WO2018078778A1 - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
WO2018078778A1
WO2018078778A1 PCT/JP2016/081940 JP2016081940W WO2018078778A1 WO 2018078778 A1 WO2018078778 A1 WO 2018078778A1 JP 2016081940 W JP2016081940 W JP 2016081940W WO 2018078778 A1 WO2018078778 A1 WO 2018078778A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
vibration
current command
loss
current
Prior art date
Application number
PCT/JP2016/081940
Other languages
English (en)
French (fr)
Inventor
中原 崇
悟士 隅田
鈴木 英明
浅井 大輔
金子 悟
岩路 善尚
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2016/081940 priority Critical patent/WO2018078778A1/ja
Publication of WO2018078778A1 publication Critical patent/WO2018078778A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors

Definitions

  • the present invention relates to a motor control device.
  • Vibration occurs when unstable loads are applied as disturbances in air conditioners, air compressors, construction machines, rolling mills, and electric vehicles. If this vibration is to be reduced, electric power for that purpose is required, and a trade-off that power loss cannot be reduced occurs. Therefore, adjustments that minimize both vibration and power loss are required.
  • the actual motor driving environment may have a greater loss due to disturbance due to moisture.
  • the vibration may increase in that the sound becomes louder.
  • An object of the present invention is to realize a motor control device capable of minimizing both vibration and power loss even when the characteristics of vibration and power loss change depending on the motor driving environment.
  • the present invention is configured as follows.
  • an electric motor that drives a drive target, a system controller that outputs an external current command according to the operation of the drive target, and environmental information output that collects and outputs environmental information related to the drive environment of the electric motor
  • a motor operation information output unit that detects and outputs the operation information of the electric motor, and the vibration and loss of the electric motor based on the operation information of the electric motor output from the motor operation information output unit.
  • Estimate calculate a current command that minimizes the estimated vibration and loss, calculate the internal current command by correcting the calculated current command with the environmental information output from the environmental information output unit, and calculate A voltage command value corresponding to a value obtained by adding the external current command output from the system controller to the internal current command is output to the electric motor.
  • FIG. 1 is a diagram showing a system configuration of a motor control device according to an embodiment of the present invention.
  • the motor control device includes a motor 6, an inverter 5, a rotor phase meter 61 that measures the phase of the rotor of an electric motor (hereinafter abbreviated as “motor”) 6, an angular velocity meter 62 that measures the angular velocity of the motor 6, Status information of an ammeter 63 that measures the current flowing through the motor 6, the motor controller 3 that controls the motor 6, the system controller 4, and the drive target (for example, the windmill 45 shown in FIG. 27) driven by the motor 6.
  • motor an inverter 5
  • a rotor phase meter 61 that measures the phase of the rotor of an electric motor (hereinafter abbreviated as “motor”) 6
  • an angular velocity meter 62 that measures the angular velocity of the motor 6
  • Status information of an ammeter 63 that measures the current flowing through the motor 6, the motor controller 3 that controls the motor 6, the system controller 4, and the drive target (for example, the windmill 45 shown in FIG. 27) driven by the motor 6.
  • a system controller sensor 7 such as a thermometer, a hygrometer, a position, a vibration meter, a loss meter, and a flow meter to be detected, and a system controller 4 that outputs an external current command based on information from the system controller sensor 7 are provided.
  • the rotor phase meter 61, the angular velocity meter 62, and the ammeter 63 form a motor operation information output unit.
  • the motor control device includes an adjustment PC 2 that adjusts the driving position environment of the motor 6, a thermometer, a hygrometer, a barometer, a pyranometer, an anemometer, a GPS that detects environmental information in the driving environment of the motor 6. And an adjustment PC 2 sensor (environmental information sensor) 9.
  • the motor control device includes a server 1 that notifies the weather information at the current position of the motor 6 via the Internet 8.
  • the motor 6 is a machine that rotates a shaft serving as a rotor with electric power.
  • the inverter 5 is a machine that applies a voltage to the motor 6 as power for the motor 6.
  • the rotor phase meter 61 measures the phase of the rotor of the motor 6 and outputs it to the motor controller 3 as a signal.
  • the angular velocity meter 62 measures the angular velocity of the rotor of the motor 6 and outputs it to the motor controller 3 as a signal.
  • the ammeter 63 measures the current flowing through the motor 6 and outputs it as a signal to the motor controller 3.
  • the motor controller 3 calculates the voltage command value of the inverter 5 from the operation information such as the rotor phase, angular velocity and current output from the rotor phase meter 61, the angular velocity meter 62 and the ammeter 63, and outputs it to the inverter 5.
  • the system controller 4 outputs an external current command to the motor controller 3 in order to control the control amount of the device that uses the motor 6, and causes the motor controller 3 to control the current of the motor 6 to follow the external current command.
  • Equipment For example, when the device using the motor 6 is an air conditioner, the outside air temperature from the thermometer of the sensor 7 for the system controller, the humidity from the hygrometer, the vibration amount of the motor 6 from the vibration meter, and the motor 6 driving from the loss meter An external current command is output to measure the power loss amount and control to a predetermined value.
  • an external current command is output to control the position of the robot arm from a position meter of the system controller sensor 7 to a predetermined value.
  • an external current command that measures the flow rate of air output from the air compressor from the flow meter of the system controller sensor 7 and controls it to a predetermined value. Is output.
  • the adjustment PC (environment information output unit) 2 collects information related to the driving environment of the entire motor control device and outputs it to the motor controller 3.
  • the voltage command changes according to the driving environment and minimizes the amount of vibration and loss This is a device that causes the motor controller 3 to output a value to the inverter 5.
  • the adjustment PC 2 measures the driving environment of the entire motor control device from each sensor of the adjustment PC 2 sensor 9. For example, the temperature of the driving environment is driven from the thermometer of the sensor 9 for adjusting PC2, the humidity of the driving environment from the hygrometer, the atmospheric pressure of the driving environment from the barometer, and the solar radiation amount of the driving environment from the anemometer, from the anemometer.
  • the wind speed of the environment is measured from GPS (Global Positioning System) and the current position. Further, the adjustment PC 2 acquires the current date and time from the internal clock.
  • the adjustment PC 2 collects information measured as described above as environmental information and transmits it to the motor controller 3. Also, the adjustment PC 2 outputs a switch indicating whether the operation is in progress or adjustment to the motor controller 3, and outputs a voltage command value corresponding to the environmental information to the motor controller 3 during the adjustment. The voltage command value is output to the motor controller 3 regardless of the environmental information.
  • the adjustment PC 2 has a role of simulating an external current command and outputting it to the motor controller 3 in order to simulate the behavior of the system controller 4.
  • the server 1 determines the weather at the current position from the information on the current position transmitted from the adjustment PC 2 via the Internet 8, and transmits the weather determination result to the adjustment PC 2 via the Internet 8.
  • the environment information assumes the temperature, humidity, atmospheric pressure, amount of solar radiation, wind speed, weather, current time, date, and the like of the driving environment.
  • FIG. 2 is a diagram showing a hardware configuration of the server 1 in one embodiment of the present invention.
  • the server 1 receives the current position and transmits the weather, the recording device 13 that records the current position-weather conversion program 131 that converts the weather from the current position, and the data temporarily.
  • a storage device 12 for storage and a CPU 11 for executing arithmetic processing related to the current position-weather conversion program are provided, and these devices in the server 1 are connected by a system bus.
  • FIG. 3 is a diagram showing a hardware configuration of the adjustment PC 2 in one embodiment of the present invention.
  • the adjustment PC 2 includes a first interface 24 that receives sensor information from various sensors, a second interface 25 that transmits the current position and receives the weather, and environmental information and actual operation / A third interface 26 that outputs an adjustment switch and an external current command simulation value, a recording device 20 that records various data and programs, a storage device 22 that temporarily stores data, and arithmetic processing related to various programs And a clock (clock counter) 23 having a counter that counts up according to time, and these devices are connected by a system bus.
  • a clock (clock counter) 23 having a counter that counts up according to time, and these devices are connected by a system bus.
  • the recording device 20 includes a clock / calendar program 203, a current position transmission program 204, a weather reception program 205, a weather estimation program 206, an environment accumulation program 207, a main operation / adjustment switching program 208, a program parameter D1, and the like. , Environment information, external current command simulation value, actual operation / adjustment switch transmission program 201, and external current simulator 202 are stored.
  • the clock / calendar program 203 outputs the current date and time from date and time information corresponding to a clock value and a fixed number of clocks.
  • the environment information accumulation program 207 receives temperature, humidity, atmospheric pressure, solar radiation amount, wind speed, and current position from various sensors and accumulates them together with the clock value.
  • the current position transmission program 204 transmits the current position (latitude, longitude) received from the GPS to the server 1.
  • the weather receiving program 205 receives weather information corresponding to the current position.
  • the weather estimation program 206 estimates the weather from the amount of solar radiation, atmospheric pressure, humidity, wind speed, or time in a hardware configuration or environment where the current position cannot be received from the GPS. For example, when the humidity is low and the amount of solar radiation is small and the time is daytime, it is determined to be cloudy, and when the humidity is high and the amount of solar radiation is small and the time is daytime, it is determined to be rainy.
  • the actual operation / adjustment switching program 208 is a program for transmitting a signal for switching the operation mode of the motor controller 3 between actual operation and adjustment. It is also possible to provide an input for providing the user interface to allow the user to switch between actual operation and adjustment.
  • the program parameter D1 indicates a parameter used in the adjustment PC2.
  • Environment information / external current command simulation value / actual operation / adjustment switch transmission program 201 transmits environment information, external current command simulation value, or actual operation switch transmission program to the motor controller 3.
  • the external current command simulator 201 calculates an external current command with the same operation logic as the system controller 4 from the actual sensor input value or the test pattern of the system controller 4 and outputs it as an external current command simulated value.
  • FIG. 4 is a diagram showing a hardware configuration of the motor controller 3 in one embodiment of the present invention.
  • the motor controller 3 includes a first interface 33 that receives sensor information from various sensors connected to the motor, a second interface 34 that receives an external current command from the system controller 4, and the motor controller 3.
  • a third interface 35 that receives environmental information, actual operation / adjustment switches, and external current command simulation values, a fourth interface 36 that outputs voltage command values to the inverter 5, and a record that records various data and programs
  • a device 30, a storage device 32 that temporarily stores data, and a CPU 31 that executes arithmetic processing related to various programs are provided, and these devices are connected by a system bus.
  • the recording device 30 stores a vibration / loss estimation program 301, a vibration / loss minimization program 302, a control command output program 303, and a data group D2.
  • the vibration / loss estimation program 301 is for estimating the vibration amount and loss amount of the motor 6 from the angular velocity / current / rotor phase of the motor 6.
  • the vibration / loss minimizing program 302 calculates an internal current command that minimizes the vibration amount and the loss amount from the vibration amount estimated value, the loss amount estimated value, the rotor phase, the environmental information, and the actual operation / adjustment switch. Is.
  • the control command output program 303 uses the internal current command and the external current command or the external current command simulated value to calculate and output a voltage command value such that the motor current is the sum of the internal current command and the external current command. is there.
  • the data group D2 is data used in the motor controller 3.
  • FIG. 5 is a diagram showing a hardware configuration of the system controller 4 in one embodiment of the present invention.
  • the system controller 4 includes a first interface 43 that receives sensor information from various sensors connected to a device that uses the motor, a second interface 44 that transmits an external current command to the motor controller 3,
  • a recording device 40 that records various data and programs, a storage device 42 that temporarily stores data, and a CPU 41 that executes arithmetic processing related to various programs are connected to each other via a system bus. Yes.
  • the recording device 40 includes a temperature control program 401 that controls the temperature using the temperature measurement value, a humidity control program 402 that controls the humidity using the humidity measurement value, and the position measurement value, for example, the position of the arm.
  • the air flow rate control program 406 for controlling the air flow rate using the measured value, and the weight vector for the external current command of each control program and the control command value for the control amount are calculated in order to adjust the balance of each control amount.
  • An overall control program 407 for calculating a final external current command by applying a weight vector to the set of And an external current command calculation data D3 is data group used to perform 401-407.
  • FIG. 6 is a functional block diagram of the server 1 in one embodiment of the present invention, and is a diagram expressing functions for the hardware configuration of FIG.
  • the server 1 has a current position-weather conversion unit 101 realized by a current position-weather conversion program.
  • the current position-weather converting unit 101 has a function of converting the current position transmitted from the adjustment PC 2 into the weather at the current position.
  • FIG. 7 is a functional block diagram of the adjustment PC 2 in one embodiment of the present invention.
  • the adjustment PC 2 is realized by the environment information storage unit 209 realized by the environment information storage program 207 shown in FIG. 3, the current position transmission unit 210 realized by the current position transmission program 204, and the weather reception program 205. It is realized by the weather reception unit 211, the weather estimation unit 212 realized by the weather estimation program 206, the external current command simulator unit 213, the environment information, the external current command simulation value, the actual operation / adjustment switch, and the transmission program 201.
  • the operation / adjustment switch, environmental information, and external current command simulated value transmission unit 214 are provided.
