WO2018076992A1 - 生产线监控系统和方法 - Google Patents

生产线监控系统和方法 Download PDF

Info

Publication number
WO2018076992A1
WO2018076992A1 PCT/CN2017/103570 CN2017103570W WO2018076992A1 WO 2018076992 A1 WO2018076992 A1 WO 2018076992A1 CN 2017103570 W CN2017103570 W CN 2017103570W WO 2018076992 A1 WO2018076992 A1 WO 2018076992A1
Authority
WO
WIPO (PCT)
Prior art keywords
production line
operator
sensors
wearable device
monitoring system
Prior art date
Application number
PCT/CN2017/103570
Other languages
English (en)
French (fr)
Inventor
姜小花
陈彦霖
代增
何莉
赵如彦
任骝
杨晓建
Original Assignee
博世汽车部件(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博世汽车部件(苏州)有限公司 filed Critical 博世汽车部件(苏州)有限公司
Publication of WO2018076992A1 publication Critical patent/WO2018076992A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4183Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by data acquisition, e.g. workpiece identification
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates generally to the field of production control technology and, in particular, to an intelligent production line monitoring system and method.
  • Man-made teaching techniques have their advantages, but they can put an extra burden on experienced operators and consume energy. Setting up training or supervisory personnel will increase the labor costs of the company, and manual supervision often fails to achieve the desired results. For example, monitoring the operator's production quality by manual inspection has the disadvantage of poor reliability. In fact, there is currently no special anti-dwelling mechanism. At most, regular or irregular inspections by specific personnel can prevent and control errors. Such manual inspections are also very prone to leakage. The operator's selection of parts can be monitored by adding a scan of the two-dimensional code on the production line, which greatly reduces production efficiency.
  • the present invention provides an intelligent production line monitoring system and method that can improve the above problems.
  • the present invention provides a production line monitoring system, the system comprising: a wearable device comprising one or more sensors, wherein the one or more sensors are configured to sense wear of the wearable device The data generated by the operator when operating on the workstation of the production line.
  • the system further includes a computing device including acquisition means for collecting data sensed by the one or more sensors and for operating the operator on a production line based on the collected data A processing device that performs monitoring.
  • the present invention provides a method of monitoring a production line, the method comprising: providing a wearable device, the wearable device comprising one or more sensors; configuring the one or more sensors to sense wearable Data generated by an operator of the wearable device operating on a workstation of the production line; collecting data sensed by the one or more sensors; and monitoring operation of the operator on the production line based on the collected data .
  • a production line monitoring apparatus comprising: acquisition means for collecting data sensed by one or more sensors, wherein the one or more sensors are disposed in a wearable device and One or more sensors configured to sense when an operator wearing the wearable device is operating on a workstation of a production line Raw data; and processing means for monitoring the operation of the operator on the production line based on data collected by the collection device.
  • the present invention provides a wearable device comprising: one or more sensors configured to sense an operator wearing the wearable device at a production line Data generated while operating on the workstation; and control means configured to collect data sensed by the one or more sensors and based on the collected data to the operator at the workstation The operation on the monitor is performed.
  • the present invention provides a method of monitoring a production line, the method comprising: providing a wearable device, the wearable device comprising one or more sensors and a control device; configuring the one or more sensors to sense Data generated by an operator wearing the wearable device operating on a workstation of a production line; and configuring the control device to collect data sensed by the one or more sensors and based on the collected data pairs The operator is monitored for operation on the production line workstation.
  • FIG. 1 is a schematic structural view of a production monitoring system according to an example of the present invention.
  • FIG. 2 is a schematic structural view of a production monitoring system according to another example of the present invention.
  • FIG. 3 is a schematic structural view of a wearable device according to an example of the present invention.
  • FIG. 4 is a schematic diagram of an implementation of a line monitoring system in accordance with one example of the present invention.
  • FIG. 5 is a flow chart showing a method of monitoring a production line according to an example of the present invention.
  • FIG. 6 is a flow chart showing a method of monitoring a production line according to another example of the present invention.
  • FIG. 1 is a block diagram showing the construction of a line monitoring system in accordance with one example of the present invention.
  • system 100 can include wearable device 101 and computing device 102.
  • the wearable device 101 is worn by an operator when operating on a production line, and may be implemented, for example, in the form of a glove or a wristband.
  • wearable device 101 includes sensors 11 that are configured to sense data generated by an operator wearing device 101 operating on a workstation of a production line.
  • the sensor 11 may be, for example, an inertial sensor, a tactile sensor, a force sensor, a pickup, or the like.
  • the inertial sensor can be, for example, an accelerometer, an angular velocity meter, a magnetometer, or the like, or a combination thereof, and the pickup can be, for example, a microphone for sensing, for example, the sound emitted by the connector when it is stuck in place during manual operation.
  • Computing device 102 includes at least acquisition device 12 and processing device 13.
  • the collection device 12 can be configured to collect data sensed by the various sensors 11 while the processing device 13 It can be configured to monitor operator operations on the production line based on the collected data.
  • computing device 102 can be implemented by data processing capable devices such as various types of computers, personal digital assistants (PDAs), cellular telephones, and the like.
