤滑油を流通させるための孔である。また、接続ケーシング32は、ロータケーシング15およびモータケーシング25とそれぞれ螺子止めされている。なお、本実施形態では、接続ケーシング32は、ロータケーシング15およびモータケーシング25と別体で構成されているが、接続ケーシング32を別体として設けることなく、例えばロータケーシング15またはモータケーシング25と一体に構成されていてもよい。 In the connection casing 32, an oil supply passage 32a for supplying lubricating oil to the third bearing 23 is formed. The bottom of the connection casing 32 is provided with a second oil discharge port (oil discharge portion) 32b for discharging the lubricant from the connection chamber 30a. In addition, a communication portion 32 c that connects the motor chamber 20 a and the connection chamber 30 a is provided at the bottom of the connection casing 32. Specifically, the communication portion 32c is a hole that is provided at a position where the motor chamber 20a and the connection chamber 30a are separated, and connects the two chambers to circulate the lubricating oil. The connection casing 32 is screwed to the rotor casing 15 and the motor casing 25, respectively. In the present embodiment, the connection casing 32 is configured separately from the rotor casing 15 and the motor casing 25. However, for example, the connection casing 32 is integrated with the rotor casing 15 or the motor casing 25 without providing the connection casing 32 as a separate body. It may be configured.
 接続ケーシング32には接続室30aにアクセスする開口部17を設けてもよい。このような開口部を設けることで、ロータ軸12とモータ軸22とをカップリング31で接続する際の各軸12,22の中心の位置決めが容易となり、カップリング31でロータ軸12とモータ軸22とを接続する構成でも、例えば20000rpmを超える高速回転を実現できる。オイルフリースクリュ圧縮機1の運転時には、開口部17は図示しない蓋によって密閉される。 The connection casing 32 may be provided with an opening 17 for accessing the connection chamber 30a. By providing such an opening, positioning of the centers of the shafts 12 and 22 when the rotor shaft 12 and the motor shaft 22 are connected by the coupling 31 is facilitated, and the rotor shaft 12 and the motor shaft are coupled by the coupling 31. Even in the configuration in which the motor 22 is connected, for example, high-speed rotation exceeding 20000 rpm can be realized. During operation of the oil-free screw compressor 1, the opening 17 is sealed with a lid (not shown).
 上記構成では、ロータ軸12を第1軸受13と第2軸受14とによって両持ち支持し、モータ軸22を第3軸受23と第4軸受24とによって両持ち支持している。従って、各軸受13,14,23,24における軸受負荷を確定しやすく、本構成は設計上有用である。しかし、必ずしもロータ軸12とモータ軸22とは別体である必要はなく、これらを一体としてカップリング31不要な構成としてもよい。 In the above configuration, the rotor shaft 12 is supported at both ends by the first bearing 13 and the second bearing 14, and the motor shaft 22 is supported at both ends by the third bearing 23 and the fourth bearing 24. Therefore, it is easy to determine the bearing load in each of the bearings 13, 14, 23, and 24, and this configuration is useful in design. However, the rotor shaft 12 and the motor shaft 22 are not necessarily separate from each other, and may be configured such that the coupling 31 is not required as a unit.
 また、オイルフリースクリュ圧縮機1は、第2軸受14、第3軸受23および第4軸受24を潤滑および冷却するためのオイルライン40a~40g(一点鎖線参照)を備える。なお、第1軸受13を潤滑および冷却するためのオイルラインは図示省略している。 Further, the oil-free screw compressor 1 includes oil lines 40a to 40g (see the alternate long and short dash lines) for lubricating and cooling the second bearing 14, the third bearing 23, and the fourth bearing 24. An oil line for lubricating and cooling the first bearing 13 is not shown.
 オイルライン40a~40gには、潤滑油を溜めるオイルタンク41と、潤滑油を冷却するオイルクーラ42と、オイルポンプ43とが設けられている。詳細には、オイルタンク41とオイルクーラ42は、オイルライン40aで接続されている。オイルクーラ42とオイルポンプ43は、オイルライン40bで接続されている。オイルポンプ43と給油路15c,25a,32aは、オイルライン40c,40d,40eでそれぞれ接続されている。第1,第2排油口25b,32bとオイルタンク41は、オイルライン40f,40gでそれぞれ接続されている。 The oil lines 40a to 40g are provided with an oil tank 41 for storing lubricating oil, an oil cooler 42 for cooling the lubricating oil, and an oil pump 43. Specifically, the oil tank 41 and the oil cooler 42 are connected by an oil line 40a. The oil cooler 42 and the oil pump 43 are connected by an oil line 40b. The oil pump 43 and the oil supply passages 15c, 25a, and 32a are connected by oil lines 40c, 40d, and 40e, respectively. The first and second oil discharge ports 25b and 32b and the oil tank 41 are connected by oil lines 40f and 40g, respectively.
