WO2018076254A1 - 舵机及其控制方法、无人机 - Google Patents

舵机及其控制方法、无人机 Download PDF

Info

Publication number
WO2018076254A1
WO2018076254A1 PCT/CN2016/103650 CN2016103650W WO2018076254A1 WO 2018076254 A1 WO2018076254 A1 WO 2018076254A1 CN 2016103650 W CN2016103650 W CN 2016103650W WO 2018076254 A1 WO2018076254 A1 WO 2018076254A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering gear
control device
driving device
drone
operating
Prior art date
Application number
PCT/CN2016/103650
Other languages
English (en)
French (fr)
Inventor
罗昊
欧迪
陈朝兵
郑大阳
王文韬
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201680004254.8A priority Critical patent/CN107635870A/zh
Priority to PCT/CN2016/103650 priority patent/WO2018076254A1/zh
Publication of WO2018076254A1 publication Critical patent/WO2018076254A1/zh
Priority to US16/395,875 priority patent/US11249491B2/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/08Steering gear
    • B63H25/14Steering gear power assisted; power driven, i.e. using steering engine
    • B63H25/26Steering engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/24Transmitting means
    • B64C13/38Transmitting means with power amplification
    • B64C13/50Transmitting means with power amplification using electrical energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/54Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement
    • B64C27/58Transmitting means, e.g. interrelated with initiating means or means acting on blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/54Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement
    • B64C27/72Means acting on blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/54Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement
    • B64C27/72Means acting on blades
    • B64C2027/7205Means acting on blades on each blade individually, e.g. individual blade control [IBC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U60/00Undercarriages
    • B64U60/50Undercarriages with landing legs

