WO2018074433A1 - 圧潰強度予測方法 - Google Patents

圧潰強度予測方法 Download PDF

Info

Publication number
WO2018074433A1
WO2018074433A1 PCT/JP2017/037425 JP2017037425W WO2018074433A1 WO 2018074433 A1 WO2018074433 A1 WO 2018074433A1 JP 2017037425 W JP2017037425 W JP 2017037425W WO 2018074433 A1 WO2018074433 A1 WO 2018074433A1
Authority
WO
WIPO (PCT)
Prior art keywords
strength
crushing
steel pipe
formula
evaluated
Prior art date
Application number
PCT/JP2017/037425
Other languages
English (en)
French (fr)
Inventor
幸伸 永田
祐輔 市瀬
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2018500349A priority Critical patent/JP6350771B1/ja
Priority to US16/337,691 priority patent/US11017054B2/en
Priority to KR1020197011003A priority patent/KR20190047075A/ko
Priority to CA3038483A priority patent/CA3038483A1/en
Priority to CN201780063939.4A priority patent/CN109890526B/zh
Priority to EP17862516.6A priority patent/EP3530365A4/en
Publication of WO2018074433A1 publication Critical patent/WO2018074433A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C51/00Measuring, gauging, indicating, counting, or marking devices specially adapted for use in the production or manipulation of material in accordance with subclasses B21B - B21F
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]

Definitions

  • the present invention relates to a crushing strength prediction method.
  • This application claims priority based on Japanese Patent Application No. 2016-204404 filed in Japan on October 18, 2016, the contents of which are incorporated herein by reference.
  • the crushing value is measured by a crushing test for a steel pipe having a diameter of 16 inches or less.
  • FEA finite element analysis
  • Non-Patent Document 1 proposes a method for calculating the biaxial crushing strength of a seamless steel pipe for oil wells. Such a seamless steel pipe is quenched and tempered, and has the same strength in the L direction (the length direction of the steel pipe) and the C direction (the circumferential direction).
  • Non-Patent Document 1 Although the crushing strength in a biaxial stress field of a small-diameter oil well pipe to which a seamless steel pipe is applied can be estimated, it cannot be applied to a large-diameter oil well pipe to which a welded pipe is applied. is there. In Non-Patent Document 1, no consideration is given to the crushing mode and the effect on the crushing strength.
  • the yield elongation type SS curve as shown in FIG. 1A is a diagram showing a yield elongation type SS curve described in Non-Patent Document 1.
  • FIG. 1A the crushing strength can be predicted with a certain accuracy by using 0.20% proof stress.
  • the seamless steel pipe described in Non-Patent Document 1 is heat-treated, it exhibits such a yield elongation type SS curve.
  • the tendency of the SS curve varies depending on the method of forming the steel pipe and the presence or absence of heat treatment.
  • an ERW steel pipe without heat treatment shows a round SS curve as shown in FIG.
  • a clear yield phenomenon does not appear, and when the prediction calculation of the crushing strength is performed using 0.20% proof stress as in the conventional case, the crushing strength is affected by the round shape of the SS curve.
  • the crushing strength cannot be predicted with high accuracy.
  • a welded pipe other than an ERW steel pipe such as a UO steel pipe
  • the present inventors diligently studied a crushing strength prediction method applicable to steel pipes having various dimensions, and obtained the following knowledge.
  • the crushing phenomenon of a steel pipe changes with the increase in D / t, such as yield crushing, plastic crushing, transition crushing, and elastic crushing (see Non-Patent Document 2). At this time, the higher the D / t, the lower the crushing strength.
  • the crushing dominant yield strength used a value of stress that produces a permanent strain of 0.20%, which is generally defined as the yield strength.
  • the yield stress is not clear for a steel pipe that draws a stress-strain curve (SS curve) showing a gradual increase in stress as the strain increases or a complicated SS curve. Therefore, the yield strain value of the steel pipe varies depending on the shape of the SS curve, and it may not be appropriate to use a permanent strain of 0.20%.
  • the present inventors can provide a crushing strength prediction formula applicable to steel pipes of various dimensions by adopting a numerical value corresponding to the permanent strain value of the compression SS curve in the circumferential direction of the steel pipe as the crushing dominant strength. I found. Depending on the selection of the permanent strain value, the crushing dominant strength will vary greatly.
  • the study by the present inventors revealed that the stress having a high correlation with the crushing strength, that is, the crushing dominant strength changes with D / t. That is, the present inventors have found that the crushing strength can be predicted with high accuracy by setting an appropriate crushing control strength according to the value of D / t.
  • the present invention has been made based on the above findings.
  • An object of the present invention is to provide a crushing strength prediction method capable of accurately predicting the crushing strength of steel pipes having various dimensions.