  • the environment information accumulation unit 209 accumulates information such as temperature, humidity, atmospheric pressure, solar radiation amount, wind speed, and current position transmitted from various sensors together with a clock value.
  • the current position transmission unit 210 transmits the current position transmitted from the GPS of the adjustment PC 2 sensor 9 to the server 1.
  • the weather estimation unit 212 estimates the weather from temperature, humidity, atmospheric pressure, solar radiation amount, wind speed, and date / time.
  • the actual operation / adjustment switch / environment information / external current command simulation value transmission unit 214 transmits the environmental information / external current command simulation value / main operation / adjustment switch transmission program 201 to the motor controller 3.
  • FIG. 8 is a functional block diagram of the motor controller 3 in one embodiment of the present invention.
  • the motor controller 3 includes a vibration / loss estimation unit B30 realized by the vibration / loss estimation program 301 shown in FIG. 4 and a vibration / loss minimization unit B31 realized by the vibration / loss minimization program 301. And a current control unit B32 realized by the control command output program 303, and an adder B33.
  • the vibration / loss minimizing unit B31 calculates a current command for minimizing vibration and loss from the estimated vibration amount, the estimated loss amount, the rotor phase, and the main operation / adjustment switch estimated by the vibration / loss estimation unit B30.
  • the calculated current command is corrected by the environmental information, and an internal current command that minimizes the vibration amount and the loss amount is calculated and output.
  • the current control unit B32 uses the addition current command obtained by adding the current command from the vibration / loss minimization unit B31 and the external current command or the external current command simulation value by the adder B33, so that the current of the motor 6 is converted to the internal current.
  • a voltage command value that is the sum of the command and the external current command is calculated and output.
  • FIG. 9 is a functional block diagram of the system controller 4 in one embodiment of the present invention.
  • the system controller 4 includes a temperature control unit B40 realized by the temperature control program 401 shown in FIG. 5, a humidity control unit B41 realized by the humidity control program 402, and a position control unit B42 realized by the position control program 403.
  • an overall control unit B400 and a weighting operation unit B46 is a weighting operation unit B46.
  • the overall control unit B400 calculates a weight vector for the external current command A to the external current command F of each control program and a control command value for the control amount from various sensor measurement values in order to adjust the balance of the control amounts. . For example, when the loss increases at a high temperature, loss control according to the temperature can be performed by providing a function that lowers the loss amount setting value when the temperature is high.
  • the temperature control unit B40 outputs an external current command A that controls the temperature to the temperature set value using the temperature measurement value and the temperature set value.
  • the humidity control unit B41 outputs an external current command B that controls the humidity to the humidity setting value using the humidity measurement value and the humidity setting value.
  • the position control unit B42 outputs an external current command C that controls the position to the position set value using the position measurement value and the position set value.
  • the vibration control unit B43 outputs an external current command D that controls the vibration amount to the vibration amount setting value using the vibration amount measurement value and the vibration amount setting value.
  • the loss amount control unit B44 outputs an external current command E that controls the loss amount to the loss amount setting value by using the loss amount measurement value and the loss amount setting value.
  • the air flow rate control unit B45 outputs an external current command F that controls the air flow rate to the air flow rate setting value using the air flow rate measurement value and the air flow rate setting value.
  • the weighting calculation unit B46 calculates a final external current command by multiplying a vector of the external current command A to the external current command F by a weight vector.
  • FIG. 10 is a functional block diagram of the vibration / loss estimator B30 in one embodiment of the present invention.
  • the vibration / loss estimator B30 adjusts the phase of the angular velocity from the angular velocity and the rotor phase and outputs it as the phase adjustment angular velocity, and adjusts the phase of the current from the current and the rotor phase.
  • a current phase adjustment unit B303 that outputs the adjustment current
  • a specific frequency component extraction unit B302 that multiplies the phase adjustment angular velocity by FFT (Fast Fourier Transform) to extract and output the specific frequency component as an estimated vibration amount
  • a current integration unit B304 that calculates and outputs a power loss amount.
  • FIG. 11 is a functional block diagram of the vibration / loss minimizing unit B31 in the embodiment of the present invention.
  • the vibration / loss minimizing unit B31 includes a divergence degree calculating unit B312, a vibration / loss minimizing index calculating unit B313, and a vibration / loss / phase / internal current command reference table B311.
  • the divergence degree calculation unit B312 obtains the difference between the environmental information such as temperature and humidity and its reference value, integrates the influence degree with respect to the vibration and the influence degree with respect to the loss, and sums all the environmental information, thereby obtaining the vibration divergence degree and loss.
  • the degree of divergence is calculated and output.
  • the vibration / loss minimization index calculation unit B313 outputs the reference table number as a minimization index from values obtained by discretizing the vibration divergence degree and the loss divergence degree.
  • the vibration / loss / phase / internal current command reference table B311 is a table in which an internal current command for minimizing vibration and loss is stored for each vibration amount estimated value, loss estimated value, and rotor phase.
  • vibration / loss / phase / internal current command reference table B311 it is possible to refer to different tables at the time of actual operation and at the time of adjustment by incorporating the actual operation / adjustment switch.
  • an internal current command suitable for environmental information can be output during adjustment.
  • FIG. 12 is a functional block diagram of the current control unit B32 in one embodiment of the present invention.
  • the current control unit B32 includes a feedforward control unit B321 and a feedback control unit B322.
  • the feed forward control unit B 321 directly outputs a feed forward voltage command value from the current value measured by the ammeter 63.
  • the feedback control unit B322 applies the difference between the current command from the adder B33 calculated by the subtracter B323 and the current from the ammeter 63 to the proportional element B3222, the integral element B3223, and the differential element B3221, and the adder B3224 The sum is output to the adder B 324 as a feedback voltage command value.
  • the current control unit B32 adds the feedforward voltage command value and the feedback voltage command value output from each of the feedforward control and the feedback control by the adder B324 to obtain a final voltage command value.
  • the control logic of the current control unit B32 is described only in the case of classical control, but other control methods such as modern control and robust control may be used.
  • FIG. 13 is a functional block diagram of the temperature control unit B40 in one embodiment of the present invention.
  • the temperature control unit B40 includes a feedforward control unit B421 and a feedback control unit B422.
  • the feedforward control unit B421 outputs an external current command directly to the adder B424 from the temperature value detected by the thermometer of the system controller sensor 7.
  • the feedback control unit B422 calculates the difference between the temperature set value from the overall control unit B400 calculated by the subtractor B423 and the temperature detected by the thermometer of the system controller sensor 7 as a proportional element B4222 and an integral element B4223.
  • the differential element B4221 is added by the adder B4224 and output as an external current command.
  • the temperature control unit B40 adds the external current commands output from the feedforward control unit B421 and the feedback control unit B422 with the adder B424 to obtain a final external current command A.
  • control logic of the temperature control unit B40 has been described only in the case of classic control, other control methods such as modern control and robust control may be used.
  • the humidity control unit, position control unit, vibration control unit, loss control unit, and air flow rate control unit have the same configuration as the temperature control unit B40.
  • FIG. 14 is a processing flow at the time of actual operation of the entire motor control device according to the embodiment of the present invention.
  • the motor controller 3 receives the current, the angular velocity, and the rotor phase from the ammeter 63, the angular velocity meter 62, and the rotor phase meter 61 connected to the motor 6. Then, it is determined whether or not a certain period (a certain control operation period) has elapsed (step F29). When the certain period has elapsed, the motor controller 3 transmits an external current command request to the system controller 4, and the system controller 4 Calculates an external current command (step F40) and transmits it to the motor controller 3.
  • a certain control operation period a certain control operation period
  • the motor controller 3 executes the vibration / loss estimation process by the vibration / loss estimator B30, whether or not the fixed period has passed in step F29, and the vibration amount and loss amount from the current / angular velocity / rotor phase. Is estimated (step F30).
  • the motor controller 3 executes vibration / loss minimization processing (step F31) by the vibration / loss minimization unit B31, and calculates an internal current command from the vibration amount, loss amount and rotor phase.
  • the motor controller 3 executes voltage command calculation processing by the current control unit B32, and calculates a voltage command from the internal current command and the external current command (step F34).
  • the motor controller 3 rotates the rotor of the motor 6 by transmitting a voltage command to the motor 6 and the inverter 5 (step F50).
  • FIG. 15 is a processing flow at the time of adjustment using a simulation of the entire motor control device according to an embodiment of the present invention.
  • the adjustment PC 2 sends a full operation / adjustment switch to the motor controller 3 to set the motor controller 3 to the adjustment mode.
  • the motor controller 3 receives the current, angular velocity, and rotor phase from the ammeter 63, the angular velocity meter 62, and the rotor phase meter 61 connected to the motor 6. It is determined whether or not a certain period has elapsed (step F29). If it is determined that the certain period has elapsed, the motor controller 3 transmits an environmental information request command to the adjustment PC 2.
  • the adjustment PC 2 acquires various sensor information from the various sensors of the adjustment PC 2 sensor 9 (step f19). Thereafter, the adjustment PC transmits a weather request command together with the current position to the server 1, and the server 1 acquires the weather (step F1) and transmits it to the adjustment PC2. Thereafter, the adjustment PC 2 executes an external current command simulation (step F20) by the external current command simulator 213, and calculates an external current command simulated value from the operation data or test pattern thus far.
  • the adjustment PC 2 transmits the environment information and the external current command simulation value to the motor controller 3.
  • the motor controller 3 performs a divergence degree calculation process (step F32) by the divergence degree calculation unit B312, and calculates and outputs the vibration divergence degree and the loss divergence degree from the environment information.
  • the vibration / loss minimization index calculator B313 performs vibration / loss minimization index calculation processing, and calculates a minimization index from the vibration divergence degree and loss divergence degree (step F33).
  • the vibration / loss estimation unit B30 executes vibration / loss estimation processing to estimate the vibration amount and loss amount from the current / angular velocity / rotor phase (step F30).
  • the motor controller 3 executes vibration / loss minimization processing (step F31) by the vibration / loss minimization unit B31, and calculates an internal current command from the vibration amount, loss amount, rotor phase, and minimization index.
  • the motor controller 3 executes voltage command calculation processing by the current control unit B32, and calculates a voltage command from the internal current command and the external current command (step F34).
  • the motor controller 3 rotates the rotor of the motor by transmitting a voltage command to the motor and the inverter (step F50).
  • FIG. 16 is a processing flow at the time of adjustment using actual data of the entire motor control device according to the embodiment of the present invention.
  • the adjustment PC 2 sends a full operation / adjustment switch to the motor controller 3 to set the motor controller 3 to the adjustment mode.
  • the motor controller 3 receives the current, the angular velocity, and the rotor phase from the ammeter 63, the angular velocity meter 62, and the rotor phase meter 61 connected to the motor 6. It is determined whether or not a certain period has elapsed (step F29). When the certain period has elapsed, the motor controller 3 transmits an environmental information request command to the adjustment PC 2.
  • the adjustment PC 2 acquires various sensor information from the various sensors of the adjustment PC 2 sensor 9 (step F19). Thereafter, the adjustment PC 2 transmits a weather request command together with the current position to the server 1, and the server 1 acquires the weather (step F1) and transmits it to the adjustment PC 2.
  • the adjustment PC 2 transmits the environment information and the external current command simulation value to the motor controller 3.
  • the motor controller 3 performs a deviation degree calculation process by the deviation degree calculation unit B312 (step F32), and calculates and outputs the vibration deviation degree and the loss deviation degree from the environment information.
  • the vibration / loss minimization index calculator B313 performs vibration / loss minimization index calculation processing, and calculates a minimization index from the vibration divergence degree and loss divergence degree (step F33).
  • it is determined whether or not a certain period has elapsed (step F35).
  • the motor controller 3 transmits an external current command request to the system controller 4, and the system controller 4 calculates the external current command. (Step F40), the data is transmitted to the motor controller 3.
  • step F35 the motor controller 3 executes the vibration / loss estimation process (step F30) by the vibration / loss estimator B30, whether or not the fixed period has elapsed, to determine the current / angular velocity / rotor. Estimate the amount of vibration and loss from the phase. Further, the motor controller 3 executes vibration / loss minimization processing (step F31) by the vibration / loss minimization unit B31, and calculates an internal current command from the vibration amount, loss amount, rotor phase, and minimization index. Then, the motor controller 3 executes a voltage command calculation process (step F34) by the current control unit B32 and calculates a voltage command from the internal current command and the external current command. The motor controller 3 rotates the rotor of the motor 6 by transmitting a voltage command to the motor 6 and the inverter 5 (step F50).
  • FIG. 17 is a process flow of the external current command calculation process F40 of the system controller 4 in one embodiment of the present invention.
  • the system controller 4 calculates a set value of a control amount such as temperature and humidity from the temperature and humidity detected by the system controller sensor 7.
  • a function that lowers the loss amount setting value L ref when the temperature T p is high is set as the following equation (1).
  • K LT is a coefficient of 0 or more, and the unit is (W / ° C.).
  • control amount set value After calculating the control amount set value, the difference between the control amount and the control amount set value is obtained, and each external current command is calculated using the logic of the temperature control unit B40. The above processing is repeated by the number of control amounts (steps F402 to F405).
