WO2010031261A1 - 偏振复用信号的发送、接收方法、装置及偏振复用系统 - Google Patents

偏振复用信号的发送、接收方法、装置及偏振复用系统 Download PDF

Info

Publication number
WO2010031261A1
WO2010031261A1 PCT/CN2009/071964 CN2009071964W WO2010031261A1 WO 2010031261 A1 WO2010031261 A1 WO 2010031261A1 CN 2009071964 W CN2009071964 W CN 2009071964W WO 2010031261 A1 WO2010031261 A1 WO 2010031261A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
polarization
polarization multiplexed
identification
received electrical
Prior art date
Application number
PCT/CN2009/071964
Other languages
English (en)
French (fr)
Inventor
赵婵
陈子欢
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2010031261A1 publication Critical patent/WO2010031261A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/06Polarisation multiplex systems

Definitions

  • the present invention relates to the field of optical network technologies, and in particular, to a technology for transmitting and receiving polarization multiplexed signals. Background technique
  • PDM Physical Division Multiplexing
  • PDM Physical Division Multiplexing
  • each of the X' polarization state and the Y' polarization state of the receiving end contains different components of the X polarization state and the Y polarization state, so it is necessary to eliminate the crosstalk component by the equalization method, and restore the original X polarization state and Y polarization.
  • An effective balancing method is blind equalization. The corresponding relationship between the first received electrical signal and the equalized second received electrical signal after equalization of the blind equalized output and the first transmitted electrical signal and the second transmitted electrical signal at the transmitting end are randomly changed.
  • a sync overhead (SYNC) byte is inserted into the two transmit electrical signals (Data) corresponding to the X polarization state and the Y polarization state, the synchronization overhead byte contains a specific keyword, and the two transmit electrical signals are transmitted.
  • the keywords in are not the same.
  • the received electrical signals after the two equalizations at the receiving end are correlated with the keywords of X and Y, respectively. For example, if the equalized first received electrical signal has a greater correlation with the X-polarized keyword, the decision corresponds to the first transmitted electrical signal; and the equalized second received electrical signal has a greater correlation with the Y-polarized keyword. Then, the decision corresponds to the second transmit electrical signal. Otherwise, the decision is the opposite correspondence.
  • an additional synchronization overhead (SYNC) word is inserted into two two-way transmit electrical signals (Data) corresponding to the X-polarization state and the Y-polarization state.
  • Data two two-way transmit electrical signals
  • the transmission rate is required to rise, resulting in a certain degree of system performance degradation.
  • the solution can only be processed after equalization, depending on the effect of the equalization process, and there are many factors affecting the effect of the equalization process, such as the number of iterations of the equalization, the iteration step size, The tap length of the digital filter, etc. If the crosstalk signal component cannot be completely eliminated after the equalization, the keyword itself is affected by the crosstalk signal component, which may cause the related processing to fail, and the correspondence between the equalized signal and the transmitted signal cannot be determined.
  • Embodiments of the present invention provide a method and device for transmitting and receiving a polarization multiplexed signal, and a polarization multiplexing system.
  • a method for transmitting a polarization multiplexed signal includes:
  • a method for receiving a polarization multiplexed signal includes:
  • the polarization multiplexed signal is controlled for output according to the control signal.
  • a transmitting device for a polarization multiplexed signal includes:
  • An identification signal adding unit configured to add an identification signal to the at least one polarization multiplexed signal
  • a sending unit configured to send the polarization multiplexed signal
  • a receiving apparatus for a polarization multiplexed signal includes:
  • a signal receiving unit configured to receive a polarization multiplexed signal carrying the identification signal
  • a signal detecting unit configured to detect an identification signal carried in the polarization multiplexed signal, and acquire a control signal
  • a signal control unit configured to control the polarization multiplexed signal according to the control signal Output.
  • a polarization multiplexing system includes: a transmitting device for a polarization multiplexed signal and a receiving device for a polarization multiplexed signal;
  • the transmitting device of the polarization multiplexed signal is configured to add an identification signal to at least one polarization multiplexed signal and send it out;
  • the receiving device for the polarization multiplexed signal is configured to detect and receive a polarization multiplexing signal carrying the identification signal, and obtain a control signal.
  • the polarization multiplexing signal is controlled to be output according to the control signal.
  • the method and device for transmitting and receiving a polarization multiplexed signal and the polarization multiplexing system add an identification signal to a polarization multiplexed signal at a transmitting end, and detect the received polarization multiplexed signal at the receiving end.
  • the carried identification signal performs determination of a polarization state, thereby controlling the polarization multiplexed signal to be output according to a correspondence relationship between a polarization state of the polarization multiplexed signal and a transmission signal of the transmitting end. Therefore, the correctness and integrity of the polarization multiplexed signal received by the receiving end are guaranteed.
  • the present invention adds tracking signals by adding an identification signal to the polarization multiplexing signal, so that no additional overhead is imposed on the system, and the transmission speed is not It will increase, so as not to affect the deterioration of system performance.
  • the present invention uses the identification signal carried in the received polarization multiplexed signal to determine the polarization state, and controls the output of the polarization multiplexed signal without being limited. The equalization process improves the robustness of the polarization state decision.
  • FIG. 1 is a flowchart of a method for transmitting a polarization multiplexed signal according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for receiving a polarization multiplexed signal according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a receiving apparatus for a polarization multiplexed signal according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a polarization multiplexing system according to an embodiment of the present invention. Schematic;
  • FIG. 6 is a schematic diagram of signal transmission of a polarization multiplexing system according to an embodiment of the present invention
  • FIG. FIG. 7 is a schematic diagram of signal transmission of a polarization multiplexing system according to an embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of a blind equalizer in a polarization multiplexing system according to an embodiment of the present invention
  • FIG. 10 is a schematic structural diagram of an identification signal detecting device in a polarization multiplexing system according to an embodiment of the present invention
  • FIG. 11 is a schematic structural diagram of a receiving end of a polarization multiplexing system according to an embodiment of the present invention.
  • a method for transmitting a polarization multiplexed signal according to an embodiment of the present invention in the process of implementing an embodiment of the present invention, includes:
  • the implementation manner of adding the identification signal to the at least one polarization multiplexing signal includes: adding, by using an external modulation method, the polarization multiplexing signal of the at least one optical signal to be added to the identification signal; or, by using a direct modulation method, at least A polarization multiplexed signal that transmits an electrical signal adds an identification signal.
  • a method for receiving a polarization multiplexed signal according to an embodiment of the present invention in the process of implementing an embodiment of the present invention, includes:
  • the polarization multiplexed signal carrying the identification signal includes: a first received electrical signal carrying the identification signal and a second received electrical signal carrying the identification signal; and the step 202 further includes:
  • a control signal is generated based on the determined polarization multiplexed signal.
  • a device for transmitting a polarization multiplexed signal includes:
  • the identification signal adding unit 301 is configured to add the identification signal to the at least one polarization multiplexed signal