  • the crushing strength prediction method is a method for predicting the crushing strength of a steel pipe, and using a plurality of reference steel pipes whose crushing strength is required in advance, the outer diameter D (mm) of the steel pipe. Deriving a prediction formula indicating the relationship between D / t, material characteristics, crush strength controlling factor and crush controlling strength, and predicted crush strength divided by wall thickness t (mm); A step of obtaining D / t obtained by dividing the outer diameter D (mm) by a wall thickness t (mm), a material characteristic and a crushing strength controlling factor; a step of obtaining a compressive stress strain curve in a circumferential direction of the steel pipe to be evaluated And obtaining the stress that causes permanent strain in the steel pipe to be evaluated as the crushing dominant strength based on the compressive stress strain curve; and the obtained D / t, the material characteristics, and the crushing strength.
  • Dominant factors and previous Calculating a predicted crushing strength of the steel pipe to be evaluated based on the prediction formula from a crushing proof stress, and the permanent strain is in accordance with the value of D / t of the steel pipe to be evaluated. It is characterized by being set.
  • the crushing strength prediction capable of accurately predicting the crushing strength of the steel pipe having various dimensions. Can provide a method.
  • the stress applied when X% permanent set is generated is defined as “X% proof stress”.
  • the X% proof stress is expressed as “ ⁇ X ”.
  • the permanent strain used when determining the crushing control strength is expressed as “CDOS”, and the crushing control strength is expressed as “ ⁇ CDOS ”.
  • the crushing dominant strength is such that the value of D / t of the steel pipe to be evaluated is in the yield crushing region. It may be 0.50% yield strength in some cases, 0.10% yield strength in the plastic crush region, and 0.05% yield strength in the transition crush region or elastic crush region. .
  • the crushing dominant strength is a value of D / t of the steel pipe to be evaluated, 10 is 0.50% yield strength, 19 is 0.10% yield strength, In the case of 28 to 48, it is 0.05% proof stress, and in the case of exceeding 10 and less than 19, it is obtained by interpolation calculation of 0.50% proof strength and 0.10% proof strength, If it exceeds 19 and less than 28, it may be obtained by interpolation calculation of 0.10% proof stress and 0.05% proof strength.
  • the permanent strain in the crushing strength prediction method according to the above (1), may be represented by the following (Formula 1) or (Formula 2).
  • the material characteristics are the Young's modulus of the steel pipe to be evaluated and
  • the crushing strength controlling factor may include one or more selected from the roundness, thickness deviation, and residual stress in the circumferential direction of the steel pipe.
  • the prediction formula may be expressed by the following (Formula 3).
  • P C in the equation (3) is the predicted crush strength
  • H is H
  • is a correction term, the following (Equation 4 ) To (Equation 15).
  • E Young's modulus
  • Poisson's ratio
  • u roundness represented by the following (Formula 11)
  • e is uneven thickness represented by the following (Formula 12).
  • ⁇ R ⁇ is the residual stress in the circumferential direction
  • ⁇ CDOS is the crushing dominant strength
  • the values represented by h ⁇ , h ⁇ , h ⁇ , ⁇ , ⁇ , ⁇ and ⁇ are coefficients determined in advance.
  • (Formula 7) is: Represented by Said (Equation 8) is Represented by Said (Equation 9) is Represented by Said (Equation 10) is Represented by Said (Equation 14) is Represented by Said (Formula 15) is It may be represented by
  • FIG.1 (a) is a figure which shows an example of a yield elongation type SS curve
  • FIG.1 (b) is a figure which shows an example of a round type SS curve
  • FIG. 2 is a diagram illustrating comparison of prediction errors between the case where the prediction method according to the embodiment of the present invention is used and the case where the conventional prediction method is used.
  • FIG. 3 is a diagram for comparing the crushing strength obtained in each of the crushing test and the FEA.
  • FIG. 4 is a diagram showing a comparison between an example (crushing strength prediction method according to the present invention) and a comparative example (crushing strength prediction method according to the prior art) for experimental values of crushing strength.
  • the crushing strength prediction method is a method for predicting the crushing strength of a steel pipe, and uses a plurality of reference steel pipes whose crushing strength is required in advance, and determines the outer diameter D (mm) of the steel pipe.
  • the crushing strength prediction method according to the present embodiment is a step of obtaining D / t, material characteristics, and crushing strength controlling factor obtained by dividing the outer diameter D (mm) by the wall thickness t (mm) for the steel pipe to be evaluated. Is provided.
  • the crushing strength prediction method according to the present embodiment includes a step of obtaining a compressive stress strain curve in the circumferential direction of the steel pipe to be evaluated.
  • the crushing strength prediction method includes a step of obtaining, as the crushing dominant strength, a stress that causes permanent deformation in the steel pipe to be evaluated based on the compressive stress strain curve.
  • the crushing strength prediction method predicts the steel pipe to be evaluated based on the prediction formula from the obtained D / t, the material characteristics, the crushing strength controlling factor, and the crushing controlling strength.
  • the step of calculating the crushing strength is further provided.
  • the permanent strain is set according to the value of D / t of the steel pipe to be evaluated.
