JP4272075B2 - Stepping motor - Google Patents

Stepping motor Download PDF

Info

Publication number
JP4272075B2
JP4272075B2 JP2004009738A JP2004009738A JP4272075B2 JP 4272075 B2 JP4272075 B2 JP 4272075B2 JP 2004009738 A JP2004009738 A JP 2004009738A JP 2004009738 A JP2004009738 A JP 2004009738A JP 4272075 B2 JP4272075 B2 JP 4272075B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic circuit
inductor
permanent magnet
stepping motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004009738A
Other languages
Japanese (ja)
Other versions
JP2005204453A (en
Inventor
利彦 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP2004009738A priority Critical patent/JP4272075B2/en
Priority to PCT/JP2005/000376 priority patent/WO2005069466A1/en
Publication of JP2005204453A publication Critical patent/JP2005204453A/en
Application granted granted Critical
Publication of JP4272075B2 publication Critical patent/JP4272075B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K37/00Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors
    • H02K37/10Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type
    • H02K37/20Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type with rotating flux distributors, the armatures and magnets both being stationary

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Description

本発明は、ステッピングモータに関するもので、より具体的には、固定子(ステータ),回転子(ロータ)間における磁気回路の改良に関する。   The present invention relates to a stepping motor, and more specifically to an improvement in a magnetic circuit between a stator (stator) and a rotor (rotor).

ステッピングモータに関してよく知られる形式の一つに、図1(a),(b)に示すようなクローポール式のものがある。これは最も多く生産されている形式の一つと言え、回転子は図1(b)に示すように、回転軸101に取り付けた円筒形状の永久磁石102で構成されている。円筒形状の永久磁石102は周回向きに等間隔の多極に着磁されている。この場合、極数を増すほど磁極間隔が狭くなるため磁石の完全な着磁が困難になり、回転子の外形寸法に応じて通常は、10〜50程度の極数が使用されている。固定子は、鋼板からプレス加工により形成した多数の爪状の磁極103を持つヨーク104,105と、ソレノイド巻線106,107とによる2組の電磁石で構成されている。爪状の磁極103は、永久磁石102の着磁極数に対応した数を形成し、これをクローポールと呼んでいる。2組の電磁石は、磁極位置が回転子の回転方向に永久磁石102の着磁ピッチの1/2だけずれるように配置し、2相の電機子を形成している。この形式のステッピングモータは、ヨーク104,105はプレス加工で形成でき、回転子は円筒形の磁石を一括して多極着磁することで形成でき、ソレノイド巻線106,107は高速巻線が可能で巻線体積に無駄が少なく、生産性が高かく大量生産に好適な構成を持っている。   One well-known type of stepping motor is a claw pole type as shown in FIGS. 1 (a) and 1 (b). This can be said to be one of the most produced types, and the rotor is composed of a cylindrical permanent magnet 102 attached to a rotating shaft 101 as shown in FIG. The cylindrical permanent magnet 102 is magnetized in multi-poles at equal intervals in the circumferential direction. In this case, as the number of poles increases, the gap between the magnetic poles becomes narrower, making it difficult to completely magnetize the magnet. Usually, a number of poles of about 10 to 50 is used according to the outer dimensions of the rotor. The stator is composed of two sets of electromagnets including yokes 104 and 105 having a number of claw-shaped magnetic poles 103 formed by pressing from a steel plate and solenoid windings 106 and 107. The claw-shaped magnetic poles 103 form a number corresponding to the number of magnetic poles of the permanent magnet 102 and are called claw poles. The two sets of electromagnets are arranged such that the magnetic pole positions are shifted by a half of the magnetization pitch of the permanent magnets 102 in the rotation direction of the rotor to form a two-phase armature. In this type of stepping motor, the yokes 104 and 105 can be formed by pressing, the rotor can be formed by collectively magnetizing cylindrical magnets, and the solenoid windings 106 and 107 have high-speed windings. It has a configuration that is possible, has little waste in winding volume, has high productivity, and is suitable for mass production.

一方、特許文献1などに見られるように、軸方向にソレノイド巻線,円筒形の永久磁石,ソレノイド巻線を順に配置する構成のものも提案がある。つまり、図2(a),(b)に示すように、外周面を周回向きにn分割して異なる極に交互に着磁させた円筒形状の永久磁石108を、回転軸116に取り付けて備える構成であり、回転軸116の両端を支持する2つの軸受117,117の間に、第1ソレノイド巻線109,永久磁石108,第2ソレノイド巻線110を順に配置する。そして、第1ソレノイド巻線109が励磁する第1外側磁極111および第1内側磁極112を、永久磁石108の一端の外周面および内周面に対向させるとともに、第2ソレノイド巻線110が励磁する第2外側磁極113および第2内側磁極114を、永久磁石108の他端側の外周面および内周面に対向させ、この2組の磁気回路は連結部材115により連結させている。   On the other hand, as seen in Patent Document 1 and the like, there is a proposal of a configuration in which a solenoid winding, a cylindrical permanent magnet, and a solenoid winding are sequentially arranged in the axial direction. That is, as shown in FIGS. 2A and 2B, a cylindrical permanent magnet 108 having an outer peripheral surface divided into n in the circumferential direction and alternately magnetized to different poles is attached to the rotating shaft 116. The first solenoid winding 109, the permanent magnet 108, and the second solenoid winding 110 are arranged in this order between two bearings 117 and 117 that support both ends of the rotating shaft 116. Then, the first outer magnetic pole 111 and the first inner magnetic pole 112 excited by the first solenoid winding 109 are opposed to the outer peripheral surface and the inner peripheral surface of one end of the permanent magnet 108, and the second solenoid winding 110 is excited. The second outer magnetic pole 113 and the second inner magnetic pole 114 are opposed to the outer peripheral surface and the inner peripheral surface on the other end side of the permanent magnet 108, and the two sets of magnetic circuits are connected by a connecting member 115.

また一方、電機子,永久磁石を固定子として誘導子を回転子とする構成もあり、例えば特許文献2に見られるように、多極に着磁した永久磁石を、回転子である誘導子と空隙を挟んで対向させるものが知られている。つまり、図3に示すような構造を採り、118は誘導子歯、119はティース、120は電機子巻線、121はヨーク、122は磁極、123は永久磁石である。図中の矢印は永久磁石の磁化方向を示し、図3(b)はティース119の先端部分(図3(a)中のX)を拡大して示す説明図である。   On the other hand, there is also a configuration in which an armature and a permanent magnet are used as a stator and an inductor is used as a rotor. For example, as seen in Patent Document 2, a permanent magnet magnetized in multiple poles is used as an rotor as an inductor. There are known ones that face each other with a gap in between. That is, the structure shown in FIG. 3 is adopted, 118 is an inductor tooth, 119 is a tooth, 120 is an armature winding, 121 is a yoke, 122 is a magnetic pole, and 123 is a permanent magnet. The arrow in the figure indicates the magnetization direction of the permanent magnet, and FIG. 3B is an explanatory view showing the tip portion of the tooth 119 (X in FIG. 3A) in an enlarged manner.

