WO2012059071A1 - 光学模组及安装方法、接口和光纤传输线、光纤传输装置 - Google Patents

光学模组及安装方法、接口和光纤传输线、光纤传输装置 Download PDF

Info

Publication number
WO2012059071A1
WO2012059071A1 PCT/CN2011/081798 CN2011081798W WO2012059071A1 WO 2012059071 A1 WO2012059071 A1 WO 2012059071A1 CN 2011081798 W CN2011081798 W CN 2011081798W WO 2012059071 A1 WO2012059071 A1 WO 2012059071A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
fiber
positioning
circuit board
lens
Prior art date
Application number
PCT/CN2011/081798
Other languages
English (en)
French (fr)
Inventor
林东楼
占玉梅
朱万永
朱海亮
陈丹
张烨
谷淑娅
曹俊星
Original Assignee
浙江彩虹鱼通讯技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江彩虹鱼通讯技术有限公司 filed Critical 浙江彩虹鱼通讯技术有限公司
Publication of WO2012059071A1 publication Critical patent/WO2012059071A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3897Connectors fixed to housings, casing, frames or circuit boards
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3885Multicore or multichannel optical connectors, i.e. one single ferrule containing more than one fibre, e.g. ribbon type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device

Definitions

  • the present invention relates to data transmission technologies, and in particular, to an optical module, an interface and an optical fiber transmission line, a multi-channel optical fiber transmission device, and an optical module installation method. Background technique
  • the traditional data transmission line using copper cable as a data transmission medium has a small amount of data transmission and only supports short-distance transmission, and cannot meet the requirements of high-definition and high-speed data transmission.
  • optical fiber As a data transmission medium, optical fiber has large data capacity and can be transmitted over long distances. It has been widely used in backbone networks. However, due to the cost of optical fiber transmission lines, etc., P has promoted its popularization and application in daily life or ordinary households. Summary of the invention
  • One technical problem to be solved by the present invention is to provide an optical module for use in a data transmission line, and/or a multi-channel optical fiber transmission device, which can reduce the manufacturing cost of the transmission line.
  • the invention provides an optical module, comprising: a separate optical transceiver device; an optical device positioning device for connecting the separated optical transceiver device to the circuit board; and a fiber positioning device for respectively aligning the optical fibers with separate optical transceivers Device.
  • the optical module further includes lens means for reflecting and concentrating light from the optical fiber to the optical receiving device or for reflecting and condensing light from the optical transmitting device into the optical fiber.
  • the optical transceiver device and the circuit board are connected by a conductive adhesive or a gold wire; and/or
  • the fiber positioning device and the optical fiber are fixed by optical glue.
  • circuit board positioning post for mating with a positioning hole on the circuit board to position the optical device positioning device on the circuit board
  • a first positioning post for engaging with a first positioning hole on the optical device positioning device to realize assembly of the optical device positioning device and the lens device;
  • a lens, an optical fiber and/or optical transceiver for focusing the light path and aligning the corresponding channel
  • the fiber positioning device includes:
  • a second positioning post for mating with the second positioning hole of the lens device to realize assembly of the lens device and the fiber positioning device
  • the fiber positioning hole is used for guiding and positioning the optical fiber, and the optical fiber is respectively aligned with the corresponding optical transceiver device through the lens;
  • the fiber-optic fixed platform is used for placing and fixing the support of the optical fiber, and the shape thereof is not particularly limited.
  • the optical module further includes a sealing device for sealing the optical transceiver device, the optical device positioning device, and the optical fiber positioning device, wherein the optical device is separated, When one of the optical transceiver devices fails or fails, only the failed optical transceiver device can be replaced, thereby reducing the cost.
  • the present invention also provides an interface comprising: a connector; a circuit board connected to the connector; and the optical module connected to the circuit board.
  • the present invention also provides an optical fiber transmission line comprising: an optical fiber; and the above interface at an end of the optical fiber.
  • the present invention provides a multi-channel optical fiber transmission device, including a fiber positioning device; the fiber positioning device includes a support platform and n fiber positioning holes, and n is an integer greater than or equal to 2;
  • the entrance of the fiber positioning hole is larger than the exit of the fiber positioning hole.
  • An embodiment of the multi-channel fiber optic transmission device further comprises: n fiber guiding grooves for aligning n fiber positioning holes; n fiber guiding grooves are arranged in a trapezoidal shape on a side away from the fiber positioning holes.
  • the fiber positioning hole comprises a tapered positioning hole and a circular positioning hole, the tapered positioning hole is located at the inlet side of the fiber positioning hole, and the circular positioning hole is located at the exit of the fiber positioning hole. side.
  • the gradient of the trapezoidal shape of the fiber guiding groove is 10 to 20 degrees, preferably 15 degrees;
  • the taper positioning hole has an inclination of 8 to 16 degrees, preferably 10 degrees.
  • the present invention also provides a multi-channel fiber optic transmission apparatus comprising the above-described fiber optic positioning apparatus, and a lens/prism apparatus.
  • the lens/prism device comprises a right angle prism, and two spherical lenses located on the side of the right angle prism.
  • the present invention also provides a multi-channel optical fiber transmission apparatus comprising the above-described optical device positioning device, the above-described optical fiber positioning device, and the above lens/prism device.
  • Another technical problem to be solved by the present invention is to provide an optical module mounting method capable of effectively realizing the positioning of a separate optical transceiver device on a circuit board.
  • the invention provides an optical module installation method, including:
  • the separate optical transceiver device is coupled to the circuit board by an optical device positioning device; the fiber is aligned to the separate optical transceiver device by the fiber positioning device.
  • aligning the fiber with the separate optical device by the fiber positioning device includes:
  • the optics positioning device is combined with the fiber positioning device to direct the fiber directly to the separated optical transceiver device.
  • connecting the separate optical device to the circuit board by the optical device positioning device comprises:
  • the optics locating device is combined with the circuit board to electrically connect the separate optical transceiver device to the circuit board by positioning the separate optical transceiver device to a designated location on the circuit board.
  • the method further includes:
  • optical fiber positioning device and the optical fiber are fixed by optical glue.
  • the optical module mounting method provided by the present invention places the light-emitting device on a designated position of the circuit board through the optical device positioning device, thereby effectively realizing the positioning of the separated optical transceiver device on the circuit board.
  • Figure 1 shows a schematic diagram of one embodiment of an interface of the present invention.
  • Fig. 2 is a structural view showing an embodiment of an optical device positioning device of the present invention; wherein, Fig. 2A is a perspective view showing an embodiment of the optical device positioning device, and Fig. 2B is a front view showing an embodiment of the optical device positioning device.
  • Figure 3 is a structural view showing an embodiment of a lens device of the present invention
  • Figure 3A shows A perspective view of the lens device embodiment is shown
  • Fig. 3B shows a front view of the lens device embodiment
  • Fig. 3C shows a side view of the lens device embodiment
  • Fig. 3D shows a specific structure of the lens/prism.
  • Figure 4 is a structural view showing an embodiment of the optical fiber positioning device of the present invention
  • Figure 4A is a perspective view showing an embodiment of the optical fiber positioning device
  • Figure 4B is a front view of the optical fiber positioning device embodiment
  • Figure 4C is a view A perspective view of an embodiment of a fiber optic positioning device.
  • Fig. 5 is a schematic view showing another embodiment of the interface of the present invention
  • Fig. 5A is a perspective view showing the interface embodiment
  • Fig. 5B is a detailed perspective view showing the optical device positioning device in the interface embodiment.
  • Figure 6 is a flow chart showing one embodiment of the optical module mounting method of the present invention.
  • Fig. 7 is a flow chart showing another embodiment of the HDMI interface mounting method of the present invention.
  • FIGS 8A-8F show schematic diagrams of the various steps in the flow shown in Figure 7. detailed description
  • the basic idea of an embodiment of the invention is to connect the separated optical transceiver device to the circuit board by means of an optical device positioning device, and to realize the optical fiber alignment and separation of the optical transceiver device by the fiber positioning device.
  • the installation of the separate optical transceiver device is realized by the positioning device, which is convenient for installation and use.
  • the optical transceiver device may be an optical receiving device, an optical transmitting device, or both an optical receiving device and an optical transmitting device.
  • Figure 1 shows a schematic diagram of one embodiment of an interface of the present invention.
  • the interface includes a connector 1, a circuit board 2, an optical fiber 3, an optical device positioning device 4, a lens device 5, a fiber positioning device 6, and an optical transceiver device (not shown in FIG. 1).
  • Connector 1 For example, HDMI (High Definition Multimedia) connector, VAG (Video Address Generator) connector, DP (DisplayPort) or DVI (Digital Visual Interface) connector.
  • the optical transceiver device is, for example, an LD (Laser Diode), a PD (Photo Diode), a Vcsel (Vertical-Cavity Surface-Emitting Laser) or an LED (Light Emitting Diode).
  • LD Laser Diode
  • PD Photo Diode
  • Vcsel Very-Cavity Surface-Emitting Laser
  • LED Light Emitting Diode
  • the connector 1 is connected to the circuit board 2, and the optical device positioning device 4 positions the separated optical transceiver device on the circuit board 2.
  • the lens device 5 is connected to the optical device positioning device 4 and the optical fiber positioning device 6, respectively, to reflect light from the optical fiber 3 and Converging to the optical transceiver device, or reflecting and condensing light from the optical transceiver device into the optical fiber 3; the fiber positioning device 6 separates the optical fibers 3 and respectively aligns the separated optical transceiving devices through the lens device 5.
  • the optical transceiver device is separate, and may mean that each of the optical transceiver devices is separated from each other, or one or more optical transceiver devices may be grouped together, and the groups are separated from each other.
  • optical transceiver devices are typically integrated to form an optical transceiver device component.
  • failure of any of the optical transceiver components in the optical transceiver component whether during manufacturing or use, must replace the entire optical transceiver component, thereby greatly increasing production and use costs.
  • the optical transceiving device is separate, rather than integrating all of the optical transceiving devices as is conventional in the prior art, and when one of the optical transceiving devices fails or fails, only the failure can be replaced.
  • the optical transceiver device improves the yield, reduces the production cost, and reduces the maintenance cost.
  • Fig. 2 is a structural view showing an embodiment of an optical device positioning device of the present invention, wherein Fig. 2A shows a perspective view of the embodiment of the optical device positioning device, and Fig. 2B shows a front view of the optical device positioning device embodiment.
  • the optical device positioning device includes an optical device positioning hole 21, a circuit board positioning post 22, and a first positioning hole 23.
  • the board positioning post 22 cooperates with a positioning hole on the circuit board to set the optical device
  • the bit device is positioned on the board.
  • the optics positioning hole 21 is used to position the optical transceiving device (wafer) on the board to position the optical device to the board.
  • the first positioning hole 23 is used for assembly of the lens device and the optical device positioning device 21.
  • Figure 3 is a structural view showing an embodiment of a lens device of the present invention, wherein Figure 3A shows a perspective view of the lens device embodiment, Figure 3B shows a front view of the lens device embodiment, and Figure 3C shows the lens.
  • the lens device includes a first positioning post 31, a second positioning hole 32, and a lens 33.
  • the lens 33 is, for example, a glass lens or a plastic lens.
  • the first positioning post 31 cooperates with the first positioning hole 23 on the optical device positioning device to realize assembly of the optical device positioning device and the lens device.
  • the second positioning hole 32 is used for assembly of the lens device and the fiber positioning device.
  • Lens 33 is used for optical path focusing and alignment.
  • the primary function of the lens device is to focus and direct the light path. For example, at the TX (transmitting) end LENS focuses the light from the illuminating element through 90. The reflection enters the fiber and directs the light path into the light-receiving device at the RX (receiving) end.
  • This design effectively increases the transmission efficiency of the optical path, reduces the thickness of the product, and reduces the space occupied by the product.
  • Fig. 3D shows the specific structure of the lens/prism.
  • the lens/prism device includes a right-angle prism; the lower spherical lens is used for beam convergence, the 45° prism face is used for 90° beam direction, and the upper spherical lens is used for beam convergence. Lens/prism with fiber positioning device, lens/prism with light emitter / light receiver.
  • the transmission path of the optical path of the present invention is:
  • the laser emits a laser beam that passes through the lower spherical lens as shown in Figure 3D, reaching the prism 45 during focusing.
  • the upper spherical lens is as shown in Fig. 3D.
  • the laser beam is focused by the spherical lens and enters the optical fiber fixed by the multi-optical fiber transmission device. After the laser beam passes through the optical fiber, it enters the upper surface of the receiving lens/prism.
  • the lens reaches the 45° surface of the prism during focusing, and 90° turns to the lower spherical lens, which is focused by the spherical lens to reach the optical receiver.
  • the reference example is:
  • the signal transmitting end sends a signal to the product HDMI interface, and the signal passes through the laser driver. Converted to a current signal that can drive the light emitter, the light emitter emits a laser beam that passes through the lower spherical lens as shown in Figure 3D, reaches the 45° surface of the prism during focusing, and reaches 90° after the steering, as shown in Figure 3D.
  • the upper spherical lens is shown.
  • the laser beam is focused by the spherical lens and enters the optical fiber fixed by the multi-optical fiber transmission device. After the laser beam passes through the optical fiber, it enters the upper spherical lens of the receiving end lens/prism, and reaches the prism 45° surface during the focusing process.
  • the lower spherical lens is reached, and the optical lens is focused by the spherical lens to reach the optical receiver.
  • the amplifier amplifies the signal received by the optical receiver, and the signal is transmitted to the signal receiving end via the product HDMI interface.
  • Fig. 4 is a structural view showing an embodiment of the optical fiber positioning device of the present invention, wherein Fig. 4A shows a perspective view of the optical fiber positioning device embodiment, and Fig. 4B shows a front view of the optical fiber positioning device embodiment.
  • the fiber positioning device includes a second positioning post 41, a fiber positioning hole 42 and a fiber fixing platform 43 (supporting platform).
  • the second positioning post 41 cooperates with the second positioning hole 32 of the lens device to realize assembly of the lens device and the fiber positioning device.
  • the fiber positioning hole 42 is used for guiding and positioning of the optical fiber, and the optical fiber is respectively aligned with the separated optical transceiver device through the lens.
  • the fiber fixing platform 43 is used to place and fix the fiber.
  • the fiber positioning device can separate and position the optical fibers and extend in parallel. After the optical fibers pass through the optical fiber positioning device, the optical fibers are used to fix the optical fibers to the optical fiber fixing platform 43 of the optical fiber positioning device.
  • Figure 4C shows a perspective view of an embodiment of the fiber optic positioning device.
  • the fiber positioning device includes n fiber positioning holes (6 are shown), n is an integer greater than or equal to 2; n is preferably 2 to 20, or preferably 4 to 12.
  • the entrance of the fiber positioning hole is larger than the exit of the fiber positioning hole, thereby facilitating the installation of the fiber.