  • a prediction formula for predicting the crushing strength of a steel pipe is derived using a plurality of reference steel pipes whose crushing strength is required in advance.
  • a formula incorporating a parameter indicating the relationship between the ratio D / t of the outer diameter D and the wall thickness t of the steel pipe, the material characteristics, the crush strength controlling factor, the crush controlling strength, and the predicted crush strength is used. It is preferable. The prediction formula will be described later.
  • the ratio D / t between the outer diameter D and the wall thickness t, the material characteristics, the crushing strength controlling factor, etc. are obtained for the steel pipe to be evaluated.
  • D / t is the ratio of the outer diameter D (mm) to the wall thickness t (mm). According to the crushing strength prediction method according to the present embodiment, it is possible to predict with high accuracy even for a steel pipe having a D / t in the range of about 10 to 48.
  • the roundness which is a factor controlling the crushing strength, is obtained, for example, by measuring the diameter of the steel pipe at four positions at 45 ° intervals and calculating the roundness from the result by (Equation 11) described later.
  • the thickness deviation that is a factor controlling the crushing strength is obtained, for example, by measuring the wall thickness of the steel pipe at 8 positions at 45 ° intervals, and obtaining from the result (Formula 12) described later.
  • the residual stress in the circumferential direction which is a factor controlling the crushing strength, is obtained by the Clampton method represented by the following (Equation 22).
  • the Clampton method is a method of releasing residual stress by cutting a steel pipe in the longitudinal direction and obtaining the residual stress from the amount of change in outer diameter before and after cutting.
  • D0 is the average outer shape before cutting
  • D1 is the average outer shape after cutting. Note that the length of the specimen of the clampton method satisfies L / D (ratio of the specimen length L to the outer diameter D) ⁇ 2.
  • the material characteristics may include the Young's modulus and Poisson's ratio of the steel pipe to be evaluated.
  • the crushing strength controlling factor may include one or more selected from the roundness, uneven thickness, and residual stress in the circumferential direction of the steel pipe.
  • a compressive stress strain curve (SS curve) in the circumferential direction (C direction) of the steel pipe is obtained.
  • the compressive stress-strain curve is obtained by collecting a cylindrical test piece from the circumferential direction and performing a compression test. For example, it can be obtained by performing a compression test using a cylindrical test piece having a diameter of 70% of the steel pipe wall thickness and a length twice the diameter (140% of the steel pipe wall thickness). it can.
  • the collection position of the cylindrical specimen may be any position such as 22.5 °, 45 °, and 90 ° intervals.
  • the crushing dominant strength is obtained.
  • the crushing dominant strength which is a stress highly correlated with the crushing strength, changes. Therefore, the value of the permanent strain corresponding to the value of D / t of the steel pipe is appropriately selected, and the yield strength at that permanent strain is obtained as the crushing dominant strength.
  • the permanent strain value is set according to the value of D / t of the steel pipe to be evaluated. Then, based on the compressive stress-strain curve, a stress corresponding to the permanent strain set according to the value of D / t of the steel pipe to be evaluated is obtained, and this yield strength is used as the crushing dominant yield strength.
  • the crushing dominant strength is 0.50% proof strength when the D / t value of the steel pipe to be evaluated is in the yield crushing region, and the crushing strength in the plastic crushing region. In some cases, it may be 0.10% yield strength, and in the transition collapse region or elastic collapse region, it may be 0.05% yield strength.
  • 0.50% proof stress means a stress applied when a permanent strain of 0.50% is generated.
  • the above-mentioned crushing region is based on the classification of Document A (American Petroleum Institute: API BUL 5C3, 1985.).
  • the area is defined as a yield crush area, a plastic crush area, a transition crush area, and an elastic crush area, and by adopting the crushing proof strength corresponding to these areas, it is possible to predict crush strength with higher accuracy .
  • the crushing dominant proof stress is 0.50% proof stress when the D / t value of the steel pipe to be evaluated is 10, and the D / t of the steel pipe to be evaluated.
  • the strength is 0.10%, and when the value of D / t of the steel pipe to be evaluated is 28 to 48, the strength may be 0.05%.
  • the steel pipe to be evaluated is obtained by interpolation calculation of 0.50% proof strength and 0.10% proof strength.
  • the value of D / t exceeds 19 and is less than 28, it may be obtained by interpolation calculation of 0.10% proof stress and 0.05% proof strength.
  • the interpolation calculation method is not particularly limited, and may be interpolated with a straight line of a linear function, or may be interpolated with a curve such as an n-order function, a logarithmic function, or an exponential function.
  • the permanent strain (%) for obtaining the crushing dominant strength may be expressed by the following (formula 1) when D / t ⁇ 28.
  • D / t when D / t> 28, it may be expressed by the following (formula 2).
  • the material properties used in the prediction formula are the Young's modulus and Poisson's ratio of the steel pipe.