  • the weight vector of each external current command with respect to the external current command is calculated from the control amount (step F406).
  • the weight vector can be basically represented by a 1 ⁇ N vector of [1 / N1 1 / N... 1 / N], where N is the number of controlled variables.
  • the vector of the following equation (2) may be used.
  • the final external current command is calculated and output (step F407).
  • FIG. 18 is a detailed processing flow of the vibration / loss estimation processing step F30 of the motor controller 3 in one embodiment of the present invention.
  • the angular velocity phase adjustment unit B301 adjusts the phase of the angular velocity (step F302).
  • the angular velocity phase adjustment unit B301 calculates and outputs the phase adjustment angular velocity by applying a delay element to the angular velocity according to the phase shift.
  • the current phase is adjusted by the current phase adjustment unit B303 (step F303).
  • the current phase adjustment unit B303 calculates and outputs a phase adjustment current by applying a delay element to the current according to the phase shift.
  • the current integration unit B304 integrates the phase adjustment current, multiplies the coefficient, and outputs it as a loss estimation value (step F304).
  • the specific frequency component extraction unit B302 multiplies the phase adjustment angular velocity by FFT, obtains the power spectrum of the value of the specific frequency component, and outputs it as a vibration amount (step F305).
  • FIG. 19 is a detailed processing flow of the vibration / loss minimization processing step F31 of the motor controller 3 in one embodiment of the present invention.
  • step F311 when the process is started in step f311, the vibration / loss minimizing unit B31 is connected to the adjustment PC 2 when the actual operation / adjustment switch is transmitted from the adjustment PC 2 or is in operation. (Step F312), and if it is in operation or not connected, the vibration / loss minimization index is set as a standard (Step F313). In step F312, when not in operation and connected, the minimized index is calculated and read by the vibration / loss minimizing index calculation unit B313 (step F314).
  • the internal current command is cited and output from the vibration / loss minimization index, the vibration amount estimated value, the loss amount estimated value, and the phase using the vibration / loss / phase / internal current command reference table B311 (Step S3). F315).
  • FIG. 20 is a detailed process flow of the external current command simulation process step F20 of the adjustment PC 2 in the embodiment of the present invention.
  • the processing flow of the processing external current command simulation processing F20 is basically the same as that of the external current command calculation processing step F40, but first, the actual value of the control amount is read or the control amount simulation value is calculated. It is a different point.
  • FIG. 21 is a detailed processing flow of the deviation degree calculation processing step F32 of the motor controller 3 in one embodiment of the present invention.
  • the divergence degree calculation unit B312 first reads a vibration weight coefficient and a loss weight coefficient (step F322). Next, for each environment information, a difference between the reference value and the measured value is calculated, and a vibration weight and a loss weight are applied to the difference. This process is repeated as many times as the total environment information (steps F323 to F326). Then, the weighted difference is summed to calculate the vibration divergence degree and the loss divergence degree (step F327).
  • the vibration divergence degree D v and the loss divergence degree DL are expressed by the following equations (3) and (4). Become. K vi is a vibration weighting factor, and K Li is a loss weighting factor.
  • FIG. 22 is a detailed processing flow of the vibration / loss minimization index calculation processing step F33 of the motor controller 3 in one embodiment of the present invention.
  • step F331 the process in step F331 is started, vibration and loss minimization index calculation unit B313 is discretized loss alienation D L between the vibration alienation D v, respectively, the number of I v and I L To do.
  • FIG. 23 is a detailed data configuration diagram of the program parameter D1 of the adjustment PC 2 in one embodiment of the present invention.
  • the program parameter D1 includes clock-calendar program data D11, environmental information history D12, and external current command calculation data D13.
  • the clock-calendar program data D11 is composed of the number of days in each month, and data composed of a combination of the standard clock number and the standard year, month, day, hour, minute, and second.
  • the current date and time are calculated from the difference between the clock number and the current clock number and the reference date and time.
  • the environmental information history D12 includes environmental information at a plurality of time points accumulated in the adjustment PC 2, and the environmental information includes temperature, humidity, atmospheric pressure, solar radiation, wind pressure, usage, current position, weather, year, It consists of month, day, hour, minute, and second.
  • the external current command calculation data D13 is made up of parameters for each control amount collected for each control amount.
  • Each control amount parameter includes a plurality of feedforward control coefficients, a feedback control proportional coefficient K p , a feedback control integration coefficient KI, a feedback control differential coefficient KD, and an external current command for each control amount to determine a final external current.
  • Calculation of a plurality of control amount set values used to calculate an external current command weight vector coefficient used to calculate a command, a control amount set value P iref used for control by the system controller 4, Equation (1), and the like It consists of a coefficient for a function, a plurality of actual data in which a measurement value and the number of clocks are paired, and a coefficient for a simulated value calculation function for calculating a test pattern.
  • FIG. 24 is a data configuration diagram of the external current command calculation data D3 of the system controller 4 in one embodiment of the present invention.
  • the external current command calculation data D3 is basically the same as the external current command calculation data D13 in the program parameter D1 of the adjustment PC 2 described above, except that a test pattern is calculated.
  • the coefficient for the simulated value calculation function is not included.
  • the actual data on the system controller 4 is not used for external current command calculation but is used for saving as log data.
  • FIG. 25 is a diagram showing a detailed configuration of the data group D2 of the motor controller 3 in one embodiment of the present invention.
  • the data group D2 of the motor controller 3 includes input data history, environmental information, intermediate / output data history, vibration / loss estimation parameters, deviation degree calculation coefficient, vibration / loss / phase / internal current command reference table, And vibration / loss minimization index calculation parameters.
  • the input data history is a history of data input to the motor controller 3, and includes the number of clocks, current, rotor phase, angular velocity, external current command measurement value, or external current command simulation value.
  • the environmental information is for adjusting the voltage command value according to the loss-vibration characteristics, which varies depending on the driving environment of the motor 6, and includes temperature, humidity, atmospheric pressure, solar radiation, wind pressure, usage, current position, weather, Has year, month, day, hour, minute, second.
  • the history of the intermediate / output data is generated in the operation of the motor controller 3, and the number of clocks representing the current time, the voltage command value as the final output, and the vibration amount calculated by the vibration / loss estimation unit B30.
  • Estimated value and estimated loss amount, internal current command calculated by vibration / loss minimizing unit B31, current command that is the sum of external current command and internal current command, phase adjusted current adjusted by current phase adjusting unit, angular velocity The phase adjustment angular velocity adjusted by the phase adjustment unit, the vibration divergence and loss divergence calculated by the divergence calculation unit, and the minimization index calculated by the vibration / loss minimization index.
  • the vibration / loss estimation parameter is a parameter used in the vibration / loss estimation unit. It is used to calculate the loss by integrating multiple angular velocity phase adjustment function coefficients, multiple current phase adjustment function coefficients, and current.
  • the divergence degree calculation coefficient is configured for each environmental information, and has a reference value, a plurality of vibration coefficients for each application, a plurality of loss coefficients for each application, and a plurality of coefficients for estimation functions.
  • the vibration coefficient is the vibration weight coefficient K vi in the above equation (3)
  • the loss coefficient is the loss weight coefficient K Li in the above equation (4).
  • the estimation function coefficient indicates a coefficient of a function used when estimating the environmental information from other environmental information.
  • the vibration / loss / phase / internal current command reference table consists of multiple reference tables for each index for minimization, and for each index for minimization set for each degree of vibration divergence and loss divergence that varies depending on environmental information.
  • the reference table can output an internal current command corresponding to the environmental information.
  • the reference table for each index for minimization consists of a minimization index indicating the vibration divergence degree and the loss divergence degree and a plurality of element tables.
  • the element table stores internal current command values within a specific vibration amount, loss amount, and phase range. The upper and lower limits of vibration amount, the upper and lower limits of loss amount, the upper and lower limits of phase, and the internal current Consists of directives.
  • the vibration / loss / phase / internal current command reference table reads the internal current command by extracting the values that fall within the range specified by the element table from the vibration amount, loss amount, and phase. Output.
  • the vibration / loss minimization index calculation parameter includes a plurality of vibration divergence degree discretization coefficients that exist for each environment information, a plurality of loss divergence degree discretization coefficients that exist for each environment information, and a plurality of table number calculation coefficients.
  • the vibration divergence degree discretization coefficient is composed of a resolution, an upper limit, and a lower limit.
  • the upper limit is D Vmax
  • the lower limit is D Vmin
  • the resolution is D Vdiv
  • the discretized vibration divergence degree IV can be expressed by Equation (5). .
  • floor (x) is a function that outputs an integer part in a decimal.
  • the loss divergence degree discretization coefficient has the same configuration as the vibration divergence degree discretization coefficient.
  • the table number calculation coefficient indicates the maximum value of the discretized vibration divergence degree or the maximum value of the discretized loss divergence degree.
  • FIG. 26 is a graph showing the characteristics of the vibration minimized internal current command and the loss minimized internal current command in one embodiment of the present invention.
  • the vertical axis represents the internal current command for minimizing vibration
  • the horizontal axis represents the internal current command for minimizing loss.
  • the motor 6 when the characteristic in the test environment is the broken line t, whereas the characteristic in the local environment is the solid line f, the motor 6 is installed in the state mt in which minimization is compatible in the test environment.
  • the minimization compatible value in the local environment is mf, which may be different from mt, and there is a situation in which vibration and loss cannot be minimized in the local environment.
  • environmental information in the test environment and the local environment can be input from the adjustment PC 2 to the motor controller 3 at the time of adjustment, respectively, and can be adjusted to minimize vibration and loss in the local environment.
  • the adjustment period can be shortened.
  • FIG. 27 is a schematic configuration diagram of an example of a control system using the motor control device of the present invention, which is applied to an air conditioning system (air conditioner system).
  • air conditioning system air conditioner system
  • the system controller 4 in the system configuration shown in FIG. Further, a set of heater systems (a heater controller 46, an inverter 47, a heater 48, a calorimeter 49) and a refrigerant blower 50 are added, and a wind turbine 45 for blowing is connected to the shaft of the motor 6. A set of heater systems (heater controller 46, inverter 47, heater 48, calorimeter 49) and refrigerant ejector 50 are controlled by the system controller 4.
  • the other configuration of the example shown in FIG. 27 is the same as the configuration shown in FIG.
  • the air conditioner system controller 4 converts the temperature from the thermometer of the air conditioner system controller sensor 7, the humidity from the hygrometer, the vibration amount from the vibration meter, the power loss amount from the loss meter, and the air flow rate from the flow meter. , Collect each.
  • These temperature, humidity, vibration amount, power loss amount, and air flow rate are environment information of the environment (control target environment) where the control target of the air conditioner system controller 4 is installed.
  • the air conditioner system controller 4 outputs an external heat amount command to the heater controller 46 of the heater system. Further, the air conditioner system controller 4 outputs an external refrigerant amount command to the refrigerant ejector 50. Further, the air conditioner system controller 4 outputs an external current command to the motor controller 3.
  • the heater controller 46 of the heater system collects an external heat amount command from the air conditioner system controller 4, calculates a voltage command value, and transmits it to the inverter 47.
  • the inverter 47 generates a voltage based on the voltage command value from the heater controller 46 and applies the voltage to the heater 48.
  • the heater 48 generates heat by electric power according to the voltage applied from the inverter 47.
  • the calorimeter 49 measures the amount of heat generated from the heater 48 and inputs it to the heater controller 46.
  • the refrigerant ejector 50 ejects the refrigerant based on the external refrigerant amount command from the air conditioner system controller 4.
  • feedforward control is assumed.
  • the windmill 45 connected to the motor 6 has a mechanism for generating wind by the rotation of the motor 6, and has a mechanism for transmitting heat generated by the heater 48 and refrigerant ejected by the refrigerant ejector 50 from the air blowing groove using wind. Yes.
  • the vibration minimization internal current command and the loss minimization are performed according to the environment in which the air conditioner system is installed.
  • the motor 6 can be driven so that the internal current command is compatible.
  • the vibration amount and loss amount are estimated from the angular velocity, current and rotor phase of the motor 6, and the estimated vibration amount and loss amount and the motor 6 are installed.
  • An internal current command is calculated from the degree of deviation between the actual environment and the reference value, and the external current command output from the driving target of the motor 6 and the internal current command are added to obtain a current command.
  • the current value of the motor 6 is subtracted from the current command to calculate a feedback control command value.
  • the feedforward control command value is calculated from the current value of the motor 6, the feedback control command value is added, the voltage command value is commanded to the inverter 5, and the motor 6 is driven.
  • one embodiment of the present invention is configured as described above, even if the characteristics of vibration and power loss change depending on the motor driving environment, the motor control device and the motor can minimize both vibration and power loss.
  • a control system using the control device can be realized.
  • the adjustment PC 2 sensor 9 and the information from the server 1 are input to the adjustment PC 2. It can also be set as the structure which uses only the information from either one of the sensors 9 for PC2. Therefore, either one may be omitted.
  • the GPS for detecting the current position is an essential configuration.
  • the adjustment PC 2 is used.
  • an adjustment module may be used instead of the PC.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