  • the processing device 13 in the computing device 102 can be configured to accurately determine the actions taken by the operator by analyzing and processing the information from the sensor 11, thereby further determining whether the operator has performed the standard operations correctly and ascertained The operator selects the correct part for real-time monitoring of the operator's performance on the production line.
  • the inertial sensor may be disposed on a portion of the wearable device 101 corresponding to the finger and on a portion corresponding to the back of the hand.
  • the processing device 13 can be configured to determine the degree of bending of the finger based on the acceleration measured by the inertial sensor at the two locations.
  • processing device 13 can monitor the behavior of the operator on the production line based on both data from sensor 11 and data sensed by sensors on the production machine.
  • computing device 102 may also include communication means to receive sensor data from the production machine, such as by way of WiFi, Bluetooth, and the like.
  • sensors on a production machine may include infrared sensors, cylinder position sensors, and the like.
  • the data generated by these sensors can be received, for example, by a programmable logic controller PLC of the production machine and transmitted to the computing device 102, for example, wirelessly.
  • the processing device 13 can for example It is more accurate to judge whether the operator puts the components in the correct position on the production machine or monitors the operator's hand operation, thereby reducing the occurrence of errors and improving production efficiency.
  • Computing device 102 may also include storage means for storing characteristic parameters related to standard operations required to be performed on the production line.
  • the processing device 13 can monitor the operator's operation on the production line based on the sensor data, and can compare the collected data with predetermined characteristic parameters to determine whether the operator performs the necessary standard operations on the production line or judges the operator. Whether a series of standard operations are performed on the production line in the correct order.
  • standard operations on a production line may include requiring an operator to flip a production part.
  • the processing device 13 can be configured to collect from the sensor 11 a sense of the orientation or acceleration change of the operator's hand motion and to actuate the real-time data with the characterizing the flipping component Standard values are compared. If the sensed data result reaches a pre-stored standard value, the processing device 13 determines that the operator has performed the action of flipping the component.
  • the line monitoring system shown in Figure 1 can be used to determine if the operator has selected the correct part.
  • the processing device 13 can be configured to collect sensor 11 sensing of the operator's hand position.
  • the reference point can be the placement position of each component required.
  • the processing device 13 can determine whether the operator has selected the correct part, as appropriate, by comparing the sensed operator's hand position with the reference point position.
  • an RFID tag containing part information may be placed on the part itself or on the box on which the part is placed. Accordingly, it is also possible to arrange RFID reading and writing in the wearable device 101. Device. In this case, the part information can be read from these RFID tags by the operator directly using the wearable device.
  • the collection device 12 can also be configured to collect part information read by the RFID reader from the wearable device, and the processing device 13 can be configured to parse the information, thereby determining whether the part is intended to be used Parts to determine if the operator's choice is correct.
  • the processing device 13 can be configured to also count the parameters characterizing the operational performance, such as the completion cycle of the entire set of operations, the pass rate of the entire set of operations, and the correct rate of each operation, and the like.
  • the processing device 13 may also be configured to store data or statistical results collected from the various sensors 11 in a local memory of the computing device 102, or to a remote end, such as a server in a factory or a cloud. These data can be further mined, for example, to optimize production processes, workstation design, production environment planning, and the like.
  • computing device 102 can also include communication means to communicate data to the remote end. Computing device 102 can transmit data in a wired or wireless manner, such as via a data line, WiFi, Bluetooth, and the like.
  • wearable device 101 can also include a feedback device that can receive instructions from computing device 102 and provide feedback to the operator accordingly.
  • This feedback is associated with the operator's operation on the production line, such as alerting the operator by voice, vibration, or LED flashing when the operator does not perform standard operations or does not operate in the correct order.
  • the feedback device can be, for example, an LED display, a speaker, a vibrator, and the like.
  • the device 13 can also be configured to issue instructions to the production machine on the production line to instruct the production machine to stop operating or to instruct the alarm device on the production line to issue an alarm, thereby preventing the occurrence of major production accidents in time and effectively ensuring production safety.
  • Computing device 102 can also include a display device that can be used to demonstrate to an operator of the wearable device the standard operations required to be performed on the production line. This is especially useful for training novice operators. As mentioned earlier, it is often necessary for the trainer to manually train the new operator, demonstrate the required standard operation to the new trainer, and indicate the new operator's mistakes during the study or practice.
  • the line monitoring system shown in Figure 1 can perform almost all of the work currently performed by trainers.
  • the new operator can first wear the wearable device 101, and the display device of the computing device 102 can be configured to present the new operator with standard operations to be performed on the production line, such as in the form of a video or a picture.
  • the prompting device can be prompted, for example by a feedback device provided on the wearable device, to perform a corresponding operation in accordance with the content displayed by the display device, and to give correct or erroneous feedback for each operation.
  • the display device can be configured to respond to instructions from the processing device 13 and only present the next operation to the learner upon receipt of an indication that the learner has correctly completed the previous operation.
  • the processing device 13 can be configured to determine whether each action of the operator is correct and whether all operations are performed in the correct order based on data generated by the sensor when the operator independently exercises the entire operational process, and Instructs the feedback device to issue a prompt when an error occurs.
  • the enterprise can greatly save time and labor costs for newcomers and improve production efficiency.
  • the wearable device 101 further includes a control device 14.
  • the control device can be designed at least to include a transceiver for collecting data sensed by the various sensors 11 and transmitting the collected data to the computing device 102. Additionally, control device 14 may also include an RFID reader. In this case, the operator can directly use the wearable device 101 to read the part information from the RFID tag on the component or component package to be selected. The control device transmits the read part information to the computing device 102, which in turn interprets the information by the processing device 13, thereby determining whether the operator's selection of the component is correct.
  • the control device can be provided, for example, in a portion of the wearable device 101 that corresponds to the back or wrist of the operator's hand. In some cases, feedback devices such as LED displays, speakers, vibrators, and the like can also be integrated with the control device 14.
  • the wearable device 300 includes a sensor 11 and a control device 14, wherein the sensor 11 can be, for example, an inertial sensor, a tactile sensor, a force sensor, a pickup, or the like.
  • the wearable device 300 can be worn by an operator when operating on a production line, and can be implemented, for example, in the form of a glove or a wristband.
  • control device 14 may include components for collecting data sensed by various sensors 11.
  • control device 14 may also include components for performing data processing, thereby implementing all of the functions described above in connection with processing device 13 of FIG. Therefore, it is possible to wear the wearable device 300 by having each operator perform an operation on the production line. Each operator's performance is monitored, thereby constituting a production line monitoring system without the need for computing devices other than wearable devices.
  • wearable device 300 may also include an RFID reader/writer that may be integrated, for example, in control device 14. Thus, it can be determined, for example, by the operator using the wearable device to read the RFID tag associated with the part to be selected to determine whether it is using the correct part or tool on the production line.
  • a memory may also be provided in the wearable device 300, which memory may also be integrated in the control device 14 to store characteristic parameters related to standard operations required to be performed on a particular production line.
  • control device 14 may include a transceiver to collect data from sensors disposed on the production machine.
  • feedback devices such as LED displays, speakers, vibrators, etc., may also be integrated into the control device 14.
  • FIG. 4 illustrates a specific implementation of a wearable device in accordance with the present invention.
  • the wearable device of the present invention can be implemented as a wearable smart glove 20.
  • the smart glove 20 includes a control device 30 and a sensor 40.
  • the sensor 40 may include an inertial sensor disposed on the finger portion of the glove 20 and/or the back of the hand, a pickup, a tactile sensor disposed at the palm portion of the glove 20 or a fingertip portion, or other form of force sensor.
  • the control device 30 is disposed at the back of the hand of the glove 20. In other embodiments, the control device 30 can also be disposed at the wristband portion of the glove 20.
  • Control device 30 can be implemented in accordance with control device 14 as described in accordance with FIG.
  • the smart glove 20 can be combined with additional computing devices to form a line monitoring system.
  • the control device 30 can also be according to FIG.
  • the described control device 14 is implemented. At this point, the smart glove 20 can be used separately for line monitoring.
  • the operator may be required to wear the smart glove 20 as shown in Figure 4 when operating on a workstation on the production line.
  • companies can monitor the situation on the production line in real time and accurately, so as to avoid errors and improve production efficiency in a timely manner. Since the wearable device will actually experience all the actions performed by the operator, the timeliness and accuracy of the monitoring will be much higher than the manual inspection, and also superior to the external production line monitoring system based on surveillance cameras.
  • FIG. 5 is a flow diagram showing a method of monitoring a production line in accordance with one example of the present invention.
  • a wearable device comprising one or more sensors.
  • the one or more sensors are configured to sense data generated by an operator wearing the wearable device operating on a workstation of the production line.
  • data sensed by sensors in the wearable device is collected, which may be implemented by a computing device independent of the wearable device, such as various types of computers, personal digital assistants (PDAs), cellular telephones, etc. Equipment for data processing capabilities.
  • PDAs personal digital assistants
  • Equipment for data processing capabilities.
  • a processing device that monitors the operation of the operator on the production line based on the collected data, which step can also be implemented by a computing device that is independent of the wearable device.
  • a wearable device is provided, the wearable device comprising one or more sensors and control means.
  • a wearable device for line monitoring can be implemented, for example, as a smart glove, bracelet, or the like that an operator can wear while performing a production operation.
  • the sensor in the wearable device is configured to sense wearing the wearable device The data generated by the operator when operating on the workstation of the production line.
  • the control device in the wearable device is configured to collect data sensed by the one or more sensors and to monitor operator operations on the production line workstation based on the collected data.
  • Production line monitoring methods based on wearable devices can effectively help companies improve production quality and production efficiency, reduce production safety incidents, and save production costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Factory Administration (AREA)

Abstract

提供了一种生产线监控系统,该系统(100)包括:可穿戴设备(101),该可穿戴设备(101)包括一个或多个传感器(11),该一个或多个传感器(11)被配置为感测穿戴着可穿戴设备(101)的操作员在生产线的工作站上进行操作时所产生的数据;以及计算设备(102),该计算设备包括用于收集由一个或多个传感器(11)所感测的数据的采集装置(12)以及用于基于所收集的数据对操作员在生产线上的操作进行监控的处理装置(13)。此外,还提供了相应的方法以及可直接用于生产线监控的可穿戴设备(101)。

Description

生产线监控系统和方法 技术领域
本发明一般地涉及生产控制技术领域,并且具体地,涉及智能化的生产线监控系统及方法。
背景技术
在当前的生产线上存在各种问题。例如,在新操作员上岗前,目前企业通常的做法是由专门的训练员或者有经验的操作员手把手地示教需要该操作员在生产线上进行的操作。当新操作员正式开始在生产线上操作的初期,通常也需要训练员在旁边进行监督,以避免差错的产生。即使整条生产线全部采用有经验的操作员,依然需要防呆措施,以避免当作业量增加、事务变得繁忙时可能产生的错误和危险。
人为的教授操作技巧有其优势,然而可能会对有经验的操作员产生额外的负担,耗费其精力。专门设置培训或监督人员将增加企业的人力成本,并且人工监督常常无法达到预期的效果。例如,通过人工巡视来监督操作员的生产质量存在可靠性差的缺点。事实上,目前也并没有专门防呆机制,最多通过由特定人员进行定期或不定期巡视来防控差错,这类人工巡检同样非常容易出现纰漏。可以通过在生产线上增加扫描二维码的操作来监控操作员对零部件的选取,然而这大大降低了生产效率。
因此,所期望的是设计一种智能化的生产线监控方案,以帮助企业提高生产质量和生产效率、减少生产安全事故以及节约生产成本。
发明内容
有鉴于此,本发明提供智能生产线监控系统及方法,可改善上述问题。一方面,本发明提出一种生产线监控系统,该系统包括:可穿戴设备,该可穿戴设备包括一个或多个传感器,其中所述一个或多个传感器被配置为感测穿戴所述可穿戴设备的操作员在生产线的工作站上进行操作时所产生的数据。此外,所述系统还包括计算设备,该计算设备包括用于收集由所述一个或多个传感器所感测的数据的采集装置以及用于基于所收集的数据对所述操作员在生产线上的操作进行监控的处理装置。
另一方面,本发明提供了一种生产线监控方法,该方法包括:提供可穿戴设备,该可穿戴设备包括一个或多个传感器;将所述一个或多个传感器配置为感测穿戴所述可穿戴设备的操作员在生产线的工作站上进行操作时所产生的数据;收集由所述一个或多个传感器所感测的数据;以及基于所收集的数据对所述操作员在生产线上的操作进行监控。
又一方面,一种生产线监控设备,所述设备包括:采集装置,用于收集由一个或多个传感器所感测的数据,其中所述一个或多个传感器被设置在可穿戴设备中并且所述一个或多个传感器被配置为感测穿戴所述可穿戴设备的操作员在生产线的工作站上进行操作时所产 生的数据;以及处理装置,其基于采集装置所收集的数据对所述操作员在生产线上的操作进行监控。
另一方面,本发明提供了一种可穿戴设备,所述可穿戴设备包括:一个或多个传感器,所述一个或多个传感器被配置为感测穿戴所述可穿戴设备的操作员在生产线的工作站上进行操作时所产生的数据;以及控制装置,所述控制装置被配置为收集由所述一个或多个传感器所感测的数据以及基于所收集的数据对所述操作员在所述工作站上的操作进行监控。
又一方面,本发明提供了一种生产线监控方法,该方法包括:提供可穿戴设备,所述可穿戴设备包括一个或多个传感器以及控制装置;将所述一个或多个传感器配置为感测穿戴所述可穿戴设备的操作员在生产线的工作站上进行操作时所产生的数据;以及将所述控制装置配置为收集由所述一个或多个传感器所感测的数据以及基于所收集的数据对所述操作员在生产线工作站上的操作进行监控。
附图说明
本发明的前述和其他目标、特征和优点根据下面对本发明的实施例的更具体的说明将是显而易见的,这些实施例在附图中被示意。
图1是根据本发明一个示例的生产监控系统的结构示意图;
图2是根据本发明另一示例的生产监控系统的结构示意图;
图3是根据本发明一个示例的可穿戴设备的结构示意图;
图4是根据本发明一个示例的生产线监控系统的实现示意图;
图5是根据本发明一个示例的生产线监控方法的流程示意图;
图6是根据本发明另一示例的生产线监控方法的流程示意图。
具体实施方式
现在参照附图描述本发明的示意性示例,相同的附图标号表示相同的元件。下文描述的各示例有助于本领域技术人员透彻理解本发明,且各示例意在示例而非限制。图中各元件、部件、模块、装置及设备本体的图示仅示意性表明存在这些元件、部件、模块、装置及设备本体同时亦表明它们之间的相对关系,但并不用以限定它们的具体形状;流程图中各步骤的关系也不以所给出的顺序为限,可根据实际应用进行调整但不脱离本申请的保护范围。
图1是根据本发明一个示例的生产线监控系统的结构示意图。如图1所示,系统100可包括可穿戴设备101以及计算设备102。为进行生产监控,可穿戴设备101由操作员在生产线上进行操作时穿戴,可例如以手套或腕带的形式来实现。一般地,可穿戴设备101包括传感器11,这些传感器被配置为感测穿戴着设备101的操作员在生产线的工作站上进行操作时所产生的数据。传感器11例如可以是惯性传感器、触觉传感器、力传感器、拾音器等。惯性传感器可例如是加速度计、角速度计、磁力计等或其组合,而拾音器可例如是麦克风,用于感测例如手动操作中连接器被卡到位时所发出的声响。
计算设备102至少包括采集装置12和处理装置13。采集装置12可以被配置为收集由各个传感器11所感测的数据,而处理装置13则 可被配置为基于所收集的数据对操作员在生产线上的操作进行监控。举例来说,计算设备102可由各种类型的计算机、个人数字助理(PDA)、蜂窝电话等具有数据处理能力的设备来实现。
一般地,操作员需要在生产线上完成固定的一系列标准操作,并且可能需要在生产过程中选用一些零件以进行组装,这些零件通常也是预先确定的一些规定的零件。计算设备102中的处理装置13可以被配置用于通过对来自传感器11的信息进行分析和处理准确地判断出操作员所做的动作、由此进一步判断操作员是否正确地执行了标准操作以及判断操作员是否选用了正确的零件,从而实现对操作员在生产线上的表现的实时监控。举例来说,惯性传感器可以被设置在可穿戴设备101的、与手指对应的部分上以及设置在与手背对应的部分上。处理装置13可以被配置为基于惯性传感器在这两个位置所测得的加速度来判断手指的弯曲程度。
为更优地实现生产监控,还可以在生产线的生产机器上布置传感器,并且将处理装置13配置为还对生产机器上的传感器所产生的数据进行收集。由此,处理装置13可以基于来自传感器11的数据以及由生产机器上的传感器所感测的数据两者来监控操作员在生产线上的行为。为此,计算设备102还可以包括通信装置,以从生产机器接收传感器数据,例如采用WiFi、蓝牙等方式。举例来说,生产机器上的传感器可包括红外传感器、气缸位置传感器等。这些传感器所产生的数据可例如由生产机器的可编程逻辑控制器PLC接收,并例如无线地发送至计算设备102。通过这些信息,处理装置13能够例如 更加准确地判断操作员是否将元器件放到了生产机器上的正确位置或者监测操作员的手部操作,由此减少错误的发生,提高生产效率。
计算设备102还可以包括存储装置,用于存储与要求在生产线上执行的标准操作相关的特征参数。处理装置13在基于传感器数据监控操作员在生产线上的操作时,可以将所收集的数据与预先确定的特征参数进行比较来判断操作员是否在生产线上执行了所必须的标准操作或者判断操作员是否按照正确顺序在生产线上执行了一系列标准定操作。
举例来说,生产线上的标准操作可包括需要操作员对生产部件进行翻转。为检测操作员是否执行了对特定部件的翻转动作,处理装置13可以被配置为从传感器11收集对操作员手部动作的方位或加速度变化的感测,并且将实时数据与表征翻转部件动作的标准值进行比较。如果感测数据结果达到预先存储的标准值,则处理装置13确定操作员已经执行了翻转部件的动作。
此外,还可以利用图1所示的生产线监控系统来判断操作员是否选用了正确的零件。例如,处理装置13可以被配置为收集传感器11对操作员手部位置的感测。同时,还可以预先确定生产线工作站上的基准点,例如该基准点可以是所需各个零部件的摆放位置。由此,处理装置13可以通过将所感测到的操作员手部位置与基准点位置进行比对,来判断操作员是否在适当的情况下选用了正确的零件。
通常,在零件本身或摆放零件的箱体上可能布置有包含零件信息的RFID标签。相应地,还可以在可穿戴设备101中布置RFID读写 器。在这种情况下,可由操作员直接使用可穿戴设备从这些RFID标签中读取零件信息。采集装置12还可以被配置为从可穿戴设备收集RFID读写器所读取的零件信息,并且处理装置13可以被配置为对这些信息进行解析,由此通过判断该零件是否为规定要使用的零部件来确定操作员的选择是否正确。
通常情况下,企业可能还会需要对操作员在生产线上的表现进行整体评估。为此,可将处理装置13配置为还对表征操作表现的参数进行统计,这些参数例如可以是整套操作的完成周期、整套操作的通过率以及每个操作的正确率等等。处理装置13还可以被配置为将从各个传感器11所收集的数据或者统计结果存储在计算设备102的本地存储器中,或者发送至远程端,例如可以是工厂中的服务器或者是云端。这些数据可以例如被进一步挖掘以用于优化生产流程、工作站设计、生产环境规划等等。为此,计算设备102还可以包括通信装置,以向远程端传送数据。计算设备102可以采用有线或无线的方式传送数据,例如通过数据线、WiFi、蓝牙等等。
在一些实现中,可能希望向操作员进行反馈以在其出现错误操作时及时向其发出提醒。因此,可穿戴设备101还可以包括反馈装置,该反馈装置可以从计算设备102接收指令,并且相应地向操作员提供反馈。该反馈与操作员在生产线上的操作相关联,例如在操作员没有执行标准操作或者没有按照正确的顺序进行操作时以语音、振动或LED闪烁等方式向操作员发出提醒。反馈装置可以例如是LED显示器、扬声器、振动器等等。在例如出现严重误操作的紧急情况下,处 理装置13还可以被配置为向生产线上的生产机器发出指令以指示生产机器停止运行或者指示生产线上的报警装置发出警报,由此及时防止重大生产事故的发生,有效保证生产安全。
计算设备102还可以包括显示装置,该显示装置可以被用于向可穿戴设备的操作员演示要求在生产线上执行的标准操作。这对于培训新手操作员尤其有用。如前所述,目前通常需要训练员手把手地对新操作员进行培训,向新培训员演示所要求的标准操作,并且指出新操作员在学习或练习过程中的错误。图1所示的生产线监控系统可以完成几乎所有目前由训练员承担的工作。在学习阶段,新操作员可以首先穿上可穿戴设备101,并且计算设备102的显示装置可以被配置为向新操作员演示要在生产线上执行的标准操作,例如以视频或图片的形式。可以例如通过设置在可穿戴设备上的反馈装置向正在学习的操作员发出提示,使其根据显示装置所显示的内容执行相应的操作,并且针对每个操作都给出正确或错误的反馈。显示装置可以被配置为响应来自处理装置13的指令,并且只有在收到学习人员正确完成前一操作的指示之后才向其演示下一操作。在练习阶段,处理装置13可以被配置为基于传感器在操作员独立练习整个操作过程时所产生的数据,判断该操作员的每个动作是否正确以及是否按照正确的顺序执行了所有操作,并且在出现错误时指示反馈装置发出提示。由此,通过利用图1所示的生产线监控系统,企业可以大大节约新人培训的时间和人力成本,提高生产效率。
图2是根据本发明另一示例的生产监控系统的结构示意图。在图2所示的生产监控系统200中,可穿戴设备101进一步包括控制装置14。该控制装置可以至少被设计为包括用于收集由各个传感器11所感测的数据并且向计算设备102传送所收集的数据的收发器。此外,控制装置14还可以包括RFID读写器。在这种情况下,操作员可以直接使用可穿戴设备101从所要选用的零部件或零部件包装上的RFID标签中读取零件信息。控制装置将所读取的零件信息传送至计算设备102,进而由处理装置13对这些信息进行解析,由此可确定操作员对零部件的选择是否正确。该控制装置可以例如被设置在可穿戴设备101的、与操作员的手背或手腕相对应的部分中。在一些情况下,例如是LED显示器、扬声器、振动器等的反馈装置也可以与该控制装置14集成在一起。
图3是根据本发明一个示例的可穿戴设备的结构示意图。如图1所示,可穿戴设备300包括传感器11以及控制装置14,其中传感器11例如可以是惯性传感器、触觉传感器、力传感器、拾音器等。可穿戴设备300可由操作员在生产线上进行操作时穿戴,可例如以手套或腕带的形式来实现。类似于图2所示的示例,控制装置14可以包括用于收集由各个传感器11所感测的数据的部件。此外,在图3的示例中,控制装置14还可以包括用于进行数据处理的部件,由此实现在上文中结合图1的处理装置13所描述的所有功能。因此,可以通过使每个操作员在生产线上进行操作时穿戴可穿戴设备300来对 每个操作员的表现进行监控,由此构成生产线监控系统,而不需要除可穿戴设备之外的其他计算设备。
在一些情况下,可穿戴设备300还可以包括RFID读写器,该RFID读写器可以例如被集成在控制装置14中。由此,可以例如通过由操作员使用可穿戴设备读取与要被选择的零件相关联的RFID标签来确定其是否在生产线上采用了正确的零件或工具。
类似于图1的示例,还可以在可穿戴设备300中设置存储器,该存储器也可以被集成在控制装置14中,以存储与要求在特定生产线上执行的标准操作相关的特征参数。
同样地,控制装置14可以包括收发器以从布置在生产机器上的传感器收集数据。在一些情况下,例如是LED显示器、扬声器、振动器等的反馈装置也可以被集成在控制装置14中。
图4示意了根据本发明的可穿戴设备的一种具体实现。如图4所示,本发明的可穿戴设备可以被实现为可穿戴的智能手套20。在该示例中,智能手套20包括控制装置30以及传感器40。具体地,传感器40可以包括设置在手套20的手指部位和/或手背部位上的惯性传感器、拾音器、设置在手套20的手掌部位或手指指尖部位的触觉传感器或其他形式的力传感器。如图4所示,控制装置30被布置在手套20的手背部位。在另外的实施例中,控制装置30还可以被布置在手套20的腕带部位。控制装置30可以按照依据图2所描述的控制装置14来实现。在这种情况下,智能手套20可以结合另外的计算设备一起来构成生产线监控系统。控制装置30还可以按照依据图3所 描述的控制装置14来实现。此时,智能手套20可单独地被用于进行生产线监控。
可要求操作员在生产线的工作站上进行操作时佩戴如图4所示的智能手套20。通过使操作员佩戴这样的可穿戴设备在生产线上进行操作,企业能够对生产线上的情况进行实时且准确地监控,从而及时地避免差错,提高生产效率。由于可穿戴设备将实际地经历操作员做执行的所有动作,监控的时效性和准确性将远远高于人工巡检,同时也优于外置的、例如基于监控摄像的生产线监控系统。
图5是根据本发明一个示例的生产线监控方法的流程示意图。根据方法500,在步骤51中,提供包括一个或多个传感器的可穿戴设备。在步骤52中,将该一个或多个传感器配置为感测穿戴该可穿戴设备的操作员在生产线的工作站上进行操作时所产生的数据。在步骤53中,收集由可穿戴设备中的传感器所感测的数据,该步骤可由独立于可穿戴设备的计算设备来实现,诸如各种类型的计算机、个人数字助理(PDA)、蜂窝电话等具有数据处理能力的设备。在步骤54中,基于所收集的数据对操作员在生产线上的操作进行监控的处理装置,该步骤同样可以由独立于可穿戴设备的计算设备来实现。
图6是根据本发明另一示例的生产线监控方法的流程示意图。根据方法600,在步骤61中,提供可穿戴设备,该可穿戴设备包括一个或多个传感器以及控制装置。用于生产线监控的可穿戴设备可例如被实现为操作员可在进行生产操作时穿戴的智能手套、手环等。在步骤62中,将可穿戴设备中的传感器被配置为感测穿戴该可穿戴设备 的操作员在生产线的工作站上进行操作时所产生的数据。在步骤63中,将可穿戴设备中的控制装置配置为收集由该一个或多个传感器所感测的数据并且基于所收集的数据对操作员在生产线工作站上的操作进行监控。基于可穿戴设备提供的生产线监控方法能够有效地帮助企业提高生产质量和生产效率、减少生产安全事故、以及节约生产成本。
应当说明的是,以上具体实施方式仅用以说明本发明的技术方案而非对其进行限制。尽管参照上述具体实施方式对本发明进行了详细的说明,本领域的普通技术人员应当理解,依然可以对本发明的具体实施方式进行修改或对部分技术特征进行等同替换而不脱离本发明的实质,其均涵盖在本发明请求保护的范围中。

Claims (21)

  1. 一种生产线监控系统,其特征在于,所述系统包括:
    可穿戴设备,所述可穿戴设备包括一个或多个传感器,所述一个或多个传感器被配置为感测穿戴所述可穿戴设备的操作员在生产线的工作站上进行操作时所产生的数据;
    计算设备,所述计算设备包括用于收集由所述一个或多个传感器所感测的数据的采集装置以及用于基于所收集的数据对所述操作员在生产线上的操作进行监控的处理装置。
  2. 如权利要求1所述的生产线监控系统,其中,所述采集装置还被配置为收集由布置在生产线的生产机器上的传感器所感测的数据,并且所述处理装置还被配置为基于从所述一个或多个传感器收集的数据和从所述生产机器上的传感器收集的数据两者对所述操作员在生产线上的操作进行监控。
  3. 如权利要求1所述的生产线监控系统,其中,所述计算设备还包括存储装置,所述存储装置被配置为存储与要求在生产线上执行的标准操作相关的特征参数,并且基于所收集的数据对所述操作员在生产线上的操作进行监控包括将所收集的数据与所述特征参数比较以确定所述操作员是否在生产线上执行了所必须的标准操作或者所述操作员是否按照正确顺序在生产线上执行了标准操作。
  4. 如权利要求1所述的生产线监控系统,其中,基于由所收集的数据对所述操作员在生产线上的操作进行监控包括确定所述操作员是否在生产线上采用了正确的零件或工具。
  5. 如权利要求4所述的生产线监控系统,其中,所述处理装置被配置为基于所述一个或多个传感器对所述操作员的手部位置的感测并且结合预先定义的、生产线工作站上的基准点来确定所述操作员是否在生产线上采用了正确的零件或工具。
  6. 如权利要求1所述的生产线监控系统,其中,所述处理装置还被配置为统计表征所述操作员的操作表现的参数。
  7. 如权利要求1所述的生产线监控系统,其中,所述处理装置还被配置为将所述一个或多个传感器感测的数据发送至远程端。
  8. 如权利要求1所述的生产线监控系统,其中,所述处理装置还被配置为在确定所述操作员的操作发生错误时指示生产线上的生产机器停止运行或者指示生产线上的报警装置发出警报。
  9. 如权利要求1所述的生产线监控系统,其中,所述可穿戴设备还包括反馈装置,所述反馈装置被配置为基于来自所述计算设备的 指示向所述操作员提供与该操作员在生产线上的操作相关联的反馈。
  10. 如权利要求9所述的生产线监控系统,其中,所述反馈装置包括LED显示器、扬声器、振动器中的一个或多个。
  11. 如权利要求1所述的生产线监控系统,其中,所述可穿戴设备还包括控制装置,该控制装置包括用于收集由所述一个或多个传感器所感测的数据并且向所述计算设备传送所收集的数据的收发器。
  12. 如权利要求11所述的生产线监控系统,其中,所述控制装置还包括RFID读写器。
  13. 如权利要求11所述的生产线监控系统,其中,所述控制装置被设置在可穿戴设备的与操作员的手背或手腕相对应的部分中。
  14. 如权利要求1所述的生产线监控系统,其中,所述一个或多个传感器包括惯性传感器、触觉传感器、力传感器、拾音器中的一个或多个。
  15. 如权利要求1所述的生产线监控系统,其中,所述可穿戴设备采用手套或腕带的形式。
  16. 如权利要求1所述的生产线监控系统,其中,所述计算设备还包括显示装置,所述显示装置被用于向所述可穿戴设备的操作员演示要求在生产线上执行的标准操作。
  17. 一种生产线监控方法,其中,所述方法包括:
    提供可穿戴设备,所述可穿戴设备包括一个或多个传感器;
    将所述一个或多个传感器配置为感测穿戴所述可穿戴设备的操作员在生产线的工作站上进行操作时所产生的数据;
    收集由所述一个或多个传感器所感测的数据;以及
    基于所收集的数据对所述操作员在生产线上的操作进行监控。
  18. 一种生产线监控设备,其特征在于,所述设备包括:
    采集装置,用于收集由一个或多个传感器所感测的数据,其中所述一个或多个传感器被设置在可穿戴设备中并且所述一个或多个传感器被配置为感测穿戴所述可穿戴设备的操作员在生产线的工作站上进行操作时所产生的数据;以及
    处理装置,其基于采集装置所收集的数据对所述操作员在生产线上的操作进行监控。
  19. 一种可穿戴设备,其特征在于,所述可穿戴设备包括:
    一个或多个传感器,所述一个或多个传感器被配置为感测穿戴所述可穿戴设备的操作员在生产线的工作站上进行操作时所产生的数 据;以及
    控制装置,所述控制装置被配置为收集由所述一个或多个传感器所感测的数据以及基于所收集的数据对所述操作员在所述工作站上的操作进行监控。
  20. 一种生产线监控系统,其特征在于,所述系统由权利要求19所述的可穿戴设备构成。
  21. 一种生产线监控方法,其特征在于,所述方法包括:
    提供可穿戴设备,所述可穿戴设备包括一个或多个传感器以及控制装置;
    将所述一个或多个传感器配置为感测穿戴所述可穿戴设备的操作员在生产线的工作站上进行操作时所产生的数据;以及
    将所述控制装置配置为收集由所述一个或多个传感器所感测的数据以及基于所收集的数据对所述操作员在生产线工作站上的操作进行监控。
PCT/CN2017/103570 2016-10-31 2017-09-27 生产线监控系统和方法 WO2018076992A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610928402.7A CN108021104A (zh) 2016-10-31 2016-10-31 生产线监控系统和方法
CN201610928402.7 2016-10-31

Publications (1)

Publication Number Publication Date
WO2018076992A1 true WO2018076992A1 (zh) 2018-05-03

Family

ID=62024323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103570 WO2018076992A1 (zh) 2016-10-31 2017-09-27 生产线监控系统和方法

Country Status (2)

Country Link
CN (1) CN108021104A (zh)
WO (1) WO2018076992A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3832582A4 (en) * 2018-07-30 2022-03-09 Hitachi, Ltd. OPERATIONS FORMATION MANAGEMENT SYSTEM AND OPERATIONS INFORMATION MANAGEMENT PROCEDURES

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108960170A (zh) * 2018-07-12 2018-12-07 苏州达塔库自动化科技有限公司 可视化生产监督指导方法
CN110764610B (zh) * 2018-07-27 2024-05-14 博世汽车部件(苏州)有限公司 用于数据采集的方法和装置以及控制设备
CN108958199A (zh) * 2018-07-27 2018-12-07 苏州市千尺浪信息科技服务有限公司 一种生产线监控系统
CN108991431A (zh) * 2018-08-09 2018-12-14 四川生态诚品农业开发有限公司 一种柿饼制作工艺
CN109885001A (zh) * 2019-02-25 2019-06-14 中船第九设计研究院工程有限公司 一种基于可穿戴语音交互设备的生产线节点管控方法
CN110708519B (zh) * 2019-11-05 2020-12-08 太原理工大学 一种面向工业现场环境的交互式监控方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004102765A (ja) * 2002-09-11 2004-04-02 Mitsubishi Heavy Ind Ltd 設備点検システム
CN104977874A (zh) * 2014-04-04 2015-10-14 洛克威尔自动控制技术股份有限公司 工业使能移动设备
US20160034158A1 (en) * 2014-07-31 2016-02-04 Western Integrated Technologies, Inc. User customization of auto-detected data for analysis
CN105629943A (zh) * 2016-03-16 2016-06-01 青岛理工大学 一种基于可穿戴设备的制造系统及其运行方法
CN105791379A (zh) * 2015-01-08 2016-07-20 波音公司 使用物联网网络来管理工厂生产的系统和方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103713545B (zh) * 2013-12-17 2017-09-29 华为技术有限公司 操作指导方法、装置及系统
KR101859311B1 (ko) * 2014-02-24 2018-05-18 소니 주식회사 출력을 최적화하기 위한 스마트 착용형 디바이스들 및 방법들
CN203982446U (zh) * 2014-05-23 2014-12-03 国家电网公司 一种安全生产无线监控装置
CN105159249B (zh) * 2015-08-12 2018-04-03 观禹科技有限公司 一种生产控制智能监控器及其处理设备行为数据的方法
CN205608505U (zh) * 2016-04-25 2016-09-28 湖南工学院 一种降低检修人员失误概率的系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004102765A (ja) * 2002-09-11 2004-04-02 Mitsubishi Heavy Ind Ltd 設備点検システム
CN104977874A (zh) * 2014-04-04 2015-10-14 洛克威尔自动控制技术股份有限公司 工业使能移动设备
US20160034158A1 (en) * 2014-07-31 2016-02-04 Western Integrated Technologies, Inc. User customization of auto-detected data for analysis
CN105791379A (zh) * 2015-01-08 2016-07-20 波音公司 使用物联网网络来管理工厂生产的系统和方法
CN105629943A (zh) * 2016-03-16 2016-06-01 青岛理工大学 一种基于可穿戴设备的制造系统及其运行方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3832582A4 (en) * 2018-07-30 2022-03-09 Hitachi, Ltd. OPERATIONS FORMATION MANAGEMENT SYSTEM AND OPERATIONS INFORMATION MANAGEMENT PROCEDURES
US11508018B2 (en) 2018-07-30 2022-11-22 Hitachi, Ltd. Work information management system and work information management method

Also Published As

Publication number Publication date
CN108021104A (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
WO2018076992A1 (zh) 生产线监控系统和方法
EP3076256B1 (en) Systems and methods for assessing a facility based on audio/visual delta analysis
US11538281B2 (en) Worker task performance safely
CN109478267B (zh) 基于观察的事件跟踪
US20210343182A1 (en) Virtual-reality-based personal protective equipment training system
JP2014225239A5 (zh)
CN107636702A (zh) 集成式资产完整性管理系统
JP5884220B2 (ja) 作業管理システム
US20180136035A1 (en) Method for detecting vibrations of a device and vibration detection system
US11071495B2 (en) Movement evaluation system and method
CN107230328A (zh) 增加火警系统中的行走测试的效率和准确度的系统和方法
JP2013025578A (ja) 作業支援システム
TW201843642A (zh) 巡檢管理方法及系統
NO20180028A1 (en) Integration of heads up display with data processing
CN204408502U (zh) 应用蓝牙定位进行自动巡逻之机器人监控系统
KR20150083480A (ko) 3차원 입체 영상을 활용한, 설비 통합 관리 시스템
WO2019039126A1 (ja) 活動記録装置、活動記録プログラム、および、活動記録方法
EP2546815B1 (en) System and method of alarm installation and configuration
US20210166180A1 (en) Information processing apparatus, information processing method, and work evaluation system
CN207586712U (zh) 一种石化企业智能巡检装置
JP2017220018A (ja) 情報処理装置、システム、情報処理方法及びプログラム
CN109597361A (zh) 生产线监控系统及生产线监控方法
US8731864B2 (en) System and method of sensor installation validation
JP2018156373A (ja) 設備保全情報管理システム及び設備保全情報管理方法
JP2016171427A (ja) 携帯端末装置、プログラム、及び位置監視システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17865286

Country of ref document: EP

Kind code of ref document: A1