この場合、回転子は、誘導子歯118が形成された磁性体からなる誘導子によって構成される。固定子は、6つのティース119とそれらを繋ぐヨーク121が一体となった電機子コアと、6つのティース119に集中巻きされた3相(U,V,W)の電機子巻線120と、各ティース119の先端に設けられた磁極122からなる電機子によって構成される。6極からなる1個の磁極122は、隣接するものどうしが互いに異極になるように永久磁石123が6個で構成されているので、固定子側に誘導子歯を加工する必要がない。回転子は図示しない軸受によって、回転自在に支持されている。
特開平11−41902 特開2002−369478
In this case, the rotor is constituted by an inductor made of a magnetic body on which inductor teeth 118 are formed. The stator includes an armature core in which six teeth 119 and a yoke 121 connecting them are integrated, and a three-phase (U, V, W) armature winding 120 concentratedly wound around the six teeth 119; Each arm 119 is constituted by an armature composed of a magnetic pole 122 provided at the tip of each tooth 119. Since one permanent magnetic pole 122 composed of six poles is composed of six permanent magnets 123 so that adjacent ones are different from each other, it is not necessary to process inductor teeth on the stator side. The rotor is rotatably supported by a bearing (not shown).
JP-A-11-41902 JP 2002-369478 A

しかしながら、そうした従来のステッピングモータでは以下に示すような問題がある。図1に示すような構成のステッピングモータでは、永久磁石102が中心になり同芯に磁極103,ソレノイド巻線106,107,ヨーク104,105が並び、径方向に回転子磁気回路と固定子磁気回路とが積み重ねられており、外径を小さくした場合に各構成要素に対して必要な径方向の寸法を配分することが困難になる欠点を有している。図3の場合も同様であり、径方向に構成要素が配置されるので外径を小さくすることは困難になる。   However, such conventional stepping motors have the following problems. In the stepping motor configured as shown in FIG. 1, the magnetic pole 103, the solenoid windings 106 and 107, and the yokes 104 and 105 are arranged concentrically around the permanent magnet 102, and the rotor magnetic circuit and the stator magnet are arranged in the radial direction. Circuits are stacked, and when the outer diameter is reduced, there is a drawback that it is difficult to distribute the necessary radial dimension to each component. The same applies to the case of FIG. 3, and it is difficult to reduce the outer diameter because the components are arranged in the radial direction.

また、図1のクローポール磁極103は、磁気回路を構成するヨークの一部を切り欠いて磁気回路を狭くして構成しているため、その根元の部分での磁気飽和により利用し得る磁束の最大値が制限される。従って、外径に制限がある場合には磁気回路の断面積を必要充分に確保することが困難になる欠点がある。   Further, the claw pole magnetic pole 103 in FIG. 1 is formed by cutting out a part of the yoke constituting the magnetic circuit and narrowing the magnetic circuit, so that the magnetic flux that can be used by the magnetic saturation at the base portion is reduced. Maximum value is limited. Therefore, when the outer diameter is limited, there is a drawback that it is difficult to secure a necessary and sufficient cross-sectional area of the magnetic circuit.

図2の構成では、固定子磁気回路と回転子磁気回路とを軸方向に配置しているので、各構成要素に対する径方向での寸法配分の困難さは軽減される。このため、図1の構成に比べて径の大きな永久磁石を利用することができ、極数を多くしたり、大きな出力トルクを得ることが容易となる。また、第1ソレノイド巻線109,第2ソレノイド巻線110の内径側に回転子磁石を含まない構成となるため、コイル巻線の内径を小さくしてコイル1ターン当たりの巻線抵抗を小さくでき、単位銅損当たりの起磁力を大きくすることが可能となる。   In the configuration of FIG. 2, since the stator magnetic circuit and the rotor magnetic circuit are arranged in the axial direction, the difficulty of dimensional distribution in the radial direction for each component is reduced. For this reason, it is possible to use a permanent magnet having a larger diameter than that of the configuration of FIG. 1, and it is easy to increase the number of poles and obtain a large output torque. Further, since the rotor magnet is not included on the inner diameter side of the first solenoid winding 109 and the second solenoid winding 110, the inner diameter of the coil winding can be reduced to reduce the winding resistance per one turn of the coil. The magnetomotive force per unit copper loss can be increased.

しかし、この構成ではより外径の大きな永久磁石を用いてトルク発生のための磁束を増加させたとしても、外側磁極111,113と内側磁極112,114とは、やはり磁気回路を構成するヨークの一部を切り欠いて磁気回路を狭くして構成されているため、その根元部分の磁気飽和により利用し得る磁束の最大値が制約される欠点を持っている。また、この構成では、図1の構成に比べて径の大きな永久磁石を回転子に使用するので、回転子の慣性能率が大きくなり結果として高いパルスレートでのモータの応答が悪化するという欠点や、磁極111,113が外周に露出しているので、磁極の切り欠き部の近傍に磁性体を配置するとモータとしての特性が変化する欠点がある。   However, in this configuration, even if the magnetic flux for torque generation is increased by using a permanent magnet having a larger outer diameter, the outer magnetic poles 111 and 113 and the inner magnetic poles 112 and 114 are also the yokes constituting the magnetic circuit. Since the magnetic circuit is narrowed by cutting out a part thereof, there is a drawback that the maximum value of the magnetic flux that can be used is restricted by the magnetic saturation at the base part. Further, in this configuration, since a permanent magnet having a larger diameter than that in the configuration of FIG. 1 is used for the rotor, the inertia performance ratio of the rotor is increased, and as a result, the response of the motor at a high pulse rate is deteriorated. Since the magnetic poles 111 and 113 are exposed on the outer periphery, there is a drawback that the characteristics as a motor change if a magnetic material is disposed in the vicinity of the notch portion of the magnetic pole.

この発明は上記した課題を解決するもので、その目的は、モータの形状寸法、特にモータ外径を限定した条件において、単位銅損当たりの出力トルクをより大きくすることができ、そして回転子の慣性能率が小さく、超小型化することに好ましく適用できるステッピングモータを提供することにある。   SUMMARY OF THE INVENTION The present invention solves the above-described problems, and its object is to increase the output torque per unit copper loss under the condition of limiting the motor geometry, particularly the motor outer diameter. It is an object of the present invention to provide a stepping motor that has a small inertia ratio and can be preferably applied to miniaturization.

