WO2018077044A1 - 连铸钢包浇注末期抑制卷渣控制方法和装置 - Google Patents

连铸钢包浇注末期抑制卷渣控制方法和装置 Download PDF

Info

Publication number
WO2018077044A1
WO2018077044A1 PCT/CN2017/106043 CN2017106043W WO2018077044A1 WO 2018077044 A1 WO2018077044 A1 WO 2018077044A1 CN 2017106043 W CN2017106043 W CN 2017106043W WO 2018077044 A1 WO2018077044 A1 WO 2018077044A1
Authority
WO
WIPO (PCT)
Prior art keywords
vortex
ladle
slag
molten steel
steel
Prior art date
Application number
PCT/CN2017/106043
Other languages
English (en)
French (fr)
Inventor
申屠理锋
胡继康
奚嘉奇
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to EP17866255.7A priority Critical patent/EP3533535B1/en
Priority to JP2019522412A priority patent/JP6692992B2/ja
Priority to CA3041153A priority patent/CA3041153C/en
Priority to KR1020197014894A priority patent/KR102251636B1/ko
Priority to US16/344,512 priority patent/US11154926B2/en
Publication of WO2018077044A1 publication Critical patent/WO2018077044A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/103Distributing the molten metal, e.g. using runners, floats, distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/181Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
    • B22D11/183Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level by measuring molten metal weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/14Closures
    • B22D41/22Closures sliding-gate type, i.e. having a fixed plate and a movable plate in sliding contact with each other for selective registry of their openings
    • B22D41/38Means for operating the sliding gate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D43/00Mechanical cleaning, e.g. skimming of molten metals
    • B22D43/001Retaining slag during pouring molten metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/19Arrangements of devices for discharging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/15Tapping equipment; Equipment for removing or retaining slag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/15Tapping equipment; Equipment for removing or retaining slag
    • F27D3/1545Equipment for removing or retaining slag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/15Tapping equipment; Equipment for removing or retaining slag
    • F27D3/1545Equipment for removing or retaining slag
    • F27D3/159Equipment for removing or retaining slag for retaining slag during the pouring of the metal or retaining metal during the pouring of the slag

Definitions

  • the invention relates to a method and a device for controlling the suppression of ladle slag in continuous casting production, in particular to a method and a device for controlling slag suppression in the final casting of continuous casting ladle.
  • the molten steel is firstly flowed into the tundish from the ladle, and then the molten steel is distributed into the respective crystallizers by the tundish, and then solidified by the crystallizer and drawn into a cast slab.
  • the molten steel inside the ladle will gradually decrease as the casting progresses.
  • the steel slag in the bag will mix the molten steel into the tundish through the long nozzle to form the slag. .
  • the existing continuous casting production line uses manual or automatic slag detection means to judge the occurrence of steel slag.
  • the sliding nozzle is closed in time to complete the pouring. .
  • the average remaining casting residue (steel water + steel slag) of 150 tons of ladle is 4 tons.
  • the pure molten steel is more than 2 tons, and the average casting residue of the 300-ton ladle is 6 tons, of which the pure molten steel is more than 3 tons.
  • These molten steels are generally treated as steel slag, resulting in great waste of resources.
  • the reason why a large amount of molten steel remains in the bag at the end of the ladle pouring is that the molten steel generates a rotary motion in the ladle in the middle and late pouring, and finally a vortex is formed above the tapping port, so that the steel slag floating above the molten steel is vortexed.
  • the adsorption is rolled down.
  • the method is to tilt the whole ladle at a certain angle in the later stage of ladle pouring, so that The molten steel is biased to one side, thereby increasing the height of the molten steel and allowing the molten steel to be left more; for example, the ladle slag slag technology, the method is to arrange some raised slag dams at the bottom of the ladle, thereby slowing the flow speed of the molten steel in the later stage, and reducing the volume Slag phenomenon.
  • the practical application effects of these methods are not satisfactory. At present, there is no effective means in the continuous casting and pouring steel production at home and abroad to suppress the slag phenomenon and reduce the ladle residual steel.
  • the object of the present invention is to provide a method and a device for controlling the slag suppression in the final casting of continuous casting ladle, which can effectively suppress the phenomenon of vortex adsorption and slag in the middle and late pouring of ladle and realize optimal control of pouring. Therefore, the residual steel after the ladle is poured is reduced, and the molten steel yield is increased.
  • a control method for suppressing slag at the end of continuous casting ladle pouring comprises the following steps:
  • the current steel slag content is measured by a steel slag detecting device
  • step (9) judging whether the slag has been slag according to the steel slag content, if the condition of the slag has been satisfied, the process proceeds to step (9) to destroy the vortex control process, otherwise it enters the suppression vortex type control process of step (8);
  • the control quantity is calculated by suppressing the vortex optimization model and the electromagnetic force braking device is driven to generate the disturbance power opposite to the direction of the steel flow, suppressing the newly formed surface concave vortex, delaying the formation of the through vortex, and delaying The occurrence of slag reduces the residual molten steel in the ladle;
  • Destruction vortex control process that is, the optimization control process after the formation of the through vortex; according to the measured data of the vortex surface size, vortex height, nozzle size, combined with the viscosity characteristics of the molten steel, the sliding nozzle control is calculated by destroying the vortex optimization model.
  • the molten steel flows out.
  • a continuous casting ladle pouring end suppressing slag control device comprising: ladle weight detector, molten steel flow field distribution detector, electromagnetic force brake, steel slag detector, sliding nozzle controller, sliding nozzle opening inspection Detector, process signal interface unit, optimization control model calculation unit;
  • the ladle weight detector is a weight measuring sensor installed on a ladle turret for measuring the weight of the ladle currently being poured in real time, and outputting the weight value to the optimization control model calculation unit;
  • the molten steel flow field distribution The detector is a measuring device, which is arranged in the ladle for measuring the formation of the molten steel vortex in the current ladle, measuring the vortex surface size and the vortex height, and transmitting the measurement result to the optimization model calculation unit in real time;
  • the electromagnetic force The brake is a device for generating electromagnetic force, installed near the tapping port of the ladle, for generating a force opposite to the direction of the steel flow, and receiving an output control of the optimization control model calculation unit;
  • the steel slag detector is a method for measuring the percentage of steel slag The sensor is installed above the sliding nozzle for real-time measurement of the amount of steel slag contained in the current flowing through the sliding nozzle, and outputs the measurement result to the optimization control model calculation unit;
  • the method and device for controlling the slag suppression in the continuous casting ladle of the present invention analyzes the formation process of the vortex in the ladle during the middle and late casting of the continuous casting ladle, and adopts the suppression control method for the two processes of vortex formation through different optimization control strategies. Destroy the formation of vortices, delay the occurrence of slag, and at the same time realize the outflow of molten steel without slag, reduce the residual steel of ladle, and increase the yield of molten steel.
  • the invention can effectively suppress the vortex adsorption slag phenomenon in the ladle and realize the optimal control of the pouring in the middle and late pouring of the ladle, thereby reducing the residual steel after the pouring of the ladle and increasing the yield of the molten steel.
  • FIG. 1 is a schematic view of a control device for suppressing slag at the end of casting of a continuous casting ladle according to the present invention
  • FIG. 2 is a schematic view of a vortex slag, wherein: FIG. 2(a) is a vortex slag, and FIG. 2(b) is a through vortex slag;
  • Fig. 3 is a flow chart of the method for controlling the slag suppression in the final casting of the continuous casting ladle according to the present invention.
  • a continuous casting ladle pouring end suppressing slag control device comprises: ladle weight detector 4, molten steel flow field distribution detector 5, electromagnetic force brake 6, steel slag detector 7, sliding nozzle controller 8, sliding a nozzle opening degree detector 9, a process signal interface unit 10, an optimization control model calculation unit 11;
  • the ladle weight detector 4 is a weight measuring sensor, mounted on the ladle 1 turntable for real-time measurement of the weight of the ladle currently being poured, while outputting the weight value to the optimization model calculation unit 11;
  • the molten steel flow field distribution detector 5 is a measuring device disposed in the ladle 1 and its main function is to measure the formation of the molten steel vortex in the current ladle, measure the swirl vortex size and the vortex height, and measure the measurement result. Real-time transmission to the 11 optimization model calculation unit; the molten steel flow field distribution detector 5 is a patented product, and its patent number is 2014102836130.
  • the electromagnetic force brake 6 is a device for generating electromagnetic force, which is installed near the steel tapping port for generating a force opposite to the direction of the steel flow, and is subjected to an output control by the optimization control model calculation unit 11;
  • the steel slag detector 7 is a sensor for measuring the percentage of steel slag, which is installed above the 2 sliding nozzles for real-time measurement of the amount of steel slag contained in the current flowing through the sliding nozzle, and outputs the measurement results to 11 Optimize the control model calculation unit.
  • the sliding nozzle controller 8 is a device for driving the movement of the sliding nozzle for controlling the opening and closing motion of the sliding nozzle, which accepts the output control of the optimization control model calculating unit 11.
  • the sliding nozzle opening degree detector 9 is a device for measuring the opening degree of the current sliding nozzle, and the detection result is also sent to the 11 optimization control model calculation unit in real time; here, the meaning of the sliding nozzle opening degree is explained, and the molten steel is passed through the sliding nozzle.
  • the size of the opening from the ladle to the tundish refers to the amount of flux flowing through the molten steel.
  • the process signal interface unit 10 is a signal conversion device, which has two functions, one is to present The signal information of the cast steel grade is converted into a code, and the second is to receive the net weight signal of the current cast steel ladle, and output the information to the optimization control model calculation unit;
  • the optimization control model calculation unit 11 is a computer device having a data acquisition, an optimization model calculation, and a control output function, which receives a 4 ladle weight detector, a 5 steel flow field distribution detector, a 7 steel slag detector, and 9 slides.
  • the relevant signals and data from the nozzle opening detector and the 10 process signal interface unit are calculated and analyzed by the optimized control model, and the corresponding optimized control strategy is obtained and output to the 6 electromagnetic force brake and the 8 sliding nozzle controller for suppressing the slag control.
  • the first process is to produce a surface vortex above the taphole, as shown in Figure 2(a).
  • the vortex is only a small concave vortex.
  • the vortex is relatively small and has not yet formed completely.
  • the adsorption force is relatively small, and only a small amount of steel slag is rolled up, that is, the middle slag referred to in the process. .
  • the second process is to gradually form a through vortex as the surface vortex gradually increases. As shown in Fig. 2(b), the vortex at this time is completely formed, and the adsorption force is relatively large, and a large amount of steel slag is rolled down. This is the slag described in the process.
  • the method for controlling the final slag suppression of continuous casting ladle in the present invention is implemented on the basis of the vortex formation process in the above-mentioned suppression slag control device and the pouring process.
  • the control flow is shown in Fig. 3.
  • the control method comprises the following steps:
  • the optimization model calculation unit 11 reads the current cast steel code and the weight of the ladle through the process signal interface unit 10;
  • the current ladle weight is measured by the ladle weight detector 4 mounted on the ladle 1 turntable, and the measurement result is transmitted to the optimization model calculation unit 11, which calculates the weight based on the existing weight of the ladle itself.
  • the optimization model calculation unit 11 determines whether the current molten steel level is up to the condition of the slag control, that is, whether the molten steel level h is less than H; H is a constant, which is a height set according to the characteristics of the specific continuous casting line. Value; when the molten steel level h reaches the slag control condition, enter the fourth step; otherwise, jump to the second step;
  • the fourth step through the molten steel flow field distribution detector 5, measuring the molten steel vortex surface size and vortex height in the current ladle, and outputting the measurement result to the optimization model calculation unit 11;
  • the fifth step through the sliding nozzle opening detector 9, measuring the current opening degree of the sliding nozzle 2, and outputting the measurement result to the optimization model calculating unit 11;
  • the steel slag detector 7 is used to measure the current steel slag content s flowing through the water outlet, and the measurement result is output to the optimization model calculation unit 11;
  • the seventh step is to determine whether the slag has been slag according to the content of the steel slag, that is, whether the current steel slag content s is large S; S is the slag alarm value set according to the current continuous casting production requirement; when the steel slag content s satisfies the slag condition, enter the first Nine steps to destroy the vortex control process; otherwise, enter the eighth step to suppress the vortex control process;
  • the vortex control process is suppressed, which is the control of the time from the start of the surface vortex formation to the formation of the through vortex above the taphole.
  • the process uses a control method that suppresses the formation of vortices, that is, delays the formation of through vortices, thus delaying the occurrence of slag and reducing residual molten steel in the ladle.
  • the specific control process is: after obtaining the data of the vortex surface size, the vortex height, the sliding nozzle opening degree and the steel slag content, combined with the viscosity characteristics of the molten steel, the control amount is calculated by suppressing the vortex optimization model, and the electromagnetic force brake 6 is generated to generate the direction of the steel flow.
  • the opposite disturbance power suppresses the newly formed surface concave vortex, delays its becoming larger and stronger, and delays the formation of the through vortex.
  • the calculation formula of the disturbance power control amount is as follows:
  • F is the current disturbance power control amount
  • K is the correction coefficient for the disturbance power, which is determined according to the size of the taphole at the bottom of the ladle.
  • D v is the diameter of the vortex surface of the current vortex
  • H v is the current vortex height
  • h is the molten steel level in the current ladle
  • O s is the current sliding nozzle opening degree
  • s is the steel slag content currently flowing through the water outlet
  • is the viscosity of the currently poured molten steel
  • m, n, a, b, and c are the vortex surface diameter, the vortex height, the nozzle opening degree, the steel slag content, and the molten steel viscosity correction coefficient. These correction factors need to be determined according to the parameters of the specific caster equipment and are constant. Where m and n are determined according to the diameter of the bottom of the ladle; The size is determined when the nozzle is fully opened; b is determined according to the size of the taphole; c is determined according to the temperature range of the molten steel in the ladle.
  • the vortex control process is destroyed, which is the control after the formation of the through vortex, that is, after the slag is formed.
  • the process uses a control method that destroys the vortex, breaks or shifts the already formed through vortex and weakens the adsorption force of the vortex, avoids the occurrence of slag, and leaves the steel slag in the bag to cause the molten steel to flow out.
  • the vortex is completely formed and penetrated, and the adsorption force is large.
  • the electromagnetic force cannot brake the vortex. Therefore, it is necessary to simultaneously use the electromagnetic force brake and the sliding nozzle switch action to realize the control.
  • the specific control process is: after obtaining the data of the vortex surface size, the vortex height, the sliding nozzle opening degree, the molten steel viscosity characteristic, etc., the sliding nozzle control amount and the electromagnetic force control amount are calculated by destroying the vortex optimization model, and the sliding nozzle controller 8 is driven. A rapid oscillating action is generated, and the electromagnetic force brake 6 is driven to generate a force opposite to the direction of the flow of the steel, destroying the already formed through vortex.
  • the calculation formula of the sliding nozzle control amount is as follows:
  • L is the sliding nozzle oscillation control movement amplitude
  • M is the correction coefficient of the nozzle control amount calculation, and the parameter is determined according to the control level set by the user.
  • D v is the diameter of the vortex surface of the current vortex
  • H v is the current vortex height
  • O s is the current sliding nozzle opening degree
  • is the viscosity of the currently poured molten steel
  • i, j, e, f, g are the vortex surface diameter, the vortex height, the nozzle opening degree, the nozzle opening degree compensation, and the molten steel viscosity correction coefficient. These correction factors need to be determined according to the parameters of the specific caster equipment and are constant. Where i and j are determined according to the diameter of the bottom of the ladle; e and f are determined according to the size of the nozzle when the nozzle is fully opened and the total stroke of the nozzle; g is determined according to the temperature range of the molten steel in the ladle.
  • the calculation formula of the electromagnetic force control amount is as follows:
  • F' is the current electromagnetic force control amount
  • N is a correction coefficient for calculating the electromagnetic force, and the coefficient is determined according to the size of the taphole at the bottom of the ladle, which is a constant;
  • D v is the diameter of the vortex surface of the current vortex
  • H v is the current vortex height
  • O s is the current sliding nozzle opening degree
  • s is the steel slag content currently flowing through the water outlet
  • is the viscosity of the currently poured molten steel
  • p, q, h, r, and t are the vortex surface diameter, the vortex height, the nozzle opening degree, the steel slag content, and the molten steel viscosity correction coefficient. These correction factors need to be determined according to the parameters of the specific caster equipment and are constant. Wherein, p and q are determined according to the diameter of the bottom of the ladle; h is determined according to the size when the nozzle is completely opened; r is determined according to the size of the taphole; t is determined according to the temperature range of the molten steel in the ladle.
  • the control flow it is judged whether the control flow is ended, and if the end condition is satisfied, the process is exited and the control process is terminated. Otherwise, judge whether to replace the ladle, because different ladle means to restart the new casting, the ladle itself has different weight, you need to regain the self-weight value of the ladle after replacement, and the steel grade may be different after replacing the ladle, you need to measure the new steel.
  • the control flow jumps to the first step to repeat the above steps. If the inspection ladle is not replaced, the control flow jumps to the fourth step to repeat the above steps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

一种连铸生产中的钢包(1)卷渣抑制的控制方法和装置,优化控制模型计算单元(11)接收钢包重量检测器(4)、钢水流场分布检测器(5)、钢渣检测器(7)、滑动水口开度检测器(9)、工艺信号接口单元(10)传来的相关信号和数据,通过优化控制模型计算分析,得出相应的优化控制策略并输出到电磁力制动器(6)和滑动水口控制器(8)进行抑制卷渣控制,针对漩涡形成的两个过程,通过不同的优化控制策略,分别采用抑制和破坏漩涡形成,推迟下渣发生,同时实现在不出渣的情况下使钢水流出,减少钢包残留钢,提高钢水收得率。

Description

连铸钢包浇注末期抑制卷渣控制方法和装置 技术领域
本发明涉及一种连铸生产中的钢包卷渣抑制的控制方法和装置,尤其涉及一种连铸钢包浇注末期抑制卷渣控制方法和装置。
背景技术
连铸生产中,钢水首先由钢包流入中间包,再由中间包将钢水分配到各个结晶器,然后经结晶器凝固结晶并拉铸成铸坯。钢水从钢包流入中间包过程中,随着浇注的进行,钢包内部的钢水液面会逐渐下降,到浇注快结束的时候,包内的钢渣会混着钢水经长水口流入中间包,形成下渣。过量的钢渣不仅会降低钢水的洁净度,影响铸坯质量,甚至导致拉漏事故;而且会加速中间包耐火材料的腐蚀,缩短其使用寿命,增加中间包渣壳重量,影响连铸生产的进行。
为了减少从钢包中流出过量钢渣所产生的不良影响,现有连铸生产线采用人工或自动下渣检测手段来判断钢渣的出现,当检测到钢渣超过工艺规定值时,及时关闭滑动水口,结束浇注。但此时包内还留有大量的纯净钢水,通过长期对连铸生产线大包终浇后钢包翻渣量的数据统计,150吨的钢包平均剩余的铸余渣(钢水+钢渣)为4吨以上,其中纯净钢水2吨以上,300吨的钢包平均铸余渣为6吨,其中纯净钢水3吨以上,这些钢水一般全当钢渣处理,造成资源的很大浪费。而引起钢包浇注结束时包内还残留有大量钢水的原因,是由于在浇注中后期,钢水在钢包内产生旋转运动,最终会在出钢口上方形成漩涡,使漂浮在钢水上面的钢渣被漩涡的吸附作用卷下。
针对连铸钢包浇注中后期存在漩涡吸附卷渣的问题,有一些方法来抑制卷渣现象来降低钢包残留钢:如钢包倾斜浇注法,该方法是在钢包浇注后期将整个钢包倾斜一定角度,这样使得钢水偏向一边,从而加大钢水高度,让钢水多留出;如钢包挡渣堰技术,该方法是在钢包底部布置一些凸起的挡渣坝,从而减慢钢水后期的流动速度,减弱卷渣现象。但这些方法实际应用效果都不理想,目前国内外在连铸浇钢生产中,还没有有效的手段来抑制卷渣现象而减少钢包残留钢。
发明内容
本发明的目的在于提供一种连铸钢包浇注末期抑制卷渣控制方法和装置,该控制方法和装置在钢包浇注中后期能够对包内漩涡吸附卷渣现象进行有效的抑制并实现浇注的优化控制,从而减少钢包浇注结束后的残留钢,提高钢水收得率。
为了实现上述技术目的,本发明采用如下技术方案:
一种连铸钢包浇注末期抑制卷渣的控制方法,包括如下步骤:
(1)采集当前正在浇注的钢种代码和钢包的自身重量,获得钢水的粘度特性和钢包自重;
(2)测量钢包总重量,减去钢包本身自重后得到钢水净重,根据钢包的形状尺寸,计算出钢包内钢水的实际液位高度;
(3)根据钢水液位高度判断浇注过程是否进入需要进行卷渣控制过程,如果满足条件则进入到下一步骤,否则返回步骤(2)继续测量;
(3)通过钢水流场分布测量装置,测量得到当前钢水涡面尺寸和漩涡高度;
(4)通过钢包滑动水口开度测量装置,测量得到水口开度大小;
(5)通过钢渣检测装置,测量得到当前钢渣含量;
(6)根据钢渣含量判断是否已下渣,如果满足已经下渣的条件则进入步骤(9)破坏漩涡控制过程,否则进入步骤(8)的抑制漩涡型控制过程;
(8)抑制漩涡控制过程,即在出钢口上方刚生成表面凹涡开始到形成贯通漩涡这段时间内的优化控制过程;根据测量到的涡面尺寸、漩涡高度、水口大小和钢渣含量的数据,结合钢水粘度特性,通过抑制漩涡优化模型计算出控制量并驱动电磁力制动装置产生与钢流方向相反的扰动力,抑制刚形成的表面凹涡,延迟贯通漩涡的形成,也就延迟了下渣的发生,减少了钢包内的残留钢水;
(9)破坏漩涡控制过程,即在贯通漩涡形成之后的优化控制过程;根据测量到的涡面尺寸、漩涡高度、水口大小的数据,结合钢水粘度特性,通过破坏漩涡优化模型计算出滑动水口控制量和电磁作用力,并联合控制滑动水口和驱动电磁力制动装置动作打散或移位已经形成的贯通漩涡并减弱漩涡的吸附力,避免卷渣的发生,使钢渣留在包中而使钢水流出。
一种连铸钢包浇注末期抑制卷渣控制装置,包括:钢包重量检测器、钢水流场分布检测器、电磁力制动器、钢渣检测器、滑动水口控制器、滑动水口开度检 测器、工艺信号接口单元、优化控制模型计算单元;
所述钢包重量检测器是一种测量重量的传感器,安装在钢包回转台上,用于实时测量当前正在浇注的钢包重量,同时将重量值输出到优化控制模型计算单元;所述钢水流场分布检测器是一种测量装置,设置在钢包内,用于测量当前钢包内钢水漩涡的形成情况,测量漩涡涡面尺寸和漩涡高度,并将测量结果实时传输到优化模型计算单元;所述电磁力制动器是一种产生电磁力的装置,安装在钢包出钢口附近,用于产生和钢流方向相反的作用力,接受优化控制模型计算单元输出控制;所述钢渣检测器是一种测量钢渣百分比含量的传感器,安装在滑动水口上方,用于实时测量当前流过滑动水口的钢流中所含钢渣的量,同时将测量结果输出到优化控制模型计算单元;所述滑动水口控制器是一种驱动滑动水口运动的装置,用于控制滑动水口开和关动作,其接受优化控制模型计算单元输出控制;所述滑动水口开度检测器是一种测量当前滑动水口开度大小的装置,检测结果也实时输送到优化控制模型计算单元;钢水是通过滑动水口从钢包流到中间包,滑动水口开度的大小就是指钢水流过的通量的大小;所述工艺信号接口单元是一种信号转换装置,其有二个作用,一是将当前浇注的钢种信号信息转换为代码,二是接收当前浇注钢包的净重量信号,并将这些信息输出给优化控制模型计算单元;所述优化控制模型计算单元是一种具有数据采集、优化模型计算、控制输出功能的计算机设备,其接收钢包重量检测器、钢水流场分布检测器、钢渣检测器、滑动水口开度检测器、工艺信号接口单元传来的相关信号和数据,通过优化控制模型计算分析,得出相应的优化控制策略并输出到电磁力制动器和滑动水口控制器进行抑制卷渣控制。
本发明连铸钢包浇注末期抑制卷渣控制方法和装置分析了在连铸钢包浇注中后期的钢包内漩涡的形成过程,针对漩涡形成的两个过程,通过不同的优化控制策略,分别采用抑制和破坏漩涡形成,推迟下渣发生,同时实现在不出渣的情况下使钢水流出,减少钢包残留钢,提高钢水收得率。
本发明在钢包浇注中后期能够对钢包内漩涡吸附卷渣现象进行有效的抑制并实现浇注的优化控制,从而减少钢包浇注结束后的残留钢,提高钢水收得率。
附图说明
图1为本发明连铸钢包浇注末期抑制卷渣控制装置示意图;
图2为漩涡卷渣示意图,其中:图2(a)为凹涡卷渣,图2(b)为贯通涡卷渣;
图3为本发明连铸钢包浇注末期抑制卷渣控制方法流程图。
图中:1钢包,2滑动水口,3中间包,4钢包重量检测器,5钢水流场分布检测器,6电磁力制动器,7钢渣检测器,8滑动水口控制器,9滑动水口开度检测器,10工艺信号接口单元,11优化控制模型计算单元。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明。
参见图1,一种连铸钢包浇注末期抑制卷渣控制装置,包括:钢包重量检测器4、钢水流场分布检测器5、电磁力制动器6、钢渣检测器7、滑动水口控制器8、滑动水口开度检测器9、工艺信号接口单元10、优化控制模型计算单元11;
所述钢包重量检测器4是一种测量重量的传感器,安装在钢包1回转台上,用于实时测量当前正在浇注的钢包重量,同时将重量值输出到优化模型计算单元11;
所述钢水流场分布检测器5是一种测量装置,设置在钢包1内,其主要作用是用来测量当前钢包内钢水漩涡的形成情况,测量漩涡涡面尺寸和漩涡高度,并将测量结果实时传输到11优化模型计算单元;钢水流场分布检测器5是专利产品,其专利号为2014102836130。
所述电磁力制动器6是一种产生电磁力的装置,其安装在钢包出钢口附近,用于产生和钢流方向相反的作用力,接受优化控制模型计算单元11输出控制;
所述钢渣检测器7是一种测量钢渣百分比含量的传感器,其安装在2滑动水口上方,用来实时测量当前流过滑动水口的钢流中所含钢渣的量,同时将测量结果输出到11优化控制模型计算单元。
所述滑动水口控制器8是一种驱动滑动水口运动的装置,用于控制滑动水口开和关动作,其接受优化控制模型计算单元11输出控制。
所述滑动水口开度检测器9是一种测量当前滑动水口开度大小的装置,检测结果也实时输送到11优化控制模型计算单元;这里说明一下滑动水口开度的意思,钢水是通过滑动水口从钢包流到中间包的,其开度的大小就是指钢水流过的通量的大小。
所述工艺信号接口单元10是一种信号转换装置,其有二个作用,一是将当前 浇注的钢种信号信息转换为代码,二是接收当前浇注钢包的净重量信号,并将这些信息输出给1优化控制模型计算单元;
所述优化控制模型计算单元11是一种具有数据采集、优化模型计算、控制输出功能的计算机设备,其接收由4钢包重量检测器、5钢水流场分布检测器、7钢渣检测器、9滑动水口开度检测器、10工艺信号接口单元传来的相关信号和数据,通过优化控制模型计算分析,得出相应的优化控制策略并输出到6电磁力制动器和8滑动水口控制器进行抑制卷渣控制。
参见图2,在连铸生产过程中,随着钢包浇注的进行,钢包内部的钢水液面会逐渐下降,到浇注的中后期,钢水在钢包内会产生旋转流动,在出钢口上方附近形成漩涡,连铸钢包浇注过程中钢包内漩涡的形成过程和吸附卷渣的情况及其复杂,主要可以分为两个过程:
第一个过程是在出钢口上方生产表面凹涡,如图2(a)所示。漩涡刚形成的时候,只是一个很小的凹涡,这时的漩涡比较小,还没有完全形成,吸附力比较小,只会卷下很少量的钢渣,也就是工艺上所说的中间渣。
第二个过程是随着表面凹涡逐渐增大,最终形成贯通涡。如图2(b)所示,这时的漩涡已经完全形成,吸附力比较大,会大量的卷下钢渣,这就是工艺上所说的下渣。
本发明的连铸钢包浇注末期抑制卷渣控制方法是在上述抑制卷渣控制装置和浇注过程中漩涡形成过程基础上实现的,控制流程参见图3,该控制方法包括如下步骤:
第一步,优化模型计算单元11通过工艺信号接口单元10读取当前浇注的钢种代码和钢包的自身重量;
第二步,通过安装在钢包1回转台上的钢包重量检测器4测量当前钢包重量,并将测量结果传送到优化模型计算单元11,优化模型计算单元11根据已经存在的钢包自身重量,计算出当前钢包内钢水的净重量,并结合钢包形状尺寸,计算出当前钢包内钢水液面高度h;
第三步,优化模型计算单元11判断当前钢水液面高度是否达到卷渣控制的条件,即钢水液面高度h是否小于H;H是一个常量,是根据具体连铸生产线特征设定的一个高度值;当钢水液面高度h到达卷渣控制条件时,进入第四步;否则,跳转到第二步;
第四步,通过钢水流场分布检测器5,测量当前钢包内钢水涡面尺寸和漩涡高度,同时将测量结果输出到优化模型计算单元11;
第五步,通过滑动水口开度检测器9,测量当前滑动水口2开度大小,同时将测量结果输出到优化模型计算单元11;
第六步,通过钢渣检测器7,测量当前流过出水口的钢渣含量s,同时将测量结果输出到优化模型计算单元11;
第七步,根据钢渣含量判断是否已经下渣,即当前钢渣含量s是否大S;S是根据当前连铸生产要求设定的下渣报警值;当钢渣含量s满足下渣条件时,进入第九步破坏漩涡控制流程;否则,进入第八步抑制漩涡控制流程;
第八步,抑制漩涡控制过程,这是在出钢口上方刚生成表面凹涡开始到形成贯通漩涡这段时间的控制。该过程采用抑制漩涡形成的控制方法,即延迟贯通漩涡的形成,这样就延迟了下渣的发生,减少了钢包内的残留钢水。具体控制过程为:得到涡面尺寸、漩涡高度、滑动水口开度和钢渣含量的数据后,结合钢水粘度特性,通过抑制漩涡优化模型计算出控制量,并驱动电磁力制动器6产生与钢流方向相反的扰动力,抑制刚形成的表面凹涡,延缓其变大变强,延迟贯通漩涡的形成。扰动力控制量计算公式如下:
Figure PCTCN2017106043-appb-000001
式中:F为当前扰动力控制量;
K为扰动力计算修正系数,该系数根据钢包底部出钢口大小确定,
为一常数;
Dv为当前漩涡的涡面直径大小;
Hv为当前漩涡高度大小;
h为当前钢包内钢水液位高度;
Os为当前滑动水口开度大小;
s为当前流过出水口的钢渣含量;
μ为当前浇注的钢水粘度;
m、n、a、b、c分别为涡面直径、漩涡高度、水口开度、钢渣含量、钢水粘度修正系数。这些修正系数,需要根据具体连铸机设备参数确定,都为常数。其中,m、n根据钢包底部直径大小确定;a根据 水口完全打开时大小确定;b根据出钢口大小确定;c根据钢包内钢水温度范围确定。
第九步,破坏漩涡控制过程,这是在贯通漩涡形成之后,即下渣后的控制。该过程采用破坏漩涡的控制方法,打散或移位已经形成的贯通漩涡并减弱漩涡的吸附力,避免卷渣的发生,使钢渣留在包中而使钢水流出。下渣发生以后,漩涡已完全形成并贯通,吸附力较大,仅靠电磁力制动无法破坏漩涡,所以在该过程中需要同时利用电磁力制动和滑动水口开关动作来实现控制。具体控制过程为:得到涡面尺寸、漩涡高度、滑动水口开度、钢水粘度特性等数据后,通过破坏漩涡优化模型计算出滑动水口控制量和电磁作用力控制量,并驱动滑动水口控制器8产生快速振荡动作,驱动电磁力制动器6产生与钢流方向相反的作用力,破坏已经形成的贯通漩涡。滑动水口控制量计算公式如下:
Figure PCTCN2017106043-appb-000002
式中:L为滑动水口振荡控制移动幅度;
M为水口控制量计算修正系数,该参数根据用户设定的控制等级确
定,为一常数;
Dv为当前漩涡的涡面直径大小;
Hv为当前漩涡高度大小;
Os为当前滑动水口开度大小;
μ为当前浇注的钢水粘度;
i、j、e、f、g分别为涡面直径、漩涡高度、水口开度、水口开度补偿、钢水粘度修正系数。这些修正系数,需要根据具体连铸机设备参数确定,都为常数。其中,i、j根据钢包底部直径大小确定;e、f根据水口完全打开时大小和水口总行程确定;g根据钢包内钢水温度范围确定。
电磁作用力控制量计算公式如下:
F'=N·(pDv+qHv)·hOs·rs·tμ
式中:F’为当前电磁作用力控制量;
N为电磁作用力计算修正系数,该系数根据钢包底部出钢口大小确定,为一常数;
Dv为当前漩涡的涡面直径大小;
Hv为当前漩涡高度大小;
Os为当前滑动水口开度大小;
s为当前流过出水口的钢渣含量;
μ为当前浇注的钢水粘度;
p、q、h、r、t分别为涡面直径、漩涡高度、水口开度、钢渣含量、钢水粘度修正系数。这些修正系数,需要根据具体连铸机设备参数确定,都为常数。其中,p、q根据钢包底部直径大小确定;h根据水口完全打开时大小确定;r根据出钢口大小确定;t根据钢包内钢水温度范围确定。
第十步,判断是否结束控制流程,如果结束条件满足则退出流程,终止控制过程。否则,判断是否更换钢包,因为不同钢包意味着重新开始新的浇注,钢包的自身重量不同,需要重新获得更换后的钢包自重值,同时更换钢包后钢种也可能会不同,需要测量新的钢种信息,此时控制流程跳转到第一步重复上述步骤。如果检测钢包没有更换,则控制流程跳转到第四步重复上述步骤。
以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围,因此,凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

  1. 一种连铸钢包浇注末期抑制卷渣控制方法,其特征是:包括如下步骤:
    (1)采集当前正在浇注的钢种代码和钢包的自身重量,获得钢水的粘度特性和钢包自重;
    (2)测量钢包总重量,减去钢包本身自重后得到钢水净重,根据钢包的形状尺寸,计算出钢包内钢水的实际液位高度;
    (3)根据钢水液位高度判断浇注过程是否进入需要进行卷渣控制过程,如果满足条件则进入到下一步骤,否则返回步骤(2)继续测量;
    (4)通过钢水流场分布测量装置,测量得到当前钢水涡面尺寸和漩涡高度;
    (5)通过钢包滑动水口开度测量装置,测量得到水口开度大小;
    (6)通过钢渣检测装置,测量得到当前钢渣含量;
    (7)根据钢渣含量判断是否已下渣,如果满足已经下渣的条件则进入步骤(9)破坏漩涡控制过程,否则进入步骤(8)的抑制漩涡型控制过程;
    (8)抑制漩涡控制过程,即在出钢口上方刚生成表面凹涡开始到形成贯通漩涡这段时间内的优化控制过程;根据测量到的涡面尺寸、漩涡高度、水口开度大小和钢渣含量的数据,结合钢水粘度特性,通过抑制漩涡优化模型计算出控制量并驱动电磁力制动装置产生与钢流方向相反的扰动力,抑制刚形成的表面凹涡,延迟贯通漩涡的形成,也就延迟了下渣的发生,减少了钢包内的残留钢水;
    (9)破坏漩涡控制过程,即在贯通漩涡形成之后的优化控制过程;根据测量到的涡面尺寸、漩涡高度、水口开度大小的数据,结合钢水粘度特性,通过破坏漩涡优化模型计算出滑动水口控制量和电磁作用力,并联合控制滑动水口和驱动电磁力制动装置动作打散或移位已经形成的贯通漩涡并减弱漩涡的吸附力,避免卷渣的发生,使钢渣留在包中而使钢水流出。
  2. 根据权利要求1所述的连铸钢包浇注末期抑制卷渣控制方法,其特征是:所述抑制漩涡优化模型中的扰动力控制量计算公式如下:
    Figure PCTCN2017106043-appb-100001
    式中:F为当前扰动力控制量;
    K为扰动力计算修正系数;
    Dv为当前漩涡的涡面直径大小;
    Hv为当前漩涡高度大小;
    h为当前钢包内钢水液位高度;
    Os为当前滑动水口开度大小;
    s为当前流过出水口的钢渣含量;
    μ为当前浇注的钢水粘度;
    m、n、a、b、c分别为涡面直径、漩涡高度、水口开度、钢渣含量、钢水粘度修正系数。
  3. 根据权利要求1所述的连铸钢包浇注末期抑制卷渣控制方法,其特征是:所述破坏漩涡优化模型中的滑动水口控制量计算公式如下:
    Figure PCTCN2017106043-appb-100002
    式中:L为滑动水口振荡控制移动幅度;
    M为水口控制量计算修正系数;
    Dv为当前漩涡的涡面直径大小;
    Hv为当前漩涡高度大小;
    Os为当前滑动水口开度大小;
    μ为当前浇注的钢水粘度;
    i、j、e、f、g分别为涡面直径、漩涡高度、水口开度、水口开度补偿、钢水粘度修正系数。
  4. 根据权利要求1或3所述的连铸钢包浇注末期抑制卷渣控制方法,其特征是:所述破坏漩涡优化模型中的电磁作用力计算公式如下:
    F'=N·(pDv+qHv)·hOs·rs·tμ
    式中:F’为当前电磁作用力控制量;
    N为电磁作用力计算修正系数;
    Dv为当前漩涡的涡面直径大小;
    Hv为当前漩涡高度大小;
    Os为当前滑动水口开度大小;
    s为当前流过出水口的钢渣含量;
    μ为当前浇注的钢水粘度;
    p、q、h、r、t分别为涡面直径、漩涡高度、水口开度、钢渣含量、钢水粘度修正系数。
  5. 一种连铸钢包浇注末期抑制卷渣控制装置,其特征是:包括:
    钢包重量检测器(4)、钢水流场分布检测器(5)、电磁力制动器(6)、钢渣检测器(7)、滑动水口控制器(8)、滑动水口开度检测器(9)、工艺信号接口单元(10)、优化控制模型计算单元(11);
    所述钢包重量检测器(4)是一种测量重量的传感器,安装在钢包(1)回转台上,用于实时测量当前正在浇注的钢包重量,同时将重量值输出到优化模型计算单元(11);
    所述钢水流场分布检测器(5)是一种测量装置,设置在钢包(1)内,用于测量当前钢包内钢水漩涡的形成情况,测量漩涡涡面尺寸和漩涡高度,并将测量结果实时传输到优化控制模型计算单元(11);
    所述电磁力制动器(6)是一种产生电磁力的装置,安装在钢包(1)出钢口附近,用于产生和钢流方向相反的作用力,接受优化控制模型计算单元(11)输出控制;
    所述钢渣检测器(7)是一种测量钢渣百分比含量的传感器,安装在滑动水口(2)上方,用于实时测量当前流过滑动水口的钢流中所含钢渣的量,同时将测量结果输出到优化控制模型计算单元(11);
    所述滑动水口控制器(8)是一种驱动滑动水口(2)运动的装置,用于控制滑动水口开和关动作,其接受优化控制模型计算单元(11)输出控制;
    所述滑动水口开度检测器(9)是一种测量当前滑动水口开度大小的装置,检测结果也实时输送到优化控制模型计算单元(11);钢水是通过滑动水口(2)从钢包(1)流到中间包(3),滑动水口开度的大小就是指钢水流过的通量的大小;
    所述工艺信号接口单元(10)是一种信号转换装置,其有二个作用,一是将当前浇注的钢种信号信息转换为代码,二是接收当前浇注钢包的净重量信号,并将这些信息输出给优化控制模型计算单元(11);
    所述优化控制模型计算单元(11)是一种具有数据采集、优化模型计算、控制输出功能的计算机设备,其接收钢包重量检测器(4)、钢水流场分布检测器(5)、钢渣检测器(7)、滑动水口开度检测器(9)、工艺信号接口单元(10)传来的相关信号和数据,通过优化控制模型计算分析,得出相应的优化控制策略并输出到 电磁力制动器(6)和滑动水口控制器(8)进行抑制卷渣控制。
PCT/CN2017/106043 2016-10-26 2017-10-13 连铸钢包浇注末期抑制卷渣控制方法和装置 WO2018077044A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17866255.7A EP3533535B1 (en) 2016-10-26 2017-10-13 Control method and apparatus for inhibiting slag entrapment in ladle in last stage of pouring during continuous casting
JP2019522412A JP6692992B2 (ja) 2016-10-26 2017-10-13 連続鋳造取鍋の注湯末期におけるスラグ巻込みの抑制のための制御方法及び装置
CA3041153A CA3041153C (en) 2016-10-26 2017-10-13 Control method and apparatus for inhibiting slag entrapment in ladle in last stage of pouring during continuous casting
KR1020197014894A KR102251636B1 (ko) 2016-10-26 2017-10-13 연속주조 래들의 주탕 최종 단계에서 슬래그 혼입을 억제하는 제어방법 및 장치
US16/344,512 US11154926B2 (en) 2016-10-26 2017-10-13 Control method and apparatus for inhibiting slag entrapment in ladle in last stage of pouring during continuous casting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610942959.6A CN107983928B (zh) 2016-10-26 2016-10-26 连铸钢包浇注末期抑制卷渣控制方法和装置
CN201610942959.6 2016-10-26

Publications (1)

Publication Number Publication Date
WO2018077044A1 true WO2018077044A1 (zh) 2018-05-03

Family

ID=62023447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106043 WO2018077044A1 (zh) 2016-10-26 2017-10-13 连铸钢包浇注末期抑制卷渣控制方法和装置

Country Status (7)

Country Link
US (1) US11154926B2 (zh)
EP (1) EP3533535B1 (zh)
JP (1) JP6692992B2 (zh)
KR (1) KR102251636B1 (zh)
CN (1) CN107983928B (zh)
CA (1) CA3041153C (zh)
WO (1) WO2018077044A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200032862A (ko) * 2018-09-19 2020-03-27 현대제철 주식회사 래들의 슬라이딩 게이트 제어 장치 및 그 방법

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107983928B (zh) * 2016-10-26 2019-11-22 宝山钢铁股份有限公司 连铸钢包浇注末期抑制卷渣控制方法和装置
CN110102748A (zh) * 2019-05-06 2019-08-09 共享铸钢有限公司 一种提高铸钢件浇注质量的方法
CN112139467B (zh) * 2019-06-28 2021-09-17 宝山钢铁股份有限公司 基于延长滑动水口使用寿命的水口动作控制方法
CN112231885B (zh) * 2019-07-15 2023-04-11 宝山钢铁股份有限公司 连铸中间包渣量的测量方法
CN112823966B (zh) * 2019-11-20 2022-08-12 上海梅山钢铁股份有限公司 一种连铸中间包快速自动更换方法
CN112410502B (zh) * 2020-10-27 2022-04-12 安徽云天冶金科技股份有限公司 一种转炉滑板挡渣用滑板控制系统
CN112276025B (zh) * 2020-10-28 2022-03-08 安徽工业大学 一种通过加入电磁场抑制钢包水口形成旋涡的装置及方法
CN112620602B (zh) * 2020-12-11 2022-07-19 北京首钢股份有限公司 钢包剩钢量的控制方法、装置及存储介质
KR102495069B1 (ko) * 2020-12-18 2023-02-06 주식회사 포스코 회전 와류 발생 관찰 실험용 레이들 장치
CN113275528B (zh) * 2021-05-25 2022-02-01 东北大学 一种镁合金半连续铸造过程稳定控流的导液装置及方法
CN114323222A (zh) * 2022-01-03 2022-04-12 新疆八一钢铁股份有限公司 一种钢包下渣检测的新方法
CN114523082B (zh) * 2022-03-10 2023-08-18 云南曲靖钢铁集团凤凰钢铁有限公司 一种优特钢连铸工艺制造系统
CN114951562B (zh) * 2022-06-23 2023-10-24 安徽工业大学 一种通过旋转抑制汇流漩涡的装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09253815A (ja) * 1996-03-22 1997-09-30 Sumitomo Metal Ind Ltd 連続鋳造機における取鍋内溶湯量調節装置
CN101251749A (zh) * 2007-10-30 2008-08-27 陕西艾贝尔电力设备有限公司 一种钢包下渣检测、控制方法与系统
CN102921915A (zh) * 2012-10-23 2013-02-13 杭州谱诚泰迪实业有限公司 基于钢水表面旋涡图像识别的下渣检测方法及装置
CN103192046A (zh) * 2013-04-02 2013-07-10 北京科技大学 一种在钢包放钢时抑制钢包内旋流下渣的方法
CN105195701A (zh) * 2014-06-23 2015-12-30 宝山钢铁股份有限公司 连铸钢包浇注时钢水流场分布的测量方法及装置
CN105983673A (zh) * 2015-02-28 2016-10-05 宝山钢铁股份有限公司 一种基于钢包下渣检测系统的连铸钢包终浇控制系统及工艺控制方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56154267A (en) * 1980-05-01 1981-11-28 Kawasaki Steel Corp Method for suppressing vortex of molten steel in tundish in continuous casting
DE3619416A1 (de) * 1986-06-10 1987-12-17 Mannesmann Ag Verfahren und einrichtung zum schlackenfreien entleeren einer giesspfanne
US5884685A (en) 1995-03-29 1999-03-23 Nippon Steel Corporation Quality prediction and quality control of continuous-cast steel
JPH09236461A (ja) 1996-03-01 1997-09-09 Nippon Steel Corp スラグ流出量判定方法およびスラグ流出判定装置
JPH1076355A (ja) * 1996-09-04 1998-03-24 Sumitomo Metal Ind Ltd 連続鋳造設備におけるレードル注湯制御方法
CN202427915U (zh) * 2011-12-15 2012-09-12 湖南科美达电气股份有限公司 电磁式下渣检测控制系统
CN103506592B (zh) * 2012-06-29 2015-08-26 宝山钢铁股份有限公司 一种连铸浇钢控制方法和装置
CN104999043B (zh) * 2014-04-17 2017-04-26 宝山钢铁股份有限公司 一种连铸钢包滑动水口开度在线测量装置及其测量方法
CN203875297U (zh) * 2014-05-07 2014-10-15 马钢(集团)控股有限公司 一种钢水包下渣的检测系统
JP6336210B2 (ja) * 2014-11-20 2018-06-06 アーベーベー シュヴァイツ アクツィエンゲゼルシャフト 金属製造工程における電磁ブレーキシステムおよび溶融金属流動の制御方法
CN107983928B (zh) * 2016-10-26 2019-11-22 宝山钢铁股份有限公司 连铸钢包浇注末期抑制卷渣控制方法和装置
CN106987675B (zh) * 2017-03-29 2019-04-26 湖南镭目科技有限公司 一种转炉出钢过程的控制系统及控制方法
CN109253815A (zh) 2018-10-17 2019-01-22 杭州休普电子技术有限公司 一种无线温度传感器及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09253815A (ja) * 1996-03-22 1997-09-30 Sumitomo Metal Ind Ltd 連続鋳造機における取鍋内溶湯量調節装置
CN101251749A (zh) * 2007-10-30 2008-08-27 陕西艾贝尔电力设备有限公司 一种钢包下渣检测、控制方法与系统
CN102921915A (zh) * 2012-10-23 2013-02-13 杭州谱诚泰迪实业有限公司 基于钢水表面旋涡图像识别的下渣检测方法及装置
CN103192046A (zh) * 2013-04-02 2013-07-10 北京科技大学 一种在钢包放钢时抑制钢包内旋流下渣的方法
CN105195701A (zh) * 2014-06-23 2015-12-30 宝山钢铁股份有限公司 连铸钢包浇注时钢水流场分布的测量方法及装置
CN105983673A (zh) * 2015-02-28 2016-10-05 宝山钢铁股份有限公司 一种基于钢包下渣检测系统的连铸钢包终浇控制系统及工艺控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3533535A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200032862A (ko) * 2018-09-19 2020-03-27 현대제철 주식회사 래들의 슬라이딩 게이트 제어 장치 및 그 방법
KR102133091B1 (ko) 2018-09-19 2020-07-10 현대제철 주식회사 래들의 슬라이딩 게이트 제어 장치 및 그 방법

Also Published As

Publication number Publication date
JP6692992B2 (ja) 2020-05-13
US20190291176A1 (en) 2019-09-26
US11154926B2 (en) 2021-10-26
EP3533535A1 (en) 2019-09-04
CA3041153C (en) 2021-11-23
CN107983928A (zh) 2018-05-04
CN107983928B (zh) 2019-11-22
EP3533535B1 (en) 2021-11-17
JP2019536630A (ja) 2019-12-19
EP3533535A4 (en) 2020-04-22
KR20190062603A (ko) 2019-06-05
CA3041153A1 (en) 2018-05-03
KR102251636B1 (ko) 2021-05-14

Similar Documents

Publication Publication Date Title
WO2018077044A1 (zh) 连铸钢包浇注末期抑制卷渣控制方法和装置
CN105983673B (zh) 一种基于钢包下渣检测系统的连铸钢包终浇控制系统及工艺控制方法
KR101668311B1 (ko) 연속 주조강 주탕 제어방법 및 장치
CN104525929B (zh) 一种通过钢包底部环出钢口吹氩气控制钢包下渣的方法
CN107803467B (zh) 一种大型阀壳类铸钢件的浇注系统
CN106513616B (zh) 一种宽厚板连铸机干式封顶方法
CN107357953A (zh) 一种根据热流密度分析水口堵塞的方法
CN111250672B (zh) 一种基于通钢量对比的连铸钢包终浇方法
US20050133192A1 (en) Tundish control
CN2652558Y (zh) 钢水下渣检测装置
CN107498015A (zh) 一种预报板坯连铸中心偏析的方法
CN112191818A (zh) 降低结晶器内钢液偏流的控制方法及控制装置
JP4725244B2 (ja) 連続鋳造用取鍋及び鋳片の製造方法
CN2738923Y (zh) 降低或消除钢水漩涡用涡流阻尼器
JP6527069B2 (ja) 溶鋼用中間容器の操業方法
CN105436451A (zh) 一种采用无挡渣装置中间包的重轨钢尾坯浇铸方法
SK1082016U1 (sk) Spôsob liatia roztaveného kovu s využitím dopadovej dosky v medzipanve
CN201728365U (zh) 钢包和中间包下渣控制装置
CN205684700U (zh) 一种减少铸余和改善流场的连铸中间包
CN105081301A (zh) 具有调速功能的中间包
CN204934598U (zh) 具有调速功能的中间包
JPS57112963A (en) Method for controlling stopping of pouring from ladle in continuous casting
EP3544755A1 (en) A method of molten metal casting utilizing an impact pad in the tundish
CN202591608U (zh) 一种新型钢包下置挡渣装置
Campbell Filling and Feeding Systems for Cast Irons

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866255

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3041153

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019522412

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197014894

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017866255

Country of ref document: EP

Effective date: 20190527