WO2018076430A1 - 一种复合绝缘材料表面硬度测试方法 - Google Patents

一种复合绝缘材料表面硬度测试方法 Download PDF

Info

Publication number
WO2018076430A1
WO2018076430A1 PCT/CN2016/107449 CN2016107449W WO2018076430A1 WO 2018076430 A1 WO2018076430 A1 WO 2018076430A1 CN 2016107449 W CN2016107449 W CN 2016107449W WO 2018076430 A1 WO2018076430 A1 WO 2018076430A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating material
composite insulating
hardness
surface hardness
line
Prior art date
Application number
PCT/CN2016/107449
Other languages
English (en)
French (fr)
Inventor
王希林
洪骁
陈灿
赵晨龙
王晗
叶蔚安
贾志东
Original Assignee
清华大学深圳研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学深圳研究生院 filed Critical 清华大学深圳研究生院
Publication of WO2018076430A1 publication Critical patent/WO2018076430A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/718Laser microanalysis, i.e. with formation of sample plasma

Definitions

  • the invention relates to a method for testing the surface hardness of a composite insulating material.
  • silicone rubber composite insulation materials have been widely used in the field of external insulation.
  • the resistance to flashover of external insulation equipment has been significantly improved.
  • the main equipment forms of silicone rubber composite insulation are composite insulators (synthetic insulators), climbing skirts and room temperature vulcanized silicone rubber coatings (RTV coatings), various casings made of liquid silicone rubber.
  • composite insulation materials will be affected by electric field, temperature, humidity and other factors, which will cause aging, resulting in a decline in the performance of composite insulation materials, thus threatening the safe and stable operation of transmission lines. Therefore, it is of great significance to evaluate the surface service state of composite insulation materials on transmission lines.
  • silicone rubber materials The aging of silicone rubber materials is also manifested in the hardness of materials.
  • the molecular chemical bonds of silicone rubber materials such as composite insulators break under the action of light, heat and mechanical force, and generate free radicals.
  • the free radicals can react with each other to form "inorganic silicon". , or precipitation of large particles, which can increase the hardness of the material. Therefore, the change in the hardness of silicone rubber is an important indicator reflecting the aging of rubber.
  • Hardness can be utilized as a performance indicator for the surface operating state of composite insulation.
  • Laser-induced Breakdown Spectroscopy is a remote analysis method in which the laser is focused on a surface to be tested on the surface of the test sample.
  • the energy density of the laser pulse is greater than the sample breakdown threshold
  • the emission spectrum when the plasma is dissipated can be captured by the spectrometer to obtain a laser plasma spectrum to obtain spectral information of the sample.
  • the three steps of sampling, atomization, and excitation, respectively, in the atomic emission spectroscopy technique can be realized by the pulsed laser excitation source at one time.
  • the main object of the present invention is to overcome the deficiencies of the prior art and provide a method for testing the surface hardness of a composite insulating material, which can perform remote and live field testing to quickly obtain an accurate surface hardness value of the composite insulating material.
  • the present invention adopts the following technical solutions:
  • a method for testing the surface hardness of a composite insulating material comprising the following steps:
  • LIBS laser induced breakdown spectroscopy method
  • step S5. Obtain a laser plasma spectrum according to step S4, and determine a surface hardness of the composite insulating material to be tested based on a relationship between an ion line and an atomic line ratio and a surface hardness value.
  • the known surface hardness of the composite insulating material sample in step S1 is Shore hardness, or other hardness testing method that can be converted to Shore hardness.
  • the Shore hardness of the composite insulating material sample in step S1 is measured by the following process, including: selecting a plurality of composite insulating material samples, marking at a plurality of locations to be tested on the surface of each composite insulating material sample, and then using Shore hardness Measuring the hardness value of each position to be tested on the surface of each composite insulating material sample, or measuring and converting to a Shore hardness value by other hardness testing methods convertible to Shore hardness; in step S2, the pulsed laser beam is irradiated The position coincides with the position of the mark at the hardness value test to obtain a laser induced breakdown spectrum corresponding to each test position of each composite insulating material sample.