上記した目的を達成するために、本発明に係るステッピングモータは、大小2つの円筒状ヨークを同芯に重畳させて一方端は磁気的に連結して他方端は磁気的に開放し、前記磁気的な連結端側にソレノイド巻線を配置し、前記磁気的な開放端側には前記外側円筒状ヨークの内周に磁気的に接する状態に永久磁石を環状に配置し、前記永久磁石は周回向きに多極に着磁して当該部を第1磁気回路とし、前記第1磁気回路および同一構成からなる第2磁気回路を、前記磁気的な開放端側を互いに対向させて所定の隙間に配置して電機子とするとともに、前記第1磁気回路および前記第2磁気回路の各々の永久磁石の内側には、周回向きに周期的に半径方向の磁気抵抗が変化する外周形状の誘導子を位置させてこれら誘導子は回転軸により支持して回転子とし、前記内側円筒状ヨークと前記誘導子の内径あるいは軸方向側面とを空隙を介して磁気的に結合する磁気回路を備えて構成した。   In order to achieve the above object, a stepping motor according to the present invention has two large and small cylindrical yokes concentrically overlapped, one end is magnetically connected and the other end is magnetically opened, and the magnetic A solenoid winding is arranged on the side of the general connection end, and a permanent magnet is annularly arranged on the magnetic open end side so as to be in magnetic contact with the inner circumference of the outer cylindrical yoke. The part is used as a first magnetic circuit by magnetizing in multiple poles in the direction, and the first magnetic circuit and a second magnetic circuit having the same configuration are placed in a predetermined gap with the magnetic open end sides facing each other. Arranged as an armature, and inside the permanent magnet of each of the first magnetic circuit and the second magnetic circuit, there is an outer circumferential inductor whose radial magnetic resistance changes periodically in the circumferential direction. These inductors are supported by a rotating shaft And trochanter, and configured to include a magnetic circuit for magnetically coupling with a gap between the inner diameter or the axial side surface of the inductor and the inner cylindrical yoke.

また、前記第1磁気回路の誘導子と前記第2磁気回路の誘導子との2つを磁気的に一体化して構成するとよい。さらに、前記回転軸は軟磁性材料から形成し、磁気的に一体化した前記誘導子を当該回転軸により支持させるようにしてもよく、前記第1磁気回路の外側円筒状ヨークと前記第2磁気回路の外側円筒状ヨークとを、軟磁性材料により一体に形成することもできる。
(本発明に係る磁気回路)
図4は、本発明に係る磁気回路を説明するモータの断面図であり、図4(a),(b)は径方向での切断面を示し、図4(c)は図4(a)におけるA−A切断面、図4(d)は図4(b)におけるB−B切断面を示す。
Further, it is preferable that the inductor of the first magnetic circuit and the inductor of the second magnetic circuit are magnetically integrated. Further, the rotating shaft may be made of a soft magnetic material, and the magnetically integrated inductor may be supported by the rotating shaft, and the outer cylindrical yoke of the first magnetic circuit and the second magnetic circuit may be supported. The outer cylindrical yoke of the circuit can be integrally formed of a soft magnetic material.
(Magnetic circuit according to the present invention)
FIG. 4 is a cross-sectional view of a motor for explaining a magnetic circuit according to the present invention. FIGS. 4 (a) and 4 (b) show a cut surface in the radial direction, and FIG. 4 (c) shows FIG. Fig. 4 (d) shows the BB cut surface in Fig. 4 (b).

図中、1は大きい径の外側円筒状ヨーク、2は小さい径の内側円筒状ヨーク、3は外側円筒状ヨーク1と内側円筒状ヨーク2とを磁気的に連結する環状板ヨークである。これらの各ヨークは軟磁性体材料により形成される。4はソレノイド巻線による駆動コイルである。5は円筒形状の永久磁石であって、外側円筒状ヨーク1の内径に磁気的に接するように固定され、周回向きに異なる極に着磁されており、この例では周回向きに12分割して異なる極に交互に着磁されている。永久磁石5内に示す矢印は磁化の向きである。6は誘導子であり、周回向きに周期的に半径方向の磁気抵抗が変化するように6個の誘導子歯が軟磁性体に加工されている。誘導子6の内径と内側円筒状ヨーク2の外周とは空隙を介して磁気的に結合する磁気回路を有している。また、誘導子6,内側円筒状ヨーク2,環状板ヨーク3および外側円筒状ヨーク1の外側に示す矢印は、それぞれの部位における磁束を示している。   In the figure, 1 is an outer cylindrical yoke having a large diameter, 2 is an inner cylindrical yoke having a small diameter, and 3 is an annular plate yoke that magnetically connects the outer cylindrical yoke 1 and the inner cylindrical yoke 2. Each of these yokes is formed of a soft magnetic material. Reference numeral 4 denotes a drive coil using solenoid windings. Reference numeral 5 denotes a cylindrical permanent magnet, which is fixed so as to be in magnetic contact with the inner diameter of the outer cylindrical yoke 1 and is magnetized to different poles in the circumferential direction. In this example, it is divided into 12 in the circumferential direction. It is magnetized alternately on different poles. The arrow shown in the permanent magnet 5 is the direction of magnetization. Reference numeral 6 denotes an inductor, and six inductor teeth are processed into a soft magnetic material so that the radial magnetic resistance periodically changes in the circumferential direction. The inner diameter of the inductor 6 and the outer periphery of the inner cylindrical yoke 2 have a magnetic circuit that is magnetically coupled via a gap. In addition, the arrows shown on the outside of the inductor 6, the inner cylindrical yoke 2, the annular plate yoke 3, and the outer cylindrical yoke 1 indicate the magnetic fluxes in the respective portions.

このような磁気回路における磁束は、図4(a)に示すように、誘導子6の誘導子歯が永久磁石5の隣接する磁極間の中央に位置すると、誘導子6の誘導子歯と外側円筒状ヨーク1との間で図4(c)に示すように紙面に対して垂直方向に流れ、永久磁石5の一方の磁極,誘導子6の誘導子歯,永久磁石5の他方の磁極,外側円筒状ヨーク1の経路で循環する。このため内側円筒状ヨーク2,環状板ヨーク3,外側円筒状ヨーク1の経路で流れる永久磁石5による磁束はゼロになる。   When the inductor teeth of the inductor 6 are located at the center between the adjacent magnetic poles of the permanent magnet 5, as shown in FIG. As shown in FIG. 4 (c), it flows in the direction perpendicular to the paper surface between the cylindrical yoke 1 and one magnetic pole of the permanent magnet 5, the inductor teeth of the inductor 6, the other magnetic pole of the permanent magnet 5, It circulates through the path of the outer cylindrical yoke 1. For this reason, the magnetic flux by the permanent magnet 5 flowing in the path of the inner cylindrical yoke 2, the annular plate yoke 3, and the outer cylindrical yoke 1 becomes zero.

そして、図4(b),(d)に示すように、誘導子6の誘導子歯が永久磁石5の磁極の一つと正対すると、隣接する磁極では磁気抵抗が低い誘導子歯の集める磁束が他方よりも多くなり、これらの差の磁束が図4(d)に示すように、駆動コイル4を囲む流れ、つまり内側円筒状ヨーク2,環状板ヨーク3,外側円筒状ヨーク1の経路に流れる。これは図4(a),(c)の状態から誘導子が右方向に機械角で15度、永久磁石5の隣接する一対の磁極のなす角を電気角で360度とした場合に電気角で右に90度回転した状態である。   As shown in FIGS. 4B and 4D, when the inductor teeth of the inductor 6 face one of the magnetic poles of the permanent magnet 5, the magnetic flux collected by the inductor teeth having low magnetic resistance at the adjacent magnetic poles. As shown in FIG. 4 (d), the magnetic flux resulting from these differences flows into the flow surrounding the drive coil 4, that is, in the path of the inner cylindrical yoke 2, the annular plate yoke 3, and the outer cylindrical yoke 1. Flowing. 4 (a) and 4 (c), when the inductor is 15 degrees mechanical angle in the right direction and the angle formed by a pair of adjacent magnetic poles of the permanent magnet 5 is 360 degrees, the electrical angle. In this state, it is rotated 90 degrees to the right.