モータ駆動環境によって振動と電力損失との特性が変化しても、振動と電力損失双方を最小化できるモータ制御装置が実現される。モータ6の角速度、電流及び回転子位相から、振動量及び損失量を推定する。推定した振動量及び損失量及びモータ6が設置された実環境と基準値との乖離度から内部電流指令を算出し、モータ6の駆動対象から出力される外部電流指令と上記内部電流指令とを加算し電流指令とする。電流指令からモータ6の電流値を減算し、フィードバック制御指令値を算出する。モータ6の電流値からフィードフォワード制御指令値を算出し、フィードバック制御指令値を加算して、電圧指令値をインバータ5に指令し、モータ6を駆動する。

Description

モータ制御装置
 本発明は、モータ制御装置に関する。
 空調・空気圧縮機・建機・圧延機・電気自動車などにおいて、不安定な負荷が外乱として加わる際に振動が発生する。この振動を低減しようとすると、そのための電力が必要となり、電力的な損失を低減できないというトレードオフが発生する。そのため、振動と電力損失の双方を最小化する調整が必要となる。
 特許文献1に記載の技術では、モータにかかる負荷の機械角1周期の期間において正弦波上に変化する電圧抑制指令を電圧指令に印加することにより、振動と損失の双方の最小化を図っている。
特開2015-033310号公報
 しかし、振動と電力損失の発生具合についてはモータの駆動環境によって変化する。
 このため、従来技術においては、モータの製造環境で振動と電力損失の双方を最小化するようにチューニングしたとしても、モータの実際の駆動環境では振動と電力損失の双方を最小化できない恐れがあった。
 例えば、モータ製造環境のほうでは湿度が低く、実際のモータ駆動環境では製造環境より湿度が高い場合、実際のモータ駆動環境のほうが湿気による外乱により損失が大きくなる恐れがある。
 一方、モータ製造環境のほうでは気圧が低く、実際のモータ駆動環境では気圧が高い場合、音が大きくなるという点で振動が大きくなる恐れがある。
 本発明の目的は、モータ駆動環境によって振動と電力損失との特性が変化しても、振動と電力損失双方を最小化できるモータ制御装置を実現することである。
 上記目的を達成するため、本発明は次のように構成される。
 モータ制御装置において、駆動対象を駆動する電動モータと、上記駆動対象の動作に応じて外部電流指令を出力するシステムコントローラと、上記電動モータの駆動環境に関する環境情報を収集し、出力する環境情報出力部と、上記電動モータの動作情報を検出し、出力するモータ動作情報出力部と、上記モータ動作情報出力部から出力された上記電動モータの動作情報に基づいて、上記電動モータの振動及び損失を推定し、推定した上記振動及び損失を最小とする電流指令を算出し、算出した上記電流指令を、上記環境情報出力部から出力された環境情報により補正して内部電流指令を算出し、算出した内部電流指令に、上記システムコントローラから出力された外部電流指令を加算した値に対応する電圧指令値を上記電動モータに出力するモータコントローラと、を備える。
 モータ駆動環境によって振動と電力損失との特性が変化しても、振動と電力損失双方を最小化できるモータ制御装置を実現することができる。
本発明の一実施例におけるモータ制御装置のシステム構成を示した図である。 本発明の一実施例におけるサーバのハードウェア構成を示した図である。 本発明の一実施例における調整用PCのハードウェア構成を示した図である。 本発明の一実施例におけるモータコントローラのハードウェア構成を示した図である。 本発明の一実施例におけるシステムコントローラのハードウェア構成を示した図である。 本発明の一実施例におけるサーバの機能ブロックであり、図2のハード構成に対して機能を表現した図である。 本発明の一実施例における調整用PCの機能ブロック図である。 本発明の一実施例におけるモータコントローラの機能ブロック図である。 本発明の一実施例におけるシステムコントローラの機能ブロック図である。 本発明の一実施例における振動・損失推定部の機能ブロック図である。 本発明の一実施例における振動・損失最小化部の機能ブロック図である。 本発明の一実施例における電流制御部の機能ブロック図である。 本発明の一実施例における温度制御部の機能ブロック図である。 本発明の一実施例におけるモータ制御装置全体の本稼働時における処理フローである。 本発明の一実施例におけるモータ制御装置全体のシミュレーションを用いた調整時における処理フローである。 本発明の一実施例におけるモータ制御装置全体の実データを用いた調整時における処理フローである。 本発明の一実施例におけるシステムコントローラの外部電流指令算出処理の処理フローである。 本発明の一実施例におけるモータコントローラの振動・損失推定処理ステップの詳細処理フローである。 本発明の一実施例におけるモータコントローラの振動・損失最小化処理ステップの詳細処理フローである。 本発明の一実施例における調整用PCの外部電流指令シミュレーション処理ステップの詳細処理フローである。 本発明の一実施例におけるモータコントローラの乖離度計算処理ステップの詳細処理フローである。 本発明の一実施例におけるモータコントローラの振動・損失最小化インデックス計算処理ステップの詳細処理フローである。 本発明の一実施例における調整用PCのプログラムパラメータの詳細データ構成図である。 本発明の一実施例におけるシステムコントローラの外部電流指令計算用データのデータ構成図である。 本発明の一実施例におけるモータコントローラのデータ群の詳細構成を示す図である。 本発明の一実施例における振動最小化内部電流指令と損失最小化内部電流指令の特性を表すグラフである。 本発明のモータ制御装置を空調システムに適用した場合の例の概略構成図である。
 以下、本発明の実施形態について、添付図面を参照して詳細に説明する。
 図1は、本発明の一実施例におけるモータ制御装置のシステム構成を示した図である。
 モータ制御装置は、モータ6と、インバータ5と、電動モータ(以下、モータと略す)6の回転子の位相を計測する回転子位相計61と、モータ6の角速度を計測する角速度計62と、モータ6に流れる電流を計測する電流計63と、モータ6を制御するモータコントローラ3と、システムコントローラ4と、モータ6により駆動される駆動対象(例えば、図27に示す風車45)の状態情報を検出する温度計、湿度計、位置、振動計、損失計、流量計などのシステムコントローラ用センサ7と、システムコントローラ用センサ7からの情報に基づいて外部電流指令を出力するシステムコントローラ4を備える。回転子位相計61と、角速度計62と、電流計63とによりモータ動作情報出力部が形成される。
 また、モータ制御装置は、モータ6の駆動位環境との調整を行う調整用PC2と、モータ6の駆動環境における環境情報を検出する温度計、湿度計、気圧計、日射計、風速計、GPSなどの調整用PC2用センサ(環境情報センサ)9とを備える。
 さらに、モータ制御装置は、モータ6の現在位置における天気情報を、インターネット8を介して通知するサーバ1を備える。
 モータ6は、回転子なる軸を電力により回転させる機械である。インバータ5はモータ6の動力となる電圧をモータ6へ印加する機械である。回転子位相計61はモータ6の回転子の位相を計測し信号としてモータコントローラ3に出力する。角速度計62はモータ6の回転子の角速度を計測し信号としてモータコントローラ3に出力する。電流計63はモータ6に流れる電流を計測し信号としてモータコントローラ3に出力する。
 モータコントローラ3は、回転子位相計61と角速度計62と電流計63から出力される回転子位相、角速度及び電流等の動作情報からインバータ5の電圧指令値を計算し、インバータ5へ出力する。
 システムコントローラ4は、モータ6を使用する機器の制御量を制御するためにモータコントローラ3へ対して外部電流指令を出力しモータ6の電流が外部電流指令に追従するようにモータコントローラ3に制御させる機器である。例えばモータ6を使用する機器が空調機器だった場合、システムコントローラ用センサ7の温度計から外気温を、湿度計から湿度を、振動計からモータ6の振動量を、損失計からモータ6の駆動にかかる電力損失量を、それぞれ計測して所定の値に制御するような外部電流指令を出力する。
 また、モータ6を使用する機器が建設機械のロボットアームだった場合、ロボットアームの位置を、システムコントローラ用センサ7の位置計から計測して所定の値に制御するような外部電流指令を出力する。
 また、モータ6を使用する機器が空気圧縮機だった場合、空気圧縮機が出力する空気の流量を、システムコントローラ用センサ7の流量計から計測し、所定の値に制御するような外部電流指令を出力する。
 調整用PC(環境情報出力部)2はモータ制御装置全体の駆動環境に関する情報を収集してモータコントローラ3へ出力し、駆動環境に応じて変化し、振動量と損失量が最小となる電圧指令値をモータコントローラ3からインバータ5に出力させる機器である。
 調整用PC2は、モータ制御装置全体の駆動環境を、調整用PC2用センサ9のそれぞれセンサから計測する。例えば、調整用PC2用センサ9の温度計から駆動環境の気温を、湿度計から駆動環境の湿度を、気圧計から駆動環境の気圧を、日射計から駆動環境の日射量を、風速計から駆動環境の風速を、GPS(Global Positioning System)から現在位置を、それぞれ計測する。また、調整用PC2は、内部クロックから現在の日付と時刻を取得する。
 調整用PC2は、上記のようにして計測した情報を環境情報として纏めてモータコントローラ3へ送信する。また、調整用PC2は、本稼働か調整中かを示すスイッチをモータコントローラ3へ出力し、調整中において環境情報に応じた電圧指令値をモータコントローラ3へ出力させるようにし、本稼働時においては環境情報に関係なく電圧指令値をモータコントローラ3へ出力させるようにする。また、調整用PC2は、システムコントローラ4の挙動を模擬するために外部電流指令を模擬しモータコントローラ3へ出力する役割を持つ。
 サーバ1は調整用PC2からインターネット8を介して送信された現在位置の情報から現在位置における天気を判定し、インターネット8を介して天気の判定結果を調整用PC2へ送信する。ここで、環境情報は、駆動環境の温度、湿度、気圧、日射量、風速、天気、現在時刻、日付などを想定する。
 図2は、本発明の一実施例におけるサーバ1のハードウェア構成を示した図である。図2において、サーバ1は、現在位置を受信し天気を送信するインターフェース14と、現在位置から天気を変換する現在位置―天気変換プログラム131を記録している記録装置13と、データを一時的に記憶する記憶装置12と、現在位置―天気変換プログラムにかかる演算処理を実行するCPU11とを備えており、サーバ1内のこれらの装置はシステムバスで接続されている。
 図3は、本発明の一実施例における調整用PC2のハードウェア構成を示した図である。図3において、調整用PC2は、各種センサからセンサ情報を受信する第一のインターフェース24と、現在位置を送信し天気を受信する第二のインターフェース25と、モータコントローラ3へ環境情報や本稼働/調整スイッチや外部電流指令模擬値を出力する第三のインターフェース26と、各種データやプログラムを記録している記録装置20と、データを一時的に記憶する記憶装置22と、各種プログラムにかかる演算処理を実行するCPU21と、時間によってカウントアップされるカウンタを有するクロック(クロックカウンタ)23とを備え、これらの装置はシステムバスで接続されている。
 記録装置20には時計・カレンダープログラム203と、現在位置送信プログラム204と、天気受信プログラム205と、天気推定プログラム206と、環境蓄積プログラム207と、本稼働/調整切替プログラム208と、プログラムパラメータD1と、環境情報・外部電流指令模擬値・本稼働/調整スイッチ送信プログラム201と、外部電流シミュレータ202とが格納されている。