 上記のように接続されたオイルライン40a~40gでは、オイルポンプ43により潤滑油を流動させ、オイルタンク41から第2軸受14,第3軸受23および第4軸受24に対して潤滑油を供給し、第1排油口25bと第2排油口32bを通じてオイルタンク41に潤滑油を戻すように潤滑油を強制循環させている。本実施形態では、第1排油口25bと第2排油口32bからオイルタンク41に潤滑油を落とすことができるように、オイルタンク41は第1,第2排油口25b,32bの直下に配置されている。 In the oil lines 40a to 40g connected as described above, the lubricating oil is caused to flow by the oil pump 43, and the lubricating oil is supplied from the oil tank 41 to the second bearing 14, the third bearing 23, and the fourth bearing 24. The lubricating oil is forcibly circulated so that the lubricating oil is returned to the oil tank 41 through the first oil outlet 25b and the second oil outlet 32b. In the present embodiment, the oil tank 41 is directly below the first and second oil outlets 25b and 32b so that the lubricating oil can be dropped into the oil tank 41 from the first oil outlet 25b and the second oil outlet 32b. Is arranged.
 また、潤滑油の流動方向は連通部32cにおいても規定されており、潤滑油は連通部32cにおいてモータ室20aから接続室30aに流動する。この流動方向は、オイルポンプ43によって生じる流動圧力とオイルタンク41内圧との差圧に従って規定されている。換言すれば、本実施形態の連通部32cは弁のような流動方向を規定する特別な構成を有しておらず、単なる貫通孔であり、オイルライン40a~40gにおける流動圧力によって連通部32cでの潤滑油の流動方向が規定されている。 Further, the flow direction of the lubricating oil is also defined in the communication portion 32c, and the lubricating oil flows from the motor chamber 20a to the connection chamber 30a in the communication portion 32c. This flow direction is defined according to the differential pressure between the flow pressure generated by the oil pump 43 and the internal pressure of the oil tank 41. In other words, the communication portion 32c of the present embodiment does not have a special configuration that regulates the flow direction like a valve, but is merely a through hole, and the communication portion 32c is caused by the flow pressure in the oil lines 40a to 40g. The direction of lubricant flow is defined.
 以上の構成から導かれる本実施形態のオイルフリースクリュ圧縮機1のオイルラインにおける潤滑油の流れを説明する。 The flow of the lubricating oil in the oil line of the oil-free screw compressor 1 of the present embodiment derived from the above configuration will be described.
 潤滑油はオイルタンク41に溜められている。オイルタンク41に溜められた潤滑油は、オイルポンプ43から流動圧力を得て、オイルライン40aを通じてオイルクーラ42まで流動する。オイルクーラ42で冷却された潤滑油は、オイルライン40bおよびオイルライン40c~40eを通じて給油路15c,25a,32aまで流れ、給油路15c,25a,32aを通って、第2軸受14,第3軸受23および第4軸受24にそれぞれ供給される。 Lubricating oil is stored in the oil tank 41. The lubricating oil stored in the oil tank 41 obtains a flow pressure from the oil pump 43 and flows to the oil cooler 42 through the oil line 40a. The lubricating oil cooled by the oil cooler 42 flows to the oil supply passages 15c, 25a, and 32a through the oil line 40b and the oil lines 40c to 40e, passes through the oil supply passages 15c, 25a, and 32a, and passes through the second bearing 14 and the third bearing. 23 and the fourth bearing 24, respectively.
 第2軸受14に供給された潤滑油は、潤滑に供された後、接続室30a内に流入し、さらに第2排油口32bを介して接続室30aから流出し、オイルライン40gを通じてオイルタンク41に戻る。 The lubricating oil supplied to the second bearing 14 flows into the connection chamber 30a after being used for lubrication, and further flows out of the connection chamber 30a via the second oil discharge port 32b, and is then supplied to the oil tank through the oil line 40g. Return to 41.
 第3軸受23に供給された潤滑油は、潤滑に供された後、モータ軸22における軸方向に流動してモータ室20a内に流入し、さらに連通部32cを介してモータ室20aから接続室30aに流動し、第2排油口32bを介して接続室30aから流出し、オイルライン40gを通じてオイルタンク41に戻る。 The lubricating oil supplied to the third bearing 23 flows in the axial direction of the motor shaft 22 and flows into the motor chamber 20a after being used for lubrication, and further from the motor chamber 20a to the connection chamber via the communication portion 32c. 30a flows out of the connection chamber 30a through the second oil discharge port 32b, and returns to the oil tank 41 through the oil line 40g.
 第4軸受24に供給された潤滑油は、潤滑に供された後、モータ軸22における軸方向に流動してモータ室20a内に流入し、さらに第1排油口25bを介してモータ室20aから流出し、オイルライン40fを通じてオイルタンク41に戻る。 The lubricating oil supplied to the fourth bearing 24 flows in the axial direction of the motor shaft 22 and flows into the motor chamber 20a after being used for lubrication, and further flows into the motor chamber 20a via the first oil outlet 25b. And then returns to the oil tank 41 through the oil line 40f.
 以上の構成から導かれる効果を説明する。 The effects derived from the above configuration will be described.
