TW201142399A - Optical module and fabricating method thereof - Google Patents

Optical module and fabricating method thereof Download PDF

Info

Publication number
TW201142399A
TW201142399A TW99134238A TW99134238A TW201142399A TW 201142399 A TW201142399 A TW 201142399A TW 99134238 A TW99134238 A TW 99134238A TW 99134238 A TW99134238 A TW 99134238A TW 201142399 A TW201142399 A TW 201142399A
Authority
TW
Taiwan
Prior art keywords
optical
fiber
block
bench
diameter
Prior art date
Application number
TW99134238A
Other languages
Chinese (zh)
Inventor
Jae-Shik Choi
Gwan-Chong Joo
Do-Hoon Kim
Jung-Taek Kim
Hyo-Gyeom Kim
Original Assignee
Hantech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hantech Co Ltd filed Critical Hantech Co Ltd
Publication of TW201142399A publication Critical patent/TW201142399A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4228Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
    • G02B6/423Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using guiding surfaces for the alignment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • G02B6/4281Electrical aspects containing printed circuit boards [PCB] the printed circuit boards being flexible

Abstract

Provided are an optical module and a method of fabricating the same. An optical fiber block includes an optical fiber array substrate having a plurality of receiving grooves in which optical fibers are respectively disposed, and an optical fiber array cover coupled to an upper surface of the optical fiber array substrate to fix the optical fiber. An optical bench has a plurality of through-holes in which the optical fibers protruding through a surface of the optical fiber block are respectively inserted. The number of the through-holes corresponds to the number of the receiving grooves formed in the optical fiber block. A first surface of the optical bench is fixed to the optical fiber block. An optical device block includes optical devices corresponding respectively to the through-holes formed in the optical bench. The optical device block is fixed to a second surface of the optical bench.