 時計・カレンダープログラム203は、クロックの値と一定クロック数に対応する日時情報から現在の日時を出力するものである。環境情報蓄積プログラム207は、各種センサから温度・湿度・気圧・日射量・風速・現在位置を受信しクロックの値と一緒に蓄積するものである。現在位置送信プログラム204は、GPSから受信した現在位置(緯度、経度)をサーバ1へ送信するものである。天気受信プログラム205は、現在位置に対応する天気情報を受信するものである。
 天気推定プログラム206は、GPSから現在位置を受信できないハードウェア構成または環境において、日射量ないし気圧ないし湿度ないし風速ないし時刻から天気を推定するものである。例えば、湿度が低く日射量が少なく時刻が昼である場合は曇りであると判定し、湿度が高く日射量が少なく時刻が昼であれば雨であると判定する。
 本稼働/調整切替プログラム208は、モータコントローラ3の動作モードを本稼働にするか調整用にするか切り替えるための信号を送信するためのプログラムである。また、ユーザインターフェースを設けてユーザに本稼働か調整中かを切り替えさせる入力を設けることも可能である。プログラムパラメータD1は、調整用PC2で使用するパラメータのことを指す。
 環境情報・外部電流指令模擬値・本稼働/調整スイッチ送信プログラム201は、環境情報ないし外部電流指令模擬値ないし本稼働スイッチ送信プログラムをモータコントローラ3へ送信するものである。外部電流指令シミュレータ201は、システムコントローラ4のセンサ入力の実績値またはテストパターンから外部電流指令をシステムコントローラ4と同じ動作ロジックで計算し外部電流指令模擬値として出力するものである。
 図4は、本発明の一実施例におけるモータコントローラ3のハードウェア構成を示した図である。図4において、モータコントローラ3は、モータに接続された各種センサからセンサ情報を受信する第一のインターフェース33と、システムコントローラ4から外部電流指令を受信する第二のインターフェース34と、モータコントローラ3から環境情報や本稼働/調整スイッチや外部電流指令模擬値を受信する第三のインターフェース35と、インバータ5へ電圧指令値を出力する第四のインターフェース36と、各種データやプログラムを記録している記録装置30と、データを一時的に記憶する記憶装置32と、各種プログラムにかかる演算処理を実行するCPU31と、を備え、これらの装置はシステムバスで接続されている。
 記録装置30には、振動・損失推定プログラム301と、振動・損失最小化プログラム302と、制御指令出力プログラム303と、データ群D2とが格納されている。振動・損失推定プログラム301は、モータ6の角速度・電流・回転子位相からモータ6の振動量と損失量を推定するものである。振動・損失最小化プログラム302は、振動量推定値と損失量推定値と回転子位相と環境情報と本稼働/調整スイッチから、振動量と損失量を最小化するような内部電流指令を算出するものである。制御指令出力プログラム303は、内部電流指令と外部電流指令または外部電流指令模擬値を用いて、内部電流指令と外部電流指令の和にモータ電流がなるような電圧指令値を計算し出力するものである。データ群D2はモータコントローラ3にて使用されるデータのことである。
 図5は、本発明の一実施例におけるシステムコントローラ4のハードウェア構成を示した図である。図5において、システムコントローラ4は、モータを使用する機器に接続された各種センサからセンサ情報を受信する第一のインターフェース43と、モータコントローラ3へ外部電流指令を送信する第二のインターフェース44と、各種データやプログラムを記録している記録装置40と、データを一時的に記憶する記憶装置42と、各種プログラムにかかる演算処理を実行するCPU41とを備え、これらの装置はシステムバスで接続されている。
 記録装置40には、温度計測値を用いて温度を制御する温度制御プログラム401と、湿度計測値を用いて湿度を制御する湿度制御プログラム402と、位置計測値を用いて、例えば、アームの位置を制御する位置制御プログラム403と、振動量計測値を用いて振動量を制御する振動量制御プログラム404と、電力損失量計測値を用いて電力損失量を制御する損失制御プログラム405と、空気流量計測値を用いて空気流量を制御する空気流量制御プログラム406と、各制御量のバランスを調整するため各制御プログラムの外部電流指令に対する重みベクトルと制御量に対する制御指令値を計算し、外部電流指令の集合に重みベクトルをかけることにより最終的な外部電流指令を計算する全体制御プログラム407と、上記プログラム401~407を実行するのに使用されるデータ群である外部電流指令計算用データD3とを備える。
 図6は本発明の一実施例におけるサーバ1の機能ブロック図であり、図2のハード構成に対して機能を表現した図である。図6において、サーバ1は現在位置―天気変換プログラムによって実現される現在位置―天気変換部101を有する。現在位置―天気変換部101は、調整用PC2から送信された現在位置を、現在位置における天気に変換する機能を有する。
 図7は、本発明の一実施例における調整用PC2の機能ブロック図である。調整用PC2は、図3に示した環境情報蓄積プログラム207によって実現される環境情報蓄積部209と、現在位置送信プログラム204によって実現される現在位置送信部210と、天気受信プログラム205によって実現される天気受信部211と、天気推定プログラム206によって実現される天気推定部212と、外部電流指令シミュレータ部213と、環境情報・外部電流指令模擬値・本稼働/調整スイッチ・送信プログラム201によって実現される本稼働/調整スイッチ・環境情報・外部電流指令模擬値送信部214とを備えている。
 環境情報蓄積部209は、各種センサから送信される温度・湿度・気圧・日射量・風速・現在位置などの情報をクロック値とともに蓄積するものである。現在位置送信部210は、調整用PC2用センサ9のGPSから送信される現在位置をサーバ1へ送信するものである。天気推定部212は、温度、湿度、気圧、日射量、風速、日時から天気を推定するものである。本稼働/調整スイッチ・環境情報・外部電流指令模擬値送信部214は、環境情報・外部電流指令模擬値・本稼働/調整スイッチ送信プログラム201をモータコントローラ3へ送信するものである。
 図8は、本発明の一実施例におけるモータコントローラ3の機能ブロック図である。図8において、モータコントローラ3は、図4に示した振動・損失推定プログラム301によって実現される振動・損失推定部B30と、振動・損失最小化プログラム301によって実現される振動・損失最小化部B31と、制御指令出力プログラム303によって実現される電流制御部B32と、加算器B33とを備える。
 振動・損失最小化部B31は、振動・損失推定部B30が推定した振動量推定値と損失量推定値と回転子位相と本稼働/調整スイッチとから振動及び損失を最小とする電流指令を算出し、算出した電流指令を環境情報により補正して、振動量と損失量を最小化するような内部電流指令を算出し出力するものである。電流制御部B32は、振動・損失最小化部B31からの電流指令と外部電流指令または外部電流指令模擬値とが加算器B33で加算された加算電流指令を用いて、モータ6の電流が内部電流指令と外部電流指令との和になるような電圧指令値を計算し出力するものである。
 図9は、本発明の一実施例におけるシステムコントローラ4の機能ブロック図である。システムコントローラ4は、図5に示した温度制御プログラム401によって実現される温度制御部B40と、湿度制御プログラム402によって実現される湿度制御部B41と、位置制御プログラム403によって実現される位置制御部B42と、振動制御プログラム404によって実現される振動制御部B43と、損失制御プログラム405によって実現される損失制御部B44と、空気流量制御プログラム406によって実現される空気流量制御部B45と、全体制御プログラム407によって実現される全体制御部B400と、重み付け演算部B46と、を備える。
 全体制御部B400は、各制御量のバランスを調整するため、各制御プログラムの外部電流指令Aないし外部電流指令Fに対する重みベクトルと制御量に対する制御指令値を各種センサ計測値から計算するものである。例えば高い温度によって損失が高くなる場合、温度が高いときに損失量設定値を低くするような関数を設けることにより温度に応じた損失制御を行うことができる。
 温度制御部B40は、温度計測値と温度設定値を用いて温度を温度設定値へ制御するような外部電流指令Aを出力するものである。湿度制御部B41は湿度計測値と湿度設定値を用いて湿度を湿度設定値へ制御するような外部電流指令Bを出力するものである。位置制御部B42は位置計測値と位置設定値を用いて位置を位置設定値へ制御するような外部電流指令Cを出力するものである。振動制御部B43は振動量計測値と振動量設定値を用いて振動量を振動量設定値へ制御するような外部電流指令Dを出力するものである。損失量制御部B44は損失量計測値と損失量設定値を用いて損失量を損失量設定値へ制御するような外部電流指令Eを出力するものである。空気流量制御部B45は空気流量計測値と空気流量設定値を用いて空気流量を空気流量設定値へ制御するような外部電流指令Fを出力するものである。重み付け演算部B46は外部電流指令Aないし外部電流指令Fのベクトルに重みベクトルをかけることにより最終的な外部電流指令を計算するものである。
 図10は、本発明の一実施例における振動・損失推定部B30の機能ブロック図である。図10において、振動・損失推定部B30は、角速度と回転子位相から角速度の位相を調整し位相調整角速度として出力する角速度位相調整部B301と、電流と回転子位相から電流の位相を調整し位相調整電流として出力する電流位相調整部B303と、位相調整角速度にFFT(Fast Fourier Transform)をかけ特定周波数成分を振動量推定値として抽出し出力する特定周波数成分抽出部B302と、位相調整電流を積分することにより電力損失量を算出し出力する電流積分部B304とを備える。
 図11は、本発明の一実施例における振動・損失最小化部B31の機能ブロック図である。図11において、振動・損失最小化部B31は、乖離度算出部B312と、振動・損失最小化インデックス計算部B313と、振動・損失・位相・内部電流指令参照テーブルB311とを備える。
 乖離度算出部B312は、温度、湿度などの環境情報とその基準値の差分を求め、振動に対する影響度と損失に対する影響度を積算し全環境情報について和をとることにより、振動乖離度と損失乖離度を計算し出力するものである。振動・損失最小化インデックス計算部B313は、振動乖離度と損失乖離度を離散化した値から参照テーブルの番号を最小化用インデックスとして出力するものである。振動・損失・位相・内部電流指令参照テーブルB311は、振動と損失を最小化するための内部電流指令が振動量推定値と損失量推定値と回転子位相毎に格納されているテーブルである。
 振動・損失・位相・内部電流指令参照テーブルB311では、本稼働/調整スイッチを取り込むことにより、本稼働時と調整時とで別のテーブルを参照することができる。また、調整時においては最小化用インデックス毎、つまり振動乖離度と損失乖離度毎にテーブルを用意することにより、調整時において環境情報に適した内部電流指令を出力することができる。
 図12は、本発明の一実施例における電流制御部B32の機能ブロック図である。図12において、電流制御部B32はフィードフォワード制御部B321と、フィードバック制御部B322とを備える。フィードフォワード制御部B321は電流計63が測定した電流の値から直接フィードフォワード電圧指令値を出力するものである。フィードバック制御部B322は、減算器B323により演算された加算器B33からの電流指令と電流計63からの電流との差分を、比例要素B3222と、積分要素B3223と微分要素B3221にかけて、加算器B3224で足し合わせてフィードバック電圧指令値として、加算器B324に出力するものである。
 電流制御部B32はフィードフォワード制御とフィードバック制御それぞれから出力されるフィードフォワード電圧指令値とフィードバック電圧指令値とを加算器B324にて足し合わせて最終的な電圧指令値とする。なお電流制御部B32の制御ロジックは古典制御の場合についてのみ記載したが、現代制御やロバスト制御など他の制御方法を使用しても構わないものとする。
