WO2018076832A1 - 显示面板的驱动方法、驱动装置及显示装置 - Google Patents

显示面板的驱动方法、驱动装置及显示装置 Download PDF

Info

Publication number
WO2018076832A1
WO2018076832A1 PCT/CN2017/094290 CN2017094290W WO2018076832A1 WO 2018076832 A1 WO2018076832 A1 WO 2018076832A1 CN 2017094290 W CN2017094290 W CN 2017094290W WO 2018076832 A1 WO2018076832 A1 WO 2018076832A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
polarity
voltage signal
display panel
Prior art date
Application number
PCT/CN2017/094290
Other languages
English (en)
French (fr)
Inventor
李建军
聂军
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/762,288 priority Critical patent/US20190073969A1/en
Publication of WO2018076832A1 publication Critical patent/WO2018076832A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only

Definitions

  • Embodiments of the present disclosure relate to a driving method, a driving device, and a display device of a display panel.
  • the liquid crystal display panel is a widely used display panel. During the display process of the liquid crystal display panel, the liquid crystal molecules need to be driven to be flipped at a certain frequency to ensure the activity of the liquid crystal molecules.
  • the liquid crystal display panel supports a plurality of flip modes, such as a frame flip mode, a row flip mode, a column flip mode, and a dot flip mode, and the dot flip mode generally includes a single dot flip mode and a 2 n dot flip mode, where n is greater than Or an integer equal to 1, 2 n point flip mode such as two-point flip mode, four-point flip mode, eight-point flip mode, and the like.
  • the liquid crystal display panel includes a plurality of sub-pixels arranged in a matrix, the plurality of sub-pixels arranged in a matrix form comprising a plurality of pixel rows and a plurality of pixel columns, each of the pixel columns and each of the pixel rows respectively comprising a plurality of sub-pixels, each of the plurality of sub-pixels
  • the sub-pixels include a thin film transistor (English: Thin Film Transistor; abbreviated as: TFT) and liquid crystal molecules, and the gates of the TFTs of the plurality of sub-pixels in each pixel row are connected to the same gate line of the liquid crystal display panel, in each pixel column.
  • TFT Thin Film Transistor
  • the source of the TFT of the plurality of sub-pixels is connected to the same data line of the liquid crystal display panel, and the TFT signal can be turned on and off by the voltage signal on the gate line.
  • the voltage signal on the data line can be written.
  • the sub-pixel charges the sub-pixel.
  • the polarity of the source voltage signal of the TFT can be changed by periodically changing the polarity of the voltage signal applied to the data line, thereby driving the liquid crystal molecules to be inverted.
  • the source voltage signal of the TFT of each sub-pixel can be called The pixel voltage signal of the sub-pixel, the polarity of the voltage signal includes positive polarity and negative polarity.
  • the amplitude may be applied to the pixel amplitude equal to a preset voltage signal to each sub-pixel of the display panel, so that each display panel 2 n pixel rows form one pixel group to obtain a plurality of pixel groups, and pixel voltage signals of any adjacent two sub-pixels located in the same pixel row in each pixel group have opposite polarities, and all sub-pixels in the same pixel column
  • the pixel voltage signals of the pixels have the same polarity, and the polarity of the pixel voltage signals of the sub-pixels located in the same pixel column of any two adjacent pixel groups are opposite; during the display time of the a+1th frame, the display is performed
  • a pixel voltage signal having a magnitude equal to a preset amplitude is applied to each sub-pixel of the panel, so that the polarity of the pixel voltage signal of all the sub-pixels is changed with respect to the polarity
  • the duration is such that the brightness of the sub-pixels in the first pixel row is smaller than the brightness of other sub-pixels in the pixel group, and the positions of the pixel rows with smaller brightness in different frames are the same, resulting in the display panel being easily visible to the human eye. Poor light and dark stripes.
  • a driving method of a display panel including a plurality of sub-pixels arranged in a matrix, the plurality of sub-pixels arranged in a matrix including a plurality of pixel rows and a plurality of a pixel column, each pixel row and each pixel column respectively comprising a plurality of sub-pixels, the method comprising:
  • the scan time is repeatedly performed with the display duration of 2 n+1 frames as the scan period, and the scan action includes:
  • the pixel voltage signal is applied to each sub-pixel of the display panel during the display time of the (a+1) th frame, so that each of the pixel polarity repeats the first 2n pixel rows of the group And the last 2 n pixel rows of each of the pixel polarity repeating groups satisfy a preset polarity condition, including:
  • the display times of all of the 2 n+1 frames are equal.
  • applying a pixel voltage signal to each sub-pixel of the display panel includes:
  • a pixel voltage signal having a magnitude equal to a preset amplitude is applied to each of the sub-pixels of the display panel.
  • the amplitudes of the pixel voltage signals applied to each sub-pixel of the display panel are equal during the display time of the different frames.
  • the display panel is a liquid crystal display panel.
  • a driving device for a display panel comprising a plurality of sub-pixels arranged in a matrix, the plurality of sub-pixels arranged in a matrix comprising a plurality of pixel rows and a plurality of a pixel column, each of the pixel rows and each of the pixel columns respectively includes a plurality of sub-pixels
  • the driving device of the display panel includes:
  • a scanning module configured to repeatedly perform a scanning operation in a 2 n point flip mode with a display period of 2 n+1 frames as a scan period;
  • the scanning module includes:
  • a first applying sub-module configured to apply a pixel voltage signal to each sub-pixel of the display panel during a display time of the a- th frame, so that each successive 2 n+1 pixel rows of the display panel form one pixel
  • the polarity repeating group obtains a plurality of pixel polarity repeating groups, and the pixel voltage signals of any adjacent two sub-pixels located in the same pixel row in each pixel polarity repeating group have opposite polarities, and each of the pixels
  • the polarity of the pixel voltage signal of the sub-pixel in the i-th pixel row in the same pixel column in the polarity repeating group is opposite to the polarity of the pixel voltage signal of the sub-pixel in the second n + i pixel row, Said a, said n and said i are integers greater than or equal to 1, and a ⁇ 2 n+1 , i ⁇ 2 n ;
  • a second applying submodule configured to apply a pixel voltage signal to each sub-pixel of the display panel during a display time of the a+1th frame, so that each of the pixel polarities repeats the first 2n pixel rows of the group And the last 2 n pixel rows of each of the pixel polarity repeating groups satisfy a preset polarity condition: the polarity of the pixel voltage signal of the sub-pixels of the b pixel rows is opposite to The polarity of the display time of the a-th frame remains unchanged, and the polarity of the pixel voltage signal of the sub-pixels of the remaining pixel rows changes with respect to the polarity of the display time of the a-th frame, the first 2 n pixel rows and the pixel rows b 2 n b-rear pixel rows not adjacent pixel row, said b is an integer greater than or equal to 1, and b ⁇ 2 n, and when the When b is greater than 1, the b pixel rows are continuous.
  • the second application sub-module is configured to apply a pixel voltage signal to each sub-pixel of the display panel during the display time of the (a+1)th frame, so that each pixel is
  • the polarity of the pixel voltage signal of the sub-pixel of the m ⁇ 2 n ⁇ (a ⁇ 1) pixel row in the sexual repetition group remains unchanged with respect to the polarity of the display time of the a-th frame, and the remaining pixel rows
  • the polarity of the pixel voltage signal of the sub-pixel is changed with respect to the polarity of the display time of the a-th frame, and m is an integer greater than or equal to 1.
  • the display times of all of the 2 n+1 frames are equal.
  • the first application sub-module and the second application sub-module are respectively configured to apply a pixel voltage signal having an amplitude equal to a preset amplitude to each sub-pixel of the display panel.
  • the amplitudes of the pixel voltage signals applied to each sub-pixel of the display panel are equal during the display time of the different frames.
  • the display panel is a liquid crystal display panel.
  • a display device comprising: a display panel and the driving device of the second aspect.
  • the driving method, the driving device and the display device of the display panel of the embodiment of the present disclosure in each scanning period, in the process of driving the liquid crystal molecules to flip, the first 2 n pixel rows of each pixel polarity repeating group and each The last 2 n pixel rows of the pixel polarity repeating group satisfy the preset polarity condition, and the preset polarity condition is: the polarity of the pixel voltage signal of the sub-pixels of the b pixel rows remains unchanged, and the remaining pixel rows are changing the polarity of the pixel voltage signal of the pixel, the first pixel row of 2 n b-pixel rows and the number of 2 n b of the pixel rows that are not adjacent, b is an integer greater than or equal to 1.
  • the polarity of the pixel voltage signal of the sub-pixels of the b pixel rows remains unchanged, the polarity of the pixel voltage signals of the sub-pixels of the remaining pixel rows is changed, thereby solving the problem that the display panel is prone to visible dark and dark stripes visible to the human eye.
  • the problem is to achieve a relief effect on the display panel that appears to be visible to the human eye.
  • 1-1 is a schematic structural diagram of a display panel according to an embodiment of the present disclosure.
  • 1-2 is a driving mechanism diagram of a display panel according to an embodiment of the present disclosure
  • 1-3 are driving mechanism diagrams of another display panel according to an embodiment of the present disclosure.
  • 1-4 are schematic diagrams showing changes in polarity of pixel voltage signals of respective sub-pixels of a display panel during a display time of four consecutive frames according to the related art
  • 1-5 is a schematic diagram showing changes in polarity and brightness of a pixel voltage signal of a sub-pixel in the pixel column S1 shown in FIG. 1-4 during a display time of four consecutive frames;
  • 1-6 is a schematic diagram showing luminances of sub-pixels in the pixel column S1 shown in FIG. 1-5 in a display time of four consecutive frames;
  • 2-1 is a flowchart of a method for driving a display panel according to an embodiment of the present disclosure
  • FIG. 2-2 is a flow chart of a method for applying a pixel voltage signal to sub-pixels of a display panel during display time of two adjacent frames according to the embodiment shown in FIG. 2-1;
  • 2-3 is a schematic diagram of a polarity change of a pixel voltage signal of each sub-pixel of a display panel during a display time of four consecutive frames according to an embodiment of the present disclosure
  • 2-4 is a schematic diagram showing changes in polarity and brightness of a pixel voltage signal of a sub-pixel in the pixel column S1 shown in FIG. 2-3 during a display time of four consecutive frames;
  • FIG. 2-5 are schematic diagrams showing luminances of sub-pixels in the pixel column S1 shown in FIG. 2-4 in a display time of four consecutive frames;
  • 2-6 are schematic diagrams of a repeating unit provided by an embodiment of the present disclosure.
  • FIGS. 2-7 are diagrams showing a display surface in a display time of eight consecutive frames according to an embodiment of the present disclosure. Schematic diagram of the polarity change of the pixel voltage signal of each sub-pixel of the board;
  • FIG. 2-8 are schematic diagrams showing changes in polarity and brightness of a pixel voltage signal of a sub-pixel in the pixel column S1 shown in FIG. 2-7 during a display period of eight consecutive frames;
  • FIG. 2-9 are schematic diagrams showing luminances of sub-pixels in the pixel column S1 shown in FIG. 2-8 in a display time of consecutive eight frames;
  • 3-1 is a block diagram of a driving device for a display panel according to an embodiment of the present disclosure
  • FIG. 3 3-2 is a block diagram of a scanning module provided by the embodiment shown in FIG. 3-1.
  • FIG. 1-1 is a schematic structural diagram of a display panel (not shown in FIG. 1-1) according to an embodiment of the present disclosure, where the display panel includes a plurality of sub-pixels arranged in a matrix (FIG. 1-1)
  • a plurality of sub-pixels arranged in a matrix include a plurality of pixel rows and a plurality of pixel columns, and each of the pixel rows and each of the pixel columns respectively comprise a plurality of sub-pixels, as shown in FIG. 1-1.
  • the display panel includes five pixel rows of pixel rows G1 G G5 and six pixel columns of pixel columns S1 S S6 , each of which includes 6 sub-pixels, and each pixel column includes 5 sub-pixels, in FIG. 1 .
  • the five sub-pixels located in the same pixel column have the same color.
  • all five sub-pixels in the pixel column S1 are red (English: Red; abbreviation: R) sub-pixel
  • five sub-pixels in the pixel column S2 The pixels are all green (English: Green; abbreviation: G) sub-pixels
  • the five sub-pixels in the pixel column S3 are all blue (English: Blue; abbreviation: B) sub-pixels.
  • the display panel includes 5 pixel rows, 6 pixel columns, and the plurality of sub-pixels located in the same pixel column have the same color, and the display panel includes R sub-pixels, G sub-pixels, and B.
  • the sub-pixel is taken as an example. In practical applications, the number of pixel rows and pixel columns of the display panel may be set according to actual needs, and the colors of the plurality of sub-pixels located in the same pixel column may be different, and the display panel may further include other Color son
  • the pixel or the display panel includes only the sub-pixels of the two colors, which is not limited by the embodiment of the present disclosure.
  • the display panel further includes a plurality of gate lines (not shown in FIG. 1-1) and a plurality of data lines (not shown in FIG. 1-1), each of the sub-pixels of the display panel including a TFT ( 1-1 and liquid crystal molecules (not shown in FIG. 1-1), the gates of the TFTs of the plurality of sub-pixels in each pixel row are connected to the same gate line of the display panel, each pixel
  • the source of the TFT of the plurality of sub-pixels in the column is connected to the same data line of the display panel, and the TFT signal can be turned on and off by the voltage signal on the gate line. When the TFT is turned on, the voltage signal on the data line can be written.
  • the sub-pixels are charged to the sub-pixels.
  • the polarity of the source voltage signal of the TFT can be changed, thereby driving the liquid crystal molecules to flip, wherein the source voltage signal of the TFT of each sub-pixel can be referred to as the sub-pixel
  • the pixel voltage signal of the pixel, the polarity of the voltage signal includes positive polarity and negative polarity.
  • FIG. 1-1 it shows the polarity of a sub-pixel on a display panel during a display time of a certain frame, wherein "+" indicates that the polarity of the pixel voltage signal of the sub-pixel is positive.
  • the "-" indicates that the polarity of the pixel voltage signal of the sub-pixel is negative.
  • FIG. 1-2 and FIG. 1-3 respectively, a driving mechanism diagram of a display panel provided by an embodiment of the present disclosure is shown, wherein the sub-pixel X1 and the sub-pixel X2 are two adjacent sub-pixels in the same pixel column.
  • the sub-pixel X1 is located in a pixel row before the sub-pixel X2, and the source of the sub-pixel X1 and the source of the sub-pixel X2 are connected to the same data line.
  • the sub-pixel X1 and the sub-pixel X2 are as shown in FIG. Two adjacent sub-pixels in the pixel column S1, and the sub-pixel X1 is located in the pixel row G1, and the sub-pixel X2 is located in the pixel row G2.
  • the polarity of the pixel voltage signal of the sub-pixel X1 is the same as the polarity of the pixel voltage signal of the sub-pixel X2, and is under the same gray level.
  • the voltage signal of the data line connected to the sub-pixel X1 and the sub-pixel X2 (that is, the Source voltage signal) can be sequentially charged to the sub-pixel X1 and the sub-pixel X2 without changing, in the sub-pixel X1 and the sub-pixel During the charging process of the pixel X2, the voltage signal of the data line is kept at -5 V (Chinese: volt), and the variation of the voltage signal of the data line is 0 V.
  • the sub-pixel X1 and the sub-pixel X2 can be The same sub-pixel voltage (liquid crystal voltage) is reached, and there is no case where the sub-pixel X1 and the sub-pixel X2 do not have different brightness, that is, the sub-pixel X1 in the pixel row G1 and the sub-pixel X2 in the pixel row G2 do not.
  • the other sub-pixels in the pixel row G1 and the sub-pixels in the pixel row G2 that are in the same pixel column as the other sub-pixels in the pixel row G1 do not have different brightness.
  • the display panel does not appear bright and dark stripes.
  • the pixel voltage signal of the sub-pixel X1 is 5V
  • the pixel voltage signal of the sub-pixel X2 is -5V
  • the voltage signal of the data line connected to the sub-pixel X1 and the sub-pixel X2 needs to be changed in the same gray level to sequentially charge the sub-pixel X1 and the sub-pixel X2, and the voltage signal of the data line
  • the amount of change is 10V, which is equivalent to charging 10V to the capacitor.
  • the voltage signal of the data line needs to go through the rising edge or the falling edge to charge the sub-pixel X1 and the sub-pixel X2, respectively, resulting in the actual sub-pixel (in the sub-pixel).
  • the charging time of the liquid crystal capacitor is shortened.
  • the RC Delay Choinese: resistor-capacitor delay
  • the time of the rising or falling edge of the voltage signal of the data line changes long, resulting in actual The time to charge the sub-pixels becomes shorter.
  • the falling edge is required to charge the sub-pixel X2, so that the time for charging the sub-pixel X2 becomes shorter, and if the load of the display panel is large, the sub-pixel is caused.
  • the charging time of X2 becomes shorter, which makes the sub-pixel X1 fully charged, and the sub-pixel X2 is insufficiently charged.
  • the brightness of the sub-pixel X1 is high, and the brightness of the sub-pixel X2 is low, that is, the pixel row G1.
  • the sub-pixel X1 and the sub-pixel X2 in the pixel row G2 have different brightness differences.
  • other sub-pixels in the pixel row G1 and the pixel row G2 are located in the same pixel column as the other sub-pixels in the pixel row G1.
  • the difference in luminance of the sub-pixels is large, so the luminance difference between the pixel row G1 and the pixel row G2 is large.
  • the luminance difference between the pixel row G2 and the pixel row G3, the pixel row G3, and the pixel row G4 is large, and each frame is This is the case, so the display panel is prone to bright and dark stripes visible to the human eye.
  • FIG. 1-4 is a schematic diagram showing the polarity change of the pixel voltage signals of each sub-pixel of the display panel during the display time of four consecutive frames, which is represented by the related art.
  • the flip mode is 1+2dot (dot) flip mode.
  • the pixel column S1 is taken as an example.
  • the polarity of the pixel voltage signal of the sub-pixel is "+--++" from the pixel row G1 to the pixel row G5, and five R in the pixel column S1 during the display time of the frame F2 (for example, the second frame).
  • the polarity of the pixel voltage signal of the sub-pixel is "-++--" from the pixel row G1 to the pixel row G5, and five R in the pixel column S1 during the display time of the frame F3 (for example, the third frame).
  • the polarity of the pixel voltage signal of the sub-pixel is "+--++" in order from pixel row G1 to pixel row G5, and in frame F4 (for example, frame 4)