Description

201142399 六、發明說明: 【相關申請案】 本申請案主張於2010年5月19號提出申請之韓國專 利申請案第2010-0047059號的優先權以及根據35 usc =19而由此所產生之所有權利’該專利申請案所揭露之内 谷元整地結合於本說明書中。 【發明所屬之技術領域】 本發明是有關於一種光學模組及其製造方法,且特别 是有關於一種包括光纖塊及光學基板之光學模組及其製造 方法,此光纖塊具有突出之纖維,且此光學基板具有用於 女裝光學元件之電路圖案以及用於所述光纖之貫穿孔。 【先前技術】 隨著近幾年來高清晰度電視數目之迅速增長,對高清 晰度多媒體介面(high definition multimedia interface, HDMI)纜線之需要日趨增長。尤其是,由於根據最近頒 佈之3D TV或USB3.0標準,曰益需要高的頻寬,因而需 要自現有之銅線HDMI電纜轉變至適用於高容量傳輸之光 纜。 一般而言,在諸如光學HDMI的資料通訊模組中使用 諸如Si PD的主動式光學元件(active optical device)以及 波長帶(wavelength band)為850奈米之垂直共振腔面發 射型雷射(vertical-cavity surface-emitting laser,VCSEL)。 不同於在通常之光纖通訊中所用之侧面發射型雷射二極體 (lateral emission laser diode),VCSEL 是垂直於雷射之表 201142399 面而發射光,因此光纖之光軸須垂直地對準雷射發射面。 圖1是繪示先前技術中一種光學耦合元件(在下文中 稱為「第一先前技術」)之示意圖,此光學耦合元件包括微 透鏡(micro-lens)及導鎖。參見圖!,此第一先前技術利 用分立之導銷及與分立之導銷相對應之引導孔或凹槽來使 光纖之表面對準雷射二極體之主動式窗口。在此種情形 中,透鏡用於收集自雷射發射至光纖芯體(c〇re)之光束。因 第一先前技術需要使用多個複雜結構才能達成精確之光學 對準,故需要大量的需對準之零件’因此其製程頗為困難 且其體積增大。而且,由於第一先前技術包括諸如導銷或 引導結構的機械式加工零件,故此等加工零件之加工容差 (tolerance)使得此等加工零件難以相互對準,並且亦難以調 整傳輸特性。 圖2是繪示先前技術中一種光學耦合元件(在下文中 稱為「第二先前技術」)之示意圖,此光學耦合元件包括光 波導及虛設波導(dummy waveguide)。參見圖2,此第二 先剛技術包括基板與玻璃基板,此基板設置了用於傳輸信 號之波導與用於光學對準之虛設波導,此玻璃基板設置有 光學元件且具有優異之光學躲,此第二先前技術是在虛 設波導與玻璃基板上對應於虛設波導之對準圖案之間執行 光學對準。在第二先前技術中,由於在光學元件之間安裝 玻,基板,故光學信號可能會丟失及畸變至預定程度。隨 著光學模組逐漸小型化,當光學模組中多個光學元件間隔 開通常之距離(即’約0.25毫米)時,第二先前技術容易 201142399. 因光,信號茂露至相鄰通道中而出現光學劣化。另外,在 利用安裝於虛設波導與玻璃基板上之對準圖案來執行光學 對準過程時,_獲得1微米級(level)之精度。此外,在 第二先前技術中,當光纖垂直於外部電路板以將光學元件 電f生連接至此外部電路板時,模組之小型化受到限制或 者當如圖2所示使_至光學元件之電㈣撓性基板彎曲 以便連接至外部電路板、進而使光纖與外部電路板平行 時,連接零件之實體可靠性會降低且用於連接電極之體積 及長度會增大。 【發明内容】 本發明提供一種光學模組及其製造方法,所述光學模 組包括作為光學信號傳輸媒體之光纖以及藉由半導體製程 而製成之光學基板、但不具有諸如透鏡的用於光學耦合之 引導元件’用以使主動式光學元件以1微米級之精度對準 光纖並使電極容易連接至外部電路。 根據一例示性實施例,一種光學模組包括:光纖塊, 包括光纖陣列基板及光纖陣列封蓋(cover),所述光纖陣列 基板具有多個容置溝槽(receiving grooves),在所述多個容 置溝槽中分別設置有光纖,所述光纖陣列封蓋耦合至所述 光纖陣列基板之上表面’以固定所述光纖;光具座(optical bench),具有多個貫穿孔,在所述多個貫穿孔中分別插入 有穿過所述光纖塊之表面而突出的所述光纖,所述貫穿孔 之數目對應於形成於所述光纖塊中的所述容置溝槽之數 目,所述光具座之第一表面被固定至所述光纖塊;以及光 201142399^ 光學元件’所述光學元件分別對應於形成 所、rli中之所述貫穿孔,所述光學元件塊被固定至 所述先具座之第二表面。 i .根據另一例不性實施例,一種製造光學模組之方法包 括j光纖置於形成於賴陣列基板中的多個容置溝槽的 至亡其中之一中,並藉由黏合劑將光纖陣列封蓋固定至所 述光纖陣縣板’以製縣纖塊;將包含光學元件之光學 元件鬼附裝至光具座,以及將自所述光纖陣列基板突伸出 之所述光纖插入形成於所述光具座中之多個貫穿孔中,然 後將所述光具座固定至所述光纖塊。 ▲為讓本發明之上述和其他目的、特徵和優點能更明顯 易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說 明如下。 【實施方式】 以下’將參照附圖來詳細闡述本發明之具體實施例。 圖3為缯'示根據本發明之一例示性實施例的光學模組 的示意圖。 參見圖3,根據本實施例之光學模組300包括光纖塊 310、光具座320、雷射二極體陣列330、光電二極體陣列 340及轉換塊350 (350-1,350-2)。雷射二極體陣列330 包括多個發光元件’此多個發光元件用以將電信號轉換成 光學信號並予以輸出,且光電二極體陣列34〇包括多個光 接收區域,此多個光接收區域用以將進入的光學信號轉換 成電信號並予以輸出。雷射二極體陣列330及光電二極體 201142399. 陣列340被覆晶結合(flip_chip b〇nded)至光具座似。雷 射,極體陣列33G及找二鋪_ 34()可被統稱為主^ 式光學元件360。 多條光纖或光纖陣列(301)安裝於光纖塊31〇上,且 光具座320附裝至光纖塊310之一表面。圖4為繪示光纖 塊⑶〇)之組裝的示意圖。參見圖4,光纖塊31〇包括光 纖陣列基板及光纖陣觸蓋,光纖陣列基板41〇 設置有V形的光纖容置溝槽,光纖陣列封蓋則用以固 定耦合至光纖陣列基板410並插入容置溝槽中之多條光 纖’以藉由半導體餘或等效於半導體製程之精密製程而 使光纖以亞微米(sub-micro)級精度對準。直徑之容差為 〇.5微米或以下之多條圓柱形光纖安裝於光纖陣列基板 =〇之容置溝槽中,且光纖陣列封蓋42〇藉由黏合劑而固 疋至光纖陣列基板410之上表面,以將所安裝之光纖牢固 地置於容置溝槽中。此時,所安裝之光纖自光纖塊31〇突 出一預定長度,俾使所安裝光纖之一端插入形成於光具座 32〇中的貫穿孔510中,此預定長度較佳是短於貫穿孔51〇 之深度。面朝主動式光學元件360之主動式窗口的突伸光 纖320之尖端表面可被拋光至呈一角度及/或經過塗覆,以 獲得更佳之光學效能或機械功能。光纖陣列封蓋42〇與光 纖陣列基板410具有相同之大小。然而,若需要,光纖陣 列封蓋420也可在形成於光纖陣列基板41〇中的光纖容置 溝槽之縱向方向上長於或短於光纖陣列基板41〇。 光具座320是用於將光纖有效地引導至主動式光學元 201142399 一 v 編 一 一 r 11 件之預期點的模組。圖5為緣不根據一例示性實施例之光 具座500的示意圖’光具座5〇〇對應於光具座320。參見 圖5 ’光具座500具有多個貫穿孔510,此多個貫穿孔51〇 對應於主動式光學元件360之主動式窗口,主動式光學元 件360設置至覆晶結合的發光元件塊330與光接收元件塊 340上。貫穿孔510將自光纖塊310突出之光纖302引導 至主動式光學元件360之主動式窗口,且所具有之尺寸對 應於光纖302之直徑。舉例而言,考慮到對準精度以及製 程之可行性’貫穿孔510所具有之直徑可為1微米或大於 光纖302之直徑。在光具座500之第二表面上形成焊料 (solder)及電極線520,以用於覆晶結合光學元件36〇並 將光學元件360電性連接至外部電路。可在光具座5〇〇之 第一表面上形成一個或多個對準標記530,以使光具座500 對準光纖塊310,並且可在光具座500之第二表面上形成 一個或多個對準標記540,以使光具座500對準發光元件 塊330及光接收元件塊340 〇對準標記530及540是定位 標記,用於在使自光纖塊310突出之光纖302對準光具座 500之貫穿孔510時在上下方向及左右方向上辨認各貫穿 孔510與光纖302之間的相對位置,並可藉由金屬圖案化 或餘刻而形成。 圖6為繪示根據本實施例的用於人工對準光具座5〇〇 之過程的示意圖。 參見圖6,可在貫穿孔510之端部處形成引導結構 610,以將未對準之光纖輕易地引導至形成於光具座5〇〇 201142399., 中的貫穿孔510之中心。在光具座320之背面上,主動式 光學元件360結合至焊盤(bonding pad) 620,考慮到與光 纖之光學對準精度,此背面中之貫穿孔51〇之直徑(即, 面朝向發光元件塊330及光接收元件塊340之側面中的貫 穿孔510之直徑)對應於光纖之尺寸,但引導結構61〇具 有錐形環(亦標記為610),使得光具座320之正面中的貫 穿孔510之直徑(即,面朝向光纖塊31〇之側面中的貫穿 孔510之直徑)大於貫穿孔51〇之直徑,藉此使光纖可輕 易地插入貫穿孔510中。作為另外一種選擇,雖然貫穿孔 510可具有恆定之直徑,可使尺寸大於貫穿孔51〇之直徑 的傾斜凹槽形成於光具座320之正面中並分別圍繞貫穿孔 510而設置,或者可圍繞貫穿孔51〇而設置具有傾斜凹槽 功月b之辅助元件,俾使光纖可輕易地插入貫穿孔中。 圖7為繪示根據本發明另一例示性實施例之光具座 7〇〇的示意圖。圖8為繪示用於人工對準根據本實施例之 光具座700之過程的示意圖。參見圖7及圖8,光具座7〇〇 具有貫穿孔71G’貫穿孔710具有多階式(multi_step)結 構(即,多個不同之直徑)’以防止在插入貫穿孔71〇中之 光纖與主動式光學元件360之主動式窗口之間發生實體接 :。亦即’在自光具座700之第一表面(此第一表面接觸 ••又置至發光元件塊330與光接收元件塊340上之光學元件) 至預定點之中間區域中,貫穿孔71〇具有較光纖3〇2為小 之直徑,而朝向第一表面之貫穿孔71〇自此預定點朝向光 纖塊31〇具有大於或等於光纖302之直徑。由此,在貫穿 201142399^ 孔710中形成台階820。藉此,插入貫穿孔710中之光纖 可停止於一預定深度,由此防止與主動式光學元件36〇發 . 生直接的實體接觸。 圖9為繪示根據本發明又一例示性實施例之光具座 900的示意圖。圖1〇為繪示用於人工對準根據本實施例之 光具座900之過程的示意圖。參見圖9及圖10,為防止插 入貫穿孔910中之光纖302與主動式光學元件360之主動 式® 口之間發生實體接觸,貫穿孔91〇位於光具座9〇〇之 第二表面處的一端所具有之直徑小於光纖3〇2之直徑,而 位於第一表面處之另一端所具有之直徑則大於光纖3〇2之 直徑。藉此,防止插入貫穿孔91〇中之光纖直接接觸主動 式光學元件360。 發光元件塊330包括多個發光元件,用以將電信號轉 換成光學信號並予以輸出,且光接收元件塊34〇包括多個 光接收兀件,用以將光學信號轉換成電信號並予以輸出。 發光元件塊330與光接收元件塊34〇藉由覆晶結合法而結 合至光具座320。 轉換塊350用於電性連接主動式光學元件36〇與外部 電路。當光纖陣列塊300成水平安裝於電路板上時,、結; 於光具座320 i之主動式光學元件遍是與電路板成直^ 而放置。若為如此,則用於在主動式光學元件與電路板之 間達成電f生連接之打線接合(wireb〇nding)將非常困難。 可使用轉換塊350作為有利於進行打線接合之中介元件 (medlum device),以將光學模組3〇〇上成直角之電極502 201142399 , ^ k/ΙΧ 之方向轉換成平行於外部電路上的電極之方向。轉換塊 或t璃的電阻性材料製成。轉換塊350包 ,、母動式光學70件36〇之電極.相對應之傳輸 Ϊ之括分別與光學元件360之正電極與負;極相對 刀塊。在此種情形中,使形成於光具座 320中之光 t=輸_準㈣塊35(Μ及35Q_2之傳輸線,然後 藉由黏合辦賴塊35(M及35q_2之獅固定至光具座 320 ’並對這祕雜狀間的交又連接碰覆轉料或導 電環氧樹脂,賴電極進行實體連接。轉換塊及 350-2使得與先前技術中利職性基板之電極連接方法相 比,可在甚至更短之距離内連接各電極,藉此可減少高速 信號傳輸中之信號損失並可使其尺寸最小化。 一圖11為繪示使轉換塊350與光具座32〇相耦合之過程 的不意圖。參見圖11,藉由利用分別設置於光具座32〇之 正面與背面上之垂直對準標記及水平對準標記,'將光纖塊 310耦合至整合有主動式光學元件36〇之光具座32〇,以輕 易地將夕條突出之光纖插入至光具座320之貫穿孔中。當 光纖塊310之突出表面接觸到光具座32〇之表面時,藉由 黏合劑來固定此二者。轉換塊35〇包括轉換塊35〇_i及 350-2,轉換塊35(M及350·2分別耦合至光具座32〇之各 部分。圖12為根據本發明一例示性實施例的安裝於基板上 的光學模組300之示意圖。參見圖12,光學模組300被打 線接合至諸如印刷電路板(printed circuit board,PCB)之 外部電路1200,在外部電路1200上安裝有光學模組。201142399 VI. RELATED APPLICATIONS: This application claims priority to Korean Patent Application No. 2010-0047059, filed on May 19, 2010, and all The rights disclosed in the patent application are incorporated herein by reference. BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to an optical module and a method of fabricating the same, and more particularly to an optical module including an optical fiber block and an optical substrate, and a method of manufacturing the same, the optical fiber block having protruding fibers. And the optical substrate has a circuit pattern for the female optical element and a through hole for the optical fiber. [Prior Art] With the rapid increase in the number of high definition televisions in recent years, the demand for high definition multimedia interface (HDMI) cables is increasing. In particular, since the 3D TV or USB 3.0 standard recently issued requires a high bandwidth, it is necessary to switch from an existing copper HDMI cable to a cable suitable for high-capacity transmission. In general, active optical devices such as Si PD and vertical cavity cavity-emitting lasers with a wavelength band of 850 nm are used in data communication modules such as optical HDMI (vertical) -cavity surface-emitting laser, VCSEL). Unlike the lateral emission laser diode used in conventional fiber-optic communication, the VCSEL emits light perpendicular to the surface of the laser 201142399, so the optical axis of the fiber must be vertically aligned with the lightning. Shoot the emitting surface. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic view showing an optical coupling element (hereinafter referred to as "first prior art") of the prior art, the optical coupling element including a micro-lens and a guide lock. See picture! This first prior art utilizes discrete guide pins and guide holes or recesses corresponding to discrete guide pins to align the surface of the fiber with the active window of the laser diode. In this case, the lens is used to collect the beam of light emitted from the laser to the core of the fiber. Since the first prior art requires the use of multiple complex structures to achieve precise optical alignment, a large number of parts to be aligned are required' so the process is quite difficult and its volume is increased. Moreover, since the first prior art includes mechanically machined parts such as guide pins or guide structures, the machining tolerances of such machined parts make such machined parts difficult to align with each other and it is also difficult to adjust the transmission characteristics. Fig. 2 is a schematic view showing an optical coupling element (hereinafter referred to as "second prior art") of the prior art, the optical coupling element including an optical waveguide and a dummy waveguide. Referring to FIG. 2, the second prior art includes a substrate and a glass substrate. The substrate is provided with a waveguide for transmitting signals and a dummy waveguide for optical alignment. The glass substrate is provided with optical components and has excellent optical hiding. This second prior art performs optical alignment between the dummy waveguide and the alignment pattern on the glass substrate corresponding to the dummy waveguide. In the second prior art, since the glass, the substrate is mounted between the optical elements, the optical signal may be lost and distorted to a predetermined extent. As the optical module is gradually miniaturized, when the optical elements in the optical module are spaced apart by a normal distance (ie, 'about 0.25 mm), the second prior art is easy to use 201142399. Due to the light, the signal is exposed to the adjacent channel. Optical degradation occurs. In addition, when the optical alignment process is performed using the alignment pattern mounted on the dummy waveguide and the glass substrate, the accuracy of 1 micron level is obtained. Further, in the second prior art, when the optical fiber is perpendicular to the external circuit board to electrically connect the optical element to the external circuit board, the miniaturization of the module is limited or when the optical element is made as shown in FIG. When the electric (4) flexible substrate is bent so as to be connected to an external circuit board, and thus the optical fiber is parallel to the external circuit board, the physical reliability of the connecting member is lowered and the volume and length for connecting the electrodes are increased. SUMMARY OF THE INVENTION The present invention provides an optical module including an optical fiber as an optical signal transmission medium and an optical substrate fabricated by a semiconductor process, but having no optical such as a lens. The coupled guiding element 'is used to align the active optical element to the fiber with a precision of 1 micron and to easily connect the electrode to an external circuit. According to an exemplary embodiment, an optical module includes: a fiber optic block including a fiber array substrate and a fiber array cover, the fiber array substrate having a plurality of receiving grooves, An optical fiber is disposed in each of the accommodating trenches, the optical fiber array cover is coupled to the upper surface of the optical fiber array substrate to fix the optical fiber; and an optical bench has a plurality of through holes. The plurality of through holes are respectively inserted with the optical fibers protruding through the surface of the optical fiber block, and the number of the through holes corresponds to the number of the receiving grooves formed in the optical fiber block. a first surface of the optical bench is fixed to the optical fiber block; and a light element 201142399 ^ optical element 'the optical element respectively corresponding to the through hole in the formation, rli, the optical element block is fixed to the The second surface of the seat. According to another exemplary embodiment, a method of fabricating an optical module includes placing an optical fiber in one of a plurality of receiving trenches formed in a substrate of a ray array, and bonding the optical fiber by an adhesive. An array cover is fixed to the fiber array plate to make a county fiber block; an optical component containing an optical component is attached to the optical bench, and the optical fiber protruding from the optical fiber array substrate is inserted to form And forming, in the plurality of through holes in the optical bench, the optical bench to the optical fiber block. The above and other objects, features, and advantages of the present invention will become more apparent from the aspects of the invention. [Embodiment] Hereinafter, specific embodiments of the present invention will be described in detail with reference to the accompanying drawings. Figure 3 is a schematic illustration of an optical module in accordance with an illustrative embodiment of the present invention. Referring to FIG. 3, the optical module 300 according to this embodiment includes a fiber optic block 310, an optical bench 320, a laser diode array 330, a photodiode array 340, and a conversion block 350 (350-1, 350-2). . The laser diode array 330 includes a plurality of light emitting elements 'the plurality of light emitting elements for converting an electrical signal into an optical signal and outputting, and the photodiode array 34 includes a plurality of light receiving regions, the plurality of light The receiving area is used to convert the incoming optical signal into an electrical signal and output it. Laser diode array 330 and photodiode 201142399. Array 340 is flip-chip bonded (flip_chip b〇nded) to an optical bench. The laser, polar body array 33G and seeker _ 34() can be collectively referred to as main optical element 360. A plurality of optical fibers or fiber arrays (301) are mounted on the fiber block 31, and the optical bench 320 is attached to one surface of the fiber block 310. Fig. 4 is a schematic view showing the assembly of the optical fiber block (3). Referring to FIG. 4, the optical fiber block 31A includes a fiber array substrate and a fiber array contact cover. The fiber array substrate 41 is provided with a V-shaped fiber receiving groove, and the fiber array cover is fixedly coupled to the fiber array substrate 410 and inserted. The plurality of fibers in the trench are sized to align the fibers with sub-micro level precision by a semiconductor process or a precision process equivalent to a semiconductor process. A plurality of cylindrical optical fibers having a diameter tolerance of 〇.5 μm or less are mounted in the accommodating groove of the optical fiber array substrate 〇, and the optical fiber array cover 42 疋 is fixed to the optical fiber array substrate 410 by an adhesive. The upper surface is to securely mount the mounted optical fiber in the receiving groove. At this time, the mounted optical fiber protrudes from the optical fiber block 31 by a predetermined length, and one end of the mounted optical fiber is inserted into the through hole 510 formed in the optical bench 32, and the predetermined length is preferably shorter than the through hole 51. The depth of 〇. The tip end surface of the protruding fiber 320 facing the active window of the active optical component 360 can be polished to an angle and/or coated for better optical performance or mechanical function. The fiber array cover 42A has the same size as the fiber array substrate 410. However, if desired, the fiber array cover 420 may be longer or shorter than the fiber array substrate 41 in the longitudinal direction of the fiber receiving groove formed in the fiber array substrate 41. The optical bench 320 is a module for efficiently guiding the fiber to the desired point of the active optical element 201142399-v. Figure 5 is a schematic illustration of an optical bench 500 that is not in accordance with an exemplary embodiment. The optical bench 5' corresponds to the optical bench 320. Referring to FIG. 5, the optical bench 500 has a plurality of through holes 510 corresponding to the active window of the active optical component 360, and the active optical component 360 is disposed to the flip-chip bonded light-emitting component block 330. Light receiving element block 340. The through-hole 510 directs the optical fiber 302 protruding from the fiber optic block 310 to the active window of the active optical component 360 and has a size corresponding to the diameter of the optical