  • the crushing strength controlling factor is a factor affecting the crushing strength such as the shape of the steel pipe, and specifically includes roundness, uneven thickness and residual stress in the circumferential direction of the steel pipe. All of these factors may be used in the prediction formula, or one or two of them may be used. For example, when predicting the crushing strength of an ERW steel pipe, the unevenness degree of the ERW steel pipe is extremely small, and therefore the factor can be omitted.
  • P E , P Y , H and ⁇ are calculated by the following (formula 4) to (formula 15).
  • E Young's modulus
  • Poisson's ratio
  • u roundness represented by the following (formula 11)
  • e the thickness deviation represented by the following (formula 12)
  • ⁇ R ⁇ the residual in the circumferential direction.
  • Stress, ⁇ CDOS is the crushing dominant strength.
  • the values represented by h ⁇ , h ⁇ , h ⁇ , h ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ are coefficients obtained in advance.
  • the calculation method of these coefficients is not particularly limited. For example, it is possible to determine a plurality of reference steel pipes whose crushing strength is obtained in advance by a least square method based on an error between an actual measurement value and a predicted value.
  • coefficients ⁇ , ⁇ , ⁇ , and ⁇ in the above formula are coefficients obtained in advance.
  • the calculation method of these coefficients is not particularly limited. For example, it is possible to determine a plurality of reference steel pipes whose crushing strength is obtained in advance by a least square method based on an error between an actual measurement value and a predicted value.
  • the crushing strength can be predicted with higher accuracy by using (Formula 3) as the prediction formula.
  • the prediction formula is not limited to (Formula 3), and the following prediction formula can also be adopted.
  • the coefficients of (Expression 4) to (Expression 15) may be obtained separately.
  • Equation 23 is a prediction equation in the yield crush region
  • Equation 24 is a prediction equation in the plastic crush region
  • Equation 25 is a transition crush.
  • a prediction formula in the region, (Formula 26) is a prediction formula in the elastic crush region.
  • Document A describes a crushing strength prediction formula used at the time of oil well design and a crushing mode with respect to D / t for each grade of steel pipe.
  • the crushing mode is classified into elastic crushing, transition crushing, plastic crushing, and yield crushing according to the steel pipe strength and D / t.
  • the elastic crush equation gives a crushing strength of 71.25% of the theoretical solution in consideration of the safety factor.
  • the yield crush is defined as the external pressure at the time when the inner surface of the steel pipe reaches the yield stress.
  • the plastic crush formula is derived by regression analysis from the crush test results of about 2500 times of K55, N80, and P110 seamless steel pipes.
  • the transition crush formula is constructed to compensate for the occurrence of a D / t range in which the prediction diagrams of the elastic crush formula and the plastic crush formula do not intersect.
  • the type of steel pipe to which the prediction method of the above embodiment can be applied is not particularly limited, and examples thereof include seamless steel pipes, ERW steel pipes, and arc welded steel pipes.
  • the measurement of the residual stress in the roundness, thickness deviation, and circumferential direction of a steel pipe, which is a crushing strength controlling factor, can be performed by the following method, for example.
  • Example 1 The steel pipes having the shapes shown in Tables 1 to 4 were compared with the crushing strength obtained by finite element analysis (FEA) and the estimated crushing strength estimated using the conventional method and the prediction method according to the present invention.
  • the steel pipe has a D / t value of 10, 19, 28, 32 or 48.
  • FEA finite element analysis
  • the prediction formula described in Non-Patent Document 1 was used. That is, in all the comparative examples, 0.20% yield strength was adopted as the crushing dominant strength.
  • the prediction formula expressed by (Expression 3) is used, and as the crushing control strength, when the value of D / t is 10, 0.50% strength is adopted. In the case of 0.10% proof stress was adopted, and in the case of 28 to 48, 0.05% proof stress was adopted.
  • the Young's modulus of the steel pipe is 205800 MPa and the Poisson's ratio is 0.3.
  • FEA is a calculation method with extremely high accuracy with respect to actual measurement values because various factors can be taken in. Since it is very difficult to perform a crush test on a large-diameter steel pipe, in this experimental example, the crushing strength obtained by FEA and the predicted crushing strength estimated using the conventional method and the prediction method according to the present invention are used. Comparing.
  • Table 7 shows a comparison between the crushing strength by FEA and the experimental values of crushing strength for the test bodies A to C.
  • the crushing strength calculated based on the stress-strain curve at each of the seam portion and 45 °, 90 °, 135 °, and 180 ° from the seam portion in the cross section perpendicular to the length direction of the steel pipe is shown.
  • the crushing strength calculated based on the seam portion and the stress strain curve based on the average values of the 45 °, 90 °, 135 °, and 180 ° portions from the seam portion is shown.
  • FIG. 4 shows prediction values (examples) obtained by the crushing strength prediction method according to the present invention with respect to the experimental values of crushing strength for samples A-1 to D-3 and predictions obtained by the conventional prediction formula.
  • the graph of a comparison with a value (comparative example) is shown.
  • the crushing strength prediction method according to the present invention has higher accuracy than the predicted value obtained by the conventional prediction formula.