  • the fiber positioning hole comprises two sides: a circular positioning hole and a circular positioning hole.
  • the circular positioning hole is located at the inlet side of the fiber positioning hole, and the circular positioning hole is located at the outlet side of the fiber positioning hole.
  • the circular positioning hole is used for the positioning of the optical fiber
  • the tapered positioning hole is used for guiding the optical fiber to the circular positioning hole.
  • the tapered positioning hole can be selected from an angle of 8 - 16 degrees, preferably 10 degrees.
  • FIG. 4C Also shown in FIG. 4C are n fiber guiding grooves aligned with the fiber positioning holes; the number of fiber guiding grooves corresponds to the number of fiber positioning holes.
  • the plurality of fiber guiding grooves are arranged on a side away from the fiber positioning hole The columns are trapezoidal.
  • the trapezoidal fiber guiding groove is used for the initial guiding of the fiber to the tapered positioning hole, and the gradient can be selected from the angle of 10 - 20 degrees, preferably 15 degrees.
  • the fiber guiding groove is arranged in a trapezoidal shape on the inlet side to facilitate the accurate entry of the fiber into the fiber positioning hole.
  • the fiber positioning device is combined with an optical lens/prism and is equipped with a light emitter/light receiver.
  • the positioning holes and the positioning post pairs in the above embodiments may be interchanged, for example, the first positioning post of the lens device and the first positioning hole of the optical device positioning device may be interchanged, and the present invention can also be implemented. the goal of.
  • the above embodiments only provide a positioning implementation manner, and those skilled in the art can implement other positioning methods according to the teachings of the present invention, for example, integrating the optical device positioning device and the lens device to form a circuit board surface. Seal etc.
  • the optical assembly device such as the optical device positioning device, the lens device, and the optical fiber positioning device is simple in design, and the data can be transmitted only by combining, and is convenient to use.
  • Fig. 5 is a schematic view showing another embodiment of the interface of the present invention, wherein Fig. 5A shows a perspective view of the interface embodiment, and Fig. 5B shows a detailed perspective view of the optical device positioning device in the interface embodiment.
  • the interface includes a connector 1, a circuit board 2, an optical fiber 3, an optical device positioning device 54, and a fiber positioning device 56, excluding a lens device.
  • the optics positioning device 54 connects the separate optical device L device 57 to the circuit board 2, which directly aligns the fiber 3 to the optical transceiver device 57 connected to the circuit board 2 via the optics positioning device 54.
  • FIG. 5 shows a schematic view showing another embodiment of the interface of the present invention, wherein Fig. 5A shows a perspective view of the interface embodiment, and Fig. 5B shows a detailed perspective view of the optical device positioning device in the interface embodiment.
  • the interface includes a connector 1, a circuit board 2, an optical fiber 3, an optical device positioning device 54, and a fiber positioning device 56, excluding a lens device
  • the optical device positioning device 54 includes a pin (PIN) 542, a pin end 541, and a positioning hole 543.
  • the optical transceiver device 57 is fixed to the front end of the optical device positioning device 54 by means of a gold wire.
  • the optical transceivers 57 e.g., LD, PD, etc.
  • the extended (e.g., copper) pins 542 are connected to the extended (e.g., copper) pins 542; the positioning holes 543 cooperate with the positioning posts on the fiber positioning device 56 to complete the optics positioning device 54. Assembly with the fiber positioning device 56.
  • the pin end 541 at the end of the optical device positioning device is connected to the circuit board, for example, by means of a connection, and the optical device positioning device 54 and the circuit board 2 are connected. Then, the optical transceiver device 57 is connected to the circuit board 2.
  • the exterior of the optical module is sealed using a sealing device (e.g., a hermetic member) to effectively protect the optical transceiver device, the lens, the fiber end, and the like from external dust.
  • a sealing device e.g., a hermetic member
  • multi-path fiber transmission is used to increase data bandwidth and increase product upgrade space.
  • Figure 6 is a flow chart showing one embodiment of the optical module mounting method of the present invention.
  • the optical transceiver device is coupled to the circuit board by an optical device positioning device.
  • the optical transceiver device is fixed to the optical device positioning device, and the optical transceiver device is electrically connected to the circuit board through the optical device positioning device; or the optical device positioning device is combined with the circuit board through the optical device positioning hole of the optical device positioning device
  • the separate optical transceiver device is positioned to a designated location on the board to electrically connect the optical transceiver device to the circuit board.
  • the optical transceiver can be connected to the board using a conductive paste or gold wire.
  • the fiber is aligned to the optical transceiver device by the fiber positioning device.
  • the optical transceiver can be directly aligned to the fiber or indirectly aligned with the fiber through a light refracting or reflecting device such as a lens device.
  • the lens device is combined with an optical device positioning device, and the fiber positioning device and the lens device assembly are aligned with the optical device through the lens device.
  • the manufacturing method of the CHIP ON BOARD is used to place the light-emitting device on the designated position of the circuit board by using a DB ( Die Bonding) device, thereby effectively realizing the separate optical transceiver device on the circuit board. Positioning.
  • the conductive glue and gold wire are used to connect the device to the circuit board. This process not only effectively shortens the distance from the light-emitting device to the chip, but also ensures the high-speed signal transmission, which further reduces the production process and saves costs.
  • Fig. 7 is a flow chart showing an embodiment of the HDMI interface mounting method of the present invention
  • Figs. 8A to 8F are views showing the steps of the steps shown in Fig. 7.
  • step 702 PCBA (Printed Cirruit Board Assembly) and HDMI connector assembly (FIG. 8A) are performed.
  • the positioning pedestal (optical device positioning device) is combined with the PCBA.
  • the role of the positioning pedestal includes the combined positioning of the optical transceiver device and the circuit board.
  • the circuit board after the positioning base is installed is sent into the automatic DB device for the optical transceiver device to be placed, and the DB device places the optical transceiver device at an arbitrary set position according to the positioning hole of the positioning base (Fig. 8B).
  • a DB, WB (Wire Bonding) optical transceiver device (Fig. 8C) is placed on the PCBA.
  • the lens assembly is coupled to the positioning base (Fig. 8D).
  • step 710 the fiber is assembled and conjugated with the MT (Mating Terminal) and combined with the lens device (Fig. 8E).
  • the housing is assembled (Fig. 8F).
  • the RX terminal power is supplied using the associated USB to DC power cable.
  • the housing is designed to be ultrasonically designed to effectively resist dust from entering the internal circuitry and to ensure aesthetics.
  • the fiber used is a fully transparent multi-channel (e.g., four-way, six-way, xenon, etc.) array fiber design that is lightweight, aesthetically pleasing, and more suitable for home use.
  • optical module provided by the present invention can be applied to various interfaces and data transmission lines, such as HDMI, VAG, DP, DVI, etc., and the present invention does not limit the interface type of the optical module and the type of connector of the optical fiber transmission line.
  • the all-fiber high-definition high-speed transmission line (for example, HDMI all-fiber high-definition high-speed transmission line) provided by the invention breaks the traditional mode of transmitting data by using copper cables, and incorporates high-speed signals into the optical fiber for transmission, thereby realizing true "high definition” and "high speed”. ", it solves the bottleneck of copper cable transmission only for short distances, and realizes long-distance transmission of high-definition signals.
  • the all-fiber high-definition high-speed transmission line provided by the invention is beautiful, compact and convenient to use, and is not only suitable for ordinary households, but also suitable for large-screen high-definition display, video monitoring, field shooting, etc., and needs to transmit high-definition signals.

Description

光学模组及安装方法、 接口和光纤传输线、
光纤传输装置 技术领域
本发明涉及数据传输技术, 尤其涉及一种光学模组、 接口和光 纤传输线、 多通道光纤传输装置、 以及光学模组安装方法。 背景技术
传统的使用铜缆作为数据传输介质的数据传输线, 数据传输量 小, 只支持短距离传输, 无法满足高清、 高速的数据传输要求。
光纤作为数据传输介质, 数据容量大, 可以进行长距离传输, 在骨干网络中已经普遍使用。 但是, 由于光纤传输线的成本等问 题, P艮制了其在日常生活或者普通家庭中的推广应用。 发明内容
本发明要解决的一个技术问题是提供一种应用于数据传输线的 光学模组, 和 /或多通道光纤传输装置, 可以降低传输线的制造成 本。
本发明提供一种光学模组, 包括: 分离的光学收发器件; 光学 器件定位装置, 用于将分离的光学收发器件连接到电路板; 光纤定 位装置, 用于将光纤分别对准分离的光学收发器件。
根据本发明的光学模组的一个实施例, 光学模组还包括透镜装 置, 用于将来自光纤的光反射并汇聚到光学接收器件, 或者将来自 光学发射器件的光反射并汇聚进入光纤。
根据本发明的光学模组的一个实施例, 光学收发器件与电路板 通过导电胶、 金线连接; 和 /或
光纤定位装置和光纤用光学胶水固定。
根据本发明的光学模组的一个实施例, 光学器件定位装置包 括 ··
电路板定位柱, 用于与电路板上的定位孔相配合, 将光学器件 定位装置定位到电路板上;
光学器件定位孔, 用于将分离的光学收发器件定位到电路板; 第一定位孔, 用于透镜装置与光学器件定位装置的组装; 透镜装置包括:
第一定位柱, 用于和光学器件定位装置上的第一定位孔相配 合, 实现光学器件定位装置与透镜装置的组装;
第二定位孔, 用于透镜装置与光纤定位装置的组装;
透镜, 用于光路聚焦并对准相应通道的光纤和 /或光学收发器 件;
光纤定位装置包括:
第二定位柱, 用于与透镜装置的第二定位孔相配合, 实现透镜 装置与光纤定位装置的组装;
光纤定位孔, 用于光纤的引导定位, 将光纤经过透镜分别对准 相应的光学收发器件;
光纤固定平台, 用于放置及固定光纤的支撑件, 其形状无特殊 限制。
根据本发明的光学模组的一个实施例, 光学模组还包括密封装 置, 用于密封光学收发器件、 光学器件定位装置、 和光纤定位装 本发明提供的光学模组, 光学 器件是分离的, 当其中的一 个光学收发器件不合格或者发生故障时, 可以仅替换该发生故障的 光学收发器件, 从而降低了成本。
本发明还提供一种接口, 包括: 接头; 与接头连接的电路板; 以及与电路板连接的上述光学模组。
本发明还提供一种光纤传输线, 包括: 光纤; 以及位于光纤端 部的上述接口。 本发明提供一种多通道光纤传输装置, 包括光纤定位装置; 光纤定位装置包括支撑平台和 n个光纤定位孔, n为大于等于 2的整数;
光纤定位孔的进口大于光纤定位孔的出口。
根据本发明的多通道光纤传输装置的一个实施例, 还包括: 对 准 n个光纤定位孔的 n个光纤引导槽; n个光纤引导槽在远离光纤 定位孔的一侧排列呈梯形。
根据本发明的多通道光纤传输装置的一个实施例, 光纤定位孔 包括锥形定位孔和圆形定位孔, 锥形定位孔位于光纤定位孔的进口 侧, 圆形定位孔位于光纤定位孔的出口侧。
根据本发明的多通道光纤传输装置的一个实施例, 光纤引导槽 的梯形的梯度为 10至 20度, 优选 15度;
和 /或
锥形定位孔的倾斜度为 8至 16度, 优选 10度。
本发明还提供一种多通道光纤传输装置, 包括上述的光纤定位 装置, 以及透镜 /棱镜装置。 其中, 透镜 /棱镜装置包括直角棱镜, 和两个位于直角棱镜的侧面的球面透镜。
本发明还提供一种多通道光纤传输装置, 包括上述光学器件定 位装置、 上述光纤定位装置、 以及上述透镜 /棱镜装置。
本发明要解决的另一个技术问题是提供一种光学模组安装方 法, 能够有效地实现了分离的光学收发器件在电路板上的定位。
本发明提供一种光学模组安装方法, 包括:
通过光学器件定位装置将分离的光学收发器件连接到电路板; 通过光纤定位装置将光纤对准分离的光学收发器件。
根据本发明安装方法的一个实施例, 通过光纤定位装置将光纤 对准分离的光学》I L器件包括:
将透镜装置与光学器件定位装置组合, 将光纤定位装置与透镜 装置组合, 通过透镜装置将光纤对准分离的光学收发器件; 或者,
将光学器件定位装置和光纤定位装置组合, 将光纤直接对准分 离的光学收发器件。
根据本发明安装方法的一个实施例, 通过光学器件定位装置将 分离的光学》1 ^器件连接到电路板包括:
将光学收发器件固定到光学器件定位装置, 通过分离的光学器 件定位装置将光学收发器件电连接到电路板;
或者,
将光学器件定位装置与电路板组合, 通过光学器件定位装置的 将分离的光学收发器件定位到电路板的指定位置, 将分离的光学收 发器件和电路板电连接。
根据本发明安装方法的一个实施例, 方法还包括:
通过导电胶、 金线将光学收发器件与电路板连接;
和 /或
用光学胶水将光纤定位装置和光纤固定。
本发明提供的光学模组安装方法, 通过光学器件定位装置将收 发光器件放置在电路板指定的位置上, 有效地实现了分离的光学收 发器件在电路板上的定位。
进一步, 使用导电胶、 金线将器件与电路板连接, 不仅有效的 缩短了收发光器件到芯片的距离, 保证了高速信号的正常传输, 更 简化了生产流程, 节约成本。 附图说明
图 1示出本发明的接口的一个实施例的示意图。
图 2示出本发明的光学器件定位装置的一个实施例的结构图; 其中, 图 2A示出该光学器件定位装置实施例的立体图, 图 2B 示 出该光学器件定位装置实施例的正视图。
图 3示出本发明的透镜装置的一个实施例的结构图; 图 3A示 出该透镜装置实施例的立体图, 图 3B 示出该透镜装置实施例的正 视图, 图 3C示出该透镜装置实施例的侧视图; 图 3D示出透镜 /棱 镜的具体结构。
图 4 示出本发明的光纤定位装置的一个实施例的结构图; 图 4A示出该光纤定位装置实施例的立体图, 图 4B示出该光纤定位装 置实施例的正视图, 图 4C示出该光纤定位装置实施例的透视图。
图 5示出本发明的接口的另一个实施例的示意图; 图 5A示出 该接口实施例的立体图, 图 5B 示出该接口实施例中光学器件定位 装置的细节立体图。
图 6示出本发明的光学模组安装方法的一个实施例的流程图。 图 7 示出本发明的 HDMI接口安装方法的另一个实施例的流 程图。
图 8A-8F示出图 7所示流程中各个步骤的示意图。 具体实施方式
下面参照附图对本发明进行更全面的描述, 其中说明本发明的 示例性实施例。 在附图中, 相同的标号表示相同或者相似的组件或 者元素。
开的一个实施例的基本构思是通过光学器件定位装置将分 离的光学收发器件连接到电路板, 通过光纤定位装置实现光纤对准 分离的光学收发器件。 通过定位装置实现了分离光学收发器件的安 装, 便于安装使用。
在本文中, 光学收发器件可以是光学接收器件、 光学发射器 件、 或者包括光学接收器件和光学发射器件两者。
下面具体说明或者描述本发明的具体实施例。
图 1示出本发明的接口的一个实施例的示意图。 如图 1所示, 该接口包括接头 1、 电路板 2、 光纤 3、 光学器件定位装置 4、 透镜 装置 5、 光纤定位装置 6和光学收发器件 (图 1中未示出)。 接头 1 例如是 HDMI ( High Definition Multimedia, 高清晰度多媒体接 口)接头、 VAG ( Video Address Generator , 视频地址发生器)接 头、 DP ( DisplayPort )或者 DVI ( Digital Visual Interface, 数字 视频接口)接头等各种接头。 光学收发器件例如是 LD ( Laser Diode, 激光二极管)、 PD ( Photo Diode, 光电二极管)、 Vcsel ( Vertical-Cavity Surface-Emitting Laser , 垂直腔面发射激光器) 或者 LED ( Light Emitting Diode, 发光二极管)。 接头 1和电路板 2连接, 光学器件定位装置 4在电路板 2上定位分离的光学收发器 件, 透镜装置 5分别与光学器件定位装置 4和光纤定位装置 6连 接, 将来自光纤 3的光反射并汇聚到光学收发器件, 或者将来自光 学收发器件的光反射并汇聚进入光纤 3; 光纤定位装置 6将光纤 3 分离且分别经过透镜装置 5对准分离的光学收发器件。
需要指出, 在上述实施例中光学收发器件是分离的, 可以指每 个光学收发器件之间都是分离的, 也可以是一个或者多个光学收发 器件组成一组, 各个组之间相互分离。
现有技术中, 通常将多个光学收发器件集成在一起形成一个光 学收发器件部件。 但是, 无论是制造还是使用过程中, 该光学收发 器件部件中的任何一个光学收发器件发生故障, 都必须替换整个光 学收发器件部件, 从而大大提高了生产和使用成本。 在该实施例 中, 光学收发器件是分离的, 而不是现有技术中通常的将所有光学 收发器件集成在一起, 当其中的一个光学收发器件不合格或者发生 故障时, 可以仅替换该发生故障的光学收发器件, 从而提高了成品 率, 降低了生产成本, 降低了使用维护成本。
图 2示出本发明的光学器件定位装置的一个实施例的结构图, 其中, 图 2A示出该光学器件定位装置实施例的立体图, 图 2B 示 出该光学器件定位装置实施例的正视图。 如图 2所示, 该光学器件 定位装置包括光学器件定位孔 21、 电路板定位柱 22和第一定位孔 23。 电路板定位柱 22 与电路板上的定位孔相配合, 将光学器件定 位装置定位到电路板上。 光学器件定位孔 21 用于光学收发器件 (晶片)在电路板上的定位, 将光学》1½器件定位到电路板。 第一 定位孔 23用于透镜装置与光学器件定位装置 21的组装。
图 3示出本发明的透镜装置的一个实施例的结构图, 其中, 图 3A示出该透镜装置实施例的立体图, 图 3B示出该透镜装置实施例 的正视图, 图 3C示出该透镜装置实施例的侧视图。 如图 3所示, 该透镜装置包括第一定位柱 31、 第二定位孔 32和透镜 33。 透镜 33例如是玻璃透镜或者塑胶透镜。 第一定位柱 31和光学器件定位 装置上的第一定位孔 23相配合, 实现光学器件定位装置与透镜装 置的组装。 第二定位孔 32用于透镜装置与光纤定位装置的组装。 透镜 33 用于光路聚焦与对准。 透镜装置的主要作用是进行光路的 聚焦与引导。 例如, 在 TX (发送)端 LENS将发光元件发出的光 聚焦后经 90。 反射进入光纤中, 并在 RX (接收)端将光路导入收 光器件中。 这种设计有效的增加了光路的传输效率, 也降低了产品 厚度, 缩小了产品占用空间。 图 3D示出透镜 /棱镜的具体结构。 该 透镜 /棱镜装置包括直角棱镜; 其中下方球面透镜用于光束的汇 聚, 45° 棱镜面用于光束方向的 90° 转变, 上方球面透镜用于光 束的汇聚。 透镜 /棱镜配合光纤定位装置, 透镜 /棱镜配合光发射器 / 光接收器。
本发明光路的传输路径为:
射器发射激光, 激光光束通过如图 3D 中所示下方球面透 镜, 聚焦的过程中到达棱镜 45。 面, 90° 转向后到达如图 3D中所 示上方球面透镜, 激光光束经球面透镜聚焦后进入经多光路光纤传 输装置固定的光纤中, 激光光束通过光纤后进入接收端透镜 /棱镜 的上方球面透镜, 聚焦过程中达到棱镜 45° 面, 90° 转向后到达 下方球面透镜, 经球面透镜聚焦后达到光接收器。
参考实例为:
信号发射端发送信号至产品 HDMI接口, 信号经激光驱动器 转换为可驱动光发射器的电流信号, 光发射器发射激光, 激光光束 通过如图 3D 中所示下方球面透镜, 聚焦的过程中到达棱镜 45° 面, 90° 转向后到达如图 3D 中所示上方球面透镜, 激光光束经球 面透镜聚焦后进入经多光路光纤传输装置固定的光纤中, 激光光束 通过光纤后进入接收端透镜 /棱镜的上方球面透镜, 聚焦过程中达 到棱镜 45° 面, 90° 转向后到达下方球面透镜, 经球面透镜聚焦 后达到光接收器, 放大器对光接收器收到的信号进行放大, 信号经 产品 HDMI接口传输至信号接收端.
图 4 示出本发明的光纤定位装置的一个实施例的结构图, 其 中, 图 4A示出该光纤定位装置实施例的立体图, 图 4B 示出该光 纤定位装置实施例的正视图。 如图 4所示, 该光纤定位装置包括第 二定位柱 41、 光纤定位孔 42和光纤固定平台 43 (支撑平台)。 第 二定位柱 41与透镜装置的第二定位孔 32相配合, 实现透镜装置与 光纤定位装置的组装。 光纤定位孔 42用于光纤的引导定位, 将光 纤经透镜分别对准分离的光学收发器件。 光纤固定平台 43 用于放 置及固定光纤。 例如, 光纤定位装置可以将光纤进行分离定位并平 行伸出, 在光纤穿出光纤定位装置后使用光学胶水将光纤固定到光 纤定位装置的光纤固定平台 43 上。 图 4C 示出该光纤定位装置实 施例的透视图。 如图 4C所示, 该光纤定位装置包括 n个光纤定位 孔(图中示出 6个), n 为大于等于 2的整数; n优选 2个至 20 个, 或优选 4 至 12 个。 光纤定位孔的进口大于光纤定位孔的出 口, 从而便于光纤的安装。 在图 4C 的实施例中, 光纤定位孔包括 雉形定位孔和圆形定位孔两部分, 雉形定位孔位于光纤定位孔的进 口侧, 圆形定位孔位于光纤定位孔的出口侧。 (例如 d) 126um ) 圆 形定位孔用于光纤的定位, 锥形定位孔用于光纤向圆形定位孔的引 导, 锥形定位孔可以选用 8 - 16度角, 优选 10度角。 图 4C 中还 示出对准光纤定位孔的 n个光纤引导槽; 光纤引导槽的个数和光纤 定位孔的个数对应。 该多个光纤引导槽在远离光纤定位孔的一侧排 列呈梯形。 梯形光纤引导槽用于光纤向锥形定位孔的初步引导, 梯 度可以选用 10 - 20度角, 优选 15度角。 光纤引导槽在进口侧曾梯 形排列, 便于光纤准确进入光纤定位孔。
光纤定位装置配合光学透镜 /棱镜, 同时配合光发射器 /光接收 器。
本领域的技术人员应当理解, 上述实施例中各个定位孔和定位 柱对可以互换, 例如透镜装置的第一定位柱和光学器件定位装置的 第一定位孔可以互换, 同样可以实现本发明的目的。 此外, 上述实 施例只是提供了一种定位实现方式, 本领域的技术人员根据本发明 的教导, 也可以实现其他方式的定位实现, 例如将光学器件定位装 置和透镜装置一体化而形成线路板表面的密封等.
在上述实施例中, 光学器件定位装置、 透镜装置、 光纤定位装 置等光学组装器件设计简单, 只需进行组合便可进行数据的传输, 使用方便。
图 5 示出本发明接口的另一个实施例的示意图, 其中, 图 5A 示出该接口实施例的立体图, 图 5B 示出该接口实施例中光学器件 定位装置的细节立体图。 如图 5A所示, 接口包括接头 1、 电路板 2、 光纤 3、 光学器件定位装置 54、 光纤定位装置 56, 不包括透镜 装置。 光学器件定位装置 54将分离的光学》| L器件 57连接到电路 板 2上, 光纤定位装置 56直接将光纤 3对准通过光学器件定位装 置 54连接到电路板 2上的光学收发器件 57。 如图 5B所示, 光学 器件定位装置 54 包括引脚(PIN ) 542、 引脚末端 541、 和定位孔 543„ 光学收发器件 57 固定在光学器件定位装置 54的前端, 通过 打金线的方式将光学收发器件 57 (例如, LD, PD 等)正负极连 接至伸出的 (例如, 铜) 引脚 542上; 定位孔 543和光纤定位装置 56上的定位柱配合, 完成光学器件定位装置 54和光纤定位装置 56 的组装。 位于光学器件定位装置尾部的引脚末端 541例如通过评接 的方式连接到电路板, 实现光学器件定位装置 54和电路板 2的连 接, 从而将光学收发器件 57连接到电路板 2。
根据本发明的一个实施例, 光学模组的外部使用密封装置(例 如, 气密性元件)进行密封, 有效的保护光学收发器件、 透镜、 光 纤端头等不受外部粉尘的污染。 在一个实施例中, 采用多路光纤传 输, 更提高了数据带宽, 增加了产品升级空间。
图 6示出本发明的光学模组安装方法的一个实施例的流程图。 如图 6所示, 在步骤 602, 通过光学器件定位装置将光学收发 器件连接到电路板。 例如, 将光学收发器件固定到光学器件定位装 置, 通过光学器件定位装置将光学收发器件电连接到电路板; 或 者, 将光学器件定位装置与电路板组合, 通过光学器件定位装置的 光学器件定位孔将分离的光学收发器件定位到电路板的指定位置, 将光学收发器件和电路板电连接。 可以使用导电胶、 金线将光学收 发器件与电路板连接。
在步骤 606, 通过光纤定位装置将光纤对准光学收发器件。 光 学收发器件可以直接对准光纤, 也可以通过光线折射或反射装置 (例如透镜装置)后间接对准光纤。 例如将透镜装置与光学器件定 位装置组合, 将光纤定位装置与透镜装置组件, 通过透镜装置将光 纤对准分离的光学收发器件。
在上述实施例中, 采用 CHIP ON BOARD的制作方式, 使用 DB ( Die Bonding, 芯片安装)设备将收发光器件放置在电路板指 定的位置上, 有效地实现了分离的光学收发器件在电路板上的定 位。 使用导电胶、 金线将器件与电路板连接, 这种制程方式不仅有 效的缩短了收发光器件到芯片的距离, 保证了高速信号的正常传 输, 更筒化了生产流程, 节约成本。
图 7 示出本发明的 HDMI接口安装方法的一个实施例的流程 图, 图 8A至 8F示出图 7所示 ¾½中各个步骤的示意图。
如图 7所示, 在步骤 702, 进行 PCBA ( Printed Cirruit Board Assembly, 装配印刷电路板)和 HDMI接头组装(图 8A )。 在步骤 704, 定位基座 (光学器件定位装置 )与 PCBA组合。 定位基座的作用包括光学收发器件与电路板的组合定位。 将安装定 位基座后的电路板送入自动 DB设备中进行光学收发器件的摆放, DB 设备根据定位基座的定位孔将光学收发器件放置在任意设定的 位置上(图 8B )。
在步骤 706, 在 PCBA上 DB、 WB ( Wire Bonding, 压烊) 光学收发器件(图 8C )。
在步骤 708, 透镜装置与定位基座结合(图 8D )。
在步骤 710, 光纤与 MT ( Mating Terminal, 组合接头)组装 并切齐( cleaver )后与透镜装置组合(图 8E )。
在步骤 712, 组装外壳 (图 8F )。
在本发明的一个实施例中, 在 RX (接收) 端无法接收 TX (发射)端供电时, 使用配套的 USB转 DC 电源线进行 RX端供 电。 在本发明的一个实施例中, 外壳使用超声^ ¾合设计, 有效抵 挡粉尘进入内部电路, 且保证了外形的美观。 在本发明的一个实施 例中, 使用的光纤为全透明多路(例如四路、 六路、 Ί等) 阵列 光纤设计, 轻便、 美观, 更适合家庭使用。
需要指出, 本发明提供的光学模组可以应用于多种接口和数据 传输线, 例如 HDMI、 VAG、 DP、 DVI 等, 本发明并不对应用该 光学模组的接口、 光纤传输线的接头类型进行限定。
本发明提供的全光纤高清高速传输线(例如, HDMI全光纤高 清高速传输线), 打破了使用铜缆传输数据的传统模式, 将高速信 号纳入光纤中进行传输, 使其实现真正的 "高清" "高速", 更解决 了铜缆只能短距离传输的瓶颈, 实现了高清信号的长距离传输。 本 发明提供的全光纤高清高速传输线, 美观、 小巧, 使用方便, 不仅 适用于普通家庭, 更适用于大屏幕高清显示, 视频监控, 外场拍摄 等^ ί巨离高清晰信号的传输需要。
本发明的描述是为了示例和描述起见而给出的, 而并不是无遗 漏的或者将本发明限于所公开的形式。 很多修改和变化对于本领域 的普通技术人员而言是显然的。 选择和描述实施例是为了更好说明 本发明的原理和实际应用 , 并且使本领域的普通技术人员能够理解 本发明从而设计适于特定用途的带有各种修改的各种实施例。

Claims

权 利 要 求
1. 一种光学模组, 其特征在于, 包括:
分离的光学收发器件;
光学器件定位装置, 用于将分离的光学收发器件连接到电路 板;
光纤定位装置, 用于将光纤分别对准所述分离的光学收发器 件。
2. 根据权利要求 1 所述的光学模组, 其特征在于, 还包括透 镜装置, 用于将来自光纤的光汇聚并反射到光学接收器件, 或者将 来自光学发射器件的光汇聚并反射进入所述光纤。
3. 根据权利要求 1 所述的光学模组, 其特征在于, 所述光学 收发器件与所述电路板通过导电胶、 金线连接;
和 /或
所述光纤定位装置和光纤用光学胶水固定。
4. 根据权利要求 2所述的光学模组, 其特征在于,
所述光学器件定位装置包括:
电路板定位柱, 用于与所述电路板上的定位孔相配合, 将所述 光学器件定位装置定位到所述电路板上;
光学器件定位孔, 用于将所述分离的光学收发器件定位到所述 电路板;
第一定位孔, 用于所述透镜装置与所述光学器件定位装置的组 装;
所述透镜装置包括:
第一定位柱, 用于和所述光学器件定位装置上的第一定位孔相 配合, 实现所述光学器件定位装置与所述透镜装置的组装;
第二定位孔, 用于所述透镜装置与所述光纤定位装置的组装; 透镜, 用于光路聚焦与对准;
所述光纤定位装置包括: 第二定位柱, 用于与所述透镜装置的第二定位孔相配合, 实现 所述透镜装置与所述光纤定位装置的组装;
光纤定位孔, 用于光纤的引导定位, 将所述光纤经过所述透镜 分别对准所述分离的光学收发器件;
光纤固定平台, 用于放置及固定所述光纤。
5. 根据权利要求 1所述的光学模组, 其特征在于,
所述光学器件定位装置包括:
引脚, 用于将固定到所述光学器件定位装置上的分离的光学收 发器件连接到所述电路板;
定位孔, 用于所述光学器件定位装置与所述光纤定位装置的组 装;
所述光纤定位装置包括:
定位柱, 用于与所述光学器件定位装置的定位孔相配合, 实现 所述光学器件定位装置与所述光纤定位装置的组装;
光纤定位孔, 用于光纤的引导定位, 使得光纤对准所述分离的 光学收发器件。
6. 根据权利要求 1 所述的光学模组, 其特征在于, 还包括密 封装置, 用于密封所述光学收发器件、 光学器件定位装置、 和光纤 定位装置。
7. 一种接口, 其特征在于, 包括:
接头;
与所述接头连接的电路板; 以及
与所述电路板连接的如权利要求 1至 6中任意一项所述的光学 模组。
8. 一种光纤传输线, 其特征在于, 包括:
光纤; 以及
位于所述光纤端部的如权利要求 7所述的接口。
9. 一种多通道光纤传输装置, 其特征在于, 包括光纤定位装 所述光纤定位装置包括支撑平台和 n个光纤定位孔, n为大于 等于 2的整数;
所述光纤定位孔的进口大于所述光纤定位孔的出口。
10. 根据权利要求 9所述的装置, 其特征在于, 还包括: 对准 所述光纤定位孔的 n个光纤引导槽; 所述 n个光纤引导槽在远离所 述光纤定位孔的一侧排列呈梯形。
11. 根据权利要求 10 所述的装置, 其特征在于, 所述光纤定 位孔包括锥形定位孔和圆形定位孔, 所述锥形定位孔位于所述光纤 定位孔的进口侧, 所述圆形定位孔位于所述光纤定位孔的出口侧。
12. 根据权利要求 11 所述的装置, 其特征在于, 所述光纤引 导槽的梯形的梯度为 10至 20度, 优选 15度;
和 /或
所述锥形定位孔的倾斜度为 8至 16度, 优选 10度。
13. 一种多通道光纤传输装置, 其特征在于, 包括如权利要求 9至 12中任意一项所述的光纤定位装置, 以及透镜 /棱镜装置。
14. 根据权利要求 13所述的装置, 其特征在于, 所述透镜 /棱 镜装置包括直角棱镜, 和两个位于所述直角棱镜的侧面的球面透 镜。
15. 一种多通道光纤传输装置, 其特征在于, 包括如权利要求 1至 6中任意一项所述的光学器件定位装置、 权利要求 9至 12中 任意一项所述的光纤定位装置、 以及权利要求 13或 14所述的透镜 /棱镜装置。
16. 一种光学模组安装方法, 其特征在于, 包括:
通过光学器件定位装置将分离的光学收发器件连接到电路板; 通过光纤定位装置将光纤对准所述分离的光学收发器件。
17. 根据权利要求 16 所述的安装方法, 其特征在于, 所述通 过光纤定位装置将光纤对准所述分离的光学 器件包括:
将透镜装置与所述光学器件定位装置组合, 将所述光纤定位装 置与所述透镜装置组合, 通过所述透镜装置将所述光纤对准所述分 离的光学收发器件;
或者,
将所述光学器件定位装置和所述光纤定位装置组合, 将所述光 纤直接对准所述分离的光学收发器件。
18. 根据权利要求 16 所述的安装方法, 其特征在于, 所述通 过光学器件定位装置将分离的光学收发器件连接到电路板包括: 将所述光学收发器件固定到所述光学器件定位装置, 通过所述 分离的光学器件定位装置将所述光学收发器件电连接到电路板; 或者,
将所述光学器件定位装置与电路板组合, 通过光学器件定位装 置的将所述分离的光学收发器件定位到电路板的指定位置, 将所述 分离的光学收发器件和电路板电连接。
19. 根据权利要求 16 所述的安装方法, 其特征在于, 所述方 法还包括:
通过导电胶、 金线将所述光学收发器件与所述电路板连接; 和 /或
用光学胶水将所述光纤定位装置和光纤固定。
PCT/CN2011/081798 2010-11-04 2011-11-04 光学模组及安装方法、接口和光纤传输线、光纤传输装置 WO2012059071A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201010537988.7 2010-11-04
CN201010537988 2010-11-04
CN201010588904.2 2010-12-15
CN201010588904.2A CN102466841B (zh) 2010-11-04 2010-12-15 光学模组及安装方法、接口和光纤传输线、光纤传输装置

Publications (1)

Publication Number Publication Date
WO2012059071A1 true WO2012059071A1 (zh) 2012-05-10

Family

ID=46024042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081798 WO2012059071A1 (zh) 2010-11-04 2011-11-04 光学模组及安装方法、接口和光纤传输线、光纤传输装置

Country Status (2)

Country Link
CN (1) CN102466841B (zh)
WO (1) WO2012059071A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9134493B2 (en) 2012-03-07 2015-09-15 Celerity Technologies Inc. Fiber optic cable with electrical connectors at both ends
US9250405B2 (en) 2012-03-07 2016-02-02 Celerity Technologies Inc. Fiber optic cable with electrical connectors at both ends, wall plates and control boxes
US9397750B2 (en) 2013-07-03 2016-07-19 Cosemi Technologies, Inc. Hybrid electrical-optical data communications cable with wireline capacitance compensation
US9397751B2 (en) 2014-04-14 2016-07-19 Cosemi Technologies, Inc. Bidirectional data communications cable
US9641250B2 (en) 2011-09-28 2017-05-02 Cosemi Technologies, Inc. System and method for communicating high and low speed data via optical signals and power via electrical signals
US10326245B1 (en) 2018-03-29 2019-06-18 Cosemi Technologies, Inc. Light illuminating data communication cable
US10734768B2 (en) 2018-05-16 2020-08-04 Cosemi Technologies, Inc. Data communication cable assembly including electromagnetic shielding features
US11057074B2 (en) 2019-07-18 2021-07-06 Cosemi Technologies, Inc. Data and power communication cable with galvanic isolation protection
US11165500B2 (en) 2020-02-21 2021-11-02 Mobix Labs, Inc. Cascadable data communication cable assembly
US11177855B2 (en) 2020-02-21 2021-11-16 Mobix Labs, Inc. Extendable wire-based data communication cable assembly
US11175463B2 (en) 2020-02-21 2021-11-16 Mobix Labs, Inc. Extendable optical-based data communication cable assembly

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103969762A (zh) * 2013-01-31 2014-08-06 鸿富锦精密工业(深圳)有限公司 光通讯模组
CN104238040A (zh) * 2013-06-17 2014-12-24 鸿富锦精密工业(深圳)有限公司 光纤耦合连接器
CN104678512A (zh) * 2013-11-30 2015-06-03 鸿富锦精密工业(深圳)有限公司 多媒体数据传输装置
TWI521248B (zh) 2014-08-07 2016-02-11 光興國際股份有限公司 光學收發器
WO2016127325A1 (zh) * 2015-02-11 2016-08-18 叶宏亮 光模块结构
CN115668017A (zh) * 2020-08-26 2023-01-31 华为技术有限公司 一种光纤阵列单元与光通信设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1215174A (zh) * 1997-07-28 1999-04-28 莫列斯公司 制作光纤连接器套箍的方法
US20040114866A1 (en) * 2002-12-10 2004-06-17 Mitsubishi Denki Kabushiki Kaisha Optical path-changing connector
US20060274997A1 (en) * 2005-03-28 2006-12-07 Fujitsu Component Limited Connector
CN201237656Y (zh) * 2008-08-13 2009-05-13 青岛海信宽带多媒体技术股份有限公司 多路并行光模块
JP2009175662A (ja) * 2007-12-27 2009-08-06 Fujitsu Component Ltd 光導波路保持部材及び光トランシーバ
CN101646311A (zh) * 2009-09-10 2010-02-10 成都优博创技术有限公司 实现光收发器件与主印制电路板连接的方法和装置
CN201903673U (zh) * 2010-11-04 2011-07-20 浙江彩虹鱼通讯技术有限公司 光学模组、接口和光纤传输线

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6692159B2 (en) * 2001-04-14 2004-02-17 E20 Communications, Inc. De-latching mechanisms for fiber optic modules

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1215174A (zh) * 1997-07-28 1999-04-28 莫列斯公司 制作光纤连接器套箍的方法
US20040114866A1 (en) * 2002-12-10 2004-06-17 Mitsubishi Denki Kabushiki Kaisha Optical path-changing connector
US20060274997A1 (en) * 2005-03-28 2006-12-07 Fujitsu Component Limited Connector
JP2009175662A (ja) * 2007-12-27 2009-08-06 Fujitsu Component Ltd 光導波路保持部材及び光トランシーバ
CN201237656Y (zh) * 2008-08-13 2009-05-13 青岛海信宽带多媒体技术股份有限公司 多路并行光模块
CN101646311A (zh) * 2009-09-10 2010-02-10 成都优博创技术有限公司 实现光收发器件与主印制电路板连接的方法和装置
CN201903673U (zh) * 2010-11-04 2011-07-20 浙江彩虹鱼通讯技术有限公司 光学模组、接口和光纤传输线

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9641250B2 (en) 2011-09-28 2017-05-02 Cosemi Technologies, Inc. System and method for communicating high and low speed data via optical signals and power via electrical signals
US10247891B2 (en) 2011-09-28 2019-04-02 Cosemi Technologies, Inc. Method of manufacturing an optical communication mount
US9971115B2 (en) 2011-09-28 2018-05-15 Cosemi Technologies, Inc. Data communications cable for communicating data and power via optical and electrical signals
US9250405B2 (en) 2012-03-07 2016-02-02 Celerity Technologies Inc. Fiber optic cable with electrical connectors at both ends, wall plates and control boxes
US9389377B2 (en) 2012-03-07 2016-07-12 Celerity Technologies Inc. Fiber optic cable with electrical connectors at both ends, wall plates and control boxes
US9134493B2 (en) 2012-03-07 2015-09-15 Celerity Technologies Inc. Fiber optic cable with electrical connectors at both ends
US9979479B2 (en) 2013-07-03 2018-05-22 Cosemi Technologies, Inc. Data communications cable with wireline capacitance compensation
US9397750B2 (en) 2013-07-03 2016-07-19 Cosemi Technologies, Inc. Hybrid electrical-optical data communications cable with wireline capacitance compensation
US9813153B2 (en) 2013-07-03 2017-11-07 Cosemi Technologies, Inc. Data communications cable with wireline capacitance compensation
US9397751B2 (en) 2014-04-14 2016-07-19 Cosemi Technologies, Inc. Bidirectional data communications cable
US9979481B2 (en) 2014-04-14 2018-05-22 Cosemi Technologies, Inc. Bidirectional data communications cable
US9813154B2 (en) 2014-04-14 2017-11-07 Cosemi Technologies, Inc. Bidirectional data communications cable
US10326245B1 (en) 2018-03-29 2019-06-18 Cosemi Technologies, Inc. Light illuminating data communication cable
US10734768B2 (en) 2018-05-16 2020-08-04 Cosemi Technologies, Inc. Data communication cable assembly including electromagnetic shielding features
US11057074B2 (en) 2019-07-18 2021-07-06 Cosemi Technologies, Inc. Data and power communication cable with galvanic isolation protection
US11165500B2 (en) 2020-02-21 2021-11-02 Mobix Labs, Inc. Cascadable data communication cable assembly
US11177855B2 (en) 2020-02-21 2021-11-16 Mobix Labs, Inc. Extendable wire-based data communication cable assembly
US11175463B2 (en) 2020-02-21 2021-11-16 Mobix Labs, Inc. Extendable optical-based data communication cable assembly

Also Published As

Publication number Publication date
CN102466841A (zh) 2012-05-23
CN102466841B (zh) 2017-09-05

Similar Documents

Publication Publication Date Title
WO2012059071A1 (zh) 光学模组及安装方法、接口和光纤传输线、光纤传输装置
WO2021115129A1 (zh) 一种光模块
US20230117778A1 (en) Optical module
CN201903673U (zh) 光学模组、接口和光纤传输线
EP2790048B1 (en) Optical module
WO2017118271A1 (zh) 一种用于双链路传输的并行收发光模块和制作方法
US8705906B2 (en) Photoelectric conversion module
WO2019184100A1 (zh) 一种光模块
JP2010122312A (ja) 送受信レンズブロック及びそれを用いた光モジュール
JP2003329892A (ja) 光送受信モジュール及びこれを用いた光通信システム
CN104808298A (zh) 有源光纤耦合器件
WO2018074705A1 (ko) 파장 다중화 광수신 모듈
CN112558243B (zh) 一种信号传输光模块
TW201142399A (en) Optical module and fabricating method thereof
JP2010122311A (ja) レンズブロック及びそれを用いた光モジュール
CN104049323B (zh) 光模块
CN215575818U (zh) 一种耦合装置及光模块
CN115097579A (zh) 光模块
US20020136504A1 (en) Opto-electronic interface module for high-speed communication systems and method of assembling thereof
KR101968292B1 (ko) 적층구조를 적용한 파장 다중화 어레이 광수신 모듈의 패키지 구조
US6478479B1 (en) Optical connector module with optical fibers for connecting optical module and optical fiber connector
CN217606136U (zh) 光模块
CN217521402U (zh) 光模块
CN215682290U (zh) 光电讯号转换传输装置
TWI502238B (zh) 光學引擎

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase

Ref document number: 11837597

Country of ref document: EP

Kind code of ref document: A1