 この構成によれば、前述のように設計上の有用性からロータケーシング15のモータ部20側に吐出口15bが設けられている。しかし、従来のオイルフリースクリュ圧縮機に見られるような潤滑油のモータ室20a内への浸入を防止するためのシール構造は設けられていない。そのため、第2,第3軸受14,23の潤滑に供された潤滑油が吐出圧によってモータ室20a内に浸入する。さらに、第4軸受24の潤滑に供された潤滑油が構造上モータ室20a内に浸入する。これに対し、上記構成では、モータ室20aと接続室30aとが連通部32cにより連通しており、モータ室20aから排油する第1排油口25bと、接続室30aから排油する第2排油口32bとが設けられている。従って、モータ室20a内に浸入した潤滑油は、第1排油口25bと連通部32cとによってモータ室20a外に流出するため、モータ室20a内に溜まることなくオイルライン40f,40gを通じてオイルタンク41に戻される。このようにして、従来のオイルフリースクリュ圧縮機に見られるような潤滑油のモータ室20a内への浸入を防止するためのシール構造を設けることなく、モータ室20a内に油が溜まることを防止でき、モータ室20a内における潤滑油の撹拌抵抗によるモータ21の動力ロスを防止できる。 According to this configuration, as described above, the discharge port 15b is provided on the motor unit 20 side of the rotor casing 15 for the convenience of design. However, there is no seal structure for preventing the lubricating oil from entering the motor chamber 20a as found in a conventional oil-free screw compressor. Therefore, the lubricating oil used for lubricating the second and third bearings 14 and 23 enters the motor chamber 20a by the discharge pressure. Further, the lubricating oil used for lubricating the fourth bearing 24 structurally enters the motor chamber 20a. On the other hand, in the above configuration, the motor chamber 20a and the connection chamber 30a communicate with each other through the communication portion 32c, and the first oil drain port 25b that drains oil from the motor chamber 20a and the second oil that drains from the connection chamber 30a. An oil drain port 32b is provided. Accordingly, since the lubricating oil that has entered the motor chamber 20a flows out of the motor chamber 20a through the first oil outlet 25b and the communication portion 32c, the oil tank does not accumulate in the motor chamber 20a, and does not accumulate in the motor chamber 20a. Return to 41. In this way, oil is prevented from accumulating in the motor chamber 20a without providing a seal structure for preventing the lubricating oil from entering the motor chamber 20a as found in conventional oil-free screw compressors. In addition, the power loss of the motor 21 due to the stirring resistance of the lubricating oil in the motor chamber 20a can be prevented.
 また、連通部32cを設けたことで、第2軸受14と第3軸受23とで潤滑に供された潤滑油を1つの第2排油口32bから排油できるため、オイルタンク41に接続するオイルラインの数を減らすことができ、構造を簡素化できる。 Further, since the communication portion 32c is provided, the lubricating oil provided for lubrication by the second bearing 14 and the third bearing 23 can be drained from one second oil drain port 32b, and therefore connected to the oil tank 41. The number of oil lines can be reduced and the structure can be simplified.
 また、第3軸受23と第4軸受24とで潤滑に供した潤滑油をモータ室20aのモータ軸22における軸方向へ流出させているため、モータ軸22またはモータ室20aを、第3軸受23と第4軸受24とで潤滑に供した潤滑油で冷却できる。換言すれば、仮に第3軸受23と第4軸受24とで潤滑に供した潤滑油を接続室30a内に流入させると、モータ軸22等を直接的に冷却できず、潤滑油を有効利用できない。 Further, since the lubricating oil used for lubrication by the third bearing 23 and the fourth bearing 24 is caused to flow out in the axial direction of the motor shaft 22 of the motor chamber 20a, the motor shaft 22 or the motor chamber 20a is connected to the third bearing 23. And the fourth bearing 24 can be cooled with lubricating oil used for lubrication. In other words, if the lubricating oil provided for lubrication by the third bearing 23 and the fourth bearing 24 is caused to flow into the connection chamber 30a, the motor shaft 22 and the like cannot be directly cooled, and the lubricating oil cannot be effectively used. .
 また、ロータ軸12とモータ軸22との接続にディスク型のカップリング31を採用しているため、カップリング31への潤滑油の供給が不要である。また、カップリング31の取り付けおよび取り外しも容易であり、メンテナンスが容易である。 Further, since the disk-type coupling 31 is used for the connection between the rotor shaft 12 and the motor shaft 22, it is not necessary to supply lubricating oil to the coupling 31. Moreover, the attachment and removal of the coupling 31 are easy, and maintenance is easy.
(第2実施形態)
 図3は、第2実施形態のオイルフリースクリュ圧縮機1について示している。本実施形態において、第1実施形態と同じ構成要素には同じ符号を付して説明を省略する。
(Second Embodiment)