  • the surface of the composite insulating material sample is cleaned prior to testing the Shore hardness.
  • Step S3 includes the following steps:
  • step S32 according to the laser plasma spectrum obtained in step S31, combined with the atomic spectroscopy standard and the technical database, and according to the characteristics of the composite insulating material to be tested, one or more elements of C, Si, Al, Fe, etc. are selected as Analyze the element and select an ion line and an atomic line of the analysis element to obtain the ratio of the ion line of the analysis element to the atomic line;
  • the Shore hardness is tested by selecting multiple composite insulation samples with different operating years and different operating voltage levels.
  • step S4 the composite insulating material on the high-voltage transmission line is detected by laser induced breakdown spectroscopy.
  • step S4 multiple times of laser irradiation are performed on the same position of the composite insulating material to be tested, and the data obtained after the second or second time is used as effective test data.
  • the invention provides a method for testing the surface hardness of a composite insulating material, which uses a pulsed laser beam to irradiate a surface of a composite insulating material sample with a known surface hardness, captures a laser plasma spectrum of the surface of the sample, and establishes an ion line of certain elements in the spectrum.
  • the relationship between the ratio of the atomic line and the surface hardness, and thus using this functional relationship, indirectly tests the surface hardness of the actual composite insulating material to be tested, and evaluates the operating state of the composite insulating material.
  • the invention can be applied to the hardness test of the surface of the remote and charged composite insulating material in the field, quickly judge the surface hardness of the composite insulating material, obtain the accurate surface hardness value of the composite insulating material, and obtain the running state thereof.
  • the method of the invention Compared with the existing detection methods and instruments, the method of the invention has the advantages of no special sampling, convenient operation and fast analysis speed (all analysis processes do not exceed 30 s), and can be used for multiple insulator strings and single poles of the tower during power failure maintenance. A plurality of sheds of the insulator are analyzed and judged. Through the application of the invention, the surface hardness of the composite insulating material of the transmission line can be quickly determined, and replaced or maintained according to actual conditions to ensure the safe operation of the power system.
  • 1 is a graph showing the relationship between the Shore hardness x i and the ion line C II of the carbon element and the atomic line C I ratio y i according to an embodiment of the present invention.
  • a composite insulation surface hardness testing method includes the following steps:
  • LIBS laser induced breakdown spectroscopy method
  • step S5. Obtain a laser plasma spectrum according to step S4, and determine a surface hardness of the composite insulating material to be tested based on a relationship between an ion line and an atomic line ratio and a surface hardness value.
  • the known surface hardness of the composite insulating material sample in step S1 is Shore hardness.
  • the Shore hardness of the composite insulating material sample in step S1 is measured by the following process, comprising: selecting a plurality of composite insulating material samples at a plurality of locations to be tested on the surface of each composite insulating material sample. Marking, and then measuring the hardness value of each test position on the surface of each composite insulating material by using a Shore hardness tester, or measuring and converting to a Shore hardness value by a hardness test method convertible to Shore hardness; in step S2 The position of the pulsed laser beam irradiation coincides with the position of the mark when the hardness value is tested to obtain a laser-induced breakdown spectrum corresponding to each test position of each composite insulating material sample.
  • the surface of the composite insulation sample is cleaned prior to testing for Shore hardness.
  • step S3 comprises the following steps:
  • step S32 According to the laser plasma spectrum obtained in step S31, combined with the atomic spectroscopy standard and the technical database, and selecting C, Si, Al, Fe, etc. according to the characteristics of the composite insulating material to be tested.
  • An element or a plurality of elements in the element is an analysis element, and an ion line and an atom line of the analysis element are selected to obtain a ratio of an ion line to an atom line of the analysis element;
  • the silicone rubber composite insulating material two elements of C and Si are selected as the analysis elements.
  • the corresponding feature elements can be selected.
  • a composite insulating material sample of different compositions and formulations different multiple regression linear models are obtained according to the corresponding laser plasma lines and the measured Shore hardness in step S3, thereby obtaining a corresponding A composite insulating material surface hardness versus laser plasma spectral intensity ion line and atomic line ratio database.
  • the Shore hardness of the composite insulation sample of the same composition and formulation is tested by selecting a plurality of composite insulation samples of different operating years and different operating voltage levels.
  • step S4 the composite insulating material on the high voltage transmission line is subjected to laser induced breakdown spectroscopy.
  • step S4 the same position of the composite insulating material to be tested is subjected to multiple laser irradiations, and the data obtained after the second or second irradiation is used as the data. Effective test data.
  • the invention utilizes the LIBS technology to be extremely sensitive to the surface hardness change of the composite insulating material substrate and has the characteristics of high spatial resolution.
  • the LIBS analysis device is used (the structure and principle of the LIBS analysis device are in the field). It is known to the skilled person that this article does not describe it.
  • the composite insulating material to be tested is tested to quickly judge the surface hardness of the composite insulating material and obtain its operating state.
  • HTV composite insulators, RTV coatings or liquid silicone rubber materials can be, but need to be limited to one of them); the same manufacturer is selected to minimize materials
  • the test error caused by different formulas, the sample shape of the composite insulation material is not limited, the surface contamination needs to be cleaned to avoid the measurement error caused by contamination.
  • the laser induced breakdown spectroscopy test is performed.
  • the position of the LIBS irradiation is consistent with the position marked by the hardness value test, and the corresponding position of each position of each sample is obtained.
  • Laser induced breakdown spectroscopy is performed.
  • the laser plasma line is normalized so that the entire spectrum obtained by the LIBS test can be calculated as a whole.
  • one or more elements of C, Si, Al, Fe, etc. are selected as the analysis elements (the elements to be analyzed)
  • the selection is related to the composition of the sample to be tested, and generally selects the element that affects the strength of the material. Taking C element as an example, one ion line CII and one atomic line CI are selected.
  • the general spectral line selection criterion is high intensity. There are no other high-intensity lines near the line; the ratio of ion lines to atomic lines is obtained, y i CII/CI ;
  • the method of using the second or third test may be used to calculate the material in multiple ways.
  • the present invention utilizes the characteristics of the spectral characteristic line of the LIBS technology to be sensitive to the surface hardness of the test sample, and provides a rapid measurement method for the surface hardness of the composite insulating material based on LIBS, compared with the existing detection methods and instruments. It has the advantages of no special sampling, convenient operation and fast analysis speed (all analysis process does not exceed 30s). It can analyze and judge multiple insulator strings of the tower and multiple umbrella skirts of single insulator during power failure maintenance. By the invention Application, can quickly determine the surface hardness of the composite insulation material of the transmission line, and replace or maintain according to the actual situation to ensure the safe operation of the power system.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种复合绝缘材料表面硬度测试方法,包括以下步骤:S1、准备已测得其表面硬度的复合绝缘材料样品;S2、使用激光诱导击穿光谱方法(LIBS),用脉冲激光光束照射所述复合绝缘材料样品的表面,捕捉该表面的激光等离子体光谱;S3、建立所述激光等离子体光谱中选定元素的离子线与原子线比值与表面硬度值的函数关系;S4、使用激光诱导击穿光谱方法,用脉冲激光光束照射待测复合绝缘材料的表面,捕捉该表面的激光等离子体光谱;S5、根据步骤S4得到激光等离子体光谱,基于离子线与原子线比值与表面硬度值的函数关系确定待测复合绝缘材料的表面硬度。利用本方法可以对复合绝缘材料进行远程、带电的现场测试,快速获得精确的复合绝缘材料表面硬度值。

Description

一种复合绝缘材料表面硬度测试方法 技术领域
本发明涉及一种复合绝缘材料表面硬度测试方法。
背景技术
高压输电线路良好的外绝缘状态是电力系统安全运行的重要保障。上个世纪90年代以来,硅橡胶复合绝缘材料大量应用于外绝缘领域,在电力系统大量使用,外绝缘设备的耐污闪能力才得到显著改善。硅橡胶复合绝缘材料的主要设备形式复合绝缘子(合成绝缘子)、增爬裙和室温硫化硅橡胶涂料(RTV涂料),液体硅橡胶制成的各种套管等。复合绝缘材料在长期运行过程当中,受到电场、温度、湿度等因素的影响会出现老化现象,造成复合绝缘材料的性能下降,从而威胁到输电线路的安全稳定运行。因此,对于输电线路复合绝缘材料表面服役状态进行评估具有重要的意义。
硅橡胶材料的老化还表现在材料硬度,复合绝缘子等硅橡胶材料的分子化学键在光、热、机械作用力等因素作用下发生断裂,产生自由基,自由基可以相互反应,生成“无机硅”,或者析出大颗粒,这可以使得材料硬度增大。因此硅橡胶硬度的变化情况是反映橡胶老化的重要指标。可以利用硬度作为复合绝缘材料表面运行状态的一个性能指标。
常规的复合绝缘材料硬度测试是以邵氏硬度计等仪器进行的,但是这种测试手段,仅限于取样后在实验室进行,无法在高压输电线路的杆塔或者户外进行,测量的精度也有限,依赖于测量人员的经验和技术水平。
激光诱导击穿光谱方法(Laser-induce Breakdown Spectroscopy,LIBS)是一种远程分析方法,激光聚焦在测试样品的表面某一待测位置,当激光脉冲的能量密度大于样品击穿阈值时,即可产生等离子体,等离子体消散时的发射光谱可以被光谱仪捕捉到,从而得到激光等离子体光谱,获得样品的光谱信息。基于这种特殊的等离子体剥蚀技术,通常在原子发射光谱技术中分别独立的取样、原子化、激发三个步骤均可由脉冲激光激发源一次实现。等离子体能量衰退过程中产生连续的轫致辐射以及内部元素的离子发射线,通过光纤光谱仪采集光谱发射信号,分析谱图中元素对应的特 征峰强度即可以用于样品的定性以及定量分析。LIBS技术非常适用于进行远程的元素含量探测。激光诱导击穿光谱技术存在明显的基体效应,其分析精度易受到分析对象物理化学特性的影响,如粒径大小、表面粗糙度、样品含水量和组成元素间的相互影响等。
发明内容
本发明的主要目的在于克服现有技术的不足,提供一种复合绝缘材料表面硬度测试方法,可以进行远程、带电的现场测试,快速获得精确的复合绝缘材料表面硬度值。
为实现上述目的,本发明采用以下技术方案:
一种复合绝缘材料表面硬度测试方法,包括以下步骤:
S1、准备已测得其表面硬度的复合绝缘材料样品;
S2、使用激光诱导击穿光谱方法(LIBS),用脉冲激光光束照射所述复合绝缘材料样品的表面,捕捉该表面的激光等离子体光谱;
S3、建立所述激光等离子体光谱中选定元素的离子线与原子线比值与表面硬度值的函数关系;
S4、使用激光诱导击穿光谱方法,用脉冲激光光束照射待测复合绝缘材料的表面,捕捉该表面的激光等离子体光谱;
S5、根据步骤S4得到激光等离子体光谱,基于离子线与原子线比值与表面硬度值的函数关系确定待测复合绝缘材料的表面硬度。
进一步地:
步骤S1中复合绝缘材料样品已知的表面硬度为邵氏硬度,或其他可转换为邵氏硬度的硬度测试方法。
步骤S1中的复合绝缘材料样品的邵氏硬度通过以下过程测得,包括:选取多个复合绝缘材料样品,在每个复合绝缘材料样品表面的多个待测位置进行标记,再使用邵氏硬度计测量每个复合绝缘材料样品表面的每个待测位置的硬度值,或用其他可转换为邵氏硬度的硬度测试方法测量并转换为邵氏硬度值;步骤S2中,脉冲激光光束照射的位置与硬度值测试时标记的位置一致,以得到每个复合绝缘材料样品的每个测试位置对应的激光诱导击穿光谱。
测试邵氏硬度前对所述复合绝缘材料样品的表面进行清洗。
步骤S3包括以下步骤:
S31、对步骤S2得到激光等离子体谱线进行归一化处理;
S32、根据步骤S31获得的激光等离子体光谱,结合原子光谱标准与技术数据库,并根据待测复合绝缘材料的特性,选择C、Si、Al、Fe等元素中的一种元素或者多种元素为分析元素,并选取分析元素的一条离子线和一条原子线,得到分析元素的离子线与原子线的比值;
S33、通过数据拟合,建立离子线与原子线的比值和待测位置的硬度值的函数关系,得到材料表面硬度与激光等离子体光谱强度值之间的关系曲线;其中当选择多个元素为分析元素时,所述关系曲线通过多元线性回归模型确定。
对于硅橡胶复合绝缘材料,选择C和Si两种元素作为所述分析元素。
针对不同成分和配方的复合绝缘材料样品,在步骤S3中根据相应的激光等离子体谱线和测得的邵氏硬度拟合得到不同的多元回归线性模型,从而得到对应的复合绝缘材料表面硬度与激光等离子体光谱强度离子线和原子线比值的数据库。
针对同一成分和配方的复合绝缘材料样品,其邵氏硬度是选取不同运行年限和不同运行电压等级的多个复合绝缘材料样品测试得到的。
步骤S4中,在户外对高压输电线路上的复合绝缘材料进行激光诱导击穿光谱方法检测。
步骤S4中,对待测复合绝缘材料的同一位置进行多次激光照射,使用第二次或第二次之后照射所得到的数据作为有效的测试数据。
本发明的有益效果:
本发明提出一种复合绝缘材料表面硬度测试方法,利用脉冲激光光束照射已知表面硬度的复合绝缘材料样品表面,捕捉到该样品表面的激光等离子体光谱,建立该光谱中某些元素的离子线与原子线比值与表面硬度的函数关系,从而利用这种函数关系,间接地对实际待测复合绝缘材料的表面硬度进行测试,评估复合绝缘材料的运行状态。本发明可应用于对现场的远程、带电的复合绝缘材料表面进行硬度测试,快速地判断复合绝缘材料的表面硬度,获得精确的复合绝缘材料表面硬度值,获得其运行状态。
相比现有的检测方法和仪器,本发明的方法具有无需特别取样,操作方便,分析速度快(全部分析过程不超过30s)的优点,可以在停电检修期间对杆塔的多个绝缘子串和单支绝缘子的多个伞裙进行分析判断。通过本发明的应用,可以快速判定输电线路复合绝缘材料的表面硬度,根据实际情况进行更换或者维护,保证电力系统的安全运行。
附图说明
图1为本发明一种实施例的邵氏硬度xi与碳元素的离子线C II和原子线C I比值yi的关系曲线图。
具体实施方式
以下对本发明的实施方式作详细说明。应该强调的是,下述说明仅仅是示例性的,而不是为了限制本发明的范围及其应用。
在一种实施例中,一种复合绝缘材料表面硬度测试方法,包括以下步骤:
S1、准备已测得其表面硬度的复合绝缘材料样品;
S2、使用激光诱导击穿光谱方法(LIBS),用脉冲激光光束照射所述复合绝缘材料样品的表面,捕捉该表面的激光等离子体光谱;
S3、建立所述激光等离子体光谱中选定元素的离子线与原子线比值与表面硬度值的函数关系;
S4、使用激光诱导击穿光谱方法,用脉冲激光光束照射待测复合绝缘材料的表面,捕捉该表面的激光等离子体光谱;
S5、根据步骤S4得到激光等离子体光谱,基于离子线与原子线比值与表面硬度值的函数关系确定待测复合绝缘材料的表面硬度。
在一些实施例中,步骤S1中复合绝缘材料样品已知的表面硬度为邵氏硬度。
在优选的实施例中,步骤S1中的复合绝缘材料样品的邵氏硬度通过以下过程测得,包括:选取多个复合绝缘材料样品,在每个复合绝缘材料样品表面的多个待测位置进行标记,再使用邵氏硬度计测量每个复合绝缘材料样品表面的每个待测位置的硬度值,或用可转换为邵氏硬度的硬度测试方法测量并转换为邵氏硬度值;步骤S2中,脉冲激光光束照射的位置与硬度值测试时标记的位置一致,以得到每个复合绝缘材料样品的每个测试位置对应的激光诱导击穿光谱。
在优选的实施例中,测试邵氏硬度前对所述复合绝缘材料样品的表面进行清洗。
在优选的实施例中,步骤S3包括以下步骤:
S31、对步骤S2得到激光等离子体谱线进行归一化处理;
S32、根据步骤S31获得的激光等离子体光谱,结合原子光谱标准与技术数据库,并根据待测复合绝缘材料的特性,选择C、Si、Al、Fe等元 素中的一种元素或者多种元素为分析元素,并选取分析元素的一条离子线和一条原子线,得到分析元素的离子线与原子线的比值;
S33、通过数据拟合,建立离子线与原子线的比值和待测位置的硬度值的函数关系,得到材料表面硬度与激光等离子体光谱强度值之间的关系曲线;其中当选择多个元素为分析元素时,所述关系曲线通过多元线性回归模型确定。
在优选的实施例中,对于硅橡胶复合绝缘材料,选择C和Si两种元素作为所述分析元素。对于其他类型的复合绝缘材料,可选择对应的特征元素。
在优选的实施例中,针对不同成分和配方的复合绝缘材料样品,在步骤S3中根据相应的激光等离子体谱线和测得的邵氏硬度拟合得到不同的多元回归线性模型,从而得到对应的复合绝缘材料表面硬度与激光等离子体光谱强度离子线和原子线比值的数据库。
在优选的实施例中,针对同一成分和配方的复合绝缘材料样品,其邵氏硬度是选取不同运行年限和不同运行电压等级的多个复合绝缘材料样品测试得到的。
在优选的实施例中,步骤S4中,在户外对高压输电线路上的复合绝缘材料进行激光诱导击穿光谱方法检测。
由于实际现场测试时材料表面可能有污秽或其他成分,优选地,步骤S4中,对待测复合绝缘材料的同一位置进行多次激光照射,使用第二次或第二次之后照射所得到的数据作为有效的测试数据。
本发明利用LIBS技术对复合绝缘材料基体的表面硬度变化极为敏感且具有高空间分辨率的特征,与常规的邵氏硬度测试方法结合,使用LIBS分析设备(LIBS分析设备的结构和原理为本领域技术人员已知,本文不予赘述),对待测复合绝缘材料进行检测,快速判断复合绝缘材料的表面硬度,获得其运行状态。以下通过具体实施例对本发明的原理和优点进行进一步说明。
1.选取同一厂家不同运行年限和不同运行电压等级的复合绝缘材料样品(HTV复合绝缘子、RTV涂料或者液体硅橡胶材料都可以,但需限定为其中一种);选取同一厂家是为了尽量减少材料配方不同带来的试验误差,复合绝缘材料的样品形貌不限,表面污秽需进行清洗,避免污秽造成的测量误差。
2.在每个复合绝缘材料样品表面的待测位置进行标记,并利用邵氏硬 度计A型测量硬度值,记为xi
3.搭建激光诱导击穿光谱系统,可在0-10米范围进行测试。
4.对步骤1和2中,每个测得硬度值的样品进行激光诱导击穿光谱测试,LIBS照射的位置要与硬度值测试时标记的位置一致,得到每个样品每个位置的对应的激光诱导击穿光谱。
5.将激光等离子体谱线进行归一化处理,使得LIBS测试得到的整个全部谱图可以进行整体计算。
6.根据步骤5中获得的激光等离子体光谱,结合原子光谱标准与技术数据库(NIST),选择C、Si、Al、Fe等元素中的一种元素或者多种元素为分析元素(待分析元素的选取与待测样品的构成有关,一般选择影响该材料强度的元素),以C元素为例,选取其一条离子线CII和一条原子线CI,一般的光谱谱线选择标准是强度高,该谱线附近没有其他高强度谱线;得到离子线与原子线的比值,yi CII/CI
7.综合以上数据,进行数据拟合,建立yi CII/CI和xi的线性函数关系,得到材料表面硬度与激光等离子体光谱强度值之间的关系曲线;如果选择多个元素,则可以得到多元线性回归模型,对于硅橡胶复合绝缘材料,可选择C和Si两种元素,对于其他材料则需要选择对应的特征元素。
8.对不同厂家、不同地域的复合绝缘材料样品,重复以上1-7的步骤,对不同成分和配方的材料,拟合得到不同的多元回归线性模型,从而得到对应的复合绝缘材料表面硬度与激光等离子体光谱强度离子线和原子线比值的数据库。
9.应用以上函数关系和数据库,对实际运行现场的复合绝缘材料,可采用LIBS测试的光谱数据,经数据库和函数关系处理后,直接得到其表面硬度值。
10.实际现场测试时,如果有材料表面有污秽或其他成分,可材料对同一位置多次照射的方式,采用用第二次或者第三次测试的数据进行相关计算;
如上所述,本发明利用了LIBS技术中光谱特征谱线对待测试样表面硬度敏感的特点,提供了一种基于LIBS的复合绝缘材料表面硬度快速测量方法,相比现有的检测方法和仪器,具有无需特别取样,操作方便,分析速度快(全部分析过程不超过30s)的优点,可以在停电检修期间对杆塔的多个绝缘子串和单支绝缘子的多个伞裙进行分析判断。通过本发明的 应用,可以快速判定输电线路复合绝缘材料的表面硬度,根据实际情况进行更换或者维护,保证电力系统的安全运行。
实例
对220kV输电线路、同一生产厂家、不同运行地域的复合绝缘子伞裙取样,测量其特定位置的邵氏硬度xi,对每个特定位置进行5m距离的激光诱导击穿光谱测试,选择碳元素的离子线C II 588.977nm和原子线C I 247.8561nm,并计算其比值yi,在软件中编程计算其yi与xi的关系如图1所示。对其他待测位置采用LIBS测试,得到其光谱数据,利用该函数关系即可计算出其他待测位置的硬度值。
以上内容是结合具体/优选的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,其还可以对这些已描述的实施方式做出若干替代或变型,而这些替代或变型方式都应当视为属于本发明的保护范围。

Claims (10)

  1. 一种复合绝缘材料表面硬度测试方法,其特征在于,包括以下步骤:
    S1、准备已测得其表面硬度的复合绝缘材料样品;
    S2、使用激光诱导击穿光谱方法,用脉冲激光光束照射所述复合绝缘材料样品的表面,捕捉该表面的激光等离子体光谱;
    S3、建立所述激光等离子体光谱中选定元素的离子线与原子线比值与表面硬度值的函数关系;
    S4、使用激光诱导击穿光谱方法,用脉冲激光光束照射待测复合绝缘材料的表面,捕捉该表面的激光等离子体光谱;
    S5、根据步骤S4得到激光等离子体光谱,基于离子线与原子线比值与表面硬度值的函数关系确定待测复合绝缘材料的表面硬度。
  2. 如权利要求1所述的复合绝缘材料表面硬度测试方法,其特征在于,步骤S1中复合绝缘材料样品已知的表面硬度为邵氏硬度。
  3. 如权利要求2所述的复合绝缘材料表面硬度测试方法,其特征在于,步骤S1中的复合绝缘材料样品的邵氏硬度通过以下过程测得,包括:选取多个复合绝缘材料样品,在每个复合绝缘材料样品表面的多个待测位置进行标记,再使用邵氏硬度计测量每个复合绝缘材料样品表面的每个待测位置的硬度值,或用其他可转换为邵氏硬度的硬度测试方法测量并转换为邵氏硬度值;步骤S2中,脉冲激光光束照射的位置与硬度值测试时标记的位置一致,以得到每个复合绝缘材料样品的每个测试位置对应的激光诱导击穿光谱。
  4. 如权利要求3所述的复合绝缘材料表面硬度测试方法,其特征在于,测试邵氏硬度前对所述复合绝缘材料样品的表面进行清洗。
  5. 如权利要求3所述的复合绝缘材料表面硬度测试方法,其特征在于,步骤S3包括以下步骤:
    S31、对步骤S2得到激光等离子体谱线进行归一化处理;
    S32、根据步骤S31获得的激光等离子体光谱,结合原子光谱标准与技术数据库,并根据待测复合绝缘材料的特性,选择C、Si、Al、Fe等元素中的一种元素或者多种元素为分析元素,并选取分析元素的一条离子线和一条原子线,得到分析元素的离子线与原子线的比值;
    S33、通过数据拟合,建立离子线与原子线的比值和待测位置的硬度 值的函数关系,得到材料表面硬度与激光等离子体光谱强度值之间的关系曲线;其中当选择多个元素为分析元素时,所述关系曲线通过多元线性回归模型确定。
  6. 如权利要求5所述的复合绝缘材料表面硬度测试方法,其特征在于,对于硅橡胶复合绝缘材料,选择C和Si两种元素作为所述分析元素。
  7. 如权利要求3至6任一项所述的复合绝缘材料表面硬度测试方法,其特征在于,针对不同成分和配方的复合绝缘材料样品,在步骤S3中根据相应的激光等离子体谱线和测得的邵氏硬度拟合得到不同的多元回归线性模型,从而得到对应的复合绝缘材料表面硬度与激光等离子体光谱强度离子线和原子线比值的数据库。
  8. 如权利要求3至6任一项所述的复合绝缘材料表面硬度测试方法,其特征在于,针对同一成分和配方的复合绝缘材料样品,其邵氏硬度是选取不同运行年限和不同运行电压等级的多个复合绝缘材料样品测试得到的。
  9. 如权利要求1至8任一项所述的复合绝缘材料表面硬度测试方法,其特征在于,步骤S4中,在户外对高压输电线路上的复合绝缘材料进行激光诱导击穿光谱方法检测。
  10. 如权利要求9所述的复合绝缘材料表面硬度测试方法,其特征在于,步骤S4中,对待测复合绝缘材料的同一位置进行多次脉冲激光照射,使用第二次或第二次之后照射所得到的数据作为有效的测试数据。
PCT/CN2016/107449 2016-10-31 2016-11-28 一种复合绝缘材料表面硬度测试方法 WO2018076430A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610930829.0A CN106501237A (zh) 2016-10-31 2016-10-31 一种复合绝缘材料表面硬度测试方法
CN201610930829.0 2016-10-31

Publications (1)

Publication Number Publication Date
WO2018076430A1 true WO2018076430A1 (zh) 2018-05-03

Family

ID=58318802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107449 WO2018076430A1 (zh) 2016-10-31 2016-11-28 一种复合绝缘材料表面硬度测试方法

Country Status (2)

Country Link
CN (1) CN106501237A (zh)
WO (1) WO2018076430A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107907531A (zh) * 2017-12-07 2018-04-13 南方电网科学研究院有限责任公司 一种材料表面硬度的测量方法及测量装置
CN109000597B (zh) * 2018-08-08 2019-07-19 清华大学深圳研究生院 一种基于激光诱导击穿光谱技术的表面粗糙度测量方法
CN109031066A (zh) * 2018-08-08 2018-12-18 清华大学深圳研究生院 一种基于激光诱导击穿光谱技术的耐漏电起痕测量方法
CN109239024A (zh) * 2018-09-05 2019-01-18 国网河北省电力有限公司电力科学研究院 复合绝缘子老化程度评价方法及系统
CN109521041B (zh) * 2018-11-30 2022-05-17 华南理工大学 一种xlpe材料热老化动态过程多相联合检测方法
CN111044506A (zh) * 2019-12-13 2020-04-21 国网山西省电力公司电力科学研究院 一种磷酸铝污秽含水量的检测方法
CN111044505A (zh) * 2019-12-13 2020-04-21 国网山西省电力公司电力科学研究院 一种吸湿性污秽磷酸铝的检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202939128U (zh) * 2012-11-30 2013-05-15 华南理工大学 基于libs的锅炉受热面高温失效趋势快速分析装置
WO2014146719A1 (en) * 2013-03-22 2014-09-25 Foss Analytical A/S System for and method of combined libs and ir absorption spectroscopy investigations
CN104697966A (zh) * 2015-03-10 2015-06-10 西北大学 一种基于最小二乘支持向量机算法结合激光诱导击穿光谱的钢铁中铬和锰定量分析方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2553435A1 (en) * 2010-03-29 2013-02-06 DataTrace DNA Pty Ltd A system for classification of materials using laser induced breakdown spectroscopy
CN103018216A (zh) * 2012-11-30 2013-04-03 华南理工大学 基于libs的锅炉受热面高温失效趋势快速分析方法
CN103616351A (zh) * 2013-11-26 2014-03-05 中国科学院广州地球化学研究所 激光诱导击穿光谱分析仪和方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202939128U (zh) * 2012-11-30 2013-05-15 华南理工大学 基于libs的锅炉受热面高温失效趋势快速分析装置
WO2014146719A1 (en) * 2013-03-22 2014-09-25 Foss Analytical A/S System for and method of combined libs and ir absorption spectroscopy investigations
CN104697966A (zh) * 2015-03-10 2015-06-10 西北大学 一种基于最小二乘支持向量机算法结合激光诱导击穿光谱的钢铁中铬和锰定量分析方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, JUNYAN ET AL.: "Laser Induced Plasma Spectra of Heating surface Materials with Different Hardnesses", CHINESE JOURNAL OF LASERS, 31 August 2011 (2011-08-31), pages 0815002-1 - 0815002-6 *

Also Published As

Publication number Publication date
CN106501237A (zh) 2017-03-15

Similar Documents

Publication Publication Date Title
WO2018076430A1 (zh) 一种复合绝缘材料表面硬度测试方法
US10209197B2 (en) Method for inspecting aging state of silicone rubber composite insulating material
CN106770070B (zh) 一种绝缘子表面等值盐密测量方法及装置
Yli-Juuti et al. Growth rates of nucleation mode particles in Hyytiälä during 2003− 2009: variation with particle size, season, data analysis method and ambient conditions
CN108303366A (zh) 一种硅橡胶材料老化状态多维联合分析方法
CN103439611B (zh) 一种电线电缆电导率及抗拉与老化综合测试装置
CN109000597B (zh) 一种基于激光诱导击穿光谱技术的表面粗糙度测量方法
CN111999610A (zh) 一种基于活化能的干式绝缘设备老化评估与寿命预测方法
KR20230092889A (ko) 환경 빅데이터 및 머신 러닝을 기반으로 한 고분자 재료의 사용 수명 예측 방법
CN113484635A (zh) 绝缘子异常发热热源及其材料劣化特征分析方法
CN112505010A (zh) 一种基于荧光光谱的变压器故障诊断装置及方法
JP2017198593A (ja) がいし類の汚損の計測方法、計測装置、及び計測プログラム
CN110672586B (zh) 基于libs的混凝土腐蚀状态的检测方法
Spencer et al. Sequential versus simultaneous aging of XLPE nuclear cable insulation subjected to elevated temperature and gamma radiation
CN111044505A (zh) 一种吸湿性污秽磷酸铝的检测方法
CN107907531A (zh) 一种材料表面硬度的测量方法及测量装置
CN111044506A (zh) 一种磷酸铝污秽含水量的检测方法
Qin et al. Characterization of hygroscopic insulator contamination via laser-induced breakdown spectroscopy
Liu et al. Pulsed infrared thermography to inspect the internal defects of composite insulators
Nie et al. Characteristic analysis of DS18B20 temperature sensor in the high-voltage transmission lines’ dynamic capacity increase
CN102680435B (zh) 一种激光诱导击穿光谱无标样定量分析元素组成的方法
CN105352443A (zh) 一种绝缘子rtv涂层厚度的测量方法
CN105784630A (zh) 一种基于红外光谱分析方法的硅橡胶胶含量检测方法
Li et al. Elemental Analysis of Aged Composite Insulators Based on Laser Induced Breakdown Spectroscopy
Chen et al. Aging evaluation of composite insulator with laser-induced breakdown spectroscopy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920157

Country of ref document: EP

Kind code of ref document: A1