  • the sending unit 302 is configured to send the polarization multiplexed signal.
  • the identifier signal adding unit 301 further includes:
  • An external modulation subunit configured to add, by using an external modulation method, a polarization multiplexing signal of the at least one transmitted optical signal to the identification signal;
  • the direct modulation sub-unit is configured to add the polarization multiplexing signal of the at least one transmitting electrical signal to the identification signal by using a direct modulation method.
  • a receiving device for a polarization multiplexed signal includes:
  • the signal receiving unit 401 is configured to receive the polarization multiplexed signal carrying the identification signal, and the signal detecting unit 402 is configured to detect the identification signal carried in the polarization multiplexed signal, and acquire the control signal;
  • the signal control unit 403 is configured to control the polarization multiplexed signal to be output according to the control signal.
  • the signal detection unit 402 includes: a first multiplexed electrical signal carrying the identification signal and a second received electrical signal carrying the identification signal;
  • a power detection subunit configured to detect a power and a signal of the identifier signal carried by the first received electrical signal Receiving the power of the identification signal carried by the electrical signal;
  • a comparison subunit configured to compare a power of the identifier signal carried by the first received electrical signal with a power of the identifier signal carried by the second received electrical signal, and obtain a comparison result
  • a determining subunit configured to determine, according to the comparison result, the received electrical signal with a larger power as a polarization multiplexed signal carrying the identification signal sent by the transmitting end;
  • a polarization multiplexing system includes: a transmitting device 501 for polarization multiplexing signals and a receiving device 502 for polarization multiplexing signals; wherein the polarization complex a signal transmitting device 501, configured to add an identification signal to at least one polarization multiplexed signal and send it out;
  • the receiving device 502 of the polarization multiplexed signal is configured to detect and receive a polarization multiplexed signal carrying the identification signal, and obtain a control signal.
  • the polarization multiplexing signal is controlled to be output according to the control signal.
  • the transmitting device 501 of the polarization multiplexing signal may further include:
  • An identification signal adding unit configured to add an identification signal to the at least one polarization multiplexed signal
  • a sending unit configured to send the polarization multiplexed signal
  • the identifier signal adding unit further includes:
  • An external modulation subunit configured to add, by using an external modulation method, a polarization multiplexing signal of the at least one transmitted optical signal to the identification signal;
  • the direct modulation sub-unit is configured to add the polarization multiplexing signal of the at least one transmitting electrical signal to the identification signal by using a direct modulation method.
  • the receiving device 502 of the polarization multiplexing signal includes:
  • a signal receiving unit configured to receive a polarization multiplexed signal carrying the identification signal
  • a signal detecting unit configured to detect an identification signal carried in the polarization multiplexed signal, and acquire a control signal
  • a signal control unit configured to control the polarization multiplexed signal according to the control signal Output.
  • the signal detecting unit further includes: a first receiving electrical signal carrying the identification signal and a second receiving electrical signal carrying the identification signal;
  • a power detection subunit configured to detect a power of the identification signal carried by the first received electrical signal and a power of the identification signal carried by the second received electrical signal
  • a comparison subunit configured to compare a power of the identifier signal carried by the first received electrical signal with a power of the identifier signal carried by the second received electrical signal, and obtain a comparison result
  • a determining subunit configured to determine, according to the comparison result, the received electrical signal with a larger power as a polarization multiplexed signal carrying the identification signal sent by the transmitting end;
  • a control signal generating subunit configured to generate a control signal according to the determined polarization multiplexed signal.
  • FIG. 6 is a schematic diagram of signal transmission of a polarization multiplexing system according to an embodiment of the present invention.
  • the system includes: a transmitting end and a receiving end.
  • the transmitting end includes an electro-optical converter and a combiner; when the transmitting end receives the first transmitting electrical signal and the second transmitting electrical signal, adding a marking signal, that is, a Y-polarized state signal, to the second transmitting electrical signal by direct modulation Carry the identification signal.
  • a marking signal that is, a Y-polarized state signal
  • each of the transmitted electrical signals carries a signal bit rate
  • first transmit electrical signal and the second transmit electrical signal into a first transmit optical signal and a second transmit optical signal, where the first transmit optical signal is an X polarization state, and the second transmit optical signal is a Y
  • the polarization state, the X polarization state and the Y polarization state are orthogonal, and are combined into one optical signal by the combiner, transmitted through the optical fiber, and sent to the receiving end.
  • the receiving end includes: a beam splitter, a photoelectric converter, an equalizer, an identification signal detector, and a punch-through/intersection device.
  • the identification signal detector is the signal detection unit; when the beam splitter receives the optical signal transmitted by the light, the beam splitter at the receiving end divides the optical signal into a receiving optical signal and a second receiving optical signal, wherein the first received optical signal is an X' polarization state, and the second received optical signal is Y, a polarization state, an X, a polarization state, and a Y state, and the polarization states are orthogonal.
  • the first received optical signal and the second received optical signal are respectively photoelectrically converted into a first received electrical signal and a second received electrical signal.
  • the X' polarization state and the Y' polarization state at the receiving end each contain different components of the X polarization state and the ⁇ polarization state, so The crosstalk component is eliminated by the equalization method, and the original X-polarized state and the ⁇ -polarized state corresponding to the transmitted electrical signal are recovered.
  • An effective equalization method is blind equalization. As shown in FIG. 8, the first received electrical signal and the second received electrical signal are processed by digital filters of different coefficients (Hxx, Hxy, Hyx, Hyy) to obtain an equalization.
  • the subsequent first received electrical signal and the equalized second received electrical signal separate the original first transmitted electrical signal and the second transmitted electrical signal.
  • Mature blind equalization algorithms include constant modulus algorithm (CMA) and least mean square algorithm (LMS). Assuming that the first received electrical signal, the second received electrical signal, the equalized first received electrical signal, and the equalized second received electrical signal are respectively represented as Xin, Yin, Xout, Yout, the equalization process is
  • the blind equalized input signal contains both the original signal component carrying the identification signal and the crosstalk signal component at the transmitting end, and the two components occupy different proportions in the input signal.
  • the characteristic of blind equalization is that the output signal after equalization is the signal corresponding to the component of the main proportion.
  • the first received electrical signal includes a signal component corresponding to an X polarization state and a Y polarization state, wherein a signal component corresponding to the X polarization state occupies a main proportion, and a signal component corresponding to the Y polarization state occupies a minor ratio
  • the equalized A receiving electrical signal is a first transmitting electrical signal corresponding to an X polarization state
  • a second receiving electrical signal includes a signal component corresponding to an X polarization state and a Y polarization state, wherein a signal component corresponding to the Y polarization state is dominant, and an X polarization state
  • the corresponding signal component occupies a secondary ratio