Definitions

  • the invention relates to a steering gear, in particular to a control method of a steering gear and a drone using the same.
  • Steering gears are widely used in various fields, such as ships, aviation, robots, etc., to control attitude transformation.
  • a steering gear on a drone can be used to control the movement of the arm relative to the fuselage to change its attitude.
  • the steering gears on existing drones are usually controlled by Pulse Width Modulation (PMW) from a control device such as a center plate set on the drone.
  • PMW Pulse Width Modulation
  • This one-way control method cannot intuitively obtain relevant information during the operation of the steering gear through the steering gear, such as running position, current, voltage, etc. It is impossible to judge whether the steering gear is correctly operated to the designated position and whether it is in good health. Therefore, existing steering gears can usually only switch between one or more predetermined positions, but cannot reach and stay at any given position.
  • a steering gear comprising a driving device, the steering gear further comprising a control device and a sensor connected to the driving device, the sensor acquiring an operating parameter of the control device, the working parameter comprising the An operating position of the driving device, the control device being capable of controlling the driving device to operate to any predetermined position and to stay at any of the predetermined positions according to an operating position of the driving device.
  • a control method for a steering gear comprising:
  • the drive device is controlled to operate to any predetermined position and to stay at any of the predetermined positions in accordance with the operating parameters.
  • An unmanned aerial vehicle comprising a central portion, a frame assembly coupled to the central portion, and a power mechanism disposed on the frame assembly, the drone further comprising a steering gear disposed on the central portion
  • the steering gear includes a driving device, a control device and a sensor connected to the driving device, the sensor acquiring an operating parameter of the control device, the working parameter including an operating position of the driving device, and the control device Controlling the driving device to operate to any predetermined position and stay at any predetermined position according to the operating position of the driving device, thereby driving the frame assembly to rotate to any position relative to the center portion and Stay in either position.
  • the control device of the steering gear is capable of acquiring an operating position of the steering gear, and accurately controlling the steering gear to any predetermined position according to the operating position, and staying at the arbitrary predetermined position.
  • FIG. 1 is a perspective view of a drone according to an embodiment of the present invention.
  • FIG. 2 is a partially exploded view of a drone according to an embodiment of the present invention.
  • FIG 3 is a partial enlarged view of a drone in a first state according to an embodiment of the present invention.
  • FIG. 4 is a partial enlarged view of a drone in a second state according to an embodiment of the present invention.
  • FIG. 5 is a structural block diagram of a steering gear according to an embodiment of the present invention.
  • FIG. 6 is a control flow chart of a steering gear according to an embodiment of the present invention.
  • FIG. 7 is a control flow chart of a steering gear according to another embodiment of the present invention.
  • FIG. 8 is a control flow chart of a steering gear according to still another embodiment of the present invention.
  • Drone 1000 Central department 1 Transmission mechanism 10 Screw 11 Nut 12 First bushing 14 First sleeve hole 140 Second bushing 16 Second sleeve hole 160 Third bushing 17 controlling device 18 Steering gear 2 Drive unit 20 Control device twenty two Position detector twenty four Current detector 26 Storage unit 28 Rack assembly 3 Link assembly 4 Main pole 40 Main rod body 400 First connection structure 402 First fixed part 4020 First connection 4021 First pivot hole 40210 Second connection 4022 Body part 40220 First shaft hole 40222 Second shaft hole 40224 Second connection structure 404 Second fixed part 4040 First arm connection 4042 Secondary rod 42 Secondary pole body 420 Third connection structure 422 Third fixed part 4220 Third connection 4221 Fourth connection structure 424 Fourth fixed part 4240 Second arm connection 4242 Set up department 42422 Fourth connection 42424 Arm 5 Power mechanism 6 Supporting element 7 Connector 8
  • a component when referred to as being “fixed” to another component, it can be directly on the other component or the component can be present.
  • a component When a component is considered to "connect” another component, it can be directly connected to another component or possibly a central component.
  • a component When a component is considered to be “set to” another component, it can be placed directly on another component or possibly with a centered component.
  • the terms “vertical,” “horizontal,” “left,” “right,” and the like, as used herein, are for illustrative purposes only.
  • FIG. 1 shows a drone according to an embodiment of the present invention.
  • the drone 1000 includes a center portion 1, a steering gear 2 disposed on the center portion 1, and a frame assembly 3.
  • the frame assembly 3 includes a link assembly 4 and a boom 5. One end (proximal end) of the link assembly 4 is coupled to the center portion 1 and the other end (distal end portion) is coupled to the arm 5.
  • the arm 5 is used to carry the power mechanism 6.
  • the power mechanism 6 can be used to cause the drone 1000 to take off, land, hover, and move in the air with respect to three translational degrees of freedom and three degrees of rotational freedom.
  • the power mechanism 6 can include one or more rotors.
  • the rotor may include one or more rotor blades coupled to a rotating shaft.
  • the rotor blades or shafts can be rotated by a suitable drive mechanism, such as a motor.
  • a suitable drive mechanism such as a motor.
  • the power mechanism 6 of the drone 1000 is depicted as including four rotors, other suitable numbers, types, or arrangements of the power mechanisms 6 are implementable.
  • the rotors can be one, two, three, four, five, six, seven, eight or more.
  • the rotor may be disposed horizontally, vertically, or at any suitable angle relative to the drone 1000.
  • the angle of the rotor may be fixed or variable.
  • the distance between the oppositely disposed rotor shafts may be any suitable distance, such as less than or equal to 2 meters, or less than or equal to 5 meters. Alternatively, the distance may be between 40 cm and 1 m, between 10 cm and 2 m, or between 5 cm and 5 m.
  • the power mechanism 6 can be driven by any suitable motor, such as a DC motor (eg, a brushed motor or a brushless motor) or an AC motor. In some embodiments, the motor can be assembled to drive a rotor blade.
  • the drone 1000 includes at least two linkage assemblies 4.
  • the link assembly 4 can be arranged symmetrically or asymmetrically around the central portion 1.
  • Each linkage assembly 4 can be used to support one arm 5, each of which can be used to support a single power mechanism or multiple power mechanisms.
  • the power mechanism 6 can be evenly arranged on the arm 5.
  • each arm 5 can carry a different number of power mechanisms 6.
  • the arm 5 can be disposed at any suitable angle relative to the linkage assembly 4, such as extending from the linkage assembly 4 in a vertically extending or approximately vertical direction.
  • the arm 5 can be connected to the link assembly 4 by any portion of the arm 5, such as the midpoint of the arm 5 or a portion near the midpoint of the arm 5.
  • the arm 5 can be used to support a plurality of power mechanisms 6 (eg, 1, 2, 3, 4 or more power mechanisms).
  • the power mechanism 6 can be mounted at any suitable location of the arm 5.
  • the power mechanism 6 can be disposed at or near the end of the arm 5.
  • the power mechanism 6 can be symmetrically disposed on the arm 5, for example, a power mechanism is disposed at each end of the arm 5.
  • the power mechanism 6 may be asymmetrically disposed on the arm 5.
  • the drone 1000 may include a support element 7.
  • the support element 7 can be a linear, curved or curved structure.
  • a support member 7 is disposed at each of the opposite ends of each arm 5.
  • the support element 7 can be used to support the drone 1000 on a surface and thus can serve as a landing gear for the drone 1000.
  • each support element 7 can contact the surface at a single point or two, three, four or more points.
  • the support element 7 can be used to support the drone 1000 on a surface before the drone 1000 is landed or taken off. It will be appreciated that the support element 7 can be located at any suitable location of the arm 5, for example at or near the distal or proximal end.
  • the support member 7 can be disposed at or near the distal end by about 1/10, 1/5, 1/4, 1/3, 1/2, 3/4, 2/3, 4/5, or 9 /10 The part of the arm 5 .
  • the support element 7 can be disposed at a location of the arm 5 near the power mechanism 6, such as below the power mechanism 6.
  • the support element 7 can be connected to the power mechanism 6.
  • the support element 7 is stationary.
  • the support element 7 can be moved relative to the arm 5, such as sliding, rotating, telescoping, folding, pivoting, extending, retracting, and the like.
  • the frame assembly 3 can be switched and stopped at a plurality of different angles (angles relative to the central portion 1).
  • the drone 1000 can stay at any angular position between the first state and the second state.
  • the first state may be a downward extreme angular position and the second state is an upward extreme angular position.
  • the upward angle and the downward angle may be defined as a vertical portion of the link assembly 4 away from the center portion or a vertical center of the center of the center portion 1 or a vertical portion of the center portion
  • the center points are "above” and "below”.
  • the first state may cause the drone 1000 to be supported by a surface of the support member 7.
  • the first state may be a landing state or a surface contact state in which the drone 1000 is supported on a surface while the central portion 1 is loaded or loaded Elements below the central portion 1 (e.g., various loads) contact the surface.
  • the second state may be a flight state that may reduce interference of one or more components of the drone 1000 with loads loaded on the center portion 1.
  • a plurality of the rack assemblies 3 may be connected to each other such that a plurality of the rack assemblies 3 can be simultaneously converted, and a plurality of the rack assemblies 3 can also be independently converted between them.
  • the change in position of the frame assembly 3 relative to the center portion 1 can be achieved by a drive device provided in the steering gear 2 and a transmission mechanism provided in the center portion 1.
  • a single drive and transmission can be used to simultaneously convert all of the frame assemblies 3 of the drone 1000.
  • a single motor or other suitable drive can be used to convert multiple or all of the rack assemblies 3 of the drone 1000.
  • a plurality of drive devices and transmissions are used to convert each of the frame assemblies 3 separately.
  • the drive means can be any suitable drive unit, such as a DC motor (for example, brushed or brushless), an AC motor, a stepper motor, a servo motor, or the like.
  • the transmission mechanism can take any suitable configuration.
  • Suitable transmission mechanisms exemplified include gears, shafts, pulleys, screws, nut shafts, belts, cables, wheels, shafts, or the like.
  • the transmission mechanism can include a linear actuator that linearly reciprocates relative to the drive.
  • the transmission mechanism 10 is a screw nut transmission mechanism including a screw 11 and a nut 12.
  • the nut 12 can be disposed around the shaft of the screw 11 and coupled to the screw 11 (eg, by a screw thread or an interference fit).
  • a driving device 20 in the steering gear 2 can be fixed to one end of the screw 11. Therefore, the driving device 20 can drive the screw 11 to rotate (for example, clockwise or counterclockwise), thereby moving the nut 12 upward or downward along the length direction of the screw 11.
  • the transmission mechanism may employ a turbine drive that includes a worm and a turbine gear (not shown).
  • the worm can be coupled to the turbine gear such that the drive device 20 drives the worm to rotate when the corresponding worm gear rotates.
  • the turbine gear can be coupled to the screw 11 for driving the screw 11 (eg, through an internal thread of the worm).
  • the turbine drive provides smoother drive transmission and improved drive reliability.
  • the link assembly 4 includes a main rod 40 and a sub-rod 42.
  • the main rod 40 and the sub-rod 42 are disposed substantially in parallel.
  • the main rod 40 is coupled to the nut 12 to rotate relative to the central portion 1 as the nut 12 moves up and down, and the movement of the main rod 40 drives the arm 5 disposed on the main rod 40 to move.
  • the movement of the arm 5 drives the sub-rod 42 to rotate relative to the central portion 1 to achieve the linkage of the main rod 40 and the sub-rod 42.
  • the main pole 40 includes a main pole body 400, a first connecting structure 402 disposed at one end of the main pole body 400 for connecting the center portion 1, and a connecting end disposed at the other end of the main pole body 400 for connecting A second connection structure 404 of the arm 5 is described.
  • the first connecting structure 402 causes the link assembly 4 to rotate relative to the central portion 1 under the driving of the transmission mechanism 10 provided in the central portion 1.
  • the second connecting structure 404 can be sleeved on the arm 5 to connect the arm 5 to the connecting rod assembly 4.
  • the first connecting structure 402 includes a first fixing portion 4020 fixed to one end of the main rod body 400, and a first connecting portion 4021 disposed at an end of the first fixing portion 4020 away from the main rod body 400, and The second connecting portion 4022 is disposed on the side of the first fixing portion 4020.
  • the first fixing portion 4020 is a sleeve that is sleeved on the main rod body 400.
  • the sleeve and the main rod body 400 can be fixed together by an interference fit or a screw fit or a snap fit, so that the main rod body 400 can follow the first fixing portion 4020 Turn and turn.
  • a first pivot hole 40210 is disposed on the first connecting portion 4021 , and the first connecting portion 4021 is rotatably connected to the central portion 1 through the first pivot hole 40210 .
  • the central portion 1 is provided with a first sleeve portion 14
  • the first sleeve portion 14 is provided with a first sleeve hole 140 .
  • the first connecting portion 4021 can be rotatably connected to the center portion 1 by inserting the first pivot hole 40210 and the first sleeve hole 140 through a rotating shaft.
  • the number of the first sleeve portions 14 is two, and the first connecting portion 4021 is sandwiched between the two first sleeve portions 14.
  • the second connecting portion 4022 includes a body portion 40220, and a first rotating shaft hole 40222 and a second rotating shaft hole 40224 disposed on the main body portion 40220.
  • the second connecting portion 4022 is rotatably connected to the outer side wall of the first fixing portion 4020 through the first rotating shaft hole 40222, and the second connecting portion 4022 is rotatably connected to the transmission mechanism through the second rotating shaft hole 40224 10.
  • the nut 12 of the transmission mechanism 10 is fixedly connected to a second sleeve portion 16 , and the second sleeve portion 16 is provided with a second sleeve hole 160 .
  • the second sleeve hole 160 and the second shaft hole 40224 are respectively passed through a rotating shaft, and the second connecting portion 4022 is rotatably connected to the nut 12 .
  • the body portion 40220 is substantially Y-shaped, wherein the first rotating shaft hole 40222 is disposed at two ends of the Y-shaped body portion 40220 near the outer side wall of the first fixing portion 4020. The one end of the Y-shaped body portion 40220 near the second sleeve portion 16 is pivotally connected to the second sleeve portion 16 .
  • the second sleeve portion 16 is curved and extends from an outer sidewall of the nut 12 away from the nut 12 , and the second sleeve hole 160 is disposed away from the second sleeve portion 16 .
  • the nut 12 is on one end.
  • the second connecting structure 404 is substantially T-shaped, and includes a second fixing portion 4040 and a first arm connecting portion 4042 disposed at an end of the second fixing portion 4040 away from the main rod body 400.
  • the second fixing portion 4040 is a sleeve that is sleeved on the main rod body 400.
  • the sleeve and the main rod body 400 can be fixed together by an interference fit or a screw fit or a snap fit, so that the main rod body 400 can follow the first fixing portion 4020 Turn and turn.
  • the first arm connecting portion 4042 is vertically formed from an end of the second fixing portion 4040 away from the main rod body 400, and is disposed around the arm 5.
  • the first arm connecting portion 4042 is substantially cylindrical and sleeved on the arm 5.
  • the arm 5 is rotatable relative to the first arm connection 4042.
  • the auxiliary rod 42 includes a secondary rod body 420, a third connecting structure 422 disposed at one end of the auxiliary rod body 420 for connecting the central portion 1, and a second connecting structure 422 disposed at the other end of the auxiliary rod body 420 for connection The fourth connecting structure 424 of the arm 5 .
  • the third connecting structure 422 is rotatably coupled to the center portion 1 and is rotatable relative to the center portion 1.
  • the fourth connecting structure 424 can be sleeved on the arm 5 to connect the arm 5 to the auxiliary rod 42.
  • the third connecting structure 422 includes a third fixing portion 4220 fixed to one end of the auxiliary rod body 420, and an end portion of the third fixing portion 4220 away from the auxiliary rod body 420.
  • the third fixing portion 4220 is a sleeve that is sleeved on the auxiliary rod body 420.
  • the sleeve and the auxiliary rod body 420 can be fixed together by an interference fit or a screw fit or a snap fit, so that the auxiliary rod body 420 can rotate with the auxiliary rod body 420. And turn.
  • a third shaft hole (not shown) is disposed on the third connecting portion 4221, and the third connecting portion 4221 is rotatably connected to the center portion 1 through the third shaft hole.
  • the central portion 1 is provided with a third sleeve portion 17, and the third sleeve portion 17 is provided with a third sleeve hole (not shown).
  • the third connecting portion 4221 can be rotatably coupled to the center portion 1 by passing the third rotating shaft hole and the third sleeve hole through a rotating shaft.
  • the number of the third connecting portions 4221 is two, and the third boss portion 17 is interposed between the two connecting portions 4221.
  • the fourth connecting structure 424 includes a fourth fixing portion 4240 and a second arm connecting portion 4242 pivotally connected to the fourth fixing portion 4240.
  • the fourth fixing portion 4240 is a sleeve that is sleeved on the auxiliary rod body 420.
  • the sleeve and the auxiliary rod body 420 can be fixed together by an interference fit or a screw fit or a snap fit, so that the auxiliary rod body 420 can follow the fourth fixed portion 4240 Turn and turn.
  • the second arm connecting portion 4242 includes a sleeve portion 42422 and a fourth connecting portion 42424.
  • the fourth connecting portion 42424 is rotatably connected to one end of the fourth fixing portion 4240 away from the auxiliary rod body 420.
  • the fourth connecting portion 42424 is curved.
  • the fourth connecting portion 42424 is substantially S-shaped.
  • the sleeve portion 42422 is disposed around the arm 5 .
  • the sleeve portion 42422 is substantially cylindrical and sleeved on the arm 5.
  • the arm 5 is rotatable relative to the second arm connection 4242.
  • the drone 1000 may further include a connector 8 disposed on the center portion 1, the connector 8 being capable of providing power to the power mechanism 6 provided on the arm 5.
  • An electronic trace between the connector 8 and the power mechanism 6 can be passed through the main rod 40 and the arm 5 .
  • the power mechanism 6 may also provide power supply through a power source within the central portion 1.
  • auxiliary rod 42 may be omitted or plural, and the auxiliary rod 42 is disposed in order to make the rotation of the frame assembly 3 relatively stable with respect to the central portion 1, the secondary rod 42
  • the number can be set as needed as long as the sub-rod 42 can move with the movement of the main rod 40.
  • the steering gear 2 includes the driving device 20, the control device 22, the position detector 24, and the current detector 26.
  • Control device 22 can be a single chip microcomputer.
  • the control device 22 is connected to a control device 18 for controlling the driving device 20 to drive the transmission mechanism 10 according to a control command received from the control device 18, thereby driving the frame assembly 3 relative to the central portion. 1 exercise.
  • the control device 18 can be disposed within the central portion 1 (eg, a center panel within the drone 1000) or can be a remote control device.
  • the communication between the control device 18 and the control device 22 can be wired or wireless.
  • the wired mode may include serial communication or parallel communication, and the serial communication includes a Serial Peripheral Interface (SPI), a Universal Asynchronous Receiver Transmitter (UART), and an I2C (Inter IC Bus).
  • SPI Serial Peripheral Interface
  • UART Universal Asynchronous Receiver Transmitter
  • I2C Inter IC Bus
  • the control device 22 is configured to control the signal of the driving device 20 to be a pulse width modulation (PWM) signal.
  • the drive unit 20 can include a direct current or alternating current motor.
  • the PWM control signal generated by the control device 22 enters the signal modulation chip of the driving device 20 to obtain a DC bias voltage.
  • a reference circuit is provided in the driving device 20, and the reference circuit generates a reference signal with a period of 20 ms and a width of 1.5 ms, and compares the obtained DC bias voltage with the voltage of the potentiometer in the driving device 20 to obtain Voltage difference output.
  • the positive and negative voltage output of the voltage difference to the motor drive chip determines the forward and reverse of the motor.
  • the position detector 24 is for detecting a rotational position (angle) of the motor.
  • the position detector 24 can be a lap sensor for sensing the number of turns of the motor.
  • the position detector 24 can be a potentiometer for sensing the angle or position of rotation of the motor.
  • the position detector 24 is connected to the control device 22, and can feed back the detected rotational position of the motor to the control device 22.
  • the control device 22 is capable of feeding back the location information to a remote control device.
  • the control device 22 is capable of adjusting the output PWM signal based on the acquired position information.
  • the control device 22 can accurately determine the relationship between the control command and the operating position of the driving device 20 according to the received control command and the operating position of the driving device 20 (for example, the rotational position of the motor), and according to The relationship and the current position of the drive unit 20 accurately control the operation of the drive unit 20 to any predetermined position.
  • the predetermined position may be any position between the first extreme position and the second extreme position.
  • the first limit position may be the limit position of the forward running of the driving device 20, that is, after the driving device 20 is running to the first limit position, the driving device 20 can no longer continue to operate in the forward direction.
  • the second limit position may be an extreme position in which the driving device 20 is reversely operated, that is, after the driving device 20 is reversely operated to the second extreme position, the driving device 20 cannot continue to reverse. Running.
  • the current detector 26 is used to detect the current of the motor.
  • the current flowing through the motor can be collected by a sampling resistor, I/V converted and amplified, and input to the control device 22.
  • the control device 22 can be provided with an A/D conversion circuit to convert the current voltage of the motor into a digital signal for transmission to a remote control device.
  • the control device 22 may include a memory in which the rated operating current information of the motor may be stored, and the steering gear 2 is determined by comparing the current voltage of the motor with a pre-stored rated operating current. Working status.
  • the storage unit 28 is coupled to the control device 22 and may include one or more storage media (eg, removable media or an external memory such as an SD card or random access memory (RAM)).
  • data from the position detector 24 and the current detector 26 can be directly transmitted to and stored in the storage unit 28.
  • the storage unit 28 can store logic, code, and/or program instructions of the methods of the embodiments of the invention that can be executed by the control device 22.
  • the control device 22 can be configured to execute instructions to analyze the sensed data generated by the position detector 24 and the current detector 26.
  • the storage unit 28 can store sensing data to be analyzed by the control device 22.
  • the storage unit 28 can be used to store processing results generated by the control device 22.
  • the steering gear 2 can also be provided with other sensors, such as temperature sensors, as needed, to sense the temperature within the steering gear 2, and the like.
  • FIG. 6 is a control flow chart of a control device according to an embodiment of the present invention.
  • the order of the steps in the flowchart may be changed according to different requirements, and some steps may be omitted or combined.
  • Step 60 receiving a control signal from the control device 18.
  • step 62 the control device 22 generates a PWM signal according to the accepted control signal and transmits the PWM signal to the driving device 20.
  • step 64 the control device 22 acquires the operating parameters of the driving device 20. Specifically, the control device 22 acquires the motor rotation position of the drive device 20 from the position detector 24, and acquires the operating current and voltage of the drive device 20 from the current detector 26.
  • the control device 22 transmits the operating parameters of the driving device 20 to the control device 18.
  • the control device 18 can determine the health status of the steering gear 2 and whether the driving device 20 is running to a designated position according to the operating parameters of the driving device 20. For example, when the driving device 20 is not operated to the designated position, it can be determined that the steering gear has failed to deform, and an instruction to re-deform is required. For another example, when the operating current of the steering gear 2 exceeds or falls below a predetermined rated current, it can be determined that the steering gear is not working properly, and it is necessary to take safety measures and the like.
  • the information such as the failure of the deformation and the abnormal operation of the steering gear can also be sent to the remote control device through the communication module, for example, to the remote control device through the wireless communication module, so that the controller can take timely control measures according to the information, such as returning to the maintenance. , deformation retry, etc.
  • the control device 18 is capable of acquiring a relationship between the issued control command and the operating position according to the operating position of the driving device 20, so that the control command can be adjusted to cause the driving device 20 Ability to run to any predetermined location. Any of the predetermined positions is any position between the two extreme positions, the two extreme positions respectively corresponding to extreme positions in opposite directions of the driving device 20.
  • the drive device 20 is capable of driving the nut 12 to move up or down on the screw 11, when the drive device 20 is moved to one of the extreme positions, The nut 12 reaches the extreme position upwards; when the drive device 20 is reversed to the other extreme position, the nut 12 reaches the extreme position downward.
  • FIG. 7 is a control flow chart of a control device according to another embodiment of the present invention.
  • the order of the steps in the flowchart may be changed according to different requirements, and some steps may be omitted or combined.
  • Step 70 receiving a control signal from the control device 18.
  • step 72 the control device 22 generates a PWM signal according to the accepted control signal and transmits the PWM signal to the driving device 20.
  • step 74 the control device 22 acquires the operating parameters of the driving device 20. Specifically, the control device 22 acquires the motor rotation position of the drive device 20 from the position detector 24, and acquires the operating current and voltage of the drive device 20 from the current detector 26.
  • the control device 22 adjusts the output PWM signal according to the operating parameters of the driving device 20. Specifically, the control device 22 compares the operating parameters pre-stored in the storage unit 28 with the acquired current operating parameters of the driving device 20, and adjusts the output PWM signal according to the comparison result. For example, the control device 22 controls the steering gear 2 to operate to a predetermined position based on a control command issued by the control device 18, and the control device 22 determines the rotation of the driving device 20 acquired from the position detector 24. Whether the position reaches the predetermined position, and if the predetermined position is not reached, the output PWM signal is adjusted according to the difference between the predetermined position and the rotational position, so that the steering gear 2 is operated to the predetermined position. In some embodiments, the flowchart shown in FIG. 7 can be used to calibrate the drive device 20.
  • the control device 22 can acquire the relationship between the issued PWM signal and the operating position according to the operating position of the driving device 20, so that the PWM signal can be adjusted to make the driving device 20 Ability to run to any predetermined location.
  • Any of the predetermined positions is any position between the two extreme positions, the two extreme positions respectively corresponding to extreme positions in opposite directions of the driving device 20.
  • the drive device 20 is capable of driving the nut 12 to move up or down on the screw 11, when the drive device 20 is moved to one of the extreme positions, The nut 12 reaches the extreme position upwards; when the drive device 20 is reversed to the other extreme position, the nut 12 reaches the extreme position downward.
  • FIG. 8 is a control flow chart of a control device according to still another embodiment of the present invention.
  • the order of the steps in the flowchart may be changed according to different requirements, and some steps may be omitted or combined.
  • Step 80 receiving a control signal from the control device 18.
  • step 82 the control device 22 generates a PWM signal according to the accepted control signal, and transmits the PWM signal to the driving device 20.
  • step 84 the control device 22 acquires the operating parameters of the driving device 20. Specifically, the control device 22 acquires the motor rotation position of the drive device 20 from the position detector 24, and acquires the operating current and voltage of the drive device 20 from the current detector 26.
  • the control device 22 determines the operating state of the steering gear according to the operating parameters of the driving device.
  • the control device 22 can determine the health status of the steering gear 2 and whether the driving device 20 is running to a designated position according to the operating parameters of the driving device 20. For example, when the driving device 20 is not operated to the designated position, it can be determined that the steering gear has failed to deform, and an instruction to re-deform is required. For another example, when the operating current of the steering gear 2 exceeds or falls below a predetermined rated current, it can be determined that the steering gear is not working properly, and it is necessary to take safety measures and the like.
  • step 88 the control device 22 transmits the servo operating state information to the control device 18.
  • the information such as the failure of the deformation and the abnormal operation of the steering gear can also be sent to the remote control device through the communication module, for example, to the remote control device through the wireless communication module, so that the controller can take timely control measures according to the information, such as returning to the maintenance. , deformation retry, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Ocean & Marine Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Manipulator (AREA)
  • Toys (AREA)

Abstract

一种舵机(2),包括驱动装置(20),还包括与驱动装置(20)连接的控制装置(22)及传感器,传感器获取控制装置(22)的工作参数,工作参数包括驱动装置(20)的运行位置,控制装置(22)能够根据驱动装置(20)的运行位置控制驱动装置(20)运转至任一预定位置并在所述任一预定位置停留。

Description

舵机及其控制方法、无人机 技术领域
本发明涉及舵机,尤其是一种舵机的控制方法及采用该舵机的无人机。
背景技术
舵机广泛应用于各种领域、例如船舶、航空、机器人等,用于控制姿态变换。例如,无人机上的舵机,可用来控制机臂相对机身运动以改变其姿态。现有的无人机上的舵机通常采用控制设备(例如无人机上设置的中心板)发出的脉冲宽度调制信号(Pulse Width Modulation,PMW)进行控制。这种单向的控制方式无法直观的通过舵机获取舵机运转过程中的相关信息,比如运行位置、电流、电压等,无法判断舵机是否正确运转到指定位置及是否健康状态良好。故,现有的舵机通常只能在预设的一个或多个预定位置之间切换,而不能到达并停留在任一指定位置。
发明内容
有鉴于此,有必要提供一种能获取舵机运转状态信息的舵机、舵机的控制方法及采用该舵机的无人机。
一种舵机,所述舵机包括驱动装置,所述舵机还包括与所述驱动装置连接的控制装置及传感器,所述传感器获取所述控制装置的工作参数,所述工作参数包括所述驱动装置的运行位置,所述控制装置能够根据所述驱动装置的运行位置控制所述驱动装置运转至任一预定位置并在所述任一预定位置停留。
一种舵机的控制方法,包括:
接收所述舵机外的外部控制设备的控制指令;
根据所述控制指令控制所述舵机的驱动装置运转;及
从所述舵机内的传感器获取所述驱动装置的工作参数,所述工作参数包括所述驱动装置的运行位置;及
根据所述工作参数控制所述驱动装置运转至任一预定位置并在所述任一预定位置停留。
一种无人机,包括中心部,连接于所述中心部的机架组件,及设置所述机架组件上的动力机构,所述无人机还包括设置在所述中心部上的舵机,所述舵机包括驱动装置,与所述驱动装置连接的控制装置及传感器,所述传感器获取所述控制装置的工作参数,所述工作参数包括所述驱动装置的运行位置,所述控制装置能够根据所述驱动装置的运行位置控制所述驱动装置运转至任一预定位置并在所述任一预定位置停留,从而带动所述机架组件相对所述中心部转动至任一位置并在该任一位置停留。
所述舵机的控制装置能够获取所述舵机的运行位置,并根据所述运行位置精确控制所述舵机运行至任意预定位置,并在该任意预定位置停留。
附图说明
图1是本发明实施方式提供的一种无人机的立体图。
图2是本发明实施方式提供的一种无人机的部分分解图。
图3是本发明实施方式提供的一种无人机在第一状态的局部放大图。
图4是本发明实施方式提供的一种无人机在第二状态的局部放大图。
图5是本发明实施方式提供的一种舵机结构框图。
图6是本发明一实施方式提供的一种舵机的控制流程图。
图7是本发明另一实施方式提供的一种舵机的控制流程图。
图8是本发明又一实施方式提供的一种舵机的控制流程图。
主要元件符号说明
无人机 1000
中心部 1
传动机构 10
螺杆 11
螺母 12
第一轴套部 14
第一轴套孔 140
第二轴套部 16
第二轴套孔 160
第三轴套部 17
控制设备 18
舵机 2
驱动装置 20
控制装置 22
位置检测器 24
电流检测器 26
存储单元 28
机架组件 3
连杆组件 4
主杆 40
主杆杆体 400
第一连接结构 402
第一固定部 4020
第一连接部 4021
第一枢接孔 40210
第二连接部 4022
本体部 40220
第一转轴孔 40222
第二转轴孔 40224
第二连接结构 404
第二固定部 4040
第一机臂连接部 4042
副杆 42
副杆杆体 420
第三连接结构 422
第三固定部 4220
第三连接部 4221
第四连接结构 424
第四固定部 4240
第二机臂连接部 4242
套设部 42422
第四连接部 42424
机臂 5
动力机构 6
支撑元件 7
连接器 8
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。当一个组件被认为是“设置于”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中组件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1,图1示出了本发明实施例的一种无人机,所述无人机1000包括中心部1、设置在所述中心部1上的舵机2、机架组件3、动力机构6及支撑元件7。所述机架组件3包括连杆组件4及机臂5。所述连杆组件4一端(近端部)连接于所述中心部1,另一端(远端部)连接于所述机臂5。所述机臂5用于承载所述动力机构6。
所述动力机构6可用于使所述无人机1000起飞、着陆、悬停,及在空中关于三个平移自由度以及三个旋转自由度运动。在一些实施例中,所述动力机构6可包括一个或多个旋翼。所述旋翼可包括连接至一转轴的一个或多个旋翼叶片。所述旋翼叶片或转轴可被一适当的驱动机构驱动而旋转,例如电机。虽然所述无人机1000的动力机构6被描述为包括4个旋翼,但是动力机构6的其他适当的数量、类型或排配都是可实施的。例如,所述旋翼可以是一个、两个、三个、四个、五个、六个、七个、八个或更多。所述旋翼可以相对于所述无人机1000水平、垂直或其他任何适当角度设置。所述旋翼的角度可以是固定的或可变的。相对设置的所述旋翼转轴之间的距离可以是任何适当的距离,例如小于等于2米,或小于等于5 米。可选地,所述距离可以在40 厘米到1 米之间、从10 厘米到2 米之间,或从5cm 到5 米之间。所述动力机构6 可以被任意适当的电机驱动,例如直流电机(例:有刷电机或无刷电机)或交流电机。在一些实施例中,所述马达可被装配用于驱动旋翼叶片。
在一些实施例中,所述无人机1000包括至少两连杆组件4。所述连杆组件4可对称地或不对称地围绕所述中心部1设置。每一连杆组件4可用于支撑一个机臂5,每一机臂5可用于支撑单个的动力机构或多个动力机构。所述动力机构6可平均排配在所述机臂5上。可替换地,每一机臂5可以承载不同数量的动力机构6。
在一些实施例中,所述机臂5可相对所述连杆组件4任意适当角度设置,例如从所述连杆组件4垂直延伸或近似垂直的方向延伸。所述机臂5可通过所述机臂5的任意部位连接至所述连杆组件4,例如所述机臂5的中点或靠近所述机臂5中点的部位。所述机臂5可用于支撑多个动力机构6(例如,1个、2个、3个、4个或多个动力机构)。所述动力机构6可安装在所述机臂5的任意适当部位。例如,所述动力机构6可设置在或靠近所述机臂5的端部。所述动力机构6可对称地设置在所述机臂5上,例如所述机臂5的每端各设置一个动力机构。可替换地,所述动力机构6可以不对称地设置在所述机臂5上。
可选地,所述无人机1000 可包括支撑元件7。所述支撑元件7可以是直线形、弯曲形或曲线形结构。在一些实施例中,每一机臂5的两相对端分别设置一支撑元件7。所述支撑元件7可用于支撑所述无人机1000 在一表面,因此能够作为所述无人机1000的着陆架。例如,每一支撑元件7可单点或二、三、四或更多点接触所述表面。可选地,所述支撑元件7可用于当所述无人机1000 着陆或起飞前支撑所述无人机1000 于一表面。可以理解,所述支撑元件7可位于所述机臂5的任意适合部位,例如,在或靠近所述远端部或近端部。所述支撑元件7可设置在或靠近所述远端部约1/10、1/5、1/4、1/3、1/2、3/4、2/3、4/5、或者 9/10所述机臂5的部位。在一些实施例中,所述支撑元件7可设置在所述机臂5靠近所述动力机构6的部位上,例如所述动力机构6的下方。所述支撑元件7可连接至所述动力机构6。所述支撑元件7是静止的。可替换地,所述支撑元件7可相对所述机臂5活动,例如滑动、旋转、伸缩、折叠、枢转、延伸、缩进及其他类似方式移动。
所述机架组件3可在多个不同角度(相对于所述中心部1的角度)转换及停留。所述无人机1000可在第一状态和第二状态之间的任意角度位置停留。所述第一状态可为一向下的极限角度位置,所述第二状态为一向上的极限角度位置。所述向上的角度、向下的角度,可定义为所述连杆组件4远离所述中心部的远端部相对于所述中心部1的质量中心的垂直中心处或所述中心部的垂直中心点“在上方”、“在下方”。
在一些实施例中,第一状态可以使得所述无人机1000通过所述支撑元件7支撑于一表面。在其他情境中,所述第一状态可以是着陆状态或表面接触状态,在所述着陆状态或表面接触状态,所述无人机1000被支撑于一表面的同时所述中心部1或装载在所述中心部1下方的元件(例如各种负载)接触所述表面。第二状态可以是一个飞行状态,所述第二状态可以减少所述无人机1000的一个或多个元件对所述中心部1上装载的负载的干扰。
多个所述机架组件3之间可以相互连接从而使得多个所述机架组件3可以同时转换,多个所述机架组件3之间也可以分别独立地转换。
所述机架组件3相对所述中心部1的位置改变可通过所述舵机2内设置的驱动装置及所述中心部1内设置的传动机构来实现。一个单一的驱动装置和传动机构可用来同时转换所述无人机1000的所有机架组件3。例如,一个单一的马达或其他合适的驱动装置可用来转换所述无人机1000的多个或全部机架组件3。可替代地,多个驱动装置和传动机构用来分别地转换每一机架组件3。所述驱动装置可以为任何适合的驱动单元,例如直流电机(例,有刷式或无刷式),交流电机,步进电机,伺服电机,或其他类似物。所述传动机构可采用任何适宜的结构。例示的适宜的传动机构包括齿轮,转轴,滑轮,螺杆,螺母轴,皮带,电缆,轮子,轴,或其类似物。在一些实施例中,所述传动机构可包括一线性驱动器,所述线性驱动器相对所述驱动装置作线性往复运动。例如,如图2所示,传动机构10为螺杆螺母传动机构,包括一螺杆11和一螺母12。所述螺母12可环绕所述螺杆11的轴设置并连接至所述螺杆11(例如,通过螺杆螺纹或过盈配合)。所述舵机2内的驱动装置20可固定至所述螺杆11的一端。因此,所述驱动装置20可驱动所述螺杆11旋转(例,顺时针或逆时针),从而使得所述螺母12沿着螺杆11的长度方向向上或向下移动。
可替代地或其组合,所述传动机构可以采用涡轮传动机构,所述涡轮传动机构包括一蜗杆及一涡轮齿轮(未示出)。所述蜗杆可连接至所述涡轮齿轮,从而使得所述驱动装置20驱动所述蜗杆旋转时带动相应的涡轮齿轮的旋转。所述涡轮齿轮可连接至所述螺杆11以用于驱动所述螺杆11(例,通过所述蜗杆的内螺纹)。有利地,所述涡轮传动机构可提供更顺滑的驱动传输,提高驱动可靠性。
所述连杆组件4包括主杆40及副杆42。所述主杆40和所述副杆42大致平行设置。所述主杆40连接于所述螺母12从而随着螺母12的上下运动而相对所述中心部1旋转,所述主杆40的运动带动设置在所述主杆40上的机臂5运动,所述机臂5的运动带动所述副杆42相对所述中心部1旋转,从而实现所述主杆40及所述副杆42的连动。
所述主杆40包括主杆杆体400、设置在所述主杆杆体400一端用于连接所述中心部1的第一连接结构402、及设置在所述主杆杆体400另一端用于连接所述机臂5的第二连接结构404。所述第一连接结构402使得所述连杆组件4在所述中心部1内设置的传动机构10的带动下相对所述中心部1旋转。所述第二连接结构404能够套设在所述机臂5上从而使所述机臂5连接于所述连杆组件4。
所述第一连接结构402包括固定在所述主杆杆体400一端的第一固定部4020,设置在所述第一固定部4020远离所述主杆杆体400的一端的第一连接部4021,及设置在所述第一固定部4020一侧的第二连接部4022。在图所示的实施例中,所述第一固定部4020为一套筒,套设在所述主杆杆体400上。所述套筒与所述主杆杆体400可通过过盈配合或螺纹配合或卡扣配合等固定配合方式固定在一起,从而使得所述主杆杆体400能够随着所述第一固定部4020的转动而转动。
所述第一连接部4021上设置有一第一枢接孔40210,通过该第一枢接孔40210所述第一连接部4021转动地连接于所述中心部1上。所述中心部1上设置有第一轴套部14,所述第一轴套部14设置有第一轴套孔140。通过一转轴分别穿设所述第一枢接孔40210及所述第一轴套孔140能够使所述第一连接部4021转动地连接于所述中心部1上。在图所示的实施例中,所述第一轴套部14数量为两个,所述第一连接部4021夹设在两所述第一轴套部14之间。
所述第二连接部4022包括本体部40220,及设置在所述本体部40220上的第一转轴孔40222及第二转轴孔40224。通过所述第一转轴孔40222所述第二连接部4022转动连接至所述第一固定部4020外侧壁,通过所述第二转轴孔40224所述第二连接部4022转动连接至所述传动机构10。所述传动机构10的螺母12固定连接一第二轴套部16,所述第二轴套部16上设置有第二轴套孔160。通过一转轴分别穿设所述第二轴套孔160及所述第二转轴孔40224,所述第二连接部4022转动连接至所述螺母12。在图所示的实施例中,所述本体部40220大致呈Y字型,其中所述第一转轴孔40222设置在所述Y字形本体部40220靠近所述第一固定部4020外侧壁的两端上,所述Y字形本体部40220靠近所述第二轴套部16的一端枢接于所述第二轴套部16。所述第二轴套部16为弯曲形,自所述螺母12的外侧壁向远离所述螺母12的方向延伸形成,所述第二轴套孔160设置在所述第二轴套部16远离所述螺母12的一端上。
所述第二连接结构404大致呈T形,包括第二固定部4040及设置在所述第二固定部4040远离所述主杆杆体400的一端的第一机臂连接部4042。在图所示的实施例中,所述第二固定部4040为一套筒,套设在所述主杆杆体400上。所述套筒与所述主杆杆体400可通过过盈配合或螺纹配合或卡扣配合等固定配合方式固定在一起,从而使得所述主杆杆体400能够随着所述第一固定部4020的转动而转动。所述第一机臂连接部4042自所述第二固定部4040远离所述主杆杆体400的一端垂直延伸形成,其能够环绕所述机臂5设置。在图所示的实施例中,所述第一机臂连接部4042大致呈圆柱筒状,套设在所述机臂5上。在一些实施例中,所述机臂5能够相对所述第一机臂连接部4042转动。
所述副杆42包括副杆杆体420,及设置在所述副杆杆体420一端用于连接所述中心部1的第三连接结构422、及设置在所述副杆杆体420另一端用于连接所述机臂5的第四连接结构424。第三连接结构422转动连接所述中心部1,且能相对所述中心部1旋转。所述第四连接结构424能够套设在所述机臂5上从而使所述机臂5连接于所述副杆42。
同时参阅图3所示,所述第三连接结构422包括固定在所述副杆杆体420一端的第三固定部4220,及设置在所述第三固定部4220远离所述副杆杆体420的一端的第三连接部4221。在图所示的实施例中,所述第三固定部4220为一套筒,套设在所述副杆杆体420上。所述套筒与所述副杆杆体420可通过过盈配合或螺纹配合或卡扣配合等固定配合方式固定在一起,从而使得所述副杆杆体420能够随着所述副杆杆体420的转动而转动。
所述第三连接部4221上设置有一第三转轴孔(未标示),通过该第三转轴孔所述第三连接部4221转动地连接于所述中心部1上。所述中心部1上设置有第三轴套部17,所述第三轴套部17设置有第三轴套孔(未标示)。通过一转轴分别穿设所述第三转轴孔及所述第三轴套孔能够使所述第三连接部4221转动地连接于所述中心部1上。在图所示的实施例中,所述第三连接部4221数量为两个,所述第三轴套部17夹设在两所述第三连接部4221之间。
所述第四连接结构424包括第四固定部4240及枢接在所述第四固定部4240上的第二机臂连接部4242。在图所示的实施例中,所述第四固定部4240为一套筒,套设在所述副杆杆体420上。所述套筒与所述副杆杆体420可通过过盈配合或螺纹配合或卡扣配合等固定配合方式固定在一起,从而使得所述副杆杆体420能够随着所述第四固定部4240的转动而转动。所述第二机臂连接部4242包括套设部42422及第四连接部42424。所述第四连接部42424转动连接在所述第四固定部4240远离所述副杆杆体420的一端。优选地,所述第四连接部42424为弯曲形。在图所示的实施例中,所述第四连接部42424大致呈S形。所述套设部42422环绕所述机臂5设置。在图所示的实施例中,所述套设部42422大致呈圆柱筒状,套设在所述机臂5上。在一些实施例中,所述机臂5能够相对所述第二机臂连接部4242转动。
当所述螺母12沿着所述螺杆11向上运动时,所述主杆40相对所述中心部1向上运动,所述机臂5随着所述主杆40向上运动,从而带动所述副杆42也跟着向上运动(如图3所示)。当所述螺母12沿着所述螺杆11向下运动时,所述主杆40相对所述中心部1向下运动,所述机臂5随着所述主杆40向下运动,从而带动所述副杆42也跟着向下运动(如图4所示)。
可选地或进一步地,所述无人机1000还可包括设置在所述中心部1上的连接器8,所述连接器8能够为所述机臂5上设置的动力机构6提供电源。所述连接器8与所述动力机构6之间的电子走线可穿设在所述主杆40及所述机臂5内部。可以理解,在一些实施例中,所述动力机构6也可通过所述中心部1内的电源提供电源供给。
可以理解,所述副杆42可以省略,也可以为多个,所述副杆42的设置是为了使得所述机架组件3相对所述中心部1的旋转更稳定,所述副杆42的数量可根据需要进行设置,只要所述副杆42能够随着所述主杆40的运动而运动。
请参阅图5所示,所述舵机2包括所述驱动装置20、控制装置22、位置检测器24及电流检测器26。控制装置22可为一单片机。所述控制装置22与一控制设备18相连,用于根据接收来自控制设备18的控制指令控制所述驱动装置20驱动所述传动机构10运动,从而带动所述机架组件3相对所述中心部1运动。所述控制设备18可设置在所述中心部1内(例如所述无人机1000内的中心板),也可为远程控制设备。所述控制设备18与所述控制装置22之间的通信可采用有线或无线。其中有线方式可包括串行通信或并行通信,所述串行通信包括串行外围接口(Serial Peripheral Interface, SPI)、通用异步收发器(UART)、I2C(Inter IC Bus)。
在本发明实施例中,所述控制装置22用于控制所述驱动装置20的信号为脉宽调制(PWM)信号。所述驱动装置20可包括直流或交流电机。例如,当所述驱动装置20包括直流电机时,所述控制装置22产生的PWM控制信号进入所述驱动装置20的信号调制芯片,获得直流偏置电压。所述驱动装置20内设有基准电路,所述基准电路产生周期为20ms,宽度为1.5ms的基准信号,将获得的直流偏置电压与所述驱动装置20内的电位器的电压比较,获得电压差输出。最后,电压差的正负输出到电机驱动芯片决定电机的正反转。
所述位置检测器24用于检测所述电机的旋转位置(角度)。在一些实施例中,所述位置检测器24可为圈数传感器,用来感测所述电机旋转的圈数。在一些实施例中,所述位置检测器24可为电位器,用来感测所述电机旋转的角度或位置。所述位置检测器24与所述控制装置22相连接,能够将所检测得到的电机的旋转位置反馈给所述控制装置22。在一些实施例中,所述控制装置22能够将所述位置信息反馈给远程控制设备。在一些实施例中,所述控制装置22能够根据所获取的位置信息调整输出的PWM信号。例如,所述控制装置22根据接收到的控制指令及所述驱动装置20的运行位置(例如电机的旋转位置)可精确确定控制指令与所述驱动装置20的运行位置之间的关系,并根据该关系及所述驱动装置20的当前位置精确控制所述驱动装置20运转至任一预定位置。所述预定位置可为第一极限位置与第二极限位置之间的任意位置。其中第一极限位置可为所述驱动装置20正向运转的极限位置,即所述驱动装置20正向运转到该第一极限位置后,所述驱动装置20不能再继续正向运转。同样地,所述第二极限位置可为所述驱动装置20反向运转的极限位置,即所述驱动装置20反向运转到该第二极限位置后,所述驱动装置20不能再继续反向运转。
所述电流检测器26用于检测所述电机的电流。在一些实施例中,可通过采样电阻采集流经所述电机的电流,进行I/V转换和放大后输入所述控制装置22。所述控制装置22可设置A/D转换电路将所述电机的电流电压转换成数字信号,发送给远程控制设备。在一些实施例中所述控制装置22可包括存储器,所述存储器内可存储有电机的额定工作电流信息,通过比较所述电机的电流电压与预存储的额定工作电流来判断所述舵机2的工作状态。
所述存储单元28与所述控制装置22相连接,可包括一个或多个存储介质(例,可移除式介质或类似SD卡或随机存储器(RAM)的外部存储器)。在一些实施例中,来自所述位置检测器24及所述电流检测器26的数据可直接被传输至并保存在所述存储单元28中。所述存储单元28可存储逻辑、代码及/或可被所述控制装置22执行的本发明实施例的方法的程序指令。例如,所述控制装置22可用于执行指令以分析位置检测器24及所述电流检测器26产生的感测数据。所述存储单元28可存储即将被所述控制装置22分析的感测数据。在一些实施例中,所述存储单元28可用于存储所述控制装置22产生的处理结果。
在其他实施例中,所述舵机2还可根据需要设置其他传感器,例如温度传感器,感测所述舵机2内的温度等。
请参阅图6所示,为本发明一实施例的控制装置的控制流程图。根据不同需求,该流程图中步骤的顺序可以改变,某些步骤可以省略或合并。
步骤60,从所述控制设备18接收控制信号。
步骤62,所述控制装置22根据所接受的控制信号生成PWM信号,并将所述PWM信号发送至所述驱动装置20。
步骤64,所述控制装置22获取所述驱动装置20的工作参数。具体地,所述控制装置22从所述位置检测器24获取所述驱动装置20的电机旋转位置,从所述电流检测器26获取所述驱动装置20的工作电流、电压。
步骤66,所述控制装置22发送所述驱动装置20的工作参数至所述控制设备18。所述控制设备18可根据该驱动装置20的工作参数判断所述舵机2的健康状态、所述驱动装置20是否运行到指定位置。例如,当所述驱动装置20没有运行到指定位置时,可判定为舵机变形失败,需要发出重新变形的指令。再例如,当所述舵机2的工作电流超过或低于预定额定电流时,可判定为舵机不能正常工作,需要采取安全措施等。所述变形失败、舵机工作异常等信息还可通过通信模块发送给远端控制设备,例如通过无线通信模块发送给远端控制设备,从而便于操控者根据这些信息及时采取控制措施,例如返航检修、变形重试等。在一些实施例中,所述控制设备18能够根据所述驱动装置20的运行位置获取所发出的控制指令与所述运行位置之间的关系,从而能够调整所述控制指令使所述驱动装置20能够运行至任一预定位置。所述任一预定位置为两极限位置之间的任一位置,所述两极限位置分别对应于所述驱动装置20两相反方向上的极限位置。例如,在上述图示示出的实施例中,所述驱动装置20能够驱动所述螺母12在所述螺杆11上向上或向下活动,当所述驱动装置20运行到其中一极限位置时,所述螺母12向上到达极限位置;当所述驱动装置20反向运行到另一极限位置时,所述螺母12向下到达极限位置。
请参阅图7所示,为本发明另一实施例的控制装置的控制流程图。根据不同需求,该流程图中步骤的顺序可以改变,某些步骤可以省略或合并。
步骤70,从所述控制设备18接收控制信号。
步骤72,所述控制装置22根据所接受的控制信号生成PWM信号,并将所述PWM信号发送至所述驱动装置20。
步骤74,所述控制装置22获取所述驱动装置20的工作参数。具体地,所述控制装置22从所述位置检测器24获取所述驱动装置20的电机旋转位置,从所述电流检测器26获取所述驱动装置20的工作电流、电压。
步骤76,所述控制装置22根据所述驱动装置20的工作参数调整输出的PWM信号。具体地,所述控制装置22可通过比较所述存储单元28中预先存储的工作参数与所获取的驱动装置20的当前工作参数进行比较,并根据比较结果调整输出的PWM信号。例如,所述控制装置22根据控制设备18发出的控制指令为控制所述舵机2运行到一预定位置,所述控制装置22判断从所述位置检测器24获取的所述驱动装置20的转动位置是否达到所述预定位置,若未达到所述预定位置,则根据所述预定位置与转动位置之间的差值调整输出的PWM信号,以使得所述舵机2运行到所述预定位置。在一些实施例中,图7所示的流程图可用来校准所述驱动装置20。
在一些实施例中,所述控制装置22能够根据所述驱动装置20的运行位置获取所发出的PWM信号与所述运行位置之间的关系,从而能够调整所述PWM信号使所述驱动装置20能够运行至任一预定位置。所述任一预定位置为两极限位置之间的任一位置,所述两极限位置分别对应于所述驱动装置20两相反方向上的极限位置。例如,在上述图示示出的实施例中,所述驱动装置20能够驱动所述螺母12在所述螺杆11上向上或向下活动,当所述驱动装置20运行到其中一极限位置时,所述螺母12向上到达极限位置;当所述驱动装置20反向运行到另一极限位置时,所述螺母12向下到达极限位置。
请参阅图8所示,为本发明又一实施例的控制装置的控制流程图。根据不同需求,该流程图中步骤的顺序可以改变,某些步骤可以省略或合并。
步骤80,从所述控制设备18接收控制信号。
步骤82,所述控制装置22根据所接受的控制信号生成PWM信号,并将所述PWM信号发送至所述驱动装置20。
步骤84,所述控制装置22获取所述驱动装置20的工作参数。具体地,所述控制装置22从所述位置检测器24获取所述驱动装置20的电机旋转位置,从所述电流检测器26获取所述驱动装置20的工作电流、电压。
步骤86,所述控制装置22根据所述驱动装置工作参数判断所述舵机工作状态。所述控制装置22可根据该驱动装置20的工作参数判断所述舵机2的健康状态、所述驱动装置20是否运行到指定位置。例如,当所述驱动装置20没有运行到指定位置时,可判定为舵机变形失败,需要发出重新变形的指令。再例如,当所述舵机2的工作电流超过或低于预定额定电流时,可判定为舵机不能正常工作,需要采取安全措施等。
步骤88,所述控制装置22发送所述舵机工作状态信息至所述控制设备18。所述变形失败、舵机工作异常等信息还可通过通信模块发送给远端控制设备,例如通过无线通信模块发送给远端控制设备,从而便于操控者根据这些信息及时采取控制措施,例如返航检修、变形重试等。
另外,对于本领域的普通技术人员来说,可以根据本发明的技术构思做出其它各种相应的改变与变形,而所有这些改变与变形都应属于本发明权利要求的保护范围。

Claims (40)

  1. 一种舵机,所述舵机包括驱动装置,其特征在于:所述舵机还包括与所述驱动装置连接的控制装置及传感器,所述传感器获取所述控制装置的工作参数,所述工作参数包括所述驱动装置的运行位置,所述控制装置能够根据所述驱动装置的运行位置控制所述驱动装置运转至任一预定位置并在所述任一预定位置停留。
  2. 如权利要求1所述的舵机,其特征在于:所述控制装置根据接收到的控制指令生成脉宽调制信号,所述脉宽调制信号输出至所述驱动装置以控制所述驱动装置运转。
  3. 如权利要求1所述的舵机,其特征在于:所述预定位置为两极限位置之间的任一位置,其中两极限位置分别为在所述驱动装置的两个相反运转方向上的两个极限位置。
  4. 如权利要求1所述的舵机,其特征在于:所述传感器包括圈数检测器,用于获取所述驱动装置的转动圈数以确定所述驱动装置的运行位置。
  5. 如权利要求1所述的舵机,其特征在于:所述传感器包括电流检测器,所述电流检测器用于获取所述驱动装置的电流信息。
  6. 如权利要求1所述的舵机,其特征在于:所述控制装置还用于将所述驱动装置的工作参数传送至所述舵机外的外部控制设备。
  7. 如权利要求1所述的舵机,其特征在于:所述控制装置为单片机。
  8. 如权利要求1所述的舵机,其特征在于:所述控制装置还用于根据所述驱动装置的工作参数判断所述舵机的工作状态信息。
  9. 如权利要求8所述的舵机,其特征在于:所述控制装置还用于将所述舵机的工作状态信息传送至所述舵机外的外部控制设备。
  10. 一种舵机的控制方法,其特征在于:
    接收所述舵机外的外部控制设备的控制指令;
    根据所述控制指令控制所述舵机的驱动装置运转;及
    从所述舵机内的传感器获取所述驱动装置的工作参数,所述工作参数包括所述驱动装置的运行位置;及
    根据所述工作参数控制所述驱动装置运转至任一预定位置并在所述任一预定位置停留。
  11. 如权利要求10所述的控制方法,其特征在于:所述预定位置为两极限位置之间的任一位置,其中两极限位置分别为在所述驱动装置的两个相反运转方向上的两个极限位置。
  12. 如权利要求10所述的控制方法,其特征在于:所述工作参数包括驱动装置的工作电流。
  13. 如权利要求10所述的控制方法,其特征在于:所述方法还包括:
    存储所获取的工作参数至存储单元。
  14. 如权利要求10所述的控制方法,其特征在于:所述方法还包括:
    发送所述工作参数至外部控制设备。
  15. 如权利要求10所述的控制方法,其特征在于:所述方法还包括:
    根据所述工作参数判断所述舵机工作状态;及
    发送所述舵机工作状态至所述外部控制设备。
  16. 如权利要求10所述的控制方法,其特征在于:控制所述舵机的驱动装置运转的控制信号为PWM信号,所述方法还包括:根据所述工作参数调整输出的PWM信号。
  17. 一种无人机,包括中心部,连接于所述中心部的机架组件,及设置所述机架组件上的动力机构,其特征在于:所述无人机包括设置在所述中心部上的舵机,所述舵机包括驱动装置,与所述驱动装置连接的控制装置及传感器,所述传感器获取所述控制装置的工作参数,所述工作参数包括所述驱动装置的运行位置,所述控制装置能够根据所述驱动装置的运行位置控制所述驱动装置运转至任一预定位置并在所述任一预定位置停留,从而带动所述机架组件相对所述中心部转动至任一位置并在该任一位置停留。
  18. 如权利要求17所述的无人机,其特征在于:所述预定位置为两极限位置之间的任一位置,其中两极限位置分别为在所述驱动装置的两个相反运转方向上的两个极限位置。
  19. 如权利要求17所述的无人机,其特征在于:所述工作参数包括驱动装置的工作电流。
  20. 如权利要求17所述的无人机,其特征在于:所述控制装置为单片机。
  21. 如权利要求17所述的无人机,其特征在于:所述控制装置还用于发送所述工作参数至外部控制设备。
  22. 如权利要求17所述的无人机,其特征在于:所述控制装置还用于根据所述工作参数判断所述舵机工作状态;及发送所述舵机工作状态至外部控制设备。
  23. 如权利要求22所述的无人机,其特征在于:所述外部控制设备为无人机内部的中心板。
  24. 如权利要求22所述的无人机,其特征在于:所述中心部上设置有传动机构,所述传动机构在所述控制装置的控制下运动。
  25. 如权利要求24所述的无人机,其特征在于:所述传动机构为螺母螺杆结构,包括螺杆和套设在所述螺杆上的螺母,所述驱动装置驱动所述螺杆旋转时,所述螺母能够沿着所述螺杆轴向运动。
  26. 如权利要求24所述的无人机,其特征在于:所述机架组件包括连接于所述传动机构的连杆组件和设置在所述连杆组件远离所述传动机构一端的机臂,所述机臂用于承载所述动力机构。
  27. 如权利要求26所述的无人机,其特征在于:所述连杆组件包括连接于所述传动机构的主杆,所述主杆能够在所述传动机构的传动力作用下相对所述中心部旋转。
  28. 如权利要求27所述的无人机,其特征在于:所述主杆靠近所述中心部的一端通过第一连接结构枢接至所述中心部,所述主杆上靠近所述中心部的一侧通过第二连接结构枢接至所述传动机构。
  29. 如权利要求28所述的无人机,其特征在于:所述第二连接结构包括两相对端,一端枢接至所述传动机构,另一端枢接至所述主杆侧壁。
  30. 如权利要求29所述的无人机,其特征在于:所述第二连接结构大致呈Y型,所述Y字形两端枢接在所述主杆侧壁,另一端枢接在所述传动机构上。
  31. 如权利要求30所述的无人机,其特征在于:所述传动机构延伸出一轴套部,所述轴套部与所述第二连接结构枢接。
  32. 如权利要求30所述的无人机,其特征在于:所述轴套部为弯曲形。
  33. 如权利要求30所述的无人机,其特征在于:所述主杆远离所述中心部的一端通过一大致呈T形的连接结构连接在所述机臂上,所述连接结构包括套设在所述主杆端部的固定部及自所述固定部垂直延伸的套设部,所述套设部套设在所述机臂上。
  34. 如权利要求27所述的无人机,其特征在于:所述连杆组件还包括两端分别连接于所述中心部及所述机臂的副杆,所述机臂能够随所述主杆的旋转而相对所述中心部旋转,从而带动所述副杆相对所述中心部旋转。
  35. 如权利要求34所述的无人机,其特征在于:所述副杆靠近所述中心部的一端与所述中心部枢接。
  36. 如权利要求34所述的无人机,其特征在于:所述副杆通过一连接机构连接于所述机臂,所述连接机构包括枢接在所述副杆一端的连接部及设置在所述连接部远离所述副杆的一端的套设部,所述套设部能够套设固定在所述机臂上。
  37. 如权利要求36所述的无人机,其特征在于:所述连接部为弯曲形。
  38. 如权利要求36所述的无人机,其特征在于:所述连接部大致为S形。
  39. 如权利要求17所述的无人机,其特征在于:所述中心部上设置有连接器,所述连接器能够为所述动力机构提供电源。
  40. 如权利要求39所述的无人机,其特征在于:所述连接器与所述动力机构之间的电子走线设置在所述机架组件内。
PCT/CN2016/103650 2016-10-27 2016-10-27 舵机及其控制方法、无人机 WO2018076254A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680004254.8A CN107635870A (zh) 2016-10-27 2016-10-27 舵机及其控制方法、无人机
PCT/CN2016/103650 WO2018076254A1 (zh) 2016-10-27 2016-10-27 舵机及其控制方法、无人机
US16/395,875 US11249491B2 (en) 2016-10-27 2019-04-26 Servo, control method, and unmanned aerial vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/103650 WO2018076254A1 (zh) 2016-10-27 2016-10-27 舵机及其控制方法、无人机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/395,875 Continuation US11249491B2 (en) 2016-10-27 2019-04-26 Servo, control method, and unmanned aerial vehicle

Publications (1)

Publication Number Publication Date
WO2018076254A1 true WO2018076254A1 (zh) 2018-05-03

Family

ID=61113409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103650 WO2018076254A1 (zh) 2016-10-27 2016-10-27 舵机及其控制方法、无人机

Country Status (3)

Country Link
US (1) US11249491B2 (zh)
CN (1) CN107635870A (zh)
WO (1) WO2018076254A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113772081A (zh) * 2021-09-28 2021-12-10 上海莘汭驱动技术有限公司 一种高性能无人机舵机

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209396031U (zh) * 2018-11-30 2019-09-17 深圳市大疆创新科技有限公司 可移动平台及其舵机
CN111003189A (zh) * 2019-12-31 2020-04-14 湖南纵横空天能源科技有限公司 一种混动无人机的动力控制系统及方法
DE102020200746B4 (de) 2020-01-22 2022-03-31 Volkswagen Aktiengesellschaft Multicopter und Verfahren zum Betreiben eines Multicopters
CN111942188B (zh) * 2020-08-11 2022-04-12 北京京东乾石科技有限公司 一种无人机空中充电系统、充电方法、装置、设备和介质
CN113086194B (zh) * 2021-04-17 2024-02-20 合肥市方升信息科技有限公司 基于回波机载激光扫描数据智慧城市数据集合系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202754140U (zh) * 2012-08-02 2013-02-27 上海未来伙伴机器人有限公司 数字舵机
CN202923880U (zh) * 2012-04-28 2013-05-08 中国航天科技集团公司烽火机械厂 一种数字舵机控制器
CN203306225U (zh) * 2013-01-10 2013-11-27 深圳市大疆创新科技有限公司 飞行器变形结构及微型飞行器
EP2403757B1 (en) * 2009-03-05 2014-04-16 Cranfield Aerospace Ltd Unmanned air vehicle (uav), control system and method
CN103921933A (zh) * 2013-01-10 2014-07-16 深圳市大疆创新科技有限公司 飞行器变形结构及微型飞行器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252902A (en) * 1990-03-02 1993-10-12 Kabushiki Kaisha Sg Servo control system
JP3024164B2 (ja) * 1990-04-13 2000-03-21 ソニー株式会社 オートフォーカス装置のモータ制御回路
DE102012202914A1 (de) * 2012-02-27 2013-08-29 Robert Bosch Gmbh Diagnoseverfahren und Diagnosevorrichtung für eine Fahrzeugkomponente eines Fahrzeugs
US9623967B2 (en) * 2014-02-01 2017-04-18 Aero Machining, LLC Tiltrotor unmanned aerial vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2403757B1 (en) * 2009-03-05 2014-04-16 Cranfield Aerospace Ltd Unmanned air vehicle (uav), control system and method
CN202923880U (zh) * 2012-04-28 2013-05-08 中国航天科技集团公司烽火机械厂 一种数字舵机控制器
CN202754140U (zh) * 2012-08-02 2013-02-27 上海未来伙伴机器人有限公司 数字舵机
CN203306225U (zh) * 2013-01-10 2013-11-27 深圳市大疆创新科技有限公司 飞行器变形结构及微型飞行器
CN103921933A (zh) * 2013-01-10 2014-07-16 深圳市大疆创新科技有限公司 飞行器变形结构及微型飞行器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113772081A (zh) * 2021-09-28 2021-12-10 上海莘汭驱动技术有限公司 一种高性能无人机舵机
CN113772081B (zh) * 2021-09-28 2024-05-14 上海莘汭驱动技术有限公司 一种高性能无人机舵机

Also Published As

Publication number Publication date
US11249491B2 (en) 2022-02-15
CN107635870A (zh) 2018-01-26
US20190250642A1 (en) 2019-08-15

Similar Documents

Publication Publication Date Title
WO2018076254A1 (zh) 舵机及其控制方法、无人机
CA2294712C (en) Reconfigurable modular joint and robots produced therefrom
WO2018119767A1 (zh) 无人机及其控制系统与控制方法、电调及其控制方法
EP3148752B1 (en) Systems and methods for modular units in electro-mechanical systems
WO2017126820A1 (ko) 가변형 비행로봇
CN202754140U (zh) 数字舵机
US20150048724A1 (en) Control apparatus for controlling rotation of joints of robot
WO2019024570A1 (zh) 一种数字舵机及其控制方法
CN110979450A (zh) 一种可自由切换的无人驾驶方程式赛车转向机构
CN211841989U (zh) 一种带扭矩传感器的协作机器人关节模组
US11059570B2 (en) Movable flight surface having at least one integrated actuator
CN205545054U (zh) 一种基于i2c总线的电机控制系统
WO2021085779A1 (ko) 스마트 감속기
CN218675783U (zh) 基于片上系统的EtherCAT总线型多轴驱控一体机
WO2012102442A1 (ko) Pc 기반의 모듈형 휴머노이드 로봇 플랫폼
CN101968534B (zh) 基于lan与can总线的核磁共振谱仪气路与温控系统
CN103123468A (zh) 三轴天线测试机器人伺服控制器
CN209184623U (zh) 一种用于网络系统的交换机
CN106054734A (zh) 基于工业以太网的一体化伺服执行器
CN215764295U (zh) 一种水平闭环控制系统及云台摄像机
CN114721309A (zh) 一种电动执行机构及电动执行机构控制系统
CN109882634B (zh) 一种数字式智能型角行程电动执行器
CN211388820U (zh) 一种工业机器人自动控制装置
CN209259521U (zh) 吊具驱动控制装置及电动吊具
CN113820980A (zh) 一种多转臂多自由度实验平台动物离心机控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920088

Country of ref document: EP

Kind code of ref document: A1