WO2018079141A1 - Heat-dissipating structure and onboard power supply device using same - Google Patents

Heat-dissipating structure and onboard power supply device using same Download PDF

Info

Publication number
WO2018079141A1
WO2018079141A1 PCT/JP2017/034039 JP2017034039W WO2018079141A1 WO 2018079141 A1 WO2018079141 A1 WO 2018079141A1 JP 2017034039 W JP2017034039 W JP 2017034039W WO 2018079141 A1 WO2018079141 A1 WO 2018079141A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
housing
generating component
heat dissipation
dissipation structure
Prior art date
Application number
PCT/JP2017/034039
Other languages
French (fr)
Japanese (ja)
Inventor
篤史 一瀬
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to DE112017005354.4T priority Critical patent/DE112017005354T5/en
Priority to CN201790001328.2U priority patent/CN209692641U/en
Publication of WO2018079141A1 publication Critical patent/WO2018079141A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20409Outer radiating structures on heat dissipating housings, e.g. fins integrated with the housing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20909Forced ventilation, e.g. on heat dissipaters coupled to components
    • H05K7/20918Forced ventilation, e.g. on heat dissipaters coupled to components the components being isolated from air flow, e.g. hollow heat sinks, wind tunnels or funnels

Definitions

  • the present disclosure relates to a heat dissipation structure and an in-vehicle power supply device.
  • Patent Document 1 discloses a heat dissipation structure for effectively cooling an inverter device and a charging device using cooling water.
  • an electric vehicle for example, a micro electric vehicle (EV), an electric commuter
  • a vehicle that does not include cooling water because an engine is not used.
  • a heat dissipation structure using cooling water as in Patent Document 1 it is necessary to separately provide a cooling water facility, which not only leads to an increase in cost but also affects the shape of the vehicle body. Squeeze the indoor space.
  • This disclosure provides a heat dissipation structure and an in-vehicle power supply device that can realize good heat dissipation characteristics without using cooling water.
  • the heat dissipation structure of the present disclosure includes a first casing, a second casing, at least one of a first radiating fin and a second radiating fin, and a connecting portion.
  • the first housing stores the first heat generating component
  • the second housing stores the second heat generating component.
  • the first heat radiating fin is provided on the outer surface of the first housing
  • the second heat radiating fin is provided on the outer surface of the second housing.
  • the connection part thermally couples the first housing and the second housing via at least one of the first heat radiation fin and the second heat radiation fin.
  • FIG. 1 is a plan view of the heat dissipation structure shown in FIG.
  • movement of the thermal radiation structure shown in FIG. The figure which shows typically the heat dissipation structure which concerns on the modification 1 of 1st Embodiment.
  • FIG. 1 is a perspective view of the heat dissipation structure as viewed from above.
  • FIG. 2 is a perspective view of the heat dissipation structure as viewed from below.
  • FIG. 3 is a side view of the heat dissipation structure.
  • FIG. 4 is a plan view of the heat dissipation structure at a position between the housing 2a and the housing 2b.
  • the right figure of FIG. 3 is the figure which expanded the area
  • the heat dissipation structure according to the present embodiment is applied to, for example, an in-vehicle power supply device, and is used to dissipate heat generated by a power supply circuit such as an inverter device or a charging device to the outside.
  • a power supply circuit such as an inverter device or a charging device to the outside.
  • the power supply device includes a housing 2a that stores the heat generating component 1a and a housing 2b that stores the heat generating component 1b.
  • the power supply device which concerns on this embodiment has the radiation fins 3a and 3b, the connection parts 4a and 4b, and the fan 5 as a structure for radiating the heat
  • at least one of the heat generating components 1a and 1b corresponds to a power supply circuit.
  • the heat generating component 1a, the heat radiating fin 3a, and the connecting portion 4a are provided in the upper housing 2a, and the heat generating component 1b, the heat radiating fin 3b, and the connecting portion 4b are provided in the lower housing 2b.
  • the housing 2a and the housing 2b may be arranged on the left and right instead of being arranged on the top and bottom.
  • the heat generating component 1a is a heating element housed in the upper casing 2a
  • the heating component 1b is a heating element stored in the lower casing 2b.
  • a heat generating component that performs mutual exclusive operation represents that there is no state in which both operate simultaneously; the same applies hereinafter
  • a heat generating component that generates a different amount of heat It is desirable that a combination be applied.
  • Examples of the combination of the heat generating components 1a and 1b that perform the exclusive operation include an inverter device and a charging device (hereinafter also referred to as “inverter device 1a” and “charging device 1b”).
  • the inverter device 1a is a power supply circuit for supplying electric power from a vehicle-mounted battery (not shown) to the motor, and has a large heat generation amount in a power element that controls electric power.
  • the charging device 1b is a power supply circuit for charging an in-vehicle battery from an external commercial power supply or the like, and has a large heat generation amount in a power element or a reactor that controls electric power.
  • the inverter device 1a is a power circuit that operates mainly during vehicle travel
  • the charging device 1b is a power circuit that operates mainly during charging when the vehicle is stopped. That is, both have an exclusive operation.
  • the heat generating components 1a and 1b may be other combinations such as an inverter device and a DCDC converter device. Further, both the heat generating components 1a and 1b do not necessarily have to be power circuits, and either one may be a power circuit, and the other may be a heat generating component other than the power circuit such as a motor.
  • the housings 2a and 2b are housed in a sealed state in order to protect the electrical devices (inverter device, charging device, electronic device, etc.) to be stored from surrounding moisture and the like (in FIGS. 1 and 2) For convenience of explanation, a part of the wall surface is omitted).
  • These electric devices may be the heat generating components 1a and 1b themselves, or may be other electronic devices or the like housed together with the heat generating components 1a and 1b.
  • the housing 2a and the housing 2b are arranged adjacent to each other in the vertical direction. And the housing
  • At least the wall surface on the side where the radiation fins 3a and 3b are formed is made of a member having high thermal conductivity (for example, aluminum material). Further, the heat generating components 1a and 1b are arranged so that at least a part thereof contacts these wall surfaces. As a result, the heat generated by the heat generating components 1a and 1b is transmitted from the wall surfaces of the housings 2a and 2b to the heat radiation fins 3a and 3b, and is radiated to the outside.
  • a member having high thermal conductivity for example, aluminum material
  • the casings 2a and 2b and the radiation fins 3a and 3b are integrally formed by die casting.
  • the heat radiation fin by which extrusion molding was carried out is separately installed in a housing
  • the interval (fin pitch) between the protrusions of the heat radiating fins finer it is difficult to make the interval (fin pitch) between the protrusions of the heat radiating fins finer, and the heat radiating performance is inferior compared to extrusion molding.
  • the housing 2a and the housing 2b are arranged so that the heat dissipating fins 3a of the housing 2a and the heat dissipating fins 3b of the housing 2b are alternately arranged, and the heat dissipating fins 3a of the housing 2a are disposed in the housing.
  • the heat dissipating fins 3b of the housing 2b are in contact with the housing 2a in contact with the body 2b.
  • the upper radiating fins 3a are formed on the outer surface of the housing 2a, and the lower radiating fins 3b are formed on the outer surface of the housing 2b.
  • the heat radiating fins 3a and 3b integrally dissipate heat generated by the heat generating components 1a and 1b to the outside.
  • the upper radiating fin 3a is formed by a plurality of protrusions formed on the lower surface of the upper casing 2a.
  • the protrusions of the heat radiating fins 3a extend to a position where they contact the upper surface of the lower housing 2b, and are thermally coupled to the housing 2b through the connection portions 4a.
  • the lower radiating fin 3b is formed by a plurality of protrusions formed on the upper surface of the lower casing 2b.
  • the protrusions of the heat radiating fins 3b extend to a position where they contact the lower surface of the lower housing 2a, and are thermally coupled to the housing 2a via the connecting portions 4b.
  • the protrusions of the upper radiating fins 3a and the protrusions of the lower radiating fins 3b are arranged so as to be alternately combined in a state of being separated from each other (see FIG. 4). Further, the protrusions of the upper radiating fins 3 a and the protrusions of the lower radiating fins 3 b both have a plate shape, and are arranged in parallel so that the longitudinal plate surface is along the blowing direction of the fan 5. ing.
  • the radiating fins 3a and 3b may have other shapes such as a pin shape instead of the plate shape.
  • the projections of the heat radiating fins 3a and 3b have other shapes, similarly, it is desirable to arrange them so as to be alternately combined in a state of being separated from each other.
  • the heat radiation fins 3a and 3b are both formed integrally with the housings 2a and 2b by die casting. As a result, the strength and sealing performance of the housings 2a and 2b are ensured, and the housing 2a and the radiation fins 3a can be integrally molded, and the housing 2b and the radiation fins 3b can be integrally molded. In addition, the manufacturing process for forming the housings 2a and 2b and the radiation fins 3a and 3b can be simplified.
  • the radiating fins 3a and 3b are formed of an aluminum material or the like, similarly to the casings 2a and 2b.
  • the connecting portion 4a thermally couples the upper radiating fin 3a and the lower casing 2b. Further, the connecting portion 4b thermally couples the lower radiating fin 3b and the upper casing 2a.
  • the connecting portion 4a is provided at the tip of the upper radiating fin 3a, and connects the upper radiating fin 3a and the outer surface of the lower casing 2b.
  • the connecting portion 4b is provided at the tip of the lower radiating fin 3b, and connects the lower radiating fin 3b and the outer surface of the upper casing 2a.
  • the connecting portions 4a and 4b connect the members using, for example, soldering, welding, a heat radiation adhesive, aluminum brazing, or the like so that heat conduction between the members is performed satisfactorily.
  • connection portions 4a and 4b those having a high thermal conductivity are particularly desirable.
  • the connecting portions 4a and 4b may be configured to connect the radiating fins 3a and the radiating fins 3b instead of connecting the tips of the radiating fins 3a and 3b and the outer surfaces of the housings 2a and 2b.
  • the fan 5 is attached to the outside of the housings 2a and 2b, and blows air toward the position where the radiation fins 3a and 3b are provided. More specifically, the fan 5 blows air along the longitudinal direction of the plate-like heat radiation fins 3a and 3b.
  • the fan 5 blows air along the longitudinal direction of the plate-like heat radiation fins 3a and 3b.
  • heat exchange between the heat radiation fins 3a and 3b and the air is promoted to improve heat radiation characteristics. If the coolant is used, the solder material and heat-dissipating adhesive of the connecting portions 4a and 4b are dissolved in the coolant, resulting in poor heat transfer between the members, debris is generated, and the coolant is There is a risk of falling into a bad state.
  • the fan 5 is not limited to the blower fan but may be a suction fan.
  • the fan 5 can be omitted when sufficient heat dissipation characteristics can be obtained even by natural convection, such as when the power supply device is disposed at a position where air flowing through the vehicle hits.
  • Heat dissipation of power supply The present inventors have intensively studied in order to realize good heat dissipation characteristics and downsizing, and the heat generating component 1a and the heat generating component 1b such as an inverter device and a charging device mounted on a vehicle are not necessarily operated simultaneously. In addition, the heat generating component 1a and the heat generating component 1b pay attention to the point that they do not emit the same amount of heat, and have arrived at the heat dissipation structure described above.
  • 5 and 6 are diagrams for explaining the heat radiation operation of the power supply device.
  • FIG. 5 is a diagram for explaining an example of the heat radiation operation while the vehicle is running. While the vehicle is running, the inverter device 1a operates to supply power to the motor, while the charging device 1b does not operate. Therefore, only the inverter device 1a is in a state of generating heat.
  • the heat generated by the inverter device 1a is radiated to the outside through the bottom surface of the upper casing 2a and the heat radiation fins 3a. Further, since the upper casing 2a is hotter than the lower radiating fins 3b, the heat generated by the inverter device 1a is simultaneously applied to the lower radiating fins 3b via the connecting portions 4b. Communicated. In addition, the arrow in FIG. 5 represents the heat flow at this time.
  • the heat generated by the inverter device 1a is radiated to the outside from both the upper radiating fins 3a and the lower radiating fins 3b.
  • the surface area for dissipating the heat generated by the inverter device 1a is larger than in the case where heat is radiated only from the upper radiating fins 3a, and the amount of heat that can be radiated per unit time is also increased.
