WO2018078847A1 - Rotary solenoid - Google Patents

Rotary solenoid Download PDF

Info

Publication number
WO2018078847A1
WO2018078847A1 PCT/JP2016/082235 JP2016082235W WO2018078847A1 WO 2018078847 A1 WO2018078847 A1 WO 2018078847A1 JP 2016082235 W JP2016082235 W JP 2016082235W WO 2018078847 A1 WO2018078847 A1 WO 2018078847A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
casing
rotary solenoid
rotor
shaft
Prior art date
Application number
PCT/JP2016/082235
Other languages
French (fr)
Japanese (ja)
Inventor
古賀欣郎
Original Assignee
タカノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タカノ株式会社 filed Critical タカノ株式会社
Priority to PCT/JP2016/082235 priority Critical patent/WO2018078847A1/en
Priority to JP2018547072A priority patent/JPWO2018078847A1/en
Publication of WO2018078847A1 publication Critical patent/WO2018078847A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/12Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moving in alternate directions by alternate energisation of two coil systems
    • H02K33/14Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moving in alternate directions by alternate energisation of two coil systems wherein the alternate energisation and de-energisation of the two coil systems are effected or controlled by movement of the armatures

Definitions

  • the present invention relates to a magnet rotor part rotatably supported by a bearing part provided in a casing, and a rotary solenoid provided with a pair of stator parts arranged on both sides in the radial direction of the magnet rotor part.
  • a rotary solenoid is disposed on both sides in the radial direction of a magnet rotor portion having a magnet at an intermediate position of a shaft that is rotatably supported by a bearing portion provided on the casing, and is fixed to the casing. It comprises a pair of stator parts having coils mounted on the stator yoke, and has a function of switching between two positions by outputting a reciprocating rotational displacement.
  • this type of rotary solenoid uses its reciprocating rotational property to sort money and banknotes, sort mail, etc., switch the transport path of printed matter, switch the optical path of optical equipment, and ion shutter of semiconductor manufacturing equipment.
  • optical path switching of optical equipment is not only fast and has high operating angle accuracy, but also has a limited installation space.
  • Rotary solenoids are required.
  • an ultra-small rotary solenoid accompanying the miniaturization of chips is required.
  • rotary solenoids disclosed in Patent Documents 1 and 2 proposed by the present applicant have been known as miniaturized rotary solenoids used for such applications.
  • the rotary solenoid (rotary electric machine) disclosed in Patent Document 1 efficiently secures a coil housing space, achieves a compact size (ultra miniaturization), further reduces the overall cost, and has uniform characteristics and quality. Specifically, it is provided with a magnet rotor having a magnet in the middle part of the shaft, and a stator in which a coil is wound around a coil bobbin covering the iron core part.
  • a pair of bobbin halves having a shape in which the coil bobbin is mounted from both sides and opposed to each other, and the coil winding part for winding the coil is overlapped more radially than the outer peripheral surface of the magnet. And an iron core portion mounted between a pair of half bobbin portions.
  • the rotary solenoid (solenoid) disclosed in Patent Document 2 easily realizes an ultra-small solenoid and improves the reliability of the ultra-small solenoid by mechanically protecting the connecting portion of the wire end.
  • the wire end can be connected to the wire connecting portion when the hole and the through hole are inserted from one end opening.
  • It has an intermediate mounting portion that can be stopped at the final position where the wire connection portion and the wire connection portion are shielded by the barrier portion in the coil bobbin, and has a pin main body portion protruding from the other end opening of the through hole portion at the final position. And a pin terminal.
  • the movable part (rotor part) supported by the shaft is rotationally displaced, and the fixed part (stator part) facing the movable part is also connected to the circumference of the movable part.
  • the shape of the entire rotary solenoid (outer shape of the casing) viewed from the axial direction is a circular shape or a square shape that accommodates the circular shape, so even if the overall size is reduced, it is about 5 mm.
  • the outer diameter is the limit.
  • the magnetized waveform is sinusoidal.
  • the magnet is usually assembled because there is a risk of damage to the parts due to the generation of magnetic attraction force or adsorption of dust such as iron powder. Magnetization is performed after Eventually, when the magnetization waveform is sinusoidal, the portion perpendicular to the magnetization direction is close to an unmagnetized state, and the magnetic flux of the magnet is insufficient when downsizing is attempted.
  • the present invention aims to provide a rotary solenoid that solves such problems in the background art.
  • the present invention provides a magnet rotor portion 2 having a magnet portion 7 at an intermediate position of a shaft 6 rotatably supported by bearing portions 5f and 5r provided in the casing 4, and the magnet rotor.
  • a pair of rotor yokes 12f and 12r formed over a predetermined angular range Za in the circumferential direction Ff are provided, and bearing portions 5f and 5 are provided.
  • a pair of opposite end face parts 4f and 4r in the casing 4 provided with a rectangular shape Sr is selected, and the position of the side face part 4p in the casing 4 extending in a right angle direction from at least one long side part 4rm is determined as a magnet rotor.
  • the proximity position Xs that allows the rotation of the portion 2 is selected.
  • the rectangular shape Sr of the end face portions 4f and 4r is selected so that the length Ls of the short side portions 4rs... Is less than or equal to 1 ⁇ 2 of the length Lm of the long side portions 4rm. it can.
  • the pair of stator portions 3s and 3t can be disposed in the inner spaces Rs and Rt of the casing 4 on both sides in the radial direction Fd of the magnet rotor portion 2 and on both sides in the longitudinal direction of the end face portions 4f.
  • stator yokes 8s and 8t are loaded at the central positions of the coils 9s and 9t, and are arranged in parallel to the shaft 6, and the core portions 15s and 15t having both ends fixed to the casing 4, and the core portions 15s and 15t.
  • a pair of yoke main body portions 16sf, 16tf, 16sr, and 16tr that protrude in the radial direction Fd from the core portions 15s and 15t and face the circumferential surfaces of the rotor yokes 12f and 12r are provided on both sides of the coils 9s and 9t in the axial direction Fs.
  • the casing 4 and / or the shaft 6 is preferably formed of a nonmagnetic material.
  • the casing 4 is integrally provided with a pair of stoppers 17s and 17t that are engaged with the rotor yokes 12f and 12r and restrict the rotation range Zr on the inner surface 4qi of the other side surface portion 4q that faces the side surface portion 4p. Can do.
  • the predetermined angle range Za can be selected from 80 to 140 [°].
  • the magnet part 7 can be constituted by a magnet main body part 7m and a separator part 7s using a magnetic material in contact with the axial direction Fs end of the magnet main body part 7m, or only the magnet main body part 7m. Can also be configured.
  • the magnet body portion 7m may be formed of a cylindrical body Mr that covers the entire circumference of the outer circumferential surface 6f of the shaft 6 or a part of the circumference of the outer circumferential surface 6f of the shaft 6 in the circumferential direction. You may form with the circular arc body Ms to cover.
  • the rotary solenoid 1 according to the present invention having such a configuration has the following remarkable effects.
  • the magnet rotor portion 2 uses a magnet portion 7 in which one side in the axial direction Fs of the shaft 6 is an S pole and the other is an N pole. Since the pair of rotor yokes 12f and 12r that protrude in the direction Fd and are formed over the predetermined angular range Za in the circumferential direction Ff are provided, a sufficient magnetic flux in the magnet portion 7 can be secured. As a result, even when the rotary solenoid 1 is made extremely thin, sufficient necessary torque can be secured.
  • a side surface of the casing 4 extending in a direction perpendicular to at least one of the long side portions 4rm is selected from the pair of opposing end surface portions 4f, 4r in the casing 4 provided with the bearing portions 5f, 5r in a rectangular shape Sr. Since the position of the portion 4p is selected as a proximity position Xs that allows the rotation of the magnet rotor portion 2, it can be arranged in a narrow space such as a gap between parts, and can be arranged in various arrangement spaces. It can be made compatible, and versatility can be dramatically improved.
  • the rectangular shape Sr of the end face portions 4f and 4r is selected and the length Ls of the short side portion 4rs... Is set to 1 ⁇ 2 or less of the length Lm of the long side portion 4rm. It is also possible to easily realize the overall shape (outer shape) of 1 as a flat shape having a small thickness, particularly an ultra-thin shape having a thickness of 5 mm or less.
  • the pair of stator portions 3s and 3t are disposed in the internal spaces Rs and Rt of the casing 4 on both sides in the radial direction Fd of the magnet rotor portion 2 and on both sides in the longitudinal direction of the end face portions 4f. Then, since the stator portion 3s, the magnet rotor portion 2 and the stator portion 3t can be arranged along a straight line, the rotary solenoid 1 whose overall shape (outer shape) is a thin flat shape is also laid out. It can be reasonably realized from the viewpoint.
  • stator yokes 8s and 8t are loaded at the central positions of the coils 9s and 9t and arranged in parallel to the shaft 6, and the core portions 15s and 15t having both ends fixed to the casing 4; A pair of yoke main body portions 16sf, 16tf, which protrude in the radial direction Fd from the core portions 15s, 15t and which face the peripheral surfaces of the rotor yokes 12f, 12r on both sides of the coils 9s, 9t in the axial direction Fs of the core portions 15s, 15t, If 16sr and 16tr are provided, a simple magnetic circuit that matches the shape of the magnet rotor portion 2 can be constructed. Therefore, unnecessary magnetic loss can be eliminated, the efficiency of the rotary solenoid 1 can be improved, and torque can be increased. Variations can be reduced.
  • the casing 4 is made of a non-magnetic material according to a preferred embodiment, unnecessary magnetic flux leakage to the casing 4 can be avoided, thereby contributing to further increase in efficiency of the rotary solenoid 1 and the shaft 6. If the nonmagnetic material is used, unnecessary magnetic flux leakage to the shaft 6 can be avoided, which can contribute to further increase in the efficiency of the rotary solenoid 1.
  • a pair of stoppers 17s and 17t that are engaged with the rotor yokes 12f and 12r and regulate the rotation range Zr are provided on the inner surface 4qi of the other side surface portion 4q facing the side surface portion 4p of the casing 4. If provided integrally, the shape of the rotor yokes 12f and 12r can be used as a direct contact portion, so that a stopper mechanism for regulating the rotation range Zr can be easily constructed only by adding the stoppers 17s and 17t. In addition, by using the dead space, a small stopper mechanism that can be disposed inside the casing 4 can be constructed, and the stop position can be highly accurate.
  • the predetermined angle range Za is selected from 80 to 140 [°]
  • the operation related to the reciprocating rotational displacement of the portion 2 can be reliably ensured, and the rotational range Zr as a necessary drive output can be ensured.
  • the magnet part 7 can be constituted by a magnet main body part 7m and a separator part 7s using a magnetic material in contact with the axial Fs end of the magnet main body part 7m.
  • the degree of freedom in design can be increased from the viewpoint of the assembling mode of the magnet main body 7m, such as being configured only by the magnet main body 7m, the target rotary solenoid 1 corresponding to the specifications can be easily obtained. Can do.
  • the magnet body portion 7m may be formed of a cylindrical body Mr that covers the entire circumference in the circumferential direction on the outer circumferential surface 6f of the shaft 6, or in the circumferential direction on the outer circumferential surface 6f of the shaft 6.
  • the degree of freedom in design can be increased from the viewpoint of the shape of the magnet body 7m, such as the arc body Ms covering a part of the circumference, and by combining with the assembly of the magnet body 7m. Therefore, the degree of design freedom can be increased.
  • FIG. 2 is a cross-sectional plan view of a rotary solenoid according to a preferred embodiment of the present invention (cross section taken along line AA in FIG. 2); Sectional front view of the rotary solenoid, Cross-sectional right side view of the rotary solenoid, Appearance right side view with part of the rotary solenoid broken away, External bottom view of the rotary solenoid, Magnetic circuit diagram of the rotary solenoid, Action explanatory view using a sectional plan view of the rotary solenoid, Magnetic flux density distribution characteristic diagram of the gap by the magnetizing direction of the rotary solenoid, A cross-sectional front view showing a modification example of the magnet part in the magnet rotor part included in the rotary solenoid, A cross-sectional front view showing a modification example of the rotor yoke in the magnet rotor portion provided in the rotary solenoid, A cross-sectional front view showing a casing provided in the rotary solenoid and a modified example around the casing,
  • the rotary solenoid 1 includes a casing 4 having a flat rectangular parallelepiped shape.
  • the casing 4 includes a casing main body 4m having an upper end opening and a casing main body 4m.
  • the cover portion 4s closes the upper end opening.
  • the cover part 4s constitutes one end face part 4f in the casing 4
  • the bottom face part of the casing body part 4m facing the end face part 4f constitutes the other end face part 4r.
  • a pair of opposite end surface parts 4f and 4r are comprised. For example, as shown in FIG.
  • the casing body 4 m and the cover 4 s are formed by protruding a plurality of fixed pieces 4 mc at the upper end of the casing body 4 m and caulking the fixed pieces 4 mc. It can be fixed to the cover portion 4s.
  • the shape of the end face portion 4r is selected to be a rectangular shape Sr that satisfies the condition that the length of the short side portion 4rs is 1 ⁇ 2 or less of the length of the long side portion 4rm. Therefore, the area corresponding to the rectangular shape Sr in the cover portion 4s is the end surface portion 4f.
  • the rectangular shape Sr of the end face portions 4f and 4r is selected so that the length Ls of the short side portions 4rs... Is less than 1/2 of the length Lm of the long side portions 4rm.
  • the (outer shape) can be easily realized as a flat shape having a small thickness, particularly an ultra-thin shape having a thickness of 5 mm or less.
  • the casing 4 is entirely formed of a nonmagnetic material.
  • the cover portion 4s is integrally formed of a synthetic resin material that is a nonmagnetic material
  • the casing body portion 4m is integrally formed of a metal material that is a nonmagnetic material such as a stainless steel material or an aluminum material. In this way, if the casing 4 is formed of a nonmagnetic material, unnecessary leakage of magnetic flux to the casing 4 can be avoided, which can contribute to higher efficiency of the rotary solenoid 1.
  • one bearing portion 5f using a ball bearing, a lubricious resin bearing, a sintered oil-impregnated bearing or the like is disposed, and a bottom surface portion of the casing main body portion 4m.
  • the other bearing portion 5r using the same bearing portion is also disposed at the center position of the (end surface portion 4r).
  • Reference numerals 21 s and 21 t are attachment parts that are integrally formed on both sides in the longitudinal direction of the cover part 4 s and that extend (project) outward from the casing body part 4 m to provide circular holes.
  • 2 is a magnet rotor part, which is provided with a single round bar-shaped shaft 6 formed of a non-magnetic material such as stainless steel.
  • a non-magnetic material such as stainless steel.
  • the shaft 6 is formed of a nonmagnetic material, unnecessary leakage of magnetic flux to the shaft 6 can be avoided, so that there is an advantage that it is possible to contribute to further increase in efficiency of the rotary solenoid 1.
  • the rear end portion (lower end portion) of the shaft 6 is pivotally supported by the bearing portion 5r described above, and the intermediate portion is supported by the bearing portion 5f described above. That is, the shaft 6 is rotatably supported by the pair of bearing portions 5f and 5r.
  • the magnet portion 7 is fixed at an intermediate position in the axial direction Fs on the outer peripheral surface 6f of the shaft 6 located inside the casing 4.
  • the magnet portion 7 is formed as a cylindrical body Mr by a permanent magnet such as a ferrite magnet or a rare earth magnet. Therefore, the illustrated magnet portion 7 as a whole constitutes the magnet main body portion 7m.
  • the magnet portion 7 magnetizes one of the shafts 6 in the axial direction Fs as the S pole and the other as the N pole.
  • the magnetic characteristic of the magnet main body 7m can be utilized to the maximum, and a high magnetic flux density can be obtained in the gap between the stator portions 3s and 3t described later.
  • the thickness is set to about 2 [mm]
  • the gap is set to about 0.25 [mm]
  • a high permeance coefficient of 1 or more can be obtained.
  • the magnetic flux density in the air gap can be set to 0.5 [T] or more, and a high air gap magnetic flux density can be obtained and the torque can be increased.
  • FIG. 8 shows the magnetic flux density distribution in the air gap portion according to the magnetization direction of the magnet main body portion 7m.
  • the horizontal axis represents the central angle [°]
  • the vertical axis represents the magnetic flux density [T].
  • Pa indicates a case where the magnet is magnetized in the axial direction Fs in the present embodiment
  • Pr indicates a case where the magnet is magnetized in the radial direction Fd.
  • the dimensions of the magnet body 7m are as follows: the outer diameter is 2 [mm], the inner diameter is 1 [mm], and the height (axial length) is 2 [mm].
  • Nd—Fe—B magnets (Axial direction) Magnet body 7m magnetized and radial (radial direction) magnet body 7m were prepared. And each solenoid part 1 was comprised using each magnet part 7, and the magnetic flux density of the space
  • the magnetic flux density when using the magnet body portion 7m that is axially (axially) magnetized is generally the same as when using the magnet portion 7 that is radially (radially) magnetized. It was confirmed that the total number of magnetic fluxes was increased because the magnetic flux density was about twice as high as the magnetic flux density, and the distribution of the magnetic flux density was rectangular as indicated by Pa in FIG. As described above, by using the magnet main body portion 7m magnetized in the axial direction Fs, it is possible to ensure a high torque and a high holding force during non-energization.
  • the magnet unit 7 shown in FIG. 2 is formed as a cylindrical body as a whole and is configured as a magnet main body portion 7m.
  • the magnet unit 7 is not limited to such a form.
  • FIG. 9A shows the form of FIG. 2 shown for comparison.
  • FIG. 9 (b) shows a configuration in which the magnet portion 7 is constituted by a magnet main body portion 7m and a separator portion 7s formed of a magnetic material in contact with the axial Fs end of the magnet main body portion 7m.
  • Separator part 7s can be formed in a cylindrical shape using soft magnetic materials, such as SPCC, SECC, and a silicon steel plate.
  • the magnet unit 7 includes a magnet main body 7m as shown in FIG. 9B and a separator 7s using a magnetic material in contact with the axial Fs end of the magnet main body 7m.
  • it may be configured only by the magnet main body portion 7m as shown in FIG. 2 (FIG. 9A). Therefore, the degree of freedom in design can be increased from the viewpoint of the assembly mode of the magnet body 7m, and the target rotary solenoid 1 corresponding to the specifications can be easily obtained.
  • the separation distance in the axial direction Fs between a pair of rotor yokes 12f and 12r described later can be increased, and magnetic flux leakage can be reduced.
  • a separation distance between a pair of yoke body portions 16sf... And 16sr... Described later can be increased, so that a sufficient winding space can be secured and power consumption can be reduced.
  • a magnet material having a relatively low magnetic property such as a ferrite magnet
  • the separator portion 7s is not provided. The configuration to be used is desirable. Thereby, an excessive current to the coils 9s and 9t can be avoided, and an excessive holding force can be avoided.
  • the magnet main body 7m is formed by an arc body Ms that covers a part of the circumference of the outer peripheral surface 6f of the shaft 6 in the circumferential direction Ff.
  • the magnet portion 7 shown in FIG. 2A and FIG. 2 is different from the magnet portion 7m formed by the cylindrical body Mr that covers the entire circumference of the outer peripheral surface 6f of the shaft 6 in the circumferential direction.
  • the attachment position and the cross-sectional shape of the magnet main body 7m can be made to correspond to the positions and shapes of rotor yokes 12f and 12r described later.
  • the overall shape of the magnet main body 7m is not necessarily formed by the cylindrical body Mr or the circular arc body Ms, and may be a rectangular parallelepiped shape or a plate shape.
  • the magnet body 7m may be formed by the cylindrical body Mr that covers the entire circumference of the outer peripheral surface 6f of the shaft 6 or a part of the circumference of the outer peripheral surface 6f of the shaft 6 in the circumferential direction.
  • the degree of freedom in design can be increased from the viewpoint of the shape of the magnet main body 7m, and the design freedom can be further increased by combining with the assembly of the magnet main body 7m. The degree can be increased.
  • a pair of rotor yokes 12 f and 12 r are provided that protrude in the radial direction Fd from the shaft 6 and are formed in the circumferential direction Ff over a predetermined angular range Za.
  • Each rotor yoke 12f, 12r is formed of a soft magnetic material such as SPCC, SECC, silicon steel plate, etc., and as shown in FIGS. 1 and 9 (a), shaft attachment portions 12fc, 12rc formed in ring shapes, Fan-shaped (arc-shaped) rotor yoke main body portions 12fm and 12rm are formed integrally with the periphery of the shaft mounting portions 12fc and 12rc.
  • the rotor yoke main body portions 12fm and 12rm project from the shaft 6 in the radial direction Fd and are formed in the circumferential direction Ff over a predetermined angular range Za.
  • a predetermined angular range Za In the case of illustration, 120 [°] was selected as the angle range Za, and about 0.5 [mm] was selected as the plate thickness.
  • the thickness of the rotor yokes 12f and 12r in the axial direction Fs is smaller than the length of the magnet portion 7 in the axial direction Fs, a small magnetic circuit can be configured, and magnetic leakage between the rotor yokes 12f and 12r is reduced. be able to.
  • the rotor yokes 12f and 12r shown in FIG. 1 show the case where 120 [°] is selected as the predetermined angle range Za, but the predetermined angle range Za is not limited to such an angle mode. . Another modification is shown in FIG.
  • FIG. 10 (a) shows an example in which the angle range Za is selected to be 135 [°]
  • FIG. 10 (b) shows an example in which the angle range Za is selected to be 90 [°]. Accordingly, when compared with the rotor yokes 12f and 12r in FIG. 1, the rotation range Zr of the magnet rotor portion 2 in FIG. 10A is 45 °, and the rotation of the magnet rotor portion 2 in FIG. The moving range Zr is 90 [°].
  • the predetermined angle range Za from 80 to 140 [°].
  • the rotation range Zr can be secured.
  • the shape of the rotor yoke main body portions 12fm and 12rm, particularly the dimension in the radial direction Fd, is related to the dimension selection of the casing 4. That is, the pair of end surface portions 4f and 4r in the casing 4 is selected to have the rectangular shape Sr described above. At this time, the position of the side surface portion 4p in the casing 4 extending in a right angle direction from at least one long side portion 4rm. Is selected as a proximity position Xs that allows rotation of the magnet rotor unit 2, specifically, the rotor yokes 12f and 12r. Therefore, as shown in FIG.
  • the clearance Lc between the leading edge of the rotor yokes 12f and 12r and the side surface portion 4p of the casing 4 should be a slight clearance considering only the conditions that allow the rotation of the rotor yokes 12f and 12r. It's enough. Specifically, as the proximity position Xs, a gap Lc between the side surface portion 4p of the casing 4 and the rotor yokes 12f and 12r in the magnet rotor portion 2 is relative to a gap portion between the rotor yokes 12f and 12r and a magnetic pole piece portion 16sfp to be described later. Thus, if it is selected within the range of 1 to 10 times, it is possible to enjoy the effectiveness for obtaining an ultra-thin shape while ensuring the necessary torque and assemblability.
  • 22f is an outer separator integrally formed in a ring shape by a lubricating resin material or a nonmagnetic material metal material interposed between the rotor yoke 12f and the bearing portion 5f, and 22r is formed in the same manner as the outer separator 22f.
  • the outer separator is interposed between the rotor yoke 12r and the bearing portion 5r.
  • stoppers 17s and 17t that are locked to the rotor yokes 12f and 12r and restrict the rotation range Zr are integrally provided. In this case, as shown in FIG.
  • Stoppers 17s and 17t projecting from the inner surface 4qi of the portion 4q in a right angle direction can be arranged, and the shaft attachment portions 12fc and 12rc in the rotor yokes 12f and 12r can be positioned between the stoppers 17s and 17t.
  • the tip surfaces of the stoppers 17s and 17t are preferably positioned at the center position in the short side direction of the end surface portions 4s, but this position can be changed. Therefore, the stop position can be easily changed by changing the stopper member 23.
  • stator portions 3s and 3t are provided on both sides of the magnet rotor portion 2 in the radial direction Fd. That is, the stator portions 3s and 3t are disposed in the internal spaces Rs and Rt of the casing 4 on both sides in the radial direction Fd of the magnet rotor portion 2 and on both sides in the longitudinal direction of the end face portions 4f.
  • the stator portion 3s, the magnet rotor portion 2, and the stator portion 3t can be arranged along a straight line, the rotary solenoid 1 whose overall shape (outer shape) is a thin flat shape is also provided. It can be reasonably realized from the viewpoint of layout.
  • each of the stator portions 3s, 3t includes coils 9s, 9t attached to stator yokes 8s, 8t fixed to the casing 4.
  • the coils 9s and 9t are manufactured by winding a magnet wire such as an annealed copper wire into a cylindrical shape.
  • stator yokes 8s and 8t are loaded at the center positions of the coils 9s and 9t, and are arranged in parallel to the shaft 6, and both ends are fixed to the casing 4, that is, one end is fixed to one end surface portion 4f, and the other end Core portions 15s and 15t fixed to the other end surface portion 4r, and on both sides of the coils 9s and 9t in the axial direction Fs of the core portions 15s and 15t, projecting in the radial direction Fd from the core portions 15s and 15t, and the rotor yoke 12f, A pair of yoke main body portions 16sf, 16tf, 16sr, and 16tr facing the circumferential surface of 12r are provided. Each yoke main body 16sf, 16tf, 16sr, 16tr can be formed in the same shape using a soft magnetic material such as SPCC, SECC, silicon steel plate or the like.
  • stator yokes 8s and 8t are configured in this way, a simple magnetic circuit matching the form of the magnet rotor portion 2 can be constructed, so that unnecessary magnetic loss can be eliminated and the efficiency of the rotary solenoid 1 can be improved. Torque variation can be reduced. Further, since the stator yokes 8s and 8t are configured as described above, the core portions 15s and the yoke body portions 16sf and 16sr can be integrally formed by casting or the like. In this case, there is an advantage that the cost can be reduced by reducing the number of parts.
  • one yoke body portion for example, the yoke body portion 16 sf, includes a rectangular shape portion 16 sfm that partitions the internal space Rs in the axial direction Fs, and a magnet rotor portion from one end of the rectangular shape portion 16 sfm.
  • the magnetic pole piece portion 16sfp protruding to the second side is integrally formed.
  • the tip of the magnetic pole piece 16sfp is formed as a concave arc edge and is opposed to the rotor yoke 12f.
  • the magnetic pole piece portion 16sfp is a half portion in the short side direction of the end surface portion 4r and is formed closer to the side surface portion 4p.
  • the peripheral part of the rotor yoke 12f passes through the gap part and the magnetic pole piece part 16sfp.
  • the other yoke body portions 16sr, 16tf, and 16tr can be the same as the yoke body portion 16sf.
  • the circumferential lengths of the portions of the stator yokes 8s, 8t facing the rotor yokes 12f are desirably smaller than the circumferential lengths of the rotor yokes 12f in a predetermined angular range Za. Thereby, sufficient holding torque at the time of deenergization is securable. It is desirable that the distance between the left and right stator yokes 8s and 8t be smaller than the circumferential length of the rotor yoke 12f. Thereby, it can comprise as a rotary solenoid which has a bidirectional
  • the pair of left and right coils 9s and 9t be connected in series.
  • electrical connection such as lead wires can be suppressed to a minimum of two, which can contribute to miniaturization.
  • the magnetic poles (N pole and S pole) generated on the left and right by the coils 9s and 9t are opposite.
  • the magnet rotor portion 2 uses the magnet portion 7 in which one of the shafts 6 in the axial direction Fs is the S pole and the other is the N pole.
  • a pair of rotor yokes 12f and 12r projecting from the shaft 6 in the radial direction Fd and formed in the circumferential direction Ff over a predetermined angular range Za are provided on both sides of the magnet portion 7 in the axial direction Fs, and the bearing portions 5f and A pair of opposite end face parts 4f, 4r in the casing 4 provided with 5r is selected to be a rectangular shape Sr, and the position of the side face part 4p in the casing 4 extending in a right angle direction from at least one long side part 4rm is The overall shape of the rotary solenoid 1 is selected because the proximity position Xs that allows the rotation of the rotor portion 2 is selected.
  • a thin flat shape with a thickness of in particular, can be easily realized by a thickness of 5 mm.
  • the following ultra-thin shape As a result, it can be arranged in a narrow space such as a gap between parts, and can correspond to various arrangement spaces, so that versatility can be greatly improved.
  • the ultra miniaturization which becomes still lower height is also possible by shortening the length of the magnet part 7 and the coils 9s and 9t in the axial direction Fs.
  • the magnet rotor portion 2 uses the magnet portion 7 in which one in the axial direction Fs of the shaft 6 is the S pole and the other is the N pole, a sufficient magnetic flux in the magnet portion 7 can be secured. As a result, even when the rotary solenoid 1 is made extremely thin, sufficient necessary torque can be secured.
  • the left stator portion 3s is in an attracted state and the right stator portion 3t is in a repulsive state with respect to the upper rotor yoke 12f and the lower rotor yoke 12r.
  • Rotate and displace clockwise 7 stops at the position of the rotor yoke 12fy... Shown by the solid line, that is, the position where the left end of the rotor yoke 12fy.
  • the rotor yokes 12fy are attracted to the yoke body portions 16sf, and the stopped state is maintained by the self-holding function.
  • the angle range Za of the rotor yokes 12f is selected to be 120 [°]
  • the rotation range Zr is 60 [°].
  • the illustrated rotary solenoid 1 has dimensions as follows: the diameter of the shaft 6 is 1 [mm], the outer diameter of the magnet portion 7 is 1.8 [mm], and the radius of the rotor yoke 12f is 1.5 [mm].
  • the thickness (dimension in the width direction) of the casing 4 can be configured as an ultra-thin shape having a thickness of 3.9 [mm], in comparison with a general circular rotary solenoid having an outer diameter of 7 [mm]. It was confirmed that the output torque was equivalent.
  • FIG. 11 the example of a change of the casing 4 is shown.
  • the cover portion 4s is integrally formed of a synthetic resin material
  • the casing main body portion 4m is integrally formed of a metal material.
  • the entire casing 4, that is, both the cover portion 4 s and the casing main body portion 4 m are formed of a synthetic resin material that is a nonmagnetic material.
  • the bearing portions 5f and 5r are integrally formed on the cover portion 4s and the casing main body portion 4m.
  • the stoppers 17s and 17t do not appear in the drawing, but can be integrally formed on the inner surface of the casing body 4m.
  • the same parts as those in FIGS. 1 to 5 are denoted by the same reference numerals to clarify the configuration, and the detailed description thereof is omitted.
  • one core portion 15s and one coil 9s are arranged on one stator portion 3s, but a plurality of core portions 15s and a plurality of coils 9s are arranged. Therefore, it may be configured in a multiple manner and arranged in the longitudinal direction of the rectangular shape Sr, and the quantity is not limited.
  • the rectangular shape Sr of the end face portions 4f and 4r it is desirable to select the length Ls of the short side portions 4rs... Less than 1/2 of the length Lm of the long side portions 4rm. The case is not excluded.
  • the stoppers 17s and 17t are arranged inside the casing 4 .
  • the case where the stoppers 17s and 17t are separately provided outside the casing 4 is not excluded.
  • the rectangular shape Sr is not only a pure rectangle, but also includes a similar shape such as a long side 4rm having two sides or a curved shape.
  • the rotary solenoid according to the present invention uses its reciprocating rotational property to sort money and banknotes, sort mails, etc., switch the transport path of printed matter, switch the optical path of optical equipment, ion shutter of semiconductor manufacturing equipment, etc. Can be used for various applications in many fields.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Electromagnets (AREA)

Abstract

A magnet part 7, of which one side in the axial direction Fs of a shaft 6 serves as an S pole, and the other side serves as an N pole, is used in a magnet rotor part 2. A pair of rotor yokes 12f, 12r, which protrude from the shaft 6 in the radial direction Fd, and are formed along a prescribed angular range Za in the circumferential direction Ff, are provided to both sides of the magnet part 7 in the axial direction Fs. A pair of end surface parts 4f, 4r of a casing 4, which are provided with bearings 5f, 5r, and which face each other, are provided with a rectangular shape Sr. Furthermore, the position of a side surface part 4p of the casing 4 which extends from at least one long side 4rm in an orthogonal direction is set as a close position Xs which allows the magnet rotor part 2 to rotate.

Description

ロータリソレノイドRotary solenoid
 本発明は、ケーシングに設けた軸受部により回動自在に支持されるマグネットロータ部及びこのマグネットロータ部の径方向両側に配した一対のステータ部を備えるロータリソレノイドに関する。 The present invention relates to a magnet rotor part rotatably supported by a bearing part provided in a casing, and a rotary solenoid provided with a pair of stator parts arranged on both sides in the radial direction of the magnet rotor part.
 一般に、ロータリソレノイドは、ケーシングに設けた軸受部により回動自在に支持されるシャフトの中間位置にマグネットを有するマグネットロータ部、及びこのマグネットロータ部の径方向両側に配し、かつケーシングに固定したステータヨークに装着したコイルを有する一対のステータ部により構成し、往復回動変位を出力することにより、二位置の切換を行う機能を備えている。 In general, a rotary solenoid is disposed on both sides in the radial direction of a magnet rotor portion having a magnet at an intermediate position of a shaft that is rotatably supported by a bearing portion provided on the casing, and is fixed to the casing. It comprises a pair of stator parts having coils mounted on the stator yoke, and has a function of switching between two positions by outputting a reciprocating rotational displacement.
 したがって、この種のロータリソレノイドは、その往復回動性を利用して、貨幣や紙幣等の区分け、郵便物等の仕分け、印刷物の搬送路切換、光学機器の光路切換、半導体製造装置のイオンシャッタ等、数多くの分野における各種用途に用いられているが、特に、光学機器の光路切換では、高速かつ高い動作角度精度のみならず、配設スペースが限られるため、ロータリソレノイドの小型化(薄型化)が要求されるとともに、半導体製造装置のイオンシャッタでは、素子の大きさに合わせて狭ピッチでシャッタを並べることにより、素子をイオントリミングする必要があるため、このシャッタを駆動するため超薄型のロータリソレノイドが要求される。さらに、チップ半導体の仕分け装置による不良品の仕分けでは、チップの微細化に伴う超小型のロータリソレノイドが要求されている。 Therefore, this type of rotary solenoid uses its reciprocating rotational property to sort money and banknotes, sort mail, etc., switch the transport path of printed matter, switch the optical path of optical equipment, and ion shutter of semiconductor manufacturing equipment. In particular, optical path switching of optical equipment is not only fast and has high operating angle accuracy, but also has a limited installation space. ) Is required, and in an ion shutter of a semiconductor manufacturing apparatus, it is necessary to perform ion trimming by arranging the shutter at a narrow pitch according to the size of the element. Rotary solenoids are required. Further, in order to sort defective products by a chip semiconductor sorting apparatus, an ultra-small rotary solenoid accompanying the miniaturization of chips is required.
 従来、このような用途に用いる小型化されたロータリソレノイドとしては、既に本出願人が提案した特許文献1及び2で開示されるロータリソレノイドが知られている。特許文献1で開示されるロータリソレノイド(回転電機)は、コイル収容空間を効率的に確保し、小型コンパクト化(超小型化)、さらには全体のコストダウンを実現するとともに、特性及び品質の均一性を高めることを目的としたものであり、具体的には、シャフトの中間部にマグネットを有するマグネットロータと、鉄芯部を覆うコイルボビンにコイルを巻回したステータを備え、特に、シャフトに対して両側から装着し、対向させることによりコイルボビンを構成するとともに、コイルを巻回するコイル巻回部がマグネットの外周面よりも径方向中心側へオーバラップした形状を有する一対のボビン半体部と、一対のボビン半体部間に装着する鉄芯部を備えて構成したものである。 Conventionally, rotary solenoids disclosed in Patent Documents 1 and 2 proposed by the present applicant have been known as miniaturized rotary solenoids used for such applications. The rotary solenoid (rotary electric machine) disclosed in Patent Document 1 efficiently secures a coil housing space, achieves a compact size (ultra miniaturization), further reduces the overall cost, and has uniform characteristics and quality. Specifically, it is provided with a magnet rotor having a magnet in the middle part of the shaft, and a stator in which a coil is wound around a coil bobbin covering the iron core part. A pair of bobbin halves having a shape in which the coil bobbin is mounted from both sides and opposed to each other, and the coil winding part for winding the coil is overlapped more radially than the outer peripheral surface of the magnet. And an iron core portion mounted between a pair of half bobbin portions.
 また、特許文献2で開示されるロータリソレノイド(ソレノイド)は、超小型のソレノイドを容易に実現するとともに、ワイヤ端部の接続部分を機械的に保護することにより超小型のソレノイドにおける信頼性を高めることを目的としたものであり、具体的には、筒形のケーシングと、このケーシングの開口部を閉塞する端面カバーと、ケーシングに収容するコイルボビンと、このコイルボビンに巻装した一又は二以上のコイルと、コイルボビンに装着してコイルから導出されるワイヤ端部を接続する一又は二以上のピン端子と、コイルの通電により変位するマグネットを有する可動部とを備え、特に、コイルボビンに設けた貫通孔部と、この貫通孔部に対して一端開口から挿通させた際に、ワイヤ接続部に対してワイヤ端部を接続可能な中途位置及びワイヤ接続部がコイルボビンにおけるバリア部により遮蔽される最終位置に止めることができる中間取付部を有するとともに、最終位置では貫通孔部の他端開口から突出するピン本体部を有してなるピン端子とを備えて構成したものである。 Further, the rotary solenoid (solenoid) disclosed in Patent Document 2 easily realizes an ultra-small solenoid and improves the reliability of the ultra-small solenoid by mechanically protecting the connecting portion of the wire end. Specifically, a cylindrical casing, an end surface cover that closes the opening of the casing, a coil bobbin accommodated in the casing, and one or two or more wound around the coil bobbin A coil, one or two or more pin terminals that are attached to a coil bobbin and connect a wire end led out from the coil, and a movable part having a magnet that is displaced by energization of the coil, in particular, a through hole provided in the coil bobbin The wire end can be connected to the wire connecting portion when the hole and the through hole are inserted from one end opening. It has an intermediate mounting portion that can be stopped at the final position where the wire connection portion and the wire connection portion are shielded by the barrier portion in the coil bobbin, and has a pin main body portion protruding from the other end opening of the through hole portion at the final position. And a pin terminal.
特開2001-292557号公報JP 2001-292557 A 特開2012-039804号公報JP 2012-039804 A
 しかし、上述した特許文献1及び特許文献2で開示されるロータリソレノイドをはじめ、従来のロータリソレノイドは、次のような解決すべき課題が存在した。 However, conventional rotary solenoids including the rotary solenoids disclosed in Patent Document 1 and Patent Document 2 described above have the following problems to be solved.
 第一に、往復回動変位を出力するため、シャフトに支持される可動部(ロータ部)は回動変位するとともに、この可動部に対向する固定部(ステータ部)も、可動部の円周方向に沿って配設される。これにより、軸方向から見たロータリソレノイド全体の形状(ケーシングの外郭形状)は、円形状又はこの円形状を収容する正方形状となるため、全体の小型化を図るとしても、5〔mm〕程度の外径が限界となる。特に、外径5〔mm〕前後まで小型化する場合、コイルの巻線スペースが狭くなるため、コイルのターン数を増やすことができず、必要なトルクを得るための磁束及びアンペアターンを確保することが困難になる。この結果、電流が過大となり、小型化すればするほど、コイルの温度が上昇し、トルクの低下を招く問題を生じる。 First, in order to output a reciprocating rotational displacement, the movable part (rotor part) supported by the shaft is rotationally displaced, and the fixed part (stator part) facing the movable part is also connected to the circumference of the movable part. Arranged along the direction. As a result, the shape of the entire rotary solenoid (outer shape of the casing) viewed from the axial direction is a circular shape or a square shape that accommodates the circular shape, so even if the overall size is reduced, it is about 5 mm. The outer diameter is the limit. In particular, when the size is reduced to around 5 [mm], the coil winding space is narrowed, so the number of turns of the coil cannot be increased, and a magnetic flux and an ampere turn for obtaining necessary torque are secured. It becomes difficult. As a result, the current becomes excessive, and the smaller the size, the higher the temperature of the coil, causing the problem of torque reduction.
 第二に、マグネットロータ部に備えるマグネットは、径方向に着磁するため、着磁波形が正弦波状となる。例えば、リング形のマグネットを二極で使用する場合には、マグネットの体積に対して十分な磁束を確保できなくなり、トルクもそれに伴い小さくなる。この問題は、マグネットを組込んだ後に着磁を行うことに起因する。即ち、着磁したマグネットを組込む場合、磁気的な吸引力の発生により、部品の破損を招いたり鉄粉等のゴミを吸着してロータリソレノイドを損傷する虞れがあるため、通常、マグネットを組込んだ後に着磁を行っている。結局、着磁波形が正弦波状の場合、着磁方向に対して直角となる部分は未着磁状態に近くなり、小型化を図る場合には、マグネットの磁束が不足する。 Second, since the magnet provided in the magnet rotor portion is magnetized in the radial direction, the magnetized waveform is sinusoidal. For example, when a ring-shaped magnet is used with two poles, a sufficient magnetic flux cannot be secured with respect to the volume of the magnet, and the torque decreases accordingly. This problem is caused by magnetizing after incorporating the magnet. In other words, when a magnetized magnet is assembled, the magnet is usually assembled because there is a risk of damage to the parts due to the generation of magnetic attraction force or adsorption of dust such as iron powder. Magnetization is performed after Eventually, when the magnetization waveform is sinusoidal, the portion perpendicular to the magnetization direction is close to an unmagnetized state, and the magnetic flux of the magnet is insufficient when downsizing is attempted.
 第三に、ロータリソレノイドは、二位置を往復回動変位するため、回動変位を二位置に規制するための一対のストッパが必要となるが、軸方向から見た全体の形状(ケーシングの外郭形状)が円形状となるロータリソレノイドでは、ケーシングの内部にストッパの配設場所を確保しにくい。結局、ケーシングの内部にストッパを設ける場合、別途の配設スペースを確保したり、或いは、別途、外部に配設する必要があり、結果的に、ロータリソレノイド全体の小型化を妨げる要因になりやすい。 Third, since the rotary solenoid reciprocally moves at two positions, a pair of stoppers for restricting the rotation displacement to two positions are required. In a rotary solenoid having a circular shape, it is difficult to secure a place for the stopper in the casing. After all, when a stopper is provided inside the casing, it is necessary to secure a separate arrangement space or separately arrange it outside, and as a result, it tends to hinder downsizing of the entire rotary solenoid. .
 本発明は、このような背景技術に存在する課題を解決したロータリソレノイドの提供を目的とするものである。 The present invention aims to provide a rotary solenoid that solves such problems in the background art.
 本発明は、上述した課題を解決するため、ケーシング4に設けた軸受部5f,5rにより回動自在に支持されるシャフト6の中間位置にマグネット部7を有するマグネットロータ部2と、このマグネットロータ部2の径方向Fd両側に配し、かつケーシング4に固定したステータヨーク8s…に装着したコイル9s…を有する一対のステータ部3s…とを備えてなるロータリソレノイド1であって、マグネットロータ部2に、シャフト6の軸方向Fsにおける一方がS極となり他方がN極となるマグネット部7を使用し、このマグネット部7の軸方向Fsにおける両側に、シャフト6から径方向Fdに突出し、かつ周方向Ffに所定の角度範囲Zaにわたって形成した一対のロータヨーク12f,12rを設けるとともに、軸受部5f,5rを設けるケーシング4における相対向する一対の端面部4f,4rを長方形状Srに選定し、かつ少なくとも一方の長辺部4rmから直角方向に延出するケーシング4における側面部4pの位置を、マグネットロータ部2の回動を許容する近接位置Xsに選定してなることを特徴とする。 In order to solve the above-described problems, the present invention provides a magnet rotor portion 2 having a magnet portion 7 at an intermediate position of a shaft 6 rotatably supported by bearing portions 5f and 5r provided in the casing 4, and the magnet rotor. A pair of stator portions 3s having coils 9s attached to stator yokes 8s fixed to the casing 4 and disposed on both sides in the radial direction Fd of the portion 2, and a magnet rotor portion 2, the magnet part 7 is used in which one side in the axial direction Fs of the shaft 6 is the S pole and the other is the N pole, projecting in the radial direction Fd from the shaft 6 on both sides in the axial direction Fs of the magnet part 7; A pair of rotor yokes 12f and 12r formed over a predetermined angular range Za in the circumferential direction Ff are provided, and bearing portions 5f and 5 are provided. A pair of opposite end face parts 4f and 4r in the casing 4 provided with a rectangular shape Sr is selected, and the position of the side face part 4p in the casing 4 extending in a right angle direction from at least one long side part 4rm is determined as a magnet rotor. The proximity position Xs that allows the rotation of the portion 2 is selected.
 この場合、発明の好適な態様により、端面部4f,4rの長方形状Srは、短辺部4rs…の長さLsを長辺部4rm…の長さLmの1/2以下に選定することができる。一方、一対のステータ部3s,3tは、マグネットロータ部2の径方向Fd両側であって、端面部4f…の長手方向両側におけるケーシング4の内部空間Rs,Rtに配設することができる。また、ステータヨーク8s,8tは、コイル9s,9tの中心位置に装填し、かつシャフト6に平行に配するとともに、両端をケーシング4に固定したコア部15s,15tと、このコア部15s,15tの軸方向Fsにおけるコイル9s,9tの両側に、コア部15s,15tから径方向Fdに突出し、ロータヨーク12f,12rの周面に対向する一対のヨーク本体部16sf,16tf,16sr,16trを備えて構成できる。なお、ケーシング4及び/又はシャフト6は、非磁性材により形成することが望ましい。また、ケーシング4には、側面部4pに対向する他方の側面部4qの内面4qiに、ロータヨーク12f,12rに係止して回動範囲Zrを規制する一対のストッパ17s,17tを一体に設けることができる。さらに、所定の角度範囲Zaは、80~140〔°〕に選定することができる。他方、マグネット部7は、マグネット本体部7mと、このマグネット本体部7mの軸方向Fs端部に当接した磁性材を用いたセパレータ部7sにより構成することができるとともに、或いはマグネット本体部7mのみにより構成することもできる。この際、マグネット本体部7mは、シャフト6の外周面6fにおける周方向の全部の周を覆う円筒体Mrにより形成してもよいし、シャフト6の外周面6fにおける周方向の一部の周を覆う円弧体Msにより形成してもよい。 In this case, according to a preferred aspect of the invention, the rectangular shape Sr of the end face portions 4f and 4r is selected so that the length Ls of the short side portions 4rs... Is less than or equal to ½ of the length Lm of the long side portions 4rm. it can. On the other hand, the pair of stator portions 3s and 3t can be disposed in the inner spaces Rs and Rt of the casing 4 on both sides in the radial direction Fd of the magnet rotor portion 2 and on both sides in the longitudinal direction of the end face portions 4f. Further, the stator yokes 8s and 8t are loaded at the central positions of the coils 9s and 9t, and are arranged in parallel to the shaft 6, and the core portions 15s and 15t having both ends fixed to the casing 4, and the core portions 15s and 15t. A pair of yoke main body portions 16sf, 16tf, 16sr, and 16tr that protrude in the radial direction Fd from the core portions 15s and 15t and face the circumferential surfaces of the rotor yokes 12f and 12r are provided on both sides of the coils 9s and 9t in the axial direction Fs. Can be configured. Note that the casing 4 and / or the shaft 6 is preferably formed of a nonmagnetic material. In addition, the casing 4 is integrally provided with a pair of stoppers 17s and 17t that are engaged with the rotor yokes 12f and 12r and restrict the rotation range Zr on the inner surface 4qi of the other side surface portion 4q that faces the side surface portion 4p. Can do. Further, the predetermined angle range Za can be selected from 80 to 140 [°]. On the other hand, the magnet part 7 can be constituted by a magnet main body part 7m and a separator part 7s using a magnetic material in contact with the axial direction Fs end of the magnet main body part 7m, or only the magnet main body part 7m. Can also be configured. At this time, the magnet body portion 7m may be formed of a cylindrical body Mr that covers the entire circumference of the outer circumferential surface 6f of the shaft 6 or a part of the circumference of the outer circumferential surface 6f of the shaft 6 in the circumferential direction. You may form with the circular arc body Ms to cover.
 このような構成を有する本発明に係るロータリソレノイド1によれば、次のような顕著な効果を奏する。 The rotary solenoid 1 according to the present invention having such a configuration has the following remarkable effects.
 (1) マグネットロータ部2に、シャフト6の軸方向Fsにおける一方がS極となり他方がN極となるマグネット部7を使用し、このマグネット部7の軸方向Fsにおける両側に、シャフト6から径方向Fdに突出し、かつ周方向Ffに所定の角度範囲Zaにわたって形成した一対のロータヨーク12f,12rを設けてなるため、マグネット部7における十分な磁束を確保できる。この結果、ロータリソレノイド1の超薄型化を図った場合であっても、必要となる十分なトルクを確保できる。 (1) The magnet rotor portion 2 uses a magnet portion 7 in which one side in the axial direction Fs of the shaft 6 is an S pole and the other is an N pole. Since the pair of rotor yokes 12f and 12r that protrude in the direction Fd and are formed over the predetermined angular range Za in the circumferential direction Ff are provided, a sufficient magnetic flux in the magnet portion 7 can be secured. As a result, even when the rotary solenoid 1 is made extremely thin, sufficient necessary torque can be secured.
 (2) 軸受部5f,5rを設けるケーシング4における相対向する一対の端面部4f,4rを長方形状Srに選定し、かつ少なくとも一方の長辺部4rmから直角方向に延出するケーシング4における側面部4pの位置を、マグネットロータ部2の回動を許容する近接位置Xsに選定してなるため、部品間の隙間のような狭い空間にも配設可能になるなど、様々な配設スペースに対応させることができ、汎用性を飛躍的に高めることができる。 (2) A side surface of the casing 4 extending in a direction perpendicular to at least one of the long side portions 4rm is selected from the pair of opposing end surface portions 4f, 4r in the casing 4 provided with the bearing portions 5f, 5r in a rectangular shape Sr. Since the position of the portion 4p is selected as a proximity position Xs that allows the rotation of the magnet rotor portion 2, it can be arranged in a narrow space such as a gap between parts, and can be arranged in various arrangement spaces. It can be made compatible, and versatility can be dramatically improved.
 (3) 好適な態様により、端面部4f,4rの長方形状Srを、短辺部4rs…の長さLsを長辺部4rm…の長さLmの1/2以下に選定すれば、ロータリソレノイド1の全体形状(外郭形状)を、厚さの薄い偏平形状、特に、厚さ5〔mm〕以下の超薄型形状とすることも容易に実現できる。 (3) According to a preferred embodiment, if the rectangular shape Sr of the end face portions 4f and 4r is selected and the length Ls of the short side portion 4rs... Is set to ½ or less of the length Lm of the long side portion 4rm. It is also possible to easily realize the overall shape (outer shape) of 1 as a flat shape having a small thickness, particularly an ultra-thin shape having a thickness of 5 mm or less.
 (4) 好適な態様により、一対のステータ部3s,3tを、マグネットロータ部2の径方向Fd両側であって、端面部4f…の長手方向両側におけるケーシング4の内部空間Rs,Rtに配設すれば、ステータ部3s,マグネットロータ部2,ステータ部3tを、直線上に沿って配することができるため、全体形状(外郭形状)が厚さの薄い偏平形状となるロータリソレノイド1もレイアウトの観点から合理的に実現できる。 (4) According to a preferred embodiment, the pair of stator portions 3s and 3t are disposed in the internal spaces Rs and Rt of the casing 4 on both sides in the radial direction Fd of the magnet rotor portion 2 and on both sides in the longitudinal direction of the end face portions 4f. Then, since the stator portion 3s, the magnet rotor portion 2 and the stator portion 3t can be arranged along a straight line, the rotary solenoid 1 whose overall shape (outer shape) is a thin flat shape is also laid out. It can be reasonably realized from the viewpoint.
 (5) 好適な態様により、ステータヨーク8s,8tを、コイル9s,9tの中心位置に装填し、かつシャフト6に平行に配するとともに、両端をケーシング4に固定したコア部15s,15tと、このコア部15s,15tの軸方向Fsにおけるコイル9s,9tの両側に、コア部15s,15tから径方向Fdに突出し、ロータヨーク12f,12rの周面に対向する一対のヨーク本体部16sf,16tf,16sr,16trとを設けて構成すれば、マグネットロータ部2の形態にマッチングしたシンプルな磁気回路を構築できるため、無用な磁気損失を排除し、ロータリソレノイド1の高効率化を図れるとともに、トルクのバラツキを低減できる。 (5) According to a preferred embodiment, the stator yokes 8s and 8t are loaded at the central positions of the coils 9s and 9t and arranged in parallel to the shaft 6, and the core portions 15s and 15t having both ends fixed to the casing 4; A pair of yoke main body portions 16sf, 16tf, which protrude in the radial direction Fd from the core portions 15s, 15t and which face the peripheral surfaces of the rotor yokes 12f, 12r on both sides of the coils 9s, 9t in the axial direction Fs of the core portions 15s, 15t, If 16sr and 16tr are provided, a simple magnetic circuit that matches the shape of the magnet rotor portion 2 can be constructed. Therefore, unnecessary magnetic loss can be eliminated, the efficiency of the rotary solenoid 1 can be improved, and torque can be increased. Variations can be reduced.
 (6) 好適な態様により、ケーシング4を、非磁性材により形成すれば、ケーシング4に対する無用な磁束の漏れを回避できるため、ロータリソレノイド1の更なる高効率化に寄与できるとともに、シャフト6を、非磁性材により形成すれば、シャフト6に対する無用な磁束の漏れを回避できるため、ロータリソレノイド1の更なる高効率化に寄与できる。 (6) If the casing 4 is made of a non-magnetic material according to a preferred embodiment, unnecessary magnetic flux leakage to the casing 4 can be avoided, thereby contributing to further increase in efficiency of the rotary solenoid 1 and the shaft 6. If the nonmagnetic material is used, unnecessary magnetic flux leakage to the shaft 6 can be avoided, which can contribute to further increase in the efficiency of the rotary solenoid 1.
 (7) 好適な態様により、ケーシング4における側面部4pに対向する他方の側面部4qの内面4qiに、ロータヨーク12f,12rに係止して回動範囲Zrを規制する一対のストッパ17s,17tを一体に設ければ、ロータヨーク12f,12rの形状を直接当接部として利用できるため、ストッパ17s,17tを追加するのみで、回動範囲Zrを規制するストッパ機構を容易に構築できる。また、デッドスペースを利用することによりケーシング4の内部に配設可能な小型のストッパ機構を構築できるとともに、停止位置の高精度化にも寄与できる。 (7) According to a preferred embodiment, a pair of stoppers 17s and 17t that are engaged with the rotor yokes 12f and 12r and regulate the rotation range Zr are provided on the inner surface 4qi of the other side surface portion 4q facing the side surface portion 4p of the casing 4. If provided integrally, the shape of the rotor yokes 12f and 12r can be used as a direct contact portion, so that a stopper mechanism for regulating the rotation range Zr can be easily constructed only by adding the stoppers 17s and 17t. In addition, by using the dead space, a small stopper mechanism that can be disposed inside the casing 4 can be constructed, and the stop position can be highly accurate.
 (8) 好適な態様により、所定の角度範囲Zaを、80~140〔°〕に選定すれば、ステータ部3s,3t側との吸引作用及び反発作用の不安定化を回避できるため、マグネットロータ部2の往復回動変位に係わる動作を確実に確保できるとともに、必要な駆動出力となる回動範囲Zrを確保できる。 (8) According to a preferred embodiment, if the predetermined angle range Za is selected from 80 to 140 [°], it is possible to avoid destabilization of the attracting action and the repulsive action with the stator portions 3s and 3t, so that the magnet rotor The operation related to the reciprocating rotational displacement of the portion 2 can be reliably ensured, and the rotational range Zr as a necessary drive output can be ensured.
 (9) 好適な態様により、マグネット部7は、マグネット本体部7mと、このマグネット本体部7mの軸方向Fs端部に当接した磁性材を用いたセパレータ部7sにより構成することができるとともに、或いはマグネット本体部7mのみにより構成することもできるなど、マグネット本体部7mの組付態様の観点から設計自由度を高めることができるため、仕様に対応させた目的のロータリソレノイド1を容易に得ることができる。 (9) According to a preferred embodiment, the magnet part 7 can be constituted by a magnet main body part 7m and a separator part 7s using a magnetic material in contact with the axial Fs end of the magnet main body part 7m. Alternatively, since the degree of freedom in design can be increased from the viewpoint of the assembling mode of the magnet main body 7m, such as being configured only by the magnet main body 7m, the target rotary solenoid 1 corresponding to the specifications can be easily obtained. Can do.
 (10) 好適な態様により、マグネット本体部7mは、シャフト6の外周面6fにおける周方向の全部の周を覆う円筒体Mrにより形成してもよいし、シャフト6の外周面6fにおける周方向の一部の周を覆う円弧体Msにより形成してもよいなど、マグネット本体部7mの形状態様の観点から設計自由度を高めることができるとともに、マグネット本体部7mの組付態様と組合わせることにより、より設計自由度を高めることができる。 (10) According to a preferred embodiment, the magnet body portion 7m may be formed of a cylindrical body Mr that covers the entire circumference in the circumferential direction on the outer circumferential surface 6f of the shaft 6, or in the circumferential direction on the outer circumferential surface 6f of the shaft 6. The degree of freedom in design can be increased from the viewpoint of the shape of the magnet body 7m, such as the arc body Ms covering a part of the circumference, and by combining with the assembly of the magnet body 7m. Therefore, the degree of design freedom can be increased.
本発明の好適実施形態に係るロータリソレノイドの断面平面図(図2中A-A線断面)、FIG. 2 is a cross-sectional plan view of a rotary solenoid according to a preferred embodiment of the present invention (cross section taken along line AA in FIG. 2); 同ロータリソレノイドの断面正面図、Sectional front view of the rotary solenoid, 同ロータリソレノイドの断面右側面図、Cross-sectional right side view of the rotary solenoid, 同ロータリソレノイドの一部を破断した外観右側面図、Appearance right side view with part of the rotary solenoid broken away, 同ロータリソレノイドの外観底面図、External bottom view of the rotary solenoid, 同ロータリソレノイドの磁気回路図、Magnetic circuit diagram of the rotary solenoid, 同ロータリソレノイドの断面平面図を用いた作用説明図、Action explanatory view using a sectional plan view of the rotary solenoid, 同ロータリソレノイドの着磁方向による空隙部の磁束密度分布特性図、Magnetic flux density distribution characteristic diagram of the gap by the magnetizing direction of the rotary solenoid, 同ロータリソレノイドに備えるマグネットロータ部におけるマグネット部の変更例を示す断面正面図、A cross-sectional front view showing a modification example of the magnet part in the magnet rotor part included in the rotary solenoid, 同ロータリソレノイドに備えるマグネットロータ部におけるロータヨークの変更例を示す断面正面図、A cross-sectional front view showing a modification example of the rotor yoke in the magnet rotor portion provided in the rotary solenoid, 同ロータリソレノイドに備えるケーシング及びケーシング周辺の変更例を示す断面正面図、A cross-sectional front view showing a casing provided in the rotary solenoid and a modified example around the casing,
 1:ロータリソレノイド,2:マグネットロータ部,3s:ステータ部,3t:ステータ部,4:ケーシング,4f:端面部,4r:端面部,4rs…:短辺部,4rm…:長辺部,4p:側面部,4q:側面部,4qi:側面部の内面,5f:軸受部,5r:軸受部,6:シャフト,6f:シャフトの外周面,7:マグネット部,7m:マグネット本体部,7s:セパレータ部,8s:ステータヨーク,8t:ステータヨーク,9s:コイル,9t:コイル,12f:ロータヨーク,12r:ロータヨーク,15s:コア部,15t:コア部,16sf:ヨーク本体部,16tf:ヨーク本体部,16sr:ヨーク本体部,16tr:ヨーク本体部,17s:ストッパ,17t:ストッパ,Fd:径方向,Fs:軸方向,Ff:周方向,Za:所定の角度範囲,Zr:回動範囲,Ls:短辺部の長さ,Lm:長辺部の長さ,Sr:長方形状,Xs:近接位置,Rs:内部空間,Rt:内部空間,Mr:円筒体,Ms:円弧体 1: Rotary solenoid, 2: Magnet rotor part, 3s: Stator part, 3t: Stator part, 4: Casing, 4f: End face part, 4r: End face part, 4rs ...: Short side part, 4rm ...: Long side part, 4p : Side part, 4q: side part, 4qi: inner surface of side part, 5f: bearing part, 5r: bearing part, 6: shaft, 6f: outer peripheral surface of shaft, 7: magnet part, 7m: magnet body part, 7s: Separator part, 8s: stator yoke, 8t: stator yoke, 9s: coil, 9t: coil, 12f: rotor yoke, 12r: rotor yoke, 15s: core part, 15t: core part, 16sf: yoke body part, 16tf: yoke body part , 16 sr: yoke body, 16 tr: yoke body, 17 s: stopper, 17 t: stopper, Fd: radial direction, Fs: axial direction, Ff: circumferential direction, a: predetermined angle range, Zr: rotation range, Ls: length of short side, Lm: length of long side, Sr: rectangular shape, Xs: proximity position, Rs: internal space, Rt: internal space , Mr: Cylindrical body, Ms: Arc body
 次に、本発明に係る最良実施形態を挙げ、図面に基づき詳細に説明する。 Next, the best embodiment according to the present invention will be given and described in detail with reference to the drawings.
 まず、本実施形態に係るロータリソレノイド1の構成について、図1~図10を参照して説明する。 First, the configuration of the rotary solenoid 1 according to the present embodiment will be described with reference to FIGS.