  • the crushing strength prediction method of the present invention it is possible to provide a method that can be applied to steel pipes having various dimensions, that is, various outside diameters and wall thicknesses, and that can accurately predict crushing strength.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Computer Hardware Design (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Operations Research (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

予め圧潰強度が求められている複数の基準鋼管を用いて、鋼管の、外径D(mm)を肉厚t(mm)で除算したD/t、材料特性、圧潰強度支配因子および圧潰支配耐力(σCDOS)と、予測圧潰強度との関係を示す予測式を導出する工程と;評価対象となる鋼管について、D/t、材料特性および圧潰強度支配因子を求める工程と;前記評価対象となる鋼管の円周方向における圧縮応力ひずみ曲線を求める工程と;前記圧縮応力ひずみ曲線に基づき、前記評価対象となる鋼管に永久ひずみを生じさせる応力を、前記圧潰支配耐力として求める工程と;求められた、前記D/t、前記材料特性、前記圧潰強度支配因子および前記圧潰支配耐力から、前記予測式に基づき、前記評価対象となる鋼管の予測圧潰強度を算出する工程と;を備え、前記永久ひずみは、前記評価対象となる鋼管の前記D/tの値に応じて設定される、ことを特徴とする鋼管の圧潰強度予測方法。

Description

圧潰強度予測方法
 本発明は、圧潰強度予測方法に関する。
 本願は、2016年10月18日に、日本に出願された特願2016-204404号に基づき優先権を主張し、その内容をここに援用する。
 外圧がある状態で使用される油井管または海底パイプライン用鋼管には、高い圧潰特性が要求される。また、これらの鋼管に圧潰(collapse)が発生すると、直ちに大事故につながるおそれがあるため、圧潰強度を正確に知ることが求められている。
 一般に、16インチ径以下の鋼管では、圧潰試験により圧潰値が測定されているが、大径の鋼管では圧潰試験の実施が困難であるため、圧潰値を正確に知ることが難しい。
有限要素解析(FEA)を用いて圧潰値を推定する方法もあり、圧潰値を正確に推定できるが、これには手間がかかる。そのため、推定式を用いた、高精度の圧潰値の予測方法が望まれていた。
 非特許文献1では、油井用シームレス鋼管の二軸圧潰強度の計算方法などが提案されている。
このようなシームレス鋼管は、焼入れ・焼きもどしがされ、L方向(鋼管の長さ方向)とC方向(周方向)の強度が等しい。
 非特許文献1に開示された方法では、シームレス鋼管が適用される小径油井管の二軸応力場における圧潰強度は推定できるものの、溶接管が適用される大径油井管には適用できないという問題がある。
また、非特許文献1では、圧潰様式とこれによる圧潰強度への影響に関する考察などはされていない。
玉野敏隆、井上靖介、三牧敏太郎、「油井用鋼管の二軸圧潰強度とその推定式」、塑性と加工、1989年、第30巻、第338号、p385-390 American Petroleum Institute: API BUL 5C3, 1985
 従来の圧潰強度予測では、図1(a)に示されるような降伏伸び型SS曲線が対象であった。なお、図1(a)は、非特許文献1に記載された、降伏伸び型SS曲線を示す図である。
 このような降伏伸び型SS曲線を有する鋼管の場合、0.20%耐力を用いることで、圧潰強度を一定の精度で予測することができる。例えば、非特許文献1に記載されているシームレス鋼管は熱処理をするため、このような降伏伸び型SS曲線を示す。
 しかしながら、鋼管の成形方法や熱処理の有無により、SS曲線の傾向が異なる。例えば、熱処理をしない電縫鋼管では、図1(b)に示されるようなラウンド型SS曲線を示す。このようなラウンド型SS曲線では、明確な降伏現象が現れず、従来と同様に0.20%耐力を用いて圧潰強度の予測計算を行うと、圧潰強度はSS曲線のラウンド形状の影響を受け、精度の高い圧潰強度の予測計算ができないという問題があった。
 例えば、UO鋼管など電縫鋼管以外の溶接管の場合にも、複雑なSS曲線を示し、精度の高い圧潰強度の予測計算ができないという同様の問題がある。
 本発明者らは、さまざまな寸法の鋼管に適用可能な圧潰強度予測方法について鋭意検討を行い、以下の知見を得るに至った。
