WO2018074705A1 - 파장 다중화 광수신 모듈 - Google Patents
파장 다중화 광수신 모듈 Download PDFInfo
- Publication number
- WO2018074705A1 WO2018074705A1 PCT/KR2017/007218 KR2017007218W WO2018074705A1 WO 2018074705 A1 WO2018074705 A1 WO 2018074705A1 KR 2017007218 W KR2017007218 W KR 2017007218W WO 2018074705 A1 WO2018074705 A1 WO 2018074705A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- wavelength
- signal
- package
- silicon substrate
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 101
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 25
- 239000010703 silicon Substances 0.000 claims abstract description 25
- 239000000758 substrate Substances 0.000 claims abstract description 25
- 230000003321 amplification Effects 0.000 claims abstract description 10
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims description 23
- 239000011521 glass Substances 0.000 claims description 17
- 239000013307 optical fiber Substances 0.000 claims description 10
- 239000010409 thin film Substances 0.000 claims description 10
- 239000006117 anti-reflective coating Substances 0.000 claims description 6
- 239000007888 film coating Substances 0.000 claims description 6
- 238000009501 film coating Methods 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- 239000000470 constituent Substances 0.000 abstract 2
- 238000004891 communication Methods 0.000 description 10
- 238000007789 sealing Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
Definitions
- the present invention relates to a wavelength multiplexed light receiving module.
- the present invention relates to a wavelength multiplexing light receiving module that can be manufactured in a compact size by packaging the light receiving module without a separate sealing package.
- a wavelength multiplexed light receiver capable of covering an electric chip (preamplifier, photodiode, etc.) assembled on the printed circuit board with a silicon substrate and bonding and sealing the printed circuit board and the silicon substrate by a flip chip bonding process. It is about a module.
- Optical communication one of wired and wireless communication technologies, is a technology that can transmit a large amount of data at high speed without interruption as a communication means using light instead of the existing electric signal.
- Optical communication technology with a transmission capacity of 10 Gbps or more is already commercialized using a single fiber, and recently, multiple optical signals of different wavelengths having a transmission rate of 10 Gbps or 25 Gbps in one optical fiber are multiplexed to provide data of tens to 100 Gbps.
- Optical communication in the form of wavelength division multiplexing (WDM) is being used for transmission, and developments for achieving higher transmission speeds continue.
- WDM wavelength division multiplexing
- the following prior art document includes an alignment plate having an installation unit for installing on a base plate on which an optical element is mounted at a setting position, and a first reference hole and a second reference hole formed at a first distance from the first reference hole; An optical fiber fixing block having an optical fiber in optical communication with the optical element, the optical fiber fixing block having a first post inserted into the first reference hole and a second post inserted into the second reference hole; And a housing surrounding the optical fiber fixing block and the alignment plate.
- the second post is inserted into the second reference hole more loosely than the insertion into the first reference hole of the first post, the setting position passes through the first reference hole and the second reference hole A second reference line intersecting the first reference line and the first reference line and spaced apart from the first reference hole by a second distance, and positioned opposite the second reference hole with the first reference hole interposed therebetween.
- a transmission path expander characterized in that is determined by.
- An object of the present invention is to solve the problems as described above, to provide a wavelength multiplexed light receiving module that can be manufactured in a compact size by packaging the light receiving module without a separate sealing package.
- a wavelength multiplexed light receiver capable of covering an electric chip (preamplifier, photodiode, etc.) assembled on top of a printed circuit board with a silicon substrate and bonding and sealing the printed circuit board and the silicon substrate by a flip chip bonding process.
- an electric chip preamplifier, photodiode, etc.
- the wavelength multiplexed optical reception module includes: an optical connection unit 100 for connecting an optical connector and an optical reception module positioned at an end of an optical line to a wavelength multiplexed optical reception module; An optical package unit 110 which separates an optical signal received from the optical connection unit into an optical signal of each wavelength and then condenses and reflects each of the separated optical signals; An amplifying element unit 120 which receives the optical signal reflected from the optical package unit and converts the optical signal into an electrical signal; A printed circuit board 130 for transmitting the electric signal converted through the amplifying element unit to an external circuit; And a silicon substrate 140 having a groove portion 141 formed to assemble the components of the optical package portion thereon and a deep groove 142 having an open bottom portion to cover the components of the amplification element portion. The adhesive is sealed between the printed circuit board 130 and both sides of the silicon substrate 140 by a flip chip bonding process.
- the optical connecting portion 100, Receptacle 101 is coupled to the optical fiber connector formed at the end of the optical path;
- a ferrule 102 positioned in the interior space of the receptacle to align the rays;
- a cylindrical sleeve 103 positioned between the receptacle and the ferrule;
- a hill-shaped refractive index lens 104 positioned at the rear end of the ferrule and inside the receptacle to convert the input scattered light into parallel light.
- the optical package unit 110 the glass block 111 which is an optical signal demultiplexing element; An anti-reflective coating 112 formed on one side of the glass block to pass an optical signal; A reflective film coating 113 formed on one side of the glass block to reflect an optical signal; A thin film filter 114 formed at regular intervals on the other side of the glass block on which the anti-reflective coating and the reflective coating are formed to pass a wavelength of a corresponding band; A reflecting mirror 115 which converts parallel light separated from the thin film filter into a vertical direction in a downward direction; And an array lens 116 provided at one side of the reflective mirror to convert the parallel light reflected from the reflective mirror into focus light.
- the amplifying element unit 120 the photodetecting element 121 for detecting an electrical signal according to the focus light emitted;
- the wavelength multiplexed light receiving module according to the present invention has an effect that the light receiving module can be manufactured in a compact size by package structure of the light receiving module without a separate sealing package.
- the manufacturing process is simplified by bonding and sealing the printed circuit board and the silicon substrate by a flip chip bonding process, and light passes through the silicon substrate to be bonded to the printed circuit board on which the electric chips are assembled. Omission of the hole forming operation has the effect of reducing the manufacturing time and cost.
- 1 is a plan view showing a wavelength multiplexed light receiving module according to the present invention.
- Figure 2 is a cross-sectional view showing a wavelength multiplexed light receiving module according to the present invention.
- FIG 3 is a cross-sectional view illustrating a process of moving an optical signal of a wavelength multiplexed optical reception module according to the present invention.
- FIG. 4 is a view for explaining the assembly process of the wavelength multiplexed light receiving module according to the present invention.
- FIG. 1 is a plan view showing a wavelength multiplexed light receiving module according to the present invention
- Figure 2 is a cross-sectional view showing a wavelength multiplexed light receiving module according to the present invention.
- the wavelength multiplexed light receiving module includes an optical connection part 100, an optical package part 110, an amplification element part 120, a printed circuit board 130, and a silicon substrate. Including a 140, between the printed circuit board 130 and both sides of the silicon substrate 140 to be bonded and sealed through a flip chip bonding process.
- the optical connection unit 100 is a wavelength multiplexing optical reception module, for connecting the optical connector and the optical reception module located at the end of the optical line.
- the optical connecting part 100 may include a receptacle 101 coupled to an optical fiber connector formed at an end of a light path, a ferrule 102 positioned in an inner space of the receptacle to align light rays, and a cylindrical shape positioned between the receptacle and the ferrule. It includes a sleeve 103 and a hill-shaped refractive index lens 104 located in the rear end of the ferrule and inside the receptacle to convert the input scattered light into parallel light. At this time, the hill-type refractive index lens for forming parallel light can be replaced with a convex lens having an appropriate focal length.
- the ferrule 112, the sleeve 113, and the hill-shaped refractive index lens 114 have the same central axis within the receptacle 111.
- the optical connecting part 100 additionally installs a hill-type refractive index lens as compared to a conventional receptacle including only a ferrule and a sleeve, and the hill-type refractive index lens and the convex lens function to convert scattered light into parallel light.
- the hill-type refractive index lens 104 may be configured to apply a hill-type refractive index lens at a position of a focal length for making perfect parallel light, thereby making a relatively perfect parallel light without a separate active alignment.
- the hill-type refractive index lens has a structure that is inserted into the receptacle 101 without a separate alignment process with the ferrule 102 of the same cylindrical structure inside the receptacle having a cylindrical structure to be fixed in the correct position with only mechanical precision. It is possible.
- the optical package unit 110 divides an optical signal received from the optical connection unit into an optical signal of each wavelength, and then condenses and reflects each of the separated optical signals.
- the optical package unit 110 is a glass block 111 that is an optical signal demultiplexing element, an antireflection film coating 112 formed on one side of the glass block to pass an optical signal, and formed on one side of the glass block.
- Thin film filter 114 to pass the wavelength of the corresponding band formed at regular intervals on the other side of the glass block on which the reflective film 113 to reflect the optical signal, the anti-reflective coating and the reflective film coating is formed;
- a reflection mirror 115 for converting parallel light emitted horizontally and separated from the vertical direction in a downward direction, and an array lens 116 provided at one side of the reflection mirror to convert parallel light reflected from the reflection mirror into focus light. ).
- the anti-reflective coating 112 serves to minimize the loss of light incident through the hill-type refractive index lens to the glass block, and the reflective coating 113 is reflected from the thin film filter formed on the opposite side and returned back. This is reflected and then serves to enter the thin film filter.
- the optical package unit 110 is coated with a non-film coating 112 on a portion of one side of the glass block having a predetermined refractive index and thickness, and the reflective film coating 113 is applied to another region of the same surface and then the predetermined size After cutting to have a glass block cut at a precise angle so that the cross-section is in the form of a parallelogram, and then pre-fabricated thin film filters are sequentially attached to a predetermined position on the other side corresponding to one side formed with the coating portion of the glass block. It can be manufactured through the process.
- the reflective mirror 115 is formed to be inclined at a predetermined angle to reflect the optical signal from the thin film filter 114 to the lower photodetector 121, a rod-shaped mirror coated with a reflective film on one side It may be formed in the form.
- the array lens 116 integrates a lens that converts the reflected divergent light into a focus light into one component, and combines the reflection mirror 115 and the array lens 116 into one to reduce unnecessary volume and space. have. However, if necessary, the array lens unit and the reflection mirror unit may be separated and configured as two separate components.
- the amplifying element unit 120 receives an optical signal reflected from the optical package unit and converts the optical signal into an electrical signal.
- the amplifying element unit 120 includes a photodetector 121 for detecting an electrical signal according to the emitted focus light, an amplification element 122 for amplifying and outputting an electrical signal detected by the photodetector, and the photodetector
- the wire 123 connects the device and the amplification device to flow a signal.
- the photodetector 121 refers to a device that detects an optical signal and converts it into an electrical signal, and typically includes a PIN photodiode (PIN-PD) or an avalanche photodiode having an amplifier function of an optical signal ( APD).
- PIN-PD PIN photodiode
- APD avalanche photodiode having an amplifier function of an optical signal
- the photodetector 121 has an advantage in that alignment of each photodetector is easy as a plurality of devices are formed on a single semiconductor substrate as a single component.
- the amplifying device 122 amplifies the electric signal transmitted from the photodetecting device so that the signal can be selected and adjusted.
- the wire 123 serves to electrically connect the photodetecting device and the amplifying device, and may be bonded by a wire bonding process.
- the wire bonding step is a step of attaching a lead wire or the like to an electrode of a part.
- the wire bonding step is a method of placing a lead wire on a heated pellet and instantaneous heat compression.
- the printed circuit board 130 is bonded to the silicon substrate 140, which will be described later, through a flip chip bonding process, and serves to transmit the converted electrical signal to an external circuit through the amplifying element unit.
- the silicon substrate 140 has a groove 141 formed to assemble the components of the optical package part thereon, and a deep groove 142 having an open bottom thereof to cover the components of the amplification element part.
- the silicon substrate 140 has a glass block 111, a thin film filter 114, a reflective mirror 115, and an array lens 116 mounted on the groove 141 formed thereon. And fixed, an etching method is applied to form the groove.
- the silicon substrate 140 may pass through the light without forming a hole in the silicon substrate bonded to the printed circuit board on which the electric chips are assembled. Omission of the manufacturing process can be shortened.
- the optical signal when transmitted through the silicon substrate may be coated with an anti-reflection coating on the surface of the silicon substrate to minimize the loss of the optical signal.
- the conventional optical receiving module has a problem that the productivity is reduced and the price increases because the angle must be monitored by monitoring each time when assembling and aligning each component when assembling the components, but the present invention is a flip chip
- the bonding process eliminates the need for active real-time monitoring to align the parallel light when assembling the light receiving module.
- FIG. 3 is a cross-sectional view illustrating a process of moving an optical signal of a wavelength multiplexed light receiving module according to the present invention
- FIG. 4 is a view for explaining an assembly process of a wavelength multiplexed light receiving module according to the present invention.
- the wavelength multiplexed light receiving module when the integration of the amplification element unit 120 is completed, the solder pad on the upper portion of the printed circuit board 130 through flip chip bonding. Lay out and fixed by bonding to the silicon substrate 140.
- the printed circuit board and the silicon substrate are adhesively fixed through a flip chip bonding process to be sealed along the circumference of the printed circuit board and the silicon substrate.
- the optical package unit 110 has no relation to the presence or absence of the sealing, but the sealing of the printed circuit board on which the light detecting element 121 and the amplifying element 122 are assembled is the closest to the defective rate.
- the volume can be reduced, without having to put in a separate sealed package, the price is reduced as the yield increases.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Light Receiving Elements (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
본 발명은 파장 다중화 광수신 모듈에 관한 것으로, 본 발명은 별도의 밀봉 패키지 없이 광수신 모듈을 패키지 구조화하여 콤팩트한 사이즈로 제작할 수 있는 파장 다중화 광수신 모듈에 관한 것이다. 본 발명에 따른 파장 다중화 광수신 모듈은, 파장 다중화 광수신 모듈에 있어서, 광 선로 종단에 위치한 광 커넥터와 광수신 모듈을 연결하기 위한 광 접속부; 상기 광 접속부로부터 수신되는 광신호를 각 파장의 광신호로 분리한 후 분리된 각각의 광신호를 집광 및 반사하는 광 패키지부; 상기 광 패키지부로부터 반사된 광신호를 수신한 후 전기신호로 변환하는 증폭 소자부; 상기 증폭 소자부를 통해 변환된 전기 신호를 외부 회로로 전송하기 위한 인쇄회로기판; 및 상기 광 패키지부의 구성요소들이 상부에 조립되도록 홈부가 형성되고, 상기 증폭 소자부의 구성요소들을 커버하도록 하부가 개방된 깊은 홈이 형성되는 실리콘 기판;을 포함하되, 상기 인쇄회로기판과 실리콘 기판의 양측 사이를 플립칩 본딩 공정을 통해 접착하여 밀봉되도록 하는 것을 특징으로 한다.
Description
본 발명은 파장 다중화 광수신 모듈에 관한 것이다.
본 발명은 별도의 밀봉 패키지 없이 광수신 모듈을 패키지 구조화하여 콤팩트한 사이즈로 제작할 수 있는 파장 다중화 광수신 모듈에 관한 것이다.
특히, 인쇄회로기판의 상부에 조립되는 일렉트릭한 칩(프리엠프, 포토다이오드 등)을 실리콘 기판으로 커버하고 인쇄회로기판과 실리콘 기판 사이를 플립칩 본딩 공정으로 접착하여 밀봉시킬 수 있는 파장 다중화 광수신 모듈에 관한 것이다.
최근 증강현실(AR)을 기반으로 한 스마트폰 게임이 전 세계적으로 열풍을 불고 있고, 이와 같은 게임의 종류 또한 점차 다양하게 증가하고 있다. 하지만, 증강현실(AR) 콘텐츠를 구동시키기 위해서는 상당히 많은 양의 데이터 트래픽이 발생하여 시스템에 과부하가 걸리게 된다. 그럼에도, 해당 서비스를 쾌적하게 즐길 수 있는 방법은 바로 '광통신' 기술 덕분이다.
유무선 통신 기술들 중 하나인 광통신은 기존의 전기신호 대신 빛을 이용한 통신수단으로 많은 양의 데이터를 끊김 없이 초고속으로 전달할 수 있는 기술이다.
인터넷 보급률, 인터넷 평균속도 및 광대역 인터넷 1위의 인터넷 강국인 우리나라에선 당연하게 쓰이는 기술이지만 아직 통신 인프라가 미흡한 나라에서는 각광을 받고 있는 사업이다.
이미 한 가닥의 광섬유를 사용하여 10Gbps 이상의 전송 용량을 갖는 광통신 기술이 상용화되어 있고, 최근에는 하나의 광섬유에 10Gbps 또는 25Gbps의 전송 속도를 갖는 서로 다른 파장의 광신호를 다중화시켜 수십 내지 100Gbps의 데이터를 전송하는 파장 분활 다중화(WDM, Wavelength Division Multiplexing) 방식의 광통신이 사용되고 있으며, 그 이상의 전송속도를 구현하기 위한 개발이 계속되고 있다.
광통신 기술을 가장 많이 사용하고 있는 대형 인터넷 포탈 회사의 경우 대규모 데이터 센터를 운영하고 있는데, 수백 Gbps의 전송속도를 충족시키기 위해 데이터 센터는 아주 큰 규모로 세밀하게 연결되어 있다. 이러한 데이터 센터의 광통신 모듈의 밀도를 높이기 위해서는 광통신 모듈의 크기를 줄이는 것이 중요하다.
이러한 기술의 일예가 하기 선행기술문헌에 개시되어 있다.
하기 선행기술문헌에는 광소자가 설정위치에 마운트되는 베이스플레이트 상에 설치되기 위한 설치부와 제1기준홀과 상기 제1 기준홀과 제1 간격을 두고 형성되는 제2 기준홀을 가지는 정렬플레이트; 상기 광소자와 광통신하는 광섬유가 고정설치되고, 상기 제1 기준홀에 삽입되는 제1 포스트와 상기 제2 기준홀에 삽입되는 제2 포스트를 가지는 광섬유 고정블럭; 및 상기 광섬유 고정블럭과 상기 정렬플레이트를 둘러싸는 하우징; 을 포함하되, 상기 제2 포스트는 상기 제1 포스트의 상기 제1 기준홀에 삽입보다 더 헐겁게 상기 제2 기준홀에 삽입되며, 상기 설정위치는 상기 제1 기준홀과 상기 제2 기준홀을 통과하는 제1 기준선과 상기 제1 기준선과 교차하고 제1 기준홀로부터 제2 간격을 둔 위치에 위치하며, 상기 제1 기준홀을 사이에 두고 상기 제2 기준홀의 맞은편에 위치하는 제2 기준선에 의하여 결정되는 것을 특징으로 하는 전송경로 확장기에 대해 개시되어 있다.
그러나, 상술한 바와 같은 종래의 기술은 광섬유고정블럭과 정렬플레이트를 둘러싸기 위해 고가의 하우징이 설치되며, 하우징으로 밀봉하는 구조의 경우에는 다양한 광소자 부품들 하나하나를 일일이 조립하고 이를 부착하고 정렬해야 하기 때문에 공정이 복잡하고 가격이 상승되는 문제점이 있다.
본 발명의 목적은 상술한 바와 같은 문제점을 해결하기 위해 안출된 것으로서, 별도의 밀봉 패키지 없이 광수신 모듈을 패키지 구조화하여 콤팩트한 사이즈로 제작할 수 있는 파장 다중화 광수신 모듈을 제공하는데 있다.
또한, 인쇄회로기판의 상부에 조립되는 일렉트릭한 칩(프리엠프, 포토다이오드 등)을 실리콘 기판으로 커버하고 인쇄회로기판과 실리콘 기판 사이를 플립칩 본딩 공정으로 접착하여 밀봉시킬 수 있는 파장 다중화 광수신 모듈을 제공하는데 있다.
상기 목적을 달성하기 위해 본 발명에 따른 파장 다중화 광수신 모듈은, 파장 다중화 광수신 모듈에 있어서, 광 선로 종단에 위치한 광 커넥터와 광수신 모듈을 연결하기 위한 광 접속부(100); 상기 광 접속부로부터 수신되는 광신호를 각 파장의 광신호로 분리한 후 분리된 각각의 광신호를 집광 및 반사하는 광 패키지부(110); 상기 광 패키지부로부터 반사된 광신호를 수신한 후 전기신호로 변환하는 증폭 소자부(120); 상기 증폭 소자부를 통해 변환된 전기 신호를 외부 회로로 전송하기 위한 인쇄회로기판(130); 및 상기 광 패키지부의 구성요소들이 상부에 조립되도록 홈부(141)가 형성되고, 상기 증폭 소자부의 구성요소들을 커버하도록 하부가 개방된 깊은 홈(142)이 형성되는 실리콘 기판(140);을 포함하되, 상기 인쇄회로기판(130)과 실리콘 기판(140)의 양측 사이를 플립칩 본딩 공정을 통해 접착하여 밀봉되도록 하는 것을 특징으로 한다.
또한, 상기 광 접속부(100)는, 광선로 종단에 형성된 광섬유 커넥터와 결합되는 리셉터클(101); 상기 리셉터클의 내부공간에 위치되어 광선을 정렬해주는 페룰(102); 상기 리셉터클과 페룰 사이에 위치되는 원통형의 슬리브(103); 및 상기 페룰의 후단측과 리셉터클의 내부에 위치되어 입력된 분산광을 평행광으로 변환시키는 언덕형 굴절률 렌즈(104)를 포함하는 것을 특징으로 한다.
또한, 상기 광 패키지부(110)는, 광신호 역다중화 소자인 유리블록(111); 상기 유리블록의 일측면에 형성되어 광신호를 통과시키는 무반사막 코팅(112); 상기 유리블록의 일측면에 형성되어 광신호를 반사시키는 반사막 코팅(113); 상기 무반사막 코팅 및 반사막 코팅이 형성된 상기 유리블록의 타측면에 일정한 간격으로 형성되어 해당되는 대역의 파장을 통과시키는 박막필터(114); 상기 박막필터로부터 분리되어 수평으로 발산되는 평행광을 하방향으로 수직하게 변환시키는 반사 거울(115); 및 상기 반사 거울의 일측에 구비되어 상기 반사 거울로부터 반사된 평행광을 초점광으로 변환시켜주는 어레이 렌즈(116)를 포함하는 것을 특징으로 한다.
또한, 상기 증폭 소자부(120)는, 발산되는 초점광에 따른 전기 신호를 검출하는 광검출 소자(121); 상기 광검출 소자에서 검출된 전기 신호를 증폭하여 출력시키는 증폭 소자(122); 및 상기 광검출 소자와 증폭 소자를 연결하여 신호가 흐르도록 하는 와이어(123)를 포함하는 것을 특징으로 한다.
상술한 바와 같이, 본 발명에 따른 파장 다중화 광수신 모듈은, 별도의 밀봉 패키지 없이 광수신 모듈을 패키지 구조화하여 콤팩트한 사이즈로 제작할 수 있는 효과가 있다.
또한, 인쇄회로기판과 실리콘 기판 사이를 플립칩 본딩 공정으로 접착하여 밀봉시킴으로써 제조 공정이 단순해지고, 일렉트릭한 칩들이 조립되어 있는 인쇄회로기판과 접착되는 실리콘 기판에 홀을 형성하지 않고도 빛이 통과됨으로써 홀 성형작업의 생략으로 인해 제조 시간 및 비용을 절감하는 효과가 있다.
도 1은 본 발명에 따른 파장 다중화 광수신 모듈을 도시한 평면도.
도 2는 본 발명에 따른 파장 다중화 광수신 모듈을 도시한 단면도.
도 3은 본 발명에 따른 파장 다중화 광수신 모듈의 광신호의 이동과정을 보여주는 단면도.
도 4는 본 발명에 따른 파장 다중화 광수신 모듈의 조립 공정을 설명하기 위한 도면.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 안되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서 본 명세서에 기재된 실시 예와 도면에 도시된 구성은 본 발명의 가장 바람직한 실시 예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.
이하, 도면을 참조하여 설명하기에 앞서, 본 발명의 요지를 드러내기 위해서 필요하지 않은 사항 즉 통상의 지식을 가진 당업자가 자명하게 부가할 수 있는 공지 구성에 대해서는 도시하지 않거나, 구체적으로 기술하지 않았음을 밝혀둔다.
본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 설명하면 다음과 같다.
도 1은 본 발명에 따른 파장 다중화 광수신 모듈을 도시한 평면도이고, 도 2는 본 발명에 따른 파장 다중화 광수신 모듈을 도시한 단면도이다.
도 1 및 도 2에 도시된 바와 같이, 본 발명에 따른 파장 다중화 광수신 모듈은 광 접속부(100), 광 패키지부(110), 증폭 소자부(120), 인쇄회로기판(130), 실리콘 기판(140)을 포함하되, 상기 인쇄회로기판(130)과 실리콘 기판(140)의 양측 사이를 플립칩 본딩 공정을 통해 접착하여 밀봉되도록 한다.
상기 광 접속부(100)는 파장 다중화 광수신 모듈에 있어서, 광 선로 종단에 위치한 광 커넥터와 광수신 모듈을 연결하기 위한 것이다.
상기 광 접속부(100)는, 광선로 종단에 형성된 광섬유 커넥터와 결합되는 리셉터클(101), 상기 리셉터클의 내부공간에 위치되어 광선을 정렬해주는 페룰(102), 상기 리셉터클과 페룰 사이에 위치되는 원통형의 슬리브(103) 및 상기 페룰의 후단측과 리셉터클의 내부에 위치되어 입력된 분산광을 평행광으로 변환시키는 언덕형 굴절률 렌즈(104)를 포함한다. 이때 평행광을 형성시키는 언덕형 굴절율 렌즈는 적당한 초점 거리를 갖는 볼록 렌즈로 대체 가능하다.
상기 페룰(112), 슬리브(113) 및 언덕형 굴절률 렌즈(114)는 리셉터클(111)의 내부에서 상호 동일한 중심축을 갖는다.
상기 광 접속부(100)는 페룰과 슬리브만으로 구성된 종래의 리셉터클부와 대비하여 언덕형 굴절률 렌즈를 추가로 설치하며, 상기 언덕형 굴절률 렌즈 또 볼록 렌즈는 분산광을 평행광으로 변환하는 기능을 한다.
상기 언덕형 굴절률 렌즈(104)는 완벽한 평행광을 만들기 위한 초점 거리의 위치가 언덕형 굴절률 렌즈를 적용하여 별도의 능동 정렬 없이 비교적 완벽한 평행광을 만들 수 있다.
또한, 언덕형 굴절률 렌즈는 원통형 구조를 갖는 리셉터클 내부에 동일한 원통형 구조의 페룰(102)과 별도의 정렬 공정 없이 리셉터클(101)에 삽입 장착되는 구조를 취함으로써 기계적인 정밀도만으로도 정확한 위치에 고정시키는 것이 가능하다.
상기 광 패키지부(110)는 상기 광 접속부로부터 수신되는 광신호를 각 파장의 광신호로 분리한 후 분리된 각각의 광신호를 집광 및 반사한다.
상기 광 패키지부(110)는, 광신호 역다중화 소자인 유리블록(111), 상기 유리블록의 일측면에 형성되어 광신호를 통과시키는 무반사막 코팅(112), 상기 유리블록의 일측면에 형성되어 광신호를 반사시키는 반사막 코팅(113), 상기 무반사막 코팅 및 반사막 코팅이 형성된 상기 유리블록의 타측면에 일정한 간격으로 형성되어 해당되는 대역의 파장을 통과시키는 박막필터(114), 상기 박막필터로부터 분리되어 수평으로 발산되는 평행광을 하방향으로 수직하게 변환시키는 반사 거울(115) 및 상기 반사 거울의 일측에 구비되어 상기 반사 거울로부터 반사된 평행광을 초점광으로 변환시켜주는 어레이 렌즈(116)를 포함한다.
상기 무반사막 코팅(112)은 언덕형 굴절률 렌즈를 통해 입사되는 광이 유리블록에 반사됨에 따른 손실을 최소화시켜주는 역할을 하고, 반사막 코팅(113)은 반대측에 형성된 박막필터로부터 반사되어 되돌아 온 광이 다시 반사되어 그 다음 박막필터로 입사되도록 하는 역할을 한다.
즉, 상기 광 패키지부(110)는 정해진 굴절률과 두께를 갖는 유리블록 일측면의 일부 영역에 무박사막 코팅(112)을 하고 같은 면의 또 다른 영역에는 반사막 코팅(113)을 한 후 정해진 크기를 갖도록 잘라낸 다음 잘라낸 유리블록을 그 단면이 평행 사변형의 형태가 되도록 정밀한 각도로 연마한 후, 미리 제작된 박막필터들을 유리블록의 코팅부가 형성된 일측면과 대응되는 타측면에 정해진 위치에 순차적으로 부착하는 공정을 통해 제작될 수 있다.
상기 반사 거울(115)은 박막필터(114)로부터의 광신호를 하층의 광검출 소자(121)로 반사하기 위한 구성으로 일정각도로 기울어져 형성되고, 한쪽 면에 반사막이 코팅된 막대 형태의 거울 형태로 형성될 수 있다.
상기 어레이 렌즈(116)는 반사된 발산광을 초점광으로 변환시키는 렌즈를 하나의 부품으로 집적화한 것이며, 반사 거울(115)과 어레이 렌즈(116)를 하나로 결합함으로써 불필요한 부피 및 공간을 절감할 수 있다. 그러나, 필요에 따라 어레이 렌즈부와 반사 거울부를 분리하여 두 개의 별도 부품으로 구성하는 것도 가능하다.
상기 증폭 소자부(120)는 상기 광 패키지부로부터 반사된 광신호를 수신한 후 전기신호로 변환한다.
상기 증폭 소자부(120)는, 발산되는 초점광에 따른 전기 신호를 검출하는 광검출 소자(121), 상기 광검출 소자에서 검출된 전기 신호를 증폭하여 출력시키는 증폭 소자(122) 및 상기 광검출 소자와 증폭 소자를 연결하여 신호가 흐르도록 하는 와이어(123)를 포함한다.
상기 광검출 소자(121)는 광신호를 검출하여 전기적인 신호로 바꾸어 주는 역할을 하는 소자를 말하며, 대표적으로 PIN 포토다이오드(PIN-PD) 또는 광신호의 증폭기능이 있는 아발란치 포토다이오드(APD) 등이 있다.
상기 광검출 소자(121)는 복수 개의 소자를 단일부품으로 하나의 반도체 기판 위에 형성함에 따라 각 광검출 소자의 정렬이 용이한 장점이 있다.
상기 증폭 소자(122)는 광검출 소자로부터 전달된 전기신호를 증폭하여 주는 것으로 신호를 선택하여 조절할 수 있도록 한다.
상기 와이어(123)는 광검출 소자와 증폭 소자를 전기적으로 연결하는 역할을 하며, 와이어 본딩(Wire Bonding) 공정으로 접착시킬 수 있다.
여기에서 와이어 본딩 공정이란 부품의 전극에 리드선 등을 붙이는 공정으로, 가열된 펠릿(Pellet)에 리드선을 얹고 순간적으로 가열 압착하는 방법이다.
상기 인쇄회로기판(130)은 후술하게 될 실리콘 기판(140)과 플립칩 본딩 공정을 통해 접착되며, 상기 증폭 소자부를 통해 변환된 전기 신호를 외부 회로로 전송하는 역할을 한다.
상기 실리콘 기판(140)은 상기 광 패키지부의 구성요소들이 상부에 조립되도록 홈부(141)가 형성되고, 상기 증폭 소자부의 구성요소들을 커버하도록 하부가 개방된 깊은 홈(142)이 형성된다.
상기 실리콘 기판(140)은 상부에 형성된 홈부(141)에 광 패키지부(110)의 구성요소들인 유리블록(111), 박막필터(114), 반사 거울(115) 및 어레이 렌즈(116)가 안착되어 고정되며, 상기 홈부를 형성하기 위해 엣칭(Etching) 방법이 적용된다.
상기 실리콘 기판(140)은 광신호 전달에 있어서 빛의 파장이 실리콘을 통과할 수 있으므로 일렉트릭한 칩들이 조립되어 있는 인쇄회로기판과 접착되는 실리콘 기판에 홀을 형성하지 않고도 빛이 통과됨으로써 홀 성형작업의 생략으로 인하여 제조 공정을 단축시킬 수 있다.
한편, 상기 실리콘 기판을 통하여 광신호가 전달되는 경우에는 광신호의 손실을 최소화하기 위하여 실리콘 기판의 표면에 무반사막 코팅을 할 수 있다.
한편, 종래의 광수신 모듈은 구성요소를 조립할 때 각각의 구성요소를 조립하고 정렬할 때마다 모니터링하여 각도를 확인해야 하기 때문에 생산성이 떨어지고 가격이 증가하는 등의 문제점이 있었으나, 본 발명은 플립칩 본딩 공정을 통해 광수신 모듈을 조립할 때 평행광의 각도를 맞추기 위한 액티브한 실시간 모니터링이 필요 없게 된다.
도 3은 본 발명에 따른 파장 다중화 광수신 모듈의 광신호의 이동과정을 보여주는 단면도이고, 도 4는 본 발명에 따른 파장 다중화 광수신 모듈의 조립 공정을 설명하기 위한 도면이다.
도 3 및 도 4에 도시된 바와 같이, 본 발명에 따른 파장 다중화 광수신 모듈은, 증폭 소자부(120)의 일체화가 완성되면 플립칩 본딩을 통해 인쇄회로기판(130)의 상부에 솔더 패드를 놓고 실리콘 기판(140)과 접착하여 고정한다.
이때, 상기 인쇄회로기판과 실리콘 기판의 플립칩 본딩 공정을 통해 접착 고정되어 인쇄회로기판과 실리콘 기판의 둘레를 따라 밀봉된다.
광 패키지부(110)는 밀봉의 유무와는 관계가 없으나, 광검출 소자(121) 및 증폭 소자(122)가 조립되어 있는 인쇄회로기판의 밀봉이 불량률에 가장 밀접하기 때문이다.
특히, 별도의 밀봉된 패키지 안에 넣지 않아도 밀봉 효과가 있고, 부피를 줄일 수 있으며, 수율이 증가함에 따라 가격이 저렴해지는 효과가 있다.
본 발명은 첨부된 도면을 참조하여 바람직한 실시예를 중심으로 기술되었지만 당업자라면 이러한 기재로부터 본 발명의 범주를 벗어남이 없이 많은 다양한 변형이 가능하다는 것은 자명하다.
Claims (4)
- 파장 다중화 광수신 모듈에 있어서,광 선로 종단에 위치한 광 커넥터와 광수신 모듈을 연결하기 위한 광 접속부(100);상기 광 접속부로부터 수신되는 광신호를 각 파장의 광신호로 분리한 후 분리된 각각의 광신호를 집광 및 반사하는 광 패키지부(110);상기 광 패키지부로부터 반사된 광신호를 수신한 후 전기신호로 변환하는 증폭 소자부(120);상기 증폭 소자부를 통해 변환된 전기 신호를 외부 회로로 전송하기 위한 인쇄회로기판(130); 및상기 광 패키지부의 구성요소들이 상부에 조립되도록 홈부(141)가 형성되고, 상기 증폭 소자부의 구성요소들을 커버하도록 하부가 개방된 깊은 홈(142)이 형성되는 실리콘 기판(140);을 포함하되,상기 인쇄회로기판(130)과 실리콘 기판(140)의 양측 사이를 플립칩 본딩 공정을 통해 접착하여 밀봉되도록 하는 것을 특징으로 하는 파장 다중화 광수신 모듈.
- 제1항에 있어서,상기 광 접속부(100)는,광선로 종단에 형성된 광섬유 커넥터와 결합되는 리셉터클(101);상기 리셉터클의 내부공간에 위치되어 광선을 정렬해주는 페룰(102);상기 리셉터클과 페룰 사이에 위치되는 원통형의 슬리브(103); 및상기 페룰의 후단측과 리셉터클의 내부에 위치되어 입력된 분산광을 평행광으로 변환시키는 언덕형 굴절률 렌즈(104)를 포함하는 것을 특징으로 하는 파장 다중화 광수신 모듈.
- 제1항에 있어서,상기 광 패키지부(110)는,광신호 역다중화 소자인 유리블록(111);상기 유리블록의 일측면에 형성되어 광신호를 통과시키는 무반사막 코팅(112);상기 유리블록의 일측면에 형성되어 광신호를 반사시키는 반사막 코팅(113);상기 무반사막 코팅 및 반사막 코팅이 형성된 상기 유리블록의 타측면에 일정한 간격으로 형성되어 해당되는 대역의 파장을 통과시키는 박막필터(114);상기 박막필터로부터 분리되어 수평으로 발산되는 평행광을 하방향으로 수직하게 변환시키는 반사 거울(115); 및상기 반사 거울의 일측에 구비되어 상기 반사 거울로부터 반사된 평행광을 초점광으로 변환시켜주는 어레이 렌즈(116)를 포함하는 것을 특징으로 하는 파장 다중화 광수신 모듈.
- 제1항에 있어서,상기 증폭 소자부(120)는,발산되는 초점광에 따른 전기 신호를 검출하는 광검출 소자(121);상기 광검출 소자에서 검출된 전기 신호를 증폭하여 출력시키는 증폭 소자(122); 및상기 광검출 소자와 증폭 소자를 연결하여 신호가 흐르도록 하는 와이어(123)를 포함하는 것을 특징으로 하는 파장 다중화 광수신 모듈.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780064929.2A CN109845143B (zh) | 2016-10-19 | 2017-07-06 | 波分复用光接收模块 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0136046 | 2016-10-19 | ||
KR1020160136046A KR101885080B1 (ko) | 2016-10-19 | 2016-10-19 | 파장 다중화 광수신 모듈 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018074705A1 true WO2018074705A1 (ko) | 2018-04-26 |
Family
ID=62019209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/007218 WO2018074705A1 (ko) | 2016-10-19 | 2017-07-06 | 파장 다중화 광수신 모듈 |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR101885080B1 (ko) |
CN (1) | CN109845143B (ko) |
WO (1) | WO2018074705A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114325968A (zh) * | 2022-01-04 | 2022-04-12 | 武汉光迅科技股份有限公司 | 一种应用于光模块中的气密结构 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10862610B1 (en) | 2019-11-11 | 2020-12-08 | X Development Llc | Multi-channel integrated photonic wavelength demultiplexer |
US11187854B2 (en) | 2019-11-15 | 2021-11-30 | X Development Llc | Two-channel integrated photonic wavelength demultiplexer |
WO2022083040A1 (zh) * | 2020-10-19 | 2022-04-28 | 青岛海信宽带多媒体技术有限公司 | 一种光模块 |
US11536907B2 (en) | 2021-04-21 | 2022-12-27 | X Development Llc | Cascaded integrated photonic wavelength demultiplexer |
US11962351B2 (en) | 2021-12-01 | 2024-04-16 | X Development Llc | Multilayer photonic devices with metastructured layers |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0938007B1 (en) * | 1998-02-23 | 2004-05-06 | Sumitomo Electric Industries, Ltd. | LD/PD module and LED/PD module |
US20040208416A1 (en) * | 2001-06-26 | 2004-10-21 | Intel Corporation | Flip-chip package integrating optical and electrical devices and coupling to a waveguide on a board |
US20070053638A1 (en) * | 2005-09-02 | 2007-03-08 | Ntt Electronics Corporation | Optical Receptacle and Optical Module with Optical Receptacle |
US8488244B1 (en) * | 2010-07-12 | 2013-07-16 | Alliance Fiber Optic Products, Inc. | Ultra compact optical multiplexer or demultiplexer |
JP2014072804A (ja) * | 2012-09-28 | 2014-04-21 | Sumitomo Osaka Cement Co Ltd | 光受信モジュール |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3464081B2 (ja) * | 1995-07-26 | 2003-11-05 | 富士通株式会社 | 波長分波器 |
KR20070023420A (ko) * | 2005-08-24 | 2007-02-28 | (주) 파이오닉스 | 실리콘 광학 벤치를 이용한 광송수신 모듈 |
JP2013201473A (ja) * | 2012-03-23 | 2013-10-03 | Sumitomo Electric Ind Ltd | 光受信モジュール |
KR101480025B1 (ko) | 2013-11-28 | 2015-01-07 | (주)옵토마인드 | 전송경로 확장기 |
CN105278056B (zh) * | 2015-11-06 | 2017-05-03 | 武汉电信器件有限公司 | 一种波分复用/解复用光组件 |
-
2016
- 2016-10-19 KR KR1020160136046A patent/KR101885080B1/ko active IP Right Grant
-
2017
- 2017-07-06 CN CN201780064929.2A patent/CN109845143B/zh active Active
- 2017-07-06 WO PCT/KR2017/007218 patent/WO2018074705A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0938007B1 (en) * | 1998-02-23 | 2004-05-06 | Sumitomo Electric Industries, Ltd. | LD/PD module and LED/PD module |
US20040208416A1 (en) * | 2001-06-26 | 2004-10-21 | Intel Corporation | Flip-chip package integrating optical and electrical devices and coupling to a waveguide on a board |
US20070053638A1 (en) * | 2005-09-02 | 2007-03-08 | Ntt Electronics Corporation | Optical Receptacle and Optical Module with Optical Receptacle |
US8488244B1 (en) * | 2010-07-12 | 2013-07-16 | Alliance Fiber Optic Products, Inc. | Ultra compact optical multiplexer or demultiplexer |
JP2014072804A (ja) * | 2012-09-28 | 2014-04-21 | Sumitomo Osaka Cement Co Ltd | 光受信モジュール |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114325968A (zh) * | 2022-01-04 | 2022-04-12 | 武汉光迅科技股份有限公司 | 一种应用于光模块中的气密结构 |
Also Published As
Publication number | Publication date |
---|---|
CN109845143A (zh) | 2019-06-04 |
CN109845143B (zh) | 2021-11-19 |
KR101885080B1 (ko) | 2018-08-03 |
KR20180043125A (ko) | 2018-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018074705A1 (ko) | 파장 다중화 광수신 모듈 | |
JP7532467B2 (ja) | 受光機光サブアセンブリ、コンボ双方向光サブアセンブリ、コンボ光モジュール、olt及びponシステム | |
US12128729B2 (en) | Integrated optical transceiver | |
WO2016199984A1 (ko) | 파장 다중화 광수신 모듈 | |
WO2021115129A1 (zh) | 一种光模块 | |
TWI616695B (zh) | 多通道並行光接收器件 | |
WO2012067366A1 (ko) | 광통신 모듈 | |
WO2012039542A2 (ko) | 파장 분할 다중화 및 역다중화 장치 | |
WO2012059071A1 (zh) | 光学模组及安装方法、接口和光纤传输线、光纤传输装置 | |
WO2020105779A1 (ko) | 멀티채널 양방향 광통신 모듈 | |
CN106405755A (zh) | 一种高速多通道的收发器件 | |
WO2011007909A1 (ko) | 광 모듈 및 그 제조방법 | |
WO2016199985A1 (ko) | 다채널 광수신 모듈 및 다채널 광수신 모듈의 광정렬 방법 | |
WO2018074704A1 (ko) | 적층구조를 적용한 파장 다중화 어레이 광수신 모듈의 패키지 구조 | |
TWI498619B (zh) | 雙向光傳輸次組件 | |
CN217606136U (zh) | 光模块 | |
CN217521402U (zh) | 光模块 | |
CN103441801B (zh) | 光线路终端制作方法、光线路终端、无源光网络局端设备 | |
CN216351387U (zh) | 一种光模块 | |
WO2021256752A1 (ko) | 광 정렬 기능이 개선된 광 송수신 장치 및 그 제조방법 | |
CN114895411A (zh) | 光模块 | |
WO2022057100A1 (zh) | 一种光模块 | |
WO2016200031A1 (ko) | 광도파로칩을 이용한 광수신 모듈 및 이의 제조방법 | |
WO2023115921A1 (zh) | 一种收发集成bosa双向光组件和光模块 | |
CN217279034U (zh) | 高灵敏度高速光接收器件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17862697 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17862697 Country of ref document: EP Kind code of ref document: A1 |