WO2018077068A1 - 一种流体介质自动识别控制装置及识别控制方法 - Google Patents

一种流体介质自动识别控制装置及识别控制方法 Download PDF

Info

Publication number
WO2018077068A1
WO2018077068A1 PCT/CN2017/106522 CN2017106522W WO2018077068A1 WO 2018077068 A1 WO2018077068 A1 WO 2018077068A1 CN 2017106522 W CN2017106522 W CN 2017106522W WO 2018077068 A1 WO2018077068 A1 WO 2018077068A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid medium
sensor
signal
color
fluid
Prior art date
Application number
PCT/CN2017/106522
Other languages
English (en)
French (fr)
Inventor
许静
夏家文
Original Assignee
许静
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 许静 filed Critical 许静
Publication of WO2018077068A1 publication Critical patent/WO2018077068A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • G01K13/026Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow of moving liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • G01N27/08Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid which is flowing continuously

Definitions

  • the invention relates to the field of processing and manufacturing related to a fluid medium, in particular to an automatic identification and control device and an identification and control method for a fluid medium in a pipeline in a fluid industrial production.
  • Visual recognition technology is increasingly used in modern industrial production, such as industrial automation control, office automation, material sorting and identification, image processing, product quality inspection, robot vision system and other industries need to detect images/colors.
  • the device is mainly divided into a color measuring instrument device based on optical signal measuring technology of object reflection, transmission and/or refraction, and a photoelectric imaging system device based on machine vision technology.
  • the conventional color measuring instruments mainly include: color sensor, gray scale sensor, color scale sensor, color difference sensor, and the instrument output mode is generally analog output, switch output, and communication output, which are selected according to measurement selection.
  • Color sensor A sensing device that compares the color of an object with the reference color that has been taught before to detect color. When the two colors match within a certain error range, the detection result is output.
  • Grayscale sensor is an analog sensor.
  • the gradation sensor uses different colors to detect the difference in the degree of reflection of light, and the photoresistor performs color depth detection on the principle that the resistance of the light returned from different detection surfaces is different. Used to distinguish black from other colors when ambient light interference is not severe.
  • Color-coded sensor It can detect various labels, even if the background color has subtle differences, the processing speed is fast. Automatically adapts to wavelengths and is capable of detecting small differences in grayscale values, regardless of the mixed color of the label and background.
  • Chromatic aberration sensor detecting the color difference between the color of the measured object and the standard color, and does not need to know the specific color of the measured object, but only needs to identify and judge the color difference of the two objects, and distinguish one color from another. The change in color.
  • Machine vision technology is a young, emerging industrial technology that is currently being used to replace the human eye.
  • Function the system structure is composed of photoelectric imaging device and microcomputer equipped with visual software.
  • the machine body has communication function and has solid matter of certain shape and volume. Perform automatic dimension measurement, inspection, guidance, and identification.
  • the industrial camera includes a camera, a lens, a light source and a light source controller.
  • the device does not have image processing and analysis functions. It outputs the image taken on the scene to a microcomputer equipped with visual software, and the image processing and analysis of the image by the microcomputer;
  • the camera and vision sensor are embedded systems and are dedicated computer systems designed for image processing and analysis applications with image processing and analysis capabilities.
  • the intelligent camera has high image processing and analysis capabilities for higher-demand applications.
  • the visual sensor integrates image acquisition, light source, lens, and image processing control, such as for applications with/without detection.
  • machine vision technology integrates computer technology, image processing and analysis technology, automatic control technology and other modern science and technology into one. It has high precision, online monitoring, real-time analysis, control and continuous work. It has been successfully applied.
  • the wort produced in the sugar chemical section is pumped to the fermenter of the fermentation section.
  • the wort is firstly used with hot water to feed the wheat from the saccharification pump into the fermenter.
  • the juice delivery pipeline is sterilized, and the wort is transported immediately after it, which is commonly referred to as alcohol introduction; the saccharification operator needs to use water to transfer water from the saccharification pump to the fermenting tank during the end of the batch of wort.
  • the wort in the pipeline is topped into the ferment tank with water, that is, after the wort is delivered, the water is transported, which is commonly referred to as the top wine.
  • the purpose is to send all the wort into the fermenter, and the water for the alcohol and the top wine can not enter the fermenter, otherwise it will increase the cost consumption or affect the product quality.
  • the identification of water and wort in this condition is mainly based on the color difference. Since the water is colorless, the wort is dark brown, and the fermentation operator needs to observe the sight glass installed on the cone bottom pipe of the fermenter when the wort is actually put into operation. When there is continuous flow in the sight glass.
  • the valve is switched by manual operation, that is, when the interface of water and wort is observed or the color is observed When the color changes (the front is water, the back is the wort), that is, the valve switch is switched on - the wine valve is opened, the alcohol control water recovery valve is closed, and the liquor operation process is completed.
  • the fermentation operator observes the intersection interface or color change of the wort and water through the cone-bottomed tunnel sight glass (the front is wort, followed by water), and the operator Switch the operating valve - close the wine valve, open the top wine recovery valve, complete the top wine operation process.
  • the two fluids are similar in color and even difficult to distinguish.
  • the temperature of the washing water is 60 ° C
  • the aqueous detergent solution is normal temperature water
  • the two are in the passing
  • the image features are basically the same.
  • the judgment and recognition can be clearly given;
  • the temperature of the wort is generally 7 ° C.
  • the mirror mirror will produce condensed water (in some applications, such as in the fluid pipeline)
  • the medium temperature is lower than 0 °C, the mirror surface will be frosted or even ice.
  • the operator will wipe the mirror condensate (frost/ice) by hand to keep the mirror mirror clean. To ensure the quality of observation.
  • the invention provides a fluid medium automatic identification control device and an identification control method for saving cost, reducing labor intensity and improving operation precision.
  • An automatic fluid medium identification control device embodying one of the objects of the present invention comprises at least one sight glass mounted on a fluid medium conduit and at least one valve and/or pump for controlling the flow of a fluid medium in the conduit, the exterior of each of said mirrors Provided with at least one optoelectronic imaging system, a control system coupled to the optoelectronic imaging system and the valve and/or pump signal; the control system being capable of identifying a fluid medium within the conduit by imaging of the optoelectronic imaging system and passing The switch and/or switch amplitude of the valve and/or pump is controlled to control the flow of the fluid medium.
  • the control system includes a data communication system, an analysis processing system, and an operation control system;
  • the analysis processing system performs real-time analysis and processing on the imaged image signal of the photoelectric imaging system, and transmits the image to the arithmetic control system to realize the identification of the fluid medium;
  • the operation control system analyzes the result of the processing system, the sensor measurement signal (including color, gray scale, color scale, color difference sensor signal, temperature, pressure, flow rate, conductivity, liquid level, and/or pH value of the fluid medium to be measured) Measuring sensor signal), valve and/or pump running signal data for arithmetic processing, and issuing a control signal;
  • the sensor measurement signal including color, gray scale, color scale, color difference sensor signal, temperature, pressure, flow rate, conductivity, liquid level, and/or pH value of the fluid medium to be measured
  • the data communication system receives the imaging and/or color signals of the optoelectronic imaging system and transmits them to an analytical processing system, and then receives control signals from the operational control system and transmits them to valves and/or pumps to effect the valves and/or The pump's switch and switch amplitude are controlled.
  • the fluid medium automatic identification control device further includes a temperature sensor, a pressure sensor, a flow sensor, a conductivity sensor, a liquid level sensor and/or a pH value measuring sensor for measuring the fluid medium respectively connected to the control system signal.
  • the optoelectronic imaging system is an industrial camera, a smart camera, a visual sensor, a color sensor, a grayscale sensor, a color scale sensor, and/or a color difference sensor.
  • An imaging medium is disposed between the optoelectronic imaging system and the scope, the imaging medium being a mirror surface, a refractive mirror surface, a see-through surface, and/or an optical fiber medium.
  • the mirror surface and the refraction mirror surface are metal, glass, plastic and the like of a smooth surface; the see-through surface is a transparent glass, a transparent plastic or the like.
  • the mirror side is provided with a mirror cleaning device, which can clean the mirror surface when the mirror mirror is dirty, condensed or frosted, and ensures the imaging or color measurement quality of the photoelectric imaging system.
  • the mirror cleaning device is a wiper and/or a water defrosting device and/or a compressed gas defrosting device;
  • the water defrosting device includes a water spray port disposed around a transparent window of the sight glass, and the water spray A port-connected water supply device;
  • the compressed gas defroster device includes a gas injection hole disposed around a transparent window of the sight glass, and a compressed gas supply device connected to the gas injection hole.
  • the water supply device and/or the compressed gas supply device comprise a heating device or a cooling device.
  • the mirror cleaning device further includes a fluid medium temperature sensor, an ambient temperature sensor, an ambient humidity sensor, or a water supply temperature sensor mounted on the water supply device and/or a compression installed on the compressed gas supply device, respectively connected to the control system signal. a gas temperature sensor; the control system further signals a switch of the heating device or a switch of the cooling device, and a water supply valve of the water supply device and/or a gas supply valve of the compressed gas supply device;
  • the control system can determine whether the mirror needs cleaning according to the signal of the fluid medium temperature sensor and the signal of the ambient temperature sensor and the signal of the ambient humidity sensor, thereby starting the heating device or the cooling device, and the valve and/or the compressed gas supply of the water supply device.
  • the valve of the device can determine whether the mirror needs cleaning according to the signal of the fluid medium temperature sensor and the signal of the ambient temperature sensor and the signal of the ambient humidity sensor, thereby starting the heating device or the cooling device, and the valve and/or the compressed gas supply of the water supply device.
  • the valve of the device can determine whether the mirror needs cleaning according to the signal of the fluid medium temperature sensor and the signal of the ambient temperature sensor and the signal of the ambient humidity sensor, thereby starting the heating device or the cooling device, and the valve and/or the compressed gas supply of the water supply device.
  • the invention utilizes the photoelectric imaging system to directly or indirectly through the installed industrial pipeline mirror to automatically image or color the fluid medium in the pipeline, and the control system processes, analyzes and identifies the imaging signal, and the control system according to the identification result and the process It is required to output corresponding communication signals and/or control signals to control the corresponding valves and/or pumps of the process, thereby realizing automatic online fluid identification and fluid production process control automation.
  • the fluid medium automatic identification control device of the present invention can replace the human eye to recognize the appearance characteristics of the fluid medium in the pipeline, and successfully combine modern machine vision technology, color measurement technology and fluid industry production, thereby reducing the operator.
  • the labor intensity has improved the automation level of the fluid industry production process, filled the application gap of the fluid production industry, achieved the effect of energy saving and product quality.
  • FIG. 1 is a schematic structural view of an embodiment of a fluid medium automatic identification control device according to the present invention.
  • FIG. 2 is a schematic view showing the structure of another embodiment of the fluid medium automatic identification control device of the present invention.
  • the fluid medium automatic identification control device of the present embodiment comprises five mirrors mounted on a fluid medium pipe and three valves for controlling the flow of the fluid medium in the pipe and two fluid medium flows in the control pipe.
  • Pump 10 external to each of the mirrors is provided with a photoelectric imaging system 1, a control system 3 electrically connected or signally connected to the photoelectric imaging system 1 and the valve 2, pump 10; the control system 3 can
  • the fluid medium within the conduit is identified by an imaging or color measurement signal of the optoelectronic imaging system 1 and the flow of fluid medium within the conduit is controlled by controlling the switching and/or switching amplitude of the valve 2 and pump 10.
  • the optoelectronic imaging system 1 is an industrial camera, a smart camera, a visual sensor, a color sensor, a grayscale sensor, a color scale sensor, and/or a color difference sensor.
  • the color sensor includes a densitometer and a spectrophotometer.
  • the specific configuration of the photoelectric imaging system can be arbitrarily configured according to the use conditions for identification, measurement needs and requirements.
  • It is configured as an industrial camera, a smart camera, or a vision sensor. It is used to image a fluid medium to achieve fluid color, two different color fluid interfaces, and whether there is any foreign matter in the fluid that is different from the fluid color. The concentration, the level of fluid in the pipe, the amount of foreign matter different from the color of the fluid, and/or the speed of movement are measured.
  • Color measuring instruments configured as optical signal measurement techniques based on object reflection or transmission: color sensors, grayscale sensors, color-coded sensors, color-difference sensors, fluid color, fluid interfaces of two different colors, and whether or not fluids are distinguished from fluids
  • the foreign matter of the color is identified, and the fluid color, the fluid concentration, the liquid level of the fluid in the pipe, and/or the moving speed of the foreign matter different from the color of the fluid are measured and fluid recognized.
  • the specific configuration of the photoelectric imaging system is arbitrarily selected according to the needs of the application.
  • the fluid delivery pipeline to be tested includes a fluid pipeline to be tested and a fluid storage tank to be tested; a sight glass installed on the pipeline to be tested, including a sight glass or a sight tube installed on the storage tank to be tested; the number of fluid pipelines to be measured is determined according to the measurement Need to arbitrarily choose the configuration when actually applying.
  • the fluid medium automatic identification control device of the present embodiment is the same as the basic structure and principle of Embodiment 1, except that the control system 3 includes a data communication system 31, an analysis processing system 32, and an arithmetic control system 33. ;
  • the analysis processing system 32 performs real-time analysis processing on the imaging signal of the photoelectric imaging system 1 to realize measurement and identification of the fluid medium in the pipeline; the operation control system 33 operates signals on the color signal, the valve and/or the pump and/or Or 32 processing the processed result data of the imaged image signal to generate a control signal; the data communication system 31 receives the imaging signal or color signal of the photoelectric imaging system 1, the operating signal of the valve and/or the pump, and transmits the signal to the analysis processing system. 32. A further receive control signal is transmitted to valve 2 and pump 10 to effect control of the switching and/or switching amplitude of said valve 2 and pump 10 and/or communication with associated equipment.
  • the analysis processing system 32 performs real-time processing on the imaging signal of the photoelectric imaging system 1 to identify the color of the fluid medium, the fluid interface of the two different colors, the fluid concentration, and whether the foreign matter in the fluid is different from the color of the fluid; Through the operation control system 33, the fluid color, the liquid level of the fluid in the pipeline, the fluid concentration, the amount of foreign matter different from the color of the fluid and/or the moving speed, the operating signals of the valve and/or the pump are analyzed and calculated, and finally the data is passed.
  • Communication system 31 commands the switching and/or switching amplitudes of valves 2 and 10 to be controlled.
  • the fluid medium automatic identification control device of the present embodiment is the same as the basic structures and principles of Embodiments 1 and 2, except that the temperature sensor for measuring the fluid medium separately connected to the control system 3 is further included.
  • the pressure sensor, the flow sensor, the conductivity sensor, the liquid level sensor and/or the pH measuring sensor, the fluid medium parameter measuring instrument is an image processing of the analysis processing system 32, and the fluid medium parameter measurement value is provided in real time, and the measured value is a different fluid.
  • the approximate image processing judgment provides further refined fluid identification conditions including temperature, pressure, flow, conductivity, liquid level, pH measuring instrument and corresponding detecting switch, referred to as measuring instrument.
  • the fluid medium parameter measuring instrument measuring signal communicates with the control system 3 through the communication module 31, and the arithmetic control system 33 performs arithmetic processing on the data processed by the analysis processing system 32, and the data communication system 31 communicates with the associated device, indirectly. Or directly control the corresponding valve 2 and / or pump 10.
  • the fluid medium automatic identification control device of the present invention comprises two sight glasses mounted on a fluid medium pipe and a valve 2 for controlling the flow of the fluid medium in the pipe.
  • a pump 10 for flowing a fluid medium, an exterior of each of the mirrors is provided with a photoelectric imaging system 1, a control system 3 electrically connected or signally connected to the photoelectric imaging system 1 and the valve 2; and the control The system 3 is capable of identifying the fluid medium within the conduit by imaging of the optoelectronic imaging system 1 and controlling the flow of fluid medium within the conduit by controlling the switching and/or switching amplitude of the valve 2 and pump 10.
  • the mirror side is provided with a mirror cleaning device, which can clean the mirror surface when the mirror mirror is dirty, condensed or frosted, and does not affect the imaging or color measurement of the photoelectric imaging system 1.
  • the mirror cleaning device is a water defrosting device and/or a compressed gas defrosting device.
  • the mirror cleaning device may also be a wiper or water defrosting device or a compressed gas defrosting device, or a combination of the above three devices.
  • the water defrosting device includes a water spout disposed around a transparent window of the mirror, a water supply device 5 connected to the spout; the compressed gas defrosting device includes a jet disposed around a transparent window of the mirror a hole, a compressed gas supply device 6 connected to the gas injection hole.
  • Both the water supply device 5 and the compressed gas supply device 6 include a heating device. It is also possible to replace the heating device with a cooling device.
  • the mirror cleaning device further includes a fluid medium temperature sensor 7, an ambient temperature sensor 8, an ambient humidity sensor 9, and a water supply temperature sensor 51 mounted on the water supply device, respectively, and/or mounted in the compression.
  • a compressed gas temperature sensor 61 of the gas supply device the control system 3 also signals a heating device switch 52 of the water supply device and a heating device switch 62 of the compressed gas supply device, and a water supply valve 53 and/or a compressed gas of the water supply device Supply valve 63 of the supply device;
  • the control system 3 can determine whether the mirror is frosted or frozen according to the signal of the fluid medium temperature sensor 7 and the signal of the ambient temperature sensor 8 and the signal of the environmental humidity sensor 9, thereby starting the heating device or the cooling device, and the water supply device 5 The water supply valve 53 and/or the air supply valve 63 of the compressed gas supply device.
  • An imaging medium is provided between the optoelectronic imaging system and the viewing mirror, the imaging medium being a mirror surface and/or a refractive mirror surface and/or a see-through surface and/or fiber optic fibers.
  • the mirror surface and the refraction mirror surface are metal, glass, plastic and the like of a smooth surface; the see-through surface is a transparent glass, a transparent plastic or the like.
  • the analysis processing system 32 is mounted on the control system 3, and the control system 3 performs fluid image or color signal processing and division. Analysis function.
  • the analysis processing system 32 is mounted on a smart camera or a visual sensor, and the fluid image processing and analysis functions are performed by a smart camera or a visual sensor.
  • the control system 3 is a secondary management microcomputer, and two Whether the management of the microcomputer is configured depends on the configuration requirements and is optional.
  • the photoelectric imaging system 1, the fluid medium temperature sensor 7, and the ambient temperature sensor 8 and the ambient humidity sensor 9 communicate with the control system 3 via the communication module 31, which computes the image or color data and sensors processed by the processing system 32.
  • the data is subjected to arithmetic processing by which the data communication system 31 communicates with the associated device to indirectly or directly control the corresponding valve 2 and pump 10.
  • the analysis processing system 32 performs processing and analysis on the input image signal, and the analysis processing system has solidified the mature machine vision algorithm, and the user can process and analyze the photoelectric imaging signal without programming, and realize the fluid according to the application requirement.
  • the mirror cleaning device includes a compressed gas having a function of condensed water/frost/ice, or a mechanical mechanism for removing mirror condensate from the mirror, such as a wiper.
  • Dispersed air supply - each mirror has a heating or cooler
  • the air supply source is heated to hot air for defrosting and deicing, which is the main method;
  • the air supply source is cooled to cool air so that the mirror surface does not produce condensed water, frost or ice;
  • the normal temperature compressed gas is directly used, which is combined with tap water to remove specular contaminants.
  • the configuration of the assembly is based on the operating temperature range of the fluid medium being tested and is an optional component. This component may not be configured, such as in the absence of condensate/frost/ice production.
  • the signals of the mirror cleaning device are respectively connected to the control system.
  • the control system outputs a control signal to control the switch of the compressed air heater and the compressed air control valve according to the difference between the ambient temperature and the temperature of the fluid medium and the ambient humidity value, and automatically removes the mirror mirror.
  • the temperature of the pollutants and compressed air is set according to the actual process requirements;
  • the control system receives an output signal from the on-site measuring instrument, controls the mirror surface to remove the condensed water/frost/ice component compressed air control valve, the water control valve, the heater/cooler, and communicates with the microcomputer to complete image processing,
  • the microcomputer includes a programmable logic controller PLC.
  • the control system receives output signals from the field measuring instrument, controls the mirror surface in addition to the condensate/frost/ice component compressed air control valve, the water control valve, the heater/cooler, and the connected analog and/or switching quantities
  • the output color/grayscale/color difference/color-code sensor signal is unified by the control system, processed, output corresponding signals, and/or communicate with associated equipment to directly and/or indirectly control related valves and pumps.
  • the control system receives an output signal from the field measuring instrument, controls the mirror surface in addition to the condensate/frost/ice component compressed air control valve, the water control valve, the heater/cooler, and the color/grayscale with the communication output function / Color difference / color standard sensor for communication, unified control, processing by the control system, output corresponding signals, and / or communication with associated equipment, direct and / or indirect control of the relevant valves, pumps.
  • the control system receives processing results from the image of the microcomputer and/or communicates with associated devices of fluid production for automated control of the fluid production process;
  • the control system can program the logic controller, and its control function can be integrated on the microcomputer, and the configuration is determined according to the configuration requirements, and is an optional configuration.
  • the measuring instrument is used for real-time measurement of fluid medium parameters in the pipeline to be tested.
  • the fluid medium parameters are temperature, pressure, liquid level, flow rate, electrical conductivity, and pH value, and the function is approximated for image processing of the analysis processing system. Different fluid imaging processes to provide further identification conditions; or control systems Through the image processing, the approximate different fluid image processing results are output to the control system through communication, and the control system combines the real-time measurement values of the measuring instrument to perform logical judgment to further refine the identification fluid.
  • the fluid medium parameter measuring instrument in addition to being used to refine the identification fluid, its real-time measured value is also used for safety production alarms as needed.
  • the specific configuration of the measuring instrument is determined according to the actual working conditions for the fluid identification and measurement needs. The specific required quantity of the fluid medium parameter measuring instrument and the specific measuring parameters are arbitrarily selected and configured.
  • Photoelectric imaging system comprising an imaging device and a color measuring instrument, wherein when the photoelectric imaging system is configured as an imaging device, the measurement signal is an image signal, the control system is installed with image processing software, and the image signal is processed, analyzed and recognized; When the system is configured as a color measurement instrument, the measurement signal is a color measurement signal, and the control system processes, analyzes, and identifies the color measurement signal by calculation.
  • Imaging Includes imaging and/or color measurement signals.
  • Analytical processing system When the photoelectric imaging system is configured as a color measuring instrument, it refers to a color signal analysis processing system. When the photoelectric imaging system is configured as a photoelectric imaging device, it refers to an image analysis processing system.
  • Mirror cleaning device A device used to clean the mirror surface to prevent specular contamination from affecting the measurement quality.
  • Mirror surface contaminants include dirt, condensation, frost, and ice.
  • Compressed gas defrosting device includes condensed water and/or frost and/or ice and/or dirt.
  • Water defrost device includes defrosting and / or ice and / or dirt.
  • Optical fiber medium a fiber made of glass or plastic, which can be used as a light-conducting tool, and an optical fiber is a shorthand for optical fiber.
  • the optical fiber for measuring instruments is divided into an incident optical fiber and a reflective optical fiber, an incident optical fiber conducting light source, which is also called a light guiding optical fiber, and an optical fiber for an imaging device, which is divided into a light guiding optical fiber and an imaging optical fiber.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Fluid Mechanics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

一种流体介质自动识别控制装置及识别控制方法,可以节省成本、降低劳动强度、提高操作精确度。流体介质自动识别控制装置包括至少一个安装在流体介质管道上的视镜和至少一个控制管道内流体介质流动的阀门(2),每个视镜的外部设置有光电成像系统(1),以及与光电成像系统(1)和所述阀门信号连接的控制系统(3)。通过安装的工业管道视镜,直接或间接地对管道内的流体介质进行自动成像,由控制系统(3)对成像进行处理、分析及识别,控制系统根据识别结果及工艺要求输出相应的通讯信号和/或控制信号,控制该工序相应的阀门和/或泵(10),实现了流体在线自动识别和流体生产过程控制自动化。

Description

一种流体介质自动识别控制装置及识别控制方法 技术领域
本发明涉及一种与流体介质相关的加工制造领域,尤其是一种对流体工业生产中管道内的流体介质进行自动识别控制装置及识别控制方法。
背景技术
视觉识别技术在现代工业生产中的应用越来越广泛,如工业自动化控制、办公自动化、材料分拣识别,图像处理,产品质检,机器人视觉系统等行业都需要对图像/颜色进行探测。其设备主要分为基于物体反射、透射和/或折射的光信号测量技术的颜色测量仪表设备及基于机器视觉技术的光电成像系统设备。
常规颜色测量仪表主要有:颜色传感器、灰度传感器、色标传感器、色差传感器,仪表输出方式一般为模拟量输出、开关量输出、通讯输出,根据测量选型需要选择。
颜色传感器:是一种传感装置,是将物体颜色同前面已经示教过的参考颜色进行比较来检测颜色的装置。当两个颜色在一定的误差范围内相吻合时,输出检测结果。
灰度传感器:是一种模拟传感器。灰度传感器利用不同颜色的检测面对光的反射程度不同,光敏电阻对不同检测面返回的光其阻值也不同的原理进行颜色深浅检测。在环境光干扰不是很严重的情况下,用于区别黑色与其它颜色。
色标传感器:对各种标签进行检测,即使是背景颜色有着细微的差别的颜色也可以检测到,处理速度快。自动适应波长,能够检测灰度值的细小差别,与标签和背景的混合颜色无关。
色差传感器:检测被测物体的颜色与标准颜色的色差,并不需要了解被测物的具体颜色,而只需要对两个物体的色差进行识别与判断,区分出从一种颜色到另一种颜色的变化。
机器视觉技术是一种年轻、新兴的工业技术,目前被用以替代人眼的视觉 功能,其系统结构是由光电成像装置及安装有视觉软件的微机组成,主要有三种形式,即工业相机、智能相机、视觉传感器,其机器本体具有通讯功能,具有对一定形状和体积的固态物质进行自动尺寸测量、检验、引导、识别。
工业相机包括相机、镜头、光源及光源控制器,该装置不具有图像处理及分析功能,它把现场拍摄的图像输出到装有视觉软件的微机上,由微机对图像进行图像处理及分析;智能相机和视觉传感器是嵌入式系统,是为图像处理及分析应用而设计的专用计算机系统,该机器具有图像处理及分析功能。智能相机图像处理及分析能力较高,用于较高要求的应用场合;视觉传感器集图像采集、光源、镜头、图像处理控制于一体,如用于有/无检测等应用要求简单的场合。
机器视觉技术以现代光学技术为基础,融合计算机技术、图像处理与分析技术,自动控制技术等现代科学技术为一体,具有精度高,在线监测实时分析、控制及连续工作等特点,已成功应用于半导体、电子元件、家用电器、汽车、机床及自动化设备等,而在众多的流体工业生产中,还都仍然沿用传统的人工视镜观察,即在需要检验的地方,安装管道视镜,由人工通过视镜现场观察管道内流体的外观特征,如:颜色、不同颜色的二种流体交界面、流体内有无区别于流体颜色的异物等,根据生产工艺要求,由人工做出生产工艺要求的相应操作。
例如,在啤酒生产中,糖化工段生产的麦汁要用泵输送到发酵工段的发酵罐内,根据工艺要求,麦汁在从糖化泵入发酵罐的过程中,首先要用热水对麦汁输送管道杀菌,麦汁紧随其后进行输送,即通常所说的引酒;糖化操作人员在该批次的麦汁进罐结束时,要用水把从糖化泵到发酵工段发酵罐之间管道内的麦汁,用水全部顶进发酵罐,即麦汁输送完后,紧接着输送水,即通常所说的顶酒。其目的是把麦汁全部送进发酵罐,而引酒、顶酒的用水不能进入发酵罐,否则就会增加成本消耗,或者影响产品质量。
该工况对水和麦汁的识别,主要依据颜色差异进行识别。由于水是无色的,麦汁是深褐色的,发酵操作人员,在麦汁进罐实际操作时,需现场观察安装在发酵罐锥底管道上的视镜,当视镜内出现连续流动的二种流体介质的交汇界面或颜色变化时,由人工操作完成阀门切换,即当看到水和麦汁的交汇界面或颜 色变化时(前面是水,后面是麦汁),即进行阀门开关切换——打开进酒阀门,关闭引酒水回收阀门,完成引酒操作过程。同理,当该批次麦汁进罐结束时,发酵操作人员通过锥底管道视镜观察到麦汁和水的交汇界面或颜色变化时(前面是麦汁,后面是水),操作人员就切换操作阀门——关闭进酒阀门,打开顶酒水回收阀门,完成顶酒操作过程。
在流体颜色识别过程中,有时二种流体颜色相似,甚至很难区分,例如:啤酒生产中发酵罐清洗时,洗涤清水的温度是60℃,洗涤剂水溶液是常温水,而二者在通过视镜时,其图像特征基本是一样的,此时根据流体介质温度的差别,可以明确给予判断识别;
在麦汁输送过程中,麦汁的温度一般是7℃,当外界环境温度高于麦汁温度,且环境湿度合适时,视镜镜面会产生冷凝水(在有些应用场合,如当流体管道内的介质温度低于0℃时,视镜镜面会结霜、甚至是冰),操作人员为了清晰观察流体,会及时用手擦去视镜镜面冷凝水(霜/冰),保持视镜镜面清洁,保证观察质量。
由于麦汁管道内流体流速快,二种流体的交界面不易及时捕捉,人工视镜镜前观察,受限于人员操作经验、身体疲劳状况的影响,易造成操作误差,不仅增加了生产成本消耗、影响了产品质量,并且增加了操作人员的劳动强度,同时也制约了流体工业生产过程自动化程度的提高。
发明内容
本发明提供了一种节省成本、降低劳动强度、提高操作精确度的流体介质自动识别控制装置及识别控制方法。
实现本发明目的之一的流体介质自动识别控制装置,包括至少一个安装在流体介质管道上的视镜和至少一个控制管道内流体介质流动的阀门和/或泵,每个所述视镜的外部设置有至少一个光电成像系统,与所述光电成像系统和所述阀门和/或泵信号连接的控制系统;所述控制系统能够通过所述光电成像系统的成像识别管道内的流体介质,并通过控制所述阀门和/或泵的开关和/或开关幅度来控制流体介质的流动。
所述控制系统包括数据通信系统、分析处理系统和运算控制系统;
所述分析处理系统对光电成像系统的成像图像信号进行实时分析处理,并传送给运算控制系统,实现对流体介质进行识别;
所述运算控制系统对分析处理系统的结果、传感器测量信号(包括颜色、灰度、色标、色差传感器信号、被测流体介质的温度、压力、流量、电导率、液位和/或PH值测量传感器信号)、阀门和/或泵运行信号数据进行运算处理,发出控制信号;
所述数据通信系统接收光电成像系统的成像和/或颜色信号,并传送给分析处理系统,再接收运算控制系统的控制信号,并传送给阀门和/或泵,实现对所述阀门和/或泵的开关以及开关幅度进行控制。
所述的流体介质自动识别控制装置,还包括分别于控制系统信号连接的用于测量流体介质的温度传感器、压力传感器、流量传感器、电导率传感器、液位传感器和/或PH值测量传感器。
所述光电成像系统为工业相机、智能相机、视觉传感器、颜色传感器、灰度传感器、色标传感器和/或色差传感器。
所述光电成像系统与视镜之间设置有成像介质,所述成像介质为反射镜面、折射镜面、透视面和/或光导纤维介质。所述反射镜面和折射镜面为光滑表面的金属、玻璃、塑料等材料;所述透视面为透明玻璃、透明塑料等材料。
所述视镜外侧设有镜面清洁装置,当视镜镜面脏污、有冷凝水或结霜结冰时能够清洁镜面,保证光电成像系统成像或颜色测量质量。
所述镜面清洁装置为刮水器和/或水除霜装置和/或压缩气体除霜装置;所述水除霜装置包括设置在视镜的透明视窗周围的喷水口,与所述喷水口相连的供水装置;所述压缩气体除霜装置包括设置在视镜的透明视窗周围的喷气孔,与所述喷气孔相连的压缩气体供给装置。
所述供水装置和/或压缩气体供给装置包括加热装置或冷却装置。
所述镜面清洁装置还包括分别于所述控制系统信号相连的流体介质温度传感器、环境温度传感器、环境湿度传感器,或安装在供水装置上的供水温度传感器和/或安装在压缩气体供给装置的压缩气体温度传感器;所述控制系统还信号连接所述加热装置的开关或所述冷却装置的开关,以及所述供水装置的供水阀门和/或压缩气体供给装置的供气阀门;
所述控制系统可根据流体介质温度传感器的信号以及环境温度传感器的信号和环境湿度传感器的信号判断视镜是否需要清洁,从而启动加热装置或冷却装置,以及供水装置的阀门和/或压缩气体供给装置的阀门。
实现本发明目的之二的流体介质自动识别控制方法:
(1)在流体介质管道上安装视镜,光电成像系统通过视镜直接或间接的对管道内的流体介质成像或颜色测量;
(2)通过数据通信系统将流体介质成像或颜色测量信号传送给分析处理系统和/或运算控制系统,进行图像或颜色信号分析处理,识别管道内流体介质的属性;
(3)通过运算控制系统进行运算处理,发出指令控制管道阀门和/或泵的开关和/或开关幅度。
本发明的流体介质自动识别控制装置及识别控制方法的有益效果如下:
本发明利用光电成像系统直接或间接通过安装的工业管道视镜,对管道内的流体介质进行自动成像或颜色测量,由控制系统对成像信号进行处理、分析及识别,控制系统根据识别结果及工艺要求输出相应的通讯信号和/或控制信号,控制该工序相应的阀门和/或泵,实现了流体在线自动识别和流体生产过程控制自动化。
和现有技术相比,本发明的流体介质自动识别控制装置可以代替人眼识别管道内流体介质的外观特征,成功的将现代机器视觉技术、颜色测量技术与流体工业生产结合,减轻了操作人员的劳动强度,提高了流体工业生产过程自动化水平,填补了流体生产行业的应用空白,达到节能降耗,稳定产品质量的效果。
附图说明
图1为本发明的流体介质自动识别控制装置的一个实施例的结构示意图。
图2为本发明的流体介质自动识别控制装置的另一个实施例的结构示意图。
具体实施方式
实施例1
如图1所示,本实施例的流体介质自动识别控制装置,包括五个安装在流体介质管道上的视镜和三个控制管道内流体介质流动的阀门2和二个控制管道内流体介质流动的泵10,每个所述视镜的外部设有光电成像系统1,与所述光电成像系统1和所述阀门2、泵10电相连或信号连接的控制系统3;所述控制系统3能够通过所述光电成像系统1的成像或颜色测量信号识别管道内的流体介质,并通过控制所述阀门2和泵10的开关和/或开关幅度来控制管道内流体介质的流动。
所述光电成像系统1为工业相机、智能相机、视觉传感器、颜色传感器、灰度传感器、色标传感器和/或色差传感器。其中颜色传感器包括光密度计、分光光度计,光电成像系统具体配置可根据使用工况对识别、测量需要及要求任意配置。
配置为工业相机、智能相机、视觉传感器常用于,通过对流体介质进行成像,实现流体颜色、二种不同颜色的流体界面、流体内有无区别于流体颜色的异物进行识别,对流体颜色、流体浓度、流体在管道内的液位、区别于流体颜色的异物数量和/或移动速度进行测量。
配置为基于物体反射或透射的光信号测量技术的颜色测量仪表:颜色传感器、灰度传感器、色标传感器、色差传感器,实现流体颜色、二种不同颜色的流体界面、流体内有无区别于流体颜色的异物进行识别,对流体颜色、流体浓度、流体在管道内的液位和/或区别于流体颜色的异物移动速度进行测量与流体识别。
光电成像系统的具体配置,是根据应用需要,任意选择配置。
流体输送被测管道包括被测流体管道和被测流体存储罐;被测管道上安装的视镜,包括被测存储罐上安装的视镜或视管;流体输送被测管道配置数量是根据测量需要,实际应用时任意选择配置。
实施例2
如图1所示,本实施例的流体介质自动识别控制装置与实施例1基本结构和原理一样,不同的是:所述控制系统3包括数据通信系统31、分析处理系统32和运算控制系统33;
所述分析处理系统32对光电成像系统1的成像信号进行实时分析处理,实现对管道内流体介质的测量及识别;所述运算控制系统33对颜色信号、阀门和/或泵的运行信号和/或32对成像图像信号的处理结果数据进行运算处理,发出控制信号;所述数据通信系统31接收光电成像系统1的成像信号或颜色信号、阀门和/或泵的运行信号,传送给分析处理系统32,再接收控制信号传送给阀门2和泵10,实现对所述阀门2和泵10的开关和/或开关幅度进行控制和/或与关联设备通信。
所述分析处理系统32对光电成像系统1的成像信号进行实时处理,实现对流体介质的颜色、二种不同颜色的流体界面、流体浓度、流体内有无区别于流体颜色的异物进行识别;再通过所述运算控制系统33对流体颜色、流体在管道内的液位、流体浓度、区别于流体颜色的异物数量和/或移动速度、阀门和/或泵的运行信号进行分析运算,最后通过数据通信系统31指令所述阀门2和泵10的开关和/或开关幅度进行控制。
实施例3
如图1所示,本实施例的流体介质自动识别控制装置与实施例1和2基本结构和原理一样,不同的是:还包括分别于控制系统3信号连接的用于测量流体介质的温度传感器、压力传感器、流量传感器、电导率传感器、液位传感器和/或PH值测量传感器,上述流体介质参数测量仪表为分析处理系统32图像处理,实时提供流体介质参数测量值,该测量值为不同流体的近似图像处理判断,提供进一步细化的流体识别条件,所述流体介质参数测量仪表包括温度、压力、流量、电导率、液位、PH测量仪表及相应检测开关,简称测量仪表。
这些流体介质参数测量仪表是举例说明,实际应用时,具体流体介质参数测量仪表配置,是根据应用需要,任意选择配置。
上述流体介质参数测量仪表测量信号通过通讯模块31与控制系统3通讯,所述运算控制系统33把分析处理系统32处理后的数据进行运算处理,由所述数据通信系统31与关联设备通讯,间接或直接控制相应的阀门2和/或泵10。
实施例4
如图2所示,本发明的流体介质自动识别控制装置,包括两个安装在流体介质管道上的视镜和一个控制管道内流体介质流动的阀门2、两个控制管道内 流体介质流动的泵10,每个所述视镜的外部设有光电成像系统1,与所述光电成像系统1和所述阀门2与泵10电相连或信号连接的控制系统3;所述控制系统3能够通过所述光电成像系统1的成像识别管道内的流体介质,并通过控制所述阀门2和泵10的开关和/或开关幅度来控制管道内流体介质的流动。
所述视镜外侧设有镜面清洁装置,当视镜镜面脏污、有冷凝水或结霜结冰时能够清洁镜面,不影响光电成像系统1成像或颜色测量。
所述镜面清洁装置为水除霜装置和/或压缩气体除霜装置。
所述镜面清洁装置也可以是刮水器或者水除霜装置或者压缩气体除霜装置,或者以上三种装置的组合。
所述水除霜装置包括设置在视镜的透明视窗周围的喷水口,与所述喷水口相连的供水装置5;所述压缩气体除霜装置包括设置在视镜的透明视窗周围的喷气孔,与所述喷气孔相连的压缩气体供给装置6。
所述供水装置5和所述压缩气体供给装置6均包括加热装置。也可以使用冷却装置替换加热装置。
所述镜面清洁装置还包括分别于所述控制系统3信号相连的流体介质温度传感器7、环境温度传感器8、环境湿度传感器9,和安装在供水装置上的供水温度传感器51和/或安装在压缩气体供给装置的压缩气体温度传感器61;所述控制系统3还信号连接供水装置的加热装置开关52和压缩气体供给装置的加热装置开关62,以及所述供水装置的供水阀门53和/或压缩气体供给装置的供气阀门63;
所述控制系统3可根据流体介质温度传感器7的信号以及环境温度传感器8的信号和环境湿度传感器9的信号判断视镜是否结霜或结冰,从而启动加热装置或冷却装置,以及供水装置5的供水阀门53和/或压缩气体供给装置的供气阀门63。
所述光电成像系统与视镜之间设置有成像介质,所述成像介质为反射镜面和/或折射镜面和/或透视面和/或光纤纤维。所述反射镜面和折射镜面为光滑表面的金属、玻璃、塑料等材料;所述透视面为透明玻璃、透明塑料等材料。
所述控制系统3在光电成像系统配置为工业相机时,分析处理系统32安装在所述控制系统3上,由所述控制系统3完成流体图像或颜色信号处理及分 析功能。在配置为智能相机或视觉传感器时,分析处理系统32安装在智能相机或视觉传感器上,由智能相机或视觉传感器完成流体图像处理及分析功能,所述控制系统3是二级管理微机,二级管理微机是否配置是根据配置需要而定,是任意选择配置。
光电成像系统1、流体介质温度传感器7以及环境温度传感器8和环境湿度传感器9通过通讯模块31与控制系统3通讯,所述运算控制系统33把分析处理系统32处理后的图像或颜色数据和传感器数据进行运算处理,由所述数据通信系统31与关联设备通讯,间接或直接控制相应的阀门2和泵10。
所述分析处理系统32完成对输入的图像信号进行处理及分析,分析处理系统已固化了成熟的机器视觉算法,用户无需编程,就可对光电成像信号进行处理及分析,根据应用需要实现对流体介质的颜色、二种不同颜色的流体界面、流体内有无区别于流体颜色的异物进行识别,对流体颜色、流体浓度、液位、区别于流体颜色的异物数量、移动速度进行测量。这些流体特征是举例说明,在实际应用时,还包括分析处理系统32能识别测量的另外的流体特征,具体识别测量的流体特征项目是任意选择配置。
所述镜面清洁装置包括具有除冷凝水/霜/冰功能的压缩气体,或采用机械机构除去视镜镜面冷凝水,例如刮水器。
按供气气源分为2种方式:
集中供气——一个装置,就1个加热或冷却器,统一处理后,供各视镜清洁使用,除去镜面冷凝水;
分散供气——每个视镜都有1个加热或冷却器;
按供气气源产生分为三种方式:
工厂空压站提供的压缩空气;
风机产生的压缩气体;
压缩气瓶产生的气体。
按供气气源温度分为三种方式:
供气气源加热为热空气,用于除霜、除冰,是主要方式;
供气气源冷却为冷空气,使镜面不产生冷凝水、霜、冰;
直接使用常温压缩气体,该方式配合自来水方式,除去镜面污染物。
按除冷凝水、霜、冰、镜面脏污所用介质方式分为:
只用压缩空气除,使用于流体温度高于环境温度的场合,不会结冷凝水、霜、冰;
压缩空气+自来水;
该组件的配置是根据被测流体介质的工作温度范围决定的,属于选配组件。如在无冷凝水/霜/冰产生的工况下,该组件可以不配置。
镜面清洁装置的信号分别接入控制系统,由控制系统根据环境温度和流体介质温度的差值及环境湿度值,输出控制信号控制压缩空气加热器、压缩空气控制阀的开关,自动除去视镜镜面污染物,压缩空气的温度根据实际工艺需要设定;
所述控制系统接收来自现场测量仪表的输出信号,控制镜面除冷凝水/霜/冰组件压缩空气控制阀、水控制阀、加热器/冷却器,并与微机通讯,共同完成图像处理,所述微机包括可编程逻辑控制器PLC。
所述控制系统接收来自现场测量仪表的输出信号,控制镜面除冷凝水/霜/冰组件压缩空气控制阀、水控制阀、加热器/冷却器,及接入的具有模拟量和/或开关量输出的颜色/灰度/色差/色标传感器信号,由控制系统统一运算、处理,输出相应信号,和/或与关联设备进行通讯,直接和/或间接控制相关阀门、泵。
所述控制系统接收来自现场测量仪表的输出信号,控制镜面除冷凝水/霜/冰组件压缩空气控制阀、水控制阀、加热器/冷却器,及通过与具有通讯输出功能的颜色/灰度/色差/色标传感器进行通讯,由控制系统统一运算、处理,输出相应信号,和/或与关联设备进行通讯,直接和/或间接控制相关阀门、泵。
所述控制系统接收来自微机对图像的处理结果,和/或与流体生产的关联设备通讯,用于实现流体生产过程的自动化控制;
所述控制系统即可编程逻辑控制器,其控制功能可以集成在微机上,是否配置是根据配置需要而定,是任意选择配置。
所述测量仪表用于实时测量被测管道内的流体介质参数,流体介质参数为温度、压力、液位、流量、电导率、PH值,其作用是为分析处理系统进行图像处理时,为近似的不同流体成像处理,提供进一步的识别条件;或者控制系 统通过图像处理,把近似的不同流体图像处理结果,通过通讯输出到控制系统,由控制系统结合测量仪表实时测量值,进行逻辑判断,进一步细化识别流体。流体介质参数测量仪表,除用于细化识别流体外,其实时测量值,根据需要也用于安全生产报警。测量仪表的具体配置是根据实际使用工况对流体识别、测量需要而定,具体需要的流体介质参数测量仪表数量及具体测量参数是任意选择配置。
名词解释:
光电成像系统:包括成像设备和颜色测量仪表,所述光电成像系统配置为成像设备时,其测量信号为图像信号,控制系统安装图像处理软件,对图像信号进行处理、分析和识别;当光电成像系统配置为颜色测量仪表时,其测量信号为颜色测量信号,控制系统通过计算对颜色测量信号进行处理、分析和识别。
成像:包括成像和/或颜色测量信号。
分析处理系统:在光电成像系统配置为颜色测量仪表时,是指颜色信号分析处理系统,在光电成像系统配置为光电成像设备时,是指图像分析处理系统。
镜面清洁装置:用于清洁镜面的装置,防止镜面污染物影响测量质量,镜面污染物包括脏污、冷凝水、霜、冰。
压缩气体除霜装置:包括除冷凝水和/或霜和/或冰和/或脏污。
水除霜装置:包括除霜和/或冰和/或脏污。
光导纤维介质:是一种由玻璃或塑料制成的纤维,可作为光传导工具,光纤是光导纤维的简写。仪表测量用光导纤维分为入射光纤与反射光纤,入射光纤传导光源,也称为导光光纤;成像设备用光纤,分为导光光纤和成像光纤。
上面所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神前提下,本领域普通工程技术人员对本发明技术方案做出的各种变形和改进,均应落入本发明的权利要求书确定的保护范围内。

Claims (10)

  1. 一种流体介质自动识别控制装置,其特征在于:包括至少一个安装在流体介质管道上的视镜和至少一个控制管道内流体介质流动的阀门和/或泵,每个所述视镜的外部设置有至少一个光电成像系统,与所述光电成像系统和所述阀门和/或泵信号连接的控制系统;所述控制系统能够通过所述光电成像系统的成像识别管道内的流体介质,并通过控制所述阀门和/或泵的开关和/或开关幅度来控制流体介质的流动。
  2. 根据权利要求1所述的流体介质自动识别控制装置,其特征在于:所述控制系统包括数据通信系统、分析处理系统和运算控制系统;
    所述分析处理系统对光电成像系统的成像信号进行实时分析处理,并传送给运算控制系统,实现对流体介质进行识别;
    所述运算控制系统对分析处理系统的结果、传感器信号、阀门和/或泵运行信号数据进行运算处理,发出控制信号;
    所述数据通信系统接收光电成像系统的成像和/或颜色信号,并传送给分析处理系统,再接收运算控制系统的控制信号,并传送给阀门和/或泵,实现对所述阀门和/或泵的开关以及开关幅度进行控制。
  3. 根据权利要求1所述的流体介质自动识别控制装置,其特征在于:所述的流体介质自动识别控制装置,还包括分别于控制系统信号连接的用于测量流体介质的温度传感器、压力传感器、流量传感器、电导率传感器、液位传感器和/或PH值测量传感器。
  4. 根据权利要求1所述的流体介质自动识别控制装置,其特征在于:所述光电成像系统为工业相机、智能相机、视觉传感器、颜色传感器、灰度传感器、色标传感器和/或色差传感器。
  5. 根据权利要求1所述的流体介质自动识别控制装置,其特征在于:所述光电成像系统与视镜之间设置有成像介质,所述成像介质为反射镜面、折射镜面、透视面和/或光导纤维介质。
  6. 根据权利要求1-5任一所述的流体介质自动识别控制装置,其特征在于:所述视镜外侧设有镜面清洁装置,当视镜镜面脏污、有冷凝水或结霜结冰时能够清洁镜面,不影响所述光电成像系统成像或颜色测量。
  7. 根据权利要求6所述的流体介质自动识别控制装置,其特征在于:所述镜面清洁装置为刮水器和/或水除霜装置和/或压缩气体除霜装置;所述水除霜装置包括设置在视镜的透明视窗周围的喷水口,与所述喷水口相连的供水装置;所述压缩气体除霜装置包括设置在视镜的透明视窗周围的喷气孔,与所述喷气孔相连的压缩气体供给装置。
  8. 根据权利要求7所述的流体介质自动识别控制装置,其特征在于:所述供水装置和/或压缩气体供给装置包括加热装置或冷却装置。
  9. 根据权利要求8所述的流体介质自动识别控制装置,其特征在于:所述镜面清洁装置还包括分别于所述控制系统信号相连的流体介质温度传感器、环境温度传感器、环境湿度传感器,或安装在供水装置上的供水温度传感器和/或安装在压缩气体供给装置的压缩气体温度传感器;所述控制系统还信号连接所述加热装置的开关或所述冷却装置的开关,以及所述供水装置的供水阀门和/或压缩气体供给装置的供气阀门;
    所述控制系统可根据流体介质温度传感器的信号以及环境温度传感器的信号和环境湿度传感器的信号判断视镜是否需要清洁,从而启动加热装置或冷却装置,以及供水装置的阀门和/或压缩气体供给装置的阀门。
  10. 一种流体介质自动识别控制方法:
    (1)在流体介质管道上安装视镜,光电成像系统通过视镜直接或间接的对管道内的流体介质成像或颜色测量;
    (2)通过数据通信系统将流体介质成像或颜色测量传送给分析处理系统进行图像或颜色信号分析处理,识别管道内流体介质的属性;
    (3)通过运算控制系统进行运算处理,发出指令控制管道阀门和/或泵的开关和/或开关幅度。
PCT/CN2017/106522 2016-10-25 2017-10-17 一种流体介质自动识别控制装置及识别控制方法 WO2018077068A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610933056.1A CN106501256A (zh) 2016-10-25 2016-10-25 一种流体介质自动识别装置
CN201610933056.1 2016-10-25
CN201710948247.XA CN107807096A (zh) 2016-10-25 2017-10-12 一种流体介质自动识别控制装置及识别控制方法
CN201710948247.X 2017-10-12

Publications (1)

Publication Number Publication Date
WO2018077068A1 true WO2018077068A1 (zh) 2018-05-03

Family

ID=58319732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106522 WO2018077068A1 (zh) 2016-10-25 2017-10-17 一种流体介质自动识别控制装置及识别控制方法

Country Status (2)

Country Link
CN (2) CN106501256A (zh)
WO (1) WO2018077068A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106501256A (zh) * 2016-10-25 2017-03-15 许静 一种流体介质自动识别装置
CN111847569A (zh) * 2020-08-07 2020-10-30 中钢集团鞍山热能研究院有限公司 一种基于焦化脱硫废液颜色的智能控制系统
CN113117379A (zh) * 2021-04-06 2021-07-16 浙江省天正设计工程有限公司 一种智能化化工介质液液分层切换系统及工艺
CN113483249A (zh) * 2021-07-01 2021-10-08 杭州英集动力科技有限公司 一种基于机器视觉的蒸汽管道疏水系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090017469A1 (en) * 2005-08-25 2009-01-15 Christopher Robin Lowe Use of Holographic Sensor
JP2010524004A (ja) * 2007-04-12 2010-07-15 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ 微粒子を分析するためのシステムおよび方法
CN103608515A (zh) * 2011-04-05 2014-02-26 纳尔科公司 监测回收中和涉及回收纸浆的纸张或薄页纸制造过程中的大粘性物的方法
CN105122034A (zh) * 2013-03-15 2015-12-02 艾瑞思国际股份有限公司 用于尿样中粒子分析的流通池、鞘液和自动对焦系统以及方法
CN106501256A (zh) * 2016-10-25 2017-03-15 许静 一种流体介质自动识别装置
CN206095961U (zh) * 2016-10-25 2017-04-12 许静 一种流体介质自动识别装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105136803B (zh) * 2015-04-27 2017-12-12 内蒙古科技大学 用于气力输送中检测固相物质浓度/颗粒度大小的装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090017469A1 (en) * 2005-08-25 2009-01-15 Christopher Robin Lowe Use of Holographic Sensor
JP2010524004A (ja) * 2007-04-12 2010-07-15 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ 微粒子を分析するためのシステムおよび方法
CN103608515A (zh) * 2011-04-05 2014-02-26 纳尔科公司 监测回收中和涉及回收纸浆的纸张或薄页纸制造过程中的大粘性物的方法
CN105122034A (zh) * 2013-03-15 2015-12-02 艾瑞思国际股份有限公司 用于尿样中粒子分析的流通池、鞘液和自动对焦系统以及方法
CN106501256A (zh) * 2016-10-25 2017-03-15 许静 一种流体介质自动识别装置
CN206095961U (zh) * 2016-10-25 2017-04-12 许静 一种流体介质自动识别装置

Also Published As

Publication number Publication date
CN106501256A (zh) 2017-03-15
CN107807096A (zh) 2018-03-16

Similar Documents

Publication Publication Date Title
WO2018077068A1 (zh) 一种流体介质自动识别控制装置及识别控制方法
US10794838B2 (en) Method and device for detecting defect of cover lens in laser welding system on automobile production line
CN206431125U (zh) 一种水中总磷在线监测仪
US8614739B2 (en) Apparatus and method for analyzing fluids in vessels and pipelines
CN101629336B (zh) 棉花异纤在线检测的方法与装置
CN103134675B (zh) 一种发动机轴承润滑油喷嘴的测试装置
CN105181709A (zh) 刹车片外观缺陷组合式多光源在线检测装置及方法
CN101968453A (zh) 一种棉花中白色及无色异物的偏振检测方法及装置
CN109507150B (zh) 一种宽量程插入式浊度监测探头
CN203132827U (zh) 一种发动机轴承润滑油喷嘴的测试装置
CN206095961U (zh) 一种流体介质自动识别装置
CN109647812A (zh) 一种用于清洗航天领域管路的设备
CN112222000A (zh) 玻璃瓶满口容量及瑕疵检测装置
CN105264355A (zh) 流体诊断设备及其使用方法
CN2819201Y (zh) 高炉循环冷却水在线自动测漏装置
CN109877109B (zh) 用于遥测遥感的光学玻璃窗口自清洁气刀控制系统及装置
CN114062198A (zh) 乌氏黏度计自动检定系统及检定方法
EP1327136A1 (en) On-line system for measuring properties of a product
CN216900171U (zh) 一种油液质量在线视频监测装置
CN208206790U (zh) 一种全内反射光谱在线监测探头
CN110865065B (zh) 采用拉曼光谱分析的实时采样分析装置
CN204570244U (zh) 一种连续轧染车色差智能检测系统
CN102914546A (zh) 一种基于机器视觉的喷雾罐罐盖质量检测系统和方法
CN208350677U (zh) 喷雾检测装置
CN208013107U (zh) 一种不透明瓶在线检验系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865776

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17865776

Country of ref document: EP

Kind code of ref document: A1