 鋼管の圧潰現象は、D/tの増加に伴い、降伏圧潰、塑性圧潰、遷移圧潰および弾性圧潰と変化する(非特許文献2を参照)。このとき、D/tが高いほど圧潰強度が低下する。
 また、圧潰強度を推定するには圧潰強度と相関の高い応力、すなわち圧潰支配耐力の値が必要となる。従来、圧潰支配耐力は、一般的に耐力として定義される0.20%の永久ひずみを生じる応力の値を使用していた。
 しかし、ひずみ増加に伴い緩やかな応力増加を示す応力ひずみ曲線(SS曲線)や複雑なSS曲線を描く鋼管に関しては、降伏応力が明瞭でない。そのため、SS曲線の形状によって、鋼管の降伏ひずみの値が変わり、0.20%の永久ひずみを用いることが適切ではない場合がある。
 本発明者らは、圧潰支配耐力として、鋼管周方向の圧縮SS曲線の、永久ひずみの値に応じた数値を採用することにより、さまざまな寸法の鋼管に適用可能な圧潰強度予測式を提供できることを見出した。永久ひずみの値の選択によって、圧潰支配耐力が大きく変化することとなる。
 本発明者らの研究により、D/tに伴い、圧潰強度と相関の高い応力、すなわち圧潰支配耐力が変化することが明らかとなった。すなわち、本発明者らは、D/tの値に応じて、適切な圧潰支配耐力を設定することで精度の高い圧潰強度の予測をすることができることを見出した。
 本発明は上記の知見に基づいてなされたものである。
 本発明においては、さまざまな寸法の鋼管の圧潰強度を、正確に予測することが可能な圧潰強度予測方法を提供することを目的とする。
(1)本発明に係る圧潰強度予測方法は、鋼管の圧潰強度を予測する方法であって、予め圧潰強度が求められている複数の基準鋼管を用いて、鋼管の、外径D(mm)を肉厚t(mm)で除算したD/t、材料特性、圧潰強度支配因子および圧潰支配耐力と、予測圧潰強度との関係を示す予測式を導出する工程と;評価対象となる鋼管について、外径D(mm)を肉厚t(mm)で除算したD/t、材料特性および圧潰強度支配因子を求める工程と;前記評価対象となる鋼管の円周方向における圧縮応力ひずみ曲線を求める工程と;前記圧縮応力ひずみ曲線に基づき、前記評価対象となる鋼管に永久ひずみを生じさせる応力を、前記圧潰支配耐力として求める工程と;求められた、前記D/t、前記材料特性、前記圧潰強度支配因子および前記圧潰支配耐力から、前記予測式に基づき、前記評価対象となる鋼管の予測圧潰強度を算出する工程と;を備え、前記永久ひずみは、前記評価対象となる鋼管の前記D/tの値に応じて設定される、ことを特徴とする。
 上記の態様によれば、永久ひずみが評価対象となる鋼管のD/tの値に応じて設定されるので、さまざまな寸法の鋼管の圧潰強度を、正確に予測することが可能な圧潰強度予測方法を提供できる。
 なお、本明細書中では、X%の永久ひずみを生じる際に付与される応力を「X%耐力」と定義する。また、X%耐力を「σ」と表記する。
 また、圧潰支配耐力を求めるときに用いる永久ひずみを「CDOS」と表記し、圧潰支配耐力を「σCDOS」と表記する。
(2)本発明の他の態様によれば、上記(1)に記載の圧潰強度予測方法において、前記圧潰支配耐力は、前記評価対象となる鋼管のD/tの値が、降伏圧潰領域にある場合には0.50%耐力であり、塑性圧潰領域にある場合には0.10%耐力であり、遷移圧潰領域または弾性圧潰領域にある場合には0.05%耐力であってもよい。
(3)本発明の他の態様によれば、上記(1)に記載の圧潰強度予測方法において、前記圧潰支配耐力は、前記評価対象となる鋼管のD/tの値が、
10の場合には0.50%耐力であり、19の場合には0.10%耐力であり、
28~48の場合には0.05%耐力であり、10を超えて19未満の場合には、0.50%耐力と0.10%耐力との内挿計算により求め、
19を超えて28未満の場合には、0.10%耐力と0.05%耐力との内挿計算により求めるようにしてもよい。
(4)本発明の他の態様によれば、上記(1)に記載の圧潰強度予測方法において、前記永久ひずみは、下記(式1)又は(式2)で表されてもよい。
D/t≦28の場合:
Figure JPOXMLDOC01-appb-M000022
D/t>28の場合:
Figure JPOXMLDOC01-appb-M000023
(5)本発明の他の態様によれば、上記(1)から(4)のいずれか一項に記載の圧潰強度予測方法において、前記材料特性は、前記評価対象となる鋼管のヤング率およびポアソン比を含み;前記圧潰強度支配因子は、前記鋼管の真円度、偏肉度および円周方向における残留応力から選択される1種以上を含む;ように構成されてもよい。
(6)本発明の他の態様によれば、上記(5)に記載の圧潰強度予測方法において、前記予測式は、下記(式3)で表わされてもよい。
Figure JPOXMLDOC01-appb-M000024