永久磁石5および誘導子6の内部ではほとんどの磁束は、軸に垂直な面内を流れるので、外径が制限されたとしても、これらの軸方向の寸法を大きく設定することにより、外側円筒状ヨーク1あるいは内側円筒状ヨーク2がちょうど飽和する程度の最大値を持つ磁束を、駆動コイル4を囲む流れである内側円筒状ヨーク2,環状板ヨーク3,外側円筒状ヨーク1の経路に流すことができる。また、図4に示す誘導子6は各誘導子歯が内径側で連結した一体形状となっているが、各誘導子歯は磁気的に切り離された構成であっても同様の効果を得ることができる。
(ステッピングモータの構成)
ステッピングモータとしては、図4に示す磁気回路を2組とし、互いの誘導子6側を向かい合わせに軸方向に配置して2相モータの構成にすることができる。このとき、2つの磁気回路は、図4に示す磁束の流れをそれぞれが干渉なく独立して実現できるようにする必要があり、例えば2つの磁気回路の間に磁気的な空隙を設ける構成にすればよい。
Since most of the magnetic flux flows in a plane perpendicular to the axis inside the permanent magnet 5 and the inductor 6, even if the outer diameter is limited, by setting these axial dimensions large, an outer cylindrical shape is obtained. A magnetic flux having a maximum value that just saturates the yoke 1 or the inner cylindrical yoke 2 is caused to flow through the path of the inner cylindrical yoke 2, the annular plate yoke 3, and the outer cylindrical yoke 1, which is a flow surrounding the drive coil 4. Can do. In addition, the inductor 6 shown in FIG. 4 has an integral shape in which each inductor tooth is connected on the inner diameter side, but the same effect can be obtained even if each inductor tooth is magnetically separated. Can do.
(Configuration of stepping motor)
As the stepping motor, two sets of magnetic circuits shown in FIG. 4 can be used, and the inductor 6 side can be arranged in the axial direction facing each other to form a two-phase motor. At this time, it is necessary for the two magnetic circuits to be able to realize the flow of magnetic flux shown in FIG. 4 independently without interference. For example, a magnetic air gap is provided between the two magnetic circuits. That's fine.

2つの磁気回路の間では、互いの外側円筒状ヨーク1の間に磁気的な空隙が十分に確保できれば、互いの誘導子6,内側円筒状ヨーク2は磁気的に連結してあっても図4に示す磁束の流れを実現することができる。また、互いの誘導子6の間と、内側円筒状ヨーク2の間との何れにも共に十分な磁気的空隙が確保できていれば、互いの外側円筒状ヨーク1は磁気的に連結しても図4に示す磁束の流れを実現できる。   As long as a sufficient magnetic gap can be secured between the two magnetic circuits between the outer cylindrical yokes 1, the inductor 6 and the inner cylindrical yoke 2 may be magnetically coupled. 4 can be realized. Further, if a sufficient magnetic gap can be secured both between the inductors 6 and between the inner cylindrical yokes 2, the outer cylindrical yokes 1 are magnetically coupled to each other. Can also realize the flow of magnetic flux shown in FIG.

係る構成にすることにより本発明では、磁極を構成するために円筒状ヨークに切り欠きを設ける必要はなく、径の異なる2つの円筒状ヨーク1,2の断面積は、これら円筒状ヨーク1,2がなす磁気回路に流れる磁束の最大値で磁気飽和するように設定することになる。このため、外側円筒状ヨーク1の外径を規定した条件において、ソレノイド巻線(駆動コイル4)は外径は外側円筒状ヨーク1の内径に制限された最大値になり、内径は内側円筒状ヨーク2の外径に制限された最小値となる。   With this configuration, in the present invention, it is not necessary to provide a cutout in the cylindrical yoke in order to configure the magnetic pole, and the cross-sectional areas of the two cylindrical yokes 1 and 2 having different diameters are the same as those of the cylindrical yoke 1, 2 is set so as to be magnetically saturated at the maximum value of the magnetic flux flowing through the magnetic circuit formed by 2. For this reason, under the condition that the outer diameter of the outer cylindrical yoke 1 is defined, the solenoid winding (drive coil 4) has the maximum outer diameter limited to the inner diameter of the outer cylindrical yoke 1, and the inner diameter is the inner cylindrical shape. The minimum value is limited to the outer diameter of the yoke 2.

すなわち、モータ外径とソレノイド巻線の巻幅とを規定した条件において、当該ソレノイド巻線は単位銅損当たりの起磁力が最大になる。そして、永久磁石5は、外側円筒状ヨーク1の内周に固定して配置されるので、永久磁石5の外径はモータ外径を規定した条件において利用可能な最大の径になる。したがって、単位銅損当たりの出力トルクが極めて大きいモータを得ることができる。   That is, the magnetomotive force per unit copper loss is maximized in the solenoid winding under the conditions that define the motor outer diameter and the winding width of the solenoid winding. Since the permanent magnet 5 is fixedly disposed on the inner periphery of the outer cylindrical yoke 1, the outer diameter of the permanent magnet 5 is the maximum diameter that can be used under the condition that defines the motor outer diameter. Therefore, a motor having an extremely large output torque per unit copper loss can be obtained.

さらに、回転子をなす誘導子6が永久磁石5の内側に配置されて誘導子歯を持つ構造となっているので、そもそも慣性が大きい永久磁石を回転子とするような従来他の構成に比べて回転子の慣性能率は小さくすることができ、このため駆動信号を高パルスレートにすることでのモータ応答の悪化を防ぐことができる。   Furthermore, since the inductor 6 constituting the rotor is arranged inside the permanent magnet 5 and has inductor teeth, it is compared with other conventional configurations in which a permanent magnet having high inertia is used as the rotor in the first place. Thus, the inertia performance ratio of the rotor can be reduced, and therefore the deterioration of the motor response due to the drive signal having a high pulse rate can be prevented.

また、径方向に流れる磁束については、内径側に近づくほど磁路の断面積が減少して磁束密度が大きくなるが、誘導子6には飽和磁束密度の高い磁性材料を使用することができ、そうすることにより磁気飽和を避ける設計が行える。   In addition, regarding the magnetic flux flowing in the radial direction, the cross-sectional area of the magnetic path decreases and the magnetic flux density increases as it approaches the inner diameter side, but a magnetic material having a high saturation magnetic flux density can be used for the inductor 6. By doing so, it is possible to design to avoid magnetic saturation.