fiber 302. For example, the through hole 510 may have a diameter of 1 micrometer or greater than the diameter of the optical fiber 302 in view of alignment accuracy and process feasibility. Solder and electrode lines 520 are formed on the second surface of the optical bench 500 for flip-chip bonding of the optical element 36 and electrically connecting the optical element 360 to an external circuit. One or more alignment marks 530 may be formed on the first surface of the optical bench 5 to align the optical bench 500 with the fiber block 310, and may form one on the second surface of the optical bench 500 or A plurality of alignment marks 540 are provided to align the optical bench 500 with the light emitting element block 330 and the light receiving element block 340. The alignment marks 530 and 540 are positioning marks for aligning the optical fibers 302 protruding from the optical fiber block 310. The through hole 510 of the optical bench 500 recognizes the relative position between each of the through holes 510 and the optical fiber 302 in the up and down direction and the left and right direction, and can be formed by metal patterning or casting. FIG. 6 is a schematic view showing a process for manually aligning an optical bench 5 根据 according to the present embodiment. Referring to Figure 6, a guiding structure 610 can be formed at the end of the through hole 510 to easily guide the misaligned fiber to the center of the through hole 510 formed in the optical bench 5 〇〇 201142399. On the back side of the optical bench 320, the active optical component 360 is bonded to a bonding pad 620 which, in view of the optical alignment accuracy with the optical fiber, has a diameter of the through hole 51〇 in the back surface (ie, the face is illuminated The diameter of the through hole 510 in the side of the element block 330 and the light receiving element block 340 corresponds to the size of the optical fiber, but the guiding structure 61 has a tapered ring (also denoted as 610) so that the front side of the optical bench 320 The diameter of the through hole 510 (i.e., the diameter of the through hole 510 in the side facing the fiber block 31A) is larger than the diameter of the through hole 51, whereby the optical fiber can be easily inserted into the through hole 510. Alternatively, although the through hole 510 may have a constant diameter, inclined grooves having a size larger than the diameter of the through hole 51〇 may be formed in the front surface of the optical bench 320 and respectively disposed around the through hole 510, or may be surrounded An auxiliary member having a slanted groove function month b is provided through the through hole 51, so that the optical fiber can be easily inserted into the through hole. FIG. 7 is a schematic diagram of an optical bench 7 根据 according to another exemplary embodiment of the present invention. FIG. 8 is a schematic view showing a process for manually aligning the optical bench 700 according to the present embodiment. Referring to FIGS. 7 and 8, the optical bench 7 has a through-hole 71G' through-hole 710 having a multi-step structure (ie, a plurality of different diameters) to prevent the fiber inserted in the through-hole 71〇. A physical connection occurs between the active window of the active optical component 360: That is, in the intermediate portion of the first surface of the optical bench 700 (the first surface contact • the optical element placed on the light-emitting element block 330 and the light-receiving element block 340) to the predetermined point, the through hole 71 The crucible has a smaller diameter than the optical fiber 3〇2, and the through hole 71〇 toward the first surface has a diameter greater than or equal to the diameter of the optical fiber 302 from the predetermined point toward the optical fiber block 31〇. Thereby, the step 820 is formed in the hole 710 through the 201142399. Thereby, the optical fiber inserted into the through hole 710 can be stopped at a predetermined depth, thereby preventing direct physical contact with the active optical element 36. FIG. 9 is a schematic diagram of an optical bench 900 in accordance with yet another exemplary embodiment of the present invention. 1A is a schematic view showing a process for manually aligning an optical bench 900 according to the present embodiment. Referring to Figures 9 and 10, in order to prevent physical contact between the optical fiber 302 inserted into the through hole 910 and the active port of the active optical element 360, the through hole 91 is located at the second surface of the optical bench 9 One end has a diameter smaller than the diameter of the optical fiber 3〇2, and the other end at the first surface has a diameter larger than the diameter of the optical fiber 3〇2. Thereby, the optical fiber inserted into the through hole 91A is prevented from directly contacting the active optical element 360. The light-emitting element block 330 includes a plurality of light-emitting elements for converting and outputting an electrical signal into an optical signal, and the light-receiving element block 34 includes a plurality of light-receiving elements for converting the optical signal into an electrical signal and outputting the same. . The light-emitting element block 330 and the light-receiving element block 34 are bonded to the optical bench 320 by flip chip bonding. The conversion block 350 is used to electrically connect the active optical element 36 to an external circuit. When the fiber array block 300 is horizontally mounted on the circuit board, the active optical components of the optical bench 320i are placed in a straight line with the circuit board. If so, it would be very difficult to wire-wire the electrical connection between the active optical component and the board. The conversion block 350 can be used as a medlum device for facilitating wire bonding to convert the direction of the electrode module 502 201142399 , ^ k / 光学 of the optical module 3 at right angles into an electrode parallel to the external circuit. The direction. Made of a resistive material of a conversion block or a glass. The conversion block 350 package, the mother-moving optical 70 pieces of 36 〇 electrodes. The corresponding transmission Ϊ is respectively associated with the positive electrode and the negative of the optical element 360; the pole is opposite to the block. In this case, the light formed in the optical bench 320 is t=transmission_quad (four) block 35 (the transmission line of Μ and 35Q_2, and then fixed to the optical bench by bonding the lion block 35 (M and 35q_2 lions) 320' and the connection between the secrets is connected with the bumping or conductive epoxy, and the electrodes are physically connected. The conversion block and 350-2 make compared with the electrode connection method of the prior art. The electrodes can be connected at even shorter distances, thereby reducing signal loss and minimizing the size of high-speed signal transmission. Figure 11 is a diagram showing the coupling of the conversion block 350 to the optical bench 32 The process is not intended. Referring to Figure 11, the fiber optic block 310 is coupled to the integrated active optical component by utilizing vertical alignment marks and horizontal alignment marks respectively disposed on the front and back sides of the optical bench 32". The 36-inch optical bench 32 〇 is used to easily insert the yoke protruding fiber into the through hole of the optical bench 320. When the protruding surface of the optical block 310 contacts the surface of the optical bench 32, by bonding The agent fixes the two. The conversion block 35〇 includes the conversion block 35〇_i and 350-2, a conversion block 35 (M and 350·2 are respectively coupled to portions of the optical bench 32. Figure 12 is a schematic diagram of an optical module 300 mounted on a substrate in accordance with an exemplary embodiment of the present invention. 12, the optical module 300 is wire bonded to an external circuit 1200 such as a printed circuit board (PCB) on which an optical module is mounted.