 本実施形態に係るロータリソレノイド1は、図1~図5に示すように、偏平な直方体状をなすケーシング4を備え、このケーシング4は、上端開口のケーシング本体部4mとこのケーシング本体部4mの上端開口を閉塞するカバー部4sからなる。これにより、カバー部4sは、ケーシング4における一方の端面部4fを構成するとともに、この端面部4fに対向するケーシング本体部4mの底面部は他方の端面部4rを構成する。これにより、相対向する一対の端面部4f,4rが構成される。なお、ケーシング本体部4mとカバー部4sは、例えば、図4に示すように、ケーシング本体部4mの上端に複数の固定片4mc…を突出形成し、この固定片4mc…のカシメを行うことによりカバー部4sに固定することができる。 As shown in FIGS. 1 to 5, the rotary solenoid 1 according to the present embodiment includes a casing 4 having a flat rectangular parallelepiped shape. The casing 4 includes a casing main body 4m having an upper end opening and a casing main body 4m. The cover portion 4s closes the upper end opening. Thereby, the cover part 4s constitutes one end face part 4f in the casing 4, and the bottom face part of the casing body part 4m facing the end face part 4f constitutes the other end face part 4r. Thereby, a pair of opposite end surface parts 4f and 4r are comprised. For example, as shown in FIG. 4, the casing body 4 m and the cover 4 s are formed by protruding a plurality of fixed pieces 4 mc at the upper end of the casing body 4 m and caulking the fixed pieces 4 mc. It can be fixed to the cover portion 4s.
 また、端面部4rの形状は、図5に示すように、短辺部4rsの長さが、長辺部4rmの長さの1/2以下となる条件を満たす長方形状Srに選定する。したがって、カバー部4sにおける長方形状Srに対応するエリアが端面部4fとなる。このように、端面部4f,4rの長方形状Srを、短辺部4rs…の長さLsを長辺部4rm…の長さLmの1/2以下に選定すれば、ロータリソレノイド1の全体形状(外郭形状)を、厚さの薄い偏平形状、特に、厚さ5〔mm〕以下の超薄型形状とすることも容易に実現できる利点がある。 Further, as shown in FIG. 5, the shape of the end face portion 4r is selected to be a rectangular shape Sr that satisfies the condition that the length of the short side portion 4rs is ½ or less of the length of the long side portion 4rm. Therefore, the area corresponding to the rectangular shape Sr in the cover portion 4s is the end surface portion 4f. As described above, if the rectangular shape Sr of the end face portions 4f and 4r is selected so that the length Ls of the short side portions 4rs... Is less than 1/2 of the length Lm of the long side portions 4rm. There is an advantage that the (outer shape) can be easily realized as a flat shape having a small thickness, particularly an ultra-thin shape having a thickness of 5 mm or less.
 さらに、ケーシング4は、全体を非磁性材により形成する。例示の場合、カバー部4sは、非磁性材となる合成樹脂素材により一体形成するとともに、ケーシング本体部4mは、ステンレス素材やアルミニウム素材等の非磁性材となる金属素材により一体形成した。このように、ケーシング4を、非磁性材により形成すれば、ケーシング4に対する無用な磁束の漏れを回避できるため、ロータリソレノイド1の高効率化に寄与できる。 Furthermore, the casing 4 is entirely formed of a nonmagnetic material. In the case of illustration, the cover portion 4s is integrally formed of a synthetic resin material that is a nonmagnetic material, and the casing body portion 4m is integrally formed of a metal material that is a nonmagnetic material such as a stainless steel material or an aluminum material. In this way, if the casing 4 is formed of a nonmagnetic material, unnecessary leakage of magnetic flux to the casing 4 can be avoided, which can contribute to higher efficiency of the rotary solenoid 1.
 そして、カバー部4s(端面部4f)の中央位置には、ボールベアリング,潤滑性樹脂軸受,焼結含油軸受等を用いた一方の軸受部5fを配設するとともに、ケーシング本体部4mの底面部(端面部4r)の中央位置にも、同様の軸受部を用いた他方の軸受部5rを配設する。なお、21s,21tは、カバー部4sの長手方向両側に一体形成し、ケーシング本体部4mより外方まで延出(突出)して円孔を設けた取付部である。 Then, at the center position of the cover portion 4s (end surface portion 4f), one bearing portion 5f using a ball bearing, a lubricious resin bearing, a sintered oil-impregnated bearing or the like is disposed, and a bottom surface portion of the casing main body portion 4m. The other bearing portion 5r using the same bearing portion is also disposed at the center position of the (end surface portion 4r). Reference numerals 21 s and 21 t are attachment parts that are integrally formed on both sides in the longitudinal direction of the cover part 4 s and that extend (project) outward from the casing body part 4 m to provide circular holes.
 一方、2は、マグネットロータ部であり、ステンレス素材等の非磁性材により形成した一本の丸棒状のシャフト6を備える。このように、シャフト6を、非磁性材により形成すれば、シャフト6に対する無用な磁束の漏れを回避できるため、ロータリソレノイド1の更なる高効率化に寄与できる利点がある。このシャフト6は、図2に示すように、後端部(下端部)が、上述した軸受部5rによりピボット式に支持されるとともに、中間部が、上述した軸受部5fにより支持される。即ち、シャフト6は、一対の軸受部5f,5rにより回動自在に支持される。 On the other hand, 2 is a magnet rotor part, which is provided with a single round bar-shaped shaft 6 formed of a non-magnetic material such as stainless steel. Thus, if the shaft 6 is formed of a nonmagnetic material, unnecessary leakage of magnetic flux to the shaft 6 can be avoided, so that there is an advantage that it is possible to contribute to further increase in efficiency of the rotary solenoid 1. As shown in FIG. 2, the rear end portion (lower end portion) of the shaft 6 is pivotally supported by the bearing portion 5r described above, and the intermediate portion is supported by the bearing portion 5f described above. That is, the shaft 6 is rotatably supported by the pair of bearing portions 5f and 5r.
 また、ケーシング4の内部に位置するシャフト6の外周面6fにおける軸方向Fsの中間位置には、マグネット部7を固定する。マグネット部7は、フェライトマグネット,希土類マグネット等の永久磁石により円筒体Mrとして形成する。したがって、例示のマグネット部7は、全体がマグネット本体部7mを構成する。 Further, the magnet portion 7 is fixed at an intermediate position in the axial direction Fs on the outer peripheral surface 6f of the shaft 6 located inside the casing 4. The magnet portion 7 is formed as a cylindrical body Mr by a permanent magnet such as a ferrite magnet or a rare earth magnet. Therefore, the illustrated magnet portion 7 as a whole constitutes the magnet main body portion 7m.
 そして、マグネット部7(マグネット本体部7m)は、シャフト6の軸方向Fsにおける一方をS極に、他方をN極に着磁する。これにより、マグネット本体部7mの磁気特性を最大限利用し、後述するステータ部3s,3t側との空隙部における高い磁束密度を得ることができる。例えば、素材として、Nd-Fe-B磁石を使用し、厚みを2〔mm〕程度、空隙部を0.25〔mm〕程度に選定すれば、1以上の高いパーミアンス係数を得ることができる。また、空隙部の磁束密度も0.5〔T〕以上にすることができるなど、高い空隙部磁束密度を得ることができるとともに、トルクも高めることができる。 The magnet portion 7 (magnet main body portion 7m) magnetizes one of the shafts 6 in the axial direction Fs as the S pole and the other as the N pole. Thereby, the magnetic characteristic of the magnet main body 7m can be utilized to the maximum, and a high magnetic flux density can be obtained in the gap between the stator portions 3s and 3t described later. For example, if a Nd—Fe—B magnet is used as the material, the thickness is set to about 2 [mm], and the gap is set to about 0.25 [mm], a high permeance coefficient of 1 or more can be obtained. In addition, the magnetic flux density in the air gap can be set to 0.5 [T] or more, and a high air gap magnetic flux density can be obtained and the torque can be increased.
 図8は、マグネット本体部7mの着磁方向による空隙部の磁束密度分布を示したものであり、横軸が中心角〔°〕、縦軸が磁束密度〔T〕となる。図8中、Paは本実施形態における軸方向Fsに着磁した場合、Prは径方向Fdに着磁した場合を示している。なお、マグネット本体部7mのディメンションは、外径2〔mm〕、内径1〔mm〕、高さ(軸方向長さ)2〔mm〕とし、Nd-Fe-B磁石を使用することにより、アキシャル(軸方向)着磁したマグネット本体部7mとラジアル(径方向)着磁したマグネット本体部7mをそれぞれ用意した。そして、各マグネット部7を用いてロータリソレノイド1を構成し、各ロータリソレノイド1に通電した際の空隙部の磁束密度を計測した。 FIG. 8 shows the magnetic flux density distribution in the air gap portion according to the magnetization direction of the magnet main body portion 7m. The horizontal axis represents the central angle [°], and the vertical axis represents the magnetic flux density [T]. In FIG. 8, Pa indicates a case where the magnet is magnetized in the axial direction Fs in the present embodiment, and Pr indicates a case where the magnet is magnetized in the radial direction Fd. The dimensions of the magnet body 7m are as follows: the outer diameter is 2 [mm], the inner diameter is 1 [mm], and the height (axial length) is 2 [mm]. By using Nd—Fe—B magnets, (Axial direction) Magnet body 7m magnetized and radial (radial direction) magnet body 7m were prepared. And each solenoid part 1 was comprised using each magnet part 7, and the magnetic flux density of the space | gap part at the time of supplying with electricity to each rotary solenoid 1 was measured.
 この結果、設計条件により変動は生じるも、概ね、アキシャル(軸方向)着磁したマグネット本体部7mを用いた場合の磁束密度は、ラジアル(径方向)着磁したマグネット部7を用いた場合の磁束密度の約2倍となり、しかも、図8中、Paで示すように、矩形状の磁束密度分布となるため、総磁束数も多くなることを確認できた。このように、軸方向Fsに着磁を行ったマグネット本体部7mを用いることにより、高トルク及び非通電時の高保持力を確保できる。 As a result, although variations occur depending on the design conditions, the magnetic flux density when using the magnet body portion 7m that is axially (axially) magnetized is generally the same as when using the magnet portion 7 that is radially (radially) magnetized. It was confirmed that the total number of magnetic fluxes was increased because the magnetic flux density was about twice as high as the magnetic flux density, and the distribution of the magnetic flux density was rectangular as indicated by Pa in FIG. As described above, by using the magnet main body portion 7m magnetized in the axial direction Fs, it is possible to ensure a high torque and a high holding force during non-energization.
 図2に示したマグネット部7は、全体を円筒体として形成するとともに、全体をマグネット本体部7mとして構成したものであるが、マグネット部7は、このような形態に限定されるものではない。その他の変更例を図9に示す。なお、図9(a)は、対比のために示した図2の形態である。 The magnet unit 7 shown in FIG. 2 is formed as a cylindrical body as a whole and is configured as a magnet main body portion 7m. However, the magnet unit 7 is not limited to such a form. Another modification is shown in FIG. FIG. 9A shows the form of FIG. 2 shown for comparison.
 図9(b)は、マグネット部7を構成するに際し、マグネット本体部7m,及びこのマグネット本体部7mの軸方向Fs端部に当接した磁性材により形成したセパレータ部7sにより構成したものである。セパレータ部7sは、SPCC,SECC,ケイ素鋼板等の軟磁性材を用いて円筒形に形成することができる。このように、マグネット部7は、図9(b)に示すようなマグネット本体部7m,及びこのマグネット本体部7mの軸方向Fs端部に当接した磁性材を用いたセパレータ部7sにより構成することができるとともに、或いは図2(図9(a))に示すようなマグネット本体部7mのみにより構成することもできる。したがって、マグネット本体部7mの組付態様の観点から設計自由度を高めることができ、仕様に対応させた目的のロータリソレノイド1を容易に得ることができる。 FIG. 9 (b) shows a configuration in which the magnet portion 7 is constituted by a magnet main body portion 7m and a separator portion 7s formed of a magnetic material in contact with the axial Fs end of the magnet main body portion 7m. . Separator part 7s can be formed in a cylindrical shape using soft magnetic materials, such as SPCC, SECC, and a silicon steel plate. As described above, the magnet unit 7 includes a magnet main body 7m as shown in FIG. 9B and a separator 7s using a magnetic material in contact with the axial Fs end of the magnet main body 7m. Alternatively, it may be configured only by the magnet main body portion 7m as shown in FIG. 2 (FIG. 9A). Therefore, the degree of freedom in design can be increased from the viewpoint of the assembly mode of the magnet body 7m, and the target rotary solenoid 1 corresponding to the specifications can be easily obtained.
 また、このようなセパレータ部7sを用いれば、後述する一対のロータヨーク12fと12r間における軸方向Fsの離間距離を大きくすることができ、磁束の漏れを低減できる。しかも、これに対応して、後述する一対のヨーク本体部16sf…と16sr…間の離間距離も大きくできるため、十分な巻線スペースを確保できるとともに、低消費電力化にも寄与することができる。なお、フェライトマグネット等の比較的磁気特性の低い磁石素材のときは、セパレータ部7sを使用しない構成が望ましく、他方、希土類マグネット等の比較的磁気特性の高い磁石素材のときは、セパレータ部7sを使用する構成が望ましい。これにより、コイル9s,9tへの過大電流を回避できるとともに、過大な保持力の発生も回避できる。 If such a separator portion 7s is used, the separation distance in the axial direction Fs between a pair of rotor yokes 12f and 12r described later can be increased, and magnetic flux leakage can be reduced. In addition, correspondingly, a separation distance between a pair of yoke body portions 16sf... And 16sr... Described later can be increased, so that a sufficient winding space can be secured and power consumption can be reduced. . In the case of a magnet material having a relatively low magnetic property such as a ferrite magnet, it is desirable not to use the separator portion 7s. On the other hand, in the case of a magnet material having a relatively high magnetic property such as a rare earth magnet, the separator portion 7s is not provided. The configuration to be used is desirable. Thereby, an excessive current to the coils 9s and 9t can be avoided, and an excessive holding force can be avoided.
 図9(c)に示す変更例は、マグネット本体部7mを、シャフト6の外周面6fにおける周方向Ffの一部の周を覆う円弧体Msにより形成したものであり、この点が、図9(a)及び図2に示したマグネット部7が、マグネット本体部7mを、シャフト6の外周面6fにおける周方向の全部の周を覆う円筒体Mrにより形成した点と異なる。この変更例の場合、マグネット本体部7mの取付位置及び断面形状は、後述するロータヨーク12f,12rの位置及び形状に対応させることができる。なお、マグネット本体部7mの全体形状は、必ずしも円筒体Mr或いは円弧体Msにより形成する必要はなく、直方体形状や板形状であってもよい。 In the modified example shown in FIG. 9C, the magnet main body 7m is formed by an arc body Ms that covers a part of the circumference of the outer peripheral surface 6f of the shaft 6 in the circumferential direction Ff. The magnet portion 7 shown in FIG. 2A and FIG. 2 is different from the magnet portion 7m formed by the cylindrical body Mr that covers the entire circumference of the outer peripheral surface 6f of the shaft 6 in the circumferential direction. In the case of this modification, the attachment position and the cross-sectional shape of the magnet main body 7m can be made to correspond to the positions and shapes of rotor yokes 12f and 12r described later. The overall shape of the magnet main body 7m is not necessarily formed by the cylindrical body Mr or the circular arc body Ms, and may be a rectangular parallelepiped shape or a plate shape.
 このように、マグネット本体部7mは、シャフト6の外周面6fにおける周方向の全部の周を覆う円筒体Mrにより形成してもよいし、シャフト6の外周面6fにおける周方向の一部の周を覆う円弧体Msにより形成してもよいなど、マグネット本体部7mの形状態様の観点から設計自由度を高めることができるとともに、マグネット本体部7mの組付態様と組合わせることにより、より設計自由度を高めることができる。 Thus, the magnet body 7m may be formed by the cylindrical body Mr that covers the entire circumference of the outer peripheral surface 6f of the shaft 6 or a part of the circumference of the outer peripheral surface 6f of the shaft 6 in the circumferential direction. The degree of freedom in design can be increased from the viewpoint of the shape of the magnet main body 7m, and the design freedom can be further increased by combining with the assembly of the magnet main body 7m. The degree can be increased.
 一方、マグネット部7の軸方向Fsにおける両側には、シャフト6から径方向Fdに突出し、かつ周方向Ffに所定の角度範囲Zaにわたって形成した一対のロータヨーク12f,12rを設ける。各ロータヨーク12f,12rは、SPCC,SECC,ケイ素鋼板等の軟磁性材により形成し、図1及び図9(a)に示すように、それぞれリング形に形成したシャフト取付部12fc,12rcと、このシャフト取付部12fc,12rcの周縁に一体形成した扇状(円弧形)のロータヨーク本体部12fm,12rmを有する。したがって、ロータヨーク本体部12fm,12rmは、シャフト6から径方向Fdに突出し、かつ周方向Ffに所定の角度範囲Zaにわたって形成される。例示の場合、角度範囲Zaとして、120〔°〕を選定するとともに、板厚として0.5〔mm〕程度を選定した。これにより、後述するストッパ17s,17tと組合わせた場合、マグネットロータ部2の回動範囲Zrを、60〔°〕に設定できる。なお、ロータヨーク12f,12rの軸方向Fsの厚みをマグネット部7の軸方向Fsの長さよりも小さく選定することにより、小型の磁気回路を構成できるとともに、ロータヨーク12f,12r間の磁気漏れも低減することができる。 On the other hand, on both sides in the axial direction Fs of the magnet portion 7, a pair of rotor yokes 12 f and 12 r are provided that protrude in the radial direction Fd from the shaft 6 and are formed in the circumferential direction Ff over a predetermined angular range Za. Each rotor yoke 12f, 12r is formed of a soft magnetic material such as SPCC, SECC, silicon steel plate, etc., and as shown in FIGS. 1 and 9 (a), shaft attachment portions 12fc, 12rc formed in ring shapes, Fan-shaped (arc-shaped) rotor yoke main body portions 12fm and 12rm are formed integrally with the periphery of the shaft mounting portions 12fc and 12rc. Accordingly, the rotor yoke main body portions 12fm and 12rm project from the shaft 6 in the radial direction Fd and are formed in the circumferential direction Ff over a predetermined angular range Za. In the case of illustration, 120 [°] was selected as the angle range Za, and about 0.5 [mm] was selected as the plate thickness. Thereby, when it combines with the stoppers 17s and 17t mentioned later, the rotation range Zr of the magnet rotor part 2 can be set to 60 degrees. In addition, by selecting the thickness of the rotor yokes 12f and 12r in the axial direction Fs to be smaller than the length of the magnet portion 7 in the axial direction Fs, a small magnetic circuit can be configured, and magnetic leakage between the rotor yokes 12f and 12r is reduced. be able to.
 図1に示したロータヨーク12f,12rは、所定の角度範囲Zaとして、120〔°〕を選定した場合を示したが、所定の角度範囲Zaは、このような角度態様に限定されるものではない。その他の変更例を図10に示す。 The rotor yokes 12f and 12r shown in FIG. 1 show the case where 120 [°] is selected as the predetermined angle range Za, but the predetermined angle range Za is not limited to such an angle mode. . Another modification is shown in FIG.
 図10(a)は、角度範囲Zaを135〔°〕に選定した例を示すとともに、図10(b)は、角度範囲Zaを90〔°〕に選定した例を示す。これにより、図1のロータヨーク12f,12rと対比した場合、図10(a)におけるマグネットロータ部2の回動範囲Zrは、45〔°〕となり、図10(b)におけるマグネットロータ部2の回動範囲Zrは、90〔°〕となる。 FIG. 10 (a) shows an example in which the angle range Za is selected to be 135 [°], and FIG. 10 (b) shows an example in which the angle range Za is selected to be 90 [°]. Accordingly, when compared with the rotor yokes 12f and 12r in FIG. 1, the rotation range Zr of the magnet rotor portion 2 in FIG. 10A is 45 °, and the rotation of the magnet rotor portion 2 in FIG. The moving range Zr is 90 [°].
 この場合、所定の角度範囲Zaとしては、80~140〔°〕に選定することが望ましい。これにより、ステータ部3s,3t側との吸引作用及び反発作用の不安定化を回避できるため、マグネットロータ部2の往復回動変位に係わる動作を確実に確保できるとともに、必要な駆動出力となる回動範囲Zrを確保できる。 In this case, it is desirable to select the predetermined angle range Za from 80 to 140 [°]. As a result, it is possible to avoid destabilization of the attracting action and the repulsive action on the stator parts 3s, 3t side, so that the operation related to the reciprocating rotational displacement of the magnet rotor part 2 can be ensured and the necessary drive output is obtained. The rotation range Zr can be secured.
 ところで、ロータヨーク本体部12fm,12rmの形状、特に、径方向Fdの寸法は、ケーシング4の寸法選定に関係する。即ち、ケーシング4における一対の端面部4f,4rは、前述した長方形状Srに選定するが、この際、少なくとも一方の長辺部4rm…から直角方向に延出するケーシング4における側面部4pの位置は、マグネットロータ部2、具体的には、ロータヨーク12f,12rの回動を許容する近接位置Xsに選定する。したがって、図7に示すように、ロータヨーク12f,12rの先端縁とケーシング4の側面部4p間の隙間Lcは、ロータヨーク12f,12rの回動を許容できる条件のみを考慮した僅かな隙間を確保すれば足りる。具体的には、近接位置Xsとして、ケーシング4における側面部4pとマグネットロータ部2におけるロータヨーク12f,12r間の隙間Lcが、ロータヨーク12f,12rと後述する磁極片部16sfp…間の空隙部に対して、1~10倍の範囲に選定すれば、必要なトルク及び組付性を確保しつつ、超薄型形状とするための有効性を享受できる。 By the way, the shape of the rotor yoke main body portions 12fm and 12rm, particularly the dimension in the radial direction Fd, is related to the dimension selection of the casing 4. That is, the pair of end surface portions 4f and 4r in the casing 4 is selected to have the rectangular shape Sr described above. At this time, the position of the side surface portion 4p in the casing 4 extending in a right angle direction from at least one long side portion 4rm. Is selected as a proximity position Xs that allows rotation of the magnet rotor unit 2, specifically, the rotor yokes 12f and 12r. Therefore, as shown in FIG. 7, the clearance Lc between the leading edge of the rotor yokes 12f and 12r and the side surface portion 4p of the casing 4 should be a slight clearance considering only the conditions that allow the rotation of the rotor yokes 12f and 12r. It's enough. Specifically, as the proximity position Xs, a gap Lc between the side surface portion 4p of the casing 4 and the rotor yokes 12f and 12r in the magnet rotor portion 2 is relative to a gap portion between the rotor yokes 12f and 12r and a magnetic pole piece portion 16sfp to be described later. Thus, if it is selected within the range of 1 to 10 times, it is possible to enjoy the effectiveness for obtaining an ultra-thin shape while ensuring the necessary torque and assemblability.
 なお、22fは、ロータヨーク12fと軸受部5f間に介在させた潤滑性樹脂素材や非磁性材による金属素材によりリング状に一体形成したアウタセパレータであり、22rは、同アウタセパレータ22fと同様に形成した、ロータヨーク12rと軸受部5r間に介在させたアウタセパレータである。 In addition, 22f is an outer separator integrally formed in a ring shape by a lubricating resin material or a nonmagnetic material metal material interposed between the rotor yoke 12f and the bearing portion 5f, and 22r is formed in the same manner as the outer separator 22f. The outer separator is interposed between the rotor yoke 12r and the bearing portion 5r.
 また、ケーシング4における、側面部4pに対向する他方の側面部4qの内面4qiには、ロータヨーク12f,12rに係止して回動範囲Zrを規制するストッパ17s,17tを一体に設ける。この場合、図1に示すように、合成樹脂素材等の非磁性材によりコの字形に一体成形したストッパ部材23を側面部4qの内面4qiに固定することにより、ストッパ部材23の両側に、側面部4qの内面4qiから直角方向に突出するストッパ17s,17tを配することができるとともに、このストッパ17sと17t間に、ロータヨーク12f,12rにおけるシャフト取付部12fc,12rcを位置させることができる。この際、ストッパ17sと17tの先端面は、端面部4s…における短辺方向の中央位置に位置させることが望ましいが、この位置は変更可能である。したがって、ストッパ部材23の変更により停止位置を容易に変更することができる。 Further, on the inner surface 4qi of the other side surface portion 4q facing the side surface portion 4p in the casing 4, stoppers 17s and 17t that are locked to the rotor yokes 12f and 12r and restrict the rotation range Zr are integrally provided. In this case, as shown in FIG. 1, by fixing the stopper member 23 integrally formed in a U-shape with a nonmagnetic material such as a synthetic resin material to the inner surface 4qi of the side surface portion 4q, Stoppers 17s and 17t projecting from the inner surface 4qi of the portion 4q in a right angle direction can be arranged, and the shaft attachment portions 12fc and 12rc in the rotor yokes 12f and 12r can be positioned between the stoppers 17s and 17t. At this time, the tip surfaces of the stoppers 17s and 17t are preferably positioned at the center position in the short side direction of the end surface portions 4s, but this position can be changed. Therefore, the stop position can be easily changed by changing the stopper member 23.
 これにより、ロータヨーク12f,12rの一端側がストッパ17sに係止すれば、一方への回動変位が規制されるとともに、ロータヨーク12f,12rの他端側がストッパ17tに係止すれば、他方への回動変位が規制される。このようなストッパ17s,17tを設ければ、ロータヨーク12f,12rの形状を直接当接部として利用できるため、ストッパ17s,17tを追加するのみで、回動範囲Zrを規制するストッパ機構を容易に構築できる。また、デッドスペースを利用することによりケーシング4の内部に配設可能な小型のストッパ機構を構築できるとともに、停止位置の高精度化にも寄与できる利点がある。 Thereby, if one end side of the rotor yokes 12f, 12r is locked to the stopper 17s, the rotational displacement to one side is restricted, and if the other end side of the rotor yokes 12f, 12r is locked to the stopper 17t, the rotation to the other side is restricted. Dynamic displacement is regulated. If such stoppers 17s and 17t are provided, the shape of the rotor yokes 12f and 12r can be used as a direct contact portion. Therefore, a stopper mechanism that restricts the rotation range Zr can be easily achieved only by adding the stoppers 17s and 17t. Can be built. Further, by using the dead space, there is an advantage that a small stopper mechanism that can be disposed inside the casing 4 can be constructed, and that the stop position can be highly accurate.
 他方、マグネットロータ部2の径方向Fd両側には、左右一対のステータ部3s,3tを配設する。即ち、ステータ部3s,3tを、マグネットロータ部2の径方向Fd両側であって、端面部4f…の長手方向両側におけるケーシング4の内部空間Rs,Rtに配設する。これにより、ステータ部3s,マグネットロータ部2,ステータ部3tを、いわば、直線上に沿って配することができるため、全体形状(外郭形状)が厚さの薄い偏平形状となるロータリソレノイド1もレイアウトの観点から合理的に実現できる。 On the other hand, a pair of left and right stator portions 3s and 3t are provided on both sides of the magnet rotor portion 2 in the radial direction Fd. That is, the stator portions 3s and 3t are disposed in the internal spaces Rs and Rt of the casing 4 on both sides in the radial direction Fd of the magnet rotor portion 2 and on both sides in the longitudinal direction of the end face portions 4f. Thus, since the stator portion 3s, the magnet rotor portion 2, and the stator portion 3t can be arranged along a straight line, the rotary solenoid 1 whose overall shape (outer shape) is a thin flat shape is also provided. It can be reasonably realized from the viewpoint of layout.
 また、各ステータ部3s,3tは、ケーシング4に固定したステータヨーク8s,8tに装着したコイル9s,9tを備える。この場合、コイル9s,9tは、軟銅線等のマグネットワイヤを円筒形に巻回して製作する。さらに、ステータヨーク8s,8tは、コイル9s,9tの中心位置に装填し、かつシャフト6に平行に配するとともに、両端をケーシング4、即ち、一端を一方の端面部4fに固定し、他端を他方の端面部4rに固定したコア部15s,15tと、このコア部15s,15tの軸方向Fsにおけるコイル9s,9tの両側に、コア部15s,15tから径方向Fdに突出し、ロータヨーク12f,12rの周面に対向する一対のヨーク本体部16sf,16tf,16sr,16trとを設けて構成する。各ヨーク本体部16sf,16tf,16sr,16trは、SPCC,SECC,ケイ素鋼板等の軟磁性材を用いて同一形状に形成することができる。 Further, each of the stator portions 3s, 3t includes coils 9s, 9t attached to stator yokes 8s, 8t fixed to the casing 4. In this case, the coils 9s and 9t are manufactured by winding a magnet wire such as an annealed copper wire into a cylindrical shape. Further, the stator yokes 8s and 8t are loaded at the center positions of the coils 9s and 9t, and are arranged in parallel to the shaft 6, and both ends are fixed to the casing 4, that is, one end is fixed to one end surface portion 4f, and the other end Core portions 15s and 15t fixed to the other end surface portion 4r, and on both sides of the coils 9s and 9t in the axial direction Fs of the core portions 15s and 15t, projecting in the radial direction Fd from the core portions 15s and 15t, and the rotor yoke 12f, A pair of yoke main body portions 16sf, 16tf, 16sr, and 16tr facing the circumferential surface of 12r are provided. Each yoke main body 16sf, 16tf, 16sr, 16tr can be formed in the same shape using a soft magnetic material such as SPCC, SECC, silicon steel plate or the like.
 ステータヨーク8s,8tを、このように構成すれば、マグネットロータ部2の形態にマッチングしたシンプルな磁気回路を構築できるため、無用な磁気損失を排除し、ロータリソレノイド1の高効率化を図れるとともに、トルクのバラツキを低減できる。また、ステータヨーク8s,8tは、このように構成するため、コア部15s…とヨーク本体部16sf,16sr…は、鋳造等により一体成形することも可能である。この場合には、部品点数の低減によりコスト削減を図れる利点がある。 If the stator yokes 8s and 8t are configured in this way, a simple magnetic circuit matching the form of the magnet rotor portion 2 can be constructed, so that unnecessary magnetic loss can be eliminated and the efficiency of the rotary solenoid 1 can be improved. Torque variation can be reduced. Further, since the stator yokes 8s and 8t are configured as described above, the core portions 15s and the yoke body portions 16sf and 16sr can be integrally formed by casting or the like. In this case, there is an advantage that the cost can be reduced by reducing the number of parts.
 一つのヨーク本体部、例えば、ヨーク本体部16sfは、図1及び図2に示すように、内部空間Rsを軸方向Fsに仕切る矩形形状部16sfmとこの矩形形状部16sfmの一端辺からマグネットロータ部2側に突出する磁極片部16sfpとを一体に形成する。この磁極片部16sfpの先端は、凹状の円弧縁として形成し、ロータヨーク12fに対向させる。この磁極片部16sfpは、端面部4rの短辺方向における半部であって、側面部4p寄りに形成する。 As shown in FIGS. 1 and 2, one yoke body portion, for example, the yoke body portion 16 sf, includes a rectangular shape portion 16 sfm that partitions the internal space Rs in the axial direction Fs, and a magnet rotor portion from one end of the rectangular shape portion 16 sfm. The magnetic pole piece portion 16sfp protruding to the second side is integrally formed. The tip of the magnetic pole piece 16sfp is formed as a concave arc edge and is opposed to the rotor yoke 12f. The magnetic pole piece portion 16sfp is a half portion in the short side direction of the end surface portion 4r and is formed closer to the side surface portion 4p.
 これにより、マグネットロータ部2が回動変位し、ロータヨーク12f…の先端(周縁部)が磁極片部16sfp…に対向した際には、ロータヨーク12fの周縁部が空隙部を介して磁極片部16sfpに近接する。他のヨーク本体部16sr,16tf,16trも、このヨーク本体部16sfと同じものを用いることができる。 Thereby, when the magnet rotor part 2 is rotationally displaced and the tip (peripheral part) of the rotor yoke 12f faces the magnetic pole piece part 16sfp, the peripheral part of the rotor yoke 12f passes through the gap part and the magnetic pole piece part 16sfp. Proximity to. The other yoke body portions 16sr, 16tf, and 16tr can be the same as the yoke body portion 16sf.
 なお、ステータヨーク8s,8tの、ロータヨーク12f…に対向する部分の周方向長さは、ロータヨーク12f…における所定の角度範囲Zaによる周方向長さよりも小さくすることが望ましい。これにより、非通電時における十分な保持トルクを確保できる。また、左右のステータヨーク8sと8t間の間隔は、ロータヨーク12f…における角度範囲Zaによる周方向長さよりも小さくすることが望ましい。これにより、非通電時であっても不感帯位置に停止しにくい双方向ラッチ機能を有するロータリソレノイドとして構成できる。さらに、左右一対のコイル9s,9tは、直列接続することが望ましい、これにより、リード線等の電気的接続は、最小限の2本に抑えることができるため、小型化にも寄与できる。この場合、コイル9s,9tに通電した際は、コイル9s,9tにより左右に発生する磁極(N極,S極)は反対となる。 It should be noted that the circumferential lengths of the portions of the stator yokes 8s, 8t facing the rotor yokes 12f are desirably smaller than the circumferential lengths of the rotor yokes 12f in a predetermined angular range Za. Thereby, sufficient holding torque at the time of deenergization is securable. It is desirable that the distance between the left and right stator yokes 8s and 8t be smaller than the circumferential length of the rotor yoke 12f. Thereby, it can comprise as a rotary solenoid which has a bidirectional | two-way latch function which is hard to stop at a dead zone position even at the time of non-energization. Furthermore, it is desirable that the pair of left and right coils 9s and 9t be connected in series. As a result, electrical connection such as lead wires can be suppressed to a minimum of two, which can contribute to miniaturization. In this case, when the coils 9s and 9t are energized, the magnetic poles (N pole and S pole) generated on the left and right by the coils 9s and 9t are opposite.
 よって、このような本実施形態に係るロータリソレノイド1によれば、基本構成として、マグネットロータ部2に、シャフト6の軸方向Fsにおける一方がS極となり他方がN極となるマグネット部7を使用し、このマグネット部7の軸方向Fsにおける両側に、シャフト6から径方向Fdに突出し、かつ周方向Ffに所定の角度範囲Zaにわたって形成した一対のロータヨーク12f,12rを設けるとともに、軸受部5f,5rを設けるケーシング4における相対向する一対の端面部4f,4rを長方形状Srに選定し、かつ少なくとも一方の長辺部4rmから直角方向に延出するケーシング4における側面部4pの位置を、マグネットロータ部2の回動を許容する近接位置Xsに選定してなるため、ロータリソレノイド1の全体形状(外郭形状)を、厚さの薄い偏平形状、特に、厚さ5〔mm〕以下の超薄型形状とすることも容易に実現できる。この結果、部品間の隙間のような狭い空間にも配設可能になるなど、様々な配設スペースに対応させることができ、汎用性を飛躍的に高めることができる。なお、本実施形態に係る構造を用いれば、マグネット部7及びコイル9s,9tの軸方向Fsの長さを短くすることにより、更に低背となる超小型化も可能である。 Therefore, according to such a rotary solenoid 1 according to the present embodiment, as a basic configuration, the magnet rotor portion 2 uses the magnet portion 7 in which one of the shafts 6 in the axial direction Fs is the S pole and the other is the N pole. A pair of rotor yokes 12f and 12r projecting from the shaft 6 in the radial direction Fd and formed in the circumferential direction Ff over a predetermined angular range Za are provided on both sides of the magnet portion 7 in the axial direction Fs, and the bearing portions 5f and A pair of opposite end face parts 4f, 4r in the casing 4 provided with 5r is selected to be a rectangular shape Sr, and the position of the side face part 4p in the casing 4 extending in a right angle direction from at least one long side part 4rm is The overall shape of the rotary solenoid 1 is selected because the proximity position Xs that allows the rotation of the rotor portion 2 is selected. The contour), a thin flat shape with a thickness of, in particular, can be easily realized by a thickness of 5 mm. The following ultra-thin shape. As a result, it can be arranged in a narrow space such as a gap between parts, and can correspond to various arrangement spaces, so that versatility can be greatly improved. In addition, if the structure which concerns on this embodiment is used, the ultra miniaturization which becomes still lower height is also possible by shortening the length of the magnet part 7 and the coils 9s and 9t in the axial direction Fs.
 また、マグネットロータ部2には、シャフト6の軸方向Fsにおける一方がS極となり他方がN極となるマグネット部7を使用したため、マグネット部7における十分な磁束を確保できる。この結果、ロータリソレノイド1の超薄型化を図った場合であっても、必要となる十分なトルクを確保できる。 Further, since the magnet rotor portion 2 uses the magnet portion 7 in which one in the axial direction Fs of the shaft 6 is the S pole and the other is the N pole, a sufficient magnetic flux in the magnet portion 7 can be secured. As a result, even when the rotary solenoid 1 is made extremely thin, sufficient necessary torque can be secured.
 次に、本実施形態に係るロータリソレノイド1の動作について、図1~図8を参照して説明する。 Next, the operation of the rotary solenoid 1 according to this embodiment will be described with reference to FIGS.
 図6に示すように、例示のマグネットロータ部2のマグネット部7は、上側がN極、下側がS極に着磁されているものとする。これにより、上側のロータヨーク12fはN極となり、下側のロータヨーク12rはS極となる。今、図6に示す右側のコイル9tに正方向通電を行えば、ステータヨーク8tが励磁され、磁力線は、図6中、点線矢印で示すように、コア部15t→ヨーク本体部16tr→ロータヨーク12r→マグネット部7→ロータヨーク12f→ヨーク本体部16tf→コア部15tの経路で発生する。この結果、上側のヨーク本体部16tfにS極が発生し、かつ下側のヨーク本体部16trにN極が発生する。また、同時に、図6に示す左側のコイル9sには、逆方向通電が行われ、ステータヨーク8sが励磁されることにより、上側のヨーク本体部16sfにN極が発生し、かつ下側のヨーク本体部16srにS極が発生する。 6, it is assumed that the magnet portion 7 of the illustrated magnet rotor portion 2 is magnetized with an N pole on the upper side and an S pole on the lower side. As a result, the upper rotor yoke 12f becomes the N pole, and the lower rotor yoke 12r becomes the S pole. Now, if the right side coil 9t shown in FIG. 6 is energized in the positive direction, the stator yoke 8t is excited, and the magnetic lines of force, as shown by the dotted arrows in FIG. 6, are the core portion 15t → the yoke body portion 16tr → the rotor yoke 12r. It occurs in the path of the magnet part 7 → the rotor yoke 12f → the yoke body part 16tf → the core part 15t. As a result, an S pole is generated in the upper yoke body portion 16tf, and an N pole is generated in the lower yoke body portion 16tr. At the same time, the left coil 9s shown in FIG. 6 is energized in the reverse direction to excite the stator yoke 8s, thereby generating an N pole in the upper yoke body portion 16sf and the lower yoke. An S pole is generated in the main body portion 16sr.
 これにより、上側のロータヨーク12f及び下側のロータヨーク12rに対して、右側のステータ部3tは吸引状態になり、左側のステータ部3sは反発状態になるため、マグネットロータ部2は、図7中、時計方向に回動変位する。そして、図7に仮想線で示すロータヨーク12fx…の位置、即ち、ロータヨーク12fx…の右端がストッパ17tに当接した位置で停止する。停止した際には、通電を解除しても、ロータヨーク12fx…はヨーク本体部16tf…に吸引され、自己保持機能により停止状態が保持される。 As a result, the right stator portion 3t is in an attracted state and the left stator portion 3s is in a repulsive state with respect to the upper rotor yoke 12f and the lower rotor yoke 12r. Rotate and displace clockwise 7 stops at the position of the rotor yoke 12fx... Indicated by the phantom line, that is, the position where the right end of the rotor yoke 12fx. When stopped, even if energization is canceled, the rotor yokes 12fx are attracted to the yoke body portions 16tf, and the stopped state is maintained by the self-holding function.
 他方、この状態において、通電切換を行い、左側のコイル9sに正方向通電を行えば、ステータヨーク8sが励磁され、上側のヨーク本体部16sfにS極が発生し、かつ下側のヨーク本体部16srにN極が発生する。また、同時に、右側のコイル9tには逆方向通電が行われるため、ステータヨーク8tが励磁されることにより、上側のヨーク本体部16tfにN極が発生し、かつ下側のヨーク本体部16trにS極が発生する。 On the other hand, in this state, when energization switching is performed and the left coil 9s is energized in the positive direction, the stator yoke 8s is excited, the S pole is generated in the upper yoke body portion 16sf, and the lower yoke body portion. An N pole is generated at 16 sr. At the same time, the right coil 9t is energized in the reverse direction. Thus, when the stator yoke 8t is excited, an N pole is generated in the upper yoke body portion 16tf and the lower yoke body portion 16tr. S pole is generated.
 これにより、上側のロータヨーク12f及び下側のロータヨーク12rに対して、左側のステータ部3sは吸引状態となり、右側のステータ部3tは反発状態となるため、マグネットロータ部2は、図7中、反時計方向に回動変位する。そして、図7に実線で示すロータヨーク12fy…の位置、即ち、ロータヨーク12fy…の左端がストッパ17sに当接した位置で停止する。停止した際には、通電を解除しても、ロータヨーク12fy…はヨーク本体部16sf…に吸引され、自己保持機能により停止状態が保持される。例示の場合、ロータヨーク12f…の角度範囲Zaを120〔°〕に選定したため、回動範囲Zrは60〔°〕となる。 Accordingly, the left stator portion 3s is in an attracted state and the right stator portion 3t is in a repulsive state with respect to the upper rotor yoke 12f and the lower rotor yoke 12r. Rotate and displace clockwise 7 stops at the position of the rotor yoke 12fy... Shown by the solid line, that is, the position where the left end of the rotor yoke 12fy. When stopped, even if energization is canceled, the rotor yokes 12fy are attracted to the yoke body portions 16sf, and the stopped state is maintained by the self-holding function. In the case of the example, since the angle range Za of the rotor yokes 12f is selected to be 120 [°], the rotation range Zr is 60 [°].
 例示したロータリソレノイド1は、ディメンションとして、シャフト6の径を1〔mm〕、マグネット部7の外径を1.8〔mm〕、ロータヨーク12f…の半径を1.5〔mm〕とした。これにより、ケーシング4の厚さ(幅方向寸法)が、3.9〔mm〕となる超薄型として構成することができ、一般的な外径7〔mm〕の円形ロータリソレノイドと対比した場合、出力トルクは同等になることを確認できた。 The illustrated rotary solenoid 1 has dimensions as follows: the diameter of the shaft 6 is 1 [mm], the outer diameter of the magnet portion 7 is 1.8 [mm], and the radius of the rotor yoke 12f is 1.5 [mm]. As a result, the thickness (dimension in the width direction) of the casing 4 can be configured as an ultra-thin shape having a thickness of 3.9 [mm], in comparison with a general circular rotary solenoid having an outer diameter of 7 [mm]. It was confirmed that the output torque was equivalent.
 なお、図11には、ケーシング4の変更例を示す。前述した図1及び図2に示したロータリソレノイド1は、ケーシング4を構成するに際し、カバー部4sを合成樹脂素材により一体形成し、ケーシング本体部4mを金属素材により一体形成したものであるが、図11に示す変更例は、ケーシング4の全体、即ち、カバー部4s及びケーシング本体部4mの双方を、非磁性材となる合成樹脂素材により形成したものである。 In addition, in FIG. 11, the example of a change of the casing 4 is shown. In the rotary solenoid 1 shown in FIGS. 1 and 2 described above, when the casing 4 is configured, the cover portion 4s is integrally formed of a synthetic resin material, and the casing main body portion 4m is integrally formed of a metal material. In the modification shown in FIG. 11, the entire casing 4, that is, both the cover portion 4 s and the casing main body portion 4 m are formed of a synthetic resin material that is a nonmagnetic material.
 例示の場合、軸受部5f,5rを、カバー部4sとケーシング本体部4mに、一体に形成した。また、ストッパ17s,17tも図に現れないがケーシング本体部4mの内面に一体形成することができる。その他、図11の構成において、図1~図5と同一部分には同一符号を付して、その構成を明確にするとともに、その詳細な説明は省略する。 In the case of illustration, the bearing portions 5f and 5r are integrally formed on the cover portion 4s and the casing main body portion 4m. Further, the stoppers 17s and 17t do not appear in the drawing, but can be integrally formed on the inner surface of the casing body 4m. In addition, in the configuration of FIG. 11, the same parts as those in FIGS. 1 to 5 are denoted by the same reference numerals to clarify the configuration, and the detailed description thereof is omitted.
 以上、変更例を含む最良実施形態について詳細に説明したが、本発明は、このような実施形態に限定されるものではなく、細部の構成,形状,素材,数量,数値等において、本発明の要旨を逸脱しない範囲で、任意に変更,追加,削除することができる。 As described above, the best embodiment including the modified example has been described in detail. However, the present invention is not limited to such an embodiment, and the configuration, shape, material, quantity, numerical value, and the like of the present invention are not limited thereto. Changes, additions and deletions can be made arbitrarily without departing from the scope.
 例えば、実施形態では、一方のステータ部3s…に、一つのコア部15s…と一つのコイル9s…を配した例を示したが、複数のコア部15s…と複数のコイル9s…を配することにより、多連式に構成し、長方形状Srの長手方向に配列させる構成であってもよく、数量は限定されない。また、端面部4f,4rの長方形状Srは、短辺部4rs…の長さLsを長辺部4rm…の長さLmの1/2以下に選定することが望ましいが、1/2を越える場合を排除するものではない。さらに、ケーシング4及び/又はシャフト6を非磁性材により形成することが望ましいが、必須の構成要素となるものではない。一方、ケーシング4の内部にストッパ17s,17tを配した例を上げたが、ケーシング4の外部に別途配設する場合を排除するものではない。なお、長方形状Srは、純粋な長方形のみならず、例えば、長辺部4rmに角度を持たせて二辺としたり、湾曲形成するなどの類似形状も含む概念である。 For example, in the embodiment, one core portion 15s and one coil 9s are arranged on one stator portion 3s, but a plurality of core portions 15s and a plurality of coils 9s are arranged. Therefore, it may be configured in a multiple manner and arranged in the longitudinal direction of the rectangular shape Sr, and the quantity is not limited. In addition, in the rectangular shape Sr of the end face portions 4f and 4r, it is desirable to select the length Ls of the short side portions 4rs... Less than 1/2 of the length Lm of the long side portions 4rm. The case is not excluded. Furthermore, it is desirable to form the casing 4 and / or the shaft 6 from a nonmagnetic material, but it is not an essential component. On the other hand, an example in which the stoppers 17s and 17t are arranged inside the casing 4 has been described. However, the case where the stoppers 17s and 17t are separately provided outside the casing 4 is not excluded. Note that the rectangular shape Sr is not only a pure rectangle, but also includes a similar shape such as a long side 4rm having two sides or a curved shape.
 本発明に係るロータリソレノイドは、その往復回動性を利用して、貨幣や紙幣等の区分け、郵便物等の仕分け、印刷物の搬送路切換、光学機器の光路切換、半導体製造装置のイオンシャッタ等、数多くの分野における各種用途に利用することができる。 The rotary solenoid according to the present invention uses its reciprocating rotational property to sort money and banknotes, sort mails, etc., switch the transport path of printed matter, switch the optical path of optical equipment, ion shutter of semiconductor manufacturing equipment, etc. Can be used for various applications in many fields.

Claims (12)

  1.  ケーシングに設けた軸受部により回動自在に支持されるシャフトの中間位置にマグネット部を有するマグネットロータ部と、このマグネットロータ部の径方向両側に配し、かつ前記ケーシングに固定したステータヨークに装着したコイルを有する一対のステータ部とを備えてなるロータリソレノイドであって、前記マグネットロータ部に、前記シャフトの軸方向における一方がS極となり他方がN極となるマグネット部を使用し、このマグネット部の軸方向における両側に、前記シャフトから径方向に突出し、かつ周方向に所定の角度範囲にわたって形成した一対のロータヨークを設けるとともに、前記軸受部を設ける前記ケーシングの相対向する一対の端面部を長方形状に選定し、かつ少なくとも一方の前記長辺部から直角方向に延出する前記ケーシングにおける側面部の位置を、前記マグネットロータ部の回動を許容する近接位置に選定してなることを特徴とするロータリソレノイド。 A magnet rotor part having a magnet part in the middle position of a shaft rotatably supported by a bearing part provided in the casing, and a stator yoke arranged on both sides in the radial direction of the magnet rotor part and fixed to the casing A rotary solenoid comprising a pair of stator parts having a coil, wherein a magnet part in which one of the shafts in the axial direction of the shaft is an S pole and the other is an N pole is used as the magnet rotor part. A pair of rotor yokes projecting in a radial direction from the shaft and formed in a circumferential direction over a predetermined angular range are provided on both sides in the axial direction of the portion, and a pair of opposing end surface portions of the casing in which the bearing portion is provided Select a rectangular shape and extend in a direction perpendicular to at least one of the long sides. Rotary solenoid, characterized in that the position of the side surface portion of the casing, formed by selecting the close position to permit rotation of the magnet rotor unit.
  2.  前記長方形状は、短辺部の長さを長辺部の長さの1/2以下に選定することを特徴とする請求項1記載のロータリソレノイド。 2. The rotary solenoid according to claim 1, wherein the rectangular shape is selected such that the length of the short side portion is ½ or less of the length of the long side portion.
  3.  前記一対のステータ部は、前記マグネットロータ部の径方向両側であって、前記端面部の長手方向両側における前記ケーシングの内部空間に配設することを特徴とする請求項1記載のロータリソレノイド。 2. The rotary solenoid according to claim 1, wherein the pair of stator portions are disposed in an inner space of the casing on both sides in the radial direction of the magnet rotor portion and on both sides in the longitudinal direction of the end face portion.
  4.  前記ステータヨークは、前記コイルの中心位置に装填し、かつ前記シャフトに平行に配するとともに、両端を前記ケーシングに固定したコア部と、このコア部の軸方向における前記コイルの両側に、前記コア部から径方向に突出し、前記ロータヨークの周面に対向する一対のヨーク本体部とを備えることを特徴とする請求項1又は3記載のロータリソレノイド。 The stator yoke is loaded at the center position of the coil and arranged in parallel with the shaft, and both ends of the core are fixed to the casing, and the core is disposed on both sides of the coil in the axial direction of the core portion. 4. The rotary solenoid according to claim 1, further comprising a pair of yoke main body portions protruding in a radial direction from the portion and facing a peripheral surface of the rotor yoke.
  5.  前記ケーシングは、非磁性材により形成することを特徴とする請求項1記載のロータリソレノイド。 The rotary solenoid according to claim 1, wherein the casing is made of a non-magnetic material.
  6.  前記ケーシングは、前記側面部に対向する他方の側面部の内面に、前記ロータヨークに係止して回動範囲を規制する一対のストッパを一体に備えることを特徴とする請求項1又は5記載のロータリソレノイド。 6. The casing according to claim 1, wherein a pair of stoppers that are locked to the rotor yoke and restrict a rotation range are integrally provided on an inner surface of the other side surface portion that faces the side surface portion. Rotary solenoid.
  7.  前記所定の角度範囲は、80~140〔°〕に選定することを特徴とする請求項1記載のロータリソレノイド。 The rotary solenoid according to claim 1, wherein the predetermined angle range is selected from 80 to 140 [°].
  8.  前記シャフトは、非磁性材により形成することを特徴とする請求項1記載のロータリソレノイド。 2. The rotary solenoid according to claim 1, wherein the shaft is formed of a nonmagnetic material.
  9.  前記マグネット部は、マグネット本体部とこのマグネット本体部の軸方向端部に当接した磁性材を用いたセパレータ部により構成することを特徴とする請求項1記載のロータリソレノイド。 The rotary solenoid according to claim 1, wherein the magnet part is constituted by a magnet main body part and a separator part using a magnetic material in contact with an axial end of the magnet main body part.
  10.  前記マグネット部は、マグネット本体部のみにより構成することを特徴とする請求項9記載のロータリソレノイド。 10. The rotary solenoid according to claim 9, wherein the magnet part is constituted only by a magnet body part.
  11.  前記マグネット本体部は、前記シャフトの外周面における周方向の全部の周を覆う円筒体により形成することを特徴とする請求項9又は10記載のロータリソレノイド。 The rotary solenoid according to claim 9 or 10, wherein the magnet main body is formed of a cylindrical body that covers the entire circumference of the outer circumferential surface of the shaft in the circumferential direction.
  12.  前記マグネット本体部は、前記シャフトの外周面における周方向の一部の周を覆う円弧体により形成することを特徴とする請求項9又は10記載のロータリソレノイド。 11. The rotary solenoid according to claim 9, wherein the magnet main body is formed by an arc body that covers a part of the circumference of the outer circumferential surface of the shaft.
PCT/JP2016/082235 2016-10-31 2016-10-31 Rotary solenoid WO2018078847A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/082235 WO2018078847A1 (en) 2016-10-31 2016-10-31 Rotary solenoid
JP2018547072A JPWO2018078847A1 (en) 2016-10-31 2016-10-31 Rotary solenoid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/082235 WO2018078847A1 (en) 2016-10-31 2016-10-31 Rotary solenoid

Publications (1)

Publication Number Publication Date
WO2018078847A1 true WO2018078847A1 (en) 2018-05-03

Family

ID=62024488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082235 WO2018078847A1 (en) 2016-10-31 2016-10-31 Rotary solenoid

Country Status (2)

Country Link
JP (1) JPWO2018078847A1 (en)
WO (1) WO2018078847A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2708453C1 (en) * 2018-12-28 2019-12-09 Федеральное государственное унитарное предприятие "Московское опытно-конструкторское бюро "Марс" (ФГУП МОКБ "Марс") Electromagnetic motor for rotation at given angle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0361310U (en) * 1989-10-13 1991-06-17
JPH08322226A (en) * 1995-03-20 1996-12-03 Asmo Co Ltd Rotary actuator
JP2003003925A (en) * 2001-06-19 2003-01-08 Denso Corp Fuel supply system for alternative fuel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0361310U (en) * 1989-10-13 1991-06-17
JPH08322226A (en) * 1995-03-20 1996-12-03 Asmo Co Ltd Rotary actuator
JP2003003925A (en) * 2001-06-19 2003-01-08 Denso Corp Fuel supply system for alternative fuel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2708453C1 (en) * 2018-12-28 2019-12-09 Федеральное государственное унитарное предприятие "Московское опытно-конструкторское бюро "Марс" (ФГУП МОКБ "Марс") Electromagnetic motor for rotation at given angle

Also Published As

Publication number Publication date
JPWO2018078847A1 (en) 2019-09-05

Similar Documents

Publication Publication Date Title
US6700271B2 (en) Hybrid synchronous motor equipped with toroidal winding
CA1294661C (en) Brushless dc motor
CN1897419B (en) Axial air-gap motor
US9502929B2 (en) Rotor and motor
US7498706B2 (en) Small DC motor
US7173352B2 (en) Stepping motor
US6194806B1 (en) Compact cylindrical radial gap type motor
KR101790364B1 (en) rotary single-phase electromagnetic actuator
WO2012111658A1 (en) Rotary solenoid
WO2008132970A1 (en) Insulator, stator of electric motor, and electric motor
JP4878226B2 (en) Drive device
WO2018078848A1 (en) Rotary solenoid
US7779532B2 (en) Manufacturing method of hybrid permanent magnet type electric rotating machine
WO2018078847A1 (en) Rotary solenoid
CN1905317B (en) Drive apparatus
JP2007306714A (en) Magnetization apparatus and magnetization method
US20060055253A1 (en) Stepping motor
JP3725469B2 (en) Coil electrical insulation structure
CN113330663B (en) Rotor and motor including the same
EP0369514B1 (en) Electrical actuator
JP4272075B2 (en) Stepping motor
JP3778284B2 (en) Composite voice coil linear motor
JP7258454B2 (en) rotary solenoid
US20220015595A1 (en) Flux switching motor and cleaner using the same
JP4533278B2 (en) Drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919934

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018547072

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16919934

Country of ref document: EP

Kind code of ref document: A1