  • the equalized second received electrical signal is a second transmitted electrical signal corresponding to the Y polarization state.
  • the equalized first received electrical signal is the second transmitted signal corresponding to the Y polarization state
  • the equalized second received electrical signal is the first transmitted signal corresponding to the X polarization state. Due to the prior art, the correspondence between the blind equalized output signal and the original signal of the transmitting end is randomly changed. Therefore, the present invention passes the identification signal and the second reception carried in the first received electrical signal by the identification signal detector before inputting the first received electrical signal and the second received electrical signal to the input end of the blind equalizer.
  • the identification signal carried in the electrical signal is used for power detection; the power of the identification signal carried in the first received electrical signal is P1, and the power of the identification signal carried in the second received electrical signal is P2;
  • the module for identifying the signal detection sends out a control signal
  • the punch-through/cross device performs cross processing
  • the first port of the punch-through/cross device outputs a second received electrical signal
  • the second port outputs a first received electrical signal.
  • the first transmit electrical signal corresponding to the X polarization state of the first received electrical signal is dominant, and the second transmit electrical signal corresponding to the Y polarization state of the second received electrical signal is dominant, and the module for identifying the signal is detected.
  • a control signal is sent, the punch-through/cross device performs punch-through processing, the first port of the punch-through/cross device outputs a first received electrical signal, and the second port outputs a second received electrical signal.
  • the transmitting end adds the identification signal to the transmitted light signal of the X-polarized state, there is an opposite decision, that is, if P1>P2, the punch-through/crossing device performs the punch-through processing, and the first port of the punch-through/crossing device outputs the first received electrical signal, The second port outputs a second received electrical signal. If P P2, the punch-through/cross device performs cross processing, the first port of the punch-through/cross device outputs a second received electrical signal, and the second port outputs a first received electrical signal.
  • the identification signal detector is disposed at a signal input end of the blind equalizer; the punch-through/cross-over device may be disposed at a signal input end of the blind equalizer or at a signal output end of the blind equalizer. Since the punch-through/interleave device is controlled by the detection signal of the identification signal detector and is not limited to the blind equalizer, it is only necessary to ensure that the identification signal detector is disposed at the signal input end of the blind equalizer.
  • the detection compares P1 with The size of P2 can be used to detect PI and P2 multiple times. For each comparison, the comparison is performed for the majority decision. For example, P1 and P2 are detected 5 times, of which 3 times P1>P2, 2 times P P2, and finally P1>P2.
  • the above solution ensures that the equalized first received electrical signal of the blind equalized output corresponds to the first transmitted electrical signal, and the second received electrical signal corresponds to the second transmitted electrical signal, thereby realizing tracking of the two polarization multiplexed signals, thereby ensuring The correctness and integrity of the polarization multiplexed signal received at the receiving end.
  • FIG. 7 is a schematic diagram of transmission of a polarization multiplexing system according to an embodiment of the present invention.
  • the system includes: a transmitting end and a receiving end.
  • the embodiment when the transmitting end receives the first transmitting electrical signal and the second transmitting electrical signal, the embodiment adds an identification signal, that is, a Y-polarized state signal, to the second transmitted optical signal by means of external modulation. Carry the identification signal.
  • the combiner used in Figures 6 and 7 may be a polarization combiner or a coupler, and the beam splitter may be a polarization beam splitter or a combined beam splitter; the combined beam splitter is connected by a coupler
  • the analyzer consists of the analyzer, as shown in Figure 9.
  • the coupler splits the beam into two paths, one connected to the first analyzer and the other connected to the second analyzer.
  • the polarization axes of the first analyzer and the second analyzer are orthogonal to each other such that the two output beams are polarized orthogonally.
  • the identification signals may be analog, digital, high frequency, low frequency, amplitude modulated, frequency modulated, phase modulated, and the like. Different identification signals correspond to different detection methods.
  • the identification signal of the amplitude modulation can use the direct detection mode, and the identification signals of the frequency modulation and phase modulation can use the coherent detection mode.
  • the identification signal of the low frequency amplitude modulation as an example, the implementation of the identification signal detecting device is as shown in Fig. 10.
  • the identification signal detecting device comprises: a power tap (tap), a low pass filter, a power detector, a power comparator and a control signal generator.
  • the power splitter is configured to divide the first received electrical signal and the second received electrical signal into a small portion of power, and filters the first received electrical signal and the second received electrical signal through a low pass filter. Identification signal, the power detector detects the low frequency identification signal, and the first received electrical signal The identification signal power of the signal power PI and the second received electrical signal is P2.
  • the crossing/crossing device is controlled by the control signal generator generating a cross control signal or a punch-through control signal according to the comparison result. Among them, the punch-through/crossing device can be realized by a switch.
  • FIG. 11 is a schematic structural diagram of a receiving end of a polarization multiplexing system according to an embodiment of the present invention.
  • the receiving end of this embodiment is a coherent receiver.
  • a local laser is added, and the output of the local laser is divided into two by a coupler, which are respectively mixed with the first and second received optical signals.
  • the mixed optical signal is further subjected to photo-electric conversion, and the first received electrical signal and the second received electrical signal are detected by the identification signal, thereby controlling the signal output of the feedthrough/crossing device.
  • the output port connected to the punch-through/intersection device may be an input port of a blind equalizer, or an output port of a blind equalizer, or may be connected to a digital signal processing module, and the digital signal processing module can implement clock recovery. Equilibrium processing, carrier recovery, decision and other functions.
  • the method and device for transmitting and receiving a polarization multiplexed signal and the polarization multiplexing system add an identification signal to a polarization multiplexed signal at a transmitting end, and detect the received polarization multiplexed signal at the receiving end.
  • the carried identification signal performs determination of a polarization state, thereby controlling the polarization multiplexed signal to be output according to a correspondence relationship between a polarization state of the polarization multiplexed signal and a transmission signal of the transmitting end. Therefore, the correctness and integrity of the polarization multiplexed signal received by the receiving end are guaranteed.
  • the present invention adds tracking signals by adding an identification signal to the polarization multiplexing signal, so that no additional overhead is imposed on the system, and the transmission speed is not It will increase, so as not to affect the deterioration of system performance.
  • the present invention uses the identification signal carried in the received polarization multiplexed signal to determine the polarization state, and controls the output of the polarization multiplexed signal without being limited. The equalization process improves the robustness of the polarization state decision.
  • All or part of the steps of the embodiment method may be completed by a program instructing related hardware, and the program may be stored in a computer readable storage medium, and when executed, the program includes the method embodiment as described above.
  • the storage medium is, for example, a ROM/RAM, a magnetic disk, an optical disk, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Description

偏振复用信号的发送、 接收方法、 装置及偏振复用系统 本申请要求于 2008 年 9 月 19 日提交中国专利局、 申请号为 200810211702.9、 发明名称为"偏振复用信号的发送、 接收方法、 装置及偏振 复用系统"的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及光网络技术领域, 尤其涉及偏振复用信号的发送、 接收技术。 背景技术
PDM ( Polarization Division Multiplexing, 偏振复用)技术, 由于光束在 光纤的传输过程中会发生随机双折射, 所以会引起两个正交偏振态的相互串 扰。 也就是说, 接收端的 X'偏振态和 Y'偏振态中各自都包含 X偏振态和 Y 偏振态的不同分量, 因此需要通过均衡的方法消除串扰分量,恢复出原来的 X 偏振态和 Y偏振态对应的发射电信号。 一种行之有效的均衡方法是盲均衡。 盲均衡输出的均衡后第一的接收电信号和均衡后第二的接收电信号与发射端 的第一发射电信号和第二发射电信号的对应关系会随机改变。 因此, 在发射 端, X偏振态和 Y偏振态对应的两路发射电信号 (Data ) 中插入同步开销 ( SYNC )字节, 同步开销字节中包含特定的关键字, 并且两路发射电信号中 的关键字不相同。
接收端两路均衡后的接收电信号分别与 X和 Y的关键字作相关处理。 例 如, 均衡后的第一接收电信号与 X偏振态的关键字相关性较大, 则判决对应 第一发射电信号;均衡后的第二接收电信号与 Y偏振态的关键字相关性较大, 则判决对应第二发射电信号。 反之则判决为相反的对应关系。
在实现本发明的过程中, 发明人发现现有技术中至少存在如下问题: 在发射端, X偏振态和 Y偏振态对应的两路发射电信号 (Data ) 中额外 插入同步开销(SYNC )字节, 要求传输速率上升, 从而导致系统性能在一定 程度的下降。 另外, 该解决方案只能在均衡后作相关处理, 依赖于均衡处理 的效果, 而影响均衡处理效果的因素较多, 如均衡的迭代次数、 迭代步长、 数字滤波器的抽头长度等。 如果均衡后不能完全消除串扰信号分量, 关键字 本身就受到串扰信号分量的影响, 可能引起相关处理失效, 无法判决均衡后 信号与发射信号的对应关系。
发明内容
为了解决现有技术中, 均衡输出信号与发射端原始信号对应关系随机变 化的问题。 本发明实施例提供了一种偏振复用信号的发送、 接收方法、 装置 及偏振复用系统。
在实现本发明的过程中, 本发明实施例提供的一种偏振复用信号的发送 方法, 包括:
将至少一个偏振复用信号添加标识信号;
将所述偏振复用信号发送出去。
在实现本发明的过程中, 本发明实施例提供的一种偏振复用信号的接收 方法, 包括:
接收携带有标识信号的偏振复用信号;
检测所述偏振复用信号中携带的标识信号, 获取控制信号;
根据所述的控制信号 , 控制所述偏振复用信号进行输出。
在实现本发明的过程中, 本发明实施例提供的一种偏振复用信号的发送 装置, 包括:
标识信号添加单元, 用于将至少一个偏振复用信号添加标识信号; 发送单元, 用于将所述偏振复用信号发送出去。
在实现本发明的过程中, 本发明实施例提供的一种偏振复用信号的接收 装置, 包括:
信号接收单元, 用于接收携带有标识信号的偏振复用信号;
信号检测单元, 用于检测所述偏振复用信号中携带的标识信号, 获取控 制信号;
信号控制单元, 用于根据所述的控制信号, 控制所述偏振复用信号进行 输出。
在实现本发明的过程中, 本发明实施例提供的一种偏振复用系统, 包括: 偏振复用信号的发送装置与偏振复用信号的接收装置; 其中,
所述的偏振复用信号的发送装置, 用于将至少一个偏振复用信号添加标 识信号并将其发送出去;
所述的偏振复用信号的接收装置, 用于将接收携带有标识信号的偏振复 用信号进行检测, 获取控制信号; 根据所述的控制信号, 控制所述偏振复用 信号进行输出。
本发明实施例提供的偏振复用信号的发送、 接收方法、 装置及偏振复用 系统通过在发射端的偏振复用信号中添加标识信号, 并在接收端通过检测接 收到的偏振复用信号中所携带的标识信号进行偏振状态的判断, 从而控制所 述偏振复用信号按照所述偏振复用信号的偏振状态与发射端发射信号的对应 关系进行输出。 因此, 保证了接收端所接收的偏振复用信号的正确性与完整 性。 与现有技术中通过增加同步开销关键字的技术方案相比, 本发明是通过 将标识信号添加到偏振复用信号中进行跟踪传输, 所以不会给系统带来额外 的开销, 传输速度也不会增加, 从而不会影响系统性能的恶化; 而且本发明 采用检测接收到的偏振复用信号中所携带的标识信号进行偏振状态的判断, 控制所述偏振复用信号的输出, 不受限于均衡处理, 从而提高了偏振状态判 决的鲁棒性。
附图说明
图 1为本发明实施例提供的一种偏振复用信号的发送方法流程图; 图 2为本发明实施例提供的一种偏振复用信号的接收方法流程图; 图 3为为本发明实施例提供的一种偏振复用信号的发送装置结构示意图; 图 4为本发明实施例提供的一种偏振复用信号的接收装置结构示意图; 图 5为本发明实施例提供的一种偏振复用系统结构示意图;
图 6为本发明实施例提供的一种偏振复用系统信号传输示意图; 图 7为本发明实施例提供的一种偏振复用系统信号传输示意图; 图 8为本发明实施例提供的一种偏振复用系统中盲均衡器结构示意图; 图 9为本发明实施例提供的一种偏振复用系统中组合分束器结构示意图; 图 10为本发明实施例提供的一种偏振复用系统中标识信号检测装置结构 示意图;
图 11为本发明实施例提供的一种偏振复用系统接收端结构示意图。
具体实施方式
下面结合附图对本发明实施例提供的偏振复用信号的发送、 接收方法、 装置及偏振复用系统进行详细描述。
如图 1 所示, 本发明实施例提供的一种偏振复用信号的发送方法, 在实 现本发明实施例的过程中, 该方法, 包括:
101 : 将至少一个偏振复用信号添加标识信号;
102: 将所述偏振复用信号发送出去。
其中, 所述的将至少一个偏振复用信号添加标识信号的实现方式, 包括: 通过外调制方式, 将至少一个发射光信号的偏振复用信号添加标识信号; 或者, 通过直接调制方式, 将至少一个发射电信号的偏振复用信号添加标识 信号。
如图 2所示, 本发明实施例提供的一种偏振复用信号的接收方法, 在实 现本发明实施例的过程中, 该方法, 包括:
201 : 接收携带有标识信号的偏振复用信号;
202: 检测所述偏振复用信号中携带的标识信号, 获取控制信号;
203: 根据所述的控制信号, 控制所述偏振复用信号进行输出。
其中, 所述的携带有标识信号的偏振复用信号, 包括: 携带有标识信号 的第一接收电信号和携带有标识信号的第二接收电信号; 则所述步骤 202, 进 一步包括:
检测第一接收电信号所携带标识信号的功率与第二接收电信号所携带标 识信号的功率;
比较所述第一接收电信号所携带标识信号的功率与第二接收电信号所携 带标识信号的功率, 获取比较结果;
根据所述的比较结果, 将所述功率较大的接收电信号判定为发送端发送 的携带标识信号的偏振复用信号;
根据所述判定的偏振复用信号生成控制信号。
如图 3 所示, 为本发明实施例提供的一种偏振复用信号的发送装置, 该 装置, 包括:
标识信号添加单元 301 , 用于将至少一个偏振复用信号添加标识信号; 发送单元 302, 用于将所述偏振复用信号发送出去。
其中, 所述标识信号添加单元 301 , 进一步, 包括:
外调制子单元, 用于通过外调制方式, 将至少一个发射光信号的偏振复 用信号添加标识信号;
直接调制子单元, 用于通过直接调制方式, 将至少一个发射电信号的偏 振复用信号添加标识信号。
如图 4所示, 为本发明实施例提供的一种偏振复用信号的接收装置, 该 装置, 包括:
信号接收单元 401 , 用于接收携带有标识信号的偏振复用信号; 信号检测单元 402, 用于检测所述偏振复用信号中携带的标识信号, 获取 控制信号;
信号控制单元 403 , 用于根据所述的控制信号, 控制所述偏振复用信号进 行输出。
其中, 当所述的携带有标识信号的偏振复用信号, 包括: 携带有标识信 号的第一接收电信号和携带有标识信号的第二接收电信号; 则所述信号检测 单元 402, 包括:
功率检测子单元, 用于检测第一接收电信号所携带标识信号的功率与第 二接收电信号所携带标识信号的功率;
比较子单元, 用于比较所述第一接收电信号所携带标识信号的功率与第 二接收电信号所携带标识信号的功率, 获取比较结果;
判断子单元, 用于根据所述的比较结果, 将所述功率较大的接收电信号 判定为发送端发送的携带标识信号的偏振复用信号;
控制信号生成子单元, 用于根据所述判定的偏振复用信号生成控制信号。 如图 5所示, 为本发明实施例提供的一种偏振复用系统, 该系统, 包括: 偏振复用信号的发送装置 501与偏振复用信号的接收装置 502; 其中, 所述的偏振复用信号的发送装置 501 ,用于将至少一个偏振复用信号添加 标识信号并将其发送出去;
所述的偏振复用信号的接收装置 502,用于将接收携带有标识信号的偏振 复用信号进行检测, 获取控制信号; 根据所述的控制信号, 控制所述偏振复 用信号进行输出。
其中, 所述的偏振复用信号的发送装置 501 , 进一步可以包括:
标识信号添加单元, 用于将至少一个偏振复用信号添加标识信号; 发送单元, 用于将所述偏振复用信号发送出去。
所述的标识信号添加单元, 进一步包括:
外调制子单元, 用于通过外调制方式, 将至少一个发射光信号的偏振复 用信号添加标识信号;
直接调制子单元, 用于通过直接调制方式, 将至少一个发射电信号的偏 振复用信号添加标识信号。
所述的偏振复用信号的接收装置 502, 包括:
信号接收单元, 用于接收携带有标识信号的偏振复用信号;
信号检测单元, 用于检测所述偏振复用信号中携带的标识信号, 获取控 制信号;
信号控制单元, 用于根据所述的控制信号, 控制所述偏振复用信号进行 输出。
当所述的携带有标识信号的偏振复用信号, 包括: 携带有标识信号的第 一接收电信号和携带有标识信号的第二接收电信号; 则所述信号检测单元, 进一步包括:
功率检测子单元, 用于检测第一接收电信号所携带标识信号的功率与第 二接收电信号所携带标识信号的功率;
比较子单元, 用于比较所述第一接收电信号所携带标识信号的功率与第 二接收电信号所携带标识信号的功率, 获取比较结果;
判断子单元, 用于根据所述的比较结果, 将所述功率较大的接收电信号 判定为发送端发送的携带标识信号的偏振复用信号;
控制信号生成子单元, 用于根据所述判定的偏振复用信号生成控制信号。 为了更加具体的说明本发明, 以下通过具体的实施例进行详细的说明。 以下实施例通过以单波比特率 40Gb/s的偏振复用系统为例, 进行详细说明。
如图 6所示, 为本发明实施例提供的一种偏振复用系统信号传输示意图; 该系统包括: 发射端和接收端。
所述的发射端包括电光转换器、 合束器; 当发送端接收到第一发射电信 号和第二发射电信号, 通过直接调制的方式给第二发射电信号添加标识信号 即 Y 偏振态信号携带标识信号。 其中, 每路发射电信号携带信号比特率为
20Gb/s。
接着, 将所述第一发射电信号和第二发射电信号经过电光转换为第一发 射光信号和第二发射光信号, 其中第一发射光信号为 X偏振态, 第二发射光 信号为 Y偏振态, X偏振态和 Y偏振态正交, 由合束器合成为一路光信号, 经过光纤传输, 发送给接收端。
所述的接收端包括: 分束器、 光电转换器、 均衡器、 标识信号检测器和 穿通 /交叉装置。 其中, 所述的标识信号检测器即所述的信号检测单元; 当分 束器接收到光线传输过来的光信号时, 接收端的分束器将所述光信号分成第 一接收光信号和第二接收光信号, 其中第一接收光信号为 X'偏振态, 第二接 收光信号为 Y,偏振态, X,偏振态和 Y,偏振态正交。 第一接收光信号和第二接 收光信号分别经过光电转换, 转换为第一接收电信号和第二接收电信号。
由于光束在光纤中传输发生随机双折射, 引起两个正交偏振态的相互串 扰, 接收端的 X'偏振态和 Y'偏振态中各自都包含 X偏振态和 Υ偏振态的不 同分量, 因此需要通过均衡的方法消除串扰分量, 恢复出原来的 X偏振态和 Υ偏振态对应的发射电信号。 一种行之有效的均衡方法是盲均衡, 如图 8所 示, 第一接收电信号和第二接收电信号由不同系数(Hxx、 Hxy、 Hyx、 Hyy ) 的数字滤波器进行处理, 得到均衡后的第一接收电信号和均衡后的第二接收 电信号, 分离出原来的第一发射电信号和第二发射电信号。 成熟的盲均衡算 法有恒模算法(CMA )和最小均方算法 (LMS )等。 假设第一接收电信号、 第二接收电信号、 均衡后的第一接收电信号、 均衡后的第二接收电信号分别 表示为 Xin、 Yin, Xout、 Yout, 则均衡过程为
Figure imgf000010_0001
盲均衡的输入信号中既含有发射端的携带标识信号的原始信号分量又含 有串扰信号分量, 两种分量在输入信号中分别占有不同的比例。 盲均衡的特 点在于均衡后的输出信号为占主要比例的分量对应的信号。 例如, 第一接收 电信号中含有 X偏振态和 Y偏振态对应的信号分量,其中 X偏振态对应的信 号分量占主要比例, Y偏振态对应的信号分量占次要比例, 则均衡后的第一 接收电信号为 X偏振态对应的第一发射电信号; 第二接收电信号中含有 X偏 振态和 Y偏振态对应的信号分量,其中 Y偏振态对应的信号分量占主要比例, X偏振态对应的信号分量占次要比例, 则均衡后的第二接收电信号为 Y偏振 态对应的第二发射电信号。 反之, 则均衡后的第一接收电信号为 Y偏振态对 应的第二发射信号, 均衡后的第二接收电信号为 X偏振态对应的第一发射信 号。 由于现有技术中, 盲均衡输出信号与发射端原始信号对应关系会随机变 化, 所以本发明在将第一接收电信号和第二接收电信号输入盲均衡器的输入 端之前, 通过标识信号检测器对所述的第一接收电信号中携带的标识信号和 第二接收电信号中携带的标识信号进行功率检测; 设第一接收电信号中携带 的标识信号功率为 P1 , 第二接收电信号中携带的标识信号功率为 P2;
经过标识信号检测器比较, 若 P1>P2, 则第一接收电信号中 Y偏振态对 应的第二发射电信号占主要比例, 第二接收电信号中 X偏振态对应的第一发 射电信号占主要比例, 标识信号检测的模块发出控制信号, 穿通 /交叉装置进 行交叉处理, 穿通 /交叉装置第一端口输出第二接收电信号、 第二端口输出第 一接收电信号。
若 P P2, 则第一接收电信号中 X偏振态对应的第一发射电信号占主要 比例, 第二接收电信号中 Y偏振态对应的第二发射电信号占主要比例, 标识 信号检测的模块发出控制信号, 穿通 /交叉装置进行穿通处理, 穿通 /交叉装置 第一端口输出第一接收电信号、 第二端口输出第二接收电信号。
由于接收电信号中原始信号分量和串扰信号分量占有比例是实时地、 随 机地改变的, P1与 P2完全相等的情况为瞬时的小概率事件, 可以忽略不计。
如果发射端在 X偏振态的发射光信号中加入标识信号,则有相反的判决, 即若 P1>P2, 穿通 /交叉装置进行穿通处理, 穿通 /交叉装置第一端口输出第一 接收电信号、 第二端口输出第二接收电信号。 若 P P2, 穿通 /交叉装置进行 交叉处理, 穿通 /交叉装置第一端口输出第二接收电信号、 第二端口输出第一 接收电信号。
所述的标识信号检测器设置于盲均衡器的信号输入端; 所述的穿通 /交叉 装置可以设置于盲均衡器的信号输入端也可以设置于盲均衡器的信号输出 端。因为所述的穿通 /交叉装置是由所述的标识信号检测器的检测信号所控制, 不受限于盲均衡器, 所以只要确保标识信号检测器设置于盲均衡器的信号输 入端即可。
需要注意的是, 为了保证标识信号检测器的检测准确性, 检测比较 P1与 P2的大小, 可以多次检测 PI与 P2, 每检测一次作一次比较, 比较结果进行 多数判决。 例如检测 P1与 P2 5次, 其中有 3次 P1>P2, 有 2次 P P2, 最后 判决 P1>P2。
上述解决方案确保盲均衡输出的均衡后的第一接收电信号对应第一发射 电信号, 第二接收电信号对应第二发射电信号, 从而实现了对两路偏振复用 信号的跟踪, 保证了接收端接收的偏振复用信号的正确性与完整性。
如图 7所示, 为本发明实施例提供的一种偏振复用系统传输示意图; 该 系统包括: 发射端和接收端。
与图 6 的实现方案相比, 当发送端接收到第一发射电信号和第二发射电 信号, 本实施例通过外调制的方式给第二发射光信号添加标识信号, 也即 Y 偏振态信号携带标识信号。
其他实现过程与图 6相同, 此处不再贅述。
图 6与图 7中所使用的合束器可以是偏振合束器或者耦合器, 分束器可 以是偏振分束器或者组合分束器; 所述的组合分束器由一个耦合器连接两个 检偏器组成, 如图 9所示。 耦合器将光束分成两路, 一路连接第一检偏器, 另一路连接第二检偏器。 其中第一检偏器和第二检偏器的偏振轴相互正交, 使得两路输出光束偏振正交。
在实现本发明实施例的过程中, 所述的标识信号可以是模拟的、 数字的、 高频的、 低频的、 调幅的、 调频的和调相的等等。 不同的标识信号对应不同 的检测方式, 调幅的标识信号可以使用直接检测方式, 调频和调相的标识信 号可以使用相干检测方式。 以低频调幅的标识信号为例, 标识信号检测装置 的实施例如图 10所示。其中,所述的标识信号检测装置, 包括: 功分器(tap ), 低通滤波器、 功率检测器、 功率比较器和控制信号生成器。
所述的功分器用于将所述第一接收电信号和第二接收电信号分出一小部 分功率, 经过低通滤波器滤波过滤出第一接收电信号的标识信号与第二接收 电信号的标识信号, 功率检测器检测低频的标识信号, 第一接收电信号的标 识信号功率为 PI和第二接收电信号的标识信号功率为 P2。根据比较结果由控 制信号生成器生成交叉控制信号或者穿通控制信号, 来控制穿通 /交叉装置。 其中, 穿通 /交叉装置可以用开关实现。
如图 11所示, 为本发明实施例提供的一种偏振复用系统接收端结构示意 图。 与图 6、 图 7所示的偏振复用系统接收端相比, 该实施例的接收端为相干 接收机。 该实施例中增加了一个本地激光器, 本地激光器的输出用耦合器分 为两路, 分别与第一和第二接收光信号进行混频。 混频后的光信号再进行光 电转换, 第一接收电信号与第二接收电信号进行标识信号检测, 从而控制穿 通 /交叉装置进信号输出。 所述与穿通 /交叉装置的输出端口相连的可以是盲均 衡器的输入端口, 也可以是盲均衡器的输出端口, 还可以连接一个数字信号 处理模块, 该数字信号处理模块可以实现时钟恢复、 均衡处理、 载波恢复、 判决等功能。
该实施例通过标识信号检测的结果来控制穿通 /交叉装置信号输出的实现 过程与图 6相同, 此处不再贅述。
本发明实施例提供的偏振复用信号的发送、 接收方法、 装置及偏振复用 系统通过在发射端的偏振复用信号中添加标识信号, 并在接收端通过检测接 收到的偏振复用信号中所携带的标识信号进行偏振状态的判断, 从而控制所 述偏振复用信号按照所述偏振复用信号的偏振状态与发射端发射信号的对应 关系进行输出。 因此, 保证了接收端所接收的偏振复用信号的正确性与完整 性。 与现有技术中通过增加同步开销关键字的技术方案相比, 本发明是通过 将标识信号添加到偏振复用信号中进行跟踪传输, 所以不会给系统带来额外 的开销, 传输速度也不会增加, 从而不会影响系统性能的恶化; 而且本发明 采用检测接收到的偏振复用信号中所携带的标识信号进行偏振状态的判断, 控制所述偏振复用信号的输出, 不受限于均衡处理, 从而提高了偏振状态判 决的鲁棒性。
通过以上的实施方式的描述, 本领域普通技术人员可以理解: 实现上述 实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成, 所述的程序可以存储于一计算机可读取存储介质中, 该程序在执行时, 包括 如上述方法实施例的步骤, 所述的存储介质,如: ROM/RAM、磁碟、 光盘等。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应以权利要求的保护范围为准。

Claims

权利 要求 书
1、 一种偏振复用信号的发送方法, 其特征在于, 包括:
将至少一个偏振复用信号添加标识信号;
将所述偏振复用信号发送出去。
2、 根据权利要求 1所述的偏振复用信号的发送方法, 其特征在于, 所述将 至少一个偏振复用信号添加标识信号的实现方式, 包括:
通过外调制方式, 将至少一个发射光信号的偏振复用信号添加标识信号; 或者, 通过直接调制方式, 将至少一个发射电信号的偏振复用信号添加标识信 号。
3、 一种偏振复用信号的接收方法, 其特征在于, 包括:
接收携带有标识信号的偏振复用信号;
检测所述偏振复用信号中携带的标识信号, 获取控制信号;
根据所述的控制信号 , 控制所述偏振复用信号进行输出。
4、 根据权利要求 3所述的偏振复用信号的接收方法, 其特征在于, 所述的 携带有标识信号的偏振复用信号, 包括: 携带有标识信号的第一接收电信号和 携带有标识信号的第二接收电信号; 则所述检测所述偏振复用信号中携带的标 识信号, 获取控制信号的步骤, 包括:
检测第一接收电信号所携带标识信号的功率与第二接收电信号所携带标识 信号的功率;
比较所述第一接收电信号所携带标识信号的功率与第二接收电信号所携带 标识信号的功率, 获取比较结果;
根据所述的比较结果, 将所述功率较大的接收电信号判定为发送端发送的 携带标识信号的偏振复用信号;
根据所述判定的偏振复用信号生成控制信号。
5、 一种偏振复用信号的发送装置, 其特征在于, 包括:
标识信号添加单元, 用于将至少一个偏振复用信号添加标识信号; 发送单元, 用于将所述偏振复用信号发送出去。
6、 根据权利要求 5所述的偏振复用信号的发送装置, 其特征在于, 所述标 识信号添加单元, 包括:
外调制子单元, 用于通过外调制方式, 将至少一个发射光信号的偏振复用 信号添加标识信号;
直接调制子单元, 用于通过直接调制方式, 将至少一个发射电信号的偏振 复用信号添加标识信号。
7、 一种偏振复用信号的接收装置, 其特征在于, 包括:
信号接收单元, 用于接收携带有标识信号的偏振复用信号;
信号检测单元, 用于检测所述偏振复用信号中携带的标识信号, 获取控制 信号;
信号控制单元, 用于根据所述的控制信号, 控制所述偏振复用信号进行输 出。
8、 根据权利要求 7所述的偏振复用信号的接收装置, 其特征在于, 所述的 携带有标识信号的偏振复用信号, 包括: 携带有标识信号的第一接收电信号和 携带有标识信号的第二接收电信号; 则所述信号检测单元, 包括:
功率检测子单元, 用于检测第一接收电信号所携带标识信号的功率与第二 接收电信号所携带标识信号的功率;
比较子单元, 用于比较所述第一接收电信号所携带标识信号的功率与第二 接收电信号所携带标识信号的功率, 获取比较结果;
判断子单元, 用于根据所述的比较结果, 将所述功率较大的接收电信号判 定为发送端发送的携带标识信号的偏振复用信号;
控制信号生成子单元, 用于根据所述判定的偏振复用信号生成控制信号。
9、 一种偏振复用系统, 其特征在于, 包括: 偏振复用信号的发送装置与偏 振复用信号的接收装置; 其中,
所述的偏振复用信号的发送装置, 用于将至少一个偏振复用信号添加标识 信号并将其发送出去;
所述的偏振复用信号的接收装置, 用于将接收携带有标识信号的偏振复用 信号进行检测, 获取控制信号; 根据所述的控制信号, 控制所述偏振复用信号 进行输出。
10、 根据权利要求 9所述的偏振复用系统, 其特征在于, 包括: 所述的偏 振复用信号的发送装置, 包括:
标识信号添加单元, 用于将至少一个偏振复用信号添加标识信号; 发送单元, 用于将所述偏振复用信号发送出去。
11、 根据权利要求 10所述的偏振复用系统, 其特征在于, 包括: 所述的标 识信号添加单元, 进一步包括:
外调制子单元, 用于通过外调制方式, 将至少一个发射光信号的偏振复用 信号添加标识信号;
直接调制子单元, 用于通过直接调制方式, 将至少一个发射电信号的偏振 复用信号添加标识信号。
12、 根据权利要求 10所述的偏振复用系统, 其特征在于, 所述的偏振复用 信号的接收装置, 包括:
信号接收单元, 用于接收携带有标识信号的偏振复用信号;
信号检测单元, 用于检测所述偏振复用信号中携带的标识信号, 获取控制 信号;
信号控制单元, 用于根据所述的控制信号, 控制所述偏振复用信号进行输 出。
13、 根据权利要求 12所述的偏振复用系统, 其特征在于, 所述的携带有标 识信号的偏振复用信号, 包括: 携带有标识信号的第一接收电信号和携带有标 识信号的第二接收电信号; 则所述信号检测单元, 包括:
功率检测子单元, 用于检测第一接收电信号所携带标识信号的功率与第二 接收电信号所携带标识信号的功率; 比较子单元, 用于比较所述第一接收电信号所携带标识信号的功率与第二 接收电信号所携带标识信号的功率, 获取比较结果;
判断子单元, 用于根据所述的比较结果, 将所述功率较大的接收电信号判 定为发送端发送的携带标识信号的偏振复用信号;
控制信号生成子单元, 用于根据所述判定的偏振复用信号生成控制信号。
PCT/CN2009/071964 2008-09-19 2009-05-25 偏振复用信号的发送、接收方法、装置及偏振复用系统 WO2010031261A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810211702.9 2008-09-19
CN 200810211702 CN101677258B (zh) 2008-09-19 2008-09-19 偏振复用信号的接收方法、装置及偏振复用系统

Publications (1)

Publication Number Publication Date
WO2010031261A1 true WO2010031261A1 (zh) 2010-03-25

Family

ID=42029684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071964 WO2010031261A1 (zh) 2008-09-19 2009-05-25 偏振复用信号的发送、接收方法、装置及偏振复用系统

Country Status (2)

Country Link
CN (1) CN101677258B (zh)
WO (1) WO2010031261A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102594423A (zh) * 2012-02-07 2012-07-18 中国联合网络通信集团有限公司 多输入多输出系统
EP2685653A1 (en) * 2012-07-11 2014-01-15 Xieon Networks S.à.r.l. Method and device for signal processing in an optical communication network

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1894963A (zh) * 2003-12-17 2007-01-10 皇家飞利浦电子股份有限公司 自动信号选择
JP2007096911A (ja) * 2005-09-29 2007-04-12 Kddi Corp データ伝送方法及びシステム、光送信装置並びに光受信装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1894963A (zh) * 2003-12-17 2007-01-10 皇家飞利浦电子股份有限公司 自动信号选择
JP2007096911A (ja) * 2005-09-29 2007-04-12 Kddi Corp データ伝送方法及びシステム、光送信装置並びに光受信装置

Also Published As

Publication number Publication date
CN101677258A (zh) 2010-03-24
CN101677258B (zh) 2013-04-17

Similar Documents

Publication Publication Date Title
US7343100B2 (en) Optical communications based on optical polarization multiplexing and demultiplexing
US8478135B2 (en) Method and apparatus for polarization-division-multiplexed optical receivers
JP5437858B2 (ja) 光伝送システム
CN101552640B (zh) 滤波器系数变更装置和方法
US20080152363A1 (en) Polarization tracking and signal equalization for optical receivers configured for on-off keying or pulse amplitude modulation signaling
EP2051414A1 (en) Optical receiver systems and methods for polarization demultiplexing, PMD compensation, and DXPSK demodulation
KR20090027660A (ko) 광 신호를 수신하기 위한 장치, 방법 및 편광 다이버시티 수신기
US20100166423A1 (en) Method, device, and system for polarization division multiplexing and demultiplexing
JP2010109705A (ja) 光送受信システム,光送信器,光受信器および光送受信方法
Xie et al. Two-stage constant modulus algorithm equalizer for singularity free operation and optical performance monitoring in optical coherent receiver
US10305620B2 (en) Method and apparatuses for algorithm on QAM coherent optical detection
CN102187602B (zh) 在利用交替偏振的通信系统中用于偏振模色散补偿器的反馈信号的生成
JP7006716B2 (ja) 受信機、光伝送装置、及び、ファイバ複屈折変動の補償方法
JP2013034065A (ja) 偏波多重光受信機、偏波多重システムおよび偏波多重光受信方法
JP5523591B2 (ja) 光受信器、非線形等化回路及びデジタル信号処理回路
Wu et al. Dual-carrier-assisted phase retrieval for polarization division multiplexing
KR101931957B1 (ko) 편광 다중 광전송을 위한 시편광 코딩을 이용한 광 전송 방법 및 시스템
AU2009270360A1 (en) Method, device and system for realizing polarisation mode dispersion compensation
CN111585657A (zh) 基于低速窄带宽相干接收机的偏振态跟踪系统方案
US20220094439A1 (en) Polarization-diversity kramers-kronig heterodyne receiver and method
WO2010031261A1 (zh) 偏振复用信号的发送、接收方法、装置及偏振复用系统
WO2020158385A1 (ja) 光伝送システム、光受信装置、及び光伝送方法
Zhu et al. A modified CMA for blind equalization and phase recovery in optical coherent receivers
JP2014093606A (ja) 光デジタルコヒーレント受信器
WO2015078191A1 (zh) 一种消除非线性效应的方法、发射机及接收机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09813982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09813982

Country of ref document: EP

Kind code of ref document: A1