本発明に係るステッピングモータでは、モータ外径とソレノイド巻線の巻幅とを規定した条件において、当該ソレノイド巻線は単位銅損当たりの起磁力が最大になる。そして、永久磁石は、外側円筒状ヨークの内周に固定して配置されるので、永久磁石の外径はモータ外径を規定した条件において利用可能な最大の径になる。したがって、単位銅損当たりの出力トルクが極めて大きいモータを得ることができ、回転するのは軟磁性体からなる誘導子なので、磁石を回転子とするような従来他の構成に比べて回転子の慣性能率は小さくすることができる。その結果、超小型化することに好ましく適用できる。   In the stepping motor according to the present invention, the magnetomotive force per unit copper loss is maximized in the solenoid winding under the conditions defining the motor outer diameter and the winding width of the solenoid winding. And since a permanent magnet is fixed and arrange | positioned at the inner periphery of an outer side cylindrical yoke, the outer diameter of a permanent magnet becomes the largest diameter which can be utilized on the conditions which prescribed | regulated the motor outer diameter. Therefore, a motor having an extremely large output torque per unit copper loss can be obtained, and the rotating element is an inductor made of a soft magnetic material. The inertia ratio can be reduced. As a result, it can be preferably applied to miniaturization.

(第1の実施の形態)
図5〜図7は、本発明の第1の実施の形態を示している。本実施の形態において、ステッピングモータは図4に示す磁気回路を2組連結させた構成であり、互いの誘導子の側を向かい合わせに軸方向に配置して2相モータの構成となっている。
(First embodiment)
5 to 7 show a first embodiment of the present invention. In the present embodiment, the stepping motor has a configuration in which two sets of magnetic circuits shown in FIG. 4 are connected, and the two inductors are arranged in the axial direction so that the inductor sides face each other. .

図5〜図7において、7は第1磁気回路をなす外側円筒状ヨーク、8は第1磁気回路をなす内側円筒状ヨーク、9は外側円筒状ヨーク7と内側円筒状ヨーク8とを磁気的に連結する環状板ヨークであり、10は第2磁気回路をなす外側円筒状ヨーク、11は第2磁気回路をなす内側円筒状ヨーク、12は外側円筒状ヨーク10と内側円筒状ヨーク11とを磁気的に連結する環状板ヨークである。これらは軟磁性体材料により形成されている。   5-7, 7 is the outer cylindrical yoke that forms the first magnetic circuit, 8 is the inner cylindrical yoke that forms the first magnetic circuit, and 9 is a magnetic coupling between the outer cylindrical yoke 7 and the inner cylindrical yoke 8. 10 is an outer cylindrical yoke that forms a second magnetic circuit, 11 is an inner cylindrical yoke that forms a second magnetic circuit, and 12 is an outer cylindrical yoke 10 and an inner cylindrical yoke 11. An annular plate yoke that is magnetically coupled. These are made of a soft magnetic material.

そして、13,14はソレノイド巻線であり一般的には樹脂製ボビンに皮膜銅線を巻線して形成される。ソレノイド巻線13,14は、それぞれ第1磁気回路の環状板ヨーク9,第2磁気回路の環状板ヨーク12に取り付けられる。そして、ソレノイド巻線13,14の内径は内側円筒状ヨーク8,11の外径と嵌め合い、外径は外側円筒状ヨーク7,10の内径と嵌め合う設定にされている。   Reference numerals 13 and 14 denote solenoid windings, which are generally formed by winding a coated copper wire around a resin bobbin. The solenoid windings 13 and 14 are attached to the annular plate yoke 9 of the first magnetic circuit and the annular plate yoke 12 of the second magnetic circuit, respectively. The inner diameter of the solenoid windings 13 and 14 is set to fit with the outer diameter of the inner cylindrical yokes 8 and 11, and the outer diameter is set to fit with the inner diameter of the outer cylindrical yokes 7 and 10.

外側円筒状ヨーク7,10および内側円筒状ヨーク8,11については、その内径,外径つまり断面積は、当該磁気回路に流れる磁束の最大値で磁気飽和するような断面積に設定するが、関係する要素は、外側円筒状ヨーク7,10の外径(モータ外径)がそもそも規定され、回転軸20の外径と、その外側の内側円筒状ヨーク8,11の内径との間に確保すべき空隙に応じた内側円筒状ヨーク8,11の内径であって、これらを所定に定めた条件においてソレノイド巻線13,14の外径,内径は最大値と最小値になる。このため、ソレノイド巻線13,14は、巻幅当たり単位銅損当たり最大の起磁力を発現するものに構成できる。   For the outer cylindrical yokes 7 and 10 and the inner cylindrical yokes 8 and 11, the inner diameter, outer diameter, that is, the cross-sectional area is set to a cross-sectional area that is magnetically saturated at the maximum value of the magnetic flux flowing through the magnetic circuit. As for the elements concerned, the outer diameter (motor outer diameter) of the outer cylindrical yokes 7 and 10 is originally defined, and is secured between the outer diameter of the rotating shaft 20 and the inner diameters of the inner cylindrical yokes 8 and 11 outside thereof. The inner diameters of the inner cylindrical yokes 8 and 11 corresponding to the air gap to be obtained, and the outer and inner diameters of the solenoid windings 13 and 14 are the maximum value and the minimum value under the conditions in which these are predetermined. For this reason, the solenoid windings 13 and 14 can be configured to exhibit the maximum magnetomotive force per unit copper loss per winding width.

図5に示す外側円筒状ヨーク7,10には、ソレノイド巻線13,14の端子を径方向の外部に引き出すための切り欠き7a,10aが設けられている。この場合、外側円筒状ヨーク7,10の内径の決定にはこの切り欠き7a,10aの影響を考慮する必要がある。軸方向に引き出す場合には、環状板ヨーク9,12に切り欠きあるいは孔加工を施すことになるので、切り欠き7aおよび10aは不要となる。   The outer cylindrical yokes 7 and 10 shown in FIG. 5 are provided with notches 7a and 10a for drawing out the terminals of the solenoid windings 13 and 14 to the outside in the radial direction. In this case, it is necessary to consider the influence of the notches 7a and 10a in determining the inner diameter of the outer cylindrical yokes 7 and 10. In the case of pulling out in the axial direction, the annular plate yokes 9 and 12 are notched or drilled, so that the notches 7a and 10a are not necessary.

15および16は周回向きにn分割して異なる極に交互に着磁した永久磁石であり、それぞれは外側円筒状ヨーク7,10の内径に接して固定される。このため、磁石材料としてフレキシブル磁石やアークセグメント形状の焼結磁石を用いることができる。また、周回向きに一体に連結する必要はなく、n分割した磁極をなす磁石と磁石との間にすきまがあってもよい。本形態では、永久磁石15,16は、図7(a),(b)に示すように8極に着磁されており、図中の矢印は永久磁石の磁化の向きを示す。   Reference numerals 15 and 16 denote permanent magnets that are n-divided in the circumferential direction and are alternately magnetized to different poles, and are respectively fixed in contact with the inner diameters of the outer cylindrical yokes 7 and 10. For this reason, a flexible magnet or an arc segment shaped sintered magnet can be used as the magnet material. In addition, it is not necessary to integrally connect in the circumferential direction, and there may be a gap between the magnets forming the n-divided magnetic poles. In this embodiment, the permanent magnets 15 and 16 are magnetized to 8 poles as shown in FIGS. 7A and 7B, and the arrows in the figure indicate the magnetization directions of the permanent magnets.

2つの永久磁石15,16は、磁化の位置関係がズレ位置に設定されており、着磁がn分割であれば周回方向に機械角で180/n度のズレ位置とされる。ここでは着磁が8分割なので22.6度だけズラされており、これは隣り合う磁極のなす角度を電気角で360度とすると電気角で90度ズレた位置関係になっている。   The positional relationship between the magnetizations of the two permanent magnets 15 and 16 is set to a shift position, and if the magnetization is divided into n, the position is shifted to a mechanical angle of 180 / n degrees in the circumferential direction. Here, since the magnetization is divided into 8 parts, it is shifted by 22.6 degrees, and if the angle between adjacent magnetic poles is 360 degrees in electrical angle, the positional relationship is shifted by 90 degrees in electrical angle.

21は非磁性材からなるヨーク結合部材であり、第1磁気回路と第2磁気回路との距離を保ち、磁気的な結合を低減させる。また、ヨーク結合部材21や外側円筒状ヨーク7,10に突起や切り欠きを設けることにより、2つの永久磁石15,16が電気角で90度ズレる配置となるように位置決めすることもできる。   A yoke coupling member 21 made of a non-magnetic material maintains the distance between the first magnetic circuit and the second magnetic circuit and reduces magnetic coupling. Further, by providing protrusions and notches on the yoke coupling member 21 and the outer cylindrical yokes 7 and 10, the two permanent magnets 15 and 16 can be positioned so as to be shifted by 90 degrees in electrical angle.

17,18は軟磁性体からなる誘導子であり、非磁性体の軸接続部材19を介して回転軸20に結合されている。回転軸20は非磁性材から形成することが好ましいが、軟磁性材であってもかまわなく、軟磁性材から形成することでは、軸方向に並ぶ2つの磁気回路の磁気的な結合を多少増加させる可能性はあるが大きな損失にはならなく利用することができる。誘導子17,18は、一般的にはn/2個、つまり本形態では4個の誘導子歯を持ち、誘導子17と誘導子18との誘導子歯は周回向きには同相の位置関係になっている。   Reference numerals 17 and 18 denote inductors made of a soft magnetic material, and are coupled to the rotary shaft 20 via a non-magnetic shaft connecting member 19. The rotating shaft 20 is preferably formed from a non-magnetic material, but may be a soft magnetic material. By forming the rotating shaft 20 from a soft magnetic material, the magnetic coupling between two magnetic circuits arranged in the axial direction is slightly increased. There is a possibility of making it happen, but it can be used without causing a significant loss. The inductors 17 and 18 generally have n / 2, that is, four inductor teeth in the present embodiment, and the inductor teeth of the inductor 17 and the inductor 18 are in the same phase positional relationship in the circumferential direction. It has become.

このような構成によれば、モータ外径とソレノイド巻線13,14の巻幅とを規定した条件において、当該ソレノイド巻線13,14は単位銅損当たりの起磁力が最大になる。そして、永久磁石15,16は、外側円筒状ヨーク7,10の内周に固定して配置されるので、永久磁石15,16の外径はモータ外径を規定した条件において利用可能な最大の径になる。したがって、単位銅損当たりの出力トルクが極めて大きいモータを得ることができ、回転するのは軟磁性体からなる誘導子17,18なので、磁石を回転子とするような従来他の構成に比べて回転子の慣性能率は小さくすることができる。その結果、超小型化することに好ましく適用できる。   According to such a configuration, the magnetomotive force per unit copper loss is maximized in the solenoid windings 13 and 14 under the conditions defining the motor outer diameter and the winding width of the solenoid windings 13 and 14. Since the permanent magnets 15 and 16 are fixedly disposed on the inner circumference of the outer cylindrical yokes 7 and 10, the outer diameter of the permanent magnets 15 and 16 is the maximum available under the conditions that define the motor outer diameter. It becomes the diameter. Therefore, it is possible to obtain a motor having an extremely large output torque per unit copper loss, and the inductors 17 and 18 made of a soft magnetic material rotate. Therefore, compared with other conventional configurations in which a magnet is used as a rotor. The inertia ratio of the rotor can be reduced. As a result, it can be preferably applied to miniaturization.

なお、2つの永久磁石15,16について、磁化の位置関係をズレ位置とせずに周回向きに同相に設定してもよく、その場合は誘導子17,18の誘導子歯を、周回向きに電気角で90度ズレた位置関係に設定することにより同様の作用,効果が得られる。
(第2の実施の形態)
図8,図9は、本発明の第2の実施の形態を示している。この第2の実施の形態では、2つの磁気回路の誘導子を一体にした構成を採る。前述した第1の実施の形態と同様な構成要素には同一符号を付してその説明を省略する。
In addition, about the two permanent magnets 15 and 16, you may set the positional relationship of magnetization to the in-phase direction without setting it as a shift | offset | difference position, In that case, the inductor teeth of the inductors 17 and 18 are electrically connected to the rotation direction. The same action and effect can be obtained by setting the positional relationship so that the angle is shifted by 90 degrees.
(Second Embodiment)
8 and 9 show a second embodiment of the present invention. In the second embodiment, a configuration in which inductors of two magnetic circuits are integrated is adopted. Constituent elements similar to those of the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.

すなわち、外側円筒状ヨーク7,10は非磁性部材からなるヨーク結合部材21で機械的に結合する。従って、2つの磁気回路の誘導子については磁気的に連結することが可能になる。22は2つの磁気回路の誘導子を一体にした誘導子である。この誘導子22は、非磁性材からなる軸接続部材23を介して回転軸20に機械的に取り付ける。これにより部品点数を低減でき、組み立てを容易にすることができる。
(第3の実施の形態)
図10,図11は、本発明の第3の実施の形態を示している。この第3の実施の形態では、第2の実施の形態と同様に、軸方向に向かい合わせに並ぶ2つの外側円筒状ヨーク7,10を非磁性部材からなるヨーク結合部材21により機械的に結合している。その場合、2つの磁気回路の誘導子間および内側円筒状ヨーク8,11間を磁気的に連結することが可能なことから、磁気的に一体化した誘導子24を、軟磁性材からなる回転軸25に直接に取り付ける構成を採る。これにより、回転軸25を磁気回路としても利用している。なお、前述した第1の実施の形態と同様な構成要素には同一符号を付してその説明を省略する。
That is, the outer cylindrical yokes 7 and 10 are mechanically coupled by the yoke coupling member 21 made of a nonmagnetic member. Accordingly, the inductors of the two magnetic circuits can be magnetically coupled. Reference numeral 22 denotes an inductor in which two magnetic circuit inductors are integrated. The inductor 22 is mechanically attached to the rotary shaft 20 via a shaft connecting member 23 made of a nonmagnetic material. Thereby, the number of parts can be reduced and assembly can be facilitated.
(Third embodiment)
10 and 11 show a third embodiment of the present invention. In the third embodiment, similarly to the second embodiment, two outer cylindrical yokes 7 and 10 aligned in the axial direction are mechanically coupled by a yoke coupling member 21 made of a nonmagnetic member. is doing. In this case, the inductors 24 of the two magnetic circuits and the inner cylindrical yokes 8 and 11 can be magnetically coupled, so that the magnetically integrated inductor 24 is rotated by a soft magnetic material. A configuration for directly attaching to the shaft 25 is adopted. Thereby, the rotating shaft 25 is also used as a magnetic circuit. In addition, the same code | symbol is attached | subjected to the component similar to 1st Embodiment mentioned above, and the description is abbreviate | omitted.

このように、誘導子24を、軟磁性材からなる回転軸25に直接に取り付ける構成としたため、誘導子24を切削,焼結,ロストワックスなどの一体成型加工で形成することができる。また鋼板をプレス加工し、積層して磁気的に一体化する加工もよい。   Thus, since the inductor 24 is directly attached to the rotating shaft 25 made of a soft magnetic material, the inductor 24 can be formed by integral molding such as cutting, sintering, and lost wax. Moreover, the process which press-processes a steel plate, laminate | stacks, and magnetically integrates is also good.

回転軸25を磁気回路として利用することにより、誘導子,回転軸25の間の空隙をなくすることができ、小径化により一層適した構成を提供することができる。回転軸25はその全体を軟磁性体から形成してもよく、あるいは磁束を通す部分のみ、例えば軸の外周側だけを軟磁性体から形成する構成にしてもよい。
(第4の実施の形態)
図12,図13は、本発明の第4の実施の形態を示している。この第4の実施の形態では、誘導子17と誘導子18とを非磁性の軸接続部材19で機械的に結合する構成を採っている。また、前述した第1の実施の形態と同様な構成要素には同一符号を付してその説明を省略する。
By using the rotating shaft 25 as a magnetic circuit, the gap between the inductor and the rotating shaft 25 can be eliminated, and a more suitable configuration can be provided by reducing the diameter. The entire rotary shaft 25 may be formed of a soft magnetic material, or only the portion through which magnetic flux passes, for example, only the outer peripheral side of the shaft may be formed of a soft magnetic material.
(Fourth embodiment)
12 and 13 show a fourth embodiment of the present invention. In the fourth embodiment, a configuration is employed in which the inductor 17 and the inductor 18 are mechanically coupled by a nonmagnetic shaft connection member 19. The same components as those in the first embodiment described above are denoted by the same reference numerals, and the description thereof is omitted.

この場合、外側円筒状ヨークを磁気的に連結することが可能であり、2つの磁気回路の外側円筒状ヨークを一体とした外側円筒状ヨーク26としている。このように、最外周のヨークを軟磁性体で一体構造とすることにより、機械的な強度を増すことができる。そして外部への磁束の漏れを低減できるとともに、外部からの磁気的な影響を受け難くすることができる。   In this case, it is possible to magnetically connect the outer cylindrical yoke, and the outer cylindrical yoke 26 is formed by integrating the outer cylindrical yokes of the two magnetic circuits. Thus, the mechanical strength can be increased by forming the outermost yoke with a soft magnetic material in an integral structure. In addition, leakage of magnetic flux to the outside can be reduced, and the magnetic influence from the outside can be made difficult.

ここでは、誘導子17と誘導子18との磁気的な結合を減少させる必要がある。このため、図13に示すように、誘導子17と誘導子18との誘導子歯を周回向きに電気角が90度ずれた位置にしている。そして、永久磁石15,16は、着磁位置が周回向きに同相の位置となるので、両者を1つの磁石で形成できる。したがって、部品点数の削減に有利性があり、組み立てを容易にすることができる。   Here, it is necessary to reduce the magnetic coupling between the inductor 17 and the inductor 18. For this reason, as shown in FIG. 13, the inductor teeth of the inductor 17 and the inductor 18 are set at positions where the electrical angle is shifted by 90 degrees in the circumferential direction. The permanent magnets 15 and 16 can be formed of one magnet because the magnetized positions are in the same phase in the circumferential direction. Therefore, there is an advantage in reducing the number of parts, and assembly can be facilitated.

ステッピングモータの従来例を示す斜視図であり、(a)は破断してその内部を示し、(b)は回転子を単独に示す。It is a perspective view which shows the prior art example of a stepping motor, (a) fractures | ruptures and shows the inside, (b) shows a rotor independently. ステッピングモータの他の従来例を示す斜視図であり、(a)は各部を分解して示し、(b)は破断してその内部を示す。It is a perspective view which shows the other conventional example of a stepping motor, (a) shows each part disassembled, (b) fractures | ruptures and shows the inside. ステッピングモータの他の従来例を示す断面図(a)であり、(b)は空隙部分を拡大して示す。It is sectional drawing (a) which shows the other conventional example of a stepping motor, (b) expands and shows a space | gap part. 本発明に係る磁気回路を説明するモータの断面図であり、(a),(b)は径方向での切断面を示し、(c),(d)は軸方向での切断面を示す。It is sectional drawing of the motor explaining the magnetic circuit which concerns on this invention, (a), (b) shows the cut surface in radial direction, (c), (d) shows the cut surface in an axial direction. 本発明に係るステッピングモータの好適な一実施の形態を示す斜視図である。1 is a perspective view showing a preferred embodiment of a stepping motor according to the present invention. 図5のステップモータを軸方向について切断した断面図である。It is sectional drawing which cut | disconnected the step motor of FIG. 5 about the axial direction. 図5のステップモータを径方向について切断した断面図であり、(a)はA−A線の部分、(b)はB−B線の部分である。It is sectional drawing which cut | disconnected the step motor of FIG. 5 about the radial direction, (a) is a part of an AA line, (b) is a part of a BB line. 本発明に係るステッピングモータの第2の形態を示す軸方向での断面図である。It is sectional drawing in the axial direction which shows the 2nd form of the stepping motor which concerns on this invention. 図8のステッピングモータのロータを示す斜視図である。It is a perspective view which shows the rotor of the stepping motor of FIG. 本発明に係るステッピングモータの第3の形態を示す軸方向での断面図である。It is sectional drawing in the axial direction which shows the 3rd form of the stepping motor which concerns on this invention. 図10のステッピングモータのロータを示す斜視図である。It is a perspective view which shows the rotor of the stepping motor of FIG. 本発明に係るステッピングモータの第4の形態を示す軸方向での断面図である。It is sectional drawing in the axial direction which shows the 4th form of the stepping motor which concerns on this invention. 図12のステッピングモータのロータを示す斜視図である。It is a perspective view which shows the rotor of the stepping motor of FIG.

符号の説明Explanation of symbols

1 外側円筒状ヨーク
2 内側円筒状ヨーク
3 環状板ヨーク
4 駆動コイル
5 永久磁石
6 誘導子
7,10 外側円筒状ヨーク
7a,10a 切り欠き
8,11 内側円筒状ヨーク
9,12 環状板ヨーク
13,14 ソレノイド巻線
15,16 永久磁石
17,18 誘導子
19,23 軸接続部材
20,25 回転軸
21 ヨーク結合部材
22,24 誘導子
26 外側円筒状ヨーク
DESCRIPTION OF SYMBOLS 1 Outer cylindrical yoke 2 Inner cylindrical yoke 3 Annular plate yoke 4 Drive coil 5 Permanent magnet 6 Inductor 7, 10 Outer cylindrical yoke 7a, 10a Notch 8, 11 Inner cylindrical yoke 9, 12 Annular plate yoke 13, 14 Solenoid windings 15 and 16 Permanent magnets 17 and 18 Inductors 19 and 23 Shaft connecting members 20 and 25 Rotating shaft 21 Yoke coupling members 22 and 24 Inductor 26 Outer cylindrical yoke

Claims (4)

大小2つの円筒状ヨークを同芯に重畳させて一方端は磁気的に連結して他方端は磁気的に開放し、前記磁気的な連結端側にソレノイド巻線を配置し、前記磁気的な開放端側には前記外側円筒状ヨークの内周に磁気的に接する状態に永久磁石を環状に配置し、前記永久磁石は周回向きに多極に着磁して当該部を第1磁気回路とし、
前記第1磁気回路および同一構成からなる第2磁気回路を、前記磁気的な開放端側を互いに対向させて所定の隙間に配置して電機子とするとともに、前記第1磁気回路および前記第2磁気回路の各々の永久磁石の内側には、周回向きに周期的に半径方向の磁気抵抗が変化する外周形状の誘導子を位置させてこれら誘導子は回転軸により支持して回転子とし、
前記内側円筒状ヨークと前記誘導子の内径あるいは軸方向側面とを空隙を介して磁気的に結合する磁気回路を備えたことを特徴とするステッピングモータ。
Two large and small cylindrical yokes are concentrically overlapped, one end is magnetically connected, the other end is magnetically opened, a solenoid winding is disposed on the magnetic connection end side, and the magnetic On the open end side, a permanent magnet is annularly arranged so as to be in magnetic contact with the inner circumference of the outer cylindrical yoke, and the permanent magnet is magnetized in a multi-pole direction so as to form the first magnetic circuit. ,
The first magnetic circuit and the second magnetic circuit having the same configuration are arranged in a predetermined gap with the magnetic open end sides facing each other to form an armature, and the first magnetic circuit and the second magnetic circuit Inside each permanent magnet of the magnetic circuit, an inductor having an outer peripheral shape whose radial magnetic resistance changes periodically in the circumferential direction is positioned, and these inductors are supported by a rotating shaft as a rotor,
A stepping motor comprising a magnetic circuit for magnetically coupling the inner cylindrical yoke and the inner diameter or axial side surface of the inductor via a gap.
前記第1磁気回路の誘導子と前記第2磁気回路の誘導子との2つを磁気的に一体化したことを特徴とする請求項1に記載のステッピングモー夕。   2. The stepping motor according to claim 1, wherein the inductor of the first magnetic circuit and the inductor of the second magnetic circuit are magnetically integrated. 前記回転軸は軟磁性材料から形成し、磁気的に一体化した前記誘導子を当該回転軸により支持させたことを特徴とする請求項2に記載のステッピングモータ。   The stepping motor according to claim 2, wherein the rotating shaft is made of a soft magnetic material, and the magnetically integrated inductor is supported by the rotating shaft. 前記第1磁気回路の外側円筒状ヨークと前記第2磁気回路の外側円筒状ヨークとを、軟磁性材料により一体に形成したことを特徴とする請求項1に記載のステッピングモータ。   2. The stepping motor according to claim 1, wherein the outer cylindrical yoke of the first magnetic circuit and the outer cylindrical yoke of the second magnetic circuit are integrally formed of a soft magnetic material.
JP2004009738A 2004-01-16 2004-01-16 Stepping motor Expired - Fee Related JP4272075B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004009738A JP4272075B2 (en) 2004-01-16 2004-01-16 Stepping motor
PCT/JP2005/000376 WO2005069466A1 (en) 2004-01-16 2005-01-14 Stepping motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004009738A JP4272075B2 (en) 2004-01-16 2004-01-16 Stepping motor

Publications (2)

Publication Number Publication Date
JP2005204453A JP2005204453A (en) 2005-07-28
JP4272075B2 true JP4272075B2 (en) 2009-06-03

Family

ID=34792279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004009738A Expired - Fee Related JP4272075B2 (en) 2004-01-16 2004-01-16 Stepping motor

Country Status (2)

Country Link
JP (1) JP4272075B2 (en)
WO (1) WO2005069466A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4378327B2 (en) * 2005-07-28 2009-12-02 キヤノン株式会社 Drive device
JP2007135318A (en) * 2005-11-10 2007-05-31 Fdk Corp Stepping motor
JP4878226B2 (en) 2006-06-26 2012-02-15 キヤノン株式会社 Drive device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497730U (en) * 1977-12-22 1979-07-10
JPS6135153A (en) * 1984-07-25 1986-02-19 Matsushita Electric Works Ltd Stepping synchronous motor
JPS62285656A (en) * 1986-06-02 1987-12-11 Kokusai Gijutsu Kaihatsu Kk Four stable rotary solenoid

Also Published As

Publication number Publication date
WO2005069466A1 (en) 2005-07-28
JP2005204453A (en) 2005-07-28

Similar Documents

Publication Publication Date Title
JP3745884B2 (en) Motor structure and manufacturing method thereof
US6700271B2 (en) Hybrid synchronous motor equipped with toroidal winding
US6504272B2 (en) Multi-phase electric rotating machine having toroidal coils and using method thereof
JP2003061326A (en) Vernier-type brushless motor
JP3535012B2 (en) Radial gap type small cylindrical rotating electric machine
KR20130118750A (en) Rotor and motor
JPH1198731A (en) Motor using rotor with buried permanent magnet therein
WO2018074561A1 (en) Synchronous reluctance type rotating electrical machine
JP2004187344A (en) Permanent magnet type motor
US6815861B2 (en) Electric rotary machine with armature of discrete salient pole structure
EP1445851B1 (en) Motor
US6861773B2 (en) Stepping motor
US7779532B2 (en) Manufacturing method of hybrid permanent magnet type electric rotating machine
JP4032280B2 (en) AC motor stator manufacturing method
JP2005304177A (en) Motor and end plate used for rotor of motor
US6323569B1 (en) Stepping motor
JPS6285667A (en) Pm type stepping motor
US6717319B2 (en) Electric rotary machine with armature of discrete salient pole structure
JP4272075B2 (en) Stepping motor
WO2003069766A1 (en) Flat stepping motor
US20070262660A1 (en) Stepping motor
JP5884463B2 (en) Rotating electric machine
JP2005269693A (en) Permanent magnet motor
JP2007043763A (en) Process for manufacturing rotor magnet, and motor
JP5144923B2 (en) Rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060519

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090109

TRDD Decision of grant or rejection written
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees