WO2018076385A1 - 接收机和数据接收方法 - Google Patents

接收机和数据接收方法 Download PDF

Info

Publication number
WO2018076385A1
WO2018076385A1 PCT/CN2016/104153 CN2016104153W WO2018076385A1 WO 2018076385 A1 WO2018076385 A1 WO 2018076385A1 CN 2016104153 W CN2016104153 W CN 2016104153W WO 2018076385 A1 WO2018076385 A1 WO 2018076385A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization state
module
transmitters
digital signal
despreading
Prior art date
Application number
PCT/CN2016/104153
Other languages
English (en)
French (fr)
Inventor
王勰
黄远达
李良川
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/104153 priority Critical patent/WO2018076385A1/zh
Priority to EP16919620.1A priority patent/EP3531586B1/en
Priority to CN201680090437.6A priority patent/CN109923803B/zh
Publication of WO2018076385A1 publication Critical patent/WO2018076385A1/zh
Priority to US16/398,169 priority patent/US10630419B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/06Polarisation multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2569Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to polarisation mode dispersion [PMD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/614Coherent receivers comprising one or more polarization beam splitters, e.g. polarization multiplexed [PolMux] X-PSK coherent receivers, polarization diversity heterodyne coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/005Optical Code Multiplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0238Wavelength allocation for communications one-to-many, e.g. multicasting wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • H04B7/0434Power distribution using multiple eigenmodes
    • H04B7/0443Power distribution using multiple eigenmodes utilizing "waterfilling" technique
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0465Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking power constraints at power amplifier or emission constraints, e.g. constant modulus, into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to a receiver and a data receiving method.
  • an optical multiplexing transmission technique that multiplexes optical signals of a plurality of channels and transmits them using one optical fiber is indispensable.
  • the main multiplexing technologies include Time Division Multiplexing (TDM), Wavelength Division Multiplexing (WDM), and Frequency Division Multiplexing (Frequency Division Multiplexing).
  • TDM Time Division Multiplexing
  • WDM Wavelength Division Multiplexing
  • FDM Frequency Division Multiplexing
  • OFDM Orthogonal Frequency Division Multiplexing
  • CDM Code Division Multiplexing
  • CDM Code Division Multiplexing
  • Coherent Code Division Multiple Access is an important implementation of optical multi-point-to-point system, compatible with existing commercial coherent devices.
  • CDMA Code Division Multiple Access
  • each service site is the same.
  • the wavelength data is transmitted by using the respective spreading codes, and the spreading codes used by the service stations are orthogonal to each other, which ensures that the coherent receivers at the backbone nodes can recover the data of each service station through different spreading codes. Therefore, the coherent receiver at the backbone node needs to adopt the corresponding DSP receiving method.
  • the DSP architecture of current coherent receivers is only applicable to point-to-point transmission systems, and is not applicable to coherent CDMA multi-point-to-point systems.
  • the CDMA architecture in wireless communication cannot be fully applied to optical communication.
  • the transmission signal used by each user is a dual-polarized signal, and since the transmission channel is an optical fiber, effects such as polarization mode dispersion PMD and differential group delay DGD are introduced, which affects the CDMA signal.
  • Embodiments of the present invention provide a receiver and a data receiving method to implement an optical communication system.
  • an embodiment of the present invention provides a receiver, including:
  • Two first input ends Two first input ends, a despreading module, a multiple input multiple output equalization module, and 2N first output ends;
  • the two first input ends are connected to the despreading module, and the despreading module is connected to the multiple input multiple output equalization module;
  • the two first inputs are used to respectively input a digital signal of an X polarization state and a digital signal of a Y polarization state;
  • the despreading module is configured to despread the digital signal of the X polarization state and the digital signal of the Y polarization state according to N delay values and spreading codes of N transmitters to obtain N first basebands a signal and N second baseband signals, each of the first baseband signals comprising a first baseband signal of an X polarization state and a first baseband signal of a Y polarization state, each second baseband signal comprising a second baseband of an X polarization state a second baseband signal of the signal and the Y polarization state, wherein the N delay values are determined according to differences in synchronization positions of the first polarization states of the N transmitters and synchronization positions of the second polarization states, respectively;
  • the multiple input multiple output equalization module is configured to perform equalization filtering processing on the N first baseband signals and the N second baseband signals, and acquire recovery data of a first polarization state of the N transmitters and a second polarization state. Data recovery;
  • the 2N first outputs are used to respectively output recovery data of one polarization state of a transmitter
  • N is a positive integer greater than or equal to 1.
  • the receiver synchronizes and despreads the received digital signal of the X polarization state and the digital signal of the Y polarization state based on the first polarization state and the second polarization state of each transmitter, respectively, thereby recovering different
  • the recovery data of the first polarization state of the transmitter and the recovery data of the second polarization state realize data reception of the dual polarization state of the multi-transmitter, that is, realize coherent CDMA multi-point to point data transmission in the optical communication system, and
  • the differential group delay (DGD) effect in the fiber channel can be effectively compensated, and the data transmission quality is effectively improved.
  • the despreading module includes a first despreading module and a second despreading module, the first despreading module and the second despreading Mode
  • the blocks each include two inputs and 2N outputs;
  • the two input ends of the first despreading module and the two input ends of the second despreading module are respectively connected to the two first input ends;
  • the 2N output ends of the first despreading module and the 2N output ends of the second despreading module are respectively connected to a second output end;
  • the first despreading module is configured to output the N first baseband signals
  • the second despreading module is configured to output N second baseband signals
  • An output of the first despreading module is configured to output a first baseband signal of an X polarization state of a transmitter or a first baseband signal of a Y polarization state of a transmitter, and an output of the second despreading module The second baseband signal for outputting the X-polarization state of one transmitter or the second baseband signal of the Y-polarization state of one transmitter.
  • the despreading module further includes a first polarization state synchronization module and a second polarization state synchronization module ;
  • the first polarization state synchronization module is configured to determine a first polarization of the N transmitters according to a training sequence of a first polarization state of the N transmitters, a digital signal of the X polarization state, and a digital signal of the Y polarization state Synchronous position of the state;
  • the second polarization state synchronization module is configured to determine a second polarization of the N transmitters according to a training sequence of a second polarization state of the N transmitters, a digital signal of the X polarization state, and a digital signal of the Y polarization state The synchronization position of the state.
  • the despreading module further includes an adjustable delay module, the adjustable delay The module is disposed between the two first input ends and the first despreading module, and the adjustable delay module is further connected to the first polarization state synchronization module and the second polarization state synchronization module;
  • the adjustable delay module is configured to determine a delay of the N transmitters according to a difference between a synchronization position of a first polarization state of the N transmitters and a synchronization position of a second polarization state of the N transmitters Time value, and delay processing the digital signal of the X polarization state and the digital signal of the Y polarization state according to the delay values of the N transmitters respectively, and acquiring N delayed digital signals of the X polarization state after delay And the N delayed Y-density digital signals, the N delayed X-polarized digital signals and the N delayed Y-densified digital signals are output to the First despreading module;
  • the first despreading module despreads the N delayed X-polarized digital signals and the N delayed Y-densified digital signals by using the spreading codes of the N transmitters Obtaining the N first baseband signals.
  • the receiver sets an adjustable delay module between the first input end and the first despreading module, and the N delay values of the adjustable delay module are respectively according to the first of the N transmitters.
  • the difference between the synchronization position of the polarization state and the synchronization position of the second polarization state is determined, thereby realizing the synchronization and despreading of the received digital signal to be processed by the two polarization states, thereby effectively reducing different polarization states of the data signal when transmitted in the optical fiber.
  • the differential group generated by the component delays the DGD effect.
  • the despreading module further includes an adjustable delay module, the adjustable delay a module is disposed between the two first input ends and the second despreading module, and the adjustable delay module is further connected to the first polarization state synchronization module and the second polarization state synchronization module;
  • the adjustable delay module is configured to determine a delay of the N transmitters according to a difference between a synchronization position of a first polarization state of the N transmitters and a synchronization position of a second polarization state of the N transmitters Time value, and delay processing the digital signal of the X polarization state and the digital signal of the Y polarization state according to the delay values of the N transmitters respectively, and acquiring N delayed digital signals of the X polarization state after delay And the N delayed digital signals of the Y polarization state, outputting the N delayed X polarization state digital signals and the N delayed Y polarization state digital signals to the second despreading Module
  • the second despreading module despreads the N delayed X-polarized digital signals and the N delayed Y-densified digital signals by using the spreading codes of the N transmitters Obtaining the N second baseband signals.
  • the receiver sets an adjustable delay module between the first input end and the second despreading module, and the N delay values of the adjustable delay module are based on the first polarization of the N transmitters.
  • the difference between the synchronization position of the state and the synchronization position of the second polarization state is determined, thereby realizing the synchronization and despreading of the received digital signal to be processed by the two polarization states, thereby effectively reducing different polarization state components of the data signal when transmitted in the optical fiber.
  • the resulting differential group delays the DGD effect.
  • the despreading module further includes N adjustable delay modules,
  • the first despreading module includes N sub-first despreading modules, and the N adjustable delay modules are respectively disposed in a sub-first despreading module, and one sub-first despreading module is configured to output X of a transmitter. a first baseband signal of a polarization state and a first baseband signal of a Y polarization state;
  • Each adjustable delay module determines a delay value of the transmitter based on a difference between a synchronization position of a first polarization state of the transmitter and a synchronization position of the second polarization state of the transmitter, and according to the transmitter Delaying value of the transmitter is subjected to delay processing, obtaining a delayed spreading code of the transmitter, and outputting the delayed spreading code of the transmitter to a corresponding one thereof Sub-first despreading module;
  • Each sub-first despreading module is configured to despread the X-polarized digital signal and the Y-polarized digital signal using a delayed spread spectrum code of one transmitter to obtain a first baseband signal.
  • the receiver sets an adjustable delay module in each of the first despreading modules in the first despreading module, and the delay value of each adjustable delay module is based on the corresponding transmitter.
  • the difference between the synchronization position of the first polarization state and the synchronization position of the second polarization state is determined, thereby realizing the synchronization and despreading of the received digital signal to be processed by the two polarization states, thereby effectively reducing the data signal transmission in the optical fiber.
  • the differential group delay DGD effect produced by different polarization components.
  • the despreading module further includes N adjustable delay modules, the second The despreading module includes N sub-second despreading modules, wherein the N adjustable delay modules are respectively disposed in a sub-second despreading module, and one sub-second despreading module is configured to output an X-polarization state of a transmitter a second baseband signal and a second baseband signal in a Y polarization state;
  • Each adjustable delay module determines a delay value of the transmitter based on a difference between a synchronization position of a first polarization state of the transmitter and a synchronization position of the second polarization state of the transmitter, and according to the transmitter Delaying value of the transmitter is subjected to delay processing, obtaining a delayed spreading code of the transmitter, and outputting the delayed spreading code of the transmitter to a corresponding one thereof Sub-second despreading module;
  • Each sub-second despreading module is configured to despread the X-polarized digital signal and the Y-polarized digital signal using a delayed spread spectrum code of one transmitter to obtain a second baseband signal.
  • the receiver passes each of the second despread modules in the second despreading module.
  • An adjustable delay module is arranged in the block, and the delay value of each adjustable delay module is determined by the difference between the synchronization position of the first polarization state of the transmitter and the synchronization position of the second polarization state, thereby realizing two The polarization state of the channel synchronizes and despreads the received digital signal to be processed, thereby effectively reducing the differential group delay DGD effect generated by different polarization states of the data signal when transmitted in the optical fiber.
  • the multiple input multiple output equalization module includes a first multiple input multiple output equalization module, Two multiple input multiple output equalization modules and summation modules;
  • the first multiple input multiple output equalization module is connected to the 2N output ends of the first despreading module, and the second multiple input multiple output equalization module is connected to the 2N output ends of the second despreading module;
  • the first multiple input multiple output equalization module includes 2N third output ends, and the second multiple input multiple output equalization module includes 2N fourth output ends;
  • the 2N third output ends and the 2N fourth output ends are connected to the summation module, and the summation module is connected to the 2N first output ends;
  • the first multiple input multiple output equalization module is configured to process the N first baseband signals according to 2N*2N filter coefficients, acquire first modulated data of N transmitters, and first modulation of each transmitter Data includes first modulation data of a first polarization state of the transmitter and first modulation data of a second polarization state;
  • the second multiple input multiple output equalization module is configured to process the N second baseband signals according to 2N*2N filter coefficients, acquire second modulation data of N transmitters, and second modulation of each transmitter Data includes second modulation data of a first polarization state of the transmitter and second modulation data of a second polarization state;
  • the summation module is configured to add the first modulation data and the second modulation data of the N transmitters to obtain recovery data of the first polarization state of the N transmitters and recovery data of the second polarization state.
  • the first multiple input multiple output equalization module includes 2N*2N sub-first equalization modules. , each sub-first equalization module sets a filter coefficient;
  • the 2N column first equalization module is respectively connected to the output end of a first despreading module, and the 2N line first equalization module is respectively connected to a third output end through 2N-1 adders;
  • the second multiple input multiple output equalization module includes 2N*2N sub-second equalization modules, and each sub-second equalization module sets a filter coefficient;
  • the 2N column second equalization module is respectively connected to the output end of a second despreading module, and the 2N line second equalization module is respectively connected to a fourth output terminal through 2N-1 adders.
  • the receiver compensates the channel loss by using the two MIMO signals respectively after despreading, and can effectively compensate the DGD loss in the fiber channel, thereby further improving data transmission. performance.
  • the multiple input multiple output equalization module includes 2N multiple input single output equalization modules
  • Each of the multiple input single output equalization modules is connected to 2N outputs of the first despreading module and 2N outputs of the second despreading module;
  • the 2N multiple-input single-output equalization modules respectively process the N first baseband signals and the N second baseband signals with reference to one transmitter to obtain recovery data of one polarization state of the corresponding transmitter.
  • the receiver compensates the channel loss by using the 2N multiple-input single-output equalization module for the first baseband signal and the second baseband signal obtained after despreading, which can effectively compensate the DGD loss in the fiber channel, and further improve the data transmission. performance.
  • This implementation is more suitable for application scenarios where the frequency offset between transmitters is large.
  • the receiver further includes 2N carrier recovery modules, the 2N carrier recovery module They are respectively disposed at a first output end, and each carrier recovery module is configured to perform carrier phase recovery on the recovered data of one polarization state of the transmitter corresponding thereto, and obtain original data of a polarization state of the transmitter corresponding thereto.
  • an embodiment of the present invention provides a data receiving method, including:
  • N delay values Determining N delay values according to a difference between a synchronization position of the first polarization state of the N transmitters and a synchronization position of the second polarization state
  • each of the first baseband signals comprising a first baseband signal of an X polarization state and a first baseband signal of a Y polarization state
  • each second baseband signal comprising a second baseband signal of an X polarization state and Y a second baseband signal of a polarization state
  • N is the same as the number of transmitters.
  • the digital signal and the Y polarization state of the X polarization state are performed according to the N delay values and a spreading code of N transmitters
  • the digital signal is despread to obtain N first baseband signals and N second baseband signals, including:
  • N delay values and the spreading code pair of the N transmitters The X-polarized digital signal and the Y-polarized digital signal are despread to obtain N first baseband signals and N second baseband signals, including:
  • the N delay values and the spreading code pairs of the N transmitters are used.
  • the X-polarized digital signal and the Y-polarized digital signal are despread to obtain N first baseband signals and N second baseband signals, including:
  • the N delay values and the spreading code pairs of the N transmitters are used.
  • the X-polarized digital signal and the Y-polarized digital signal are despread to obtain N first baseband signals and N second baseband signals, including:
  • the method further includes:
  • a synchronization position of the second polarization state of the N transmitters is determined based on a training sequence of a second polarization state of the N transmitters, a digital signal of the X polarization state, and a digital signal of the Y polarization state.
  • the pair of the first first baseband signals and the N second bases The signal is subjected to equalization filtering processing to obtain recovery data of the first polarization state of the N transmitters and recovery data of the second polarization state, including:
  • the first modulation data and the second modulation data of the N transmitters are summed to obtain recovery data of the second polarization state of the N transmitters and recovery data of the second polarization state.
  • the receiver accesses the X-polarized digital signal and the Y-polarized digital signal, and the despreading module is used according to the delay values of the N transmitters and the spread of the N transmitters.
  • the code despreads the digital signal of the X polarization state and the digital signal of the Y polarization state to obtain N first baseband signals and N second baseband signals, the N delay values being respectively according to the first of the N transmitters Determining the difference between the synchronization position of the polarization state and the synchronization position of the second polarization state, and then performing equalization filtering processing on the N first baseband signals and the N second baseband signals to obtain recovery of the first polarization state of the N transmitters
  • Data and recovery data of the second polarization state that is, synchronizing and despreading the received digital signals to be processed based on the first polarization state and the second polarization state of each transmitter, respectively, thereby recovering the first of different transmitters
  • the recovery data of the polarization state and the recovery data of the second polarization state realize the data reception of the dual polarization state of the multiple transmitters, that is, realize the coherent CDMA multi-point to point data transmission in the optical communication system, and acquire different During
  • FIG. 1 is a schematic diagram of an application scenario of the present invention
  • Embodiment 1 of a receiver according to the present invention is a schematic structural diagram of Embodiment 1 of a receiver according to the present invention.
  • Embodiment 2 of a receiver according to the present invention is a schematic structural diagram of Embodiment 2 of a receiver according to the present invention.
  • Embodiment 3 of a receiver according to the present invention is a schematic structural diagram of Embodiment 3 of a receiver according to the present invention.
  • Embodiment 4 of a receiver according to the present invention is a schematic structural diagram of Embodiment 4 of a receiver according to the present invention.
  • 5B is a schematic structural diagram of a first despreading module according to the present invention.
  • Embodiment 5 of a receiver according to the present invention is a schematic structural diagram of Embodiment 5 of a receiver according to the present invention.
  • Embodiment 7 is a schematic structural diagram of Embodiment 1 of a multiple input multiple output equalization module of a receiver according to the present invention.
  • FIG. 8 is a schematic structural diagram of a first multiple input multiple output equalization module or a second multiple input multiple output equalization module of a receiver of the present invention
  • Embodiment 6 of a receiver according to the present invention is a schematic structural diagram of Embodiment 6 of a receiver according to the present invention.
  • FIG. 10 is a flowchart of Embodiment 1 of a data receiving method according to the present invention.
  • FIG. 1 is a schematic diagram of an application scenario of the present invention.
  • an application scenario of an embodiment of the present invention may be a CDMA system with multiple users accessing, and multiple users access the device through the transmitter of the embodiment of the present invention.
  • the transmitter serves as an access node, which can receive the uplink transmission data of the user, and correspondingly process the data transmitted by the uplink, and then send the uplink transmission data of the user to the central exchange through the optical fiber.
  • the receiver of the embodiment of the present invention can be used as an ingress node for accessing the uplink transmission data of multiple users to the central switching network, such as As shown in FIG.
  • a coupler may be disposed between the central switching network and each access node, and the coupler is configured to couple optical signals of different users.
  • the transmitter of the embodiment of the present invention may perform spreading processing on the uplink transmission data of the user, and then perform corresponding other processing and send the data to the central switching network, and the receiver of the embodiment of the present invention located in the central switching network receives the transmission data, where The received data received by the receiver is from different transmitters, and the optical signals of the respective transmitters have the same wavelength, and the optical signal of each transmitter is a dual-polarized signal.
  • the receiver of the embodiment of the present invention can implement multiple transmitters. For the data reception, the receiver of the embodiment of the present invention is specifically explained below by using several specific embodiments.
  • the receiver of this embodiment may include: two first input terminals (111 and 112), a despreading module 12, and multiple input and multiple outputs.
  • the first input end (111 and 112) is connected to the despreading module 12, and the despreading module 12 includes 4N second output ends (1211, 1221, 1212, 1222, ..., 121N, 122N, 1231, 1241).
  • the first input end (111 and 112) is configured to access a digital signal to be processed, where the digital signal to be processed includes a digital signal of an X polarization state and a digital signal of a Y polarization state, wherein the first input end 111
  • the digital signal can be used to access the X polarization state
  • the second input 112 can be used to access the digital signal in the Y polarization state.
  • the digital signal of the X-polarization state contains components of the digital signal of all transmitters in the X-polarization state
  • the digital signal of the Y-polarization state contains components of the digital signal of all transmitters in the Y-polarization state.
  • the despreading module 12 is configured to despread the digital signal of the X polarization state and the digital signal of the Y polarization state according to the N delay values and the spreading codes of the N transmitters to obtain N first basebands. a signal and N second baseband signals, each of the first baseband signals comprising a first baseband signal of an X polarization state and a first baseband signal of a Y polarization state, each second baseband signal comprising a second baseband of an X polarization state And a second baseband signal of the Y polarization state, wherein the N delay values are determined according to differences in synchronization positions of the first polarization states of the N transmitters and synchronization positions of the second polarization states, respectively.
  • the MIMO module 13 is configured to perform equalization filtering on the N first baseband signals and the N second baseband signals.
  • the recovery data of the first polarization state of the N transmitters and the recovery data of the second polarization state are acquired.
  • the 2N first outputs are used to respectively output recovery data of one polarization state of a transmitter, where N is a positive integer greater than or equal to 1, and the specific N is equal to the number of transmitters.
  • the signal of each transmitter has its own first polarization state (u) and second polarization state (v), and the first polarization state and the second polarization state of different transmitters may be different, wherein A polarization state (u) is orthogonal to the second polarization state (v), ie, for example, a first polarization state (u1) and a second polarization state (v1) of the transmitter 1, the first polarization of the transmitter 2 State (u2) and second polarization state (v2).
  • the digital signal to be processed includes a digital signal of an X-polarized state and a digital signal of a Y-polarized state, which may It is understood that the receiver also includes a polarization beam splitter (PBS), two 90 degree optical hybrids, four balanced detectors, four analog to digital (A/D) converters, and a dispersion compensation module.
  • PBS polarization beam splitter
  • the receiver receives the optical signal transmitted by the optical fiber communication system, and is first divided into two optical signals by the PBS, one is an X-polarized state, the other is a Y-polarized state, and the two polarized optical signals respectively pass a 90-degree optical signal.
  • each 90-degree optical mixer mixes its input signal with the four quadrilateral forms of the LO oscillator signal in the complex space, and then each 90-degree optical mixer transmits the four mixed signals to two
  • the balanced detector the output of the balanced detector is converted into a digital signal by an A/D converter, wherein each polarization state passes through the A/D converter and outputs the I and Q outputs of the polarization state, the receiver of the embodiment receives After the above-mentioned optical signal is processed, the I (XI) and Q (XQ) outputs of the X-polarized state and the I (YI) and Q (YQ) outputs of the Y-polarized state are output, that is, the four-way A/D of the receiver.
  • the converter outputs are XI, XQ, YI, and YQ.
  • the four-way signal is then subjected to dispersion compensation to output the X-polarized digital signal (here can be used for X representation) and the Y-polarized digital signal accessed by the first input terminals (11 and 12) of this embodiment (here Y can be used) Express).
  • the first input terminals (111 and 112) of the receiver of this embodiment respectively access the digital signal to be processed (the digital signal (X) of the X-polarized state and the digital signal (Y) of the Y-polarized state), and then the despreading module 12 may determine a synchronization position of the first polarization state of the N transmitters and a synchronization position of the second polarization state, and determine each difference according to a difference between the synchronization position of the first polarization state of each transmitter and the synchronization position of the second polarization state Delay values of the transmitters, despreading the digital signals to be processed according to the delay values of the N transmitters and the spreading codes of the N transmitters, and acquiring N first baseband signals Number and N second baseband signals.
  • the despreading module 12 copies the digital signal to be processed into two, in an implementable manner, a synchronization position based on the first polarization state of the N transmitters and a spreading code pair of the N transmitters.
  • the digital signal to be processed is despread to obtain N first baseband signals, another synchronization position based on the second polarization state of the N transmitters, delay values of the N transmitters, and N transmitters
  • the spreading code despreads the digital signal to be processed to obtain N second baseband signals.
  • a synchronization position based on a first polarization state of the N transmitters, a delay value of the N transmitters, and a spreading code of the N transmitters are performed on the digital signal to be processed.
  • the receiver of the embodiment After acquiring the N first baseband signals and the N second baseband signals, the receiver of the embodiment performs equalization filtering processing by the multiple input multiple output equalization module 13 to obtain recovery of the first polarization state of the N transmitters.
  • the data and the recovered data of the second polarization state that is, the original data of the first polarization state and the original data of the second polarization state transmitted by the N transmitters.
  • the carrier frequency offset compensation and the carrier phase recovery processing can also be performed before the first output terminal outputs the restored data of the first polarization state of the transmitter and the restored data of the second polarization state.
  • the receiver accesses the digital signal of the X polarization state and the digital signal of the Y polarization state, and the delay value of the N transmitters and the number of the X polarization states of the N transmitters are decoded by the despreading module.
  • the DGD effect specifically refers to the introduction of polarization mode dispersion (PMD) due to the presence of weak birefringence in the optical fiber, so that different polarization state components of a transmitter signal generate discrete effects.
  • PMD polarization mode dispersion
  • 3 to 6 are used to illustrate four different setting positions of the adjustable delay module.
  • the despreading module 12 may specifically include: a first despreading module. 123 and the second despreading module 124, the first despreading module 123 and the second despreading module 124 each include two inputs and 2N outputs. The two inputs of the first despreading module 123 and the two inputs of the second despreading module 124 are respectively connected to the first input terminals (111 and 112).
  • the 2N output ends of the first despreading module 123 and the 2N output ends of the second despreading module 124 are respectively associated with a second output end (1211, 1221, 1212, 1222, ..., 121N, 122N, 1231). 1241, 1232, 1342, ..., 123N, 124N) are connected.
  • the first despreading module 123 is configured to output N first baseband signals, wherein an output of the first despreading module 123 is used to output a first baseband signal of an X polarization state of a transmitter or a transmitter
  • the first baseband signal of the Y polarization state for example, the first despreading module 123 outputs the first baseband signal of the X polarization state of the transmitter 1 through the second output terminal 1211, and the first despreading module 123 passes the second
  • the output end 1221 outputs a first baseband signal of the Y polarization state of the transmitter 1
  • the first despreading module 123 outputs a first baseband signal of the X polarization state of the transmitter 2 through the second output terminal 1212
  • the first despreading module 123 outputs a first baseband signal of the Y polarization state of the transmitter 2 through the second output terminal 1222
  • the second despreading module 124 is configured to output N second baseband signals, wherein an output
  • the second despreading module 124 outputs a transmitter through the second output terminal 1231.
  • Second baseband signal of X polarization state The second despreading module 124 outputs a second baseband signal of the Y polarization state of the transmitter 1 through the second output terminal 1241, and the first despreading module 124 outputs the X polarization state of the transmitter 2 through the second output terminal 1232.
  • the second baseband signal, the second despreading module 124 outputs the second baseband signal of the Y polarization state of the transmitter 2 through the second output terminal 1342.
  • the despreading module 12 may further include a first polarization state synchronization module 125 and a second bias. Vibration state synchronization module 126.
  • the first polarization state synchronization module 125 is configured to determine a first polarization of the N transmitters according to a training sequence of a first polarization state of the N transmitters, a digital signal of the X polarization state, and a digital signal of the Y polarization state The synchronization position of the state.
  • the second polarization state synchronization module 126 is configured to determine a second polarization of the N transmitters according to the training sequence of the second polarization state of the N transmitters, the digital signal of the X polarization state, and the digital signal of the Y polarization state The synchronization position of the state.
  • the despreading module 12 may further include an adjustable delay module 1271, the adjustable delay module 1271 being disposed between the first input end (111 and 112) and the first despreading module 123, the adjustable The delay module 1271 is also coupled to the first polarization state synchronization module 125 and the second polarization state synchronization module 126.
  • the adjustable delay module 1271 is configured to determine delay values of the N transmitters according to the difference between the synchronization positions of the first polarization states of the N transmitters and the synchronization positions of the second polarization states of the N transmitters, and respectively The delay values of the N transmitters delay processing the digital signals to be processed (the digital signals of the X-polarization state and the digital signals of the Y-polarization state) to obtain the numbers of the N delayed X-polarization states a signal and a delayed digital signal of the Y polarization state, outputting the N delayed X-polarization digital signals and the N delayed Y-density digital signals to the first despreading
  • the module 123, the first despreading module respectively uses the spreading codes of the N transmitters to perform the N delayed X-polarized digital signals and the N delayed Y-densified digital signals Despreading, acquiring the N first baseband signals.
  • the receiver of the embodiment delays the digital signal to be processed according to the delay value of the N transmitters, and inputs the N delayed digital signals to be processed into the first despreading module, by the first The despreading module despreads the delayed digital signals to be processed by using the spreading codes of the N transmitters to obtain N first baseband signals.
  • the second despreading module of this embodiment no delay is needed, and only the second polarization of the N transmitters needs to be determined according to the digital signal to be processed and the training sequence of the second polarization state of the N transmitters.
  • the receiver sets an adjustable delay module between the first input end and the first despreading module, and the N delay values of the adjustable delay module are respectively based on the first polarization of the N transmitters.
  • the difference between the synchronization position of the state and the synchronization position of the second polarization state is determined, thereby realizing the synchronization and despreading of the received digital signal to be processed by the two polarization states, thereby effectively reducing the data signal in The differential group delay DGD effect produced by different polarization components during transmission in the fiber.
  • the despreading module 12 may specifically include: a first despreading module. 123 and the second despreading module 124, the first despreading module 123 and the second despreading module 124 each include two inputs and 2N outputs. The two inputs of the first despreading module 123 and the two inputs of the second despreading module 124 are respectively connected to the first input terminals (111 and 112).
  • the 2N output ends of the first despreading module 123 and the 2N output ends of the second despreading module 124 are respectively associated with a second output end (1211, 1221, 1212, 1222, ..., 121N, 122N, 1231). 1241, 1232, 1342, ..., 123N, 124N) are connected.
  • the first despreading module 123 is configured to output N first baseband signals, wherein an output of the first despreading module 123 is used to output a first baseband signal of an X polarization state of a transmitter or a transmitter
  • the first baseband signal of the Y polarization state for example, the first despreading module 123 outputs the first baseband signal of the X polarization state of the transmitter 1 through the second output terminal 1211, and the first despreading module 123 passes the second
  • the output end 1221 outputs a first baseband signal of the Y polarization state of the transmitter 1
  • the first despreading module 123 outputs a first baseband signal of the X polarization state of the transmitter 2 through the second output terminal 1212
  • the first despreading module 123 outputs a first baseband signal of the Y polarization state of the transmitter 2 through the second output terminal 1222
  • the second despreading module 124 is configured to output N second baseband signals, wherein an output
  • the second despreading module 124 outputs a transmitter through the second output terminal 1231.
  • Second baseband signal of X polarization state The second despreading module 124 outputs a second baseband signal of the Y polarization state of the transmitter 1 through the second output terminal 1241, and the first despreading module 124 outputs the X polarization state of the transmitter 2 through the second output terminal 1232.
  • the second baseband signal, the second despreading module 124 outputs the second baseband signal of the Y polarization state of the transmitter 2 through the second output terminal 1342.
  • the despreading module 12 may further include a first polarization state synchronization module 125 and a second polarization state synchronization module 126.
  • the first polarization state synchronization module 125 is configured to determine a first polarization of the N transmitters according to a training sequence of a first polarization state of the N transmitters, a digital signal of the X polarization state, and a digital signal of the Y polarization state The synchronization position of the state.
  • the second polarization state synchronization module 126 is configured to determine a second polarization of the N transmitters according to the training sequence of the second polarization state of the N transmitters, the digital signal of the X polarization state, and the digital signal of the Y polarization state Synchronization bit Set.
  • the adjustable delay module of the receiver of this embodiment is disposed between the first input end (111 and 112) and the second despreading module 124, and the adjustable delay Module 1272 is also coupled to the first polarization state synchronization module 125 and the second polarization state synchronization module 126.
  • the adjustable delay module 1272 is configured to determine delay values of the N transmitters according to the difference between the synchronization positions of the first polarization states of the N transmitters and the synchronization positions of the second polarization states of the N transmitters, and respectively
  • the delay values of the N transmitters are subjected to delay processing on the digital signals to be processed (the digital signals of the X polarization state and the digital signals of the Y polarization state) to obtain N delayed digital signals to be processed.
  • N delayed X-polarized digital signals and N delayed Y-densified digital signals are output to the second despreading module 124 .
  • the second despreading module 124 despreads the N delayed digital signals to be processed by using the spreading codes of the N transmitters to obtain the N second baseband signals.
  • the receiver of the embodiment delays the digital signal to be processed according to the delay value of the N transmitters, and inputs the N delayed digital signals to be processed into the second despreading module, and the second The despreading module despreads the delayed digital signals to be processed by using the spreading codes of the N transmitters to obtain N second baseband signals.
  • the first despreading module of this embodiment no delay is needed, and only the first polarization of the N transmitters needs to be determined according to the digital signal to be processed and the training sequence of the first polarization state of the N transmitters.
  • the receiver sets an adjustable delay module between the first input end and the second despreading module, and the N delay values of the adjustable delay module are based on the first polarization state of the N transmitters.
  • the difference between the synchronization position and the synchronization position of the second polarization state is determined, thereby realizing the two polarization states to synchronize and despread the received digital signal to be processed, thereby effectively reducing the generation of different polarization state components when the data signal is transmitted in the optical fiber.
  • the differential group delays the DGD effect.
  • FIG. 5A is a schematic structural diagram of Embodiment 4 of a receiver according to the present invention
  • FIG. 5B is a schematic structural diagram of a first despreading module according to the present invention.
  • the despreading module 12 may specifically include: a first despreading module 123 and a second despreading module 124, and the first despreading module 123 and the second despreading module 124 each include two Inputs and 2N outputs.
  • the two inputs of the first despreading module 123 and the two inputs of the second despreading module 124 are respectively connected to the first input terminals (111 and 112).
  • the 2N output ends of the first despreading module 123 and the 2N output ends of the second despreading module 124 are respectively associated with a second output end (1211, 1221, 1212, 1222, ..., 121N, 122N, 1231). 1241, 1232, 1342, ..., 123N, 124N) are connected.
  • the first despreading module 123 is configured to output N first baseband signals, wherein an output of the first despreading module 123 is used to output a first baseband signal of an X polarization state of a transmitter or a transmitter
  • the first baseband signal of the Y polarization state for example, the first despreading module 123 outputs the first baseband signal of the X polarization state of the transmitter 1 through the second output terminal 1211, and the first despreading module 123 passes the second
  • the output end 1221 outputs a first baseband signal of the Y polarization state of the transmitter 1
  • the first despreading module 123 outputs a first baseband signal of the X polarization state of the transmitter 2 through the second output terminal 1212
  • the first despreading module 123 outputs a first baseband signal of the Y polarization state of the transmitter 2 through the second output terminal 1222
  • the second despreading module 124 is configured to output N second baseband signals, wherein an output
  • the second despreading module 124 outputs a transmitter through the second output terminal 1231.
  • Second baseband signal of X polarization state The second despreading module 124 outputs a second baseband signal of the Y polarization state of the transmitter 1 through the second output terminal 1241, and the first despreading module 124 outputs the X polarization state of the transmitter 2 through the second output terminal 1232.
  • the second baseband signal, the second despreading module 124 outputs the second baseband signal of the Y polarization state of the transmitter 2 through the second output terminal 1342.
  • the despreading module 12 may further include a first polarization state synchronization module 125 and a second polarization state synchronization module 126.
  • the first polarization state synchronization module 125 is configured to determine a first polarization of the N transmitters according to a training sequence of a first polarization state of the N transmitters, a digital signal of the X polarization state, and a digital signal of the Y polarization state The synchronization position of the state.
  • the second polarization state synchronization module 126 is configured to determine a second polarization of the N transmitters according to the training sequence of the second polarization state of the N transmitters, the digital signal of the X polarization state, and the digital signal of the Y polarization state The synchronization position of the state.
  • the despreading module 12 of the present implementation may further include N adjustable delay modules (12731, 12732, ..., 1273N), wherein the first despreading module 123 includes N sub-first despreading modules (1231, 1232, ..., 123N), The N adjustable delay modules (12731, 12732, ..., 1273N) are respectively disposed in a sub-first despreading module, and a sub-first despreading module is configured to output a X polarization state of a transmitter.
  • a baseband signal and a first baseband signal of a Y-polarization state for example, a sub-first despreading module 1231 for outputting a first baseband signal of an X-polarization state of the transmitter 1 and a first baseband signal of a Y-polarization state
  • the first despreading module 1232 is configured to output a first baseband signal of the X polarization state of the transmitter 2 and a first baseband signal of the Y polarization state.
  • Each adjustable delay module determines a delay value of the transmitter based on a difference between a synchronization position of a first polarization state of the transmitter and a synchronization position of the second polarization state of the transmitter, and according to the transmitter Delaying value of the transmitter is subjected to delay processing, obtaining a delayed spreading code of the transmitter, and outputting the delayed spreading code of the transmitter to a corresponding one thereof
  • the sub-first despreading module for example, the adjustable delay module 12731 determines the delay of the transmitter 1 according to the difference between the synchronization position of the first polarization state of the transmitter 1 and the synchronization position of the second polarization state of the transmitter 1.
  • the adjustable delay module 1273N determines the delay value of the transmitter N according to the difference between the synchronization position of the first polarization state of the transmitter N and the synchronization position of the second polarization state of the transmitter N. And delaying the spreading code of the transmitter N according to the delay value of the transmitter N Obtaining the delayed spreading code of the transmitter N, and outputting the delayed spreading code of the transmitter N to the sub-first despreading module 123N, and the other adjustable delay modules are similar thereto. Narration.
  • Each sub-first despreading module is configured to despread the digital signal to be processed (the digital signal of the X-polarized state and the digital signal of the Y-polarized state) using a delayed spreading code of one transmitter to obtain a First baseband signal. That is, different sub-first despreading modules are provided with spreading codes of different transmitters, and an adjustable delay module delays the spreading codes of one transmitter, and then processes the processed digital signals separately (X-polarized state The digital signal and the digital signal of the Y polarization state are despread.
  • the Nth first despreading module is specifically illustrated.
  • the other sub-first despreading modules may adopt the same connection structure. Specifically, as shown in FIG. 5B, the adjustable delay module 1273N is set in the Nth sub-first.
  • the adjustable delay module 1273N is connected to the first polarization state synchronization module 125, the second polarization state synchronization module 126, and the spread code generator of the transmitter N.
  • the adjustable delay module 1273N is opposite to the transmitter.
  • the spreading code of N is subjected to delay processing to obtain a delayed spreading code of the transmitter N
  • the Nth first despreading module uses the delayed spreading code of the transmitter N to access the pending processing.
  • Digital signal (X polarization state) The digital signal and the digital signal of the Y-polarization state are subjected to despreading processing.
  • the despreading processing may be performed by multiplying and then integrating, and then outputting the first baseband signal of the transmitter N, as shown in FIG. 5B.
  • the second output terminal 121N outputs the first baseband signal of the X-polarization state of the transmitter N
  • the second output terminal 122N outputs the first baseband signal of the Y-polarization state of the transmitter N.
  • the adjustable delay module of this embodiment may be specifically disposed in each sub-first despreading module (1231, 1232, ..., 123N), and each adjustable delay module is used to expand using a delay value.
  • the frequency code is delayed, and then the digital signal to be processed is delayed to obtain N first baseband signals.
  • the second despreading module of this embodiment no delay is needed, and only the second polarization of the N transmitters needs to be determined according to the digital signal to be processed and the training sequence of the second polarization state of the N transmitters.
  • the receiver sets an adjustable delay module in each of the first despreading modules in the first despreading module, and the delay value of each adjustable delay module is based on the transmitter corresponding thereto.
  • the difference between the synchronization position of the first polarization state and the synchronization position of the second polarization state is determined, thereby realizing the synchronization and despreading of the received digital signal to be processed by the two polarization states, thereby effectively reducing the difference of the data signal when transmitting in the optical fiber.
  • the differential group delay DGD effect produced by the polarization component is determined, thereby realizing the synchronization and despreading of the received digital signal to be processed by the two polarization states, thereby effectively reducing the difference of the data signal when transmitting in the optical fiber.
  • FIG. 6 is a schematic structural diagram of Embodiment 5 of a receiver according to the present invention.
  • the receiver of this embodiment is based on the embodiment shown in FIG. 2, and the despreading module 12 may specifically include: a first despreading module. 123 and the second despreading module 124, the first despreading module 123 and the second despreading module 124 each include two inputs and 2N outputs.
  • the two inputs of the first despreading module 123 and the two inputs of the second despreading module 124 are respectively connected to the first input terminals (111 and 112).
  • the 2N output ends of the first despreading module 123 and the 2N output ends of the second despreading module 124 are respectively associated with a second output end (1211, 1221, 1212, 1222, ..., 121N, 122N, 1231). 1241, 1232, 1342, ..., 123N, 124N) are connected.
  • the first despreading module 123 is configured to output N first baseband signals, wherein an output of the first despreading module 123 is used to output a first baseband signal of an X polarization state of a transmitter or a transmitter
  • the first baseband signal of the Y polarization state for example, the first despreading module 123 outputs the first baseband signal of the X polarization state of the transmitter 1 through the second output terminal 1211, and the first despreading module 123 passes the second
  • the output end 1221 outputs a first baseband signal of the Y polarization state of the transmitter 1, which The first despreading module 123 outputs a first baseband signal of the X polarization state of the transmitter 2 through the second output terminal 1212, and the first despreading module 123 outputs the first Y polarization state of the transmitter 2 through the second output terminal 1222.
  • the second despreading module 124 is configured to output N second baseband signals, wherein an output of the second despreading module 124 is used to output a second baseband signal of the X polarization state of the transmitter or a The second baseband signal of the Y polarization state of the transmitter, for example, the second despreading module 124 outputs a second baseband signal of the X polarization state of the transmitter 1 through the second output terminal 1231, and the second despreading module 124 Outputting a second baseband signal of the Y polarization state of the transmitter 1 through the second output terminal 1241, the first despreading module 124 outputs a second baseband signal of the X polarization state of the transmitter 2 through the second output terminal 1232, the second The despreading module 124 outputs the second baseband signal of the Y polarization state of the transmitter 2 through the second output 1342.
  • the despreading module 12 may further include a first polarization state synchronization module 125 and a second polarization state synchronization module 126.
  • the first polarization state synchronization module 125 is configured to determine a first polarization of the N transmitters according to a training sequence of a first polarization state of the N transmitters, a digital signal of the X polarization state, and a digital signal of the Y polarization state The synchronization position of the state.
  • the second polarization state synchronization module 126 is configured to determine a second polarization of the N transmitters according to the training sequence of the second polarization state of the N transmitters, the digital signal of the X polarization state, and the digital signal of the Y polarization state The synchronization position of the state.
  • the despreading module 12 may further include N adjustable delay modules (12741, 12742, ..., 1274N), and the second despreading module may include N sub-modules.
  • the N adjustable delay modules are respectively disposed in a sub-second despreading module
  • a sub-second despreading module is used to output a transmitter A second baseband signal of the X polarization state and a second baseband signal of the Y polarization state.
  • Each adjustable delay module determines a delay value of the transmitter based on a difference between a synchronization position of a first polarization state of the transmitter and a synchronization position of the second polarization state of the transmitter, and according to the transmitter Delaying value of the transmitter is subjected to delay processing, obtaining a delayed spreading code of the transmitter, and outputting the delayed spreading code of the transmitter to a corresponding one thereof Sub-second despreading module.
  • Each sub-second despreading module is configured to despread the digital signal to be processed (the digital signal of the X-polarized state and the digital signal of the Y-polarized state) using a delayed spreading code of one transmitter to obtain a Second baseband signal.
  • the adjustable delay module of this embodiment may be specifically disposed in each of the sub-second despreading modules (1241, 1242, ..., 124N), each of which is adjustable.
  • the time module is configured to delay the spreading code by using a delay value, and then delay the digital signal to be processed to obtain N second baseband signals.
  • no delay is needed, and only the first polarization of the N transmitters needs to be determined according to the digital signal to be processed and the training sequence of the first polarization state of the N transmitters.
  • the receiver sets an adjustable delay module in each of the second despreading modules in the second despreading module, and the delay value of each adjustable delay module is the corresponding transmitter
  • the difference between the synchronization position of one polarization state and the synchronization position of the second polarization state is determined, thereby realizing the two polarization states to synchronize and despread the received digital signal to be processed, thereby effectively reducing the polarization of the data signal when transmitting in the optical fiber.
  • FIG. 7 is a schematic structural diagram of Embodiment 1 of a multiple input multiple output equalization module of a receiver according to the present invention.
  • the multiple input multiple output equalization module of this embodiment is shown in any of the receiver structures shown in FIG. 2 to FIG.
  • the MIMO module 13 may further include a first MIMO interface module 131, a second MIMO module 132, and a summation module 133.
  • the first multiple input multiple output equalization module 131 is connected to the 2N output ends of the first despreading module 123
  • the second multiple input multiple output equalization module 132 is connected to the 2N output ends of the second despreading module 124.
  • the first multiple input multiple output equalization module 131 includes 2N third outputs
  • the second multiple input multiple output equalization module 132 includes 2N fourth outputs, the 2N third outputs, and the 2N fourth outputs.
  • the terminal is connected to the summation module 133, and the summation module is connected to the 2N first outputs.
  • the first multiple input multiple output equalization module 131 is configured to process the N first baseband signals according to 2N*2N filter coefficients, and acquire first modulated data of the N transmitters, the first of each transmitter.
  • the modulation data each includes first modulation data of a first polarization state of the transmitter and first modulation data of a second polarization state.
  • the second multiple input multiple output equalization module 132 is configured to process the N second baseband signals according to 2N*2N filter coefficients, and acquire second modulated data of the N transmitters, second of each transmitter.
  • the modulated data each includes second modulation data of a first polarization state of the transmitter and second modulation data of a second polarization state.
  • the summation module 133 is configured to add the first modulation data and the second modulation data of the N transmitters to obtain recovery data of the first polarization state of the N transmitters and recovery data of the second polarization state.
  • the receiver of the embodiment compensates the channel loss by the two MIMO signals obtained by despreading, and can compensate the DGD loss in the fiber channel, and further improve the data transmission. performance.
  • FIG. 8 is a schematic structural diagram of a first multiple input multiple output equalization module or a second multiple input multiple output equalization module of the receiver of the present invention.
  • the first multiple input multiple output equalization module and the second embodiment of the present embodiment are shown in FIG.
  • the multiple input multiple output equalization module is based on the receiver structure shown in FIG. 7. Further, the first multiple input multiple output equalization module may specifically include 2N*2N sub-first equalization modules, and each sub-first equalization module sets one.
  • the filter coefficient, as shown in FIG. 8, the filter coefficients of the sub-first equalization module of the first row are W(1, 1), W(1, 2), ... W(1, 2N-1), W, respectively.
  • the 2N column first equalization module is respectively connected to the output end of a first despreading module, as shown in FIG. 8, the input end of each column (R1, R2, ..., R(2N-1), R2N) is respectively connected to one output end of the first despreading module.
  • R1 is connected to 1211
  • R2 is connected to 1221
  • the 2N row first equalization module passes through 2N-1 adders and a third output respectively. Connection, as shown in Figure 8, the output of each row (T1, T2, ..., T(2N-1), T2N) is connected to a third output .
  • the second multiple input multiple output equalization module specifically includes 2N*2N sub-second equalization modules, each sub-second equalization module is provided with one filter coefficient, and the second NN equalization module is respectively connected with the output end of a second despreading module.
  • the 2N row second equalization module is connected to a fourth output through 2N-1 adders, respectively.
  • the first multiple input multiple output equalization module and the second multiple input multiple output equalization module may adopt the same connection structure, wherein the filter coefficients of the sub first equalization module and the sub second equalization module may be set to different values.
  • the multiple output equalization module 13 may specifically include 2N multiple input single output equalization modules; each of the multiple input single output equalization modules and the 2N outputs of the first despreading module and the 2N outputs of the second despreading module End connection; the 2N multiple input single output equalization modules respectively process the N first baseband signals and the N second baseband signals based on one transmitter to obtain recovery data of one polarization state of the corresponding transmitter .
  • the receiver may further include 2N carrier recovery modules, where the 2N carrier recovery modules are respectively disposed at a first output end, and each carrier recovery module is used to The recovered data of the transmitter is subjected to carrier phase recovery to obtain raw data of a polarization state of the transmitter corresponding thereto.
  • the receiver of the present embodiment despreads the digital signal to be processed to obtain N first baseband signals and N second baseband signals, and then inputs N first baseband signals and N second baseband signals to 2N multiple
  • the N first input signal equalization modules respectively process the N first baseband signals and the N second baseband signals on a transmitter basis to obtain a polarization of the corresponding transmitter.
  • State recovery data For example, in order to demodulate the original data of the first polarization state of the transmitter 1, the despread digital signal first enters the carrier frequency offset compensation module FOC 1 to perform frequency offset compensation for each channel, and then enters the multi-input single-output equalization module.
  • the receiver of the embodiment compensates the channel loss by the 2N multiple-input single-output equalization module for the first baseband signal and the second baseband signal obtained after despreading, which can effectively compensate the DGD loss in the fiber channel, and further improve the data transmission. performance.
  • This embodiment is more suitable for an application scenario where the frequency offset between the transmitters is large.
  • FIG. 10 is a flowchart of Embodiment 1 of a data receiving method according to the present invention. As shown in FIG. 10, the method in this embodiment may include:
  • Step 101 Receive a digital signal of an X polarization state and a digital signal of a Y polarization state.
  • Step 102 Determine N delay values according to a difference between a synchronization position of the first polarization state of the N transmitters and a synchronization position of the second polarization state.
  • Step 103 despread the digital signal of the X polarization state and the digital signal of the Y polarization state according to the N delay values and spreading codes of the N transmitters to obtain N first baseband signals and N second baseband signals.
  • each of the first baseband signals includes a first baseband signal of an X polarization state and a first baseband signal of a Y polarization state
  • each of the second baseband signals includes a second baseband signal of an X polarization state and a first phase of the Y polarization state
  • Step 104 Perform equalization filtering processing on the N first baseband signals and the N second baseband signals, and acquire recovery data of the first polarization state of the N transmitters and recovery numbers of the second polarization state. according to.
  • N is the same as the number of transmitters.
  • step 103 despreading the X-polarized digital signal and the Y-polarized digital signal according to the N delay values and N transmitter spreading codes
  • Obtaining the N first baseband signals and the N second baseband signals may specifically include: respectively using the spreading codes of the N transmitters to respectively solve the digital signals of the X polarization state and the digital signals of the Y polarization state Enlarging, acquiring the N second baseband signals; performing delay processing on the X-polarized digital signal and the Y-polarized digital signal according to the N delay values to obtain N delayed X-polarizations State digital signal and N delayed Y polarization state digital signals; respectively using the N transmitter's spreading code for the N delayed X polarization states of the digital signal and N delays The digital signal of the latter Y polarization state is despread to obtain the N first baseband signals.
  • step 103 the digital signal of the X polarization state and the digital signal of the Y polarization state are despread according to the N delay values and the spreading codes of the N transmitters
  • Obtaining the N first baseband signals and the N second baseband signals may specifically include: despreading the digital signals of the X polarization state and the digital signals of the Y polarization state by using spreading codes of the N transmitters, respectively Obtaining the N first baseband signals, performing delay processing on the X-polarization digital signal and the Y-polarization digital signal according to the N delay values, and acquiring N delayed X-polarization states Digital signal and N delayed Y-polarized digital signals; respectively using the N transmitter's spreading code pair N delayed X-polarized digital signals and N delayed Y signals The digital signal of the polarization state is despread to obtain the N second baseband signals.
  • step 103 the digital signal of the X polarization state and the digital signal of the Y polarization state are despread according to the N delay values and the spreading codes of the N transmitters, Obtaining the N first baseband signals and the N second baseband signals may specifically include: despreading the digital signals of the X polarization state and the digital signals of the Y polarization state by using spreading codes of the N transmitters, respectively Obtaining the N second baseband signals, performing delay processing on the spreading codes of the N transmitters according to the N delay values, and acquiring N delayed spreading codes; respectively using the N The delayed spreading code despreads the digital signal of the X polarization state and the digital signal of the Y polarization state to obtain the N first baseband signals.
  • step 103 despreading the digital signal of the X polarization state and the digital signal of the Y polarization state according to the N delay values and the spreading codes of the N transmitters, Obtaining the N first baseband signals and the N second baseband signals may specifically include: performing, by using the spreading codes of the N transmitters, the digital signals of the X polarization state and the digital signals of the Y polarization state, respectively.
  • the method may further include: determining synchronization of the first polarization states of the N transmitters according to the training sequence of the first polarization state of the N transmitters, the digital signal of the X polarization state, and the digital signal of the Y polarization state. Position; determining a synchronization position of the second polarization states of the N transmitters based on the training sequence of the second polarization state of the N transmitters, the digital signal of the X polarization state, and the digital signal of the Y polarization state.
  • performing equalization filtering processing on the N first baseband signals and the N second baseband signals, and acquiring recovery data of the first polarization state of the N transmitters and recovery data of the second polarization state specifically includes: processing the N first baseband signals according to 2N*2N filter coefficients, acquiring first modulation data of the N transmitters, where the first modulation data of each transmitter includes the first First modulation data of one polarization state and first modulation data of a second polarization state; processing the N second baseband signals according to 2N*2N filter coefficients, acquiring second modulation data of N transmitters, each The second modulated data of the transmitters each include the second modulated data of the first polarization state of the transmitter and the second modulated data of the second polarization state; the first modulated data of the N transmitters and the second The modulated data is summed to obtain recovery data of the second polarization state of the N transmitters and recovery data of the second polarization state.
  • the digital signal and the Y-polarization of the X-polarized state are obtained according to the delay values of the N transmitters and the spreading codes of the N transmitters.
  • the digital signal of the state is despread to obtain N first baseband signals and N second baseband signals, and the delay values of the N transmitters are respectively according to the synchronization positions of the first polarization states of the N transmitters and the second
  • the difference between the synchronization positions of the polarization states is determined, and then the N first baseband signals and the N second baseband signals are equalized and filtered to obtain recovery data of the first polarization state of the N transmitters and recovery of the second polarization state.
  • each functional module in the receiver of the foregoing embodiment of the present invention may correspond to one or more processors of the receiver, and each functional module may include the despreading module 12, multiple input multiple output in the foregoing embodiment.
  • the equalization module 13 the first despreading module 123, the second despreading module 124, the first polarization state synchronization module 125, the second polarization state synchronization module 125, the adjustable delay module (1271, 1272), and the first despreading The module, the second second despreading module, and the multi-input single-output equalization module, etc., wherein the input end and the output end of each functional module may correspond to a port of the processor, where the processor may be a central processing unit (Central Processing Unit) , CPU), or an Application Specific Integrated Circuit (ASIC), or one or more integrated circuits that implement embodiments of the present invention.
  • the receiver may also include a receiver, a transmitter and a memory, the memory for storing the instruction code, the
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. . Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one single unit. Yuanzhong.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the methods of the various embodiments of the present invention. Part of the steps.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Abstract

本发明实施例提供一种接收机和数据接收方法。本发明接收机,包括:两个第一输入端用于分别接入X偏振态的数字信号和Y偏振态的数字信号;解扩模块用于根据N个延时值和N个发射机的扩频码对X偏振态的数字信号和Y偏振态的数字信号进行解扩,获取N个第一基带信号和N个第二基带信号,N个延时值为分别根据N个发射机的第一偏振态的同步位置和第二偏振态的同步位置的差异确定的;多输入多输出均衡模块用于对N个第一基带信号和N个第二基带信号进行均衡滤波处理,获取N个发射机的第一偏振态的恢复数据和第二偏振态的恢复数据。本发明实施例实现在光通信系统中相干CDMA多点到点的数据传输。

Description

接收机和数据接收方法 技术领域
本发明实施例涉及通信技术,尤其涉及一种接收机和数据接收方法。
背景技术
在高速光网络系统中,对多个信道的光信号进行复用并利用一条光纤进行传输的光复用传输技术必不可少。在现有的光复用传输技术中,主要的复用技术包括时分复用(Time Division Multiplexing,简称TDM)、波分复用(Wavelength Division Multiplexing,简称WDM)、频分复用(Frequency Division Multiplexing,简称FDM)、正交频分复用(Orthogonal Frequency Division Multiplexing,简称OFDM)、或者码分复用(Code Division Multiplexing,简称CDM),在上述复用技术中,CDM能够在同一时隙、同一波长上面复用多路信号,所以复用度高。其中,相干码分多址(Code Division Multiple Access,简称CDMA)是光通信多点到点系统的重要实现方式,兼容现有商用相干器件,在基于相干CDMA的网络架构中,各个业务站点在相同的波长资源下利用各自的扩频码发送相应数据,各业务站点所用的扩频码相互正交,这保证了在骨干结点的相干接收机可以通过不同扩频码恢复各业务站点的数据。因此,在骨干节点的相干接收机需要采用相应的DSP接收方法。
但是,当前的相干接收机的DSP架构只适用于点到点传输系统,并不适用相干CDMA多点到点系统,而且由于传输信道的差异,无线通信中的CDMA架构也不能完全适用于光通信系统中。并且,在相干CDMA光通信系统中,各个用户采用的传输信号是双偏振信号,由于传输信道为光纤,将引入偏振模式色散PMD和差分群延时DGD等效应,对CDMA信号产生影响。
发明内容
本发明实施例提供一种接收机和数据接收方法,以实现在光通信系统 中相干CDMA多点到点的数据传输。
第一方面,本发明实施例提供一种接收机,包括:
两个第一输入端、解扩模块、多输入多输出均衡模块以及2N个第一输出端;
所述两个第一输入端与所述解扩模块连接,所述解扩模块与所述多输入多输出均衡模块连接;
所述两个第一输入端用于分别接入X偏振态的数字信号和Y偏振态的数字信号;
所述解扩模块用于根据N个延时值和N个发射机的扩频码对所述X偏振态的数字信号和所述Y偏振态的数字信号进行解扩,获取N个第一基带信号和N个第二基带信号,每个第一基带信号均包括X偏振态的第一基带信号和Y偏振态的第一基带信号,每个第二基带信号均包括X偏振态的第二基带信号和Y偏振态的第二基带信号,所述N个延时值为分别根据N个发射机的第一偏振态的同步位置和第二偏振态的同步位置的差异确定的;
所述多输入多输出均衡模块用于对所述N个第一基带信号和N个第二基带信号进行均衡滤波处理,获取N个发射机的第一偏振态的恢复数据和第二偏振态的恢复数据;
所述2N个第一输出端用于分别输出一个发射机的一个偏振态的恢复数据;
其中,N为大于或者等于1的正整数。
在本实现方式中,接收机分别基于每个发射机的第一偏振态和第二偏振态对接收到的X偏振态的数字信号和Y偏振态的数字信号进行同步和解扩,进而恢复出不同发射机的第一偏振态的恢复数据和第二偏振态的恢复数据,实现多发射机的双偏振态的数据接收,即实现在光通信系统中相干CDMA多点到点的数据传输,并且在获取不同发射机的第一偏振态和第二偏振态的数据的过程中,可以有效补偿光纤信道中的差分群延时(Differential Group Delay,简称DGD)效应,有效提升数据传输质量。
结合第一方面,在第一方面的一种可能的实现方式中,所述解扩模块包括第一解扩模块和第二解扩模块,所述第一解扩模块和所述第二解扩模 块均包括两个输入端和2N个输出端;
所述第一解扩模块的两个输入端和所述第二解扩模块的两个输入端分别与所述两个第一输入端连接;
所述第一解扩模块的2N个输出端和所述第二解扩模块的2N个输出端分别与一个第二输出端连接;
所述第一解扩模块用于输出所述N个第一基带信号,所述第二解扩模块用于输出N个第二基带信号;
所述第一解扩模块的一个输出端用于输出一个发射机的X偏振态的第一基带信号或者一个发射机的Y偏振态的第一基带信号,所述第二解扩模块的一个输出端用于输出一个发射机的X偏振态的第二基带信号或者一个发射机的Y偏振态的第二基带信号。
结合第一方面、第一方面的一种可能的实现方式,在第一方面的另一种可能的实现方式中,所述解扩模块还包括第一偏振态同步模块和第二偏振态同步模块;
所述第一偏振态同步模块用于根据N个发射机的第一偏振态的训练序列、所述X偏振态的数字信号和所述Y偏振态的数字信号确定N个发射机的第一偏振态的同步位置;
所述第二偏振态同步模块用于根据N个发射机的第二偏振态的训练序列、所述X偏振态的数字信号和所述Y偏振态的数字信号确定N个发射机的第二偏振态的同步位置。
结合第一方面以及第一方面的任一种可能的实现方式,在第一方面的另一种可能的实现方式中,所述解扩模块还包括可调延时模块,所述可调延时模块设置在所述两个第一输入端与所述第一解扩模块之间,所述可调延时模块还与所述第一偏振态同步模块和所述第二偏振态同步模块连接;
所述可调延时模块用于根据所述N个发射机的第一偏振态的同步位置和所述N个发射机的第二偏振态的同步位置的差异确定所述N个发射机的延时值,并分别根据所述N个发射机的延时值对所述X偏振态的数字信号和Y偏振态的数字信号进行延时处理,获取N个延时后的X偏振态的数字信号和N个延时后的Y偏振态的数字信号,将所述N个延时后的X偏振态的数字信号和N个延时后的Y偏振态的数字信号输出至所述 第一解扩模块;
所述第一解扩模块分别使用所述N个发射机的扩频码对所述N个延时后的X偏振态的数字信号和N个延时后的Y偏振态的数字信号进行解扩,获取所述N个第一基带信号。
本实现方式中,接收机通过在第一输入端与第一解扩模块之间设置可调延时模块,该可调延时模块的N个延时值是分别根据N个发射机的第一偏振态的同步位置和第二偏振态的同步位置的差异确定的,从而实现两路偏振态对接收到的待处理的数字信号进行同步和解扩,有效减少数据信号在光纤中传输时不同偏振态分量产生的差分群延时DGD效应。
结合第一方面以及第一方面的任一种可能的实现方式,在第一方面的另一种可能的实现方式中,所述解扩模块还包括可调延时模块,所述可调延时模块设置在所述两个第一输入端与所述第二解扩模块之间,所述可调延时模块还与所述第一偏振态同步模块和所述第二偏振态同步模块连接;
所述可调延时模块用于根据所述N个发射机的第一偏振态的同步位置和所述N个发射机的第二偏振态的同步位置的差异确定所述N个发射机的延时值,并分别根据所述N个发射机的延时值对所述X偏振态的数字信号和Y偏振态的数字信号进行延时处理,获取N个延时后的X偏振态的数字信号和N个延时后的Y偏振态的数字信号,将所述N个延时后的X偏振态的数字信号和N个延时后的Y偏振态的数字信号输出至所述第二解扩模块;
所述第二解扩模块分别使用所述N个发射机的扩频码对所述N个延时后的X偏振态的数字信号和N个延时后的Y偏振态的数字信号进行解扩,获取所述N个第二基带信号。
本实现方式中,接收机通过在第一输入端与第二解扩模块之间设置可调延时模块,该可调延时模块的N个延时值是根据N个发射机的第一偏振态的同步位置和第二偏振态的同步位置的差异确定的,从而实现两路偏振态对接收到的待处理的数字信号进行同步和解扩,有效减少数据信号在光纤中传输时不同偏振态分量产生的差分群延时DGD效应。
结合第一方面以及第一方面的任一种可能的实现方式,在第一方面的另一种可能的实现方式中,所述解扩模块还包括N个可调延时模块,所述 第一解扩模块包括N个子第一解扩模块,所述N个可调延时模块分别设置在一个子第一解扩模块中,一个子第一解扩模块用于输出一个发射机的X偏振态的第一基带信号和Y偏振态的第一基带信号;
每个可调延时模块根据一个发射机的第一偏振态的同步位置和所述发射机的第二偏振态的同步位置的差异确定所述发射机的延时值,并根据所述发射机的延时值对所述发射机的扩频码进行延时处理,获取所述发射机的延时后的扩频码,将所述发射机的延时后的扩频码输出至与其对应的子第一解扩模块;
每个子第一解扩模块用于使用一个发射机的延时后的扩频码对所述X偏振态的数字信号和Y偏振态的数字信号进行解扩,获取一个第一基带信号。
本实现方式中,接收机通过在第一解扩模块中的每一个子第一解扩模块中设置可调延时模块,每个可调延时模块的延时值是根据与其对应的发射机的第一偏振态的同步位置和第二偏振态的同步位置的差异确定的,从而实现两路偏振态对接收到的待处理的数字信号进行同步和解扩,有效减少数据信号在光纤中传输时不同偏振态分量产生的差分群延时DGD效应。
结合第一方面以及第一方面的任一种可能的实现方式,在第一方面的另一种可能的实现方式中,所述解扩模块还包括N个可调延时模块,所述第二解扩模块包括N个子第二解扩模块,所述N个可调延时模块分别设置在一个子第二解扩模块中,一个子第二解扩模块用于输出一个发射机的X偏振态的第二基带信号和Y偏振态的第二基带信号;
每个可调延时模块根据一个发射机的第一偏振态的同步位置和所述发射机的第二偏振态的同步位置的差异确定所述发射机的延时值,并根据所述发射机的延时值对所述发射机的扩频码进行延时处理,获取所述发射机的延时后的扩频码,将所述发射机的延时后的扩频码输出至与其对应的子第二解扩模块;
每个子第二解扩模块用于使用一个发射机的延时后的扩频码对所述X偏振态的数字信号和Y偏振态的数字信号进行解扩,获取一个第二基带信号。
本实现方式中,接收机通过在第二解扩模块中的每一个子第二解扩模 块中设置可调延时模块,每个可调延时模块的延时值是与其对应的发射机的第一偏振态的同步位置和第二偏振态的同步位置的差异确定的,从而实现两路偏振态对接收到的待处理的数字信号进行同步和解扩,有效减少数据信号在光纤中传输时不同偏振态分量产生的差分群延时DGD效应。
结合第一方面以及第一方面的任一种可能的实现方式,在第一方面的另一种可能的实现方式中,所述多输入多输出均衡模块包括第一多输入多输出均衡模块、第二多输入多输出均衡模块和求和模块;
所述第一多输入多输出均衡模块与所述第一解扩模块的2N个输出端连接,所述第二多输入多输出均衡模块与所述第二解扩模块的2N个输出端连接;
所述第一多输入多输出均衡模块包括2N个第三输出端,所述第二多输入多输出均衡模块包括2N个第四输出端;
所述2N个第三输出端和所述2N个第四输出端与所述求和模块连接,所述求和模块与所述2N个第一输出端连接;
所述第一多输入多输出均衡模块用于根据2N*2N个滤波系数对所述N个第一基带信号进行处理,获取N个发射机的第一调制数据,每个发射机的第一调制数据均包括所述发射机的第一偏振态的第一调制数据和第二偏振态的第一调制数据;
所述第二多输入多输出均衡模块用于根据2N*2N个滤波系数对所述N个第二基带信号进行处理,获取N个发射机的第二调制数据,每个发射机的第二调制数据均包括所述发射机的第一偏振态的第二调制数据和第二偏振态的第二调制数据;
所述求和模块用于将所述N个发射机的第一调制数据和第二调制数据进行加和,获取N个发射机的第一偏振态的恢复数据和第二偏振态的恢复数据。
结合第一方面以及第一方面的任一种可能的实现方式,在第一方面的另一种可能的实现方式中,所述第一多输入多输出均衡模块包括2N*2N个子第一均衡模块,每个子第一均衡模块设置一个滤波系数;
2N列子第一均衡模块分别与一个第一解扩模块的输出端连接,2N行子第一均衡模块分别通过2N-1个加法器与一个第三输出端连接;
所述第二多输入多输出均衡模块包括2N*2N个子第二均衡模块,每个子第二均衡模块设置一个滤波系数;
2N列子第二均衡模块分别与一个第二解扩模块的输出端连接,2N行子第二均衡模块分别通过2N-1个加法器与一个第四输出端连接。
本实现方式中,接收机对解扩后获取的第一基带信号和第二基带信号分别通过两个多输入多输出均衡模块补偿信道损失,能够有效补偿光纤信道中的DGD损失,进一步提升数据传输性能。
结合第一方面以及第一方面的任一种可能的实现方式,在第一方面的另一种可能的实现方式中,所述多输入多输出均衡模块包括2N个多输入单输出均衡模块;
每个多输入单输出均衡模块与所述第一解扩模块的2N个输出端和所述第二解扩模块的2N个输出端连接;
所述2N个多输入单输出均衡模块分别以一个发射机为基准对所述N个第一基带信号和N个第二基带信号进行处理,获取相应发射机的一个偏振态的恢复数据。
本实现方式中,接收机对解扩后获取的第一基带信号和第二基带信号分别通过2N个多输入单输出均衡模块补偿信道损失,能够有效补偿光纤信道中的DGD损失,进一步提升数据传输性能。本实现方式更适用于发射机之间频偏较大的应用场景。
结合第一方面以及第一方面的任一种可能的实现方式,在第一方面的另一种可能的实现方式中,所述接收机还包括2N个载波恢复模块,所述2N个载波恢复模块分别设置在一个第一输出端,每个载波恢复模块用于对与其对应的发射机的一个偏振态的恢复数据进行载波相位恢复,获取与其对应的发射机的一个偏振态的原始数据。
第二方面,本发明实施例提供一种数据接收方法,包括:
接收X偏振态的数字信号和Y偏振态的数字信号;
根据N个发射机的第一偏振态的同步位置和第二偏振态的同步位置的差异确定N个延时值;
根据所述N个延时值和N个发射机的扩频码对所述X偏振态的数字信号和所述Y偏振态的数字信号进行解扩,获取N个第一基带信号和N 个第二基带信号,每个第一基带信号均包括X偏振态的第一基带信号和Y偏振态的第一基带信号,每个第二基带信号均包括X偏振态的第二基带信号和Y偏振态的第二基带信号;
对所述N个第一基带信号和N个第二基带信号进行均衡滤波处理,获取N个发射机的第一偏振态的恢复数据和第二偏振态的恢复数据;
其中,N的取值与发射机的个数相同。
结合第二方面,在第二方面的一种可能的实现方式中,根据所述N个延时值和N个发射机的扩频码对所述X偏振态的数字信号和所述Y偏振态的数字信号进行解扩,获取N个第一基带信号和N个第二基带信号,包括:
使用所述N个发射机的扩频码分别对所述X偏振态的数字信号和Y偏振态的数字信号进行解扩,获取所述N个第二基带信号;
根据所述N个延时值对所述X偏振态的数字信号和Y偏振态的数字信号进行延时处理,获取N个延时后的X偏振态的数字信号和N个延时后的Y偏振态的数字信号;
分别使用所述N个发射机的扩频码对所述N个延时后的X偏振态的数字信号和N个延时后的Y偏振态的数字信号进行解扩,获取所述N个第一基带信号。
结合第二方面、第二方面的一种可能的实现方式,在第二方面的另一种可能的实现方式中,根据所述N个延时值和N个发射机的扩频码对所述X偏振态的数字信号和所述Y偏振态的数字信号进行解扩,获取N个第一基带信号和N个第二基带信号,包括:
分别使用所述N个发射机的扩频码对所述X偏振态的数字信号和Y偏振态的数字信号进行解扩,获取所述N个第一基带信号;
根据所述N个延时值对所述X偏振态的数字信号和所述Y偏振态的数字信号进行延时处理,获取N个延时后的X偏振态的数字信号和N个延时后的Y偏振态的数字信号;
分别使用所述N个发射机的扩频码对所述N个延时后的X偏振态的数字信号和N个延时后的Y偏振态的数字信号进行解扩,获取所述N个第二基带信号。
结合第二方面以及第二方面的任一种可能的实现方式,在第二方面的另一种可能的实现方式中,根据所述N个延时值和N个发射机的扩频码对所述X偏振态的数字信号和所述Y偏振态的数字信号进行解扩,获取N个第一基带信号和N个第二基带信号,包括:
分别使用所述N个发射机的扩频码对所述X偏振态的数字信号和Y偏振态的数字信号进行解扩,获取所述N个第二基带信号;
根据所述N个延时值对N个发射机的扩频码进行延时处理,获取N个延时后的扩频码;
分别使用所述N个延时后的扩频码对所述X偏振态的数字信号和所述Y偏振态的数字信号进行解扩,获取所述N个第一基带信号。
结合第二方面以及第二方面的任一种可能的实现方式,在第二方面的另一种可能的实现方式中,根据所述N个延时值和N个发射机的扩频码对所述X偏振态的数字信号和所述Y偏振态的数字信号进行解扩,获取N个第一基带信号和N个第二基带信号,包括:
分别使用所述N个发射机的扩频码对所述X偏振态的数字信号和所述Y偏振态的数字信号进行解扩,获取所述N个第一基带信号;
根据所述N个延时值对N个发射机的扩频码进行延时处理,获取N个延时后的扩频码;
分别使用所述N个延时后的扩频码对所述X偏振态的数字信号和所述Y偏振态的数字信号进行解扩,获取所述N个第二基带信号。
结合第二方面以及第二方面的任一种可能的实现方式,在第二方面的另一种可能的实现方式中,所述方法还包括:
根据N个发射机的第一偏振态的训练序列、所述X偏振态的数字信号和所述Y偏振态的数字信号确定所述N个发射机的第一偏振态的同步位置;
根据N个发射机的第二偏振态的训练序列、所述X偏振态的数字信号和所述Y偏振态的数字信号确定所述N个发射机的第二偏振态的同步位置。
结合第二方面以及第二方面的任一种可能的实现方式,在第二方面的另一种可能的实现方式中,所述对所述N个第一基带信号和N个第二基 带信号进行均衡滤波处理,获取N个发射机的第一偏振态的恢复数据和第二偏振态的恢复数据,包括:
根据2N*2N个滤波系数对所述N个第一基带信号进行处理,获取N个发射机的第一调制数据,每个发射机的第一调制数据均包括所述发射机的第一偏振态的第一调制数据和第二偏振态的第一调制数据;
根据2N*2N个滤波系数对所述N个第二基带信号进行处理,获取N个发射机的第二调制数据,每个发射机的第二调制数据均包括所述发射机的第一偏振态的第二调制数据和第二偏振态的第二调制数据;
将所述N个发射机的第一调制数据和第二调制数据进行加和,获取N个发射机的第二偏振态的恢复数据和第二偏振态的恢复数据。
上述第二方面以及上述第二方面的各可能的实施方式所提供的数据接收方法,其有益效果可以参见上述第一方面和第一方面的各可能的实现方式所带来的有益效果,在此不再赘述。
本发明实施例接收机和数据接收方法,接收机接入X偏振态的数字信号和Y偏振态的数字信号,通过解扩模块根据N个发射机的延时值和N个发射机的扩频码对X偏振态的数字信号和Y偏振态的数字信号进行解扩,获取N个第一基带信号和N个第二基带信号,该N个延时值为分别根据N个发射机的第一偏振态的同步位置和第二偏振态的同步位置的差异确定的,进而对N个第一基带信号和N个第二基带信号进行均衡滤波处理,获取N个发射机的第一偏振态的恢复数据和第二偏振态的恢复数据,即分别基于每个发射机的第一偏振态和第二偏振态对接收到的待处理的数字信号进行同步和解扩,进而恢复出不同发射机的第一偏振态的恢复数据和第二偏振态的恢复数据,实现多发射机的双偏振态的数据接收,即实现在光通信系统中相干CDMA多点到点的数据传输,并且在获取不同发射机的第一偏振态和第二偏振态的数据的过程中,可以有效补偿光纤信道中的差分群延时(Differential Group Delay,简称DGD)效应,有效提升数据传输质量。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对 实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的应用场景示意图;
图2为本发明接收机实施例一的结构示意图;
图3为本发明接收机实施例二的结构示意图;
图4为本发明接收机实施例三的结构示意图;
图5A为本发明接收机实施例四的结构示意图;
图5B为本发明子第一解扩模块的示意性结构示意图;
图6为本发明接收机实施例五的结构示意图;
图7为本发明接收机的多输入多输出均衡模块实施例一的结构示意图;
图8为本发明接收机的第一多输入多输出均衡模块或第二多输入多输出均衡模块的结构示意图;
图9为本发明接收机实施例六的结构示意图;
图10为本发明数据接收方法实施例一的流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明的应用场景示意图,如图1所示,本发明实施例的应用场景具体可以为多用户接入的CDMA系统,多个用户通过本发明实施例的发射机接入到如图1所示的系统中,发射机作为接入节点,其可以接收用户的上行传输的数据,并将该上行传输的数据进行相应处理后,通过光纤将用户的上行传输的数据发送至中心交换局节点,本发明实施例的接收机可以作为将多用户的上行传输的数据接入中心交换网络的入口节点,如 图1所示,在中心交换网络与各个接入节点之间还可以设置有耦合器,该耦合器用于将不同用户的光信号进行耦合。本发明实施例的发射机可以对用户的上行传输的数据进行扩频处理,之后进行相应其他处理发送至中心交换网络,位于中心交换网络中的本发明实施例的接收机接收到传输数据,其中,接收机接收到的传输数据来自不同的发射机,并且各个发射机的光信号具有相同的波长,每个发射机的光信号是双偏振信号,本发明实施例的接收机可以实现多发射机的数据接收,下面采用几个具体实施例对本发明实施例的接收机进行具体解释说明。
图2为本发明接收机实施例一的结构示意图,如图2所示,本实施例的接收机可以包括:两个第一输入端(111和112)、解扩模块12、多输入多输出均衡模块13以及2N个第一输出端(1411、1421、1412、1422、……、141N、142N)。其中,第一输入端(111和112)与解扩模块12连接,该解扩模块12包括4N个第二输出端(1211、1221、1212、1222、……、121N、122N、1231、1241、1232、1342、……、123N、124N),该4N个第二输出端(1211、1221、1212、1222、……、121N、122N、1231、1241、1232、1342、……、123N、124N)分别与该多输入多输出均衡模块13连接。
其中,该第一输入端(111和112)用于接入待处理的数字信号,该待处理的数字信号包括X偏振态的数字信号和Y偏振态的数字信号,其中,第一输入端111可以用于接入X偏振态的数字信号,第二输入端112可以用于接入Y偏振态的数字信号。该X偏振态的数字信号包含所有发射机的数字信号在X偏振态的分量,该Y偏振态的数字信号包含所有发射机的数字信号在Y偏振态的分量。该解扩模块12用于根据N个延时值和N个发射机的扩频码对所述X偏振态的数字信号和所述Y偏振态的数字信号进行解扩,获取N个第一基带信号和N个第二基带信号,每个第一基带信号均包括X偏振态的第一基带信号和Y偏振态的第一基带信号,每个第二基带信号均包括X偏振态的第二基带信号和Y偏振态的第二基带信号,所述N个延时值为分别根据N个发射机的第一偏振态的同步位置和第二偏振态的同步位置的差异确定的。该多输入多输出均衡模块13用于对所述N个第一基带信号和N个第二基带信号进行均衡滤波处理, 获取N个发射机的第一偏振态的恢复数据和第二偏振态的恢复数据。该2N个第一输出端用于分别输出一个发射机的一个偏振态的恢复数据,其中N为大于或者等于1的正整数,具体的N与发射机的个数相等。
需要说明的是,每一个发射机的信号都具有自己的第一偏振态(u)和第二偏振态(v),不同发射机的第一偏振态和第二偏振态可以不同,其中,第一偏振态(u)与第二偏振态(v)正交,即,举例而言,发射机1的第一偏振态(u1)和第二偏振态(v1),发射机2的第一偏振态(u2)和第二偏振态(v2)。
具体的,由于本发明实例的接收机的第一输入端(111和112)接入待处理的数字信号,该待处理的数字信号包括X偏振态的数字信号和Y偏振态的数字信号,可以理解的,接收机还包括偏振分束器(PBS)、两个90度光混合器、四个平衡检波器、四个模数(A/D)转换器以及一个色散补偿模块。其中,接收机接收光纤通信系统传输来的光信号,首先通过PBS分为两路光信号,一路为X偏振态,另一路为Y偏振态,两路偏振态的光信号分别通过一个90度光混合器,每个90度光混合器在复域空间中将其输入信号与LO振荡器信号的四个四边形态相混合,然后,每个90度光混合器将四个混合信号传输给两个平衡检波器,平衡检波器的输出由A/D转换器转换成数字信号,其中,每一路偏振态经过A/D转换器后输出该偏振态的I和Q输出,本实施例的接收机接收到的光信号进行上述处理后,输出X偏振态的I(XI)和Q(XQ)输出,以及Y偏振态的I(YI)和Q(YQ)输出,即接收机的四路A/D转换器输出为XI、XQ、YI和YQ。四路信号再经过色散补偿输出本实施例的第一输入端(11和12)接入的X偏振态的数字信号(这里可以用于X表示)和Y偏振态的数字信号(这里可以用Y表示)。
本实施例的接收机的第一输入端(111和112)分别接入待处理的数字信号(X偏振态的数字信号(X)和Y偏振态的数字信号(Y))后,解扩模块12可以确定N个发射机的第一偏振态的同步位置和第二偏振态的同步位置,并根据每个发射机的第一偏振态的同步位置和第二偏振态的同步位置的差异确定每个发射机的延时值,根据N个发射机的延时值和N个发射机的扩频码对该待处理的数字信号进行解扩,获取N个第一基带信 号和N个第二基带信号。具体的,解扩模块12将待处理的数字信号复制为两份,一种可实现方式中,一份基于N个发射机的第一偏振态的同步位置和N个发射机的扩频码对该待处理的数字信号进行解扩,获取N个第一基带信号,另一份基于N个发射机的第二偏振态的同步位置、该N个发射机的延时值以及N个发射机的扩频码对该待处理的数字信号进行解扩,获取N个第二基带信号。另一种可实现方式中,一份基于N个发射机的第一偏振态的同步位置、该N个发射机的延时值以及N个发射机的扩频码对该待处理的数字信号进行解扩,获取N个第一基带信号,另一份基于N个发射机的第二偏振态的同步位置和N个发射机的扩频码对该待处理的数字信号进行解扩,获取N个第二基带信号。
在获取到N个第一基带信号和N个第二基带信号,本实施例的接收机通过多输入多输出均衡模块13对其进行均衡滤波处理,获取N个发射机的第一偏振态的恢复数据和第二偏振态的恢复数据,即N个发射机发送的第一偏振态的原始数据和第二偏振态的原始数据。
可以理解的,在第一输出端输出发射机的第一偏振态的恢复数据和第二偏振态的恢复数据之前,还可以进行载波频偏补偿和载波相位恢复处理。
本实施例,接收机接入X偏振态的数字信号和Y偏振态的数字信号,通过解扩模块根据N个发射机的延时值和N个发射机的扩频码对X偏振态的数字信号和Y偏振态的数字信号进行解扩,获取N个第一基带信号和N个第二基带信号,该N个延时值为分别根据N个发射机的第一偏振态的同步位置和第二偏振态的同步位置的差异确定的,进而对N个第一基带信号和N个第二基带信号进行均衡滤波处理,获取N个发射机的第一偏振态的恢复数据和第二偏振态的恢复数据,即分别基于每个发射机的第一偏振态和第二偏振态对接收到的待处理的数字信号进行同步和解扩,进而恢复出不同发射机的第一偏振态的恢复数据和第二偏振态的恢复数据,实现多发射机的双偏振态的数据接收,即实现在光通信系统中相干CDMA多点到点的数据传输,并且在获取不同发射机的第一偏振态和第二偏振态的数据的过程中,可以有效补偿光纤信道中的差分群延时(Differential Group Delay,简称DGD)效应,有效提升数据传输质量。
其中,该DGD效应具体指由于光纤中存在微弱的双折射,会引入偏振模式色散(Polarization Mode Dispersion,简称PMD),使得一个发射机的信号的不同偏振态分量产生离散效应。
下面采用几个具体的实施例,对图2所示接收机实施例的技术方案进行详细说明。
其中,图3至图6用于说明可调延时模块的四种不同的设置位置。
图3为本发明接收机实施例二的结构示意图,如图3所示,本实施例的接收机在图2所示实施例的基础上,解扩模块12具体可以包括:第一解扩模块123和第二解扩模块124,该第一解扩模块123和该第二解扩模块124均包括两个输入端和2N个输出端。该第一解扩模块123的两个输入端和该第二解扩模块124的两个输入端分别与第一输入端(111和112)连接。该第一解扩模块123的2N个输出端和该第二解扩模块124的2N个输出端分别与一个第二输出端(1211、1221、1212、1222、……、121N、122N、1231、1241、1232、1342、……、123N、124N)连接。该第一解扩模块123用于输出N个第一基带信号,其中,该第一解扩模块123的一个输出端用于输出一个发射机的X偏振态的第一基带信号或者一个发射机的Y偏振态的第一基带信号,举例而言,该第一解扩模块123通过第二输出端1211输出发射机1的X偏振态的第一基带信号,该第一解扩模块123通过第二输出端1221输出发射机1的Y偏振态的第一基带信号,该第一解扩模块123通过第二输出端1212输出发射机2的X偏振态的第一基带信号,该第一解扩模块123通过第二输出端1222输出发射机2的Y偏振态的第一基带信号,该第二解扩模块124用于输出N个第二基带信号,其中,该第二解扩模块124的一个输出端用于输出一个发射机的X偏振态的第二基带信号或者一个发射机的Y偏振态的第二基带信号,举例而言,该第二解扩模块124通过第二输出端1231输出发射机1的X偏振态的第二基带信号,该第二解扩模块124通过第二输出端1241输出发射机1的Y偏振态的第二基带信号,该第一解扩模块124通过第二输出端1232输出发射机2的X偏振态的第二基带信号,该第二解扩模块124通过第二输出端1342输出发射机2的Y偏振态的第二基带信号。
其中,该解扩模块12还可以包括第一偏振态同步模块125和第二偏 振态同步模块126。该第一偏振态同步模块125用于根据N个发射机的第一偏振态的训练序列、所述X偏振态的数字信号和所述Y偏振态的数字信号确定N个发射机的第一偏振态的同步位置。该第二偏振态同步模块126用于根据N个发射机的第二偏振态的训练序列、所述X偏振态的数字信号和所述Y偏振态的数字信号确定N个发射机的第二偏振态的同步位置。
进一步的,该解扩模块12还可以包括可调延时模块1271,该可调延时模块1271设置在第一输入端(111和112)与该第一解扩模块123之间,该可调延时模块1271还与该第一偏振态同步模块125和该第二偏振态同步模块126连接。该可调延时模块1271用于根据N个发射机的第一偏振态的同步位置和N个发射机的第二偏振态的同步位置的差异确定N个发射机的延时值,并分别根据所述N个发射机的延时值对所述待处理的数字信号(X偏振态的数字信号和Y偏振态的数字信号)进行延时处理,获取N个延时后的X偏振态的数字信号和N个延时后的Y偏振态的数字信号,将所述N个延时后的X偏振态的数字信号和N个延时后的Y偏振态的数字信号输出至该第一解扩模块123,该第一解扩模块分别使用所述N个发射机的扩频码对所述N个延时后的X偏振态的数字信号和N个延时后的Y偏振态的数字信号进行解扩,获取所述N个第一基带信号。
即,本实施例的接收机具体根据N个发射机的延时值延时待处理的数字信号,将N个延时后的待处理的数字信号输入至第一解扩模块中,由第一解扩模块分别使用N个发射机的扩频码对与其对应的延时后的待处理的数字信号进行解扩,获取N个第一基带信号。需要说明的是,本实施例的第二解扩模块中无需进行延时,只需要根据待处理的数字信号和N个发射机的第二偏振态的训练序列确定N个发射机的第二偏振态的同步位置,根据该N个第二偏振态的同步位置和N个发射机的扩频码对该待处理的数字信号进行解扩,获取N个第二基带信号。
本实施例,接收机通过在第一输入端与第一解扩模块之间设置可调延时模块,该可调延时模块的N个延时值是分别根据N个发射机的第一偏振态的同步位置和第二偏振态的同步位置的差异确定的,从而实现两路偏振态对接收到的待处理的数字信号进行同步和解扩,有效减少数据信号在 光纤中传输时不同偏振态分量产生的差分群延时DGD效应。
图4为本发明接收机实施例三的结构示意图,如图4所示,本实施例的接收机在图2所示实施例的基础上,解扩模块12具体可以包括:第一解扩模块123和第二解扩模块124,该第一解扩模块123和该第二解扩模块124均包括两个输入端和2N个输出端。该第一解扩模块123的两个输入端和该第二解扩模块124的两个输入端分别与第一输入端(111和112)连接。该第一解扩模块123的2N个输出端和该第二解扩模块124的2N个输出端分别与一个第二输出端(1211、1221、1212、1222、……、121N、122N、1231、1241、1232、1342、……、123N、124N)连接。该第一解扩模块123用于输出N个第一基带信号,其中,该第一解扩模块123的一个输出端用于输出一个发射机的X偏振态的第一基带信号或者一个发射机的Y偏振态的第一基带信号,举例而言,该第一解扩模块123通过第二输出端1211输出发射机1的X偏振态的第一基带信号,该第一解扩模块123通过第二输出端1221输出发射机1的Y偏振态的第一基带信号,该第一解扩模块123通过第二输出端1212输出发射机2的X偏振态的第一基带信号,该第一解扩模块123通过第二输出端1222输出发射机2的Y偏振态的第一基带信号,该第二解扩模块124用于输出N个第二基带信号,其中,该第二解扩模块124的一个输出端用于输出一个发射机的X偏振态的第二基带信号或者一个发射机的Y偏振态的第二基带信号,举例而言,该第二解扩模块124通过第二输出端1231输出发射机1的X偏振态的第二基带信号,该第二解扩模块124通过第二输出端1241输出发射机1的Y偏振态的第二基带信号,该第一解扩模块124通过第二输出端1232输出发射机2的X偏振态的第二基带信号,该第二解扩模块124通过第二输出端1342输出发射机2的Y偏振态的第二基带信号。
其中,该解扩模块12还可以包括第一偏振态同步模块125和第二偏振态同步模块126。该第一偏振态同步模块125用于根据N个发射机的第一偏振态的训练序列、所述X偏振态的数字信号和所述Y偏振态的数字信号确定N个发射机的第一偏振态的同步位置。该第二偏振态同步模块126用于根据N个发射机的第二偏振态的训练序列、所述X偏振态的数字信号和所述Y偏振态的数字信号确定N个发射机的第二偏振态的同步位 置。
进一步的,与图3所示实施例不同,本实施例的接收机的可调延时模块设置在第一输入端(111和112)与第二解扩模块124之间,该可调延时模块1272还与该第一偏振态同步模块125和该第二偏振态同步模块126连接。该可调延时模块1272用于根据N个发射机的第一偏振态的同步位置和N个发射机的第二偏振态的同步位置的差异确定N个发射机的延时值,并分别根据所述N个发射机的延时值对所述待处理的数字信号(X偏振态的数字信号和Y偏振态的数字信号)进行延时处理,获取N个延时后的待处理的数字信号(N个延时后的X偏振态的数字信号和N个延时后的Y偏振态的数字信号),将N个延时后的待处理的数字信号输出至所述第二解扩模块124。该第二解扩模块124分别使用所述N个发射机的扩频码对所述N个延时后的待处理的数字信号进行解扩,获取所述N个第二基带信号。
即,本实施例的接收机具体根据N个发射机的延时值延时待处理的数字信号,将N个延时后的待处理的数字信号输入至第二解扩模块中,由第二解扩模块分别使用N个发射机的扩频码对与其对应的延时后的待处理的数字信号进行解扩,获取N个第二基带信号。需要说明的是,本实施例的第一解扩模块中无需进行延时,只需要根据待处理的数字信号和N个发射机的第一偏振态的训练序列确定N个发射机的第一偏振态的同步位置,根据该N个第一偏振态的同步位置和N个发射机的扩频码对该待处理的数字信号进行解扩,获取N个第一基带信号。
本实施例,接收机通过在第一输入端与第二解扩模块之间设置可调延时模块,该可调延时模块的N个延时值是根据N个发射机的第一偏振态的同步位置和第二偏振态的同步位置的差异确定的,从而实现两路偏振态对接收到的待处理的数字信号进行同步和解扩,有效减少数据信号在光纤中传输时不同偏振态分量产生的差分群延时DGD效应。
图5A为本发明接收机实施例四的结构示意图,图5B为本发明子第一解扩模块的示意性结构示意图,如图5A所示,本实施例的接收机在图2所示实施例的基础上,解扩模块12具体可以包括:第一解扩模块123和第二解扩模块124,该第一解扩模块123和该第二解扩模块124均包括两 个输入端和2N个输出端。该第一解扩模块123的两个输入端和该第二解扩模块124的两个输入端分别与第一输入端(111和112)连接。该第一解扩模块123的2N个输出端和该第二解扩模块124的2N个输出端分别与一个第二输出端(1211、1221、1212、1222、……、121N、122N、1231、1241、1232、1342、……、123N、124N)连接。该第一解扩模块123用于输出N个第一基带信号,其中,该第一解扩模块123的一个输出端用于输出一个发射机的X偏振态的第一基带信号或者一个发射机的Y偏振态的第一基带信号,举例而言,该第一解扩模块123通过第二输出端1211输出发射机1的X偏振态的第一基带信号,该第一解扩模块123通过第二输出端1221输出发射机1的Y偏振态的第一基带信号,该第一解扩模块123通过第二输出端1212输出发射机2的X偏振态的第一基带信号,该第一解扩模块123通过第二输出端1222输出发射机2的Y偏振态的第一基带信号,该第二解扩模块124用于输出N个第二基带信号,其中,该第二解扩模块124的一个输出端用于输出一个发射机的X偏振态的第二基带信号或者一个发射机的Y偏振态的第二基带信号,举例而言,该第二解扩模块124通过第二输出端1231输出发射机1的X偏振态的第二基带信号,该第二解扩模块124通过第二输出端1241输出发射机1的Y偏振态的第二基带信号,该第一解扩模块124通过第二输出端1232输出发射机2的X偏振态的第二基带信号,该第二解扩模块124通过第二输出端1342输出发射机2的Y偏振态的第二基带信号。
其中,该解扩模块12还可以包括第一偏振态同步模块125和第二偏振态同步模块126。该第一偏振态同步模块125用于根据N个发射机的第一偏振态的训练序列、所述X偏振态的数字信号和所述Y偏振态的数字信号确定N个发射机的第一偏振态的同步位置。该第二偏振态同步模块126用于根据N个发射机的第二偏振态的训练序列、所述X偏振态的数字信号和所述Y偏振态的数字信号确定N个发射机的第二偏振态的同步位置。
进一步的,与图3和图4所示实施例不同,本实施的解扩模块12还可以包括N个可调延时模块(12731、12732、……、1273N),其中,第一解扩模块123包括N个子第一解扩模块(1231、1232、……、123N), 所述N个可调延时模块(12731、12732、……、1273N)分别设置在一个子第一解扩模块中,一个子第一解扩模块用于输出一个发射机的X偏振态的第一基带信号和Y偏振态的第一基带信号,举例而言,子第一解扩模块1231用于输出发射机1的X偏振态的第一基带信号和Y偏振态的第一基带信号,子第一解扩模块1232用于输出发射机2的X偏振态的第一基带信号和Y偏振态的第一基带信号。每个可调延时模块根据一个发射机的第一偏振态的同步位置和所述发射机的第二偏振态的同步位置的差异确定所述发射机的延时值,并根据所述发射机的延时值对所述发射机的扩频码进行延时处理,获取所述发射机的延时后的扩频码,将所述发射机的延时后的扩频码输出至与其对应的子第一解扩模块,举例而言,可调延时模块12731根据发射机1的第一偏振态的同步位置和发射机1的第二偏振态的同步位置的差异确定发射机1的延时值,并根据发射机1的延时值对发射机1的扩频码进行延时处理,获取发射机1的延时后的扩频码,将发射机1的延时后的扩频码输出至子第一解扩模块1231,可调延时模块1273N根据发射机N的第一偏振态的同步位置和发射机N的第二偏振态的同步位置的差异确定发射机N的延时值,并根据发射机N的延时值对发射机N的扩频码进行延时处理,获取发射机N的延时后的扩频码,将发射机N的延时后的扩频码输出至子第一解扩模块123N,其他可调延时模块与之类似,此处不一一赘述。每个子第一解扩模块用于使用一个发射机的延时后的扩频码对所述待处理的数字信号(X偏振态的数字信号和Y偏振态的数字信号)进行解扩,获取一个第一基带信号。即,不同子第一解扩模块中设置不同发射机的扩频码,一个可调延时模块对一个发射机的扩频码进行延时处理,进而分别对待处理的数字信号(X偏振态的数字信号和Y偏振态的数字信号)进行解扩。以第N个子第一解扩模块进行具体举例说明,其他子第一解扩模块可以采用相同的连接结构,具体的,如图5B所示,可调延时模块1273N设置在第N个子第一解扩模块中,该可调延时模块1273N与第一偏振态同步模块125、第二偏振态同步模块126以及发射机N的扩频码生成器连接,该可调延时模块1273N对发射机N的扩频码进行延时处理,获取发射机N的延时后的扩频码,第N个子第一解扩模块使用该发射机N的延时后的扩频码对接入的待处理的数字信号(X偏振态 的数字信号和Y偏振态的数字信号)进行解扩处理,该解扩处理可以如图5B所示,先进行相乘后进行积分,进而输出发射机N的第一基带信号,具体可以通过第二输出端121N输出发射机N的X偏振态的第一基带信号,通过第二输出端122N输出发射机N的Y偏振态的第一基带信号。
即,本实施例的可调延时模块具体可以设置在每个子第一解扩模块(1231、1232、……、123N)中,每个可调延时模块用于使用一个延时值对扩频码进行延时,进而对待处理的数字信号进行延时,获取N个第一基带信号。需要说明的是,本实施例的第二解扩模块中无需进行延时,只需要根据待处理的数字信号和N个发射机的第二偏振态的训练序列确定N个发射机的第二偏振态的同步位置,根据该N个第二偏振态的同步位置和N个发射机的扩频码对该待处理的数字信号进行解扩,获取N个第二基带信号。
本实施例,接收机通过在第一解扩模块中的每一个子第一解扩模块中设置可调延时模块,每个可调延时模块的延时值是根据与其对应的发射机的第一偏振态的同步位置和第二偏振态的同步位置的差异确定的,从而实现两路偏振态对接收到的待处理的数字信号进行同步和解扩,有效减少数据信号在光纤中传输时不同偏振态分量产生的差分群延时DGD效应。
图6为本发明接收机实施例五的结构示意图,如图6所示,本实施例的接收机在图2所示实施例的基础上,解扩模块12具体可以包括:第一解扩模块123和第二解扩模块124,该第一解扩模块123和该第二解扩模块124均包括两个输入端和2N个输出端。该第一解扩模块123的两个输入端和该第二解扩模块124的两个输入端分别与第一输入端(111和112)连接。该第一解扩模块123的2N个输出端和该第二解扩模块124的2N个输出端分别与一个第二输出端(1211、1221、1212、1222、……、121N、122N、1231、1241、1232、1342、……、123N、124N)连接。该第一解扩模块123用于输出N个第一基带信号,其中,该第一解扩模块123的一个输出端用于输出一个发射机的X偏振态的第一基带信号或者一个发射机的Y偏振态的第一基带信号,举例而言,该第一解扩模块123通过第二输出端1211输出发射机1的X偏振态的第一基带信号,该第一解扩模块123通过第二输出端1221输出发射机1的Y偏振态的第一基带信号,该 第一解扩模块123通过第二输出端1212输出发射机2的X偏振态的第一基带信号,该第一解扩模块123通过第二输出端1222输出发射机2的Y偏振态的第一基带信号,该第二解扩模块124用于输出N个第二基带信号,其中,该第二解扩模块124的一个输出端用于输出一个发射机的X偏振态的第二基带信号或者一个发射机的Y偏振态的第二基带信号,举例而言,该第二解扩模块124通过第二输出端1231输出发射机1的X偏振态的第二基带信号,该第二解扩模块124通过第二输出端1241输出发射机1的Y偏振态的第二基带信号,该第一解扩模块124通过第二输出端1232输出发射机2的X偏振态的第二基带信号,该第二解扩模块124通过第二输出端1342输出发射机2的Y偏振态的第二基带信号。
其中,该解扩模块12还可以包括第一偏振态同步模块125和第二偏振态同步模块126。该第一偏振态同步模块125用于根据N个发射机的第一偏振态的训练序列、所述X偏振态的数字信号和所述Y偏振态的数字信号确定N个发射机的第一偏振态的同步位置。该第二偏振态同步模块126用于根据N个发射机的第二偏振态的训练序列、所述X偏振态的数字信号和所述Y偏振态的数字信号确定N个发射机的第二偏振态的同步位置。
进一步的,与图3和图4所示实施例不同,解扩模块12还可以包括N个可调延时模块(12741、12742、……、1274N),该第二解扩模块可以包括N个子第二解扩模块(1241、1242、……、124N),该N个可调延时模块分别设置在一个子第二解扩模块中,一个子第二解扩模块用于输出一个发射机的X偏振态的第二基带信号和Y偏振态的第二基带信号。每个可调延时模块根据一个发射机的第一偏振态的同步位置和所述发射机的第二偏振态的同步位置的差异确定所述发射机的延时值,并根据所述发射机的延时值对所述发射机的扩频码进行延时处理,获取所述发射机的延时后的扩频码,将所述发射机的延时后的扩频码输出至与其对应的子第二解扩模块。每个子第二解扩模块用于使用一个发射机的延时后的扩频码对所述待处理的数字信号(X偏振态的数字信号和Y偏振态的数字信号)进行解扩,获取一个第二基带信号。即,本实施例的可调延时模块具体可以设置在每个子第二解扩模块(1241、1242、……、124N)中,每个可调延 时模块用于使用一个延时值对扩频码进行延时,进而对待处理的数字信号进行延时,获取N个第二基带信号。需要说明的是,本实施例的第一解扩模块中无需进行延时,只需要根据待处理的数字信号和N个发射机的第一偏振态的训练序列确定N个发射机的第一偏振态的同步位置,根据该N个第一偏振态的同步位置和N个发射机的扩频码对该待处理的数字信号进行解扩,获取N个第一基带信号。
本实施例,接收机通过在第二解扩模块中的每一个子第二解扩模块中设置可调延时模块,每个可调延时模块的延时值是与其对应的发射机的第一偏振态的同步位置和第二偏振态的同步位置的差异确定的,从而实现两路偏振态对接收到的待处理的数字信号进行同步和解扩,有效减少数据信号在光纤中传输时不同偏振态分量产生的差分群延时DGD效应。
图7为本发明接收机的多输入多输出均衡模块实施例一的结构示意图,如图7所示,本实施例的多输入多输出均衡模块在图2至图6任一所示接收机结构的基础上,进一步地,该多输入多输出均衡模块13具体可以包括第一多输入多输出均衡模块131、第二多输入多输出均衡模块132和求和模块133。该第一多输入多输出均衡模块131与第一解扩模块123的2N个输出端连接,该第二多输入多输出均衡模块132与第二解扩模块124的2N个输出端连接。该第一多输入多输出均衡模块131包括2N个第三输出端,该第二多输入多输出均衡模块132包括2N个第四输出端,该2N个第三输出端和该2N个第四输出端与该求和模块133连接,该求和模块与2N个第一输出端连接。所述第一多输入多输出均衡模块131用于根据2N*2N个滤波系数对所述N个第一基带信号进行处理,获取N个发射机的第一调制数据,每个发射机的第一调制数据均包括所述发射机的第一偏振态的第一调制数据和第二偏振态的第一调制数据。所述第二多输入多输出均衡模块132用于根据2N*2N个滤波系数对所述N个第二基带信号进行处理,获取N个发射机的第二调制数据,每个发射机的第二调制数据均包括所述发射机的第一偏振态的第二调制数据和第二偏振态的第二调制数据。该求和模块133用于将所述N个发射机的第一调制数据和第二调制数据进行加和,获取N个发射机的第一偏振态的恢复数据和第二偏振态的恢复数据。
即本实施例的接收机对解扩后获取的第一基带信号和第二基带信号分别通过两个多输入多输出均衡模块补偿信道损失,能够有效补偿光纤信道中的DGD损失,进一步提升数据传输性能。
图8为本发明接收机的第一多输入多输出均衡模块或第二多输入多输出均衡模块的结构示意图,如图8所示,本实施例的第一多输入多输出均衡模块和第二多输入多输出均衡模块在图7所示接收机结构的基础上,进一步地,该第一多输入多输出均衡模块具体可以包括2N*2N个子第一均衡模块,每个子第一均衡模块设置一个滤波系数,如图8所示,第一行的子第一均衡模块的滤波系数分别为W(1,1)、W(1,2)、……W(1,2N-1)、W(1,2N),2N列子第一均衡模块分别与一个第一解扩模块的输出端连接,如图8所示,每一列的输入端(R1、R2、……、R(2N-1)、R2N)分别与第一解扩模块的一个输出端连接,举例而言,R1与1211连接,R2与1221连接,2N行子第一均衡模块分别通过2N-1个加法器与一个第三输出端连接,如图8所示,每一行的输出端(T1、T2、……、T(2N-1)、T2N)分别与一个第三输出端连接。该第二多输入多输出均衡模块具体包括2N*2N个子第二均衡模块,每个子第二均衡模块设置一个滤波系数,2N列子第二均衡模块分别与一个第二解扩模块的输出端连接,2N行子第二均衡模块分别通过2N-1个加法器与一个第四输出端连接。
即第一多输入多输出均衡模块和第二多输入多输出均衡模块可以采用相同的连接结构,其中,子第一均衡模块与子第二均衡模块的滤波系数可以设置为不同的值。
图9为本发明接收机实施例六的结构示意图,如图9所示,本实施例的接收机在图2至图6任一所示接收机结构的基础上,进一步地,所述多输入多输出均衡模块13具体可以包括2N个多输入单输出均衡模块;每个多输入单输出均衡模块与所述第一解扩模块的2N个输出端和所述第二解扩模块的2N个输出端连接;所述2N个多输入单输出均衡模块分别以一个发射机为基准对所述N个第一基带信号和N个第二基带信号进行处理,获取相应发射机的一个偏振态的恢复数据。
可选的,所述接收机还可以包括2N个载波恢复模块,所述2N个载波恢复模块分别设置在一个第一输出端,每个载波恢复模块用于对与其对 应的发射机的恢复数据进行载波相位恢复,获取与其对应的发射机的一个偏振态的原始数据。
本实施例的接收机对待处理的数字信号进行解扩获取N个第一基带信号和N个第二基带信号后,将N个第一基带信号和N个第二基带信号分别输入至2N个多输入单输出均衡模块中,由2N个多输入单输出均衡模块分别进行以一个发射机为基准对所述N个第一基带信号和N个第二基带信号进行处理,获取相应发射机的一个偏振态的恢复数据。举例而言,为了解调发射机1的第一偏振态的原始数据,解扩后的数字信号首先进入载波频偏补偿模块FOC 1对各路进行频偏补偿,然后进入多输入单输出均衡模块1输出单路信号,最后进入载波相位恢复模块CR 1对该路进行载波相位恢复还原出发射机1的第一偏振态的原始数据,同样地,其他多输入单输出模块用于解调其他发射机的第一偏振态或第二偏振态的原始数据。
即本实施例的接收机对解扩后获取的第一基带信号和第二基带信号分别通过2N个多输入单输出均衡模块补偿信道损失,能够有效补偿光纤信道中的DGD损失,进一步提升数据传输性能。本实施例更适用于发射机之间频偏较大的应用场景。
图10为本发明数据接收方法实施例一的流程图,如图10所示,本实施例的方法可以包括:
步骤101、接收X偏振态的数字信号和Y偏振态的数字信号。
步骤102、根据N个发射机的第一偏振态的同步位置和第二偏振态的同步位置的差异确定N个延时值。
步骤103、根据所述N个延时值和N个发射机的扩频码对所述X偏振态的数字信号和所述Y偏振态的数字信号进行解扩,获取N个第一基带信号和N个第二基带信号。
其中,每个第一基带信号均包括X偏振态的第一基带信号和Y偏振态的第一基带信号,每个第二基带信号均包括X偏振态的第二基带信号和Y偏振态的第二基带信号。
步骤104、对所述N个第一基带信号和N个第二基带信号进行均衡滤波处理,获取N个发射机的第一偏振态的恢复数据和第二偏振态的恢复数 据。
其中,N的取值与发射机的个数相同。
其中,一种可实现的方式,步骤103,根据所述N个延时值和N个发射机的扩频码对所述X偏振态的数字信号和所述Y偏振态的数字信号进行解扩,获取N个第一基带信号和N个第二基带信号,具体可以包括:使用所述N个发射机的扩频码分别对所述X偏振态的数字信号和Y偏振态的数字信号进行解扩,获取所述N个第二基带信号;根据所述N个延时值对所述X偏振态的数字信号和Y偏振态的数字信号进行延时处理,获取N个延时后的X偏振态的数字信号和N个延时后的Y偏振态的数字信号;分别使用所述N个发射机的扩频码对所述N个延时后的X偏振态的数字信号和N个延时后的Y偏振态的数字信号进行解扩,获取所述N个第一基带信号。
另一种可实现的方式,步骤103,根据所述N个延时值和N个发射机的扩频码对所述X偏振态的数字信号和所述Y偏振态的数字信号进行解扩,获取N个第一基带信号和N个第二基带信号,具体可以包括:分别使用所述N个发射机的扩频码对所述X偏振态的数字信号和Y偏振态的数字信号进行解扩,获取所述N个第一基带信号;根据所述N个延时值对所述X偏振态的数字信号和Y偏振态的数字信号进行延时处理,获取N个延时后的X偏振态的数字信号和N个延时后的Y偏振态的数字信号;分别使用所述N个发射机的扩频码对N个延时后的X偏振态的数字信号和N个延时后的Y偏振态的数字信号进行解扩,获取所述N个第二基带信号。
再一种可实现的方式,步骤103,根据所述N个延时值和N个发射机的扩频码对所述X偏振态的数字信号和所述Y偏振态的数字信号进行解扩,获取N个第一基带信号和N个第二基带信号,具体可以包括:分别使用所述N个发射机的扩频码对所述X偏振态的数字信号和Y偏振态的数字信号进行解扩,获取所述N个第二基带信号;根据所述N个延时值对N个发射机的扩频码进行延时处理,获取N个延时后的扩频码;分别使用所述N个延时后的扩频码对所述X偏振态的数字信号和所述Y偏振态的数字信号进行解扩,获取所述N个第一基带信号。
又一种可实现的方式,步骤103,根据所述N个延时值和N个发射机的扩频码对所述X偏振态的数字信号和所述Y偏振态的数字信号进行解扩,获取N个第一基带信号和N个第二基带信号,具体可以包括:分别使用所述N个发射机的扩频码对所述X偏振态的数字信号和所述Y偏振态的数字信号进行解扩,获取所述N个第一基带信号;根据所述N个延时值对N个发射机的扩频码进行延时处理,获取N个延时后的扩频码;分别使用所述N个延时后的扩频码对所述X偏振态的数字信号和所述Y偏振态的数字信号进行解扩,获取所述N个第二基带信号。
可选的,所述方法还可以包括:根据N个发射机的第一偏振态的训练序列、X偏振态的数字信号和Y偏振态的数字信号确定N个发射机的第一偏振态的同步位置;根据N个发射机的第二偏振态的训练序列、X偏振态的数字信号和Y偏振态的数字信号确定N个发射机的第二偏振态的同步位置。
可选的,所述对所述N个第一基带信号和N个第二基带信号进行均衡滤波处理,获取N个发射机的第一偏振态的恢复数据和第二偏振态的恢复数据,具体可以包括:根据2N*2N个滤波系数对所述N个第一基带信号进行处理,获取N个发射机的第一调制数据,每个发射机的第一调制数据均包括所述发射机的第一偏振态的第一调制数据和第二偏振态的第一调制数据;根据2N*2N个滤波系数对所述N个第二基带信号进行处理,获取N个发射机的第二调制数据,每个发射机的第二调制数据均包括所述发射机的第一偏振态的第二调制数据和第二偏振态的第二调制数据;将所述N个发射机的第一调制数据和第二调制数据进行加和,获取N个发射机的第二偏振态的恢复数据和第二偏振态的恢复数据。
本实施例,通过接入X偏振态的数字信号和Y偏振态的数字信号,通过根据N个发射机的延时值和N个发射机的扩频码对X偏振态的数字信号和Y偏振态的数字信号进行解扩,获取N个第一基带信号和N个第二基带信号,该N个发射机的延时值为分别根据N个发射机的第一偏振态的同步位置和第二偏振态的同步位置的差异确定的,进而对N个第一基带信号和N个第二基带信号进行均衡滤波处理,获取N个发射机的第一偏振态的恢复数据和第二偏振态的恢复数据,即分别基于每个发射机的第 一偏振态和第二偏振态对接收到的待处理的数字信号进行同步和解扩,进而恢复出不同发射机的第一偏振态的恢复数据和第二偏振态的恢复数据,实现多发射机的双偏振态的数据接收,即实现在光通信系统中相干CDMA多点到点的数据传输,并且在获取不同发射机的第一偏振态和第二偏振态的数据的过程中,可以有效补偿光纤信道中的DGD损伤,有效提升数据传输质量。
需要说明的是,本发明上述实施例的接收机中的各个功能模块可以与接收机的一个或多个处理器对应,各个功能模块可以包括上述实施例中的解扩模块12、多输入多输出均衡模块13、第一解扩模块123、第二解扩模块124、第一偏振态同步模块125、第二偏振态同步模块125、可调延时模块(1271、1272)、子第一解扩模块、子第二解扩模块、以及多输入单输出均衡模块等,其中,各个功能模块的输入端和输出端可以与处理器的端口对应,这里处理器可以是一个中央处理器(Central Processing Unit,CPU),或者是特定集成电路(Application Specific Integrated Circuit,ASIC),或者完成实施本发明实施例的一个或多个集成电路。可以理解的,接收机还可以包括接收器、发送器和存储器,存储器用于存储指令代码,处理器调用存储器的指令代码,控制接收器和发送器以使得接收机执行上述操作。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单 元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (18)

  1. 一种接收机,其特征在于,包括:
    两个第一输入端、解扩模块、多输入多输出均衡模块以及2N个第一输出端;
    所述两个第一输入端与所述解扩模块连接,所述解扩模块与所述多输入多输出均衡模块连接;
    所述两个第一输入端用于分别接入X偏振态的数字信号和Y偏振态的数字信号;
    所述解扩模块用于根据N个延时值和N个发射机的扩频码对所述X偏振态的数字信号和所述Y偏振态的数字信号进行解扩,获取N个第一基带信号和N个第二基带信号,每个第一基带信号均包括X偏振态的第一基带信号和Y偏振态的第一基带信号,每个第二基带信号均包括X偏振态的第二基带信号和Y偏振态的第二基带信号,所述N个延时值为分别根据N个发射机的第一偏振态的同步位置和第二偏振态的同步位置的差异确定的;
    所述多输入多输出均衡模块用于对所述N个第一基带信号和N个第二基带信号进行均衡滤波处理,获取N个发射机的第一偏振态的恢复数据和第二偏振态的恢复数据;
    所述2N个第一输出端用于分别输出一个发射机的一个偏振态的恢复数据;
    其中,N为大于或者等于1的正整数。
  2. 根据权利要求1所述的接收机,其特征在于,所述解扩模块包括第一解扩模块和第二解扩模块,所述第一解扩模块和所述第二解扩模块均包括两个输入端和2N个输出端;
    所述第一解扩模块的两个输入端和所述第二解扩模块的两个输入端分别与所述两个第一输入端连接;
    所述第一解扩模块的2N个输出端和所述第二解扩模块的2N个输出端分别与一个第二输出端连接;
    所述第一解扩模块用于输出所述N个第一基带信号,所述第二解扩模块用于输出N个第二基带信号;
    所述第一解扩模块的一个输出端用于输出一个发射机的X偏振态的第一基带信号或者一个发射机的Y偏振态的第一基带信号,所述第二解扩模块的一个输出端用于输出一个发射机的X偏振态的第二基带信号或者一个发射机的Y偏振态的第二基带信号。
  3. 根据权利要求2所述的接收机,其特征在于,所述解扩模块还包括第一偏振态同步模块和第二偏振态同步模块;
    所述第一偏振态同步模块用于根据N个发射机的第一偏振态的训练序列、所述X偏振态的数字信号和所述Y偏振态的数字信号确定N个发射机的第一偏振态的同步位置;
    所述第二偏振态同步模块用于根据N个发射机的第二偏振态的训练序列、所述X偏振态的数字信号和所述Y偏振态的数字信号确定N个发射机的第二偏振态的同步位置。
  4. 根据权利要求3所述的接收机,其特征在于,所述解扩模块还包括可调延时模块,所述可调延时模块设置在所述两个第一输入端与所述第一解扩模块之间,所述可调延时模块还与所述第一偏振态同步模块和所述第二偏振态同步模块连接;
    所述可调延时模块用于根据所述N个发射机的第一偏振态的同步位置和所述N个发射机的第二偏振态的同步位置的差异确定所述N个发射机的延时值,并分别根据所述N个发射机的延时值对所述X偏振态的数字信号和Y偏振态的数字信号进行延时处理,获取N个延时后的X偏振态的数字信号和N个延时后的Y偏振态的数字信号,将所述N个延时后的X偏振态的数字信号和N个延时后的Y偏振态的数字信号输出至所述第一解扩模块;
    所述第一解扩模块分别使用所述N个发射机的扩频码对所述N个延时后的X偏振态的数字信号和N个延时后的Y偏振态的数字信号进行解扩,获取所述N个第一基带信号。
  5. 根据权利要求3所述的接收机,其特征在于,所述解扩模块还包括可调延时模块,所述可调延时模块设置在所述两个第一输入端与所述第二解扩模块之间,所述可调延时模块还与所述第一偏振态同步模块和所述第二偏振态同步模块连接;
    所述可调延时模块用于根据所述N个发射机的第一偏振态的同步位置和所述N个发射机的第二偏振态的同步位置的差异确定所述N个发射机的延时值,并分别根据所述N个发射机的延时值对所述X偏振态的数字信号和Y偏振态的数字信号进行延时处理,获取N个延时后的X偏振态的数字信号和N个延时后的Y偏振态的数字信号,将所述N个延时后的X偏振态的数字信号和N个延时后的Y偏振态的数字信号输出至所述第二解扩模块;
    所述第二解扩模块分别使用所述N个发射机的扩频码对所述N个延时后的X偏振态的数字信号和N个延时后的Y偏振态的数字信号进行解扩,获取所述N个第二基带信号。
  6. 根据权利要求3所述的接收机,其特征在于,所述解扩模块还包括N个可调延时模块,所述第一解扩模块包括N个子第一解扩模块,所述N个可调延时模块分别设置在一个子第一解扩模块中,一个子第一解扩模块用于输出一个发射机的X偏振态的第一基带信号和Y偏振态的第一基带信号;
    每个可调延时模块根据一个发射机的第一偏振态的同步位置和所述发射机的第二偏振态的同步位置的差异确定所述发射机的延时值,并根据所述发射机的延时值对所述发射机的扩频码进行延时处理,获取所述发射机的延时后的扩频码,将所述发射机的延时后的扩频码输出至与其对应的子第一解扩模块;
    每个子第一解扩模块用于使用一个发射机的延时后的扩频码对所述X偏振态的数字信号和Y偏振态的数字信号进行解扩,获取一个第一基带信号。
  7. 根据权利要求3所述的接收机,其特征在于,所述解扩模块还包括N个可调延时模块,所述第二解扩模块包括N个子第二解扩模块,所述N个可调延时模块分别设置在一个子第二解扩模块中,一个子第二解扩模块用于输出一个发射机的X偏振态的第二基带信号和Y偏振态的第二基带信号;
    每个可调延时模块根据一个发射机的第一偏振态的同步位置和所述发射机的第二偏振态的同步位置的差异确定所述发射机的延时值,并根据 所述发射机的延时值对所述发射机的扩频码进行延时处理,获取所述发射机的延时后的扩频码,将所述发射机的延时后的扩频码输出至与其对应的子第二解扩模块;
    每个子第二解扩模块用于使用一个发射机的延时后的扩频码对所述X偏振态的数字信号和Y偏振态的数字信号进行解扩,获取一个第二基带信号。
  8. 根据权利要求2至7任一项所述的接收机,其特征在于,所述多输入多输出均衡模块包括第一多输入多输出均衡模块、第二多输入多输出均衡模块和求和模块;
    所述第一多输入多输出均衡模块与所述第一解扩模块的2N个输出端连接,所述第二多输入多输出均衡模块与所述第二解扩模块的2N个输出端连接;
    所述第一多输入多输出均衡模块包括2N个第三输出端,所述第二多输入多输出均衡模块包括2N个第四输出端;
    所述2N个第三输出端和所述2N个第四输出端与所述求和模块连接,所述求和模块与所述2N个第一输出端连接;
    所述第一多输入多输出均衡模块用于根据2N*2N个滤波系数对所述N个第一基带信号进行处理,获取N个发射机的第一调制数据,每个发射机的第一调制数据均包括所述发射机的第一偏振态的第一调制数据和第二偏振态的第一调制数据;
    所述第二多输入多输出均衡模块用于根据2N*2N个滤波系数对所述N个第二基带信号进行处理,获取N个发射机的第二调制数据,每个发射机的第二调制数据均包括所述发射机的第一偏振态的第二调制数据和第二偏振态的第二调制数据;
    所述求和模块用于将所述N个发射机的第一调制数据和第二调制数据进行加和,获取N个发射机的第一偏振态的恢复数据和第二偏振态的恢复数据。
  9. 根据权利要求8所述的接收机,其特征在于,所述第一多输入多输出均衡模块包括2N*2N个子第一均衡模块,每个子第一均衡模块设置一个滤波系数;
    2N列子第一均衡模块分别与一个第一解扩模块的输出端连接,2N行子第一均衡模块分别通过2N-1个加法器与一个第三输出端连接;
    所述第二多输入多输出均衡模块包括2N*2N个子第二均衡模块,每个子第二均衡模块设置一个滤波系数;
    2N列子第二均衡模块分别与一个第二解扩模块的输出端连接,2N行子第二均衡模块分别通过2N-1个加法器与一个第四输出端连接。
  10. 根据权利要求2至7任一项所述的接收机,其特征在于,所述多输入多输出均衡模块包括2N个多输入单输出均衡模块;
    每个多输入单输出均衡模块与所述第一解扩模块的2N个输出端和所述第二解扩模块的2N个输出端连接;
    所述2N个多输入单输出均衡模块分别以一个发射机为基准对所述N个第一基带信号和N个第二基带信号进行处理,获取相应发射机的一个偏振态的恢复数据。
  11. 根据权利要求1至10任一项所述的接收机,其特征在于,所述接收机还包括2N个载波恢复模块,所述2N个载波恢复模块分别设置在一个第一输出端,每个载波恢复模块用于对与其对应的发射机的一个偏振态的恢复数据进行载波相位恢复,获取与其对应的发射机的一个偏振态的原始数据。
  12. 一种数据接收方法,其特征在于,包括:
    接收X偏振态的数字信号和Y偏振态的数字信号;
    根据N个发射机的第一偏振态的同步位置和第二偏振态的同步位置的差异确定N个延时值;
    根据所述N个延时值和N个发射机的扩频码对所述X偏振态的数字信号和所述Y偏振态的数字信号进行解扩,获取N个第一基带信号和N个第二基带信号,每个第一基带信号均包括X偏振态的第一基带信号和Y偏振态的第一基带信号,每个第二基带信号均包括X偏振态的第二基带信号和Y偏振态的第二基带信号;
    对所述N个第一基带信号和N个第二基带信号进行均衡滤波处理,获取N个发射机的第一偏振态的恢复数据和第二偏振态的恢复数据;
    其中,N的取值与发射机的个数相同。
  13. 根据权利要求12所述的方法,其特征在于,根据所述N个延时值和N个发射机的扩频码对所述X偏振态的数字信号和所述Y偏振态的数字信号进行解扩,获取N个第一基带信号和N个第二基带信号,包括:
    使用所述N个发射机的扩频码分别对所述X偏振态的数字信号和Y偏振态的数字信号进行解扩,获取所述N个第二基带信号;
    根据所述N个延时值对所述X偏振态的数字信号和Y偏振态的数字信号进行延时处理,获取N个延时后的X偏振态的数字信号和N个延时后的Y偏振态的数字信号;
    分别使用所述N个发射机的扩频码对所述N个延时后的X偏振态的数字信号和N个延时后的Y偏振态的数字信号进行解扩,获取所述N个第一基带信号。
  14. 根据权利要求12所述的方法,其特征在于,根据所述N个延时值和N个发射机的扩频码对所述X偏振态的数字信号和所述Y偏振态的数字信号进行解扩,获取N个第一基带信号和N个第二基带信号,包括:
    分别使用所述N个发射机的扩频码对所述X偏振态的数字信号和Y偏振态的数字信号进行解扩,获取所述N个第一基带信号;
    根据所述N个延时值对所述X偏振态的数字信号和所述Y偏振态的数字信号进行延时处理,获取N个延时后的X偏振态的数字信号和N个延时后的Y偏振态的数字信号;
    分别使用所述N个发射机的扩频码对所述N个延时后的X偏振态的数字信号和N个延时后的Y偏振态的数字信号进行解扩,获取所述N个第二基带信号。
  15. 根据权利要求12所述的方法,其特征在于,根据所述N个延时值和N个发射机的扩频码对所述X偏振态的数字信号和所述Y偏振态的数字信号进行解扩,获取N个第一基带信号和N个第二基带信号,包括:
    分别使用所述N个发射机的扩频码对所述X偏振态的数字信号和Y偏振态的数字信号进行解扩,获取所述N个第二基带信号;
    根据所述N个延时值对N个发射机的扩频码进行延时处理,获取N个延时后的扩频码;
    分别使用所述N个延时后的扩频码对所述X偏振态的数字信号和所 述Y偏振态的数字信号进行解扩,获取所述N个第一基带信号。
  16. 根据权利要求12所述的方法,其特征在于,根据所述N个延时值和N个发射机的扩频码对所述X偏振态的数字信号和所述Y偏振态的数字信号进行解扩,获取N个第一基带信号和N个第二基带信号,包括:
    分别使用所述N个发射机的扩频码对所述X偏振态的数字信号和所述Y偏振态的数字信号进行解扩,获取所述N个第一基带信号;
    根据所述N个延时值对N个发射机的扩频码进行延时处理,获取N个延时后的扩频码;
    分别使用所述N个延时后的扩频码对所述X偏振态的数字信号和所述Y偏振态的数字信号进行解扩,获取所述N个第二基带信号。
  17. 根据权利要求12至16任一项所述的方法,其特征在于,所述方法还包括:
    根据N个发射机的第一偏振态的训练序列、所述X偏振态的数字信号和所述Y偏振态的数字信号确定所述N个发射机的第一偏振态的同步位置;
    根据N个发射机的第二偏振态的训练序列、所述X偏振态的数字信号和所述Y偏振态的数字信号确定所述N个发射机的第二偏振态的同步位置。
  18. 根据权利要求12至17任一项所述的方法,其特征在于,所述对所述N个第一基带信号和N个第二基带信号进行均衡滤波处理,获取N个发射机的第一偏振态的恢复数据和第二偏振态的恢复数据,包括:
    根据2N*2N个滤波系数对所述N个第一基带信号进行处理,获取N个发射机的第一调制数据,每个发射机的第一调制数据均包括所述发射机的第一偏振态的第一调制数据和第二偏振态的第一调制数据;
    根据2N*2N个滤波系数对所述N个第二基带信号进行处理,获取N个发射机的第二调制数据,每个发射机的第二调制数据均包括所述发射机的第一偏振态的第二调制数据和第二偏振态的第二调制数据;
    将所述N个发射机的第一调制数据和第二调制数据进行加和,获取N个发射机的第二偏振态的恢复数据和第二偏振态的恢复数据。
PCT/CN2016/104153 2016-10-31 2016-10-31 接收机和数据接收方法 WO2018076385A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2016/104153 WO2018076385A1 (zh) 2016-10-31 2016-10-31 接收机和数据接收方法
EP16919620.1A EP3531586B1 (en) 2016-10-31 2016-10-31 Receiver and data reception method
CN201680090437.6A CN109923803B (zh) 2016-10-31 2016-10-31 接收机和数据接收方法
US16/398,169 US10630419B2 (en) 2016-10-31 2019-04-29 Receiver and data receiving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/104153 WO2018076385A1 (zh) 2016-10-31 2016-10-31 接收机和数据接收方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/398,169 Continuation US10630419B2 (en) 2016-10-31 2019-04-29 Receiver and data receiving method

Publications (1)

Publication Number Publication Date
WO2018076385A1 true WO2018076385A1 (zh) 2018-05-03

Family

ID=62024258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104153 WO2018076385A1 (zh) 2016-10-31 2016-10-31 接收机和数据接收方法

Country Status (4)

Country Link
US (1) US10630419B2 (zh)
EP (1) EP3531586B1 (zh)
CN (1) CN109923803B (zh)
WO (1) WO2018076385A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020089718A1 (en) * 2000-12-21 2002-07-11 Alcatel Adjustable differential group delay generator and a polarization dispersion compensator incorporating it
CN1633764A (zh) * 2002-04-18 2005-06-29 艾利森电讯公司 偏振模色散补偿器
CN102170312A (zh) * 2011-04-26 2011-08-31 聊城大学 一种自适应偏振模色散补偿方法
CN102318241A (zh) * 2011-07-12 2012-01-11 华为技术有限公司 去延时方法、装置和光通信系统接收器
US20120269513A1 (en) * 2009-11-24 2012-10-25 Nec Corporation Optical reception device and optical reception control method
CN103141037A (zh) * 2010-11-30 2013-06-05 三菱电机株式会社 光传送系统、光发送装置以及光接收装置
US20140050476A1 (en) * 2012-08-20 2014-02-20 Ciena Corporation Systems and methods for the compensation of nonlinear cross polarization and cross phase modulation in dual polarization coherent channels

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5955992A (en) 1998-02-12 1999-09-21 Shattil; Steve J. Frequency-shifted feedback cavity used as a phased array antenna controller and carrier interference multiple access spread-spectrum transmitter
US8363744B2 (en) * 2001-06-10 2013-01-29 Aloft Media, Llc Method and system for robust, secure, and high-efficiency voice and packet transmission over ad-hoc, mesh, and MIMO communication networks
US7248841B2 (en) * 2000-06-13 2007-07-24 Agee Brian G Method and apparatus for optimization of wireless multipoint electromagnetic communication networks
EP1329047A1 (en) * 2000-09-26 2003-07-23 Celight, Inc. System and method for code division multiplexed optical communication
US7599627B2 (en) * 2001-05-31 2009-10-06 Teradvance Communications, Llc Method and system for a polarization mode dispersion tolerant optical homodyne detection system with optimized transmission modulation
WO2004084441A1 (en) * 2003-03-21 2004-09-30 Pirelli & C. S.P.A. Apparatus for mitigating the effects of polarization mode dispersion of a plurality of optical signals
CN1268077C (zh) * 2004-04-30 2006-08-02 北京大学 光码分多址波长-时间域二维光正交码编码器及解码器
CN101729187B (zh) * 2008-10-24 2013-01-16 华为技术有限公司 一种光信号传输处理方法、发送装置及系统
US8699882B2 (en) * 2009-01-08 2014-04-15 Ofidium Pty Ltd Signal method and apparatus
JP5264668B2 (ja) 2009-09-29 2013-08-14 三菱電機株式会社 多値変調光送受信装置および多値変調光送受信方法
BR112012025243A2 (pt) * 2010-04-07 2016-06-21 Alcatel Lucent método e aparelho para pré-codificação e retorno de informações
JP5686142B2 (ja) 2011-01-20 2015-03-18 日本電気株式会社 コヒーレント光受信装置およびコヒーレント光受信方法
US8805208B2 (en) 2012-02-03 2014-08-12 Tyco Electronics Subsea Communications Llc System and method for polarization de-multiplexing in a coherent optical receiver
US9112608B2 (en) * 2012-10-08 2015-08-18 Futurewei Technologies, Inc. Resource-efficient digital chromatic dispersion compensation in fiber optical communication using spectral shaping subcarrier modulation
US9264124B2 (en) * 2013-04-26 2016-02-16 Blackberry Limited Antenna polarization optimization for wireless communications
CN103368603A (zh) * 2013-06-17 2013-10-23 北京邮电大学 一种多用户扩频通信实现方法及其系统
US9191120B2 (en) * 2013-09-04 2015-11-17 At&T Intellectual Property I, L.P. Method and system for optical impairments mitigation for high-speed optical communication systems
WO2015104058A1 (en) * 2014-01-10 2015-07-16 Huawei Technologies Co., Ltd. Method for dual polarization coherent optical modulation
US20170141943A1 (en) * 2014-07-03 2017-05-18 Technion Research& Developement Foundation Limited System and method for ofdm symbol receiving and processing
US20160352419A1 (en) * 2015-05-27 2016-12-01 John P. Fonseka Constrained interleaving for 5G wireless and optical transport networks
KR102108470B1 (ko) * 2015-09-24 2020-05-08 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 이를 위한 장치
JP2018129618A (ja) * 2017-02-07 2018-08-16 富士通株式会社 受信装置および受信方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020089718A1 (en) * 2000-12-21 2002-07-11 Alcatel Adjustable differential group delay generator and a polarization dispersion compensator incorporating it
CN1633764A (zh) * 2002-04-18 2005-06-29 艾利森电讯公司 偏振模色散补偿器
US20120269513A1 (en) * 2009-11-24 2012-10-25 Nec Corporation Optical reception device and optical reception control method
CN103141037A (zh) * 2010-11-30 2013-06-05 三菱电机株式会社 光传送系统、光发送装置以及光接收装置
CN102170312A (zh) * 2011-04-26 2011-08-31 聊城大学 一种自适应偏振模色散补偿方法
CN102318241A (zh) * 2011-07-12 2012-01-11 华为技术有限公司 去延时方法、装置和光通信系统接收器
US20140050476A1 (en) * 2012-08-20 2014-02-20 Ciena Corporation Systems and methods for the compensation of nonlinear cross polarization and cross phase modulation in dual polarization coherent channels

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3531586A4 *

Also Published As

Publication number Publication date
EP3531586A4 (en) 2019-10-23
EP3531586B1 (en) 2022-01-26
CN109923803A (zh) 2019-06-21
US20190253177A1 (en) 2019-08-15
US10630419B2 (en) 2020-04-21
EP3531586A1 (en) 2019-08-28
CN109923803B (zh) 2020-12-15

Similar Documents

Publication Publication Date Title
US11616535B2 (en) Terminal apparatus and method for transmitting a reference signal
EP2591566B1 (en) Method and apparatus for carrier phase estimation and correction in a coherent optical system
JP5641092B2 (ja) 無線通信システム、受信装置、送信装置、無線通信方法、受信方法、及び送信方法
US8824501B2 (en) Performance enhancement through optical variants
US8340534B2 (en) Side band pilot tone for digital signal processing in polarization multiplexed coherent optical communication system
US11082131B2 (en) Optical signal transmission system and optical signal transmission method
WO2012106928A1 (zh) 一种多载波光信号的接收方法和装置
Pittala et al. Training-aided frequency-domain channel estimation and equalization for single-carrier coherent optical transmission systems
JP2015512189A (ja) コヒーレント光受信機における偏光多重分離のためのシステムおよび方法
US8837957B2 (en) Method and apparatus of using digital equalizer for cascaded wavelength selective switch compensation
Bai et al. Experimental demonstration of adaptive frequency-domain equalization for mode-division multiplexed transmission
KR20070085494A (ko) 이동 통신망에서의 신호 수신
WO2018076385A1 (zh) 接收机和数据接收方法
WO2019161763A1 (en) Coherent detection with remotely delivered local oscillators
Noé et al. Realtime digital signal processing in coherent optical PDM-QPSK and PDM-16-QAM transmission
WO2010031261A1 (zh) 偏振复用信号的发送、接收方法、装置及偏振复用系统
Liu et al. Channel estimation method using orthogonal sequences in frequency domain for 100-Gb/s polarization-division multiplexing single-carrier frequency domain equalization coherent optical communication systems
Wang et al. Data center optical interconnection based on IRZ-DPSK signal
CN117768032A (zh) 光通信中信号收发的方法、光发射机和光接收机
Li et al. An OFDM-based distributed transmission scheme for uncoordinated transmitters without carrier frequency and timing synchronization
JPH0548567A (ja) デイジタル多重無線方式
JPH09214466A (ja) スペクトラム拡散通信装置
WO2014205835A1 (zh) 数据传输方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016919620

Country of ref document: EP

Effective date: 20190520