  • the polarity of the pixel voltage signals of the five R sub-pixels in the pixel column S1 is sequentially "-++--" from the pixel row G1 to the pixel row G5.
  • FIG. 1-5 shows a variation of the polarity and brightness of the pixel voltage signal of the sub-pixels in the pixel column S1 shown in FIG. 1-4 during the display time of four consecutive frames.
  • the light and dark of the sub-pixels are represented by two values of 1,0.
  • the sub-pixels located in the pixel column S1 and the pixel row G1 are sub-pixels X1 (not shown in FIGS. 1-5), and the sub-pixels located in the pixel column S1 and the pixel row G2 are sub-pixels X2 (FIG. 1) 5 is not marked), and the sub-pixels located in the pixel column S1 and the pixel row G3 are sub-pixels X3 (not shown in FIGS.
  • Pixel X4 (not shown in FIGS. 1-5), and the sub-pixels located in pixel column S1 and pixel row G4 are sub-pixels.
  • Pixel X4 (not shown in FIGS. 1-5), and the sub-pixels located in pixel column S1 and pixel row G5 are sub-pixels X5 (not shown in FIG. 1-5), see FIG. 1-5, in frame F1.
  • the polarity of the pixel voltage signal of the sub-pixel X1 is "+”
  • the polarity of the pixel voltage signal of the sub-pixel X2 is "-”
  • the polarity of the pixel voltage signal of the sub-pixel X3 is "-".
  • the polarity of the pixel voltage signal of the sub-pixel X4 is "+"
  • the polarity of the pixel voltage signal of the sub-pixel X5 is "+”
  • the sub-pixel X1 is a sub-pixel in the pixel row G1, when the sub-pixel X1 is charged
  • the voltage signal of the data line is preset, so the voltage signal of the data line does not need to be changed, and the sub-pixel X1 can be fully charged, so the sub-pixel X1
  • the luminance is 1, since the polarity of the pixel voltage signal of the sub-pixel X1 is "+”, the polarity of the pixel voltage signal of the sub-pixel X2 is "-”, and the voltage signal of the data line after the end of charging to the sub-pixel X1 Need to change (such as from +5 to -5), at this time, the voltage signal of the data line needs to go through the falling edge to charge the sub-pixel X2, because the voltage signal of the data line takes a certain time in
  • the sub-pixel X3 can be fully charged, so the brightness of the sub-pixel X3 is 1, and so on, the display in the frame F1.
  • the brightness of the sub-pixel X4 is 0, and the brightness of the sub-pixel X5 is 1, so that the brightness of the five R sub-pixels in the pixel column S1 is sequentially from the pixel row G1 to the pixel row G5 in the display time of the frame F1.
  • For "10101" .
  • the brightness of the five R sub-pixels in the pixel column S1 is sequentially "10101" from the pixel row G1 to the pixel row G5, and the pixel column S1 is displayed during the display time of the frame F3.
  • the brightness of the five R sub-pixels is sequentially "10101" from the pixel row G1 to the pixel row G5, and five R in the pixel column S1 during the display time of the frame F4
  • the luminance of the sub-pixels is sequentially "10101" from the pixel row G1 to the pixel row G5.
  • FIG. 1-6 shows the brightness of the sub-pixels in the pixel column S1 shown in FIG. 1-5 in the display time of consecutive four frames.
  • the display in different frames.
  • the brightness of sub-pixel X1 (not shown in Figure 1-6), the brightness of sub-pixel X3 (not shown in Figure 1-6), and the brightness of sub-pixel X5 (not shown in Figure 1-6) are always For 1, the brightness of sub-pixel X2 (not shown in Figure 1-6) and the brightness of sub-pixel X4 (not shown in Figure 1-6) are always 0, thus being embodied on the entire display panel, in each frame
  • the brightness of the pixel row G1 where the sub-pixel X1 is located, the pixel row G3 where the sub-pixel X3 is located, and the pixel row G5 where the sub-pixel X5 is located are all 1, and the brightness of the pixel row G4 where the sub-pixel X2 is located and the pixel row G
  • FIG. 2-1 is a flowchart of a method for driving a display panel according to an embodiment of the present disclosure.
  • the driving method of the display panel is used to drive a display panel to implement image display, and the display panel may be liquid crystal.
  • a display panel and the display panel includes a plurality of sub-pixels arranged in a matrix, and the plurality of sub-pixels arranged in a matrix includes a plurality of pixel rows and a plurality of pixel columns, and each of the pixel rows and each of the pixel columns respectively include a plurality of sub-pixels Pixels
  • the driving method of the display panel includes:
  • Step 201 In the 2 n point flip mode, the scanning operation is repeatedly performed with the display duration of 2 n+1 frames as the scanning period.
  • FIG. 2-2 shows a flowchart of a method for performing a scanning action provided by the embodiment shown in FIG. 2-1.
  • the method includes:
  • the polarity of the pixel voltage signal of the sub-pixel in the i-th pixel row is opposite to the polarity of the pixel voltage signal of the sub-pixel in the second n + i pixel row, and a, n, and i are both greater than or equal to 1 An integer, and a ⁇ 2 n+1 , i ⁇ 2 n .
  • Sub-step 2012 applying a pixel voltage signal to each sub-pixel of the display panel during the display time of the a+1th frame, so that the first 2 n pixel rows and each pixel polarity repeating group of each pixel polarity repeating group
  • the last 2 n pixel rows satisfy the preset polarity condition, and the preset polarity condition is: the polarity of the pixel voltage signal of the sub-pixels of the b pixel rows remains unchanged with respect to the polarity of the display time of the a-frame
  • the polarity of the pixel voltage signal of the sub-pixels of the remaining pixel rows changes with respect to the polarity of the display time of the a- th frame, and b pixel rows and the last 2 n pixel rows of the first 2 n pixel rows
  • the b pixel rows are not adjacent, b is an integer greater than or equal to 1, and b ⁇ 2 n , and when b is greater than 1, the b pixel rows are continuous.
  • the driving method of the display panel in each scanning period, in the process of driving the liquid crystal molecules to flip, the first 2 n pixel rows of each pixel polarity repeating group and each The last 2 n pixel rows of the pixel polarity repeating group satisfy the preset polarity condition, and the preset polarity condition is: the polarity of the pixel voltage signal of the sub-pixels of the b pixel rows remains unchanged, and the remaining pixel rows are changing the polarity of the pixel voltage signal of the pixel, the first pixel row of 2 n b-pixel rows and the number of 2 n b of the pixel rows that are not adjacent, b is an integer greater than or equal to 1.
  • the polarity of the pixel voltage signal of the sub-pixels of the b pixel rows remains unchanged, the polarity of the pixel voltage signal of the sub-pixels of the remaining pixel rows changes, thereby solving the problem that the display panel has a bright and dark streak visible to the human eye.
  • the problem is to alleviate the bad effect of bright and dark stripes visible on the display panel.
  • a pixel voltage signal having an amplitude equal to a preset amplitude may be applied to each sub-pixel of the display panel, and pixels applied to each sub-pixel of the display panel during display time of different frames
  • the amplitudes of the voltage signals are equal, for example, a pixel voltage signal having an amplitude equal to 5 V is applied to each sub-pixel of the display panel during the display time of the a-frame and the display time of the a+1-th frame.
  • Each sub-pixel of the display panel includes a TFT
  • the display panel further includes a gate line one-to-one corresponding to the plurality of pixel rows and a data line corresponding to the plurality of pixel columns, and TFTs of all the sub-pixels in one pixel row
  • the gates are respectively connected to the same gate line, and the sources of the TFTs of all the sub-pixels in one pixel column are respectively connected to the same data line, and the gate line can control the opening and closing of the TFT of the sub-pixel, and the TFT in the sub-pixel
  • the data line connected to the source of the TFT may be charged to the sub-pixel to apply the pixel voltage signal to the sub-pixel.
  • the process of applying the voltage signal may be referred to the related art, and details are not described herein again.
  • n is an integer greater than or equal to 1.
  • the embodiment of the present disclosure uses the 2 n point flip mode as a two-point flip mode as an example.
  • the figure 2-3 illustrates the four frames as the frame F1 to the frame F4.
  • the frame a1 may be any frame other than the frame F4 in the frame F1 to the frame F4.
  • the +1 frame is the next frame of the a-th frame.
  • the a-th frame is the frame F1
  • the a+1-th frame is the frame F2
  • the a-th frame is the frame F2
  • the a+1-th frame is the frame F3.
  • the a-th frame is the frame F3
  • the a+1-th frame is the frame F4.
  • the a-th frame is the frame F1
  • the a+1-th frame is the frame F2.
  • a pixel voltage signal may be applied to each sub-pixel of the display panel to make the pixels of the sub-pixels in the pixel column S1 among the sub-pixels of the display panel.
  • the polarity of the voltage signal is "+--++" from the pixel row G1 to the pixel row G5, and the polarity of the pixel voltage signal of the sub-pixel in the pixel column S2 is "-+" from the pixel row G1 to the pixel row G5.
  • the polarity of the pixel voltage signal of the sub-pixel in the pixel column S3 is "+--++" in order from the pixel row G1 to the pixel row G5, and the pole of the pixel voltage signal of the sub-pixel in the pixel column S4
  • the polarity from the pixel row G1 to the pixel row G5 is "-++--"
  • the polarity of the pixel voltage signal of the sub-pixel in the pixel column S5 is "+--++” from the pixel row G1 to the pixel row G5.
  • the polarity of the pixel voltage signal of the sub-pixel in the pixel column S6 is "-++--" from the pixel row G1 to the pixel row G5, see FIG.
  • pixel rows form a pixel polarity repeating group, resulting in multiple pixel polarity repeating groups, each of which is in the same polarity repeating group
  • the four consecutive pixel rows form a pixel polarity repeating group, and so on, a plurality of pixel polarity repeating groups can be obtained, in the pixel row
  • the pixel voltage signals of any adjacent two sub-pixels located in the same pixel row (such as the pixel row G1) have opposite polarities, and each pixel is in the polarity repeating group.
  • the polarity of the pixel voltage signal of the sub-pixel in the first pixel row in the same pixel column is opposite to the polarity of the pixel voltage signal of the sub-pixel in the third pixel row, and the sub-pixel in the second pixel row
  • the polarity of the pixel voltage signal is opposite to the polarity of the pixel voltage signal of the sub-pixel in the fourth pixel row.
  • the sub-step 2012 includes: applying a pixel voltage signal to each sub-pixel of the display panel during the display time of the a+1th frame, such that each pixel polarity repeats the m ⁇ 2 n -
  • the polarity of the pixel voltage signal of the sub-pixel of (a-1) pixel row remains unchanged with respect to the polarity of the display time of the a-th frame, and the polarity of the pixel voltage signal of the sub-pixel of the remaining pixel row is relative to The polarity of the display frame of a frame changes, and m is an integer greater than or equal to 1.
  • a pixel voltage signal may be applied to each sub-pixel of the display panel to make the sub-pixel of the display panel
  • the polarity of the pixel voltage signal of the sub-pixel in the pixel column S1 is sequentially "--++-" from the pixel row G1 to the pixel row G5
  • the polarity of the pixel voltage signal of the sub-pixel in the pixel column S2 is from
  • the pixel row G1 to the pixel row G5 are sequentially "++--+”
  • the polarity of the pixel voltage signal of the sub-pixel in the pixel column S3 is "--++-" from the pixel row G1 to the pixel row G5, and the pixel is sequentially
  • the polarity of the pixel voltage signal of the sub-pixel in the column S4 is sequentially "++--+" from the pixel row G1 to the pixel
  • the polarity of the display time of the a-th frame (frame F1) remains unchanged, and the polarity of the pixel voltage signal of the sub-pixels of the remaining pixel rows changes with respect to the polarity of the display time of the a-th frame, the first 2 pixels
  • the b pixel rows in the row are not adjacent to the b pixel rows in the last 2 pixel rows, and b is an integer greater than or equal to 1.
  • the polarity inside remains unchanged, that is, in each pixel polarity repeating group, the polarity of the pixel voltage signal of the second and fourth row sub-pixels is relative to the polarity of the display time of the a-th frame. constant.
  • the polarity of the pixel voltage signal of the sub-pixels of the pixel row G2 and the pixel row G4 can be calculated by using the formula with respect to the display time of the frame F1. The polarity remains the same.
  • FIG. 2-4 is a schematic diagram showing changes in polarity and brightness of a pixel voltage signal of a sub-pixel in the pixel column S1 shown in FIG. 2-3 during a display period of four consecutive frames, assuming simultaneous
  • the sub-pixels located in the pixel column S1 and the pixel row G1 are sub-pixels X1 (not shown in FIGS. 2-4), and the sub-pixels located in the pixel column S1 and the pixel row G2 are sub-pixels X2 (FIG. 2-4) Not shown), the sub-pixels located in the pixel column S1 and the pixel row G3 are sub-pixels X3 (not shown in FIGS.
  • the sub-pixels located in the pixel column S1 and the pixel row G4 are sub-pixels X4.
  • the sub-pixels located in pixel column S1 and pixel row G5 are sub-pixels X5 (not shown in Figure 2-4), see Figure 2-4, display in frame F1
  • the polarity of the pixel voltage signal of the sub-pixel X1 is "+”, the polarity of the pixel voltage signal of the sub-pixel X2 is "-”, and the polarity of the pixel voltage signal of the sub-pixel X3 is "-”, the sub-pixel
  • the polarity of the pixel voltage signal of X4 is "+", the polarity of the pixel voltage signal of the sub-pixel X5 is "+", and since the sub-pixel X1 is a sub-pixel in the pixel row G1, the sub-pixel X1
  • the voltage signal of the data line is preset, so the voltage signal of the data line does not need to be changed
  • the polarity of the pixel voltage signal is "+", and the polarity of the pixel voltage signal of the sub-pixel X2 is "-".
  • the voltage signal of the data line needs to be changed (for example, from +5 to -5).
  • the voltage signal of the data line needs to pass the falling edge to charge the sub-pixel X2. Since the voltage signal of the data line consumes a certain time in the process of changing, the time for actually charging the sub-pixel X2 becomes shorter, and the sub-pixel X2 is charged.
  • the pixel X2 is insufficiently charged, so the luminance of the sub-pixel X2 is 0, and since the polarities of the pixel voltage signals of the sub-pixel X2 and the sub-pixel X3 are both "-", the voltage signal of the data line is not required after the charging to the sub-pixel X2 is completed.
  • the sub-pixel X3 can be charged, the sub-pixel X3 can be fully charged, so the brightness of the sub-pixel X3 is 1, and so on, and the brightness of the sub-pixel X4 is 0 during the display time of the frame F1.
  • luminance of the pixel is 1, therefore, in the display time of frame F1, S1, pixel columns 5 R sub-pixel luminance from pixel to pixel row lines G1 to G5 turn "10,101.”
  • Sub-pixel during display time of frame F2 The polarity of the pixel voltage signal of X1 is "-", the polarity of the pixel voltage signal of sub-pixel X2 is "-”, the polarity of the pixel voltage signal of sub-pixel X3 is "+”, and the pixel voltage signal of sub-pixel X4 The polarity of the pixel voltage signal of the sub-pixel X5 is "-".
  • the sub-pixel X1 is a sub-pixel in the pixel row G1
  • the voltage signal of the data line is Set, so the voltage signal of the data line does not need to be changed, the sub-pixel X1 can be fully charged, so the brightness of the sub-pixel X1 is 1, since the polarity of the pixel voltage signals of the sub-pixel X1 and the sub-pixel X2 are "- After the charging of the sub-pixel X1 is completed, the voltage signal of the data line can be charged to the sub-pixel X2 without changing, and therefore, the sub-pixel X2 can be fully charged, the brightness of the sub-pixel X2 is 1, and so on, in the frame.
  • the luminance of the sub-pixel X3 is 0, the luminance of the sub-pixel X4 is 1, and the luminance of the sub-pixel X5 is 0. Therefore, during the display time of the frame F2, 5 R sub-pixels in the pixel column S1 The brightness is from pixel row G1 to pixel row G5.
  • the second time is "11010".
  • the brightness of the five R sub-pixels in the pixel column S1 is sequentially "10101" from the pixel row G1 to the pixel row G5, and the pixel column S1 is displayed during the display time of the frame F4.
  • the luminance of the five R sub-pixels in the order is "11010" from the pixel row G1 to the pixel row G5.
  • FIG. 2-5 shows the luminance of the sub-pixels in the pixel column S1 shown in FIG. 2-4 during the display time of four consecutive frames.
  • the brightness of the sub-pixel X2 (not shown in FIG. 2-5), the brightness of the sub-pixel X3 (not shown in FIG. 2-5), and the sub-pixel X4 during the display time of different frames in F4 (FIG. 2-5)
  • the brightness of the sub-pixel X5 (not shown in FIG. 2-5) is not all 0 or not all 1, which is reflected on the entire display panel, and the brightness of the same sub-pixel in the adjacent two frames is bright.
  • the display panel driving method is performed for one frame unit. For example, as shown in FIGS. 2-6, the display panel driving method may be performed with one frame unit from frame F1 to frame F4.
  • the a-th frame is the frame F1 and the a+1-th frame is the frame F2.
  • the a-th frame may also be the frame F2 or the frame F3, and the a+1th frame.
  • the frame F3 or the frame F4 reference may be made to the above description, and details are not described herein again.
  • FIG. 2-7 is a schematic diagram showing changes in polarity of pixel voltage signals of respective sub-pixels of a display panel during a display period of eight consecutive frames according to an embodiment of the present disclosure.
  • 7 is described by taking the consecutive eight frames as the frame F1 to the frame F8.
  • the a-th frame may be any frame other than the frame F8 in the frame F1 to the frame F8, and the a+1th frame is the a-th frame.
  • the embodiment of the present disclosure is described by taking the a-th frame as the frame F1 and the a+1-th frame as the frame F2. Referring to FIG.
  • a pixel voltage signal may be applied to each sub-pixel of the display panel to make the pixels of the sub-pixels in the pixel column S1 among the sub-pixels of the display panel.
  • the polarity of the voltage signal is from the pixel row G1 to the pixel row G16 in order of "++++----++++----", and the polarity of the pixel voltage signal of the sub-pixel in the pixel column S2 is from the pixel.
  • the row G1 to the pixel row G16 are sequentially "----++++----++++", and the polarity of the pixel voltage signal of the sub-pixel in the pixel column S3 is sequentially from the pixel row G1 to the pixel row G16.
  • the polarity of the pixel voltage signal of the sub-pixel in the pixel column S4 is "----+" from the pixel row G1 to the pixel row G16.
  • a plurality of pixel polarity repeating groups wherein pixel voltage signals of any adjacent two sub-pixels in the same pixel row in each pixel polarity repeating group have opposite polarities, and each pixel polarity repeating group is located in the same pixel
  • a, n, and i are integers greater than or equal to 1, and a ⁇ 2 n+1 , i ⁇ 2 n .
  • the pixel row G1 ⁇ G8 These 8 consecutive pixel rows form a pixel polarity repeating group, and the pixel rows G9-G16 are successively formed into a pixel polarity repeating group, and so on, a plurality of pixel polarity repeating groups can be obtained, in the pixel In the pixel polarity repeating group formed by the rows G1 G G8, the pixel voltage signals of any adjacent two sub-pixels located in the same pixel row (such as the pixel row G1) have opposite polarities, and each pixel polarity is repeated in the group.
  • the polarity of the pixel voltage signal is opposite to the polarity of the pixel voltage signal of the sub-pixel in the fifth pixel row, and the polarity of the pixel voltage signal of the sub-pixel in the second pixel row and the sub-pixel in the sixth pixel row
  • the polarity of the pixel voltage signal of the pixel is opposite, the polarity of the pixel voltage signal of the sub-pixel in the third pixel
  • the sub-step 2012 includes: applying a pixel voltage signal to each sub-pixel of the display panel during the display time of the a+1th frame, such that each pixel polarity repeats the m ⁇ 2 n -
  • the polarity of the pixel voltage signal of the sub-pixel of (a-1) pixel row remains unchanged with respect to the polarity of the display time of the a-th frame, and the polarity of the pixel voltage signal of the sub-pixel of the remaining pixel row is relative to The polarity of the display frame of a frame changes, and m is an integer greater than or equal to 1.
  • a pixel voltage signal may be applied to each sub-pixel of the display panel to make the sub-pixel of the display panel In the pixel, the polarity of the pixel voltage signal of the sub-pixel in the pixel column S1 is sequentially "---++++----++++-" from the pixel row G1 to the pixel row G16, and the pixel column S2 is in the pixel row S2.
  • the polarity of the pixel voltage signal of the sub-pixel is sequentially "+++----++++----+” from the pixel row G1 to the pixel row G16, and the pixel voltage signal of the sub-pixel in the pixel column S3
  • the polarity of the pixel from the pixel row G1 to the pixel row G16 is "---++++----++++-"
  • the polarity of the pixel voltage signal of the sub-pixel in the pixel column S4 is from the pixel row G1.
  • the pixel row G16 is sequentially "+++----++++----+”
  • the polarity of the pixel voltage signal of the sub-pixel in the pixel column S5 is sequentially from the pixel row G1 to the pixel row G16.
  • the preset polarity condition is: the polarity of the pixel voltage signal of the sub-pixels of the b pixel rows remains unchanged with respect to the polarity of the display time of the a-th frame (frame F1), and the pixels of the sub-pixels of the remaining pixel rows The polarity of the voltage signal changes with respect to the polarity of the display frame of the a-frame.
  • the b pixel rows in the first 4 pixel rows are not adjacent to the b pixel rows in the last 4 pixel rows, and b is greater than Or an integer equal to 1, and when b is greater than 1, the b pixel rows are contiguous.
  • b 1 referring to FIG.
  • the pixel voltage signal pole of the pixel row G4 and the pixel row G8 sub-pixel The polarity of the display is unchanged with respect to the display time of the frame F1, and the polarity of the pixel voltage signal of the pixel row G1 to the pixel row G3 and the pixel row G5 to the pixel row G7 is relative to the display time of the frame F1.
  • the polarity changes.
  • the polarity inside remains unchanged, that is, in each pixel polarity repeating group, the polarity of the pixel voltage signal of the 4th and 8th row sub-pixels relative to the polarity of the display time of the a-th frame constant.
  • the polarity of the pixel voltage signal of the sub-pixels of the pixel row G4 and the pixel row G8 can be calculated by using the formula with respect to the display time of the frame F1. The polarity remains the same.
  • FIG. 2-8 shows a schematic diagram of the polarity and brightness changes of the pixel voltage signals of the sub-pixels in the pixel column S1 shown in FIG. 2-7 during the display time of consecutive eight frames, assuming that they are simultaneously located.
  • the sub-pixels in the pixel column S1 and the pixel row G1 are sub-pixels X1 (not shown in FIGS. 2-8), and the sub-pixels located in the pixel column S1 and the pixel row G2 are sub-pixels X2 (not shown in FIG. 2-8). Marked), the sub-pixels located in the pixel column S1 and the pixel row G3 are sub-pixels X3 (not shown in FIG.
  • the sub-pixels located in the pixel column S1 and the pixel row G4 are sub-pixels X4 ( 2-8
  • the sub-pixels located in the pixel column S1 and the pixel row G5 are sub-pixels X5 (not shown in FIG. 2-8), and are located in the pixel column S1 and the pixel row G6.
  • the pixel is a sub-pixel X6 (not shown in FIG. 2-8)
  • the sub-pixels located in the pixel column S1 and the pixel row G7 are sub-pixels X7 (not shown in FIG. 2-8), and are located in the pixel column S1 and
  • the sub-pixels in the pixel row G8 are sub-pixels X8 (not shown in FIG.
  • sub-pixels located in the pixel column S1 and the pixel row G9 are sub-pixels X9 (not shown in FIG. 2-8).
  • Simultaneously located in pixel column S1 and The sub-pixels in the pixel row G10 are sub-pixels X10 (not shown in FIG. 2-8), and the sub-pixels located in the pixel column S1 and the pixel row G11 are sub-pixels X11 (not shown in FIG. 2-8).
  • the sub-pixels located in the pixel column S1 and the pixel row G12 are sub-pixels X12 (Fig.
  • the sub-pixels located in the pixel column S1 and the pixel row G13 are the sub-pixels X13 (not shown in FIG. 2-8), and the sub-pixels located in the pixel column S1 and the pixel row G14 are not shown in 2-8).
  • the sub-pixel X14 (not shown in FIG. 2-8)
  • the sub-pixels located in the pixel column S1 and the pixel row G15 are sub-pixels X15 (not shown in FIG. 2-8), and are located in the pixel column S1 and the pixel.
  • the sub-pixels in row G16 are sub-pixels X16 (not shown in Figure 2-8)
  • the polarity of the pixel voltage signals of the sub-pixels X1 to X4 is “+”, and the polarities of the pixel voltage signals of the sub-pixels X5 to X8 are all "-”, the polarity of the pixel voltage signals of the sub-pixel X9 to the sub-pixel X12 is "+”, and the polarity of the pixel voltage signal of the sub-pixel X13 to the sub-pixel X16 is "-", since the sub-pixel X1 is a pixel row
  • the voltage signal of the data line is preset, so that the voltage signal of the data line does not need to be changed, and the sub-pixel X1 can be fully charged, so the brightness of the sub-pixel X1 is 1.
  • the polarity of the pixel voltage signal of the sub-pixel X1 and the sub-pixel X2 is “+”, after the charging of the sub-pixel X1 is completed, the voltage signal of the data line can be charged to the sub-pixel X2 without changing, the sub-pixel X2 It can be fully charged, so the brightness of the sub-pixel X2 is 1.
  • the brightness of the sub-pixel X3 is 1, and the brightness of the sub-pixel X4 is 1, due to the polarity of the pixel signal of the sub-pixel X4.
  • the pixel of sub-pixel X5 is The polarity of the signal is "-".
  • the voltage signal of the data line needs to be changed (for example, from +5 to -5). At this time, the voltage signal of the data line needs to go through the falling edge. Charging the sub-pixel X5, since the voltage signal of the data line consumes a certain time in the process of changing, the time for actually charging the sub-pixel X5 becomes shorter, and the sub-pixel X5 is insufficiently charged, so the brightness of the sub-pixel X5 is 0.
  • the luminance of the sub-pixel X6 is 1
  • the luminance of the sub-pixel X7 is 1
  • the luminance of the sub-pixel X8 is 1
  • the luminance of the sub-pixel X11 is 1, the luminance of the sub-pixel X12 is 1, the luminance of the sub-pixel X13 is 0, the luminance of the sub-pixel X14 is 1, the luminance of the sub-pixel X15 is 1, and the luminance of the sub-pixel X16 is 1,
  • the brightness of the 16 R sub-pixels in the pixel column S1 is sequentially "1111011101110111" from the pixel row G1 to the pixel row G16.
  • the brightness of the 16 R sub-pixels in the pixel column S1 is sequentially "1110111011101110" from the pixel row G1 to the pixel row G16, and the pixel column S1 is displayed during the display time of the frame F3.
  • the brightness of the 16 R sub-pixels is sequentially "1101110111011101” from the pixel row G1 to the pixel row G16, and the pixel is displayed during the display time of the frame F4.
  • the brightness of the 16 R sub-pixels in the column S1 is sequentially "1011101110111011” from the pixel row G1 to the pixel row G16, and the brightness of the 16 R sub-pixels in the pixel column S1 is from the pixel row G1 to the display time of the frame F5.
  • the pixel row G16 is sequentially "1111011101110111”.
  • the brightness of the 16 R sub-pixels in the pixel column S1 is sequentially "1110111011101110” from the pixel row G1 to the pixel row G16, in the display time of the frame F7.
  • the brightness of the 16 R sub-pixels in the pixel column S1 is sequentially "1101110111011101" from the pixel row G1 to the pixel row G16, and the brightness of the 16 R sub-pixels in the pixel column S1 is from the pixel row during the display time of the frame F8.
  • G1 to pixel row G16 are sequentially "1011101110111011”.
  • FIG. 2-9 shows the luminance of the sub-pixels in the pixel column S1 shown in FIG. 2-8 in the display time of consecutive eight frames, see FIG. 2-9, in the frame F1 to frame.
  • the brightness of each sub-pixel in sub-pixel X2 (not shown in FIG. 2-9) to sub-pixel X16 (not shown in FIG. 2-9) is not all 0 or not all 1, this can alleviate the poor dark and dark stripes on the display panel.
  • the display panel driving method is performed for one frame unit, and the embodiment of the present disclosure will not be described herein.
  • b may take any positive integer less than 2 n (for example, 2, 4, etc.), which is not limited by the implementation of the present disclosure. .
  • the driving method of the display panel is mainly applied to the field of liquid crystal display panels, and provides a liquid crystal flipping manner of a new liquid crystal display panel, and particularly relates to displaying sub-pixels under the same gray level.
  • the polarity of the pixel voltage signal alternates periodically to form a temporal superposition to equalize the polarity of the pixel voltage signal of the sub-pixels of the adjacent two pixel rows.
  • the brightness is uneven due to the difference in charging time during the polarity inversion process. problem.
  • the embodiments of the present disclosure utilize four conventional low-power picture flip modes to achieve low power consumption, high-quality display by periodic superposition in the time domain, and reduce the limitation of the panel process conditions. To achieve the purpose of saving costs.
  • the polarity of the pixel voltage signal of the sub-pixel is opposite to the sub-pixel of the previous frame in each frame, so that The polarity of the pixel voltage signal of the sub-pixel per unit time is reduced, and the power consumption of the display panel is reduced.
  • the refresh frequency as 60 Hz (Chinese: Hertz) as an example
  • the polarity of the pixel voltage signal of one sub-pixel needs to be changed 60 times in one second, and the display provided by the embodiment of the present disclosure is used.
  • the driving method of the panel is that the polarity of the pixel voltage signal of one sub-pixel changes by 30 times in one second, so that the liquid crystal flipping is satisfied, and the power consumption can be reduced by half.
  • the polarity of the pixel voltage signal of each sub-pixel changes every 16.6 ms (Chinese: millisecond), that is, the liquid crystal molecules are flipped every 16.6 ms, and if the liquid crystal molecules are flipped every 2 frames, That is, the liquid crystal molecules are flipped once every 16.6 ⁇ 2ms.
  • the refresh rate is 30HZ, and 30HZ is just the critical point that can be felt by the human eye, so that the normal display of the display panel can be ensured.
  • the driving method of the display panel in each scanning period, in the process of driving the liquid crystal molecules to flip, the first 2 n pixel rows of each pixel polarity repeating group and each The last 2 n pixel rows of the pixel polarity repeating group satisfy the preset polarity condition, and the preset polarity condition is: the polarity of the pixel voltage signal of the sub-pixels of the b pixel rows remains unchanged, and the remaining pixel rows are changing the polarity of the pixel voltage signal of the pixel, the first pixel row of 2 n b-pixel rows and the number of 2 n b of the pixel rows that are not adjacent, b is an integer greater than or equal to 1.
  • the polarity of the pixel voltage signal of the sub-pixels of the b pixel rows remains unchanged, the polarity of the pixel voltage signal of the sub-pixels of the remaining pixel rows changes, thereby solving the problem that the display panel has a bright and dark streak visible to the human eye.
  • the problem is to alleviate the bad effect of bright and dark stripes visible on the display panel.
  • the driving method of the display panel provided by the embodiment of the present disclosure can well solve the problem that the display panel has poor light and dark stripes visible to the human eye, and can also periodically flip the liquid crystal molecules to avoid the liquid crystal molecules being polarized and losing activity. The activity of the liquid crystal molecules is ensured, and the service life of the display panel is improved.
  • FIG. 3-1 is a block diagram of a driving device 300 for a display panel according to an embodiment of the present disclosure.
  • the driving device 300 of the display panel can be used to perform the display provided by the embodiment shown in FIG. 2-1.
  • the driving method of the panel, the display panel includes a plurality of sub-pixels arranged in a matrix, and is in the form of a matrix
  • the plurality of sub-pixels arranged includes a plurality of pixel rows and a plurality of pixel columns, and each of the pixel rows and each of the pixel columns respectively includes a plurality of sub-pixels.
  • the driving device 300 of the display panel includes:
  • the scanning module 310 is configured to repeatedly perform the scanning operation in the 2 n dot flip mode with the display duration of 2 n+1 frames as the scan period.
  • the scanning module 310 can be implemented, for example, by a scanner, camera or sensor.
  • FIG. 3-2 shows a block diagram of a scanning module 310 provided by the embodiment shown in FIG. 3-1.
  • the scanning module 310 includes:
  • the first applying sub-module 3101 is configured to apply a pixel voltage signal to each sub-pixel of the display panel during the display time of the a- th frame, so that each successive 2 n+1 pixel rows of the display panel form a pixel polarity repeat Group, obtaining a plurality of pixel polarity repeating groups, the pixel voltage signals of any adjacent two sub-pixels in the same pixel row in each pixel polarity repeating group are opposite in polarity, and each pixel polarity is repeated in the group
  • the polarity of the pixel voltage signal of the sub-pixel in the i-th pixel row in the same pixel column is opposite to the polarity of the pixel voltage signal of the sub-pixel in the second n + i pixel row, a, n, and i are both Is an integer greater than or equal to 1, and a ⁇ 2 n+1 , i ⁇ 2 n ;
  • a second applying sub-module 3102 configured to apply a pixel voltage signal to each sub-pixel of the display panel during the display time of the a+1th frame, so that each pixel polarity repeats the first 2n pixel rows of each group and each The second 2 n pixel rows of the pixel polarity repeating group satisfy the preset polarity condition, and the preset polarity condition is: the polarity of the pixel voltage signal of the sub-pixel of the b pixel row is relative to the display time of the a-frame The polarity remains unchanged, and the polarity of the pixel voltage signal of the sub-pixels of the remaining pixel rows changes with respect to the polarity of the display time of the a- th frame, and the b pixel rows of the first 2 n pixel rows and the latter 2
  • the b pixel rows in the n pixel rows are not adjacent, b is an integer greater than or equal to 1, and b ⁇ 2 n , and when b is greater than 1, the
  • the driving device of the display panel provided by the embodiment of the present disclosure, in each scanning cycle, in the process of driving the liquid crystal molecules to flip, the first 2 n pixel rows of each pixel polarity repeating group and each The last 2 n pixel rows of the pixel polarity repeating group satisfy the preset polarity condition, and the preset polarity condition is: the polarity of the pixel voltage signal of the sub-pixels of the b pixel rows remains unchanged, and the remaining pixel rows are changing the polarity of the pixel voltage signal of the pixel, the first pixel row of 2 n b-pixel rows and the number of 2 n b of the pixel rows that are not adjacent, b is an integer greater than or equal to 1.
  • the polarity of the pixel voltage signal of the sub-pixels of the b pixel rows remains unchanged, the polarity of the pixel voltage signal of the sub-pixels of the remaining pixel rows changes, thereby solving the problem that the display panel has a bright and dark streak visible to the human eye.
  • the problem is to alleviate the bad effect of bright and dark stripes visible on the display panel.
  • the second application sub-module 3102 is configured to apply a pixel voltage signal to each sub-pixel of the display panel during the display time of the a+1th frame, so that each pixel polarity repeats the mth in the group.
  • the polarity of the pixel voltage signal of the sub-pixels of ⁇ 2 n - (a-1) pixel rows remains unchanged with respect to the polarity of the display time of the a-th frame, and the polarities of the pixel voltage signals of the sub-pixels of the remaining pixel rows
  • the polarity changes with respect to the display time of the a-th frame, and m is an integer greater than or equal to 1.
  • the display times of all of the 2 n+1 frames are equal.
  • the first application sub-module 3101 and the second application sub-module 3102 are respectively configured to apply a pixel voltage signal having a magnitude equal to a preset amplitude to each sub-pixel of the display panel.
  • the amplitudes of the pixel voltage signals applied to each sub-pixel of the display panel are equal during the display time of the different frames.
  • the display panel is a liquid crystal display panel.
  • the driving device of the display panel provided by the embodiment of the present disclosure, in each scanning period, in the process of driving liquid crystal molecules to flip, the first 2 n pixel rows of each pixel polarity repeating group and each The last 2 n pixel rows of the pixel polarity repeating group satisfy the preset polarity condition, and the preset polarity condition is: the polarity of the pixel voltage signal of the sub-pixels of the b pixel rows remains unchanged, and the remaining pixel rows are changing the polarity of the pixel voltage signal of the pixel, the first pixel row of 2 n b of the pixel rows and 2 n b-th pixel rows that are not adjacent, b is an integer greater than or equal to 1.
  • the polarity of the pixel voltage signal of the sub-pixels of the b pixel rows remains unchanged, the polarity of the pixel voltage signal of the sub-pixels of the remaining pixel rows changes, thereby solving the problem that the display panel has a bright and dark streak visible to the human eye.
  • the problem is to alleviate the bad effect of bright and dark stripes visible on the display panel.
  • the embodiment of the present disclosure further provides a display device, which includes a display panel and a driving device 300 of the display panel shown in FIG. 3-1, and the display device may be: electronic paper, mobile phone, tablet computer, television, Any product or component that has a display function, such as a monitor, a notebook computer, a digital photo frame, and a navigator.
  • a display device which includes a display panel and a driving device 300 of the display panel shown in FIG. 3-1
  • the display device may be: electronic paper, mobile phone, tablet computer, television, Any product or component that has a display function, such as a monitor, a notebook computer, a digital photo frame, and a navigator.
  • the display device in each scanning period, in the process of driving liquid crystal molecules to flip, the first 2 n pixel rows and each pixel polarity of each pixel polarity repeating group
  • the 2 n pixel rows of the repeating group satisfy the preset polarity condition, and the preset polarity condition is: the polarity of the pixel voltage signal of the sub-pixels of the b pixel rows remains unchanged, and the pixels of the sub-pixels of the remaining pixel rows changing the voltage polarity of the signal, b the pixel rows and pixel b-2 n 2 n rows before the pixel rows in the pixel rows are not adjacent, b is an integer greater than or equal to 1.
  • the polarity of the pixel voltage signal of the sub-pixels of the b pixel rows remains unchanged, the polarity of the pixel voltage signal of the sub-pixels of the remaining pixel rows changes, thereby solving the problem that the display panel has a bright and dark streak visible to the human eye.
  • the problem is to alleviate the bad effect of bright and dark stripes visible on the display panel.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

一种显示面板的驱动方法包括:在第a帧的显示时间内向每个子像素施加像素电压信号,使每连续的2n+1个像素行形成像素极性重复组,像素极性重复组中:位于同一像素行中的任意相邻的两个子像素的像素电压信号的极性相反,第i个像素行中的子像素的像素电压信号的极性与第2n+i个像素行中的子像素的像素电压信号的极性相反(2011);在第a+1帧的显示时间内向每个子像素施加像素电压信号,使像素极性重复组的前2n个像素行和后2n个像素行均满足预设极性条件(2012)。该方法可以缓解显示面板出现人眼可见的亮暗条纹不良。还提供了一种显示面板的驱动装置及显示装置。

Description

显示面板的驱动方法、驱动装置及显示装置 技术领域
本公开的实施例涉及一种显示面板的驱动方法、驱动装置及显示装置。
背景技术
液晶显示面板是一种广泛使用的显示面板,在液晶显示面板的显示过程中,需要驱动液晶分子以一定频率翻转,以保证液晶分子的活性。目前,液晶显示面板支持多种翻转模式,如,帧翻转模式、行翻转模式、列翻转模式和点翻转模式,而点翻转模式通常包括:单点翻转模式和2n点翻转模式,n为大于或等于1的整数,2n点翻转模式如两点翻转模式、四点翻转模式、八点翻转模式等。
液晶显示面板包括矩阵状排布的多个子像素,该矩阵状排布的多个子像素包括多个像素行和多个像素列,每个像素列和每个像素行中分别包括多个子像素,每个子像素包括薄膜晶体管(英文:Thin Film Transistor;简称:TFT)和液晶分子,每个像素行中的多个子像素的TFT的栅极与液晶显示面板的同一根栅线连接,每个像素列中的多个子像素的TFT的源极与液晶显示面板的同一根数据线连接,可以通过栅线上的电压信号来控制TFT的开启和关闭,当TFT开启时,数据线上的电压信号可以写入子像素向子像素充电。可以通过周期性改变施加在数据线上的电压信号的极性,来改变TFT的源极电压信号的极性,进而驱动液晶分子翻转,其中,每个子像素的TFT的源极电压信号可以称为该子像素的像素电压信号,电压信号的极性包括正极性和负极性。相关技术中,采用2n点翻转模式驱动液晶分子翻转时,在第a帧显示时间内,可以向显示面板的每个子像素施加幅值等于预设幅值的像素电压信号,使显示面板的每2n个像素行形成一个像素组得到多个像素组,每个像素组中位于同一像素行中的任意相邻的两个子像素的像素电压信号的极性相反,位于同一像素列中的所有子像素的像素电压信号的极性相同,且任意相邻的两个像素组中位于同一像素列中的子像素的像素电压信号的极性相反;在第a+1帧的显示时间内,向显示面板的每个子像素施加幅值等于预设幅值的像素电压 信号,使所有子像素的像素电压信号的极性相对于第a帧显示时间内的极性发生改变,驱动液晶分子翻转,其中,a为大于或者等于1的整数。
在实现本公开的过程中,发明人发现相关技术至少存在以下问题:
相关技术在驱动液晶分子翻转的过程中,显示面板的所有子像素的像素电压信号的极性都发生了改变,因此,每个像素组中的第一个像素行中的子像素的像素电压信号需要经过上升沿或下降沿,其幅值才能达到预设幅值,这样会导致每个像素组中的第一个像素行的子像素的实际充电时长小于该像素组中的其他子像素的充电时长,使得该第一个像素行中的子像素的亮度小于该像素组中的其他子像素的亮度,且不同帧中亮度较小的像素行的位置相同,导致显示面板容易出现人眼可见的亮暗条纹不良。
发明内容
根据本公开的至少一个实施例,提供一种显示面板的驱动方法,所述显示面板包括矩阵状排布的多个子像素,所述矩阵状排布的多个子像素包括多个像素行和多个像素列,每个像素行和每个像素列中分别包括多个子像素,所述方法包括:
在2n点翻转模式中,以2n+1个帧的显示时长为扫描周期,重复执行扫描动作,所述扫描动作包括:
在第a帧的显示时间内,向所述显示面板的每个子像素施加像素电压信号,使所述显示面板的每连续的2n+1个像素行形成一个像素极性重复组,得到多个像素极性重复组,每个像素极性重复组中位于同一像素行中的任意相邻的两个子像素的像素电压信号的极性相反,且所述每个像素极性重复组中位于同一像素列中的第i个像素行中的子像素的像素电压信号的极性与第2n+i个像素行中的子像素的像素电压信号的极性相反,所述a、所述n和所述i均为大于或者等于1的整数,且a<2n+1,i≤2n
在第a+1帧的显示时间内,向所述显示面板的每个子像素施加像素电压信号,使所述每个像素极性重复组的前2n个像素行和所述每个像素极性重复组的后2n个像素行均满足预设极性条件,所述预设极性条件为:b个像素行的子像素的像素电压信号的极性相对于所述第a帧的显示时间内的极性保持不变,其余像素行的子像素的像素电压信号的极性相对于所述第a帧的显示 时间内的极性发生改变,所述前2n个像素行中的b个像素行与所述后2n个像素行中的b个像素行不相邻,所述b为大于或者等于1的整数,且b<2n,且当所述b大于1时,所述b个像素行是连续的。
在一个实施例中,所述在第a+1帧的显示时间内,向所述显示面板的每个子像素施加像素电压信号,使所述每个像素极性重复组的前2n个像素行和所述每个像素极性重复组的后2n个像素行均满足预设极性条件,包括:
在所述第a+1帧的显示时间内,向所述显示面板的每个子像素施加像素电压信号,使所述每个像素极性重复组中的第m×2n-(a-1)个像素行的子像素的像素电压信号的极性相对于所述第a帧的显示时间内的极性保持不变,其余像素行的子像素的像素电压信号的极性相对于所述第a帧的显示时间内的极性发生改变,所述m为大于或者等于1的整数。
在一个实施例中,所述2n+1个帧中的所有帧的显示时间相等。
在一个实施例中,向所述显示面板的每个子像素施加像素电压信号,包括:
向所述显示面板的每个子像素施加幅值等于预设幅值的像素电压信号。
在一个实施例中,不同帧的显示时间内,向所述显示面板的每个子像素施加的像素电压信号的幅值相等。
在一个实施例中,所述显示面板为液晶显示面板。
根据本公开的至少一个实施例,提供一种显示面板的驱动装置,所述显示面板包括矩阵状排布的多个子像素,所述矩阵状排布的多个子像素包括多个像素行和多个像素列,每个像素行和每个像素列中分别包括多个子像素,所述显示面板的驱动装置包括:
扫描模块,用于在2n点翻转模式中,以2n+1个帧的显示时长为扫描周期,重复执行扫描动作;
所述扫描模块包括:
第一施加子模块,用于在第a帧的显示时间内,向所述显示面板的每个子像素施加像素电压信号,使所述显示面板的每连续的2n+1个像素行形成一个像素极性重复组,得到多个像素极性重复组,每个像素极性重复组中位于同一像素行中的任意相邻的两个子像素的像素电压信号的极性相反,且所述每个像素极性重复组中位于同一像素列中的第i个像素行中的子像素的像素 电压信号的极性与第2n+i个像素行中的子像素的像素电压信号的极性相反,所述a、所述n和所述i均为大于或者等于1的整数,且a<2n+1,i≤2n
第二施加子模块,用于在第a+1帧的显示时间内,向所述显示面板的每个子像素施加像素电压信号,使所述每个像素极性重复组的前2n个像素行和所述每个像素极性重复组的后2n个像素行均满足预设极性条件,所述预设极性条件为:b个像素行的子像素的像素电压信号的极性相对于所述第a帧的显示时间内的极性保持不变,其余像素行的子像素的像素电压信号的极性相对于所述第a帧的显示时间内的极性发生改变,所述前2n个像素行中的b个像素行与所述后2n个像素行中的b个像素行不相邻,所述b为大于或者等于1的整数,且b<2n,且当所述b大于1时,所述b个像素行是连续的。
在一个实施例中,所述第二施加子模块,用于在所述第a+1帧的显示时间内,向所述显示面板的每个子像素施加像素电压信号,使所述每个像素极性重复组中的第m×2n-(a-1)个像素行的子像素的像素电压信号的极性相对于所述第a帧的显示时间内的极性保持不变,其余像素行的子像素的像素电压信号的极性相对于所述第a帧的显示时间内的极性发生改变,所述m为大于或者等于1的整数。
在一个实施例中,所述2n+1个帧中的所有帧的显示时间相等。
在一个实施例中,所述第一施加子模块和所述第二施加子模块分别用于向所述显示面板的每个子像素施加幅值等于预设幅值的像素电压信号。
在一个实施例中,不同帧的显示时间内,向所述显示面板的每个子像素施加的像素电压信号的幅值相等。
在一个实施例中,所述显示面板为液晶显示面板。
根据本公开的至少一个实施例,提供一种显示装置,所述显示装置包括:显示面板和第二方面所述的驱动装置。
本公开实施例的显示面板的驱动方法、驱动装置及显示装置,在每个扫描周期内,在驱动液晶分子翻转的过程中,每个像素极性重复组的前2n个像素行和每个像素极性重复组的后2n个像素行均满足预设极性条件,预设极性条件为:b个像素行的子像素的像素电压信号的极性保持不变,其余像素行的子像素的像素电压信号的极性改变,前2n个像素行中的b个像素行与后2n个像素行中的b个像素行不相邻,b为大于或者等于1的整数。由于b个像 素行的子像素的像素电压信号的极性保持不变,其余像素行的子像素的像素电压信号的极性改变,因此,可以解决显示面板容易出现人眼可见的亮暗条纹不良的问题,达到缓解显示面板出现人眼可见的亮暗条纹不良的效果。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本公开。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1-1是本公开实施例所涉及的一种显示面板的结构示意图;
图1-2是本公开实施例所涉及的一种显示面板的驱动机理图;
图1-3是本公开实施例所涉及的另一种显示面板的驱动机理图;
图1-4是相关技术提供的一种在连续的四个帧的显示时间内显示面板的各个子像素的像素电压信号的极性变化示意图;
图1-5是图1-4所示的像素列S1中的子像素在连续的四个帧的显示时间内的像素电压信号的极性与亮度变化示意图;
图1-6是图1-5所示的像素列S1中的子像素在连续的四个帧的显示时间内的亮度示意图;
图2-1是本公开实施例提供的一种显示面板的驱动方法的方法流程图;
图2-2是图2-1所示实施例提供的一种在相邻两帧的显示时间内向显示面板的子像素施加像素电压信号的方法流程图;
图2-3是本公开实施例提供的一种在连续的四个帧的显示时间内显示面板的各个子像素的像素电压信号的极性变化示意图;
图2-4是图2-3所示的像素列S1中的子像素在连续的四个帧的显示时间内的像素电压信号的极性与亮度变化示意图;
图2-5是图2-4所示的像素列S1中的子像素在连续的四个帧的显示时间内的亮度示意图;
图2-6是本公开实施例提供的一种重复单元的示意图;
图2-7是本公开实施例提供的一种在连续的八个帧的显示时间内显示面 板的各个子像素的像素电压信号的极性变化示意图;
图2-8是图2-7所示的像素列S1中的子像素在连续的八个帧的显示时间内的像素电压信号的极性与亮度的变化示意图;
图2-9是图2-8所示的像素列S1中的子像素在连续的八个帧的显示时间内的亮度示意图;
图3-1是本公开实施例提供的一种显示面板的驱动装置的框图;
图3-2是图3-1所示实施例提供的扫描模块的框图。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作进一步地详细描述,显然,所描述的实施例仅仅是本公开一部份实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
在对本公开实施例的技术方案做详细阐述之前,先对本公开实施例所涉及的显示面板及本公开实施例所涉及的显示面板的驱动机理进行简单说明。
请参考图1-1,其示出了本公开实施例所涉及的一种显示面板(图1-1中未标出)的结构示意图,该显示面板包括矩阵状排布的多个子像素(图1-1中未标出),矩阵状排布的多个子像素包括多个像素行和多个像素列,每个像素行和每个像素列中分别包括多个子像素,如图1-1所示,显示面板包括像素行G1~G5这5个像素行和像素列S1~S6这6个像素列,每个像素行中包括6个子像素,每个像素列中包括5个子像素,在图1-1中,位于同一像素列中的5个子像素的颜色相同,示例地,像素列S1中的5个子像素都为红色(英文:Red;简称:R)子像素,像素列S2中的5个子像素都为绿色(英文:Green;简称:G)子像素,像素列S3中的5个子像素都为蓝色(英文:Blue;简称:B)子像素。需要说明的是,此处是以显示面板包括5个像素行,6个像素列,且位于同一像素列中的多个子像素的颜色相同,并且以显示面板包括R子像素、G子像素和B子像素为例进行说明的,实际应用中,显示面板的像素行和像素列的个数可以根据实际需要设置,位于同一像素列中的多个子像素的颜色可以不同,且显示面板还可以包括其他颜色的子 像素,或者显示面板只包括两种颜色的子像素,本公开实施例对此不作限定。
在本公开实施例中,显示面板还包括多根栅线(图1-1中未示出)和多根数据线(图1-1中未示出),显示面板的每个子像素包括TFT(图1-1中未示出)和液晶分子(图1-1中未示出),每个像素行中的多个子像素的TFT的栅极与显示面板的同一根栅线连接,每个像素列中的多个子像素的TFT的源极与显示面板的同一根数据线连接,可以通过栅线上的电压信号来控制TFT的开启和关闭,当TFT开启时,数据线上的电压信号可以写入子像素向子像素充电。周期性改变施加在数据线上的电压信号的极性,可以改变TFT的源极电压信号的极性,进而驱动液晶分子翻转,其中,每个子像素的TFT的源极电压信号可以称为该子像素的像素电压信号,电压信号的极性包括正极性和负极性。示例地,如图1-1所示,其示出了显示面板上的子像素在某一帧的显示时间内的极性,其中,“+”表示子像素的像素电压信号的极性为正极性,“-”表示子像素的像素电压信号的极性为负极性。
请参考图1-2和图1-3,其分别示出了本公开实施例提供的显示面板的驱动机理图,其中,子像素X1和子像素X2为同一像素列中相邻的两个子像素,且子像素X1位于子像素X2之前的像素行中,该子像素X1的源极和子像素X2的源极与同一根数据线连接,示例地,子像素X1和子像素X2为图1-1所示的像素列S1中相邻的两个子像素,且子像素X1位于像素行G1中,子像素X2位于像素行G2中。参见图1-2,在同一灰阶(像素电压信号的幅值相等)下,子像素X1的像素电压信号的极性与子像素X2的像素电压信号的极性相同,则在同一灰阶下与该子像素X1和该子像素X2连接的数据线的电压信号(也即是Source(中文:源)电压信号)不用改变就可以依次向子像素X1和子像素X2充电,在向子像素X1和子像素X2充电的过程中,数据线的电压信号保持-5V(中文:伏特),该数据线的电压信号的变化量为0V,因此,在同一帧的显示时间内,子像素X1和子像素X2可以达到相同的子像素电压(液晶电压),视觉上子像素X1和子像素X2不会有亮度不一的情况,也即是,像素行G1中的子像素X1和像素行G2中的子像素X2不会有亮度不一的情况,同理,像素行G1中的其他子像素和像素行G2中与该像素行G1中的其他子像素位于同一像素列中的子像素不会有亮度不一的情况,所以,像素行G1和像素行G2不会出现亮度不一的情况,同理,像素行G2和 像素行G3,像素行G3和像素行G4等也不会出现亮度不一的情况,进而显示面板不会出现亮暗条纹。参见图1-3,在同一灰阶下,子像素X1的像素电压信号为5V,子像素X2的像素电压信号为-5V,该子像素X1的像素电压信号的极性与子像素X2的像素电压信号的极性不同,则在同一灰阶下与该子像素X1和该子像素X2连接的数据线的电压信号需要改变才能依次向子像素X1和子像素X2充电,且该数据线的电压信号的变化量为10V,相当于给电容充电10V,此时,由于数据线的电压信号需要经过上升沿或下降沿才能分别向子像素X1和子像素X2充电,导致实际给子像素(子像素中的液晶电容)充电的时间变短,如果显示面板的负载较大,则RC Delay(中文:电阻电容延迟)加大,数据线的电压信号的上升沿或下降沿的时间则会变更长,导致实际给子像素充电的时间变的更短。比如,数据线的电压信号向子像素X1充电之后,需要经过下降沿才能向子像素X2充电,导致向子像素X2充电的时间变短,如果显示面板的负载较大,则会导致向子像素X2充电的时间变的更短,这样会使得子像素X1充电完全,子像素X2充电不足,进而,子像素X1的亮度较高,子像素X2的亮度较低,也即是,像素行G1中的子像素X1和像素行G2中的子像素X2亮度差异较大,同理,像素行G1中的其他子像素和像素行G2中与该像素行G1中的其他子像素位于同一像素列中的子像素亮度差异较大,所以,像素行G1和像素行G2亮度差异较大,同理,像素行G2和像素行G3,像素行G3和像素行G4等亮度差异较大,且每一帧中都会存在这样的情况,所以,显示面板容易出现人眼可见的亮暗条纹的情况。
请参考图1-4,其示出了相关技术提供的一种在连续的四个帧的显示时间内显示面板的各个子像素的像素电压信号的极性变化示意图,该图1-4表征的翻转模式为1+2dot(点)翻转模式,参见图1-4,以像素列S1为例进行说明,在帧F1(例如,第1帧)的显示时间内,像素列S1中的5个R子像素的像素电压信号的极性从像素行G1到像素行G5依次为“+--++”,在帧F2(例如,第2帧)的显示时间内,像素列S1中的5个R子像素的像素电压信号的极性从像素行G1到像素行G5依次为“-++--”,在帧F3(例如,第3帧)的显示时间内,像素列S1中的5个R子像素的像素电压信号的极性从像素行G1到像素行G5依次为“+--++”,在帧F4(例如,第4帧)的 显示时间内,像素列S1中的5个R子像素的像素电压信号的极性从像素行G1到像素行G5依次为“-++--”。
请参考图1-5,其示出了图1-4所示的像素列S1中的子像素在连续的四个帧的显示时间内的像素电压信号的极性与亮度的变化示意图,本文中以1,0这两个数值来表示子像素的亮暗。假设同时位于像素列S1和像素行G1中的子像素为子像素X1(图1-5中未标出),同时位于像素列S1和像素行G2中的子像素为子像素X2(图1-5中未标出),同时位于像素列S1和像素行G3中的子像素为子像素X3(图1-5中未标出),同时位于像素列S1和像素行G4中的子像素为子像素X4(图1-5中未标出),同时位于像素列S1和像素行G5中的子像素为子像素X5(图1-5中未标出),参见图1-5,在帧F1的显示时间内,子像素X1的像素电压信号的极性为“+”,子像素X2的像素电压信号的极性为“-”,子像素X3的像素电压信号的极性为“-”,子像素X4的像素电压信号的极性为“+”,子像素X5的像素电压信号的极性为“+”,由于子像素X1为像素行G1中的子像素,向子像素X1充电时,数据线的电压信号是预先设置好的,因此,数据线的电压信号不需要发生改变,该子像素X1能够完全充电,所以该子像素X1的亮度为1,由于子像素X1的像素电压信号的极性为“+”,子像素X2的像素电压信号的极性为“-”,在向子像素X1充电结束之后,数据线的电压信号需要发生改变(比如从+5改变为-5),此时,数据线的电压信号需要经过下降沿才能向子像素X2充电,由于数据线的电压信号在改变的过程中耗费了一定的时间,导致实际向子像素X2充电的时间变短,子像素X2充电不足,所以子像素X2的亮度为0,由于子像素X2和子像素X3的像素电压信号的极性都为“-”,在向子像素X2充电结束之后,数据线的电压信号不需要发生改变就可以向子像素X3充电,因此,子像素X3能够完全充电,所以该子像素X3的亮度为1,依次类推,在帧F1的显示时间内,子像素X4的亮度为0,子像素X5的亮度为1,所以,在帧F1的显示时间内,像素列S1中的5个R子像素的亮度从像素行G1到像素行G5依次为“10101”。同理可得,在帧F2的显示时间内,像素列S1中的5个R子像素的亮度从像素行G1到像素行G5依次为“10101”,在帧F3的显示时间内,像素列S1中的5个R子像素的亮度从像素行G1到像素行G5依次为“10101”,在帧F4的显示时间内,像素列S1中的5个R 子像素的亮度从像素行G1到像素行G5依次为“10101”。
请参考图1-6,其示出了图1-5所示的像素列S1中的子像素在连续的四个帧的显示时间内的亮度示意图,参见图1-6,在不同帧的显示时间内,子像素X1(图1-6中未标出)的亮度、子像素X3(图1-6中未标出)的亮度和子像素X5(图1-6中未标出)的亮度始终为1,子像素X2(图1-6中未标出)的亮度和子像素X4(图1-6中未标出)的亮度始终为0,这样,体现在整个显示面板上,在每个帧的显示时间内,子像素X1所在像素行G1、子像素X3所在像素行G3和子像素X5所在像素行G5的亮度均为1,而子像素X2所在像素行G2和子像素X4所在像素行G4的亮度均为0,显示面板上出现了人眼可见的亮暗条纹。
需要说明的是,上述是以同一灰阶为例进行说明的,实际应用中,在不同灰阶下,只要存在上述极性相反的翻转情况,都会存在人眼可见的亮暗条纹的情况,在此不再赘述。
请参考图2-1,其示出了本公开实施例提供的一种显示面板的驱动方法的方法流程图,该显示面板的驱动方法用于驱动显示面板实现图像显示,该显示面板可以为液晶显示面板,且该显示面板包括矩阵状排布的多个子像素,矩阵状排布的多个子像素包括多个像素行和多个像素列,每个像素行和每个像素列中分别包括多个子像素,参见图2-1,该显示面板的驱动方法包括:
步骤201、在2n点翻转模式中,以2n+1个帧的显示时长为扫描周期,重复执行扫描动作。
请参考图2-2,其示出了图2-1所示实施例提供的一种执行扫描动作的方法流程图,参见图2-2,该方法包括:
子步骤2011、在第a帧的显示时间内,向显示面板的每个子像素施加像素电压信号,使显示面板的每连续的2n+1个像素行形成一个像素极性重复组,得到多个像素极性重复组,每个像素极性重复组中位于同一像素行中的任意相邻的两个子像素的像素电压信号的极性相反,且每个像素极性重复组中位于同一像素列中的第i个像素行中的子像素的像素电压信号的极性与第2n+i个像素行中的子像素的像素电压信号的极性相反,a、n和i均为大于或者等于1的整数,且a<2n+1,i≤2n
子步骤2012、在第a+1帧的显示时间内,向显示面板的每个子像素施加 像素电压信号,使每个像素极性重复组的前2n个像素行和每个像素极性重复组的后2n个像素行均满足预设极性条件,预设极性条件为:b个像素行的子像素的像素电压信号的极性相对于第a帧的显示时间内的极性保持不变,其余像素行的子像素的像素电压信号的极性相对于第a帧的显示时间内的极性发生改变,前2n个像素行中的b个像素行与后2n个像素行中的b个像素行不相邻,b为大于或者等于1的整数,且b<2n,且当b大于1时,b个像素行是连续的。
综上所述,本公开实施例提供的显示面板的驱动方法,在每个扫描周期内,在驱动液晶分子翻转的过程中,每个像素极性重复组的前2n个像素行和每个像素极性重复组的后2n个像素行均满足预设极性条件,预设极性条件为:b个像素行的子像素的像素电压信号的极性保持不变,其余像素行的子像素的像素电压信号的极性改变,前2n个像素行中的b个像素行与后2n个像素行中的b个像素行不相邻,b为大于或者等于1的整数。由于b个像素行的子像素的像素电压信号的极性保持不变,其余像素行的子像素的像素电压信号的极性改变,因此,可以解决显示面板出现人眼可见的亮暗条纹不良的问题,达到缓解显示面板出现人眼可见的亮暗条纹不良的效果。
其中,2n+1个帧中的所有帧的显示时间相等。在上述子步骤2011和子步骤2012中,可以向显示面板的每个子像素施加幅值等于预设幅值的像素电压信号,且在不同帧的显示时间内,向显示面板的每个子像素施加的像素电压信号的幅值相等,比如,在第a帧的显示时间内和第a+1帧的显示时间内,向显示面板的每个子像素施加幅值等于5V的像素电压信号。其中,显示面板的每个子像素包括TFT,且显示面板还包括与多个像素行一一对应的栅线和与多个像素列一一对应的数据线,一个像素行中的所有子像素的TFT的栅极分别与同一根栅线连接,一个像素列中的所有子像素的TFT的源极分别与同一根数据线连接,栅线可以控制子像素的TFT的开启和关闭,在子像素的TFT的开启时,与TFT的源极连接的数据线可以向子像素充电,以向子像素施加像素电压信号,该具体施加电压信号的过程可以参考相关技术,本公开实施例在此不再赘述。
本公开实施例中,n为大于或等于1的整数,本公开实施例以2n点翻转模式为两点翻转模式为例进行说明,此时,2n=2,因此,n=1,2n+1=4,请参 考图2-3,其示出了本公开实施例提供的一种在连续的四个帧的显示时间内显示面板的各个子像素的像素电压信号的极性的变化示意图,该图2-3以该连续的四个帧为帧F1~帧F4为例进行说明,其中,第a帧可以为帧F1~帧F4中除帧F4之外的任意一帧,第a+1帧为第a帧的下一帧,示例地,当第a帧为帧F1时,第a+1帧为帧F2,当第a帧为帧F2时,第a+1帧为帧F3,当第a帧为帧F3时,第a+1帧为帧F4,本公开实施例以第a帧为帧F1,第a+1帧为帧F2为例进行说明。参见图2-3,上述子步骤2011中,在帧F1的显示时间内,可以向显示面板的每个子像素施加像素电压信号,使显示面板的子像素中,像素列S1中的子像素的像素电压信号的极性从像素行G1到像素行G5依次为“+--++”,像素列S2中的子像素的像素电压信号的极性从像素行G1到像素行G5依次为“-++--”,像素列S3中的子像素的像素电压信号的极性从像素行G1到像素行G5依次为“+--++”,像素列S4中的子像素的像素电压信号的极性从像素行G1到像素行G5依次为“-++--”,像素列S5中的子像素的像素电压信号的极性从像素行G1到像素行G5依次为“+--++”,像素列S6中的子像素的像素电压信号的极性从像素行G1到像素行G5依次为“-++--”,参见图2-3,显示面板的每连续的4(2n+1=21+1=4)个像素行形成一个像素极性重复组,得到多个像素极性重复组,每个像素极性重复组中位于同一像素行中的任意相邻的两个子像素的像素电压信号的极性相反,且每个像素极性重复组中位于同一像素列中的第i个像素行中的子像素的像素电压信号的极性与第2+i(2n+i=21+i)个像素行中的子像素的像素电压信号的极性相反,a、n和i均为大于或者等于1的整数,且a<2n+1,i≤2n,示例地,如图2-3所示,在帧F1的显示时间内,像素行G1~G4这4个连续的像素行形成一个像素极性重复组,像素行G5、像素行G6~G8(图2-3中均未示出)这4个连续的像素行形成一个像素极性重复组,依次类推,可以得到多个像素极性重复组,在像素行G1~G4形成的像素极性重复组中,位于同一像素行(比如像素行G1)中的任意相邻的两个子像素的像素电压信号的极性相反,且每个像素极性重复组中位于同一像素列中的第i个像素行中的子像素的像素电压信号的极性与第2+i个像素行中的子像素的像素电压信号的极性相反,比如,当i=1时,2+i=3,当i=2时,2+i=4,也即是,在每个像素极性重复组中,位于同一像素列中的第1个像素行中的子像素的 像素电压信号的极性与第3个像素行中的子像素的像素电压信号的极性相反,第2个像素行中的子像素的像素电压信号的极性与第4个像素行中的子像素的像素电压信号的极性相反。
在一个实施例中,子步骤2012包括:在第a+1帧的显示时间内,向显示面板的每个子像素施加像素电压信号,使每个像素极性重复组中的第m×2n-(a-1)个像素行的子像素的像素电压信号的极性相对于第a帧的显示时间内的极性保持不变,其余像素行的子像素的像素电压信号的极性相对于第a帧的显示时间内的极性发生改变,m为大于或者等于1的整数。
以第a+1帧为帧F2为例,参见图2-3,上述子步骤2012中,在帧F2的显示时间内,可以向显示面板的每个子像素施加像素电压信号,使显示面板的子像素中,像素列S1中的子像素的像素电压信号的极性从像素行G1到像素行G5依次为“--++-”,像素列S2中的子像素的像素电压信号的极性从像素行G1到像素行G5依次为“++--+”,像素列S3中的子像素的像素电压信号的极性从像素行G1到像素行G5依次为“--++-”,像素列S4中的子像素的像素电压信号的极性从像素行G1到像素行G5依次为“++--+”,像素列S5中的子像素的像素电压信号的极性从像素行G1到像素行G5依次为“--++-”,像素列S6中的子像素的像素电压信号的极性从像素行G1到像素行G5依次为“++--+”,参见图2-3,在帧F1的显示时间内形成的多个像素极性重复组中,每个像素极性重复组的前2(2n=21=2)个像素行和每个像素极性重复组的后2(2n=21=2)个像素行均满足预设极性条件,预设极性条件为:b个像素行的子像素的像素电压信号的极性相对于第a帧(帧F1)的显示时间内的极性保持不变,其余像素行的子像素的像素电压信号的极性相对于第a帧的显示时间内的极性发生改变,前2个像素行中的b个像素行与后2个像素行中的b个像素行不相邻,b为大于或者等于1的整数。其中,在图2-3中,b=1,参见图2-3,在像素行G1~G4形成的像素极性重复组中,像素行G2和像素行G4的子像素的像素电压信号的极性相对于帧F1的显示时间内的极性保持不变,像素行G1和像素行G3的子像素的像素电压信号的极性相对于帧F1的显示时间内的极性发生改变。其中,每个像素极性重复组中像素电压信号的极性保持不变的像素行可以采用公式m×2n-(a-1)计算得到的,在帧F2的显示时间内,a+1=2,a=1,m为大于或者等于1的整数, 因此,当m=1时,采用该公式可以计算得到第2m行子像素的像素电压信号的极性相对于第a帧的显示时间内的极性保持不变,也即是,在每个像素极性重复组中,第2行和第4行子像素的像素电压信号的极性相对于第a帧的显示时间内的极性保持不变。比如,在像素行G1~G4形成的像素极性重复组中,采用该公式就可以计算得到像素行G2和像素行G4的子像素的像素电压信号的极性相对于帧F1的显示时间内的极性保持不变。
请参考图2-4,其示出了图2-3所示的像素列S1中的子像素在连续的四个帧的显示时间内的像素电压信号的极性与亮度的变化示意图,假设同时位于像素列S1和像素行G1中的子像素为子像素X1(图2-4中未标出),同时位于像素列S1和像素行G2中的子像素为子像素X2(图2-4中未标出),同时位于像素列S1和像素行G3中的子像素为子像素X3(图2-4中未标出),同时位于像素列S1和像素行G4中的子像素为子像素X4(图2-4中未标出),同时位于像素列S1和像素行G5中的子像素为子像素X5(图2-4中未标出),参见图2-4,在帧F1的显示时间内,子像素X1的像素电压信号的极性为“+”,子像素X2的像素电压信号的极性为“-”,子像素X3的像素电压信号的极性为“-”,子像素X4的像素电压信号的极性为“+”,子像素X5的像素电压信号的极性为“+”,由于子像素X1为像素行G1中的子像素,向子像素X1充电时,数据线的电压信号是预先设置好的,因此数据线的电压信号不需要发生改变,该子像素X1能够完全充电,所以子像素X1的亮度为1,由于子像素X1的像素电压信号的极性为“+”,子像素X2的像素电压信号的极性为“-”,在向子像素X1充电结束之后,数据线的电压信号需要发生改变(比如从+5改变为-5),此时,数据线的电压信号需要经过下降沿才能向子像素X2充电,由于数据线的电压信号在改变的过程中耗费了一定的时间,导致实际向子像素X2充电的时间变短,子像素X2充电不足,所以子像素X2的亮度为0,由于子像素X2和子像素X3的像素电压信号的极性都为“-”,在向子像素X2充电结束之后,数据线的电压信号不需要发生改变就可以向子像素X3充电,子像素X3能够完全充电,所以子像素X3的亮度为1,依次类推,在帧F1的显示时间内,子像素X4的亮度为0,子像素X5的亮度为1,所以,在帧F1的显示时间内,像素列S1中的5个R子像素的亮度从像素行G1到像素行G5依次为“10101”。在帧F2的显示时间内,子像素 X1的像素电压信号的极性为“-”,子像素X2的像素电压信号的极性为“-”,子像素X3的像素电压信号的极性为“+”,子像素X4的像素电压信号的极性为“+”,子像素X5的像素电压信号的极性为“-”,由于子像素X1为像素行G1中的子像素,向子像素X1充电时,数据线的电压信号是预先设置好的,因此数据线的电压信号不需要发生改变,该子像素X1能够完全充电,所以子像素X1的亮度为1,由于子像素X1和子像素X2的像素电压信号的极性都为“-”,在向子像素X1充电结束之后,数据线的电压信号不需要发生改变就可以向子像素X2充电,因此,子像素X2能够完全充电,子像素X2的亮度为1,依次类推,在帧F2的显示时间内,子像素X3的亮度为0,子像素X4的亮度为1,子像素X5的亮度为0,所以,在帧F2的显示时间内,像素列S1中的5个R子像素的亮度从像素行G1到像素行G5依次为“11010”。同理可得,在帧F3的显示时间内,像素列S1中的5个R子像素的亮度从像素行G1到像素行G5依次为“10101”,在帧F4的显示时间内,像素列S1中的5个R子像素的亮度从像素行G1到像素行G5依次为“11010”。
请参考图2-5,其示出了图2-4所示的像素列S1中的子像素在连续的四个帧的显示时间内的亮度示意图,参见图2-5,在帧F1~帧F4中的不同帧的显示时间内,子像素X2(图2-5中未示出)的亮度、子像素X3(图2-5中未示出)的亮度、子像素X4(图2-5中未示出)的亮度和子像素X5(图2-5中未示出)的亮度不全为0或不全为1,体现在整个显示面板上,同一子像素在相邻两帧中的亮度为亮暗中和的关系,这样可以有效保证,每个子像素的亮度,进而保证每一行的亮度,并且保证除第一行以外其他所有像素行的亮度都一致,因为提高了每一像素行的亮度,这样即使第一行有亮度差异,用户的视觉上也不会感受到,这样一来,可以有效的解决显示面板出现亮暗条纹。所以,本公开实施例中,当n=1时,可以以2n+1=4个帧的显示时间为一个扫描周期执行显示面板驱动方法,换句话来讲,可以以每2n+1=4个帧为一个帧单元执行显示面板驱动方法。示例地,如图2-6所示,可以以帧F1~帧F4为一个帧单元执行显示面板驱动方法。
需要说明的是,上述是以第a帧为帧F1,第a+1帧为帧F2作为示例进行说明的,实际应用中,第a帧还可以是帧F2或帧F3,第a+1帧还可以是 帧F3或帧F4,其实现过程可以参考上述,本公开实施例在此不再赘述。
还需要说明的是,上述是以2n+1=4为例进行说明的,实际应用中,n可以取任何大于或等于1的整数,因此,针对n的不同取值,2n+1还可以取其他数值,比如,当n=2时,2n+1=8,当n=3时,2n+1=16,当n=4时,2n+1=32等,下述以n=2,2n+1=8为例对本公开实施例提供的显示面板驱动方法进行进一步说明。
请参考图2-7,其示出了本公开实施例提供的一种在连续的八个帧的显示时间内显示面板的各个子像素的像素电压信号的极性的变化示意图,该图2-7以该连续的八个帧为帧F1~帧F8为例进行说明,其中,第a帧可以为帧F1~帧F8中除帧F8之外的任意一帧,第a+1帧为第a帧的下一帧,本公开实施例以第a帧为帧F1,第a+1帧为帧F2为例进行说明。参见图2-7,上述子步骤2011中,在帧F1的显示时间内,可以向显示面板的每个子像素施加像素电压信号,使显示面板的子像素中,像素列S1中的子像素的像素电压信号的极性从像素行G1到像素行G16依次为“++++----++++----”,像素列S2中的子像素的像素电压信号的极性从像素行G1到像素行G16依次为“----++++----++++”,像素列S3中的子像素的像素电压信号的极性从像素行G1到像素行G16依次为“++++----++++----”,像素列S4中的子像素的像素电压信号的极性从像素行G1到像素行G16依次为“----++++----++++”,像素列S5中的子像素的像素电压信号的极性从像素行G1到像素行G16依次为“++++----++++----”,像素列S6中的子像素的像素电压信号的极性从像素行G1到像素行G16依次为“----++++----++++”,参见图2-7,显示面板的每连续的8(2n+1=22+1=8)个像素行形成一个像素极性重复组,得到多个像素极性重复组,每个像素极性重复组中位于同一像素行中的任意相邻的两个子像素的像素电压信号的极性相反,且每个像素极性重复组中位于同一像素列中的第i个像素行中的子像素的像素电压信号的极性与第4+i(2n+i=22+i)个像素行中的子像素的像素电压信号的极性相反,a、n和i均为大于或者等于1的整数,且a<2n+1,i≤2n,示例地,如图2-7所示,在帧F1的显示时间内,像素行G1~G8这8个连续的像素行形成一个像素极性重复组,像素行G9~G16这8个连续的形成一个像素极性重复组,依次类推,可以得到多个像素极性重复组,在像素行G1~G8形成的像素极性重复组 中,位于同一像素行(比如像素行G1)中的任意相邻的两个子像素的像素电压信号的极性相反,且每个像素极性重复组中位于同一像素列中的第i个像素行中的子像素的像素电压信号的极性与第4+i个像素行中的子像素的像素电压信号的极性相反,比如,当i=1时,4+i=5,当i=2时,4+i=6,当i=3时,4+i=7,当i=4时,4+i=8,也即是,在每个像素极性重复组中,位于同一像素列中的:第1个像素行中的子像素的像素电压信号的极性与第5个像素行中的子像素的像素电压信号的极性相反,第2个像素行中的子像素的像素电压信号的极性与第6个像素行中的子像素的像素电压信号的极性相反,第3个像素行中的子像素的像素电压信号的极性与第7个像素行中的子像素的像素电压信号的极性相反,第4个像素行中的子像素的像素电压信号的极性与第8个像素行中的子像素的像素电压信号的极性相反。
在一个实施例中,子步骤2012包括:在第a+1帧的显示时间内,向显示面板的每个子像素施加像素电压信号,使每个像素极性重复组中的第m×2n-(a-1)个像素行的子像素的像素电压信号的极性相对于第a帧的显示时间内的极性保持不变,其余像素行的子像素的像素电压信号的极性相对于第a帧的显示时间内的极性发生改变,m为大于或者等于1的整数。
以第a+1帧为帧F2为例,参见图2-7,上述子步骤2012中,在帧F2的显示时间内,可以向显示面板的每个子像素施加像素电压信号,使显示面板的子像素中,像素列S1中的子像素的像素电压信号的极性从像素行G1到像素行G16依次为“---++++----++++-”,像素列S2中的子像素的像素电压信号的极性从像素行G1到像素行G16依次为“+++----++++----+”,像素列S3中的子像素的像素电压信号的极性从像素行G1到像素行G16依次为“---++++----++++-”,像素列S4中的子像素的像素电压信号的极性从像素行G1到像素行G16依次为“+++----++++----+”,像素列S5中的子像素的像素电压信号的极性从像素行G1到像素行G16依次为“---++++----++++-”,像素列S6中的子像素的像素电压信号的极性从像素行G1到像素行G16依次为“+++----++++----+”,参见图2-7,在帧F1的显示时间内形成的多个像素极性重复组中,每个像素极性重复组的前4(2n=22=4)个像素行和每个像素极性重复组的后4(2n=22=4)个像素行均满足预设极性条件,预设极性条件为:b个像素行的子像素的像素电压信号的极性相对于第a帧(帧 F1)的显示时间内的极性保持不变,其余像素行的子像素的像素电压信号的极性相对于第a帧的显示时间内的极性发生改变,前4个像素行中的b个像素行与后4个像素行中的b个像素行不相邻,b为大于或者等于1的整数,且当b大于1时,b个像素行是连续的。其中,在图2-7中,b=1,参见图2-7,在像素行G1~G8形成的像素极性重复组中,像素行G4和像素行G8的子像素的像素电压信号的极性相对于帧F1的显示时间内的极性保持不变,像素行G1至像素行G3以及像素行G5至像素行G7的子像素的像素电压信号的极性相对于帧F1的显示时间内的极性发生改变。其中,每个像素极性重复组中像素电压信号的极性保持不变的像素行可以采用公式m×2n-(a-1)计算得到的,在帧F2的显示时间内,a+1=2,a=1,m为大于或者等于1的整数,因此,当m=1时,采用该公式可以计算得到第4m行子像素的像素电压信号的极性相对于第a帧的显示时间内的极性保持不变,也即是,在每个像素极性重复组中,第4行和第8行子像素的像素电压信号的极性相对于第a帧的显示时间内的极性保持不变。比如,在像素行G1~G8形成的像素极性重复组中,采用该公式就可以计算得到像素行G4和像素行G8的子像素的像素电压信号的极性相对于帧F1的显示时间内的极性保持不变。
请参考图2-8,其示出了图2-7所示的像素列S1中的子像素在连续的八个帧的显示时间内的像素电压信号的极性与亮度变化示意图,假设同时位于像素列S1和像素行G1中的子像素为子像素X1(图2-8中未标出),同时位于像素列S1和像素行G2中的子像素为子像素X2(图2-8中未标出),同时位于像素列S1和像素行G3中的子像素为子像素X3(图2-8中未标出),同时位于像素列S1和像素行G4中的子像素为子像素X4(图2-8中未标出),同时位于像素列S1和像素行G5中的子像素为子像素X5(图2-8中未标出),同时位于像素列S1和像素行G6中的子像素为子像素X6(图2-8中未标出),同时位于像素列S1和像素行G7中的子像素为子像素X7(图2-8中未标出),同时位于像素列S1和像素行G8中的子像素为子像素X8(图2-8中未标出),同时位于像素列S1和像素行G9中的子像素为子像素X9(图2-8中未标出),同时位于像素列S1和像素行G10中的子像素为子像素X10(图2-8中未标出),同时位于像素列S1和像素行G11中的子像素为子像素X11(图2-8中未标出),同时位于像素列S1和像素行G12中的子像素为子像素X12(图 2-8中未标出),同时位于像素列S1和像素行G13中的子像素为子像素X13(图2-8中未标出),同时位于像素列S1和像素行G14中的子像素为子像素X14(图2-8中未标出),同时位于像素列S1和像素行G15中的子像素为子像素X15(图2-8中未标出),同时位于像素列S1和像素行G16中的子像素为子像素X16(图2-8中未标出)
参见图2-8,在帧F1的显示时间内,子像素X1至子像素X4的像素电压信号的极性都为“+”,子像素X5至子像素X8的像素电压信号的极性都为“-”,子像素X9至子像素X12的像素电压信号的极性都为“+”,子像素X13至子像素X16的像素电压信号的极性为“-”,由于子像素X1为像素行G1中的子像素,向子像素X1充电时,数据线的电压信号是预先设置好的,因此数据线的电压信号不需要发生改变,该子像素X1能够完全充电,所以子像素X1的亮度为1,由于子像素X1和子像素X2的像素电压信号的极性为“+”,在向子像素X1充电结束之后,数据线的电压信号不需要发生改变就可以向子像素X2充电,子像素X2能够完全充电,所以子像素X2的亮度为1,同理,在帧F1的显示时间内,子像素X3的亮度为1,子像素X4的亮度为1,由于子像素X4像素电压信号的极性为“+”,子像素X5的像素电压信号的极性为“-”,在向子像素X4充电结束之后,数据线的电压信号需要发生改变(比如从+5改变为-5),此时,数据线的电压信号需要经过下降沿才能向子像素X5充电,由于数据线的电压信号在改变的过程中耗费了一定的时间,导致实际向子像素X5充电的时间变短,子像素X5充电不足,所以子像素X5的亮度为0,依次类推,在帧F1的显示时间内,子像素X6的亮度为1,子像素X7的亮度为1,子像素X8的亮度为1,子像素X9的亮度为0,子像素X10的亮度为1,子像素X11的亮度为1,子像素X12的亮度为1,子像素X13的亮度为0,子像素X14的亮度为1,子像素X15的亮度为1,子像素X16的亮度为1,所以,在帧F1的显示时间内,像素列S1中的16个R子像素的亮度从像素行G1到像素行G16依次为“1111011101110111”。同理可得,在帧F2的显示时间内,像素列S1中的16个R子像素的亮度从像素行G1到像素行G16依次为“1110111011101110”,在帧F3的显示时间内,像素列S1中的16个R子像素的亮度从像素行G1到像素行G16依次为“1101110111011101”,在帧F4的显示时间内,像素 列S1中的16个R子像素的亮度从像素行G1到像素行G16依次为“1011101110111011”,在帧F5的显示时间内,像素列S1中的16个R子像素的亮度从像素行G1到像素行G16依次为“1111011101110111”,在帧F6的显示时间内,像素列S1中的16个R子像素的亮度从像素行G1到像素行G16依次为“1110111011101110”,在帧F7的显示时间内,像素列S1中的16个R子像素的亮度从像素行G1到像素行G16依次为“1101110111011101”,在帧F8的显示时间内,像素列S1中的16个R子像素的亮度从像素行G1到像素行G16依次为“1011101110111011”。
请参考图2-9,其示出了图2-8所示的像素列S1中的子像素在连续的八个帧的显示时间内的亮度示意图,参见图2-9,在帧F1~帧F16中的不同帧的显示时间内,子像素X2(图2-9中未示出)至子像素X16(图2-9中未示出)中的每个子像素的亮度不全为0或不全为1,这样可以缓解显示面板上的亮暗条纹不良。所以,本公开实施例中,当n=2时,可以以2n+1=8个帧的显示时间为一个扫描周期执行显示面板驱动方法,换句话来讲,可以以每2n+1=8个帧为一个帧单元执行显示面板驱动方法,本公开实施例在此不再赘述。
需要说明的是,本公开实施例是以b=1为例进行说明的,实际应用中,b可以取小于2n(例如,2、4等)的任意正整数,本公开实施对此不作限定。
还需要说明的是,本公开实施例以n=1和n=2两种情况对显示面板的驱动方法进行了示例性描述,n=3等其他数值的情况与上述类似,其实现过程可以参考上述描述,本公开实施例在此不再赘述。
需要补充说明的是,本公开实施例提供的显示面板的驱动方法主要应用于液晶显示面板领域,提供了一种新的液晶显示面板的液晶翻转方式,特别涉及在同一灰阶下显示画面下子像素的像素电压信号的极性周期性交替变化,以形成时间上的叠加来均衡相邻两像素行的子像素的像素电压信号的极性在极性反转过程中因充电时间差异造成亮度不均一问题。
需要补充说明的是,随着液晶显示技术的快速发展,消费者对画面的性能、品质的要求(如低功耗、画面细腻程度等)越来越高,目前的技术在高细腻度与低功耗上不能达到兼顾,本公开实施例利用四种常规的低功耗画面翻转模式,通过在时域上周期性叠加,达到低功耗,高品质的显示,并且对面板制程条件的限制降低,达到省成本的目的。
需要补充说明的是,本公开实施例提供的显示面板的驱动方法,在每个帧内都存在子像素的像素电压信号的极性相对于上一帧不变的子像素,这样一来,可以减小单位时间内子像素的像素电压信号的极性,降低显示面板的功耗。例如,以刷新频率为60Hz(中文:赫兹)为例,在两点翻转模式中,1秒内一个子像素的像素电压信号的极性需要变化60次,而如果采用本公开实施例提供的显示面板的驱动方法,1秒内一个子像素的像素电压信号的极性只要变化30次,这样即满足了液晶的翻转,也能降低一半的功耗。其中,当刷新频率为60HZ时,每个子像素的像素电压信号的极性每隔16.6ms(中文:毫秒)变化一次,即液晶分子每隔16.6ms翻转一次,如果液晶分子每2帧翻转一次,即相当于液晶分子每16.6×2ms翻转一次,此时,相当于刷新频率为30HZ,30HZ恰好为人眼能感受到的临界点,所以可以保证显示面板的正常显示。
综上所述,本公开实施例提供的显示面板的驱动方法,在每个扫描周期内,在驱动液晶分子翻转的过程中,每个像素极性重复组的前2n个像素行和每个像素极性重复组的后2n个像素行均满足预设极性条件,预设极性条件为:b个像素行的子像素的像素电压信号的极性保持不变,其余像素行的子像素的像素电压信号的极性改变,前2n个像素行中的b个像素行与后2n个像素行中的b个像素行不相邻,b为大于或者等于1的整数。由于b个像素行的子像素的像素电压信号的极性保持不变,其余像素行的子像素的像素电压信号的极性改变,因此,可以解决显示面板出现人眼可见的亮暗条纹不良的问题,达到缓解显示面板出现人眼可见的亮暗条纹不良的效果。
本公开实施例提供的显示面板的驱动方法,能够很好的解决显示面板出现人眼可见的亮暗条纹不良的问题,且还可以周期性翻转液晶分子,避免液晶分子被极化而失去活性,保证了液晶分子的活性,提高了显示面板的使用寿命。
下述为本公开装置实施例,可以用于执行本公开方法实施例。对于本公开装置实施例中未披露的细节,请参照本公开方法实施例。
请参考图3-1,其示出了本公开实施例提供的一种显示面板的驱动装置300的框图,该显示面板的驱动装置300可以用于执行图2-1所示实施例提供的显示面板的驱动方法,显示面板包括矩阵状排布的多个子像素,矩阵状 排布的多个子像素包括多个像素行和多个像素列,每个像素行和每个像素列中分别包括多个子像素,参见图3-1,该显示面板的驱动装置300包括:
扫描模块310,用于在2n点翻转模式中,以2n+1个帧的显示时长为扫描周期,重复执行扫描动作。扫描模块310例如可以通过扫面仪,摄像头或传感器来实现。
请参考图3-2,其示出了图3-1所示实施例提供的一种扫描模块310的框图,参见图3-2,扫描模块310包括:
第一施加子模块3101,用于在第a帧的显示时间内,向显示面板的每个子像素施加像素电压信号,使显示面板的每连续的2n+1个像素行形成一个像素极性重复组,得到多个像素极性重复组,每个像素极性重复组中位于同一像素行中的任意相邻的两个子像素的像素电压信号的极性相反,且每个像素极性重复组中位于同一像素列中的第i个像素行中的子像素的像素电压信号的极性与第2n+i个像素行中的子像素的像素电压信号的极性相反,a、n和i均为大于或者等于1的整数,且a<2n+1,i≤2n
第二施加子模块3102,用于在第a+1帧的显示时间内,向显示面板的每个子像素施加像素电压信号,使每个像素极性重复组的前2n个像素行和每个像素极性重复组的后2n个像素行均满足预设极性条件,预设极性条件为:b个像素行的子像素的像素电压信号的极性相对于第a帧的显示时间内的极性保持不变,其余像素行的子像素的像素电压信号的极性相对于第a帧的显示时间内的极性发生改变,前2n个像素行中的b个像素行与后2n个像素行中的b个像素行不相邻,b为大于或者等于1的整数,且b<2n,且当b大于1时,b个像素行是连续的。上述第一施加子模块3101和第二施加子模块3102例如可以通过电压控制器,处理器芯片等来实现。
综上所述,本公开实施例提供的显示面板的驱动装置,在每个扫描周期内,在驱动液晶分子翻转的过程中,每个像素极性重复组的前2n个像素行和每个像素极性重复组的后2n个像素行均满足预设极性条件,预设极性条件为:b个像素行的子像素的像素电压信号的极性保持不变,其余像素行的子像素的像素电压信号的极性改变,前2n个像素行中的b个像素行与后2n个像素行中的b个像素行不相邻,b为大于或者等于1的整数。由于b个像素行的子像素的像素电压信号的极性保持不变,其余像素行的子像素的像素电压 信号的极性改变,因此,可以解决显示面板出现人眼可见的亮暗条纹不良的问题,达到缓解显示面板出现人眼可见的亮暗条纹不良的效果。
在一个实施例中,第二施加子模块3102,用于在第a+1帧的显示时间内,向显示面板的每个子像素施加像素电压信号,使每个像素极性重复组中的第m×2n-(a-1)个像素行的子像素的像素电压信号的极性相对于第a帧的显示时间内的极性保持不变,其余像素行的子像素的像素电压信号的极性相对于第a帧的显示时间内的极性发生改变,m为大于或者等于1的整数。
在一个实施例中,2n+1个帧中的所有帧的显示时间相等。
在一个实施例中,第一施加子模块3101和第二施加子模块3102分别用于向显示面板的每个子像素施加幅值等于预设幅值的像素电压信号。
在一个实施例中,不同帧的显示时间内,向显示面板的每个子像素施加的像素电压信号的幅值相等。
在一个实施例中,显示面板为液晶显示面板。
综上所述,本公开实施例提供的显示面板的驱动装置,在每个扫描周期内,在驱动液晶分子翻转的过程中,每个像素极性重复组的前2n个像素行和每个像素极性重复组的后2n个像素行均满足预设极性条件,预设极性条件为:b个像素行的子像素的像素电压信号的极性保持不变,其余像素行的子像素的像素电压信号的极性改变,前2n个像素行中的b个像素行与后2n个像素行中的b个像素行不相邻,b为大于或者等于1的整数。由于b个像素行的子像素的像素电压信号的极性保持不变,其余像素行的子像素的像素电压信号的极性改变,因此,可以解决显示面板出现人眼可见的亮暗条纹不良的问题,达到缓解显示面板出现人眼可见的亮暗条纹不良的效果。
本公开实施例还提供了一种显示装置,该显示装置包括显示面板和图3-1所示的显示面板的驱动装置300,该显示装置可以为:电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
综上所述,本公开实施例提供的显示装置,在每个扫描周期内,在驱动液晶分子翻转的过程中,每个像素极性重复组的前2n个像素行和每个像素极性重复组的后2n个像素行均满足预设极性条件,预设极性条件为:b个像素行的子像素的像素电压信号的极性保持不变,其余像素行的子像素的像素电 压信号的极性改变,前2n个像素行中的b个像素行与后2n个像素行中的b个像素行不相邻,b为大于或者等于1的整数。由于b个像素行的子像素的像素电压信号的极性保持不变,其余像素行的子像素的像素电压信号的极性改变,因此,可以解决显示面板出现人眼可见的亮暗条纹不良的问题,达到缓解显示面板出现人眼可见的亮暗条纹不良的效果。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本公开的实施例并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
本申请要求于2016年10月28日递交的中国专利申请第201610965795.9号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (13)

  1. 一种显示面板的驱动方法,所述显示面板包括矩阵状排布的多个子像素,所述矩阵状排布的多个子像素包括多个像素行和多个像素列,每个像素行和每个像素列中分别包括多个子像素,所述方法包括:
    在2n点翻转模式中,以2n+1个帧的显示时长为扫描周期,重复执行扫描动作,所述扫描动作包括:
    在第a帧的显示时间内,向所述显示面板的每个子像素施加像素电压信号,使所述显示面板的每连续的2n+1个像素行形成一个像素极性重复组,得到多个像素极性重复组,每个像素极性重复组中位于同一像素行中的任意相邻的两个子像素的像素电压信号的极性相反,且所述每个像素极性重复组中位于同一像素列中的第i个像素行中的子像素的像素电压信号的极性与第2n+i个像素行中的子像素的像素电压信号的极性相反,所述a、所述n和所述i均为大于或者等于1的整数,且a<2n+1,i≤2n
    在第a+1帧的显示时间内,向所述显示面板的每个子像素施加像素电压信号,使所述每个像素极性重复组的前2n个像素行和所述每个像素极性重复组的后2n个像素行均满足预设极性条件,所述预设极性条件为:b个像素行的子像素的像素电压信号的极性相对于所述第a帧的显示时间内的极性保持不变,其余像素行的子像素的像素电压信号的极性相对于所述第a帧的显示时间内的极性发生改变,所述前2n个像素行中的b个像素行与所述后2n个像素行中的b个像素行不相邻,所述b为大于或者等于1的整数,且b<2n,且当所述b大于1时,所述b个像素行是连续的。
  2. 根据权利要求1所述的方法,其中,
    所述在第a+1帧的显示时间内,向所述显示面板的每个子像素施加像素电压信号,使所述每个像素极性重复组的前2n个像素行和所述每个像素极性重复组的后2n个像素行均满足预设极性条件,包括:
    在所述第a+1帧的显示时间内,向所述显示面板的每个子像素施加像素电压信号,使所述每个像素极性重复组中的第m×2n-(a-1)个像素行的子像素的像素电压信号的极性相对于所述第a帧的显示时间内的极性保持不变,其余像素行的子像素的像素电压信号的极性相对于所述第a帧的显示时间内的 极性发生改变,所述m为大于或者等于1的整数。
  3. 根据权利要求1或2所述的方法,其中,所述2n+1个帧中的所有帧的显示时间相等。
  4. 根据权利要求1-3任一所述的方法,其中,向所述显示面板的每个子像素施加像素电压信号,包括:
    向所述显示面板的每个子像素施加幅值等于预设幅值的像素电压信号。
  5. 根据权利要求4所述的方法,其中,不同帧的显示时间内,向所述显示面板的每个子像素施加的像素电压信号的幅值相等。
  6. 根据权利要求1至5任一所述的方法,其中,所述显示面板为液晶显示面板。
  7. 一种显示面板的驱动装置,所述显示面板包括矩阵状排布的多个子像素,所述矩阵状排布的多个子像素包括多个像素行和多个像素列,每个像素行和每个像素列中分别包括多个子像素,所述显示面板的驱动装置包括:
    扫描模块,用于在2n点翻转模式中,以2n+1个帧的显示时长为扫描周期,重复执行扫描动作;
    所述扫描模块包括:
    第一施加子模块,用于在第a帧的显示时间内,向所述显示面板的每个子像素施加像素电压信号,使所述显示面板的每连续的2n+1个像素行形成一个像素极性重复组,得到多个像素极性重复组,每个像素极性重复组中位于同一像素行中的任意相邻的两个子像素的像素电压信号的极性相反,且所述每个像素极性重复组中位于同一像素列中的第i个像素行中的子像素的像素电压信号的极性与第2n+i个像素行中的子像素的像素电压信号的极性相反,所述a、所述n和所述i均为大于或者等于1的整数,且a<2n+1,i≤2n
    第二施加子模块,用于在第a+1帧的显示时间内,向所述显示面板的每个子像素施加像素电压信号,使所述每个像素极性重复组的前2n个像素行和所述每个像素极性重复组的后2n个像素行均满足预设极性条件,所述预设极性条件为:b个像素行的子像素的像素电压信号的极性相对于所述第a帧的显示时间内的极性保持不变,其余像素行的子像素的像素电压信号的极性相对于所述第a帧的显示时间内的极性发生改变,所述前2n个像素行中的b个像素行与所述后2n个像素行中的b个像素行不相邻,所述b为大于或者等于 1的整数,且b<2n,且当所述b大于1时,所述b个像素行是连续的。
  8. 根据权利要求7所述的显示面板的驱动装置,其中,
    所述第二施加子模块,用于在所述第a+1帧的显示时间内,向所述显示面板的每个子像素施加像素电压信号,使所述每个像素极性重复组中的第m×2n-(a-1)个像素行的子像素的像素电压信号的极性相对于所述第a帧的显示时间内的极性保持不变,其余像素行的子像素的像素电压信号的极性相对于所述第a帧的显示时间内的极性发生改变,所述m为大于或者等于1的整数。
  9. 根据权利要求7或8所述的显示面板的驱动装置,其中,所述2n+1个帧中的所有帧的显示时间相等。
  10. 根据权利要求7-9任一所述的显示面板的驱动装置,其中,
    所述第一施加子模块和所述第二施加子模块分别用于向所述显示面板的每个子像素施加幅值等于预设幅值的像素电压信号。
  11. 根据权利要求10所述的显示面板的驱动装置,其中,不同帧的显示时间内,向所述显示面板的每个子像素施加的像素电压信号的幅值相等。
  12. 根据权利要求7至11任一所述的显示面板的驱动装置,其中,所述显示面板为液晶显示面板。
  13. 一种显示装置,所述显示装置包括:显示面板和权利要求7至12任一所述的显示面板的驱动装置。
PCT/CN2017/094290 2016-10-28 2017-07-25 显示面板的驱动方法、驱动装置及显示装置 WO2018076832A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/762,288 US20190073969A1 (en) 2016-10-28 2017-07-25 Driving method of display panel, driving device and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610965795.9A CN106340279B (zh) 2016-10-28 2016-10-28 显示面板的驱动方法、驱动装置及显示装置
CN201610965795.9 2016-10-28

Publications (1)

Publication Number Publication Date
WO2018076832A1 true WO2018076832A1 (zh) 2018-05-03

Family

ID=57840971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094290 WO2018076832A1 (zh) 2016-10-28 2017-07-25 显示面板的驱动方法、驱动装置及显示装置

Country Status (3)

Country Link
US (1) US20190073969A1 (zh)
CN (1) CN106340279B (zh)
WO (1) WO2018076832A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106340279B (zh) * 2016-10-28 2017-10-20 京东方科技集团股份有限公司 显示面板的驱动方法、驱动装置及显示装置
US10936121B2 (en) 2018-05-02 2021-03-02 Shenzhen China Star Optoelectronics Technology Co., Ltd. Method and device for controlling in-plane interference of liquid crystal touch screen, and display system
CN108630159B (zh) * 2018-05-02 2020-06-16 深圳市华星光电技术有限公司 一种调节液晶触摸屏面内干扰的方法及装置、显示装置
CN108806609B (zh) * 2018-06-15 2020-03-31 京东方科技集团股份有限公司 一种数据处理方法及其装置、介质
CN113820900B (zh) * 2020-06-18 2024-04-30 元太科技工业股份有限公司 电子纸显示设备及电子纸显示面板的驱动方法
CN112037729A (zh) * 2020-09-23 2020-12-04 京东方科技集团股份有限公司 显示面板控制方法及装置、显示面板及电子设备
CN113593490A (zh) * 2021-06-30 2021-11-02 惠州华星光电显示有限公司 像素驱动架构、显示面板及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1799086A (zh) * 2003-06-06 2006-07-05 克雷沃耶提公司 具有实现点反转的跨接线连接的显示屏
CN101211541A (zh) * 2006-12-26 2008-07-02 瀚宇彩晶股份有限公司 液晶显示装置及其驱动方法
US20090073333A1 (en) * 2007-09-18 2009-03-19 Sony Corporation Liquid crystal display
CN101937142A (zh) * 2009-06-29 2011-01-05 卡西欧计算机株式会社 液晶显示装置及其驱动方法
CN106340279A (zh) * 2016-10-28 2017-01-18 京东方科技集团股份有限公司 显示面板的驱动方法、驱动装置及显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3155996B2 (ja) * 1995-12-12 2001-04-16 アルプス電気株式会社 カラー液晶表示装置
US6809717B2 (en) * 1998-06-24 2004-10-26 Canon Kabushiki Kaisha Display apparatus, liquid crystal display apparatus and driving method for display apparatus
CN101819737B (zh) * 2007-01-15 2013-04-10 乐金显示有限公司 液晶显示器及其驱动方法
KR20120056110A (ko) * 2010-11-24 2012-06-01 삼성모바일디스플레이주식회사 액정 표시 장치 및 그 반전 구동 방법
CN102629453B (zh) * 2011-05-25 2014-04-30 京东方科技集团股份有限公司 液晶显示器面板极性反转驱动方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1799086A (zh) * 2003-06-06 2006-07-05 克雷沃耶提公司 具有实现点反转的跨接线连接的显示屏
CN101211541A (zh) * 2006-12-26 2008-07-02 瀚宇彩晶股份有限公司 液晶显示装置及其驱动方法
US20090073333A1 (en) * 2007-09-18 2009-03-19 Sony Corporation Liquid crystal display
CN101937142A (zh) * 2009-06-29 2011-01-05 卡西欧计算机株式会社 液晶显示装置及其驱动方法
CN106340279A (zh) * 2016-10-28 2017-01-18 京东方科技集团股份有限公司 显示面板的驱动方法、驱动装置及显示装置

Also Published As

Publication number Publication date
CN106340279B (zh) 2017-10-20
CN106340279A (zh) 2017-01-18
US20190073969A1 (en) 2019-03-07

Similar Documents

Publication Publication Date Title
WO2018076832A1 (zh) 显示面板的驱动方法、驱动装置及显示装置
WO2021057837A1 (zh) 一种时序控制器、驱动系统、显示装置以及显示装置的驱动方法
TWI637378B (zh) 液晶顯示器
CN108831399B (zh) 显示驱动方法及液晶显示装置
JP4661412B2 (ja) 液晶パネルの駆動方法および液晶表示装置
CN101191931B (zh) 液晶显示装置以及驱动该液晶显示装置的方法
US11475857B2 (en) Array substrate and display device
TWI416499B (zh) 平面顯示裝置的影像顯示方法
US20110249046A1 (en) Liquid crystal display device
WO2020107578A1 (zh) 显示面板的驱动方法
CN102789771B (zh) 极性反转信号转换方法、装置及显示器
JP2004061590A (ja) 液晶表示装置及びその駆動方法
CN108761938B (zh) 像素排布结构、其驱动方法、显示面板及显示装置
US10692450B2 (en) Display panel, display device, and driving method
KR20090131039A (ko) 픽셀의 구동방법 및 이를 수행하기 위한 표시장치
WO2020107585A1 (zh) 显示面板的驱动方法
KR20140147300A (ko) 표시 장치 및 그 구동 방법
TWI416497B (zh) 液晶顯示裝置之驅動方法及其相關裝置
TWI637369B (zh) 顯示裝置及其驅動方法
KR20080088728A (ko) 액정 표시 장치 및 구동 방법
KR100469351B1 (ko) 액정표시장치의 구동방법
US10360869B2 (en) Liquid crystal panel driving circuit and liquid crystal display device
US8896584B2 (en) Scan method for displaying image
CN113628588B (zh) 显示驱动模组、显示装置及显示方法
TWI405172B (zh) 液晶顯示裝置及其驅動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17864861

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/09/2019)