 但し、上記(式3)中のPは予測圧潰強度であり、P、Pは、それぞれ、弾性圧潰強度、全面降伏強度であり、Hおよびγは補正項であり、下記(式4)~(式15)により算出される。なお、下記(式4)~(式15)中のEはヤング率、νはポアソン比、uは下記(式11)で表わされる真円度、eは下記(式12)で表わされる偏肉度、σRθは円周方向の残留応力、σCDOSは圧潰支配耐力であり、hα、hβ、hγ、α、β、ξおよびηで表わされる値は予め求められる係数である。 
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000032
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000034
Figure JPOXMLDOC01-appb-M000035
Figure JPOXMLDOC01-appb-M000036
(7)本発明の他の態様によれば、上記(6)に記載の圧潰強度予測方法において、前記(式7)が、
Figure JPOXMLDOC01-appb-M000037
で表され、
 前記(式8)が、
Figure JPOXMLDOC01-appb-M000038
で表され、
 前記(式9)が、
Figure JPOXMLDOC01-appb-M000039
で表され、
 前記(式10)が、
Figure JPOXMLDOC01-appb-M000040
で表され、
 前記(式14)が、
Figure JPOXMLDOC01-appb-M000041
で表され、
 前記(式15)が、
Figure JPOXMLDOC01-appb-M000042
で表されてもよい。
 本発明によれば、さまざまな寸法の鋼管の圧潰強度を正確に予測することが可能となる。
図1(a)は、降伏伸び型SS曲線の一例を示す図であり、図1(b)は、ラウンド型SS曲線の一例を示す図である。 図2は、本発明の一実施形態に係る予測方法を用いた場合と、従来の予測方法を用いた場合との、予測誤差の比較を示すための図である。 図3は、圧潰試験とFEAとのそれぞれで得られた圧潰強度を比較するための図である。 図4は、圧潰強度の実験値に対する実施例(本発明に係る圧潰強度予測方法)と比較例(従来技術による圧潰強度予測方法)の比較を示す図である。
 以下に、本発明の一実施形態に係る圧潰強度予測方法について説明する。しかしながら、本発明がこれらの実施形態に限定されないことは自明である。
 本実施形態に係る圧潰強度予測方法は、鋼管の圧潰強度を予測する方法であって、予め圧潰強度が求められている複数の基準鋼管を用いて、鋼管の、外径D(mm)を肉厚t(mm)で除算したD/t、材料特性、圧潰強度支配因子および圧潰支配耐力と、予測圧潰強度との関係を示す予測式を導出する工程を備える。
 また、本実施形態に係る圧潰強度予測方法は、評価対象となる鋼管について、外径D(mm)を肉厚t(mm)で除算したD/t、材料特性および圧潰強度支配因子を求める工程を備える。また、本実施形態に係る圧潰強度予測方法は、前記評価対象となる鋼管の円周方向における圧縮応力ひずみ曲線を求める工程を備える。
 本実施形態に係る圧潰強度予測方法は、前記圧縮応力ひずみ曲線に基づき、前記評価対象となる鋼管に永久ひずみを生じさせる応力を、前記圧潰支配耐力として求める工程を備える。
 本実施形態に係る圧潰強度予測方法は、求められた、前記D/t、前記材料特性、前記圧潰強度支配因子および前記圧潰支配耐力から、前記予測式に基づき、前記評価対象となる鋼管の予測圧潰強度を算出する工程を、さらに備える。
 ここで、上記の圧潰強度予測方法において、永久ひずみは、前記評価対象となる鋼管の前記D/tの値に応じて設定される、ことを特徴とする。
 まず、予め圧潰強度が求められている複数の基準鋼管を用いて、鋼管の圧潰強度を予測するための予測式を導出する。予測式としては、鋼管の、外径Dと肉厚tとの比D/t、材料特性、圧潰強度支配因子および圧潰支配耐力と、予測圧潰強度との関係を示すパラメータを取り入れた式を用いることが好ましい。予測式については後述する。
 次に、評価対象となる鋼管について、外径Dと肉厚tとの比D/t、材料特性および圧潰強度支配因子などを求める。
(D/t)
 D/tは、外径D(mm)と肉厚t(mm)との比である。本実施形態に係る圧潰強度予測方法によれば、D/tが10~48程度の範囲の鋼管についても、精度の高い予測が可能である。
(圧潰強度支配因子)
 圧潰強度支配因子である真円度は、例えば、鋼管の直径を45°間隔で4か所について測定し、その結果から、後述する(式11)により求める。
 圧潰強度支配因子である偏肉度は、例えば、鋼管の肉厚を45°間隔で8か所について測定し、その結果から、後述する(式12)により求める。
 圧潰強度支配因子である、円周方向における残留応力は下記(式22)で表されるクランプトン法により求める。クランプトン法は鋼管を長手方向に切断することで残留応力を解放させ、切断前後の外径の変化量から残留応力を求める方法である。(式22)において、D0は切断前の平均外形、D1は切断後の平均外形である。なお、クランプトン法の試験体の長さはL/D(試験体長さLと外径Dの比)≧2を満たすようにする。