S 12 201142399 圖13為繪示根據本發明之一例示性實施例的一種製 造光學模組之方法的方塊圖。 參見圖13,在操作步驟S1300中,在形成於光纖陣列 基板410中之容置溝槽的至少其中之一中設置光纖,並藉 由黏合劑將光纖陣列封蓋42〇固定至光纖陣列基板41〇, 以製成光纖塊310。此時,自藉由將光纖陣列基板41〇與 光,陣列封蓋42〇相輕合而形成的光纖塊S1。之一端突出 的光纖302之-端經過研磨或塗覆有光學膜。在操作步驟 S1310中’藉由覆晶結合,將包含光學元件之發光元件塊 330與光,收元件塊34〇附裝至光具座32〇。在此種情形 中,可在操作步驟S1300之前執行操作步驟sl31〇,或者 可分別獨立地執行操作步騾sl31〇與sl3〇〇。 呂⑴㈠,將自光纖塊31〇突出之光纖3〇2插入 光具座320中之貫穿孔51〇、71〇或91〇十,並且接著藉由 黏合劑將光具座320固定至光纖塊31〇。在操作步驟^% 中’將用於將主動式光學元件36〇連接至外部電路簡 之轉換塊350附裝至光具座32〇 ,並藉由焊料或可導電的 環氧樹脂將電極502實體連接至外部電路12〇〇。 在根據本發明實施例之光學模組及其製造方法中,因 使用具有貫穿孔之基板來箱合光學元件與光纖,零 目少於先前技術中雙向VCSEL_PD光學模組之零件數目, H —型化的簡單雙向 式光千拉組,此使得可在不使用導銷之情況下達 級以内之人卫光學對準並可達獻規模生產n ^ ..Ε. 13 201142399 DV^jplf 接至外部電路板時使用電極轉換元件, 文先干模,、且了在攻小之高度内安裝成與電路板 此縮離,此使得可進行高速信號傳輸。9 及並製iLi疋體實施例來_本發明之光學模組 二tie方法,然而其並非僅限於此。因此,S 12 201142399 FIG. 13 is a block diagram showing a method of fabricating an optical module in accordance with an exemplary embodiment of the present invention. Referring to FIG. 13, in operation S1300, an optical fiber is disposed in at least one of the receiving trenches formed in the optical fiber array substrate 410, and the optical fiber array cover 42 is fixed to the optical fiber array substrate 41 by an adhesive. 〇, to make the fiber block 310. At this time, the optical fiber block S1 is formed by lightly connecting the optical fiber array substrate 41 to the light and the array cover 42 is folded. The end of the fiber 302, which protrudes at one end, is ground or coated with an optical film. In operation step S1310, the light-emitting element block 330 including the optical element and the light-receiving element block 34A are attached to the optical bench holder 32 by flip chip bonding. In this case, the operation step s31x may be performed before the operation S1300, or the operation steps s31 〇 and sl3 可 may be performed independently. Lu (1) (1), the optical fiber 3〇2 protruding from the optical fiber block 31〇 is inserted into the through hole 51〇, 71〇 or 91〇10 in the optical bench 320, and then the optical bench 320 is fixed to the optical fiber block 31 by the adhesive. Hey. In the operation step ^%, the conversion block 350 for connecting the active optical element 36 to the external circuit is attached to the optical bench 32, and the electrode 502 is physically formed by solder or a conductive epoxy. Connected to an external circuit 12〇〇. In an optical module and a method of fabricating the same according to embodiments of the present invention, since the optical element and the optical fiber are housed by using a substrate having a through hole, the number of parts is smaller than that of the bidirectional VCSEL_PD optical module of the prior art, H-type The simple two-way light-thin group, which makes it possible to achieve optical alignment and achieve scale production without using a guide pin. n ^ ..Ε. 13 201142399 DV^jplf Connected to an external circuit When the board is used, the electrode conversion element is used, and the mold is first dry-mode, and installed in the height of the attack to be disconnected from the circuit board, which enables high-speed signal transmission. 9 and the combined iLi body embodiment to the optical module of the present invention, but it is not limited thereto. therefore,