FIG. 3 shows the oil-free screw compressor 1 of the second embodiment. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 本実施形態では、連通部32cは、第2軸受14で潤滑に供された潤滑油を接続室30aからモータ室20aに流通させるものである。即ち、連通部32cでの潤滑油の流動方向が第1実施形態とは異なっている。ただし、第1実施形態と同様に連通部32cは単なる貫通孔であり、連通部32cにおける潤滑油の流動方向は、オイルポンプ43によって生じる流動圧力とオイルタンク41の内圧との差圧に従って規定されている。 In this embodiment, the communication part 32c distributes the lubricating oil provided for lubrication by the second bearing 14 from the connection chamber 30a to the motor chamber 20a. That is, the flow direction of the lubricating oil in the communication portion 32c is different from that in the first embodiment. However, as in the first embodiment, the communication portion 32 c is a simple through hole, and the flow direction of the lubricating oil in the communication portion 32 c is defined according to the differential pressure between the flow pressure generated by the oil pump 43 and the internal pressure of the oil tank 41. ing.
 また、本実施形態では、第1実施形態の第2排油口32b(図1参照)およびオイルライン40g(図1参照)に代わって、第3排油口(排油部)25cおよびオイルライン40hが設けられている。第3排油口25cは、モータケーシング25の底部かつ第3軸受23の付近に設けられており、第2軸受14と第3軸受23とで潤滑に供された潤滑油をモータ室20aから排油する。第3排油口25cは、オイルライン40hを通じてオイルタンク41と接続されている。 Moreover, in this embodiment, it replaces with the 2nd oil exhaust port 32b (refer FIG. 1) and the oil line 40g (refer FIG. 1) of 1st Embodiment, and the 3rd oil exhaust port (oil exhaust part) 25c and the oil line 40h is provided. The third oil discharge port 25c is provided in the bottom of the motor casing 25 and in the vicinity of the third bearing 23, and the lubricating oil provided for lubrication by the second bearing 14 and the third bearing 23 is discharged from the motor chamber 20a. Oil. The third oil discharge port 25c is connected to the oil tank 41 through the oil line 40h.
 本実施形態によれば、第2軸受14と第3軸受23とで潤滑に供された潤滑油を1つの第3排油口25cから排油できるため、オイルタンク41に接続するオイルラインの数を減らすことができ、構造を簡素化できる。 According to the present embodiment, since the lubricating oil provided for lubrication by the second bearing 14 and the third bearing 23 can be drained from one third drain port 25c, the number of oil lines connected to the oil tank 41 is increased. Can be reduced, and the structure can be simplified.
(第3実施形態)
 図4は、第3実施形態のオイルフリースクリュ圧縮機1について示している。本実施形態において、第1実施形態と同じ構成要素には同じ符号を付して説明を省略する。
(Third embodiment)
FIG. 4 shows the oil-free screw compressor 1 of the third embodiment. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 本実施形態では、第1実施形態と異なり、モータケーシング25に第1排油口25b(図1参照)およびオイルライン40f(図1参照)が設けられていない。即ち、モータ室20aからオイルタンク41に直接潤滑油を送ることはなく、モータ室20a内の潤滑油は全て連通部32cを通って接続室30aに流動する。そのため、本実施形態では、特に第4軸受24で潤滑に供された潤滑油を連通部32cまで誘導するための油誘導溝26aが形成されている。図4中の断面図に詳細を示すように、油誘導溝26aは、冷却ジャケット26の底部の内面および固定子21bの下部の外面に形成された溝である。油誘導溝26aが形成されていることで、連通部32cまで流動する潤滑油による撹拌抵抗が生じず、モータ21の動力ロスの発生を防止できる。なお、本実施形態では、油誘導溝26aは、冷却ジャケット26および固定子21bに形成されているが、冷却ジャケット26、モータケーシング25、または固定子21bのいずれに形成されていてもよい。 In this embodiment, unlike the first embodiment, the motor casing 25 is not provided with the first oil outlet 25b (see FIG. 1) and the oil line 40f (see FIG. 1). That is, the lubricating oil is not sent directly from the motor chamber 20a to the oil tank 41, and all the lubricating oil in the motor chamber 20a flows into the connection chamber 30a through the communication portion 32c. Therefore, in this embodiment, an oil guiding groove 26a for guiding the lubricating oil provided for lubrication by the fourth bearing 24 to the communicating portion 32c is formed. As shown in detail in the cross-sectional view of FIG. 4, the oil guide groove 26a is a groove formed on the inner surface of the bottom of the cooling jacket 26 and the outer surface of the lower portion of the stator 21b. By forming the oil guide groove 26a, the stirring resistance due to the lubricating oil flowing to the communication portion 32c does not occur, and the power loss of the motor 21 can be prevented. In the present embodiment, the oil guide groove 26a is formed in the cooling jacket 26 and the stator 21b, but may be formed in any of the cooling jacket 26, the motor casing 25, and the stator 21b.
 接続ケーシング32の底部には、第2軸受14,第3軸受23および第4軸受24で潤滑に供された潤滑油を接続室30aから排油する第4排油口(排油部)32dおよびオイルライン40iが設けられている。第4排油口32dは、オイルライン40iを通じてオイルタンク41と接続されている。 At the bottom of the connection casing 32, a fourth oil discharge port (oil discharge portion) 32d for discharging the lubricating oil provided for lubrication by the second bearing 14, the third bearing 23 and the fourth bearing 24 from the connection chamber 30a; An oil line 40i is provided. The fourth oil discharge port 32d is connected to the oil tank 41 through the oil line 40i.
 本実施形態によれば、第2軸受14,第3軸受23および第4軸受24で潤滑に供された潤滑油を1つの第4排油口32dから排油しているため、オイルタンク41に接続するオイルラインの数を減らすことができ、構造を簡素化できる。さらに、オイルタンク41に接続するオイルラインの数の減少に伴い、第1,第2実施形態に比べてオイルタンク41を小型化できる。 According to the present embodiment, since the lubricating oil provided for lubrication by the second bearing 14, the third bearing 23, and the fourth bearing 24 is drained from one fourth drain port 32d, the oil tank 41 The number of oil lines to be connected can be reduced, and the structure can be simplified. Furthermore, as the number of oil lines connected to the oil tank 41 decreases, the oil tank 41 can be reduced in size compared to the first and second embodiments.
(第4実施形態)
 図5は、第4実施形態のオイルフリースクリュ圧縮機1について示している。本実施形態において、第3実施形態と同じ構成要素には同じ符号を付して説明を省略する。
(Fourth embodiment)
FIG. 5 shows an oil-free screw compressor 1 according to the fourth embodiment. In the present embodiment, the same components as those in the third embodiment are denoted by the same reference numerals and description thereof is omitted.
 本実施形態では、第3実施形態と異なり、接続ケーシング32には第4排油口32d(図4参照)およびオイルライン40i(図4参照)が設けられておらず、モータケーシング25の底部に第2軸受14,第3軸受23および第4軸受24で潤滑に供された潤滑油をモータ室20aから排油する第5排油口(排油部)25dおよびオイルライン40jが設けられている。第5排油口25dは、オイルライン40jを通じてオイルタンク41と接続されている。即ち、接続室30aからオイルタンク41に直接潤滑油を送ることはなく、接続室30a内の潤滑油は連通部32cを通ってモータ室20aに流動する。 In the present embodiment, unlike the third embodiment, the connection casing 32 is not provided with the fourth oil outlet 32d (see FIG. 4) and the oil line 40i (see FIG. 4), and the bottom of the motor casing 25 is not provided. A fifth oil discharge port (oil discharge portion) 25d and an oil line 40j are provided for discharging the lubricant used for lubrication by the second bearing 14, the third bearing 23, and the fourth bearing 24 from the motor chamber 20a. . The fifth oil discharge port 25d is connected to the oil tank 41 through the oil line 40j. That is, the lubricating oil is not sent directly from the connection chamber 30a to the oil tank 41, and the lubricating oil in the connection chamber 30a flows to the motor chamber 20a through the communication portion 32c.
 本実施形態の効果は、第3実施形態と同様である。 The effect of this embodiment is the same as that of the third embodiment.
 以上より、本発明の具体的な実施形態およびその変形例について説明したが、本発明は上記形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。例えば、個々の実施形態の内容を適宜組み合わせたものを、この発明の一実施形態としてもよい。 As described above, specific embodiments of the present invention and modifications thereof have been described. However, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the present invention. For example, what combined suitably the content of each embodiment is good also as one Embodiment of this invention.
  1 オイルフリースクリュ圧縮機
  10 圧縮部
  10a ロータ室
  11 スクリュロータ
  12 ロータ軸
  13 第1軸受
  13a ころ軸受
  13b 玉軸受
  14 第2軸受
  14a ころ軸受
  14b 玉軸受
  15 ロータケーシング
  15a 吸込口
  15b 吐出口
  15c 給油路
  16 タイミングギヤ
  17 開口部
  20 モータ部
  20a モータ室
  21 モータ
  21a 回転子
  21b 固定子
  22 モータ軸
  23 第3軸受
  23a 玉軸受
  24 第4軸受
  24a 玉軸受
  25 モータケーシング
  25a 給油路
  25b 第1排油口(排油部)
  25c 第3排油口(排油部)
  25d 第5排油口(排油部)
  26 冷却ジャケット
  26a 油誘導溝
  30 接続部
  30a 接続室
  31 カップリング
  31a,31b ハブ部
  31c,31d 板バネ
  31e スペーサ
  32 接続ケーシング
  32a 給油路
  32b 第2排油口(排油部)
  32c 連通部
  32d 第4排油口(排油部)
  40a~40j オイルライン
  41 オイルタンク
  42 オイルクーラ
  43 オイルポンプ
DESCRIPTION OF SYMBOLS 1 Oil free screw compressor 10 Compression part 10a Rotor chamber 11 Screw rotor 12 Rotor shaft 13 1st bearing 13a Roller bearing 13b Ball bearing 14 2nd bearing 14a Roller bearing 14b Ball bearing 15 Rotor casing 15a Suction port 15b Discharge port 15c Oil supply path 16 Timing gear 17 Opening portion 20 Motor portion 20a Motor chamber 21 Motor 21a Rotor 21b Stator 22 Motor shaft 23 Third bearing 23a Ball bearing 24 Fourth bearing 24a Ball bearing 25 Motor casing 25a Oil passage 25b First oil outlet ( Oil draining part)
25c 3rd oil exhaust port (oil exhaust part)
25d 5th oil discharge port (oil discharge part)
26 Cooling jacket 26a Oil guide groove 30 Connection portion 30a Connection chamber 31 Coupling 31a, 31b Hub portion 31c, 31d Leaf spring 31e Spacer 32 Connection casing 32a Oil supply path 32b Second oil discharge port (oil discharge portion)
32c communication part 32d 4th oil drain port (oil drain part)
40a to 40j Oil line 41 Oil tank 42 Oil cooler 43 Oil pump

Claims (7)

  1.  ロータ軸を有し、前記ロータ軸の両端部が第1軸受と第2軸受とで支持されたスクリュロータと、
     モータ軸を有し、前記モータ軸の両端部が第3軸受と第4軸受とで支持され、前記スクリュロータを回転させるモータと、
     前記スクリュロータが収容されたロータ室を画定し、前記モータ側に吐出口が設けられたロータケーシングと、
     前記モータが収容されたモータ室を画定し、前記ロータケーシングと一体的に接続されたモータケーシングと、
     前記ロータ室と前記モータ室との間に設けられ、内部で前記ロータ軸と前記モータ軸とが機械的に接続されている接続室と、
     前記モータ室と前記接続室とを連通している連通部と、
     前記モータ室および前記接続室の少なくとも一方から排油する排油部と、
     潤滑油を溜めるオイルタンクと、前記潤滑油を冷却するオイルクーラと、オイルポンプとが設けられており、前記オイルポンプにより前記潤滑油を流動させ、前記オイルタンクから前記第2軸受と前記第3軸受と前記第4軸受とに対して前記潤滑油を供給し、前記排油部を通じて前記オイルタンクに前記潤滑油を戻すように強制循環させているオイルラインと
     を備える、オイルフリースクリュ圧縮機。
    A screw rotor having a rotor shaft, wherein both ends of the rotor shaft are supported by a first bearing and a second bearing;
    A motor having a motor shaft, both ends of the motor shaft being supported by a third bearing and a fourth bearing, and a motor for rotating the screw rotor;
    A rotor casing that defines a rotor chamber in which the screw rotor is housed, and a discharge port provided on the motor side;
    A motor casing defining a motor chamber in which the motor is housed and integrally connected to the rotor casing;
    A connection chamber provided between the rotor chamber and the motor chamber, in which the rotor shaft and the motor shaft are mechanically connected;
    A communication portion communicating the motor chamber and the connection chamber;
    An oil discharger for discharging oil from at least one of the motor chamber and the connection chamber;
    An oil tank for storing lubricating oil, an oil cooler for cooling the lubricating oil, and an oil pump are provided. The lubricating oil is caused to flow by the oil pump, and the second bearing and the third oil are discharged from the oil tank. An oil-free screw compressor, comprising: an oil line that supplies the lubricating oil to the bearing and the fourth bearing and forcibly circulates the lubricating oil back to the oil tank through the oil drain.
  2.  前記連通部は、前記第3軸受で潤滑に供された前記潤滑油を前記モータ室から前記接続室に流通させるものであり、
     前記排油部は、前記第4軸受で潤滑に供された前記潤滑油を前記モータ室から排油する第1排油口と、前記第2軸受と前記第3軸受とで潤滑に供された前記潤滑油を前記接続室から排油する第2排油口とを有する、請求項1に記載のオイルフリースクリュ圧縮機。
    The communication part is configured to flow the lubricating oil provided for lubrication by the third bearing from the motor chamber to the connection chamber,
    The oil drainage portion was lubricated by a first oil drain port for draining the lubricant oil lubricated by the fourth bearing from the motor chamber, the second bearing, and the third bearing. The oil-free screw compressor according to claim 1, further comprising a second oil discharge port that discharges the lubricating oil from the connection chamber.
  3.  前記連通部は、前記第2軸受で潤滑に供された前記潤滑油を前記接続室から前記モータ室に流通させるものであり、
     前記排油部は、前記第4軸受で潤滑に供された前記潤滑油を前記モータ室から排油する第1排油口と、前記第2軸受と前記第3軸受とで潤滑に供された前記潤滑油を前記モータ室から排油する第3排油口とを有する、請求項1に記載のオイルフリースクリュ圧縮機。
    The communication part is configured to circulate the lubricating oil provided for lubrication by the second bearing from the connection chamber to the motor chamber.
    The oil drainage portion was lubricated by a first oil drain port for draining the lubricant oil lubricated by the fourth bearing from the motor chamber, the second bearing, and the third bearing. The oil-free screw compressor according to claim 1, further comprising a third oil discharge port that discharges the lubricating oil from the motor chamber.
  4.  前記連通部は、前記第3軸受と前記第4軸受とで潤滑に供された前記潤滑油を前記モータ室から前記接続室に流通させるものであり、
     前記排油部は、前記第2軸受と前記第3軸受と前記第4軸受とで潤滑に供された前記潤滑油を前記接続室から排油する第4排油口を有する、請求項1に記載のオイルフリースクリュ圧縮機。
    The communication part is configured to circulate the lubricating oil provided for lubrication in the third bearing and the fourth bearing from the motor chamber to the connection chamber,
    2. The oil drainage portion according to claim 1, wherein the oil drainage portion includes a fourth oil drainage port that drains the lubricant oil lubricated by the second bearing, the third bearing, and the fourth bearing from the connection chamber. The oil-free screw compressor described.
  5.  前記連通部は、前記第2軸受と前記第3軸受とで潤滑に供された前記潤滑油を前記接続室から前記モータ室に流通させるものであり、
     前記排油部は、前記第2軸受と前記第3軸受と前記第4軸受とで潤滑に供された前記潤滑油を前記モータ室から排油する第5排油口を有する、請求項1に記載のオイルフリースクリュ圧縮機。
    The communication part is configured to circulate the lubricating oil provided for lubrication in the second bearing and the third bearing from the connection chamber to the motor chamber,
    2. The oil drainage portion according to claim 1, wherein the oil drainage portion includes a fifth oil drainage port that drains the lubricant oil lubricated by the second bearing, the third bearing, and the fourth bearing from the motor chamber. The oil-free screw compressor described.
  6.  前記第3軸受および前記第4軸受は、共に開放形の軸受であり、前記第3軸受と前記第4軸受とで潤滑に供した前記潤滑油を前記モータ軸方向へ流動させ、前記モータ室内に流入させる、請求項1から請求項5のいずれか1項に記載のオイルフリースクリュ圧縮機。 The third bearing and the fourth bearing are both open-type bearings, and the lubricating oil used for lubrication by the third bearing and the fourth bearing is caused to flow in the motor axial direction to enter the motor chamber. The oil-free screw compressor according to any one of claims 1 to 5, wherein the oil-free screw compressor is allowed to flow.
  7.  前記モータ軸および前記ロータ軸は、ディスク型カップリングによって機械的に接続されている、請求項1から請求項5のいずれか1項に記載のオイルフリースクリュ圧縮機。 The oil-free screw compressor according to any one of claims 1 to 5, wherein the motor shaft and the rotor shaft are mechanically connected by a disk-type coupling.
PCT/JP2017/035651 2016-10-25 2017-09-29 Oil-free screw compressor WO2018079196A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780065618.8A CN109844320B (en) 2016-10-25 2017-09-29 Oil-free screw compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-208903 2016-10-25
JP2016208903A JP6778581B2 (en) 2016-10-25 2016-10-25 Oil-free screw compressor

Publications (1)

Publication Number Publication Date
WO2018079196A1 true WO2018079196A1 (en) 2018-05-03

Family

ID=62024731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035651 WO2018079196A1 (en) 2016-10-25 2017-09-29 Oil-free screw compressor

Country Status (4)

Country Link
JP (1) JP6778581B2 (en)
CN (1) CN109844320B (en)
TW (1) TWI649499B (en)
WO (1) WO2018079196A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023016737A1 (en) * 2021-08-12 2023-02-16 Atlas Copco Airpower, Naamloze Vennootschap Compressor assembly comprising a motor driving one or more compressor rotors and method for fabricating a housing part of such a compressor assembly.
BE1029623B1 (en) * 2021-08-12 2023-05-11 Atlas Copco Airpower Nv COMPRESSOR ASSEMBLY CONTAINING A MOTOR DRIVING ONE OR MORE COMPRESSOR ROTORS AND METHOD OF MANUFACTURING PART OF A HOUSING OF SUCH COMPRESSOR ASSEMBLY
WO2023187500A1 (en) * 2022-03-30 2023-10-05 Atlas Copco Airpower, Naamloze Vennootschap Compressor assembly comprising a motor driving one or more compressor rotors
US20240084803A1 (en) * 2022-09-13 2024-03-14 Mahle International Gmbh Electric compressor bearing oil communication aperture

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145695U (en) * 1989-05-12 1990-12-11
JPH0443891A (en) * 1990-06-08 1992-02-13 Hitachi Ltd Screw fluid machine and multistage screw fluid machine
JP2004044606A (en) * 2003-11-10 2004-02-12 Hitachi Industrial Equipment Systems Co Ltd Oil-free screw compressor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3456090B2 (en) * 1996-05-14 2003-10-14 北越工業株式会社 Oil-cooled screw compressor
JP4102891B2 (en) * 2003-01-31 2008-06-18 株式会社日立製作所 Screw compressor
CN1570388A (en) * 2004-04-29 2005-01-26 兰州理工大学 Oil-free lubrication whirlpool compressor
CN101218433B (en) * 2005-06-29 2012-11-07 株式会社前川制作所 Oil supply method and device for two-stage screw compressor, and method of operating refrigeration device
JP4431184B2 (en) * 2008-06-13 2010-03-10 株式会社神戸製鋼所 Screw compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145695U (en) * 1989-05-12 1990-12-11
JPH0443891A (en) * 1990-06-08 1992-02-13 Hitachi Ltd Screw fluid machine and multistage screw fluid machine
JP2004044606A (en) * 2003-11-10 2004-02-12 Hitachi Industrial Equipment Systems Co Ltd Oil-free screw compressor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023016737A1 (en) * 2021-08-12 2023-02-16 Atlas Copco Airpower, Naamloze Vennootschap Compressor assembly comprising a motor driving one or more compressor rotors and method for fabricating a housing part of such a compressor assembly.
BE1029623B1 (en) * 2021-08-12 2023-05-11 Atlas Copco Airpower Nv COMPRESSOR ASSEMBLY CONTAINING A MOTOR DRIVING ONE OR MORE COMPRESSOR ROTORS AND METHOD OF MANUFACTURING PART OF A HOUSING OF SUCH COMPRESSOR ASSEMBLY
WO2023187500A1 (en) * 2022-03-30 2023-10-05 Atlas Copco Airpower, Naamloze Vennootschap Compressor assembly comprising a motor driving one or more compressor rotors
BE1030409B1 (en) * 2022-03-30 2023-10-30 Atlas Copco Airpower Nv Compressor assembly containing a motor that drives one or more compressor rotors
US20240084803A1 (en) * 2022-09-13 2024-03-14 Mahle International Gmbh Electric compressor bearing oil communication aperture
US11994130B2 (en) * 2022-09-13 2024-05-28 Mahle International Gmbh Electric compressor bearing oil communication aperture

Also Published As

Publication number Publication date
JP2018071373A (en) 2018-05-10
TWI649499B (en) 2019-02-01
JP6778581B2 (en) 2020-11-04
CN109844320B (en) 2020-07-14
TW201827713A (en) 2018-08-01
CN109844320A (en) 2019-06-04

Similar Documents

Publication Publication Date Title
WO2018079196A1 (en) Oil-free screw compressor
CN109790914B (en) Vehicle drive device
US7413419B2 (en) Water-injected screw compressor
RU2587015C2 (en) Screw compressor
JP5197141B2 (en) Two-stage screw compressor and refrigeration system
KR20170068403A (en) Electric-motor-driven liquid pump
AU2002244545A1 (en) Water-injected screw compressor
JP5802172B2 (en) Oil-free air compressor
JP7347074B2 (en) motor unit
JP5167201B2 (en) Screw compressor
JP2012163068A (en) Water injection type screw compressor
KR20180110044A (en) Screw compressor
JP2020133632A (en) Cooling lubrication system with dry sump
US7465158B2 (en) Reduction gear pump
JP2016200058A (en) Oil supply type displacement compressor
JP2017066935A (en) Screw compressor
JP5334801B2 (en) Two-stage screw compressor and refrigeration system
BE1016596A3 (en) Compressor comprises compressor unit itself, 2 or 4 pole meter, housing, flange, which motor has output shaft located in flange
JP4237793B2 (en) Cover plate for crankcase
US6685453B2 (en) Fluid transfer machine with drive shaft lubrication and cooling
CN212985526U (en) Engine and rotor oil pump thereof
JP7278248B2 (en) transaxle
JP2019039387A (en) Oil-cooled two-stage screw compressor
CN208885921U (en) Electric bridge retarder and vehicle
JP2009044834A (en) Oil-spillage suppressing structure of main motor for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17865532

Country of ref document: EP

Kind code of ref document: A1