  • FIG. 6 is a diagram illustrating an example of a heat radiation operation during charging when the vehicle is stopped.
  • the charging device 1b operates while the inverter device 1a does not operate. Therefore, only the charging device 1b is in a state of generating heat.
  • the heat generated by the charging device 1b is radiated to the outside through the upper surface of the lower housing 2b and the radiation fins 3b. Further, since the lower casing 2b is in a higher temperature than the upper radiating fins 3a, the heat generated by the charging device 1b is simultaneously applied to the upper radiating fins 3a via the connecting portions 4a. introduce. In addition, the arrow in FIG. 6 represents the heat flow at this time.
  • the heat generated by the charging device 1b is radiated from both the upper radiating fin 3a and the lower radiating fin 3b.
  • the surface area for dissipating the heat generated by the charging device 1b is larger than in the case where heat is radiated only from the lower radiating fins 3b, and the amount of heat radiated per unit time is also increased.
  • connection parts 4a and 4b originates in the speed of the heat transfer between metals being very large compared with the speed of the heat transfer between a metal and air. . Therefore, if the connection portions 4a and 4b are not provided, a gap is formed between the outer surface of the housing 2a and the heat radiating fins 3b or between the outer surface of the housing 2b and the heat radiating fins 3a. As a result, the speed at which heat is transferred from the housing 2a to the lower radiating fin 3b or the speed at which heat is transferred from the housing 2b to the upper radiating fin 3a is considerably reduced, and good heat dissipation characteristics are obtained. It will be in an unobtainable state.
  • the above-described effects can be obtained even when the heat generation components 1a and 1b have different heat generation amounts or the heat dissipation fins 3a and 3b, even if the heat generation components that perform the exclusive operation like the inverter device 1a and the charging device 1b are not combined. If the heat dissipating power is different, it can also be exerted on those that generate heat at the same time.
  • the heat generating component 1a is an inverter device and the heat generating component 1b is a battery
  • the inverter device and the battery generate heat at the same time.
  • the heat generation amount of the battery is small, the heat generated by the inverter device is radiated downward on the battery side. It transmits to the fin 3b.
  • the heat generated by the inverter device is radiated from both the upper side radiating fins 3a and the lower side radiating fins 3b, and good heat radiating characteristics can be ensured.
  • the heat dissipating structure thermally couples the upper heat dissipating fins 3a and the lower housing 2b via the connecting portions 4a and also lowers them via the connecting portions 4b.
  • the heat radiation fins 3b on the side and the housing 2a on the upper side are thermally coupled. Therefore, the heat generated by the heat generating components 1a and 1b is distributed to the heat radiating fins 3a and the heat radiating fins 3b and radiated from both. As a result, the heat dissipation characteristics of the power supply device as a whole can be improved.
  • the protrusions of the upper heat dissipating fins 3a and the protrusions of the lower heat dissipating fins 3b are alternately combined in a state where at least some of them are separated from each other. It is arranged so that.
  • the air blown from the fan 5 can be made to flow smoothly, and the density of the number of protrusions of the heat radiation fins 3a and 3b can be increased, so that downsizing and improvement of heat radiation characteristics can be achieved.
  • the radiating fins 3a and 3b according to the present embodiment are formed by die casting, there is a limit to downsizing the radiating fins and reducing the fin pitch. In this respect, with the above-described configuration, it is possible to configure a heat dissipation structure that is small and has excellent heat dissipation characteristics.
  • the heat dissipation structure according to the present embodiment employs air cooling, cooling equipment such as a cooling water circulation circuit and a circulation pump is unnecessary, and space saving and cost reduction can be achieved.
  • connection portion 4a and the connection portion 4b are used to thermally couple the two casings 2a and 2b.
  • the connection portion 4a and the connection portion 4b are used to thermally couple the two casings 2a and 2b.
  • a heat radiating fin and a connecting portion may be provided for the housing.
  • the heat dissipation characteristics can be further improved while ensuring the degree of freedom of design.
  • the upper radiating fin 3a is thermally coupled to the outer surface of the housing 2b via the connecting portion 4a
  • the lower radiating fin 3b is connected to the outer surface of the housing 2a via the connecting portion 4b.
  • the embodiment is shown in which it is thermally coupled with.
  • the heat radiating structure for sharing the heat radiating fins between the housing 2a and the housing 2b may be in another form.
  • FIG. 7 is a diagram schematically showing a heat dissipation structure according to the first modification.
  • FIG. 7 shows a side sectional view of the heat dissipation structure.
  • the heat dissipating structure according to Modification 1 is different from the above embodiment in that the heat dissipating fins 3a and the heat dissipating fins 3b are connected via the connecting portions 4c.
  • description is abbreviate
  • the radiating fin 3a and the radiating fin 3b are disposed so as to face each other, as in the above-described embodiment, and the tip end portion of the radiating fin 3a and the tip end portion of the radiating fin 3b define the connection portion 4c. It is the structure connected via. In other words, the connection portion 4c thermally couples the heat radiating fins 3a and the heat radiating fins 3b.
  • heat transfer occurs between the heat radiating fins 3a and the heat radiating fins 3b, and heat generated by the heat generating components 1a and 1b can be integrally dissipated to the outside.
  • This configuration is suitable, for example, when the housing 2a and the housing 2b are separated to some extent.
  • FIG. 8 is a diagram schematically illustrating a heat dissipation structure according to the second modification.
  • FIG. 8 shows a side sectional view of the heat dissipation structure.
  • the heat dissipating structure according to Modification 2 is different from the above embodiment in that the heat dissipating fins are formed only on one of the housings 2a and 2b.
  • the case 2a has the heat radiating fins 3a, and the heat radiating fins 3a are thermally coupled to the case 2b via the connecting portions 4a, as in the above embodiment.
  • the housing 2b has a configuration that does not have heat radiating fins.
  • the heat dissipating structure according to the present embodiment is different from the first embodiment in that it has a conducting portion 7 and an opening portion 8 for conducting the conductive wire 6 between the housing 2a and the housing 2b. Note that a description of the same configuration as in the first embodiment is omitted.
  • FIG. 9 is a view of the housing 2a of the heat dissipation structure according to the present embodiment as viewed from above.
  • FIG. 10 is a view of the housing 2b of the heat dissipation structure according to the present embodiment as viewed from below.
  • FIG. 11 is a side view of the heat dissipation structure according to the present embodiment.
  • FIG. 12 is a diagram schematically showing a cross-sectional side view of the heat dissipation structure according to the present embodiment.
  • an electric circuit including the heat generating component 1a accommodated in the housing 2a (hereinafter also referred to as “electric circuit 1a”) and an electric circuit including the heat generating component 1b accommodated in the housing 2b (hereinafter referred to as “electrical”).
  • the circuit 1b “is also electrically connected by a conductive line 6 (for example, a bus bar).
  • the conducting portion 7 and the opening 8 are configured to route the conductive wire 6 between them while maintaining the inside of the housing 2a and the inside of the housing 2b in a sealed state.
  • the conducting portion 7 is a cylindrical protrusion that is formed integrally with the housing 2a on the lower surface of the housing 2a and protrudes toward the housing 2b.
  • the opening 8 is an opening formed on the upper surface of the housing 2b and leading to the inside of the housing 2b.
  • the conducting portion 7 extends to the upper surface of the housing 2 b and is connected to the upper surface of the housing 2 b at the position of the opening 8. And the hollow area
  • a conductive wire 6 having one end connected to the electric circuit 1a of the housing 2a and the other end connected to the electric circuit 1b of the housing 2b is disposed in the hollow region inside the conducting portion 7.
  • the conducting portion 7 and the housing 2b are connected so that the inside of the conducting portion 7 is sealed by a connecting portion 4d such as solder, welding, or aluminum brazing.
  • a connecting portion 4d such as solder, welding, or aluminum brazing.
  • electrical_connection part 7 for electrically connecting the electric circuit 1a and the electric circuit 1b can be contributed to a heat dissipation improvement, maintaining the waterproofness inside the housing
  • the connection portion 4d and the connection portions 4a and 4b with the same member, the connection portions 4a and 4b and the connection portion 4d can be formed in the same manufacturing process, which contributes to a reduction in manufacturing cost. To do.
  • connection portions (4a, 4b) are provided in all the radiation fins (3a, 3b) is exemplified.
  • the connection portions (4a, 4b) are provided only in some of the radiation fins. Also good.
  • connection part (4a, 4b) so that it may carry out easily.
  • connection portion 4b thermo connection between the housing 2a and the heat radiation fin 3b
  • the connection portion 4a may not be provided.
  • connection portions (4a, 4b) are provided only in the vicinity of the component having a large heat generation amount, and other heat generation is performed. It is good also as a structure which does not provide a connection part (4a, 4b) in a location with small quantity.
  • the heat dissipation structure includes the first housing 2a, the second housing 2b, at least one of the heat dissipation fins 3a and 3b, and the connection portion.
  • the first housing 2a houses the first heat generating component 1a
  • the second housing 2b houses the second heat generating component 1b.
  • the radiation fin 3a that is the first radiation fin is provided on the outer surface of the first housing 2a
  • the radiation fin 3b that is the second radiation fin is provided on the outer surface of the second housing 2b.
  • the connecting portion thermally couples the first housing 2a and the second housing 2b via at least one of the heat radiation fins 3a and 3b. According to this heat dissipation structure, the heat dissipation characteristics of the entire power supply device can be improved.
  • the radiation fin 3a is formed in the outer surface of the 1st housing
  • the radiation fin 3b is formed in the outer surface of the 2nd housing
  • the connection part 4a is at least one part of the radiation fin 3a, the 2nd housing
  • the first housing 2a may store a first electric circuit including the first heat generating component 1a
  • the second housing 2b may store a second electric circuit including the second heat generating component 1b.
  • a conducting portion 7 for conducting the first electric circuit and the second electric circuit is formed on the outer surface of the first housing 2a, and an opening corresponding to the conducting portion 7 is formed on the outer surface of the second housing 2b.
  • the part 8 is formed, and the conduction part 7 and the opening 8 may be coupled by the connection part 4d.
  • the heat dissipation structure may further include a connection portion 4b that thermally couples at least a part of the heat dissipation fins 3b of the second casing 2b and the first casing 2a.
  • the first casing 2a and the second casing 2b may be disposed adjacent to each other so that the outer surfaces on which the heat dissipation fins 3a and 3b are formed face each other. .
  • the heat dissipation fins 3a and 3b of the first casing 2a and the second casing 2b may each be formed by a plurality of protrusions.
  • the first housing 2a and the second housing 2b may be arranged so that at least a part of the plurality of protrusions of the respective radiation fins 3a and 3b are alternately assembled in a state of being separated from each other. .
  • this heat radiating structure it is possible to smoothly flow the air from the fan 5 and increase the density of the number of protrusions of the heat radiating fins 3a and 3b, thereby reducing the size and improving the heat radiating characteristics.
  • the first power supply component 1a first power supply circuit and the second power supply circuit including the second heat generation component 1b may perform an exclusive operation.
  • the heat dissipation structure can be suitably used for a heat generating component.
  • the first heat generating component 1a and the second heat generating component 1b may have different heat generation amounts during operation.
  • the heat dissipation structure can be suitably used for a heat generating component.
  • At least one of the first casing 2a and the second casing 2b may be integrally formed with the heat dissipation fins 3a and 3b by die casting.
  • This heat dissipating structure is suitable from the viewpoints of hermeticity, miniaturization, manufacturing cost, and the like.
  • the connecting portion 4a includes a solder material, a welded portion, a heat dissipation adhesive, and an aluminum brazing portion that connect the tips of the heat dissipation fins 3a of the first casing 2a and the outer surface of the second casing 2b. It may contain at least one of.
  • the present disclosure can be suitably used as a heat dissipation structure.
  • Heat-generating parts (electric circuit, inverter device) 1b Heat-generating parts (electric circuit, charging device) 2a, 2b Housings 3a, 3b Radiation fins 4a, 4b, 4c, 4d Connection part 5 Fan 6 Conductive wire 7 Conductive part 8 Opening part