人貝將容易理解’在不違背後附申請專利範圍所界三太 T 限定已以較佳實施例揭露如上,然其並非用以 =本發月’任何熟習此技藝者,在不脫離本發明之 範=售當可作些許之更動與潤飾’因此本發明之保護 乾圍虽視伽之申請專利制所界定者為準。 【圖式簡單說明】 學二元件的_’此光 與紅,術之光_合元件的示意圓,此光 子耦a 7L件包括光波導及虛設波導。 圖3為綠示根據本發明之—麻性實施綱光學 的示意圖。 、'、 圖4為繪示光纖塊(310)及其對所突出的光纖(3〇2 之組裝的示意圖。 圖5為繪示光具座(32〇)之第二表面的示意圖,此第 二表面上結合有光學元件(330,340)。 圖6為繪示用於人工對準光具座(32〇)之過程的示意 圖。 ^ 201142399 ^ ^ Λ Λ. 圖7為繪示根據本發明另一例示性實施例之光具座 (700)的示意圖。 圖8為繪示用於人工對準光具座(7〇〇)之過程的示意 圖。 圖9為緣示根據本發明又一例示性實施例之光具座 (900)的示意圖。 圖10為繪示用於人工對準光具座(900)之過程的示 意圖。 圖11為繪示包括電極轉換塊(350)、光具座(320) 及光纖塊(310)的光學模組之組裝的示意圖。 圖12為根據本發明再一例示性實施例的安裝於基板 上的光學模組(300)之示意圖。 圖13為繪示根據本發明又一例示性實施例的一種製 造光學模組之方法的方塊圖。 【主要元件符號說明】 300 光學模組 301 光纖或光纖陣列 302 光纖 310 光纖塊 320 光具座 330 雷射二極體陣列 340 光電二極體陣列 350-1 :轉換塊 350-2 :轉換塊 15 201142399 360 :光學元件 410 :光纖陣列基板 420 :光纖陣列封蓋 500 :光具座 510 :貫穿孔 520 :電極線 530 :對準標記 540 :對準標記 610 :引導結構 620 :焊盤 700 :光具座 710 :貫穿孔 820 :台階 900 :光具座 910 :貫穿孔 1200 :外部電路It will be readily understood that the present invention is not limited to the present invention, and is not intended to be used in the preferred embodiment. Fan = sale can make some changes and retouching 'Therefore, the protection of the invention is determined by the definition of the patent application system. [Simple diagram of the diagram] The _' of this two elements and the red, the light of the operation _ the schematic circle of the component, the photon coupling a 7L includes the optical waveguide and the dummy waveguide. Fig. 3 is a schematic view showing green light according to the present invention. 4, FIG. 4 is a schematic view showing the assembly of the optical fiber block (310) and its protruding optical fiber (3〇2. FIG. 5 is a schematic view showing the second surface of the optical bench (32〇), this The two surfaces are combined with optical elements (330, 340). Figure 6 is a schematic diagram showing the process for manually aligning the optical bench (32 。). ^ 201142399 ^ ^ Λ Λ. Figure 7 is a diagram showing the present invention. A schematic view of an optical bench (700) of another exemplary embodiment. Fig. 8 is a schematic view showing a process for manually aligning an optical bench (7〇〇). Fig. 9 is a view showing still another example according to the present invention. Schematic diagram of an optical bench (900) of an embodiment. Figure 10 is a schematic diagram showing a process for manually aligning an optical bench (900). Figure 11 is a diagram showing an electrode conversion block (350), an optical bench. FIG. 12 is a schematic diagram of an optical module (300) mounted on a substrate according to still another exemplary embodiment of the present invention. FIG. 13 is a schematic diagram of the assembly of the optical module of the optical fiber block (310). A block diagram of a method of fabricating an optical module according to still another exemplary embodiment of the present invention. 300 optical module 301 fiber or fiber array 302 fiber 310 fiber block 320 optical bench 330 laser diode array 340 photodiode array 350-1: conversion block 350-2: conversion block 15 201142399 360: optical component 410 : Fiber array substrate 420 : Fiber array cover 500 : Optical bench 510 : Through hole 520 : Electrode line 530 : Alignment mark 540 : Alignment mark 610 : Guide structure 620 : Pad 700 : Optical bench 710 : Through hole 820: step 900: optical bench 910: through hole 1200: external circuit

Claims (1)

20114239¾ 七、申請專利範圍: 1. 一種光學模組,包括: 光纖塊’包括光纖陣列基板及光纖陣列封蓋,所述光 纖陣列基板具有多個容置溝槽,在所述多個容置溝槽中分 別設置有光纖,所述光纖陣列封蓋耦合至所述光纖陣列基 板之上表面,以固定所述光纖; 光具座,具有多個貫穿孔,在所述多個貫穿孔中分別 插入有穿過所述光纖塊之表面而突出的所述光纖,所述貫 穿孔之數目對應於形成於所述光纖塊中的所述容置溝槽之 數目’所述光具座之第一表面被固定至所述光纖塊;以及 光學元件塊’包括光學元件,所述光學元件分別對應 於形成於所述光具座中之所述貫穿孔,所述光學元件塊被 固定至所述光具座之第二表面。 2·如申請專利範圍第1項所述之光學模組,更包括轉 換塊’所述轉換塊將所述光學元件塊之所述光學元件電性 連接至外部電路並被固定至所述光具座之所述第二表面。 3. 如申請專利範圍第2項所述之光學模組,其中所述 轉換塊包括傳輸線,所述傳輸線對應於所述光學元件塊之 每一光學元件之電極。 4. 如申請專利範圍第2項或第3項所述之光學模組, 其中所述轉換塊是中介元件,用以將所述電極垂直於電路 板之狀態轉換成所述電極水平於所述電路板之狀態,使所 述電極電性連接至所述外部電路。 5. 如申請專利範圍第2項或第3項所述之光學模組, 17 201142399 其中分立的塊分別對應於設置至所述光學元件塊的所述光 學元件之正電極與負電極。 6. 如申請專利範圍第1項所述之光學模组,其中形成 於所述光具座中之所述貫穿孔具有大於被插入光纖之直 徑。 7. 如申請專利範圍第1項所述之光學模組,其中形成 於所述光具座中之所述貫穿孔自所述光具座之所述第二表 面至朝向所述光具座之所述第一表面的第一點具有小於所 述被插入光纖之直徑,並自所述第一點至所述光具座之所 述第一表面具有大於所述被插入光纖之直徑。 8. 如申請專利範圍第1項所述之光學模組,其中形成 於所述光具座中之所述貫穿孔在所述光具座之所述第二表 面處所具有之直徑小於所述被插入光纖之直徑 ,且在所述 光具座之所述第一表面處所具有之直徑大於所述被插入光 纖之所述直徑’並且所述貫穿孔之直徑自所述光具座之所 述第二表面至所述光具座之所述第一表面恆定地增大。 9. 如申請專利範圍第7項或第8項所述之光學模組, 其中形成於所述光具座中之所述貫穿孔在所述光具座之所 述第一表面處是錐形的。 1〇.如申請專利範圍第1項、第2項、第3項、第6 項,7項及第8項中任一項所述之光學模組,其中穿過 所述光纖塊之-端而突出的所述紐之—端被拋光或 覆。 11.如申請專利範圍第1項、第2項、第3項、第6 S 18 201142399 項、第7項及第8項中任一項所述之光學模組,其中所述 光具座之所述第一表面與所述第二表面設置有對準標記, 所述對準標記是藉由蝕刻或金屬圖案化而形成,用以使所 述光纖塊對準所述光學元件塊。 12. —種製造光學模組之方法,所述方法包括: 將光纖置於形成於光纖陣列基板中的多個容置溝槽之 至少其中之一中,並藉由黏合劑將光纖陣列封蓋固定至所 述光纖陣列基板’以製成光纖塊; 將包含光學元件之光學元件塊附裝至光具座;以及 將自所述光纖陣列基板而突出之所述光纖插入至形成 於所述光具座中之多個貫穿孔中,然後將所述光具座固定 至所述光纖塊。 13. 如申请專利範圍第12項所述之方法,更包括將轉 換塊附裝至職光具座,所㈣換塊用⑽設置至所述光 學元件塊之所述光學元件電性連接至外部電路。 14. 如申請專利範圍第12項或第13項所述之方法, 其中穿過所絲纖塊之-端而突出的所述光纖之—端經過 研磨或被塗覆以光學膜。 15. 如中請專利範圍第12項或第13項所述之方法, f中形成於所述光具座巾之_貫料具有大於被 纖之直徑。 〜 16. 如申請專利範圍第12項或第13項所述之方法, 其:形成於職光具座中之所述貫穿孔自所述光具座之第 二表面至朝向所述光具座之第—表面的第—點具有小 19 201142399. 述被插人光狀錄’並自所述第—點輯述光具座之所 述第一表面具有大於所述被插入光纖之直徑。 Π.如申請專利範圍第12項或第13 ^所述之方法, 其中形成於所述光具座巾之所述貫穿孔在所述光具座之第 二表面處所具有之直㈣、於所频插人級之直徑,且在 所述光具座之第一表面處所具有之直徑大於所述被插入光 纖之所述直徑,並且所述貫穿孔之直徑自所述光具座之所 述第一表面至所述光具座之所述第一表面恆定地增大。 S 20201142393⁄4 VII. Patent Application Range: 1. An optical module comprising: a fiber optic block comprising a fiber array substrate and an optical fiber array cover, the fiber array substrate having a plurality of receiving grooves, wherein the plurality of receiving grooves An optical fiber is disposed in the slot, the optical fiber array cover is coupled to the upper surface of the optical fiber array substrate to fix the optical fiber, and the optical bench has a plurality of through holes respectively inserted in the plurality of through holes Having the optical fiber protruding through a surface of the optical fiber block, the number of the through holes corresponding to the number of the accommodating grooves formed in the optical fiber block 'the first surface of the optical bench Fixed to the fiber block; and the optical element block' includes optical elements respectively corresponding to the through holes formed in the optical bench, the optical element block being fixed to the optical device The second surface of the seat. 2. The optical module of claim 1, further comprising a conversion block, wherein the conversion block electrically connects the optical element of the optical element block to an external circuit and is fixed to the optical device The second surface of the seat. 3. The optical module of claim 2, wherein the conversion block comprises a transmission line, the transmission line corresponding to an electrode of each optical element of the optical element block. 4. The optical module of claim 2, wherein the conversion block is an intermediate component for converting the state of the electrode perpendicular to the circuit board to the electrode level The state of the board electrically connects the electrodes to the external circuit. 5. The optical module of claim 2, wherein the discrete blocks correspond to a positive electrode and a negative electrode of the optical element disposed to the optical element block, respectively. 6. The optical module of claim 1, wherein the through hole formed in the optical bench has a diameter larger than that inserted into the optical fiber. 7. The optical module of claim 1, wherein the through hole formed in the optical bench is from the second surface of the optical bench to the optical bench The first point of the first surface has a diameter smaller than the diameter of the inserted fiber, and the first surface from the first point to the optical bench has a diameter larger than the diameter of the inserted fiber. 8. The optical module of claim 1, wherein the through hole formed in the optical bench has a diameter smaller than the diameter at the second surface of the optical bench Inserting a diameter of the optical fiber, and having a diameter at the first surface of the optical bench greater than the diameter ' of the inserted optical fiber and the diameter of the through hole from the optical bench The first surface to the first surface of the optical bench is constantly increased. 9. The optical module of claim 7 or 8, wherein the through hole formed in the optical bench is tapered at the first surface of the optical bench of. An optical module according to any one of the preceding claims, wherein the optical module is passed through the end of the optical fiber block. The highlighted end of the button is polished or covered. The optical module according to any one of the preceding claims, wherein the optical module is in the scope of the invention, wherein the optical module is The first surface and the second surface are provided with alignment marks formed by etching or metal patterning to align the fiber block with the optical element block. 12. A method of fabricating an optical module, the method comprising: placing an optical fiber in at least one of a plurality of receiving trenches formed in a fiber array substrate, and capping the optical fiber array by an adhesive Fixed to the fiber array substrate 'to make a fiber block; attaching an optical element block including the optical element to the optical bench; and inserting the optical fiber protruding from the fiber array substrate to be formed on the light A plurality of through holes are formed in the seat, and then the optical bench is fixed to the fiber block. 13. The method of claim 12, further comprising attaching the conversion block to the optical bench, wherein (4) the block is (10) disposed to the optical element, the optical element is electrically connected to the external Circuit. 14. The method of claim 12, wherein the end of the optical fiber that protrudes through the end of the filament block is ground or coated with an optical film. 15. The method of claim 12, wherein the forming of the optical traveler has a diameter greater than the diameter of the fiber. The method of claim 12, wherein the through hole formed in the optical bench is from the second surface of the optical bench to the optical bench The first surface of the surface has a small 19 201142399. The first surface of the optical bench is inserted from the first point and has a larger diameter than the inserted optical fiber. The method of claim 12, wherein the through hole formed in the optical seat towel has a straight line at a second surface of the optical bench. Inserting a diameter of the human body, and having a diameter at a first surface of the optical bench greater than the diameter of the inserted optical fiber, and a diameter of the through hole from the optical bench A surface to the first surface of the optical bench is constantly increased. S 20
TW99134238A 2010-05-19 2010-10-07 Optical module and fabricating method thereof TW201142399A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100047059A KR20110127522A (en) 2010-05-19 2010-05-19 Optical module and fabricating method thereof

Publications (1)

Publication Number Publication Date
TW201142399A true TW201142399A (en) 2011-12-01

Family

ID=44991862

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99134238A TW201142399A (en) 2010-05-19 2010-10-07 Optical module and fabricating method thereof

Country Status (3)

Country Link
KR (1) KR20110127522A (en)
TW (1) TW201142399A (en)
WO (1) WO2011145785A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103885143A (en) * 2014-04-15 2014-06-25 昆山柯斯美光电有限公司 Chip array and parallel optical fiber coupled alignment assembly and manufacturing method of chip array and parallel optical fiber coupled alignment assembly
CN104076451A (en) * 2013-03-28 2014-10-01 富士康(昆山)电脑接插件有限公司 Photoelectric conversion system and photoelectric conversion device thereof
US9134491B2 (en) 2013-03-27 2015-09-15 Hon Hai Precision Industry Co., Ltd. Optical module for transferring optical signal to electrical signal and optical module assembly used thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104122630B (en) * 2013-04-24 2016-08-10 富士康(昆山)电脑接插件有限公司 Beam condensing unit and use the photo-electric conversion device of this beam condensing unit
CN103226223A (en) * 2013-05-13 2013-07-31 洛合镭信光电科技(上海)有限公司 Optical engine micro-packaging structure for high-speed parallel light transmitting/receiving module
CN104020537B (en) * 2014-05-20 2016-01-13 昆山柯斯美光电有限公司 High speed optoelectronic conversion equipment and assemble method thereof
KR102328312B1 (en) 2015-01-15 2021-11-19 한국전자통신연구원 Optical module
WO2016197332A1 (en) * 2015-06-09 2016-12-15 华为技术有限公司 Optical fiber connector
CN106483611A (en) * 2015-08-28 2017-03-08 佑胜光电股份有限公司 Light-receiving assembly and optical transceiver module
US11630265B2 (en) * 2020-04-15 2023-04-18 Google Llc Glass fiber hole plates for 2D fiber collimators and methods for alignment and fabrication for optical switching applications
US11914204B2 (en) * 2020-10-01 2024-02-27 International Business Machines Corporation Optical connector device with lid
KR102557498B1 (en) * 2022-03-29 2023-07-20 주식회사 펨토리 Optical connector module and optical interconnection module comprising it

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021008A (en) * 1983-07-15 1985-02-02 Fujitsu Ltd Aligning method of optical fiber array terminal
US6618541B2 (en) * 2001-03-14 2003-09-09 Zygo Corporation Fiber array fabrication
KR100476685B1 (en) * 2002-02-28 2005-03-18 (주) 파이오닉스 Optical Interconnection Module Assembly and Packaging Method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9134491B2 (en) 2013-03-27 2015-09-15 Hon Hai Precision Industry Co., Ltd. Optical module for transferring optical signal to electrical signal and optical module assembly used thereof
CN104076451A (en) * 2013-03-28 2014-10-01 富士康(昆山)电脑接插件有限公司 Photoelectric conversion system and photoelectric conversion device thereof
CN104076451B (en) * 2013-03-28 2016-10-05 富士康(昆山)电脑接插件有限公司 Photo-translating system and photo-electric conversion device thereof
CN103885143A (en) * 2014-04-15 2014-06-25 昆山柯斯美光电有限公司 Chip array and parallel optical fiber coupled alignment assembly and manufacturing method of chip array and parallel optical fiber coupled alignment assembly
CN103885143B (en) * 2014-04-15 2016-06-15 昆山柯斯美光电有限公司 The assembly that chip array and parallel optical fibre are coupled and aligned and its preparation method

Also Published As

Publication number Publication date
KR20110127522A (en) 2011-11-25
WO2011145785A1 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
TW201142399A (en) Optical module and fabricating method thereof
TW569051B (en) Package article for removably accepting a fiber optic cable and method for using same
US7476037B2 (en) Apparatus for coupling a fiber optic cable to an optoelectronic device, a system including the apparatus, and a method of forming the same
US6748143B2 (en) Optical transceiver module and optical communications system using the same
US9170387B2 (en) Optical component assemblies
EP2790048B1 (en) Optical module
US8834041B2 (en) Ferrule-based optical component assemblies
US10268006B2 (en) Alignment mechanism of optical interconnect structure
WO2020187034A1 (en) Optical transceiver module and optical fiber cable module
TW200428057A (en) Photo module
CN101303439A (en) Optical assemblies and their methods of formation
KR100627701B1 (en) Parallel optical interconnection module
US20020136504A1 (en) Opto-electronic interface module for high-speed communication systems and method of assembling thereof
KR102529088B1 (en) Connector Plug and Active Optical Cable Assembly Using the Same
US8636426B2 (en) Photoelectric conversion system with optical transceive module
WO2019048653A1 (en) Assembly of 2-dimensional matrix of optical transmitter or receiver based on wet etched silicon interposer
TWI230279B (en) Multiport type optical module
TWM603968U (en) An optical transceiver module and an optical cable module
Hiramatsu et al. Three-dimensional waveguide arrays for coupling between fiber-optic connectors and surface-mounted optoelectronic devices
TW201911586A (en) Techniques for high speed optoelectronic coupling by redirection of optical path
CN217879745U (en) Optical module
US20230086908A1 (en) Optical element module, slim connector plug, active optical cable assembly using same, and manufacturing method thereof
TWI339029B (en) Single bi-directional optical subassembly
KR20170057485A (en) Apparatus for optical connection and method for manufacturing the same
JP2004233594A (en) Photoelectric circuit board and photoelectric circuit module using same