 図13は、本発明の一実施例における温度制御部B40の機能ブロック図である。図13において、温度制御部B40は、フィードフォワード制御部B421と、フィードバック制御部B422とを備える。フィードフォワード制御部B421は、システムコントローラ用センサ7の温度計が検出した温度の値から直接外部電流指令を加算器B424に出力するものである。
 フィードバック制御部B422は、減算器B423で演算された、全体制御部B400からの温度設定値とシステムコントローラ用センサ7の温度計が検出した温度との差分を、比例要素B4222と、積分要素B4223と、微分要素B4221にかけて、加算器B4224にて足し合わせて外部電流指令として出力するものである。
 温度制御部B40は、フィードフォワード制御部B421とフィードバック制御部B422それぞれから出力される外部電流指令を、加算器B424で足し合わせて最終的な外部電流指令Aとする。
 なお、温度制御部B40の制御ロジックは古典制御の場合についてのみ記載したが、現代制御やロバスト制御など他の制御方法を使用しても構わないものとする。なお湿度制御部、位置制御部、振動制御部、損失制御部、空気流量制御部についても温度制御部B40と同等の構成とする。
 図14は、本発明の一実施例におけるモータ制御装置全体の本稼働時における処理フローである。
 図14において、モータ6に接続された電流計63、角速度計62および回転子位相計61からの電流および角速度及び回転子位相をモータコントローラ3が受信する。そして、一定周期(一定の制御動作周期)が経過したか否かを判断し(ステップF29)、一定周期が経過したら、モータコントローラ3はシステムコントローラ4へ外部電流指令要求を送信し、システムコントローラ4は外部電流指令を算出して(ステップF40)、モータコントローラ3へ送信する。一方モータコントローラ3はステップF29で一定周期が経過していてもしていなくても、振動・損失推定部B30により振動・損失推定処理を実行して電流・角速度・回転子位相から振動量と損失量を推定する(ステップF30)。
 また、モータコントローラ3は振動・損失最小化部B31により振動・損失最小化処理(ステップF31)を実行し、振動量と損失量と回転子位相から内部電流指令を算出する。モータコントローラ3は電流制御部B32によって電圧指令算出処理を実行し、内部電流指令と外部電流指令から電圧指令を算出する(ステップF34)。モータコントローラ3は電圧指令をモータ6およびインバータ5へ送信することによってモータ6の回転子を回転させる(ステップF50)。
 図15は、本発明の一実施例におけるモータ制御装置全体のシミュレーションを用いた調整時における処理フローである。
 図15において、調整用PC2は本稼働/調整スイッチをモータコントローラ3へ送信し、モータコントローラ3を調整時モードにする。一方、モータ6に接続された電流計63、角速度計62及び回転子位相計61からの電流、角速度及び回転子位相をモータコントローラ3が受信する。一定周期が経過したか否かを判断し(ステップF29)、一定周期が経過したと判断したら、モータコントローラ3は調整用PC2へ環境情報要求指令を送信する。
 調整用PC2は、調整用PC2用センサ9の各種センサから各種センサ情報を取得する(ステップf19)。その後、調整用PCはサーバ1へ天気要求指令を現在位置とともに送信し、サーバ1は天気を取得して(ステップF1)、調整用PC2へ送信する。その後、調整用PC2は外部電流指令シミュレータ213により外部電流指令シミュレーション(ステップF20)を実行し、今までの稼働データまたはテストパターンから外部電流指令模擬値を算出する。
 その後、調整用PC2は環境情報と外部電流指令模擬値をモータコントローラ3へ送信する。
 その後、モータコントローラ3は、乖離度計算部B312により乖離度計算処理(ステップF32)を行い、環境情報から振動乖離度と損失乖離度を計算し出力する。その後、振動・損失最小化インデックス計算部B313により振動・損失最小化インデックス計算処理を行い、振動乖離度と損失乖離度から最小化用インデックスを計算する(ステップF33)。その後、振動・損失推定部B30により振動・損失推定処理を実行して電流・角速度・回転子位相から振動量と損失量を推定する(ステップF30)。
 また、モータコントローラ3は振動・損失最小化部B31により振動・損失最小化処理(ステップF31)を実行し、振動量と損失量と回転子位相と最小化用インデックスから内部電流指令を算出する。モータコントローラ3は電流制御部B32によって電圧指令算出処理を実行し、内部電流指令と外部電流指令から電圧指令を算出する(ステップF34)。モータコントローラ3は電圧指令をモータおよびインバータへ送信することによってモータの回転子を回転させる(ステップF50)。
 図16は、本発明の一実施例におけるモータ制御装置全体の実データを用いた調整時における処理フローである。
 図16において、調整用PC2は本稼働/調整スイッチをモータコントローラ3へ送信し、モータコントローラ3を調整時モードにする。一方、モータ6に接続された電流計63、角速度計62及び回転子位相計61からの電流および角速度及び回転子位相をモータコントローラ3が受信する。一定周期が経過したか否かを判断し(ステップF29)、一定周期が経過したら、モータコントローラ3は調整用PC2へ環境情報要求指令を送信する。調整用PC2は、調整用PC2用センサ9の各種センサから各種センサ情報を取得する(ステップF19)。その後、調整用PC2はサーバ1へ天気要求指令を現在位置とともに送信し、サーバ1は天気を取得して(ステップF1)、調整用PC2へ送信する。
 その後、調整用PC2は環境情報と外部電流指令模擬値をモータコントローラ3へ送信する。
 その後、モータコントローラ3は、乖離度計算部B312により乖離度計算処理を行い(ステップF32)、環境情報から振動乖離度と損失乖離度を計算し出力する。その後、振動・損失最小化インデックス計算部B313により振動・損失最小化インデックス計算処理を行い、振動乖離度と損失乖離度から最小化用インデックスを計算する(ステップF33)。その後、一定周期が経過したか否かを判断し(ステップF35)、一定周期が経過したら、モータコントローラ3はシステムコントローラ4へ外部電流指令要求を送信し、システムコントローラ4は外部電流指令を算出して(ステップF40)モータコントローラ3へ送信する。
 一方、モータコントローラ3は、ステップF35において、一定周期が経過していてもしていなくても、振動・損失推定部B30により振動・損失推定処理(ステップF30)を実行して電流・角速度・回転子位相から振動量と損失量を推定する。また、モータコントローラ3は振動・損失最小化部B31により振動・損失最小化処理(ステップF31)を実行し、振動量と損失量と回転子位相と最小化用インデックスから内部電流指令を算出する。そして、モータコントローラ3は、電流制御部B32によって電圧指令算出処理(ステップF34)を実行し、内部電流指令と外部電流指令から電圧指令を算出する。モータコントローラ3は電圧指令をモータ6およびインバータ5へ送信することによってモータ6の回転子を回転させる(ステップF50)。
 図17は、本発明の一実施例におけるシステムコントローラ4の外部電流指令算出処理F40の処理フローである。図17において、ステップF401で処理を開始すると、システムコントローラ4は、温度や湿度などの制御量の設定値をシステムコントローラ用センサ7が検出した温度や湿度などから計算する。例えば温度Tが高いときに損失量設定値Lrefを低くするような関数を次式(1)のようにして設定する。
Figure JPOXMLDOC01-appb-M000001
 上記式(1)において、KLTは0以上の係数であり、単位は(W/℃)である。
 制御量設定値を計算した後、制御量と制御量設定値の差分を求め、温度制御部B40のロジックを用いて各外部電流指令を計算する。以上の処理を制御量の数分だけ繰り返す(ステップF402~F405)。
 次に、外部電流指令に対する各外部電流指令の重みベクトルを制御量から計算する(ステップF406)。重みベクトルは制御量の数をNとすると基本的に[1/N1 1/N ・・・1/N]の1×Nベクトルで表すことができる。温度により重みを変える場合は次式(2)のベクトルにしてもよい。
Figure JPOXMLDOC01-appb-M000002
 最後に重みベクトルと各外部電流指令のベクトルの内積をとることにより、最終的な外部電流指令を計算し出力する(ステップF407)。
 図18は、本発明の一実施例におけるモータコントローラ3の振動・損失推定処理ステップF30の詳細処理フローである。
 図18において、ステップF301で処理を開始すると、まず、角速度位相調整部B301により角速度の位相を調整する(ステップF302)。角速度位相調整部B301は、位相のずれに応じて角速度に対して遅延素子を印加することにより位相調整角速度を計算し出力する。その後、電流位相調整部B303により電流の位相を調整する(ステップF303)。電流位相調整部B303は、位相のずれに応じて電流に対して遅延素子を印加することにより位相調整電流を計算し出力する。その後、電流積分部B304は、位相調整電流を積分して係数をかけ、損失量推定値として出力する(ステップF304)。特定周波数成分抽出部B302は、位相調整角速度にFFTをかけ、特定周波数成分の値のパワースペクトルを求めて振動量として出力する(ステップF305)。
 図19は、本発明の一実施例におけるモータコントローラ3の振動・損失最小化処理ステップF31の詳細処理フローである。
 図19において、ステップf311で処理が開始されると、振動・損失最小化部B31は、調整用PC2から本稼働/調整スイッチが送信され本稼働になっている場合、または調整用PC2と接続されていない場合か否かを判断し(ステップF312)、本稼働になっているか、接続されていない場合は、振動・損失最小化用インデックスを標準にする(ステップF313)。ステップF312において、本稼働ではなく、かつ、接続されている場合は、振動・損失最小化用インデックス計算部B313により最小化インデックスを計算し読み込む(ステップF314)。
 続いて、振動・損失・位相・内部電流指令参照テーブルB311を用いて振動・損失最小化用インデックスと振動量推定値と損失量推定値と位相から、内部電流指令を引用して出力する(ステップF315)。
 図20は、本発明の一実施例における調整用PC2の外部電流指令シミュレーション処理ステップF20の詳細処理フローである。
 図20において、処理外部電流指令シミュレーション処理F20の処理フローは基本的に外部電流指令算出処理ステップF40と同じであるが、最初に制御量の実績値を読み込むかまたは制御量模擬値を計算するところが違う点である。
 図21は、本発明の一実施例におけるモータコントローラ3の乖離度計算処理ステップF32の詳細処理フローである。
 図21において、ステップF321にて処理が開始されると、乖離度算出部B312は、まず振動用重み係数と損失用重み係数を読み込む(ステップF322)。次に、各環境情報について、基準値と計測値との差分を計算し、差分に振動用重みと損失用重みをかける。この処理を全環境情報の数分だけ繰り返す(ステップF323~F326)。そして、差分に重みをかけたものを合計し、振動乖離度と損失乖離度を計算する(ステップF327)。
 I番目の制御量をP、基準値をPiref、制御量の数をNとすると、振動乖離度Dと損失乖離度Dは次式(3)と次式(4)のようになる。なお、Kviは振動用重み係数であり、KLiは損失用重み係数である。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 図22は、本発明の一実施例におけるモータコントローラ3の振動・損失最小化インデックス計算処理ステップF33の詳細処理フローである。
 図22において、ステップF331で処理が開始されると、振動・損失最小化インデックス計算部B313は、振動乖離度Dと損失乖離度Dを離散化し、それぞれ、IとIという番号にする。Iの最大値をNIV、Iの最大値をNILとし、最小化用インデックスの番号をI×NIL+Iとして算出し出力する(ステップF332、F333、F334)。
 図23は、本発明の一実施例における調整用PC2のプログラムパラメータD1の詳細データ構成図である。
 図23において、プログラムパラメータD1は、時計-カレンダープログラム用データD11と、環境情報履歴D12と、外部電流指令計算用データD13とを備えている。
 時計-カレンダープログラム用データD11は、各月の日数と、基準クロック数と基準となる年・月・日・時・分・秒の組み合わせからなるデータから成り立っており、時計-カレンダープログラム203は基準クロック数と現在のクロック数との差分と基準となる日時から現在の日時を算出する。
 環境情報履歴D12としては、調整用PC2にて蓄積されている複数時点での環境情報から成り立っており、環境情報は温度、湿度、気圧、日射量、風圧、用途、現在位置、天気、年、月、日、時、分、秒から成り立っている。
 外部電流指令計算用データD13は、制御量毎にまとめられた各制御量用パラメータから成り立っている。各制御量用パラメータは、複数のフィードフォワード制御用係数、フィードバック制御用比例係数K、フィードバック制御用積分係数KI、フィードバック制御用微分係数KD、制御量毎の外部電流指令から最終的な外部電流指令を算出するのに使用される外部電流指令重みベクトル係数、システムコントローラ4による制御に使用する制御量設定値Piref、式(1)などを計算するのに使用する複数の制御量設定値計算関数用係数、計測値とクロック数が対になって複数存在する実績データ、テストパターンを計算するための模擬値計算関数用係数から成り立っている。
 図24は、本発明の一実施例におけるシステムコントローラ4の外部電流指令計算用データD3のデータ構成図である。
 図24において、基本的に外部電流指令計算用データD3は先述の調整用PC2のプログラムパラメータD1における外部電流指令計算用データD13と同等のものであるが、相違点としてはテストパターンを計算するための模擬値計算関数用係数が含まれていないことである。なお、システムコントローラ4上における実績データは外部電流指令計算には使用せずログデータとして保存するために使用する。
 図25は、本発明の一実施例におけるモータコントローラ3のデータ群D2の詳細構成を示す図である。
 図25において、モータコントローラ3のデータ群D2は、入力データ履歴、環境情報、中間・出力データ履歴、振動・損失推定パラメータ、乖離度算出用係数、振動・損失・位相・内部電流指令参照テーブル、及び振動・損失最小化インデックス計算パラメータを備えている。
 入力データ履歴は、モータコントローラ3に入力されるデータの履歴のことであり、クロック数、電流、回転子位相、角速度、外部電流指令計測値または外部電流指令模擬値を有している。環境情報は、モータ6の駆動環境によって変動するに損失-振動特性に応じて電圧指令値を調整するためのものであり、温度、湿度、気圧、日射量、風圧、用途、現在位置、天気、年、月、日、時、分、秒を有している。
 中間・出力データの履歴は、モータコントローラ3の演算において発生したものであり、現在の時刻を表すクロック数、最終的な出力である電圧指令値、振動・損失推定部B30によって計算された振動量推定値と損失量推定値、振動・損失最小化部B31によって計算された内部電流指令、外部電流指令と内部電流指令の和である電流指令、電流位相調整部によって調整された位相調整電流、角速度位相調整部によって調整された位相調整角速度、乖離度算出部によって計算された振動乖離度と損失乖離度、振動・損失最小化インデックスによって計算された最小化インデックスを有している。
 振動・損失推定パラメータは、振動・損失推定部において使用されるパラメータのことであり、複数の角速度位相調整関数用係数、複数の電流位相調整関数用係数、電流を積分し損失を求めるために使用する電流積分係数、角速度にFFTをかけたときに振動成分としてどの周波数をとるかを示すFFT特定周波数、角速度にFFTをかけるときに必要な定数群であるFFT係数を有している。
 乖離度算出用係数は各環境情報別に構成されており、それぞれ基準値、複数の用途別振動係数、複数の用途別損失係数、複数の推定関数用係数を有している。振動係数は、上記式(3)における振動用重み係数Kviであり、損失係数は上記式(4)に損失用重み係数KLiである。推定関数用係数は環境情報が計測できなかった場合、他の環境情報から該環境情報を推定する際に使用する関数の係数を指す。
 振動・損失・位相・内部電流指令参照テーブルは、複数の最小化用インデックス別参照テーブルから構成されており、環境情報により変動する振動乖離度と損失乖離度毎に設定された最小化用インデックス別参照テーブルにより、環境情報に応じた内部電流指令を出力することができる。
 一方、最小化用インデックス別参照テーブルは、振動乖離度と損失乖離度を示す最小化用インデックスと、複数の要素テーブルから成り立っている。要素テーブルは特定の振動量、損失量、位相の範囲内における内部電流指令の値を格納したものであり、振動量の上限と下限、損失量の上限と下限、位相の上限と下限、内部電流指令から成り立っている。振動量と損失量と位相のうち要素テーブルの指定する範囲内にいずれも該当するものを抽出して内部電流指令を読み込むことにより、振動・損失・位相・内部電流指令参照テーブルは内部電流指令を出力する。
 振動・損失最小化インデックス計算パラメータは、環境情報別に存在する複数の振動乖離度離散化係数、環境情報別に存在する複数の損失乖離度離散化係数、複数のテーブル番号算出係数を有する。振動乖離度離散化係数は分解能と上限と下限から成り立っており、上限をDVmax、下限をDVmin、分解能をDVdivとすると離散化振動乖離度Iは式(5)で表すことができる。
Figure JPOXMLDOC01-appb-M000005
 上記式(5)において、floor(x)とは、小数において整数部分を出力する関数である。損失乖離度離散化係数についても振動乖離度離散化係数と同等の構成をとっている。テーブル番号算出係数については、離散化振動乖離度の最大値または離散化損失乖離度の最大値をさす。
 図26は、本発明の一実施例における振動最小化内部電流指令と損失最小化内部電流指令の特性を表すグラフである。
 図26の縦軸が振動最小化のための内部電流指令を示し、横軸が損失最小化のための内部電流指令を示している。図26において、テスト環境における特性が破線tになっているのに対し、現地環境における特性が実線fになっている場合、テスト環境において最小化が両立している状態mtにおいて、モータ6を設置された現地環境で駆動させると、現地環境での最小化両立値はmfであり、mtとは異なる状態となる場合があり、現地環境では振動と損失が最小化できないという事態が生じてしまう。
 そこで、本発明の一実施例においては、調整用PC2からそれぞれテスト環境と現地環境における環境情報を調整時にモータコントローラ3へ入力し、現地環境下で振動・損失を最小化するように調整でき、かつ、調整期間を短縮することができる。
 図27は、本発明のモータ制御装置を用いた制御システムであって、空調システム(エアコンシステム)に適用した場合の例の概略構成図である。
 図27に示したモータ制御装置のシステムは、図1に示したシステム構成におけるシステムコントローラ4がエアコンシステムコントローラ(空調システムコントローラ)4となっている。また、ヒータシステム一式(ヒータコントローラ46、インバータ47、ヒータ48、熱量計49)と冷媒噴出器50が追加されており、モータ6の軸に送風用の風車45が接続されている。ヒータシステム一式(ヒータコントローラ46、インバータ47、ヒータ48、熱量計49)と冷媒噴出器50とがシステムコントローラ4の制御対象となっている。図27に示した例の他の構成は、図1に示した構成と同様であるので、詳細な説明は省略する。
 図27において、エアコンシステムコントローラ4は、エアコンシステムコントローラ用センサ7の温度計から温度を、湿度計から湿度を、振動計から振動量を、損失計から電力損失量を、流量計から空気流量を、それぞれ収集する。これら温度、湿度、振動量、電力損失量、及び空気流量が、エアコンシステムコントローラ4の制御対象が設置された環境(制御対象環境)の環境情報である。
 また、エアコンシステムコントローラ4は、ヒータシステムのヒータコントローラ46へ外部熱量指令を出力する。また、エアコンシステムコントローラ4は、冷媒噴出器50へ外部冷媒量指令を出力する。さらに、エアコンシステムコントローラ4は、モータコントローラ3へ外部電流指令を出力する。
 ヒータシステムのヒータコントローラ46は、エアコンシステムコントローラ4から外部熱量指令を収集し、電圧指令値を計算してインバータ47へ送信する。インバータ47はヒータコントローラ46からの電圧指令値に基づいて電圧を発生させ、その電圧をヒータ48へ印加する。
 ヒータ48は、インバータ47から印加された電圧に従って熱を電気の力により発生させる。熱量計49はヒータ48から発せられる熱量を計測し、ヒータコントローラ46へ入力する。
 一方、冷媒噴出器50は、エアコンシステムコントローラ4からの外部冷媒量指令に基づき冷媒を噴出させる。冷媒噴出についてはフィードフォワード制御を前提とする。
 なお、モータ6に接続された風車45はモータ6の回転により風を起こす機構を有し、ヒータ48の発する熱や冷媒噴出器50の噴出する冷媒を風により送風溝から伝える機構を有している。
 図27に示したシステムにおいて、例えば、モータ6の駆動対象である風車45が振動し、その振動を低減する場合、エアコンシステムが設置された環境に応じて振動最小化内部電流指令と損失最小化内部電流指令とが両立するようにモータ6を駆動することができる。
 以上のように、本発明の一実施例によれば、モータ6の角速度、電流及び回転子位相から、振動量及び損失量を推定し、推定した振動量及び損失量及びモータ6が設置された実環境と基準値との乖離度から内部電流指令を算出し、モータ6の駆動対象から出力される外部電流指令と上記内部電流指令とを加算して、電流指令とする。そして、電流指令からモータ6の電流値を減算し、フィードバック制御指令値を算出する。モータ6の電流値からフィードフォワード制御指令値を算出し、フィードバック制御指令値を加算して、電圧指令値をインバータ5に指令し、モータ6を駆動する。
 本発明の一実施例は、上記のように構成されているので、モータ駆動環境によって振動と電力損失との特性が変化しても、振動と電力損失双方を最小化できるモータ制御装置及びこのモータ制御装置を用いた制御システムを実現することができる。
 なお、図1及び図27に示した例においては、調整用PC2用センサ9と、サーバ1からの情報とが、調整用PC2に入力される構成としたが、サーバ1からの情報及び調整用PC2用センサ9のいずれか一方からの情報のみを使用する構成とすることもできる。よって、いずれか一方は省略する構成としてもよい。ただし、現在位置を検知するためのGPSは必須の構成である。
 サーバ1からの情報を使用する場合は、高精度が要求されず、安価とする場合に望ましく、調整用PC2用センサ9からの情報を使用する場合は、高精度のモータ制御が要求される場合に望ましい形態である。
 また、上述した例においては、調整用PC2を用いたが、PCではなく、調整用のモジュールを使用してもよい。
 1・・・サーバ、2・・・調整用PC(環境情報出力部)、20・・・記録装置、3・・・モータコントローラ、4・・・システムコントローラ、5・・・インバータ、6・・・モータ、7・・・システムコントローラ用センサ、8・・・インターネット、9・・・調整用PC2用センサ(環境情報センサ)、30・・・モータコントローラ記録装置、40・・・システムコントローラ記録装置、45・・・風車(駆動対象)、61・・・回転子位相計、62・・・角速度計、63・・・電流計、B30・・・振動・損失推定部、B31・・・振動・損失最小化部、B32・・・電流制御部、B40・・・温度制御部

Claims (10)

  1.  駆動対象を駆動する電動モータと、
     上記駆動対象の動作に応じて外部電流指令を出力するシステムコントローラと、
     上記電動モータの駆動環境に関する環境情報を収集し、出力する環境情報出力部と、
     上記電動モータの動作情報を検出し、出力するモータ動作情報出力部と、
     上記モータ動作情報出力部から出力された上記電動モータの動作情報に基づいて、上記電動モータの振動及び損失を推定し、推定した上記振動及び損失を最小とする電流指令を算出し、算出した上記電流指令を、上記環境情報出力部から出力された環境情報により補正して内部電流指令を算出し、算出した内部電流指令に、上記システムコントローラから出力された外部電流指令を加算した値に対応する電圧指令値を上記電動モータに出力するモータコントローラと、
     を備えることを特徴とするモータ制御装置。
  2.  請求項1に記載のモータ制御装置において、
     上記環境情報出力部は、インターネットを介してサーバから上記環境情報を収集することを特徴とするモータ制御装置。
  3.  請求項1に記載のモータ制御装置において、
     上記環境情報出力部は、上記電動モータの駆動環境に関する環境情報を収集する環境情報センサを有することを特徴とするモータ制御装置。
  4.  請求項2に記載のモータ制御装置において、
     上記環境情報は、現在日時における天気情報であることを特徴とするモータ制御装置。
  5.  請求項3に記載のモータ制御装置において、
     上記環境情報は、温度、湿度、気圧、日射量、風圧、現在日時及び現在位置であることを特徴とするモータ制御装置。
  6.  請求項1に記載のモータ制御装置において、
     上記モータコントローラは、
     上記モータ動作情報出力部から出力された上記電動モータの動作情報に基づいて上記電動モータの振動及び損失を推定する振動損失推定部と、
     推定した上記振動及び損失を最小とする電流指令を算出し、算出した上記電流指令を、上記環境情報出力部から出力された環境情報により補正して内部電流指令を算出する振動損失最小化部と、
     を有することを特徴とするモータ制御装置。
  7.  請求項6に記載のモータ制御装置において、
     上記電動モータの動作情報は、上記電動モータの角速度情報、回転子の位相情報及び上記電動モータに流れる電流情報であり、
     上記モータコントローラは、
     上記振動損失最小化部が算出した内部電流指令と、上記外部電流指令とを加算し、加算電流指令を出力する加算器と、
     上記加算器から出力された電流指令と上記動モータに流れる電流情報とに基づいて上記電圧指令値を算出する電流制御部と、
     を有することを特徴とするモータ制御装置。
  8.  請求項7に記載のモータ制御装置において、
     上記電流制御部は、
     上記電動モータに流れる電流情報に基づいて、フィードフォワード電圧指令値を算出するフィードフォワード制御部と、
     上記加算電流指令と上記電動モータに流れる電流情報との差分に基づいて、フィードバック電圧指令値を算出するフィードバック制御部と、
     を有し、上記フィードフォワード電圧指令値を算出するフィードフォワード制御部とフィードバック電圧指令値とを加算して、上記電圧指令値を算出することを特徴とするモータ制御装置。
  9.  請求項1に記載のモータ制御装置を用いた制御システムにおいて、
     上記システムコントローラによって制御される制御対象と、
     上記制御対象が設置された環境の環境情報を検出するシステムコントローラ用センサと、
     を備え、上記システムコントローラは、上記制御対象の動作を制御するとともに、上記電動モータが駆動する駆動対象の動作に応じて外部電流指令を出力することを特徴とする制御システム。
  10.  請求項9に記載の制御システムにおいて、
     上記システムコントローラは空調システムコントローラであり、上記制御対象は冷媒噴出器及びヒータであり、上記電動モータが駆動する駆動対象は風車であることを特徴とする制御システム。
PCT/JP2016/081940 2016-10-27 2016-10-27 モータ制御装置 WO2018078778A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/081940 WO2018078778A1 (ja) 2016-10-27 2016-10-27 モータ制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/081940 WO2018078778A1 (ja) 2016-10-27 2016-10-27 モータ制御装置

Publications (1)

Publication Number Publication Date
WO2018078778A1 true WO2018078778A1 (ja) 2018-05-03

Family

ID=62024519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081940 WO2018078778A1 (ja) 2016-10-27 2016-10-27 モータ制御装置

Country Status (1)

Country Link
WO (1) WO2018078778A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110978944A (zh) * 2019-11-22 2020-04-10 惠州市德赛西威汽车电子股份有限公司 一种基于汽车空调中控面板的emc抗扰逻辑控制方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007267548A (ja) * 2006-03-29 2007-10-11 Jtekt Corp モータ制御装置
JP2012078323A (ja) * 2010-10-06 2012-04-19 Nec Commun Syst Ltd 環境負荷量計算装置、その計算方法、およびプログラム
CN102710208A (zh) * 2012-06-01 2012-10-03 杭州万工科技有限公司 基于温度变化的永磁同步电机自适应控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007267548A (ja) * 2006-03-29 2007-10-11 Jtekt Corp モータ制御装置
JP2012078323A (ja) * 2010-10-06 2012-04-19 Nec Commun Syst Ltd 環境負荷量計算装置、その計算方法、およびプログラム
CN102710208A (zh) * 2012-06-01 2012-10-03 杭州万工科技有限公司 基于温度变化的永磁同步电机自适应控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110978944A (zh) * 2019-11-22 2020-04-10 惠州市德赛西威汽车电子股份有限公司 一种基于汽车空调中控面板的emc抗扰逻辑控制方法及系统

Similar Documents

Publication Publication Date Title
Østergaard et al. Estimation of effective wind speed
CN107269473B (zh) 用于风向测量的连续校准的方法和装置
EP2438556B1 (en) Available power estimator
KR20190122840A (ko) 풍력 발전 단지의 가용 전력을 결정하기 위한 방법, 및 관련 풍력 발전 단지
US9739262B2 (en) Static testing and calibrating method for PID link of control system of wind turbine
CN106640548A (zh) 用于风力发电机组的状态监测方法和装置
EP2048562A1 (en) Method and device for providing at least one input sensor signal for a control and/or monitoring application and control device
US10401813B2 (en) Electrical drive system with model predictive control of a mechanical variable
KR100830518B1 (ko) 풍력발전기의 풍속 추정 방법
CN103758699B (zh) 一种风力发电机组的桨距角控制方法及桨距角控制器
van der Veen et al. Global data-driven modeling of wind turbines in the presence of turbulence
CN109973300A (zh) 风力发电机组功率控制方法及装置
EP2000667A1 (en) Method and device for controlling load reduction for a wind turbine rotor
CN112682254A (zh) 一种基于动态多模型预测控制器的风机有功功率跟踪方法
US6920800B2 (en) Method for determining inertia of an electric motor and load
WO2018078778A1 (ja) モータ制御装置
CN109743002B (zh) 伺服系统控制器、前馈控制信号确定方法、惯量辨识方法
Hwang et al. Robust control of electronic wedge brake with adaptive pad friction estimation
KR20150076737A (ko) 풍력 터빈의 풍력 속도 추정 장치 및 그 풍력 속도 추정 방법
Bertelè et al. Automatic detection and correction of aerodynamic and inertial rotor imbalances in wind turbine rotors
US20230288492A1 (en) Adjustment power measuring device, adjustment power measuring system, adjustment power measuring method, and program
Reimann et al. Development and Evaluation of a Model for the Implementation of a Digital Twin for a Wind Turbine
Geisler Automatically generated state observers–toolchain and validation with real measurements
Wang et al. The iISS property for globally asymptotically stable and passive nonlinear systems
NL2010258C2 (en) Method of controlling a process with a control signal, computer program, computer program product and control system for controlling a process with a control signal.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16919909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP