WO2018077302A1 - 一种通路时钟同步的方法和装置 - Google Patents

一种通路时钟同步的方法和装置 Download PDF

Info

Publication number
WO2018077302A1
WO2018077302A1 PCT/CN2017/108643 CN2017108643W WO2018077302A1 WO 2018077302 A1 WO2018077302 A1 WO 2018077302A1 CN 2017108643 W CN2017108643 W CN 2017108643W WO 2018077302 A1 WO2018077302 A1 WO 2018077302A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
clock
service
analog
serial
Prior art date
Application number
PCT/CN2017/108643
Other languages
English (en)
French (fr)
Inventor
李霞
游俊
何力
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018077302A1 publication Critical patent/WO2018077302A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0079Receiver details
    • H04L7/0087Preprocessing of received signal for synchronisation, e.g. by code conversion, pulse generation or edge detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0091Transmitter details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0018Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0024Carrier regulation at the receiver end

Definitions

  • the present disclosure relates to the field of clock synchronization, and more particularly to a method and apparatus for path clock synchronization.
  • the clock includes frequency and/or time.
  • the time accuracy requirement is about ⁇ 200 ns
  • the key technology of LTE-A Long Term Evolution-Advanced
  • CoMP-JP Coordinatd Multiple Points-Joint Processing
  • the relative time accuracy between adjacent base stations is required to be about ⁇ 500 ns; in the future 5G (5th-Generation, fifth-generation mobile communication technology) system, ultra-high-precision time synchronization of several hundred ns may be required.
  • the more long-term quantum communication technology requires extremely accurate time measurement technology to reduce the bit error rate of the quantum communication system and increase its code rate, which may require time synchronization accuracy within 100 ns.
  • the high-precision time synchronization based on the 1588v2 technology can only meet the time synchronization requirement of the us-scale, but cannot meet the above-mentioned several hundred ns or even higher precision time synchronization requirements.
  • GE gigabit Ethernet
  • High-precision clock synchronization research has made some progress, theoretically can achieve ns or even ns-level synchronization accuracy.
  • the implementation of the transceiver of the higher-rate interface and the recovery clock frequency are different from those of the GE interface.
  • the scheme of the Ge optical port cannot be directly used. Therefore, a high-precision clock synchronization implementation solution that is not affected by the port rate is required.
  • the present disclosure provides a method and apparatus for path clock synchronization such that high precision clock synchronization implementation is independent of port rate.
  • a method for path clock synchronization includes:
  • the clock signal and the traffic signal are modulated into one signal for transmission.
  • the clock signal and the service signal are separately obtained, and the clock signal and the service signal are separately processed by using two paths:
  • the obtained service signal is encoded.
  • the acquiring the clock signal comprises one of the following:
  • the clock signal is obtained by pre-defining the frame of the package.
  • modulating the clock signal and the service signal into one signal for transmission comprises:
  • the clock serial signal and the service serial signal are modulated into one signal for transmission.
  • modulating the clock signal and the service signal into one signal for transmission comprises:
  • modulating the clock analog signal and the service analog signal into one analog signal comprises:
  • the modulated signal s(t) is expressed as:
  • n(t) is the clock analog signal
  • m(t) is the service analog signal
  • coswt is the carrier signal
  • K is the proportional coefficient
  • the embodiment of the present disclosure further provides a method for path clock synchronization, including:
  • the obtained clock signal is clocked.
  • the obtained received signal is restored into a clock signal and a service signal, and the clock signal and the service signal are separately processed by using two paths:
  • the service signal is decoded.
  • the obtained received signal is restored into a clock signal and a service signal, and the clock signal and the service signal are separately processed by using two paths:
  • clock synchronization of the obtained clock signal comprises:
  • Clock synchronization is performed based on the obtained time stamp signal.
  • the method further comprises at least one of the following:
  • demodulating the obtained optical line signal to recover the clock serial signal and the service serial signal comprises:
  • the clock analog signal signal and the service analog signal are converted into a clock serial signal and a service serial signal.
  • the method further includes:
  • performing time offset adjustment on the timestamp information of the predefined frame obtained by the decapsulation according to the local timestamp information of the predefined frame includes:
  • the time deviation offset is expressed as:
  • the T1 is the local timestamp information of the fixed frame
  • the TC1 is the time delay from the timestamp record position to the position where the optical signal is converted
  • T2 is the timestamp information of the fixed frame obtained by decapsulation
  • TC2 is Obtaining a delay from the position of the optical line signal to the time stamp recording position
  • Time adjustment is performed according to the time deviation offset.
  • An embodiment of the present disclosure further provides an apparatus for path clock synchronization, including:
  • the first processing module is configured to respectively obtain a clock signal and a service signal, and separately process the clock signal and the service signal by using two paths;
  • a transmission module configured to modulate the clock signal and the service signal into one signal for transmission.
  • the first processing module respectively obtains a clock signal and a service signal, and processes the clock signal and the service signal by using two paths respectively:
  • the first processing module acquires a clock signal including one of the following:
  • the clock signal is obtained by pre-defining the frame of the package.
  • the transmitting module modulates the clock signal and the service signal into one signal for transmission:
  • the clock serial signal and the service serial signal are modulated into one signal for transmission.
  • the transmitting module modulates the clock signal and the service signal into one signal for transmission:
  • the transmitting module modulates the clock analog signal and the service analog signal into one analog signal, which means:
  • the modulated signal s(t) is expressed as:
  • n(t) is the clock analog signal
  • m(t) is the service analog signal
  • coswt is the carrier signal
  • K is the proportional coefficient
  • An embodiment of the present disclosure further provides an apparatus for path clock synchronization, including:
  • a second processing module configured to restore the obtained received signal into a clock signal and a service signal, and separately process the clock signal and the service signal by using two paths;
  • a synchronization module configured to clock synchronize the obtained clock signal.
  • the second processing module restores the obtained received signal into a clock signal and a service signal, and processes the clock signal and the service signal by using two paths respectively:
  • the service signal is decoded.
  • the second processing module restores the obtained received signal into a clock signal and a service signal, and processes the clock signal and the service signal by using two paths respectively:
  • the synchronizing module performs clock synchronization on the obtained clock signal, including:
  • Clock synchronization is performed based on the obtained time stamp signal.
  • the apparatus further includes a third processing module, configured to be at least one of the following:
  • the second processing module demodulates the obtained optical line signal and restores the clock serial signal and the service serial signal to:
  • the clock analog signal signal and the service analog signal are converted into a clock serial signal and a service serial signal.
  • the third processing module is further configured to:
  • the third processing module performs time offset adjustment on the timestamp information of the predefined frame obtained by decapsulation according to the local timestamp information of the predefined frame, where:
  • the time deviation offset is expressed as:
  • the T1 is the local timestamp information of the fixed frame
  • the TC1 is the time delay from the timestamp record position to the position where the optical signal is converted
  • T2 is the timestamp information of the fixed frame obtained by decapsulation
  • TC2 is Obtaining a delay from the position of the optical line signal to the time stamp recording position
  • Time adjustment is performed according to the time deviation offset.
  • Embodiments of the present disclosure also provide a storage medium configured to store program code for performing the method of any of the above.
  • the present disclosure has the following beneficial effects:
  • the technical solution of the present disclosure combines clock synchronization and other rate services in a modulation manner, and the clock signal and other service signals are processed separately, and a line transmission is performed on the line.
  • FIG. 1 is a flow chart of a method for path clock synchronization according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a method for path clock synchronization according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of an apparatus for synchronizing a path clock according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of an apparatus for synchronizing a path clock according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of an apparatus for synchronizing a path clock according to Embodiment 1 of the present disclosure
  • FIG. 6 is a schematic diagram of an apparatus for path clock synchronization according to Embodiment 2 of the present disclosure
  • FIG. 7 is a schematic diagram of a modem module according to Embodiment 1 of the present disclosure.
  • FIG. 8 is a schematic diagram of an apparatus for path clock synchronization according to Embodiment 3 of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a predefined encapsulation frame according to Embodiment 3 of the present disclosure.
  • an embodiment of the present disclosure provides a method for path clock synchronization, including:
  • the clock signal and the traffic signal are modulated into one signal for transmission.
  • the clock signal and the service signal are separately obtained, and the clock signal and the service signal are separately processed by using two paths:
  • the obtained service signal is encoded.
  • the clock signal and the service signal obtained in the embodiments of the present disclosure may be in the form of a serial signal, a parallel signal, an analog signal, a digital signal, etc., and the clock signal is required to perform error correction and/or equalization processing, and the service signal is encoded.
  • the acquiring the clock signal comprises one of the following:
  • the clock signal is obtained by pre-defining the frame of the package.
  • the modulating the clock signal and the service signal into one channel for transmission includes:
  • the clock serial signal and the service serial signal are modulated into one signal for transmission.
  • modulating the clock signal and the service signal into one signal for transmission including:
  • the one digital signal is subjected to electro-optical conversion and converted into an optical signal for transmission.
  • one or more of serialization, modulus, and photoelectric conversion are performed for different forms of the obtained clock signal and the service signal.
  • S102 Encode a service parallel signal obtained in a service delivery package, and convert the service parallel signal into a service serial signal.
  • S101 and S102 have no chronological order limitation, and in most embodiments, they are performed simultaneously.
  • the clock parallel signal is subjected to error correction coding, equalization coding, and parallel-to-serial conversion in the transmission direction; encoding and parallel conversion of the service parallel signal; and modulation of the clock serial signal and the service serial signal, Modulate to a line for transmission.
  • the modulating the clock analog signal and the service analog signal into one analog signal includes:
  • the modulated signal s(t) is expressed as:
  • n(t) is the clock analog signal
  • m(t) is the service analog signal
  • coswt is the carrier signal
  • K is the proportional coefficient
  • K represents the modulator frequency sensitivity, and the size is determined according to actual requirements.
  • an embodiment of the present disclosure further provides a method for path clock synchronization, including:
  • the obtained clock signal is clocked.
  • the obtained received signal is restored into a clock signal and a service signal, and the clock signal and the service signal are separately processed by using two paths:
  • the service signal is decoded.
  • the obtained received signal is restored into a clock signal and a service signal, and the clock signal and the service signal are separately processed by using two paths:
  • clock synchronization of the obtained clock signal comprises:
  • Clock synchronization is performed based on the obtained time stamp signal.
  • the method further includes at least one of the following:
  • demodulating the obtained optical line signal to recover the clock serial signal and the service serial signal comprises:
  • the clock analog signal signal and the service analog signal are analog-to-digital converted and converted into a clock serial signal and a service serial signal.
  • the embodiment demodulates the received line signal, recovers the clock signal and the service signal, and performs serial-to-parallel conversion processing, wherein the clock signal needs to be byte aligned, decoded, and error-corrected. , get the correct timestamp signal, and finally clock synchronization.
  • Decapsulating the timestamp signal after the clock synchronization to obtain the timestamp information in the predefined frame further includes:
  • the time offset adjustment of the timestamp information of the predefined frame obtained by the decapsulation according to the local timestamp information of the predefined frame includes:
  • the time deviation offset is expressed as:
  • the T1 is the local timestamp information of the fixed frame
  • the TC1 is the time delay from the timestamp record position to the position where the optical signal is converted
  • T2 is the timestamp information of the fixed frame obtained by decapsulation
  • TC2 is Obtaining a delay from the position of the optical line signal to the time stamp recording position
  • Time adjustment is performed according to the time deviation offset.
  • an embodiment of the present disclosure further provides an apparatus for synchronizing a path clock, including:
  • the first processing module is configured to respectively obtain a clock signal and a service signal, and separately process the clock signal and the service signal by using two paths;
  • a transmission module configured to modulate the clock signal and the service signal into one signal for transmission.
  • the first processing module respectively obtains a clock signal and a service signal, and processes the clock signal and the service signal by using two paths respectively:
  • the obtained service signal is encoded.
  • the first processing module acquires a clock signal including one of the following:
  • the clock signal is obtained by pre-defining the frame of the package.
  • the transmitting module modulates the clock signal and the service signal into one signal for transmission:
  • the clock serial signal and the service serial signal are modulated into one signal for transmission.
  • the transmitting module modulates the clock signal and the service signal into one signal for transmission:
  • the one digital signal is subjected to electro-optical conversion and converted into an optical signal for transmission.
  • the transmitting module modulating the clock analog signal and the service analog signal into one analog signal means:
  • the modulated signal s(t) is expressed as:
  • n(t) is the clock analog signal
  • m(t) is the service analog signal
  • coswt is the carrier signal
  • K is the proportional coefficient
  • an embodiment of the present disclosure further provides an apparatus for synchronizing a path clock, including:
  • a second processing module configured to restore the obtained received signal into a clock signal and a service signal, and separately process the clock signal and the service signal by using two paths;
  • a synchronization module configured to clock synchronize the obtained clock signal.
  • the second processing module restores the obtained received signal into a clock signal and a service signal, and processes the clock signal and the service signal by using two paths respectively:
  • the service signal is decoded.
  • the second processing module restores the obtained received signal into a clock signal and a service signal, and processes the clock signal and the service signal by using two paths respectively:
  • the clock synchronization of the obtained clock signal by the synchronization module includes:
  • Clock synchronization is performed based on the obtained time stamp signal.
  • the device further includes a third processing module configured to be at least one of the following:
  • the second processing module demodulates the obtained optical line signal and restores the clock serial signal and the service serial signal to:
  • the clock analog signal and the service analog signal are analog-to-digital converted and converted into a clock serial signal and a service serial signal.
  • the third processing module is further configured to:
  • the time deviation offset is expressed as:
  • the T1 is the local timestamp information of the fixed frame
  • the TC1 is the time delay from the timestamp record position to the position where the optical signal is converted
  • T2 is the timestamp information of the fixed frame obtained by decapsulation
  • TC2 is Obtaining a delay from the position of the optical line signal to the time stamp recording position
  • Time adjustment is performed according to the time deviation offset.
  • the timestamp information generating module is responsible for generating a clock signal, and sending it to the error correcting encoding module for error correction coding; the error correction encoded information is sent to the equalization coding module for equalization coding and balanced circuit transmission.
  • Current after equalization coding, PMA2 (physical medium attachment, serial and parallel conversion) is performed in parallel and serial conversion; other service modules send service signals to PCS (physical coding sublayer for equalization coding and Ethernet protocol)/PMA1 Encoding and parallel-to-serial conversion; serial data of the clock signal and serial data of the service signal are simultaneously sent to the modulation module, and modulated to a line for transmission.
  • the line signal is first demodulated to the demodulation module to recover the two serial data of the clock signal and the service signal, which are respectively sent to PCS/PMA1 and PMA2 for serial-to-parallel conversion, PCS/PMA1 processing.
  • the parallel data of PMA2 is first byte aligned, and then the equalization decoding module is decoded, and the decoded data is sent to the error correction decoding module to perform error correction, and the correct time stamp information is obtained, and finally the time stamp is processed.
  • the module performs processing such as clock synchronization.
  • the block diagram of the modulation and demodulation module is shown in Figure 7.
  • the modulation module After receiving the 10G and 1G digital signals of PMA1 and PMA2, the modulation module first converts into an analog signal through the DAC, then enters the modulator to modulate into one analog signal, then converts it into a digital signal through the ADC, and finally converts it into an optical signal and sends it to the line. .
  • the optical signal received by the demodulation module is first converted into a digital electrical signal, and then converted into an analog signal by the DAC, and then demodulated into a demodulator to obtain two analog signals of 10G and 1G, and finally converted into digital signals by the ADC and sent to PMA1 and PMA2. .
  • the clock signal of the device of the present disclosure is carried by the 1588 packet, and the clock synchronization between the devices at both ends is performed.
  • the clock signal transmission rate is 1 Gbps, and the other service signal transmission rate is 10 Gbps.
  • Other service signals can be modulated to the line by amplitude modulation, and 1588 data is modulated to the line by frequency modulation.
  • the FM signal is transmitted in the line, which may introduce error codes. Therefore, the 1588 channel adds error correction coding in the transmission direction, and the error correction decoding is added in the reception direction to correct the error introduced during the line transmission.
  • FIG. 8 Another implementation of the present disclosure is as shown in FIG. 8.
  • the sending direction directly sends a timestamp
  • the custom encapsulation structure is as shown in FIG. 9.
  • the pre-defined encapsulation frame adopts an Ethernet mode, and is composed of seven 55s and one d5. Encapsulate timestamps and local delays.
  • the local timestamp T1 is sent first, and the time delay TC1 of the timestamp recording position to the position of the exit of the electro-optic conversion module is performed, and after encoding, the parallel-to-serial conversion and serial data conversion are performed. After the analog signal, it is modulated with the analog signals of other service channels and sent to the line.
  • the modulated signal After receiving the modulated signal in the receiving direction, it first demodulates, separates the time channel data from other service data, and converts it into a digital signal. After the time stamp frame is serially converted, byte aligned, decoded, decapsulated, etc. Obtain T1 and TC1, and record the timestamp T2 corresponding to the first byte sof after d5, and measure the delay TC2 of the first bit of sof entering the entrance of the electro-optical conversion module to the time stamp recording position.
  • the line delay delay is measured by a line delay tester, for example, the fiber can be measured with an OTDR meter.
  • the time deviation offset of the receiving direction with respect to the transmitting direction can be calculated as follows:
  • Offset T2-T1-TC1-TC2-delay.
  • the frequency synchronization of this embodiment is implemented by the clock circuit in FIG. 8. Since the time and the traffic signal are derived from the same device, the frequency information carried by the data is the same, so the frequency can synchronize the service path.
  • the path clock synchronization method provided by the embodiment of the present disclosure combines clock synchronization and other rate services in a modulation manner. Together, the clock signal and other service signals are processed separately while transmitting on one line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

本申请提出一种通路时钟同步的方法和装置,所述方法包括:分别获得时钟信号和业务信号,并利用两路通路分别处理所述时钟信号和业务信号;将所述时钟信号和所述业务信号调制成一路信号进行传输。本申请用调制的方式将时钟同步和其他速率业务合到一起,时钟信号和其他业务信号分开处理,在线路上是一条线路传送。 (图1)

Description

一种通路时钟同步的方法和装置 技术领域
本公开涉及时钟同步领域,尤其涉及一种通路时钟同步的方法和装置。
背景技术
随着通信技术的不断发展,对时钟同步性能提出了更高的要求,这里的时钟包括频率和/或时间。比如,近期人们提出的利用基站提供定位服务要求,时间精度要求在±200ns左右,LTE-A(Long Term Evolution-Advanced,长期演进升级)的关键技术CoMP-JP(Coordinated Multiple Points-Joint Processing,协作多点传输联合处理)中要求相邻基站间的相对时间精度在±500ns左右;未来5G(5th-Generation,第五代移动通信技术)系统,可能需要几百ns量级的超高精度时间同步需求;又如,更远期的量子通信技术,需要精度极高的时间测量技术,以降低量子通信系统的误码率,提高其成码率,可能需要百ns以内的时间同步精度。目前,基于1588v2技术实现的高精度时间同步,只能满足us量级的时间同步需求,但无法满足上述几百ns甚至更高精度的时间同步需求。
目前,GE(千兆以太网)光口高精度时钟同步的研究已取得一定进展,理论上可达到ns甚至亚ns级的同步精度。更高速率接口的transceiver的实现以及恢复时钟频率与GE接口有一定差异,不能直接使用Ge光口的方案,因此需要一种不受端口速率影响的高精度时钟同步实现方案。
发明内容
本公开提供一种通路时钟同步的方法和装置,使得高精度时钟同步实现不受端口速率的影响。
为了实现上述发明目的,本公开采取的技术方案如下:
一种通路时钟同步的方法,包括:
分别获得时钟信号和业务信号,并利用两路通路分别处理所述时钟信号和业务信号;
将所述时钟信号和所述业务信号调制成一路信号进行传输。
优选地,分别获得时钟信号和业务信号,并利用两路通路分别处理所述时钟信号和业务信号包括:
对获得的时钟信号进行纠错和/或均衡处理;
对获得的业务信号进行编码。
优选地,获取时钟信号包括以下之一:
获取时间戳信号产生模块产生的时钟信号;
获得主从同步系统发送的时钟信号;
通过预定义封装的帧中获得时钟信号。
优选地,将所述时钟信号和所述业务信号调制成一路信号进行传输包括:
将经过纠错和/或均衡处理后的时钟信号转换为时钟串行信号;
将经过编码后的业务信号转换为业务串行信号;
将所述时钟串行信号和所述业务串行信号调制成一路信号进行传输。
优选地,将所述时钟信号和所述业务信号调制成一路信号进行传输包括:
将所述时钟信号和所述业务信号转换为时钟模拟信号和业务模拟信号;
将所述时钟模拟信号和所述业务模拟信号调制成一路模拟信号;
将所述一路模拟信号转换为一路数字信号;
将所述一路数字信号转换为光信号进行传输。
优选地,将所述时钟模拟信号和所述业务模拟信号调制成一路模拟信号包括:
调制后的信号s(t)表示为:
Figure PCTCN2017108643-appb-000001
其中,n(t)为时钟模拟信号,m(t)为业务模拟信号,coswt为载波信号,K为比例系数。
本公开实施例还提供一种通路时钟同步的方法,包括:
将获得的接收信号恢复成时钟信号和业务信号,并利用两路通路分别处理所述时钟信号和业务信号;
对获得的所述时钟信号进行时钟同步。
优选地,将获得的接收信号恢复成时钟信号和业务信号,并利用两路通路分别处理所述时钟信号和业务信号包括:
对获得的光线路信号进行解调,恢复成时钟信号和业务信号;
对所述时钟信号进行字节对齐和/或均衡解码和/或纠错解码获得时间戳信号;
对业务信号进行解码。
优选地,将获得的接收信号恢复成时钟信号和业务信号,并利用两路通路分别处理所述时钟信号和业务信号包括:
对获得的光线路信号进行解调,恢复成时钟串行信号和业务串行信号;
将所述时钟串行信号转换为时钟并行信号;并将所述业务串行信号转换为业务并行信号。
优选地,对获得的所述时钟信号进行时钟同步包括:
根据获得的所述时间戳信号进行时钟同步。
优选地,所述方法之后还包括以下至少之一:
将所述业务并行信号进行业务收包,
将时钟同步后的所述时间戳信号发送至主从同步系统;
将时钟同步后的所述时间戳信号进行解封装获得预定义帧中的时间戳信息。
优选地,对获得的光线路信号进行解调,恢复成时钟串行信号和业务串行信号包括:
将获得的光线路信号转换为电子线路信号;
将所述的电子线路信号转换为电子线路模拟信号;
将所述线路模拟信号进行解调,恢复成时钟模拟信号信号和业务模拟信号;
将所述时钟模拟信号信号和业务模拟信号转换为时钟串行信号和业务串行信号。
优选地,将时钟同步后的所述时间戳信号进行解封装获得预定义帧中的时间戳信息之后还包括:
根据所述预定义帧的本地时间戳信息对解封装获得的所述预定义帧的时间戳信息进行时间偏差调整。
优选地,根据所述预定义帧的本地时间戳信息对解封装获得的所述预定义帧的时间戳信息进行时间偏差调整包括:
时间偏差offset表示为:
offset=T2-T1-TC1-TC2-delay
其中,T1为所述定帧的本地时间戳信息,TC1为时间戳记录位置到转换为光信号进行传输的位置的时延,T2为解封装获得的所述定帧的时间戳信息,TC2为获得光线路信号的位置到时间戳记录位置的延时;
根据所述时间偏差offset进行时间调整。
本公开实施例还提供一种通路时钟同步的装置,包括:
第一处理模块,设置为分别获得时钟信号和业务信号,并利用两路通路分别处理所述时钟信号和业务信号;
传输模块,设置为将所述时钟信号和所述业务信号调制成一路信号进行传输。
优选地,所述第一处理模块分别获得时钟信号和业务信号,并利用两路通路分别处理所述时钟信号和业务信号是指:
对获得的时钟信号进行纠错和/或均衡处理;
对获得的业务信号进行编码。
优选地,所述第一处理模块获取时钟信号包括以下之一:
获取时间戳信号产生模块产生的时钟信号;
获得主从同步系统发送的时钟信号;
通过预定义封装的帧中获得时钟信号。
优选地,所述传输模块将所述时钟信号和所述业务信号调制成一路信号进行传输是指:
将经过纠错和/或均衡处理后的时钟信号转换为时钟串行信号;
将经过编码后的业务信号转换为业务串行信号;
将所述时钟串行信号和所述业务串行信号调制成一路信号进行传输。
优选地,所述传输模块将所述时钟信号和所述业务信号调制成一路信号进行传输是指:
将所述时钟信号和所述业务信号转换为时钟模拟信号和业务模拟信号;
将所述时钟模拟信号和所述业务模拟信号调制成一路模拟信号;
将所述一路模拟信号转换为一路数字信号;
将所述一路数字信号转换为光信号进行传输。
优选地,所述传输模块将所述时钟模拟信号和所述业务模拟信号调制成一路模拟信号是指:
调制后的信号s(t)表示为:
Figure PCTCN2017108643-appb-000002
其中,n(t)为时钟模拟信号,m(t)为业务模拟信号,coswt为载波信号,K为比例系数。
本公开实施例还提供一种通路时钟同步的装置,包括:
第二处理模块,设置为将获得的接收信号恢复成时钟信号和业务信号,并利用两路通路分别处理所述时钟信号和业务信号;
同步模块,设置为对获得的所述时钟信号进行时钟同步。
优选地,所述第二处理模块将获得的接收信号恢复成时钟信号和业务信号,并利用两路通路分别处理所述时钟信号和业务信号是指:
对获得的光线路信号进行解调,恢复成时钟信号和业务信号;
对所述时钟信号进行字节对齐和/或均衡解码和/或纠错解码获得时间戳信号;
对业务信号进行解码。
优选地,所述第二处理模块将获得的接收信号恢复成时钟信号和业务信号,并利用两路通路分别处理所述时钟信号和业务信号是指:
对获得的光线路信号进行解调,恢复成时钟串行信号和业务串行信号;
将所述时钟串行信号转换为时钟并行信号;并将所述业务串行信号转换为业务并行信号。
优选地,所述同步模块对获得的所述时钟信号进行时钟同步包括:
根据获得的所述时间戳信号进行时钟同步。
优选地,所述的装置还包括第三处理模块,设置为以下至少之一:
将所述业务并行信号进行业务收包,
将时钟同步后的所述时间戳信号发送至主从同步系统;
将时钟同步后的所述时间戳信号进行解封装获得预定义帧中的时间戳信息。
优选地,所述第二处理模块对获得的光线路信号进行解调,恢复成时钟串行信号和业务串行信号是指:
将获得的光线路信号转换为电子线路信号;
将所述的电子线路信号转换为电子线路模拟信号;
将所述线路模拟信号进行解调,恢复成时钟模拟信号信号和业务模拟信号;
将所述时钟模拟信号信号和业务模拟信号转换为时钟串行信号和业务串行信号。
优选地,所述第三处理模块还设置为:
根据所述预定义帧的本地时间戳信息对解封装获得的所述预定义帧的时间戳信息进行时间偏差调整。
优选地,所述第三处理模块根据所述预定义帧的本地时间戳信息对解封装获得的所述预定义帧的时间戳信息进行时间偏差调整是指:
时间偏差offset表示为:
offset=T2-T1-TC1-TC2-delay
其中,T1为所述定帧的本地时间戳信息,TC1为时间戳记录位置到转换为光信号进行传输的位置的时延,T2为解封装获得的所述定帧的时间戳信息,TC2为获得光线路信号的位置到时间戳记录位置的延时;
根据所述时间偏差offset进行时间调整。
本公开实施例还提供了一种存储介质,设置为存储程序代码,所述程序代码用于执行如上任一项所述的方法。
本公开和相关技术相比,具有如下有益效果:
本公开的技术方案,用调制的方式将时钟同步和其他速率业务合到一起,时钟信号和其他业务信号分开处理,在线路上是一条线路传送。
附图说明
图1为本公开实施例的一种通路时钟同步的方法的流程图;
图2为本公开实施例的一种通路时钟同步的方法的流程图;
图3为本公开实施例的一种通路时钟同步的装置的结构示意图;
图4为本公开实施例的一种通路时钟同步的装置的结构示意图;
图5为本公开实施例1的通路时钟同步的装置的示意图;
图6为本公开实施例2的通路时钟同步的装置的示意图;
图7为本公开实施例1的调制解调模块的示意图;
图8为本公开实施例3的通路时钟同步的装置的示意图;
图9为本公开实施例3的预定义封装帧的结构示意图。
具体实施方式
为使本公开的发明目的、技术方案和有益效果更加清楚明了,下面结合附图对本公开的实施例进行说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以相互任意组合。
如图1所示,本公开实施例提供一种通路时钟同步的方法,包括:
分别获得时钟信号和业务信号,并利用两路通路分别处理所述时钟信号和业务信号;
将所述时钟信号和所述业务信号调制成一路信号进行传输。
优选地,分别获得时钟信号和业务信号,并利用两路通路分别处理所述时钟信号和业务信号包括:
对获得的时钟信号进行纠错和/或均衡处理;
对获得的业务信号进行编码。
本公开实施例中获得的时钟信号和业务信号可以为串行信号、并行信号、模拟信号、数字信号等形式,需要时钟信号进行纠错和/或均衡处理,对业务信号进行编码处理。
优选地,获取时钟信号包括以下之一:
获取时间戳信号产生模块产生的时钟信号;
获得主从同步系统发送的时钟信号;
通过预定义封装的帧中获得时钟信号。
其中,将所述时钟信号和所述业务信号调制成一路信号进行传输包括:
对经过纠错和/或均衡处理后的时钟信号进行并串转换,转换为时钟串行信号;
对经过编码后的业务信号进行并串转换,转换为业务串行信号;
将所述时钟串行信号和所述业务串行信号调制成一路信号进行传输。
或者,将所述时钟信号和所述业务信号调制成一路信号进行传输包括:
将所述时钟信号和所述业务信号进行数模转换,转换为时钟模拟信号和业务模拟信号;
将所述时钟模拟信号和所述业务模拟信号调制成一路模拟信号;
将所述一路模拟信号进行模数转换,转换为一路数字信号;
将所述一路数字信号进行电光转换,转换为光信号进行传输。
本公开实施例中针对获得的时钟信号和业务信号的不同形式进行串并、模数、光电中的一种或者多种变换。
完整的过程可以表示为下面的形式:
S101、对获得的时钟并行信号进行纠错和/或均衡处理,将所述时钟并行信号转换为时钟串行信号;
S102、对业务发包中获得的业务并行信号进行编码,将业务并行信号转换为业务串行信号;
S103、将所述时钟串行信号和所述业务串行信号调制成一路信号进行传输。
本公开实施例中S101和S102无时间先后顺序限制,在多数实施例中为同时进行。本公开实施例在发送方向,对时钟并行信号进行纠错编码、进行均衡编码、进行并串转换;对业务并行信号进行编码和并串转换;对时钟串行信号和业务串行信号进行调制,调制到一条线路进行传输。
其中,将所述时钟模拟信号和所述业务模拟信号调制成一路模拟信号包括:
调制后的信号s(t)表示为:
Figure PCTCN2017108643-appb-000003
其中,n(t)为时钟模拟信号,m(t)为业务模拟信号,coswt为载波信号,K为比例系数。
由于所述时钟模拟信号和所述业务模拟信号的传输速率可能不同,因此需要通过时钟信号调频,业务信号调幅的方式调制调制成一路信号。本公开实施例中K表示调制器频率灵敏度,大小根据实际要求而定。
如图2所示,本公开实施例还提供一种通路时钟同步的方法,包括:
将获得的接收信号恢复成时钟信号和业务信号,并利用两路通路分别处理所述时钟信号和业务信号;
对获得的所述时钟信号进行时钟同步。
优选地,将获得的接收信号恢复成时钟信号和业务信号,并利用两路通路分别处理所述时钟信号和业务信号包括:
对获得的光线路信号进行解调,恢复成时钟信号和业务信号;
对所述时钟信号进行字节对齐和/或均衡解码和/或纠错解码获得时间戳信号;
对业务信号进行解码。
优选地,将获得的接收信号恢复成时钟信号和业务信号,并利用两路通路分别处理所述时钟信号和业务信号包括:
对获得的光线路信号进行解调,恢复成时钟串行信号和业务串行信号;
将所述时钟串行信号转换为时钟并行信号;并将所述业务串行信号转换为业务并行信号。
优选地,对获得的所述时钟信号进行时钟同步包括:
根据获得的所述时间戳信号进行时钟同步。
所述方法之后还包括以下至少之一:
将所述业务并行信号进行业务收包,
将时钟同步后的所述时间戳信号发送至主从同步系统;
将时钟同步后的所述时间戳信号进行解封装获得预定义帧中的时间戳信息。
优选地,对获得的光线路信号进行解调,恢复成时钟串行信号和业务串行信号包括:
对获得的光线路信号进行光电转换,转换为电子线路信号;
对所述的电子线路信号进行数模转换,转换为电子线路模拟信号;
将所述线路模拟信号进行解调,恢复成时钟模拟信号信号和业务模拟信号;
将所述时钟模拟信号信号和业务模拟信号进行模数转换,转换为时钟串行信号和业务串行信号。
完整的过程可以表示为下面的形式:
S201、对获得的光线路信号进行解调,恢复成时钟串行信号和业务串行信号;
S202、对所述时钟串行信号和业务串行信号进行串并转换为时钟并行信号和业务并行信号;
S203、对所述时钟并行信号进行字节对齐和/或均衡解码和/或纠错解码获得时间戳信号;
S204、根据获得的所述时间戳信号进行时钟同步。
本公开实施例在接收方向,对接收到的线路信号进行解调,恢复时钟信号和业务信号两路数据,分别进行串并转换等处理,其中,时钟信号需要进行字节对齐、解码、纠错,得到正确的时间戳信号,最后进行时钟同步。
将时钟同步后的所述时间戳信号进行解封装获得预定义帧中的时间戳信息之后还包括:
根据所述预定义帧的本地时间戳信息对解封装获得的所述预定义帧的时间戳信息进行时间偏差调整。
其中,根据所述预定义帧的本地时间戳信息对解封装获得的所述预定义帧的时间戳信息进行时间偏差调整包括:
时间偏差offset表示为:
offset=T2-T1-TC1-TC2-delay
其中,T1为所述定帧的本地时间戳信息,TC1为时间戳记录位置到转换为光信号进行传输的位置的时延,T2为解封装获得的所述定帧的时间戳信息,TC2为获得光线路信号的位置到时间戳记录位置的延时;
根据所述时间偏差offset进行时间调整。
如图3所示,本公开实施例还提供一种通路时钟同步的装置,包括:
第一处理模块,设置为分别获得时钟信号和业务信号,并利用两路通路分别处理所述时钟信号和业务信号;
传输模块,设置为将所述时钟信号和所述业务信号调制成一路信号进行传输。
所述第一处理模块分别获得时钟信号和业务信号,并利用两路通路分别处理所述时钟信号和业务信号是指:
对获得的时钟信号进行纠错和/或均衡处理;
对获得的业务信号进行编码。
所述第一处理模块获取时钟信号包括以下之一:
获取时间戳信号产生模块产生的时钟信号;
获得主从同步系统发送的时钟信号;
通过预定义封装的帧中获得时钟信号。
所述传输模块将所述时钟信号和所述业务信号调制成一路信号进行传输是指:
对经过纠错和/或均衡处理后的时钟信号进行并串转换,转换为时钟串行信号;
对经过编码后的业务信号进行并串转换,转换为业务串行信号;
将所述时钟串行信号和所述业务串行信号调制成一路信号进行传输。
所述传输模块将所述时钟信号和所述业务信号调制成一路信号进行传输是指:
将所述时钟信号和所述业务信号进行数模转换,转换为时钟模拟信号和业务模拟信号;
将所述时钟模拟信号和所述业务模拟信号调制成一路模拟信号;
将所述一路模拟信号进行模数转换,转换为一路数字信号;
将所述一路数字信号进行电光转换,转换为光信号进行传输。
所述传输模块将所述时钟模拟信号和所述业务模拟信号调制成一路模拟信号是指:
调制后的信号s(t)表示为:
Figure PCTCN2017108643-appb-000004
其中,n(t)为时钟模拟信号,m(t)为业务模拟信号,coswt为载波信号,K为比例系数。
如图4所示,本公开实施例还提供一种通路时钟同步的装置,包括:
第二处理模块,设置为将获得的接收信号恢复成时钟信号和业务信号,并利用两路通路分别处理所述时钟信号和业务信号;
同步模块,设置为对获得的所述时钟信号进行时钟同步。
所述第二处理模块将获得的接收信号恢复成时钟信号和业务信号,并利用两路通路分别处理所述时钟信号和业务信号是指:
对获得的光线路信号进行解调,恢复成时钟信号和业务信号;
对所述时钟信号进行字节对齐和/或均衡解码和/或纠错解码获得时间戳信号;
对业务信号进行解码。
所述第二处理模块将获得的接收信号恢复成时钟信号和业务信号,并利用两路通路分别处理所述时钟信号和业务信号是指:
对获得的光线路信号进行解调,恢复成时钟串行信号和业务串行信号;
将所述时钟串行信号转换为时钟并行信号;并将所述业务串行信号转换为业务并行信号。
所述同步模块对获得的所述时钟信号进行时钟同步包括:
根据获得的所述时间戳信号进行时钟同步。
所述的装置还包括第三处理模块,设置为以下至少之一:
将所述业务并行信号进行业务收包;
将时钟同步后的所述时间戳信号发送至主从同步系统;
将时钟同步后的所述时间戳信号进行解封装获得预定义帧中的时间戳信息。
所述第二处理模块对获得的光线路信号进行解调,恢复成时钟串行信号和业务串行信号是指:
对获得的光线路信号进行光电转换,转换为电子线路信号;
对所述的电子线路信号进行数模转换,转换为电子线路模拟信号;
将所述线路模拟信号进行解调,恢复成时钟模拟信号信号和业务模拟信号;
将所述时钟模拟信号和业务模拟信号进行模数转换,转换为时钟串行信号和业务串行信号。
所述第三处理模块还设置为:
根据所述预定义帧的本地时间戳信息对解封装获得的所述预定义帧的时间戳信息进行时间偏差调整。
所述第三处理模块根据所述预定义帧的本地时间戳信息对解封装获得的所述预定义帧的时间戳信息进行时间偏差调整是指:
时间偏差offset表示为:
offset=T2-T1-TC1-TC2-delay
其中,T1为所述定帧的本地时间戳信息,TC1为时间戳记录位置到转换为光信号进行传输的位置的时延,T2为解封装获得的所述定帧的时间戳信息,TC2为获得光线路信号的位置到时间戳记录位置的延时;
根据所述时间偏差offset进行时间调整。
实施例1
如图5所示,发送方向,时间戳信息产生模块负责产生时钟信号,发送给纠错编码模块,进行纠错编码;纠错编码后的信息发给均衡编码模块,进行均衡编码,平衡电路传输电流;均衡编码后,给PMA2(physical medium attachment,实现串并和并串转换)进行并串转换;其他业务模块发送业务信号给PCS(physical coding sublayer,实现均衡编码和以太网协议)/PMA1进行编码和并串转换;时钟信号的串行数据和业务信号的串行数据同时送给调制模块,调制到一条线路进行传输。
如图5所示,接收方向,线路信号首先到解调模块进行解调,恢复时钟信号和业务信号的两路串行数据,分别送给PCS/PMA1和PMA2进行串并转换,PCS/PMA1处理完给其他业务收模块;PMA2的并行数据首先进行字节对齐,之后给均衡解码模块进行解码,解码后数据给纠错解码模块,进行纠错,得到正确的时间戳信息,最后给时间戳处理模块进行时钟同步等处理。
调制解调模块的组成框图如图7所示。调制模块接收到PMA1和PMA2的10G和1G数字信号后,首先经过DAC转换成模拟信号,之后进入调制器调制成1路模拟信号,之后经ADC转换成数字信号,最后转成光信号发送到线路。
解调模块接收到光信号首先转成数字电信号,之后经DAC转换成模拟信号,进入解调器解调,得到10G和1G两路模拟信号,最后经ADC转成数字信号发送给PMA1和PMA2。
调幅调频原理简单介绍如下:假设时钟信号为n(t),其他业务信号为m(t),载波为coswt, 则调制后的信号s(t)可表示为:
Figure PCTCN2017108643-appb-000005
其中,K为比例系数。
利用本公开实施例提供的方案能够保证装置之间的时钟同步。
实施例2
如图6所示,本公开装置的时钟信号由1588报文携带,进行两端装置之间的时钟同步,时钟信号传输速率为1Gbps,其他业务信号传输速率为10Gbps。
其他业务信号可以通过调幅的方式调制到线路,1588数据通过调频的方式调制到线路。调频信号在线路中传输,可能会引入误码,所以1588通路在发送方向加入了纠错编码,接收方向加入了纠错解码,用来纠正线路传输过程中引入的误码。
实施例3
本公开的另一种实施如图8所示,发送方向直接发送时间戳,自定义封装结构,如图9所示,预定义封装帧采用以太网的方式,由7个55和1个d5,封装时间戳和本地时延。
发送方向和接收方向进行时钟同步时,首先发送本地时间戳T1,以及时间戳记录位置到电光转换模块的出口的位置的时延TC1,进行封装,编码后,进行并串转换,串行数据转换成模拟信号后,与其他业务通路的模拟信号调制到一起,发送到线路上。
接收方向接收到调制信号后,首先进行解调,将时间通路数据和其他业务数据分开,转换成数字信号后,时间戳帧经过串并转换、字节对齐、解码、解封装等一系列处理后,得到T1和TC1,并记录d5后第一个字节sof对应的时间戳T2,测出sof第一个bit进入电光转换模块的入口到时间戳记录位置的延时TC2。
线路延时delay通过线路延时测试仪测得,例如光纤可以用OTDR仪表来测。这样接收方向相对于发送方向的时间偏差offset就可以计算出来,如下式:
offset=T2-T1-TC1-TC2-delay。
本实施例的频率同步由图8中的时钟电路实现,由于时间和业务信号来源于同一装置,所以其数据携带的频率信息是相同的,因此频率可以同步业务通路的。
虽然本公开所揭示的实施方式如上,但其内容只是为了便于理解本公开的技术方案而采用的实施方式,并非设置为限定本公开。任何本公开所属技术领域内的技术人员,在不脱离本公开所揭示的核心技术方案的前提下,可以在实施的形式和细节上做任何修改与变化,但本公开所限定的保护范围,仍须以所附的权利要求书限定的范围为准。
工业实用性
本公开实施例提供的通路时钟同步方法,用调制的方式将时钟同步和其他速率业务合 到一起,在一条线路上进行传送的同时实现时钟信号和其他业务信号的分开处理。

Claims (26)

  1. 一种通路时钟同步的方法,其中,包括:
    分别获得时钟信号和业务信号,并利用两路通路分别处理所述时钟信号和业务信号;
    将所述时钟信号和所述业务信号调制成一路信号进行传输。
  2. 如权利要求1所述的方法,其中,分别获得时钟信号和业务信号,并利用两路通路分别处理所述时钟信号和业务信号包括:
    对获得的时钟信号进行纠错和/或均衡处理;
    对获得的业务信号进行编码。
  3. 如权利要求2所述的方法,其中,获取时钟信号包括以下之一:
    获取时间戳信号产生模块产生的时钟信号;
    获得主从同步系统发送的时钟信号;
    通过预定义封装的帧中获得时钟信号。
  4. 如权利要求2所述的方法,其中:将所述时钟信号和所述业务信号调制成一路信号进行传输包括:
    将经过纠错和/或均衡处理后的时钟信号转换为时钟串行信号;
    将经过编码后的业务信号转换为业务串行信号;
    将所述时钟串行信号和所述业务串行信号调制成一路信号进行传输。
  5. 如权利要求2所述的方法,其中:将所述时钟信号和所述业务信号调制成一路信号进行传输包括:
    将所述时钟信号和所述业务信号转换为时钟模拟信号和业务模拟信号;
    将所述时钟模拟信号和所述业务模拟信号调制成一路模拟信号;
    将所述一路模拟信号转换为一路数字信号;
    将所述一路数字信号转换为光信号进行传输。
  6. 如权利要求5所述的方法,其中:将所述时钟模拟信号和所述业务模拟信号调制成一路模拟信号包括:
    调制后的信号s(t)表示为:
    Figure PCTCN2017108643-appb-100001
    其中,n(t)为时钟模拟信号,m(t)为业务模拟信号,coswt为载波信号,K为比例系数。
  7. 一种通路时钟同步的方法,其中,包括:
    将获得的接收信号恢复成时钟信号和业务信号,并利用两路通路分别处理所述时钟信号和业务信号;
    对获得的所述时钟信号进行时钟同步。
  8. 如权利要求7所述的方法,其中:将获得的接收信号恢复成时钟信号和业务信号,并利用两路通路分别处理所述时钟信号和业务信号包括:
    对获得的光线路信号进行解调,恢复成时钟信号和业务信号;
    对所述时钟信号进行字节对齐和/或均衡解码和/或纠错解码获得时间戳信号;
    对业务信号进行解码。
  9. 如权利要求7所述的方法,其中:将获得的接收信号恢复成时钟信号和业务信号,并利用两路通路分别处理所述时钟信号和业务信号包括:
    对获得的光线路信号进行解调,恢复成时钟串行信号和业务串行信号;
    将所述时钟串行信号转换为时钟并行信号;并将所述业务串行信号转换为业务并行信号。
  10. 如权利要求8所述的方法,其中:对获得的所述时钟信号进行时钟同步包括:
    根据获得的所述时间戳信号进行时钟同步。
  11. 如权利要求9所述的方法,其中:所述方法之后还包括以下至少之一:
    将所述业务并行信号进行业务收包,
    将时钟同步后的所述时间戳信号发送至主从同步系统;
    将时钟同步后的所述时间戳信号进行解封装获得预定义帧中的时间戳信息。
  12. 如权利要求8所述的方法,其中:对获得的光线路信号进行解调,恢复成时钟串行信号和业务串行信号包括:
    将获得的光线路信号转换为电子线路信号;
    将所述的电子线路信号转换为电子线路模拟信号;
    将所述线路模拟信号进行解调,恢复成时钟模拟信号信号和业务模拟信号;
    将所述时钟模拟信号信号和业务模拟信号转换为时钟串行信号和业务串行信号。
  13. 如权利要求11所述的方法,其中:将时钟同步后的所述时间戳信号进行解封装获得预定义帧中的时间戳信息之后还包括:
    根据所述预定义帧的本地时间戳信息对解封装获得的所述预定义帧的时间戳信息进行时间偏差调整。
  14. 如权利要求13所述的方法,其中:根据所述预定义帧的本地时间戳信息对解封装获得的所述预定义帧的时间戳信息进行时间偏差调整包括:
    时间偏差offset表示为:
    offset=T2-T1-TC1-TC2-delay
    其中,T1为所述定帧的本地时间戳信息,TC1为时间戳记录位置到转换为光信号进行传输的位置的时延,T2为解封装获得的所述定帧的时间戳信息,TC2为获得光线路信号的位置到时间戳记录位置的延时;
    根据所述时间偏差offset进行时间调整。
  15. 一种通路时钟同步的装置,其中,包括:
    第一处理模块,设置为分别获得时钟信号和业务信号,并利用两路通路分别处理所述时钟信号和业务信号;
    传输模块,设置为将所述时钟信号和所述业务信号调制成一路信号进行传输。
  16. 如权利要求15所述的装置,其中,所述第一处理模块分别获得时钟信号和业务信号,并利用两路通路分别处理所述时钟信号和业务信号是指:
    对获得的时钟信号进行纠错和/或均衡处理;
    对获得的业务信号进行编码。
  17. 如权利要求16所述的装置,其中,所述第一处理模块获取时钟信号包括以下之一:
    获取时间戳信号产生模块产生的时钟信号;
    获得主从同步系统发送的时钟信号;
    通过预定义封装的帧中获得时钟信号。
  18. 如权利要求16所述的装置,其中:所述传输模块将所述时钟信号和所述业务信号调制成一路信号进行传输是指:
    将经过纠错和/或均衡处理后的时钟信号转换为时钟串行信号;
    将经过编码后的业务信号转换为业务串行信号;
    将所述时钟串行信号和所述业务串行信号调制成一路信号进行传输。
  19. 如权利要求16所述的装置,其中:所述传输模块将所述时钟信号和所述业务信号调制成一路信号进行传输是指:
    将所述时钟信号和所述业务信号转换为时钟模拟信号和业务模拟信号;
    将所述时钟模拟信号和所述业务模拟信号调制成一路模拟信号;
    将所述一路模拟信号转换为一路数字信号;
    将所述一路数字信号转换为光信号进行传输。
  20. 一种通路时钟同步的装置,其中,包括:
    第二处理模块,设置为将获得的接收信号恢复成时钟信号和业务信号,并利用两路通路分别处理所述时钟信号和业务信号;
    同步模块,设置为对获得的所述时钟信号进行时钟同步。
  21. 如权利要求20所述的装置,其中:所述第二处理模块将获得的接收信号恢复成时钟信号和业务信号,并利用两路通路分别处理所述时钟信号和业务信号是指:
    对获得的光线路信号进行解调,恢复成时钟信号和业务信号;
    对所述时钟信号进行字节对齐和/或均衡解码和/或纠错解码获得时间戳信号;
    对业务信号进行解码。
  22. 如权利要求20所述的装置,其中:所述第二处理模块将获得的接收信号恢复成时钟信号和业务信号,并利用两路通路分别处理所述时钟信号和业务信号是指:
    对获得的光线路信号进行解调,恢复成时钟串行信号和业务串行信号;
    将所述时钟串行信号转换为时钟并行信号;并将所述业务串行信号转换为业务并行信号。
  23. 如权利要求21所述的装置,其中:所述同步模块对获得的所述时钟信号进行时钟同步包括:
    根据获得的所述时间戳信号进行时钟同步。
  24. 如权利要求22所述的装置,其中:还包括第三处理模块,设置为以下至少之一:
    将所述业务并行信号进行业务收包,
    将时钟同步后的所述时间戳信号发送至主从同步系统;
    将时钟同步后的所述时间戳信号进行解封装获得预定义帧中的时间戳信息。
  25. 如权利要求21所述的装置,其中:所述第二处理模块对获得的光线路信号进行解调,恢复成时钟串行信号和业务串行信号是指:
    将获得的光线路信号转换为电子线路信号;
    将所述的电子线路信号转换为电子线路模拟信号;
    将所述线路模拟信号进行解调,恢复成时钟模拟信号信号和业务模拟信号;
    将所述时钟模拟信号信号和业务模拟信号转换为时钟串行信号和业务串行信号。
  26. 一种存储介质,设置为存储程序代码,所述程序代码用于执行权利要求1至14中任一项所述的方法。
PCT/CN2017/108643 2016-10-31 2017-10-31 一种通路时钟同步的方法和装置 WO2018077302A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610930569.7A CN108011705B (zh) 2016-10-31 2016-10-31 一种通路时钟同步的方法和装置
CN201610930569.7 2016-10-31

Publications (1)

Publication Number Publication Date
WO2018077302A1 true WO2018077302A1 (zh) 2018-05-03

Family

ID=62023141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108643 WO2018077302A1 (zh) 2016-10-31 2017-10-31 一种通路时钟同步的方法和装置

Country Status (2)

Country Link
CN (1) CN108011705B (zh)
WO (1) WO2018077302A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115882995A (zh) * 2023-02-01 2023-03-31 南京美乐威电子科技有限公司 一种fpga模组和音频转换设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111082875A (zh) * 2019-12-23 2020-04-28 中国科学技术大学 激光通信装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1758583A (zh) * 2004-10-09 2006-04-12 华为技术有限公司 时钟、信令复用方法及系统
CN1816181A (zh) * 2005-02-03 2006-08-09 芯通科技(成都)有限公司 基站设备实现射频拉远的中频传输方法及中频接口
CN101764665A (zh) * 2008-12-23 2010-06-30 华为技术有限公司 时钟信号发送、接收方法、光发射机、光接收机及系统
WO2014169446A1 (en) * 2013-04-17 2014-10-23 St-Ericsson Sa Method, apparatus, mobile communication terminal, computer program and storage medium for adjusting frequency error of terminal

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4476097B2 (ja) * 2004-10-28 2010-06-09 富士通株式会社 クロック抽出方法および装置
US7864747B2 (en) * 2008-03-28 2011-01-04 Embarq Holdings Company, Llc System and method for communicating timing to a remote node
JP5486179B2 (ja) * 2008-11-25 2014-05-07 三星電子株式会社 送信装置、受信装置、信号送信方法、及び信号受信方法
CN101924722B (zh) * 2009-06-15 2013-06-26 华为技术有限公司 Oofdm信号的产生和接收方法、装置和波分复用系统
CN101714971B (zh) * 2009-12-22 2012-06-06 北京邮电大学 无源光网络通信方法及系统、光网络单元和光线路终端
CN103595477B (zh) * 2013-09-22 2016-05-18 清华大学 数据信号上变频方法和装置
CN104993896A (zh) * 2015-05-14 2015-10-21 四川泰富地面北斗科技股份有限公司 一种由专用光路由组成的授时系统及其实现方法
CN105871454B (zh) * 2016-05-12 2019-04-19 深圳市新岸通讯技术有限公司 一种用于8对光纤接入传输的无线光通信设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1758583A (zh) * 2004-10-09 2006-04-12 华为技术有限公司 时钟、信令复用方法及系统
CN1816181A (zh) * 2005-02-03 2006-08-09 芯通科技(成都)有限公司 基站设备实现射频拉远的中频传输方法及中频接口
CN101764665A (zh) * 2008-12-23 2010-06-30 华为技术有限公司 时钟信号发送、接收方法、光发射机、光接收机及系统
WO2014169446A1 (en) * 2013-04-17 2014-10-23 St-Ericsson Sa Method, apparatus, mobile communication terminal, computer program and storage medium for adjusting frequency error of terminal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115882995A (zh) * 2023-02-01 2023-03-31 南京美乐威电子科技有限公司 一种fpga模组和音频转换设备

Also Published As

Publication number Publication date
CN108011705A (zh) 2018-05-08
CN108011705B (zh) 2020-09-15

Similar Documents

Publication Publication Date Title
US9509410B2 (en) High-speed optical transceiver systems and methods
US7571338B2 (en) Determining a time difference between first and second clock domains
CN107465965B (zh) 一种光口实现方法、装置及现场可编程门阵列器件
CN105634643A (zh) 一种基于双向扩频测距的光纤时间频率传递方法、装置及系统
WO2018205542A1 (zh) 一种1pps+tod信息单总线传送同步系统及方法
US9148229B2 (en) Optical transmitter, optical receiver, and optical transmission method
US8249080B1 (en) Ethernet to multilane optical transport network traffic interface
JP2017509170A (ja) 光通信網上で送信するためのcpri信号の効率的マッピング
WO2017219881A1 (zh) 一种基于1588的时间同步方法及装置
WO2022027866A1 (zh) 一种量子密钥分发系统的同步方法及装置
WO2018077302A1 (zh) 一种通路时钟同步的方法和装置
CN102624479A (zh) 波长标签传输方法及装置
CN113285757B (zh) 一种频分复用高精度光纤时间传递系统及方法
US20110123196A1 (en) Method, device and system for sending and receiving client signals
WO2012058986A1 (zh) 一种通信系统以及传输时钟信号的方法
CN106506106A (zh) 基于光纤时间传递的高精密时间频率源
CN108551378B (zh) 一种射频信号远距离传输方法
US20140226683A1 (en) Network adapter with high performance in-line timestamp
US20100135674A1 (en) Complex optical modulation for real time communication
CN104104489B (zh) 基于灵活栅格标签的频谱资源分配方法及装置
CN110518934B (zh) 一种光传送网的同步方法
CN115967479A (zh) 基于数字回环的时钟恢复校正系统及方法
CN111385524B (zh) 模拟高清摄像机高速长距离数据传输的实现方法及系统
CN112187363A (zh) 兼容以太网的高精度光纤时间频率传递系统及方法
WO2021097769A1 (zh) 一种时钟同步方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17864215

Country of ref document: EP

Kind code of ref document: A1