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Inverter Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A heat-dissipating structure has a first housing, a second housing, a first heat-dissipating fin and/or a second heat-dissipating fin, and a connecting part. The first housing contains a first heat-generating component, and the second housing contains a second heat-generating component. The first heat-dissipating fin is provided on an outer surface of the first housing, and the second heat-dissipating fin is provided on an outer surface of the second housing. The connecting part thermally connects the first housing and the second housing via the first heat-dissipating fin and/or the second heat-dissipating fin.

Description

放熱構造体とそれを用いた車載電源装置Heat dissipating structure and in-vehicle power supply using the same
 本開示は、放熱構造体、車載電源装置に関する。 The present disclosure relates to a heat dissipation structure and an in-vehicle power supply device.
 近年、電気自動車に用いられるインバータ装置や充電装置等の電源装置に関して、航続距離の拡大に向け、小型化及び軽量化の要請が高まっている。しかしながら、インバータ装置や充電装置に使用されるパワー半導体は、小型化しても発熱量が下がらないため、小型化した筐体そのものの放熱力を更に高める必要がある。 In recent years, power supply devices such as inverter devices and charging devices used in electric vehicles have been increasingly requested to be smaller and lighter in order to increase the cruising range. However, power semiconductors used in inverter devices and charging devices do not reduce the amount of heat generated even if they are reduced in size, so it is necessary to further increase the heat dissipation power of the downsized housing itself.
 特許文献1には、冷却水を利用して、インバータ装置や充電装置を効果的に冷却するための放熱構造が開示されている。 Patent Document 1 discloses a heat dissipation structure for effectively cooling an inverter device and a charging device using cooling water.
特開平7-038025号公報Japanese Patent Laid-Open No. 7-038025
 ところで、電気自動車(例えば、マイクロ電気自動車(EV)、電動コミュータ)においては、エンジンを使用しない関係から冷却水を搭載しない車輌もある。かかる車輌において、特許文献1のように冷却水を利用した放熱構造を適用する場合、冷却水の設備を別途設ける必要が生じ、コストの増加につながるのみならず、車体の形状に影響を与えたり、室内空間を圧迫したりする。 By the way, in an electric vehicle (for example, a micro electric vehicle (EV), an electric commuter), there is a vehicle that does not include cooling water because an engine is not used. In such a vehicle, when applying a heat dissipation structure using cooling water as in Patent Document 1, it is necessary to separately provide a cooling water facility, which not only leads to an increase in cost but also affects the shape of the vehicle body. Squeeze the indoor space.
 他方、冷却水を搭載する車輌であっても、冷却水を循環させるための循環回路を車輌の内部で引き回したりすることは、上記と同様に、車体の形状に影響を与えることになるため、できる限り冷却水を使用しない構成にしたいという要請もある。 On the other hand, even in a vehicle equipped with cooling water, routing the circulation circuit for circulating the cooling water inside the vehicle will affect the shape of the vehicle body as described above. There is also a demand for a configuration that uses as little cooling water as possible.
 本開示は、冷却水を使用することなく、良好な放熱特性を実現可能な放熱構造体及び、車載電源装置を提供する。 This disclosure provides a heat dissipation structure and an in-vehicle power supply device that can realize good heat dissipation characteristics without using cooling water.
 本開示の放熱構造体は、第1筐体と、第2筐体と、第1放熱フィンと第2放熱フィンとの少なくとも一方と、接続部とを有する。第1筐体は第1発熱部品を収納し、第2筐体は第2発熱部品を収納する。第1放熱フィンは、第1筐体の外面に設けられ、第2放熱フィンは、第2筐体の外面に設けられている。接続部は、第1放熱フィンと第2放熱フィンとの少なくとも一方を介して、第1筐体と第2筐体とを熱的に結合している。 The heat dissipation structure of the present disclosure includes a first casing, a second casing, at least one of a first radiating fin and a second radiating fin, and a connecting portion. The first housing stores the first heat generating component, and the second housing stores the second heat generating component. The first heat radiating fin is provided on the outer surface of the first housing, and the second heat radiating fin is provided on the outer surface of the second housing. The connection part thermally couples the first housing and the second housing via at least one of the first heat radiation fin and the second heat radiation fin.
 本開示に係る放熱構造体によれば、冷却水を使用することなく、良好な放熱特性を実現することができる。 According to the heat dissipation structure according to the present disclosure, good heat dissipation characteristics can be realized without using cooling water.
第1の実施形態に係る放熱構造体を上方から見た斜視図The perspective view which looked at the thermal radiation structure concerning a 1st embodiment from the upper part 図1に示す放熱構造体を下方から見た斜視図The perspective view which looked at the thermal radiation structure shown in FIG. 1 from the downward direction 図1に示す放熱構造体の側面図Side view of the heat dissipation structure shown in FIG. 図1に示す放熱構造体を筐体間の位置で平面視した図FIG. 1 is a plan view of the heat dissipation structure shown in FIG. 図1に示す放熱構造体の動作を説明する図The figure explaining operation | movement of the thermal radiation structure shown in FIG. 図1に示す放熱構造体の他の動作を説明する図The figure explaining other operation | movement of the thermal radiation structure shown in FIG. 第1の実施形態の変形例1に係る放熱構造体を模式的に示す図The figure which shows typically the heat dissipation structure which concerns on the modification 1 of 1st Embodiment. 第1の実施形態の変形例2に係る放熱構造体を模式的に示す図The figure which shows typically the heat dissipation structure which concerns on the modification 2 of 1st Embodiment. 第2の実施形態に係る放熱構造体の筐体を上方から見た図The figure which looked at the case of the heat dissipation structure concerning a 2nd embodiment from the upper part 図9に示す放熱構造体の筐体を下方から見た図The figure which looked at the case of the heat dissipation structure shown in Drawing 9 from the lower part 図9に示す放熱構造体の側面図Side view of heat dissipation structure shown in FIG. 図9に示す放熱構造体の側面断面図Side surface sectional drawing of the thermal radiation structure shown in FIG.
 (第1の実施形態)
 以下、図1~図4を参照して、本実施形態に係る放熱構造体の構成の一例について説明する。
(First embodiment)
Hereinafter, an example of the configuration of the heat dissipation structure according to the present embodiment will be described with reference to FIGS. 1 to 4.
 図1は、放熱構造体を上方から見た斜視図である。図2は、この放熱構造体を下方から見た斜視図である。図3は、この放熱構造体の側面図である。図4は、この放熱構造体を筐体2aと筐体2bの間の位置で平面視した図である。なお、図3の右図は、左図の点線で囲んだ領域を拡大した図である。 FIG. 1 is a perspective view of the heat dissipation structure as viewed from above. FIG. 2 is a perspective view of the heat dissipation structure as viewed from below. FIG. 3 is a side view of the heat dissipation structure. FIG. 4 is a plan view of the heat dissipation structure at a position between the housing 2a and the housing 2b. In addition, the right figure of FIG. 3 is the figure which expanded the area | region enclosed with the dotted line of the left figure.
 本実施形態に係る放熱構造体は、例えば、車載電源装置に適用され、インバータ装置や充電装置等の電源回路が発する熱を外部に放熱するために用いられる。 The heat dissipation structure according to the present embodiment is applied to, for example, an in-vehicle power supply device, and is used to dissipate heat generated by a power supply circuit such as an inverter device or a charging device to the outside.
 本実施形態に係る電源装置は、発熱部品1aを収納する筐体2aと、発熱部品1bを収納する筐体2bとを含んで構成される。そして、本実施形態に係る電源装置は、発熱部品1a及び発熱部品1bからの熱を放熱するための構成として、放熱フィン3a及び3b、接続部4a及び4b、ファン5を有している。なお、発熱部品1a及び1bの少なくともいずれか一方が電源回路に該当する。 The power supply device according to the present embodiment includes a housing 2a that stores the heat generating component 1a and a housing 2b that stores the heat generating component 1b. And the power supply device which concerns on this embodiment has the radiation fins 3a and 3b, the connection parts 4a and 4b, and the fan 5 as a structure for radiating the heat | fever from the heat-emitting component 1a and the heat-generating component 1b. Note that at least one of the heat generating components 1a and 1b corresponds to a power supply circuit.
 なお、発熱部品1a、放熱フィン3a、接続部4aは、上方側の筐体2aに設けられ、発熱部品1b、放熱フィン3b、接続部4bは、下方側の筐体2bに設けられている。但し、筐体2aと筐体2bとは、上下に配設される構成に代えて、左右に配設される構成としてもよいのは勿論である。 The heat generating component 1a, the heat radiating fin 3a, and the connecting portion 4a are provided in the upper housing 2a, and the heat generating component 1b, the heat radiating fin 3b, and the connecting portion 4b are provided in the lower housing 2b. However, it is needless to say that the housing 2a and the housing 2b may be arranged on the left and right instead of being arranged on the top and bottom.
 発熱部品1aは、上方側の筐体2a内に収納された発熱体であり、発熱部品1bは、下方側の筐体2b内に収納された発熱体である。 The heat generating component 1a is a heating element housed in the upper casing 2a, and the heating component 1b is a heating element stored in the lower casing 2b.
 発熱部品1a及び1bとしては、後述する放熱特性の観点から、互いが排他動作(両方が同時に動作する状態がないことを表す。以下同じ)をする発熱部品、または、発熱量が異なる発熱部品の組み合わせが適用されるのが望ましい。排他動作をする発熱部品1a及び1bの組み合わせとしては、例えば、インバータ装置と充電装置が挙げられる(以下、「インバータ装置1a」、「充電装置1b」とも称する)。 As the heat generating components 1a and 1b, from the viewpoint of heat radiation characteristics described later, a heat generating component that performs mutual exclusive operation (represents that there is no state in which both operate simultaneously; the same applies hereinafter), or a heat generating component that generates a different amount of heat. It is desirable that a combination be applied. Examples of the combination of the heat generating components 1a and 1b that perform the exclusive operation include an inverter device and a charging device (hereinafter also referred to as “inverter device 1a” and “charging device 1b”).
 インバータ装置1aは、車載バッテリ(図示せず)からモータに電力供給するための電源回路であり、電力を制御するパワー素子において大きな発熱量を有する。また、充電装置1bは、外部の商用電源等から車載バッテリに充電するための電源回路であり、電力を制御するパワー素子やリアクトルにおいて大きな発熱量を有する。インバータ装置1aは、主に、車輌走行中に動作する電源回路であり、充電装置1bは、主に、車輌停止時の充電中に動作する電源回路である。つまり、両者は、互いに排他動作をする関係にある。 The inverter device 1a is a power supply circuit for supplying electric power from a vehicle-mounted battery (not shown) to the motor, and has a large heat generation amount in a power element that controls electric power. Moreover, the charging device 1b is a power supply circuit for charging an in-vehicle battery from an external commercial power supply or the like, and has a large heat generation amount in a power element or a reactor that controls electric power. The inverter device 1a is a power circuit that operates mainly during vehicle travel, and the charging device 1b is a power circuit that operates mainly during charging when the vehicle is stopped. That is, both have an exclusive operation.
 但し、発熱部品1a及び1bは、その他、インバータ装置とDCDCコンバータ装置等、他の組み合わせであってもよいのは勿論である。また、必ずしも発熱部品1a及び1bの両方が電源回路である必要はなく、いずれか一方が電源回路であり、他方がモータ等の電源回路以外の発熱部品であってもよい。 However, it goes without saying that the heat generating components 1a and 1b may be other combinations such as an inverter device and a DCDC converter device. Further, both the heat generating components 1a and 1b do not necessarily have to be power circuits, and either one may be a power circuit, and the other may be a heat generating component other than the power circuit such as a motor.
 筐体2a及び2bは、収納する電気機器(インバータ装置、充電装置、電子機器等)を周囲の水分等から保護するため、これらを密閉状態で収納している(図1、図2中では、説明の便宜として、壁面の一部を省略している)。なお、これらの電気機器は、発熱部品1a及び1bそのものであってもよいが、発熱部品1a及び1bとともに収納された他の電子機器等であってもよい。 The housings 2a and 2b are housed in a sealed state in order to protect the electrical devices (inverter device, charging device, electronic device, etc.) to be stored from surrounding moisture and the like (in FIGS. 1 and 2) For convenience of explanation, a part of the wall surface is omitted). These electric devices may be the heat generating components 1a and 1b themselves, or may be other electronic devices or the like housed together with the heat generating components 1a and 1b.
 筐体2aと筐体2bは、上下に隣接して配設されている。そして、筐体2aと筐体2bは、それぞれ、互いが対向する外面に、放熱フィン3a及び放熱フィン3bを有している。 The housing 2a and the housing 2b are arranged adjacent to each other in the vertical direction. And the housing | casing 2a and the housing | casing 2b each have the radiation fin 3a and the radiation fin 3b in the outer surface which mutually opposes.
 筐体2a及び2bにおいて、少なくとも放熱フィン3a及び3bが形成される側の壁面は、熱伝導率の高い部材(例えば、アルミ材)で構成されている。また、発熱部品1a及び1bは、少なくとも一部がこれらの壁面に接触するように配設されている。これによって、発熱部品1a及び1bが発する熱は、それぞれ、筐体2a及び2bの壁面から放熱フィン3a及び3bに伝達し、外部に放熱される。 In the casings 2a and 2b, at least the wall surface on the side where the radiation fins 3a and 3b are formed is made of a member having high thermal conductivity (for example, aluminum material). Further, the heat generating components 1a and 1b are arranged so that at least a part thereof contacts these wall surfaces. As a result, the heat generated by the heat generating components 1a and 1b is transmitted from the wall surfaces of the housings 2a and 2b to the heat radiation fins 3a and 3b, and is radiated to the outside.
 ここで、例えば、筐体2a及び2bと放熱フィン3a及び3bはダイカスト成形により一体的に構成される。これにより、押し出し成形された放熱フィンを別途、筐体に設置するような場合に比べ、安価に形成することができる。しかしながら、ダイカスト成形では、放熱フィンの突起部の間隔(フィンピッチ)を細かくすることが困難であり、押し出し成形に比べて放熱性能が劣る。 Here, for example, the casings 2a and 2b and the radiation fins 3a and 3b are integrally formed by die casting. Thereby, compared with the case where the heat radiation fin by which extrusion molding was carried out is separately installed in a housing | casing, it can form cheaply. However, in die casting, it is difficult to make the interval (fin pitch) between the protrusions of the heat radiating fins finer, and the heat radiating performance is inferior compared to extrusion molding.
 そこで、本開示では、筐体2aの放熱フィン3aと、筐体2bの放熱フィン3bが交互になるように筐体2aと筐体2bを配置し、且つ、筐体2aの放熱フィン3aが筐体2bと接し、筐体2bの放熱フィン3bが筐体2aと接するように構成する。これにより、筐体2aまたは筐体2bで発生した熱を筐体2aの放熱フィン3aと、筐体2bの放熱フィン3bで両方を用いて放熱することが可能となり、冷却水を使用することなく、安価で良好な放熱特性を実現することができる。 Therefore, in the present disclosure, the housing 2a and the housing 2b are arranged so that the heat dissipating fins 3a of the housing 2a and the heat dissipating fins 3b of the housing 2b are alternately arranged, and the heat dissipating fins 3a of the housing 2a are disposed in the housing. The heat dissipating fins 3b of the housing 2b are in contact with the housing 2a in contact with the body 2b. As a result, it is possible to dissipate the heat generated in the housing 2a or the housing 2b using both the heat radiation fins 3a of the housing 2a and the heat radiation fins 3b of the housing 2b, without using cooling water. Inexpensive and good heat dissipation characteristics can be realized.
 上方側の放熱フィン3aは、筐体2aの外面に形成され、下方側の放熱フィン3bは、筐体2bの外面に形成される。放熱フィン3a及び3bは、後述するように、発熱部品1a及び1bが発生する熱を一体的に外部に放熱する。 The upper radiating fins 3a are formed on the outer surface of the housing 2a, and the lower radiating fins 3b are formed on the outer surface of the housing 2b. As will be described later, the heat radiating fins 3a and 3b integrally dissipate heat generated by the heat generating components 1a and 1b to the outside.
 より詳細には、上方側の放熱フィン3aは、上方側の筐体2aの下面に形成された複数の突起部で形成される。放熱フィン3aの突起部は、下方側の筐体2bの上面と当接する位置まで延出し、接続部4aを介して筐体2bと熱結合している。 More specifically, the upper radiating fin 3a is formed by a plurality of protrusions formed on the lower surface of the upper casing 2a. The protrusions of the heat radiating fins 3a extend to a position where they contact the upper surface of the lower housing 2b, and are thermally coupled to the housing 2b through the connection portions 4a.
 また、同様に、下方側の放熱フィン3bは、下方側の筐体2bの上面に形成された複数の突起部で形成される。放熱フィン3bの突起部は、下方側の筐体2aの下面と当接する位置まで延出し、接続部4bを介して筐体2aと熱結合している。 Similarly, the lower radiating fin 3b is formed by a plurality of protrusions formed on the upper surface of the lower casing 2b. The protrusions of the heat radiating fins 3b extend to a position where they contact the lower surface of the lower housing 2a, and are thermally coupled to the housing 2a via the connecting portions 4b.
 そして、上方側の放熱フィン3aの突起部と下方側の放熱フィン3bの突起部とは、互いに離間した状態で、交互に組み合わさるように配設されている(図4を参照)。また、上方側の放熱フィン3aの突起部及び下方側の放熱フィン3bの突起部は、いずれも板形状を呈し、長手方向の板面がファン5の送風方向に沿うように平行に配設されている。 The protrusions of the upper radiating fins 3a and the protrusions of the lower radiating fins 3b are arranged so as to be alternately combined in a state of being separated from each other (see FIG. 4). Further, the protrusions of the upper radiating fins 3 a and the protrusions of the lower radiating fins 3 b both have a plate shape, and are arranged in parallel so that the longitudinal plate surface is along the blowing direction of the fan 5. ing.
 なお、放熱フィン3a及び3bは、板形状に代えて、ピン形状等、他の形状を呈していてもよい。但し、放熱フィン3a及び3bの突起部を他の形状とする場合も、同様に、互いに離間した状態で、交互に組み合わさるように配設するのが望ましい。 Note that the radiating fins 3a and 3b may have other shapes such as a pin shape instead of the plate shape. However, when the projections of the heat radiating fins 3a and 3b have other shapes, similarly, it is desirable to arrange them so as to be alternately combined in a state of being separated from each other.
 放熱フィン3a及び3bは、いずれも筐体2a及び2bと一体的にダイカストによって形成されている。これによって、筐体2a及び2bの強度や密閉性を確保するとともに、筐体2aと放熱フィン3aの一体成型、及び、筐体2bと放熱フィン3bの一体成形を可能としている。加えて、筐体2a及び2bと放熱フィン3a及び3bを形成するための製造工程を簡略化することもできる。なお、放熱フィン3a及び3bは、筐体2a及び2bと同様に、アルミ材等で形成される。 The heat radiation fins 3a and 3b are both formed integrally with the housings 2a and 2b by die casting. As a result, the strength and sealing performance of the housings 2a and 2b are ensured, and the housing 2a and the radiation fins 3a can be integrally molded, and the housing 2b and the radiation fins 3b can be integrally molded. In addition, the manufacturing process for forming the housings 2a and 2b and the radiation fins 3a and 3b can be simplified. The radiating fins 3a and 3b are formed of an aluminum material or the like, similarly to the casings 2a and 2b.
 接続部4aは、上方側の放熱フィン3aと下方側の筐体2bとを熱的に結合する。また、接続部4bは、下方側の放熱フィン3bと上方側の筐体2aとを熱的に結合する。 The connecting portion 4a thermally couples the upper radiating fin 3a and the lower casing 2b. Further, the connecting portion 4b thermally couples the lower radiating fin 3b and the upper casing 2a.
 より詳細には、接続部4aは、上方側の放熱フィン3aの先端に設けられ、上方側の放熱フィン3aと下方側の筐体2bの外面とを接続する。また、接続部4bは、下方側の放熱フィン3bの先端に設けられ、下方側の放熱フィン3bと上方側の筐体2aの外面とを接続する。接続部4a及び4bは、部材間で熱伝導が良好に行われるように、例えば、半田、溶接、放熱接着剤、アルミろう付け等を用いて部材間を接続する。接続部4a及び4bとしては、特に、熱伝導率が高いものが望ましい。 More specifically, the connecting portion 4a is provided at the tip of the upper radiating fin 3a, and connects the upper radiating fin 3a and the outer surface of the lower casing 2b. Further, the connecting portion 4b is provided at the tip of the lower radiating fin 3b, and connects the lower radiating fin 3b and the outer surface of the upper casing 2a. The connecting portions 4a and 4b connect the members using, for example, soldering, welding, a heat radiation adhesive, aluminum brazing, or the like so that heat conduction between the members is performed satisfactorily. As the connection portions 4a and 4b, those having a high thermal conductivity are particularly desirable.
 なお、接続部4a及び4bは、放熱フィン3a及び3bの先端と筐体2a及び2bの外面を接続する構成に代えて、放熱フィン3aと放熱フィン3bを接続する構成としてもよい。 The connecting portions 4a and 4b may be configured to connect the radiating fins 3a and the radiating fins 3b instead of connecting the tips of the radiating fins 3a and 3b and the outer surfaces of the housings 2a and 2b.
 ファン5は、筐体2a及び2bの外部に取り付けられ、放熱フィン3a及び3bが設けられた位置に向かって送風する。より詳細には、ファン5は、板状の放熱フィン3a及び3bの長手方向に沿って、送風する。本実施形態では、ファン5を設けることによって、放熱フィン3a及び3bと空気との熱交換を促進して、放熱特性を向上させている。なお、仮に、冷却液を用いた場合、接続部4a及び4bの半田材や放熱性接着材が冷却液に溶け出して部材間の熱伝達が不良になったり、デブリが発生して冷却液が不良状態に陥ったりするおそれがある。 The fan 5 is attached to the outside of the housings 2a and 2b, and blows air toward the position where the radiation fins 3a and 3b are provided. More specifically, the fan 5 blows air along the longitudinal direction of the plate-like heat radiation fins 3a and 3b. In the present embodiment, by providing the fan 5, heat exchange between the heat radiation fins 3a and 3b and the air is promoted to improve heat radiation characteristics. If the coolant is used, the solder material and heat-dissipating adhesive of the connecting portions 4a and 4b are dissolved in the coolant, resulting in poor heat transfer between the members, debris is generated, and the coolant is There is a risk of falling into a bad state.
 ファン5は、送風ファンに限らず、吸引ファンであってもよい。また、電源装置を車輌走行中に通流する空気が当たる位置に配設する場合等、自然対流でも十分な放熱特性を得られる場合は、ファン5を省くことも可能である。 The fan 5 is not limited to the blower fan but may be a suction fan. In addition, the fan 5 can be omitted when sufficient heat dissipation characteristics can be obtained even by natural convection, such as when the power supply device is disposed at a position where air flowing through the vehicle hits.
 [電源装置の放熱動作]
 本発明者らは、良好な放熱特性と小型化を実現するために鋭意検討し、車輌に搭載するインバータ装置や充電装置等の発熱部品1aと発熱部品1bは、必ずしも同時に動作しているわけではなく、また、発熱部品1aと発熱部品1bは、同一の熱量を発するわけではない点に着目して、上記した放熱構造に想到した。
[Heat dissipation of power supply]
The present inventors have intensively studied in order to realize good heat dissipation characteristics and downsizing, and the heat generating component 1a and the heat generating component 1b such as an inverter device and a charging device mounted on a vehicle are not necessarily operated simultaneously. In addition, the heat generating component 1a and the heat generating component 1b pay attention to the point that they do not emit the same amount of heat, and have arrived at the heat dissipation structure described above.
 図5、図6は、電源装置の放熱動作について説明する図である。 5 and 6 are diagrams for explaining the heat radiation operation of the power supply device.
 図5は、車輌走行中における放熱動作の一例について説明する図である。車輌走行中、インバータ装置1aはモータに電力を供給する動作をする一方、充電装置1bは動作しない状態となる。そのため、インバータ装置1aのみが発熱している状態となっている。 FIG. 5 is a diagram for explaining an example of the heat radiation operation while the vehicle is running. While the vehicle is running, the inverter device 1a operates to supply power to the motor, while the charging device 1b does not operate. Therefore, only the inverter device 1a is in a state of generating heat.
 インバータ装置1aが発生した熱は、上方側の筐体2aの底面及び放熱フィン3aを介して、外部に放熱される。また、上方側の筐体2aが、下方側の放熱フィン3bよりも高温の状態となるため、インバータ装置1aが発生した熱は、同時に、接続部4bを介して下方側の放熱フィン3bにも伝達される。なお、図5中の矢印は、このときの熱流を表している。 The heat generated by the inverter device 1a is radiated to the outside through the bottom surface of the upper casing 2a and the heat radiation fins 3a. Further, since the upper casing 2a is hotter than the lower radiating fins 3b, the heat generated by the inverter device 1a is simultaneously applied to the lower radiating fins 3b via the connecting portions 4b. Communicated. In addition, the arrow in FIG. 5 represents the heat flow at this time.
 つまり、インバータ装置1aが発生した熱は、上方側の放熱フィン3aと下方側の放熱フィン3bの両方から外部に放熱される。その結果、インバータ装置1aが発生した熱を放熱する表面積は、上方側の放熱フィン3aのみから放熱する場合と比較して大きくなり、単位時間あたりに放熱できる熱量も大きくなる。 That is, the heat generated by the inverter device 1a is radiated to the outside from both the upper radiating fins 3a and the lower radiating fins 3b. As a result, the surface area for dissipating the heat generated by the inverter device 1a is larger than in the case where heat is radiated only from the upper radiating fins 3a, and the amount of heat that can be radiated per unit time is also increased.
 図6は、車輌停車時の充電中における放熱動作の一例について説明する図である。車輌停車時の充電中、充電装置1bは動作する一方、インバータ装置1aは動作しない状態となる。そのため、充電装置1bのみが発熱している状態となっている。 FIG. 6 is a diagram illustrating an example of a heat radiation operation during charging when the vehicle is stopped. During charging when the vehicle is stopped, the charging device 1b operates while the inverter device 1a does not operate. Therefore, only the charging device 1b is in a state of generating heat.
 充電装置1bが発生した熱は、下方側の筐体2bの上面及び放熱フィン3bを介して、外部に放熱される。また、下方側の筐体2bが、上方側の放熱フィン3aよりも高温の状態となるため、充電装置1bが発生した熱は、同時に、接続部4aを介して上方側の放熱フィン3aにも伝達する。なお、図6中の矢印は、このときの熱流を表している。 The heat generated by the charging device 1b is radiated to the outside through the upper surface of the lower housing 2b and the radiation fins 3b. Further, since the lower casing 2b is in a higher temperature than the upper radiating fins 3a, the heat generated by the charging device 1b is simultaneously applied to the upper radiating fins 3a via the connecting portions 4a. introduce. In addition, the arrow in FIG. 6 represents the heat flow at this time.
 つまり、充電装置1bが発生した熱は、上方側の放熱フィン3aと下方側の放熱フィン3bの両方から放熱する。その結果、充電装置1bが発生した熱を放熱する表面積は、下方側の放熱フィン3bのみから放熱する場合と比較して大きくなり、単位時間あたりに放熱する熱量も大きくなる。 That is, the heat generated by the charging device 1b is radiated from both the upper radiating fin 3a and the lower radiating fin 3b. As a result, the surface area for dissipating the heat generated by the charging device 1b is larger than in the case where heat is radiated only from the lower radiating fins 3b, and the amount of heat radiated per unit time is also increased.
 なお、上記の効果は、主に、接続部4a及び4bによるものであり、金属同士の熱伝達の速度は、金属と空気の間の熱伝達する速度と比較して非常に大きいことに起因する。そのため、仮に、接続部4a及び4bが設けられていない場合、筐体2aの外面と放熱フィン3bの間、または、筐体2bの外面と放熱フィン3aの間に隙間が形成される。その結果、筐体2aから下方側の放熱フィン3bに対して熱伝達する速度または筐体2bから上方側の放熱フィン3aに対して熱伝達する速度は、相当に減速し、良好な放熱特性を得られない状態となる。 In addition, said effect is mainly based on the connection parts 4a and 4b, and originates in the speed of the heat transfer between metals being very large compared with the speed of the heat transfer between a metal and air. . Therefore, if the connection portions 4a and 4b are not provided, a gap is formed between the outer surface of the housing 2a and the heat radiating fins 3b or between the outer surface of the housing 2b and the heat radiating fins 3a. As a result, the speed at which heat is transferred from the housing 2a to the lower radiating fin 3b or the speed at which heat is transferred from the housing 2b to the upper radiating fin 3a is considerably reduced, and good heat dissipation characteristics are obtained. It will be in an unobtainable state.
 但し、上記の効果は、インバータ装置1aと充電装置1bのように排他動作をする発熱部品の組み合わせでなくとも、発熱部品1aと発熱部品1bの発熱量が異なる場合や放熱フィン3aと放熱フィン3bとで放熱力が異なる場合であれば、同時に発熱するものに対しても発揮され得る。 However, the above-described effects can be obtained even when the heat generation components 1a and 1b have different heat generation amounts or the heat dissipation fins 3a and 3b, even if the heat generation components that perform the exclusive operation like the inverter device 1a and the charging device 1b are not combined. If the heat dissipating power is different, it can also be exerted on those that generate heat at the same time.
 例えば、発熱部品1aがインバータ装置、発熱部品1bがバッテリの場合、インバータ装置とバッテリとは同時に発熱するが、バッテリの発熱量が小さいため、インバータ装置の発する熱は、バッテリ側の下方側の放熱フィン3bに伝達する。その結果、上記と同様に、インバータ装置の発する熱は、上方側の放熱フィン3aと下方側の放熱フィン3bの両方から放熱されることになり、良好な放熱特性を確保することができる。 For example, when the heat generating component 1a is an inverter device and the heat generating component 1b is a battery, the inverter device and the battery generate heat at the same time. However, since the heat generation amount of the battery is small, the heat generated by the inverter device is radiated downward on the battery side. It transmits to the fin 3b. As a result, similarly to the above, the heat generated by the inverter device is radiated from both the upper side radiating fins 3a and the lower side radiating fins 3b, and good heat radiating characteristics can be ensured.
 以上のように、本実施形態に係る放熱構造体は、接続部4aを介して上方側の放熱フィン3aと下方側の筐体2bとを熱的に結合するとともに、接続部4bを介して下方側の放熱フィン3bと上方側の筐体2aとを熱的に結合する構成としている。そのため、発熱部品1a及び1bが発する熱は、放熱フィン3aと放熱フィン3bに分配されて、両方から放熱されることになる。これによって、電源装置全体としての放熱特性を向上することができる。 As described above, the heat dissipating structure according to the present embodiment thermally couples the upper heat dissipating fins 3a and the lower housing 2b via the connecting portions 4a and also lowers them via the connecting portions 4b. The heat radiation fins 3b on the side and the housing 2a on the upper side are thermally coupled. Therefore, the heat generated by the heat generating components 1a and 1b is distributed to the heat radiating fins 3a and the heat radiating fins 3b and radiated from both. As a result, the heat dissipation characteristics of the power supply device as a whole can be improved.
 また、本実施形態に係る放熱構造体によれば、上方側の放熱フィン3aの突起部と下方側の放熱フィン3bの突起部とは、少なくとも一部が、互いに離間した状態で、交互に組み合わさるように配設されている。これによって、ファン5からの送風を円滑に通流させるとともに、放熱フィン3a及び3bの突起部の本数の密度を増加させ、小型化と放熱特性の向上を図ることができる。特に、本実施形態に係る放熱フィン3a及び3bは、ダイカストによって形成されているため、放熱フィンの小型化やフィンピッチの縮小には限度がある。この点、上記構成によって、小型で、且つ、放熱特性の良好な放熱構造を構成することが可能である。 Further, according to the heat dissipation structure according to the present embodiment, the protrusions of the upper heat dissipating fins 3a and the protrusions of the lower heat dissipating fins 3b are alternately combined in a state where at least some of them are separated from each other. It is arranged so that. As a result, the air blown from the fan 5 can be made to flow smoothly, and the density of the number of protrusions of the heat radiation fins 3a and 3b can be increased, so that downsizing and improvement of heat radiation characteristics can be achieved. In particular, since the radiating fins 3a and 3b according to the present embodiment are formed by die casting, there is a limit to downsizing the radiating fins and reducing the fin pitch. In this respect, with the above-described configuration, it is possible to configure a heat dissipation structure that is small and has excellent heat dissipation characteristics.
 また、本実施形態に係る放熱構造体は、空気冷却を採用しているため、冷却水の循環回路や循環ポンプ等の冷却設備が不要となり、省スペース化やコスト低減を図ることもできる。 In addition, since the heat dissipation structure according to the present embodiment employs air cooling, cooling equipment such as a cooling water circulation circuit and a circulation pump is unnecessary, and space saving and cost reduction can be achieved.
 なお、上記実施形態では、放熱構造体の一例として、接続部4aと接続部4bを用いて、2つの筐体2a及び2bを熱的に結合する態様を示した。しかし、接続部4aと接続部4bのいずれか一方のみであっても、一定の放熱特性の向上は図ることが可能である。 In the above embodiment, as an example of the heat radiating structure, the connection portion 4a and the connection portion 4b are used to thermally couple the two casings 2a and 2b. However, even if only one of the connection portion 4a and the connection portion 4b is used, it is possible to improve certain heat dissipation characteristics.
 他方、筐体2a及び2bの他にも筐体が隣接して配設されている場合、この筐体に対しても放熱フィン及び接続部を設けてもよい。このようにして、複数の筐体間を熱的に結合することによって、設計の自由度を確保しつつ、より放熱特性を向上させることができる。 On the other hand, in addition to the housings 2a and 2b, when the housing is disposed adjacent to the housings, a heat radiating fin and a connecting portion may be provided for the housing. In this way, by thermally coupling a plurality of housings, the heat dissipation characteristics can be further improved while ensuring the degree of freedom of design.
 (第1の実施形態の変形例1)
 上記実施形態では、上方側の放熱フィン3aは、接続部4aを介して筐体2bの外面と熱的に結合され、下方側の放熱フィン3bは、接続部4bを介して筐体2aの外面と熱的に結合される態様を示した。しかしながら、筐体2aと筐体2bとで放熱フィンを共用するための放熱構造は、他の態様であってもよい。
(Modification 1 of the first embodiment)
In the above embodiment, the upper radiating fin 3a is thermally coupled to the outer surface of the housing 2b via the connecting portion 4a, and the lower radiating fin 3b is connected to the outer surface of the housing 2a via the connecting portion 4b. The embodiment is shown in which it is thermally coupled with. However, the heat radiating structure for sharing the heat radiating fins between the housing 2a and the housing 2b may be in another form.
 図7は、変形例1に係る放熱構造体を模式的に示す図である。なお、図7は、放熱構造体の側面断面図を示している。 FIG. 7 is a diagram schematically showing a heat dissipation structure according to the first modification. FIG. 7 shows a side sectional view of the heat dissipation structure.
 変形例1に係る放熱構造体においては、放熱フィン3aと放熱フィン3bとが、接続部4cを介して接続された構成となっている点で、上記実施形態と相違する。なお、上記実施形態と共通する構成については、説明を省略する(以下、他の実施形態についても同様)。 The heat dissipating structure according to Modification 1 is different from the above embodiment in that the heat dissipating fins 3a and the heat dissipating fins 3b are connected via the connecting portions 4c. In addition, description is abbreviate | omitted about the structure which is common in the said embodiment (Hereafter, it is the same also about other embodiment).
 より詳細には、放熱フィン3aと放熱フィン3bとは、上記実施形態と同様に、互いに対向するように配設され、放熱フィン3aの先端部分と放熱フィン3bの先端部分とが接続部4cを介して接続された構成となっている。換言すると、接続部4cは、放熱フィン3aと放熱フィン3bとを熱的に結合する。 More specifically, the radiating fin 3a and the radiating fin 3b are disposed so as to face each other, as in the above-described embodiment, and the tip end portion of the radiating fin 3a and the tip end portion of the radiating fin 3b define the connection portion 4c. It is the structure connected via. In other words, the connection portion 4c thermally couples the heat radiating fins 3a and the heat radiating fins 3b.
 このような構成によっても、放熱フィン3aと放熱フィン3bの間で熱伝達が生じ、発熱部品1a及び1bが発生する熱を一体的に外部に放熱することができる。この構成は、例えば、筐体2aと筐体2bとが、ある程度離間している場合等に好適である。 Also with such a configuration, heat transfer occurs between the heat radiating fins 3a and the heat radiating fins 3b, and heat generated by the heat generating components 1a and 1b can be integrally dissipated to the outside. This configuration is suitable, for example, when the housing 2a and the housing 2b are separated to some extent.
 (第1の実施形態の変形例2)
 図8は、変形例2に係る放熱構造体を模式的に示す図である。なお、図8は、放熱構造体の側面断面図を示している。
(Modification 2 of the first embodiment)
FIG. 8 is a diagram schematically illustrating a heat dissipation structure according to the second modification. FIG. 8 shows a side sectional view of the heat dissipation structure.
 変形例2に係る放熱構造体においては、放熱フィンが筐体2a及び2bの一方のみに形成された構成となっている点で、上記実施形態と相違する。 The heat dissipating structure according to Modification 2 is different from the above embodiment in that the heat dissipating fins are formed only on one of the housings 2a and 2b.
 より詳細には、筐体2aが放熱フィン3aを有し、放熱フィン3aは、接続部4aを介して筐体2bと熱的に結合されている点は、上記実施形態と同様である。一方、筐体2bは、放熱フィンを有しない構成となっている。 More specifically, the case 2a has the heat radiating fins 3a, and the heat radiating fins 3a are thermally coupled to the case 2b via the connecting portions 4a, as in the above embodiment. On the other hand, the housing 2b has a configuration that does not have heat radiating fins.
 このような構成によっても、放熱フィン3aには接続部4aを介して熱伝達が生じ、発熱部品1a及び1bが発生する熱を一体的に外部に放熱することができる。この構成は、例えば、放熱フィン3aの突起部の間隔(フィンピッチ)を細かくすることが可能である場合等に、他方の筐体2bに放熱フィンを設ける必要がなくなる点で有効である。 Even with such a configuration, heat transfer is generated in the radiating fins 3a via the connecting portions 4a, and the heat generated by the heat generating components 1a and 1b can be integrally dissipated to the outside. This configuration is effective in that, for example, when it is possible to make the interval (fin pitch) between the protrusions of the heat radiating fins 3a fine, it is not necessary to provide the heat radiating fins on the other housing 2b.
 (第2の実施形態)
 次に、図9~図12を参照して、第2の実施形態に係る放熱構造体について説明する。本実施形態に係る放熱構造体は、導電線6を筐体2aと筐体2bとの間に導通させる導通部7及び開口部8を有する点で、第1の実施形態と相違する。なお、第1の実施形態と同様の構成については説明を省略する。
(Second Embodiment)
Next, a heat dissipation structure according to the second embodiment will be described with reference to FIGS. The heat dissipating structure according to the present embodiment is different from the first embodiment in that it has a conducting portion 7 and an opening portion 8 for conducting the conductive wire 6 between the housing 2a and the housing 2b. Note that a description of the same configuration as in the first embodiment is omitted.
 図9は、本実施形態に係る放熱構造体の筐体2aを上方から見た図である。図10は、本実施形態に係る放熱構造体の筐体2bを下方から見た図である。図11は、本実施形態に係る放熱構造体の側面図である。図12は、本実施形態に係る放熱構造体の断面側面図を模式的に示す図である。 FIG. 9 is a view of the housing 2a of the heat dissipation structure according to the present embodiment as viewed from above. FIG. 10 is a view of the housing 2b of the heat dissipation structure according to the present embodiment as viewed from below. FIG. 11 is a side view of the heat dissipation structure according to the present embodiment. FIG. 12 is a diagram schematically showing a cross-sectional side view of the heat dissipation structure according to the present embodiment.
 本実施形態においては、筐体2aが収納する発熱部品1aを含む電気回路(以下、「電気回路1a」とも称する)と、筐体2bが収納する発熱部品1bを含む電気回路(以下、「電気回路1b」とも称する)とは、導電線6(例えば、バスバー)によって電気的に接続されている。 In the present embodiment, an electric circuit including the heat generating component 1a accommodated in the housing 2a (hereinafter also referred to as “electric circuit 1a”) and an electric circuit including the heat generating component 1b accommodated in the housing 2b (hereinafter referred to as “electrical”). The circuit 1b "is also electrically connected by a conductive line 6 (for example, a bus bar).
 導通部7及び開口部8は、筐体2aの内部及び筐体2bの内部を密閉状態に維持しつつ、これらの間に導電線6を引き回すための構成である。 The conducting portion 7 and the opening 8 are configured to route the conductive wire 6 between them while maintaining the inside of the housing 2a and the inside of the housing 2b in a sealed state.
 本実施形態に係る導通部7は、筐体2aの下面に筐体2aと一体的に形成され、筐体2bに向かって突出する筒状の突起部である。また、開口部8は、筐体2bの上面に形成され、筐体2bの内部に通ずる開口である。 The conducting portion 7 according to the present embodiment is a cylindrical protrusion that is formed integrally with the housing 2a on the lower surface of the housing 2a and protrudes toward the housing 2b. The opening 8 is an opening formed on the upper surface of the housing 2b and leading to the inside of the housing 2b.
 導通部7は、筐体2bの上面まで延在し、開口部8の位置で筐体2bの上面と接続されている。そして、導通部7の内部の中空領域は、筐体2bの上面に形成された開口部8と通ずる。また、導通部7の内部の中空領域には、一端が筐体2aの電気回路1aに接続され、他端が筐体2bの電気回路1bに接続された導電線6が配設されている。 The conducting portion 7 extends to the upper surface of the housing 2 b and is connected to the upper surface of the housing 2 b at the position of the opening 8. And the hollow area | region inside the conduction | electrical_connection part 7 is connected with the opening part 8 formed in the upper surface of the housing | casing 2b. In addition, a conductive wire 6 having one end connected to the electric circuit 1a of the housing 2a and the other end connected to the electric circuit 1b of the housing 2b is disposed in the hollow region inside the conducting portion 7.
 ここで、導通部7と筐体2bとは、半田、溶接、アルミろう付け等の接続部4dによって、導通部7の内部が密閉されるように接続されている。これによって、筐体2a及び筐体2bの内部の防水性を保ちつつ、電気回路1aと電気回路1bを電気的に接続するための導通部7を放熱性の向上に寄与させることができる。また、接続部4dと、接続部4a、4bを同じ部材で構成することにより、同じ製造工程で、接続部4a、4b及び接続部4dを形成することが可能となり、製造コストの削減にも寄与する。 Here, the conducting portion 7 and the housing 2b are connected so that the inside of the conducting portion 7 is sealed by a connecting portion 4d such as solder, welding, or aluminum brazing. Thereby, the conduction | electrical_connection part 7 for electrically connecting the electric circuit 1a and the electric circuit 1b can be contributed to a heat dissipation improvement, maintaining the waterproofness inside the housing | casing 2a and the housing | casing 2b. In addition, by configuring the connection portion 4d and the connection portions 4a and 4b with the same member, the connection portions 4a and 4b and the connection portion 4d can be formed in the same manufacturing process, which contributes to a reduction in manufacturing cost. To do.
 以上、本開示の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Although specific examples of the present disclosure have been described in detail above, these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
 例えば、上記実施形態では、全ての放熱フィン(3a、3b)に接続部(4a、4b)を設ける構成を例示したが、一部の放熱フィンのみに接続部(4a、4b)を設ける構成としてもよい。 For example, in the above-described embodiment, the configuration in which the connection portions (4a, 4b) are provided in all the radiation fins (3a, 3b) is exemplified. However, as the configuration in which the connection portions (4a, 4b) are provided only in some of the radiation fins. Also good.
 また、例えば、筐体2aが収納する発熱部品1a(電気回路1a)の発熱量が大きく、筐体2bが収納する発熱部品1b(電気回路1b)の発熱量が小さい場合、筐体2aから放熱しやすいように接続部(4a、4b)を設けてもよい。具体的には、図5を例にすると、接続部4b(筐体2aと放熱フィン3bを熱的接続)のみを設け、接続部4aを設けない構成としてもよい。 Further, for example, when the heat generation amount of the heat generating component 1a (electric circuit 1a) stored in the housing 2a is large and the heat generation amount of the heat generating component 1b (electric circuit 1b) stored in the housing 2b is small, heat is radiated from the housing 2a. You may provide a connection part (4a, 4b) so that it may carry out easily. Specifically, taking FIG. 5 as an example, only the connection portion 4b (thermal connection between the housing 2a and the heat radiation fin 3b) may be provided, and the connection portion 4a may not be provided.
 また、例えば、筐体2aが収納する発熱部品1a(電気回路1a)の一部のみが発熱量が大きい場合、発熱量が大きい部品近傍のみに接続部(4a、4b)を設け、その他の発熱量の小さい箇所には接続部(4a、4b)を設けない構成としてもよい。 Further, for example, when only a part of the heat generating component 1a (electric circuit 1a) housed in the housing 2a has a large heat generation amount, the connection portions (4a, 4b) are provided only in the vicinity of the component having a large heat generation amount, and other heat generation is performed. It is good also as a structure which does not provide a connection part (4a, 4b) in a location with small quantity.
 以上のように第1、第2の実施形態による放熱構造体は、第1筐体2aと、第2筐体2bと、放熱フィン3a、3bの少なくともいずれか一方と、接続部とを有する。第1筐体2aは第1発熱部品1aを収納し、第2筐体2bは第2発熱部品1bを収納する。第1放熱フィンである放熱フィン3aは第1筐体2aの外面に設けられ、第2放熱フィンである放熱フィン3bは第2筐体2bの外面に設けられている。接続部は、放熱フィン3a、3bの少なくとも一方を介して第1筐体2aと第2筐体2bとを熱的に結合している。この放熱構造体によれば、電源装置全体としての放熱特性を向上することができる。 As described above, the heat dissipation structure according to the first and second embodiments includes the first housing 2a, the second housing 2b, at least one of the heat dissipation fins 3a and 3b, and the connection portion. The first housing 2a houses the first heat generating component 1a, and the second housing 2b houses the second heat generating component 1b. The radiation fin 3a that is the first radiation fin is provided on the outer surface of the first housing 2a, and the radiation fin 3b that is the second radiation fin is provided on the outer surface of the second housing 2b. The connecting portion thermally couples the first housing 2a and the second housing 2b via at least one of the heat radiation fins 3a and 3b. According to this heat dissipation structure, the heat dissipation characteristics of the entire power supply device can be improved.
 また、第1筐体2aの外面に放熱フィン3aが形成され、第2筐体2bの外面に放熱フィン3bが形成され、接続部4aは放熱フィン3aの少なくとも一部と第2筐体2bとを熱的に結合していてもよい。 Moreover, the radiation fin 3a is formed in the outer surface of the 1st housing | casing 2a, the radiation fin 3b is formed in the outer surface of the 2nd housing | casing 2b, and the connection part 4a is at least one part of the radiation fin 3a, the 2nd housing | casing 2b, May be thermally coupled.
 また、第1筐体2aは第1発熱部品1aを含む第1電気回路を収納し、第2筐体2bは第2発熱部品1bを含む第2電気回路を収納してもよい。この場合、第1筐体2aの外面に、第1電気回路と第2電気回路とを導通するための導通部7が形成され、第2筐体2bの外面に、導通部7に対応する開口部8が形成され、導通部7と開口部8とは接続部4dで結合されていてもよい。 Alternatively, the first housing 2a may store a first electric circuit including the first heat generating component 1a, and the second housing 2b may store a second electric circuit including the second heat generating component 1b. In this case, a conducting portion 7 for conducting the first electric circuit and the second electric circuit is formed on the outer surface of the first housing 2a, and an opening corresponding to the conducting portion 7 is formed on the outer surface of the second housing 2b. The part 8 is formed, and the conduction part 7 and the opening 8 may be coupled by the connection part 4d.
 また、この放熱構造体は、第2筐体2bの放熱フィン3bの少なくとも一部と第1筐体2aとを熱的に結合する接続部4bを更に有していてもよい。 The heat dissipation structure may further include a connection portion 4b that thermally couples at least a part of the heat dissipation fins 3b of the second casing 2b and the first casing 2a.
 また、この放熱構造体において、第1筐体2aと第2筐体2bとは、放熱フィン3a、3bが形成された外面を対向するように隣接して配設されるものであってもよい。 In this heat dissipation structure, the first casing 2a and the second casing 2b may be disposed adjacent to each other so that the outer surfaces on which the heat dissipation fins 3a and 3b are formed face each other. .
 また、この放熱構造体において、第1筐体2a及び第2筐体2bの放熱フィン3a、3bは、それぞれ、複数の突起部で形成されていてもよい。この場合、第1筐体2a及び第2筐体2bは、それぞれの放熱フィン3a、3bの複数の突起部の少なくとも一部が、互いに離間した状態で交互に組み合うように配設されてもよい。この放熱構造体によれば、ファン5からの送風を円滑に通流させるとともに、放熱フィン3a、3bの突起部の本数の密度を増加させ、小型化と放熱特性の向上を図ることができる。 In this heat dissipation structure, the heat dissipation fins 3a and 3b of the first casing 2a and the second casing 2b may each be formed by a plurality of protrusions. In this case, the first housing 2a and the second housing 2b may be arranged so that at least a part of the plurality of protrusions of the respective radiation fins 3a and 3b are alternately assembled in a state of being separated from each other. . According to this heat radiating structure, it is possible to smoothly flow the air from the fan 5 and increase the density of the number of protrusions of the heat radiating fins 3a and 3b, thereby reducing the size and improving the heat radiating characteristics.
 また、この放熱構造体において、第1発熱部品1aまたは第2発熱部品1bが発する熱は、放熱フィン3a、3bが配設された領域に流通する空気を介して放熱されるものであってもよい。 Further, in this heat dissipation structure, even if the heat generated by the first heat generating component 1a or the second heat generating component 1b is dissipated through the air flowing through the region where the heat dissipating fins 3a, 3b are disposed. Good.
 また、この放熱構造体において、第1発熱部品1a第1電源回路と、第2発熱部品1bを含む第2電源回路は、排他動作をしてもよい。この放熱構造体は、かかるに発熱部品に好適に用いることができる。 In this heat dissipation structure, the first power supply component 1a first power supply circuit and the second power supply circuit including the second heat generation component 1b may perform an exclusive operation. Thus, the heat dissipation structure can be suitably used for a heat generating component.
 また、この放熱構造体において、第1発熱部品1aと第2発熱部品1bとでは、動作時の発熱量が異なってもよい。この放熱構造体は、かかるに発熱部品に好適に用いることができる。 Further, in this heat dissipation structure, the first heat generating component 1a and the second heat generating component 1b may have different heat generation amounts during operation. Thus, the heat dissipation structure can be suitably used for a heat generating component.
 また、この放熱構造体において、第1筐体2a、第2筐体2bの少なくとも一方は、ダイカストによって放熱フィン3a、3bと一体成形されていてもよい。この放熱構造体は、密閉性、小型化、製造コスト等の観点から好適である。 In this heat dissipation structure, at least one of the first casing 2a and the second casing 2b may be integrally formed with the heat dissipation fins 3a and 3b by die casting. This heat dissipating structure is suitable from the viewpoints of hermeticity, miniaturization, manufacturing cost, and the like.
 また、この放熱構造体において、接続部4aは、第1筐体2aの放熱フィン3aの先端と第2筐体2bの外面とを接続する半田材、溶接部、放熱接着剤及びアルミろう付け部の少なくともいずれかを含むものであってもよい。 In this heat dissipation structure, the connecting portion 4a includes a solder material, a welded portion, a heat dissipation adhesive, and an aluminum brazing portion that connect the tips of the heat dissipation fins 3a of the first casing 2a and the outer surface of the second casing 2b. It may contain at least one of.
 本開示は、放熱構造体として好適に用いることができる。 The present disclosure can be suitably used as a heat dissipation structure.
1a  発熱部品(電気回路、インバータ装置)
1b  発熱部品(電気回路、充電装置)
2a,2b  筐体
3a,3b  放熱フィン
4a,4b,4c,4d  接続部
5  ファン
6  導電線
7  導通部
8  開口部
1a Heat-generating parts (electric circuit, inverter device)
1b Heat-generating parts (electric circuit, charging device)
2a, 2b Housings 3a, 3b Radiation fins 4a, 4b, 4c, 4d Connection part 5 Fan 6 Conductive wire 7 Conductive part 8 Opening part

Claims (12)

  1. 第1発熱部品を収納する第1筐体と、
    第2発熱部品を収納する第2筐体と、
    前記第1筐体の外面に設けられた第1放熱フィンと前記第2筐体の外面に設けられた第2放熱フィンとの少なくとも一方と、
    前記第1放熱フィンと前記第2放熱フィンとの少なくとも一方を介して前記第1筐体と前記第2筐体とを熱的に結合する接続部と、を備えた、
    放熱構造体。
    A first housing that houses a first heat-generating component;
    A second housing that houses the second heat generating component;
    At least one of a first radiating fin provided on the outer surface of the first casing and a second radiating fin provided on the outer surface of the second casing;
    A connecting portion that thermally couples the first housing and the second housing via at least one of the first heat radiating fin and the second heat radiating fin;
    Heat dissipation structure.
  2. 前記第1筐体の前記外面に前記第1放熱フィンが設けられ、
    前記第2筐体の前記外面に前記第2放熱フィンが設けられ、
    前記接続部は、前記第1放熱フィンの少なくとも一部と前記第2筐体とを熱的に結合する、
    請求項1に記載の放熱構造体。
    The first heat dissipating fin is provided on the outer surface of the first housing;
    The second radiating fin is provided on the outer surface of the second casing;
    The connecting portion thermally couples at least a part of the first heat radiation fin and the second housing,
    The heat dissipation structure according to claim 1.
  3. 前記第1筐体の前記外面に設けられ、前記第1発熱部品を含む第1電気回路と前記第2発熱部品を含む第2電気回路を導通する導通部をさらに備え、
    前記第2筐体の前記外面に、前記導通部に対応する開口部が設けられ、
    前記導通部と前記開口部とは前記接続部で結合されている、
    請求項1または2に記載の放熱構造体。
    A conductive portion that is provided on the outer surface of the first housing and connects the first electric circuit including the first heat generating component and the second electric circuit including the second heat generating component;
    An opening corresponding to the conducting portion is provided on the outer surface of the second housing.
    The conduction portion and the opening are coupled at the connection portion,
    The heat dissipation structure according to claim 1 or 2.
  4. 前記第2放熱フィンの少なくとも一部と前記第1筐体とを熱的に結合する第2接続部をさらに備えた、
    請求項2に記載の放熱構造体。
    A second connection portion that thermally couples at least a part of the second heat radiation fin and the first housing;
    The heat dissipation structure according to claim 2.
  5. 前記第1筐体の前記第1放熱フィンが形成された前記外面と、前記第2筐体の前記第2放熱フィンが形成された前記外面とが対向するように、前記第1筐体と前記第2筐体とが隣接して配設されている、
    請求項4に記載の放熱構造体。
    The first housing and the outer surface of the first housing so that the outer surface of the first housing is formed and the outer surface of the second housing of the second housing are formed with the second heat radiating fin. A second housing is disposed adjacent to the second housing;
    The heat dissipation structure according to claim 4.
  6. 前記第1放熱フィンと前記第2放熱フィンは、それぞれ、複数の突起部を含み、
    前記第1放熱フィンの前記複数の突起部の少なくとも一部と前記第2放熱フィンの前記複数の突起部の少なくとも一部とが、互いに離間した状態で交互に組み合うように、前記第1筐体と前記第2筐体とが配設されている、
    請求項5に記載の放熱構造体。
    Each of the first radiating fin and the second radiating fin includes a plurality of protrusions,
    The first housing such that at least a part of the plurality of protrusions of the first radiating fin and at least a part of the plurality of protrusions of the second radiating fin are alternately assembled in a state of being separated from each other. And the second housing are disposed,
    The heat dissipation structure according to claim 5.
  7. 前記第1発熱部品と第2発熱部品とが発する熱は、前記第1放熱フィンと前記第2放熱フィンとが配設された領域に流通する空気を介して放熱される、
    請求項5に記載の放熱構造体。
    The heat generated by the first heat generating component and the second heat generating component is dissipated through the air flowing through the area where the first heat dissipating fin and the second heat dissipating fin are disposed.
    The heat dissipation structure according to claim 5.
  8. 前記第1筐体は第1放熱フィンとダイカストによって一体成形されているか、前記第2筐体は第2放熱フィンとダイカストによって一体成形されているかとの少なくとも一方である、
    請求項1に記載の放熱構造体。
    The first housing is at least one of a first heat radiating fin and a die cast, or the second housing is at least one of a second heat radiating fin and a die cast.
    The heat dissipation structure according to claim 1.
  9. 前記接続部は、前記第1放熱フィンの先端と前記第2筐体の外面とを接続する半田材、溶接部、放熱接着剤及びアルミろう付け部の少なくともいずれかを含む
    請求項1に記載の放熱構造体。
    The said connection part contains at least any one of the solder material which connects the front-end | tip of the said 1st radiation fin and the outer surface of the said 2nd housing | casing, a welding part, a thermal radiation adhesive agent, and an aluminum brazing part. Heat dissipation structure.
  10. 請求項1に記載の放熱構造体と、
    前記第1発熱部品を含み、前記第1筐体に収納された第1電気回路と、
    前記第2発熱部品を含み、前記第2筐体に収納された第2電気回路と、を備えた、
    車載電源装置。
    A heat dissipating structure according to claim 1;
    A first electric circuit including the first heat generating component and housed in the first housing;
    A second electric circuit including the second heat generating component and housed in the second housing.
    In-vehicle power supply.
  11. 前記第1電気回路と、前記第2電源回路とは互いに排他動作をする、
    請求項10に記載の車載電源装置。
    The first electric circuit and the second power supply circuit perform mutually exclusive operations.
    The in-vehicle power supply device according to claim 10.
  12. 前記第1発熱部品の動作時の発熱量は、前記第2発熱部品の動作時の発熱量と異なる、
    請求項10に記載の車載電源装置。
    The amount of heat generated during operation of the first heat generating component is different from the amount of heat generated during operation of the second heat generating component.
    The in-vehicle power supply device according to claim 10.
PCT/JP2017/034039 2016-10-24 2017-09-21 Heat-dissipating structure and onboard power supply device using same WO2018079141A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112017005354.4T DE112017005354T5 (en) 2016-10-24 2017-09-21 Heat-dissipating structure and this on-board power supply device
CN201790001328.2U CN209692641U (en) 2016-10-24 2017-09-21 Heat-dissipating structure body and vehicular electric power source device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-207684 2016-10-24
JP2016207684A JP2018074618A (en) 2016-10-24 2016-10-24 Heat dissipation structure of power supply device and on-vehicle power supply device

Publications (1)

Publication Number Publication Date
WO2018079141A1 true WO2018079141A1 (en) 2018-05-03

Family

ID=62024776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034039 WO2018079141A1 (en) 2016-10-24 2017-09-21 Heat-dissipating structure and onboard power supply device using same

Country Status (4)

Country Link
JP (1) JP2018074618A (en)
CN (1) CN209692641U (en)
DE (1) DE112017005354T5 (en)
WO (1) WO2018079141A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021038954A1 (en) * 2019-08-30 2021-03-04 日立オートモティブシステムズ株式会社 Electrical device and electronic control device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6638847B1 (en) * 2019-06-24 2020-01-29 富士電機株式会社 Power converter
US11212941B2 (en) * 2020-06-01 2021-12-28 Astec International Limited Equipment shelf

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52124120U (en) * 1976-03-17 1977-09-21
JPH0715975A (en) * 1993-06-16 1995-01-17 Hitachi Ltd Semiconductor cooling device
JPH0767213A (en) * 1993-08-20 1995-03-10 Nippondenso Co Ltd Controller for electric automobile
JPH10502217A (en) * 1994-06-30 1998-02-24 インテル・コーポレーション Opposite joint fin type heat sink and blower multi-microprocessor cooling system with duct
JPH11266508A (en) * 1998-03-16 1999-09-28 Yamaha Motor Co Ltd Motor-driven vehicle
JP2003037981A (en) * 2001-07-24 2003-02-07 Shindengen Electric Mfg Co Ltd Power circuit of generator
JP2003244958A (en) * 2002-02-19 2003-08-29 Sansha Electric Mfg Co Ltd Power source
JP2011192953A (en) * 2010-02-16 2011-09-29 Toshiba Corp Cooling structure for electronic device
JP2015231267A (en) * 2014-06-04 2015-12-21 三菱電機株式会社 Switching power supply
WO2017046180A1 (en) * 2015-09-14 2017-03-23 Sma Solar Technology Ag Inverter with a multipartite housing and an internal cooling-air duct

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3166423B2 (en) 1993-07-22 2001-05-14 株式会社デンソー Cooling structure

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52124120U (en) * 1976-03-17 1977-09-21
JPH0715975A (en) * 1993-06-16 1995-01-17 Hitachi Ltd Semiconductor cooling device
JPH0767213A (en) * 1993-08-20 1995-03-10 Nippondenso Co Ltd Controller for electric automobile
JPH10502217A (en) * 1994-06-30 1998-02-24 インテル・コーポレーション Opposite joint fin type heat sink and blower multi-microprocessor cooling system with duct
JPH11266508A (en) * 1998-03-16 1999-09-28 Yamaha Motor Co Ltd Motor-driven vehicle
JP2003037981A (en) * 2001-07-24 2003-02-07 Shindengen Electric Mfg Co Ltd Power circuit of generator
JP2003244958A (en) * 2002-02-19 2003-08-29 Sansha Electric Mfg Co Ltd Power source
JP2011192953A (en) * 2010-02-16 2011-09-29 Toshiba Corp Cooling structure for electronic device
JP2015231267A (en) * 2014-06-04 2015-12-21 三菱電機株式会社 Switching power supply
WO2017046180A1 (en) * 2015-09-14 2017-03-23 Sma Solar Technology Ag Inverter with a multipartite housing and an internal cooling-air duct

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021038954A1 (en) * 2019-08-30 2021-03-04 日立オートモティブシステムズ株式会社 Electrical device and electronic control device

Also Published As

Publication number Publication date
DE112017005354T5 (en) 2019-07-11
JP2018074618A (en) 2018-05-10
CN209692641U (en) 2019-11-26

Similar Documents

Publication Publication Date Title
JP4292913B2 (en) Semiconductor cooling unit
WO2018079141A1 (en) Heat-dissipating structure and onboard power supply device using same
WO2015156422A1 (en) Cooling housing for electronic device, electronic device, and construction machine
JP7339075B2 (en) Electrical equipment, electronic controller
JP4796999B2 (en) Electronic control unit
KR102259600B1 (en) Cooling structure of power converter
JP7245756B2 (en) electronic controller
JP4756012B2 (en) Power distribution equipment
JP2019022293A (en) Power supply device
JP2017017133A (en) Liquid-cooled type cooling device
JPH10126924A (en) Electric connector
JP2014192229A (en) Electronic controller for vehicle
CN210555610U (en) Unmanned aerial vehicle's heat radiation structure
WO2018061814A1 (en) Power supply device
JP6469521B2 (en) Liquid cooling system
JP5100165B2 (en) Cooling board
JP4968150B2 (en) Semiconductor element cooling device
WO2016181494A1 (en) Vehicular control device
WO2019142543A1 (en) Power semiconductor device
JP2010110130A (en) Power converter for railroad vehicle
JP3879080B2 (en) Cooling device for exothermic electrical equipment for vehicles
JP2019057657A (en) Electronic device with air cooling mechanism
CN219437469U (en) Heat radiation structure of electric vehicle controller
JP5170870B2 (en) Cooling system
CN217116741U (en) Electronic device for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865446

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17865446

Country of ref document: EP

Kind code of ref document: A1