Figure JPOXMLDOC01-appb-M000043
 本実施形態に係る圧潰強度予測方法においては、材料特性は、前記評価対象となる鋼管のヤング率およびポアソン比を含んでもよい。また、圧潰強度支配因子は、前記鋼管の真円度、偏肉度および円周方向における残留応力から選択される1種以上を含んでもよい。
(圧縮応力ひずみ曲線)
 次に、鋼管の周方向(C方向)における圧縮応力ひずみ曲線(SS曲線)を求める。圧縮応力ひずみ曲線は、周方向から円柱試験片を採取して、圧縮試験を行うことで得られる。
例えば、直径が鋼管肉厚の70%であり、長さが直径の2倍(鋼管肉厚の140%)となるような寸法の円柱試験片を用いて、圧縮試験を行うことにより求めることができる。円柱試験片の採取位置は、22.5°、45°、90°間隔など、任意の位置でよい。
(圧潰支配耐力)
 次いで、得られた圧縮応力ひずみ曲線に基づき、圧潰支配耐力を求める。上述のように、D/tにより、圧潰強度と相関の高い応力である圧潰支配耐力が変化する。そのため、鋼管のD/tの値に応じた永久ひずみの値を適切に選択し、その永久ひずみでの耐力を、圧潰支配耐力として求める。
 本実施形態に係る圧潰強度予測方法においては、評価対象となる鋼管のD/tの値に応じて、永久ひずみの値を設定する。そして、圧縮応力ひずみ曲線に基づき、評価対象となる鋼管のD/tの値に応じて設定された永久ひずみと対応する応力を求め、この耐力を圧潰支配耐力とする。
 本実施形態に係る圧潰強度予測方法においては、圧潰支配耐力は、評価対象となる鋼管のD/tの値が、降伏圧潰領域にある場合には0.50%耐力であり、塑性圧潰領域にある場合には0.10%耐力であり、遷移圧潰領域または弾性圧潰領域にある場合には0.05%耐力であってもよい。
 ここで、例えば0.50%耐力とは、0.50%の永久ひずみを生じる際に付与される応力を意味する。
 ここで、上述の圧潰領域は、文献A(American Petroleum Institute: API BUL 5C3, 1985.)の分類によるものである。圧潰様式ごとにその領域を、降伏圧潰領域、塑性圧潰領域、遷移圧潰領域および弾性圧潰領域と規定し、これらに対応する圧潰支配耐力を採用することで、より精度の高い圧潰強度の予測ができる。
 本実施形態に係る圧潰強度予測方法においては、圧潰支配耐力は、評価対象となる鋼管のD/tの値が10の場合には0.50%耐力であり、評価対象となる鋼管のD/tの値が19の場合には0.10%耐力であり、評価対象となる鋼管のD/tの値が28~48の場合には0.05%耐力であってもよい。
 このとき、評価対象となる鋼管のD/tの値が10を超えて19未満の場合には、0.50%耐力と0.10%耐力との内挿計算により求め、評価対象となる鋼管のD/tの値が19を超えて28未満の場合には、0.10%耐力と0.05%耐力との内挿計算により求めるようにしてもよい。
 内挿計算方法については特に制限はなく、一次関数の直線で内挿してもよいし、n次関数、対数関数、指数関数等の曲線で内挿してもよい。
 本実施形態に係る圧潰強度予測方法においては、圧潰支配耐力を求めるための永久ひずみ(%)は、D/t≦28の場合、下記(式1)で表されてもよい。
Figure JPOXMLDOC01-appb-M000044
上記の式を用いる場合、D/t>28の場合には、下記(式2)で表されてもよい。
Figure JPOXMLDOC01-appb-M000045
 上記(式1)および(式2)を用いることで、圧潰支配耐力を求めるための永久ひずみを求めることができ、鋼管のグレードに関わらず、精度の高い圧潰強度の予測ができる。また、上記(式1)および(式2)を用いることで、圧潰支配耐力を求めるための永久ひずみを求めることができ、圧潰領域に関わらず、精度の高い圧潰強度の予測ができる。
(予測式)
 求められたD/t、材料特性、圧潰強度支配因子および圧潰支配耐力から、下記(式3)で表わされる予測式を用いて、鋼管の予測圧潰強度を算出する。
 本発明の一実施形態においては、予測式で用いられる材料特性は、鋼管のヤング率およびポアソン比である。また、圧潰強度支配因子とは、鋼管の形状等、圧潰強度に影響を及ぼす要因であって、具体的には、鋼管の真円度、偏肉度および円周方向における残留応力が挙げられる。
 予測式には、これらの因子の全てを用いてもよいし、そのうちの1種または2種を用いてもよい。例えば、電縫鋼管の圧潰強度を予測する場合、電縫鋼管の偏肉度は極めて小さいため、その因子を省略することができる。
 また、予測式として、例えば、下記(式3)を用いることができる。
Figure JPOXMLDOC01-appb-M000046
 上記(i)式中のPCは予測圧潰強度であり、P、Pは、それぞれ、弾性圧潰強度、全面降伏強度であり、Hおよびγは補正項である。
  P、P、Hおよびγは、下記(式4)~(式15)により算出される。
Figure JPOXMLDOC01-appb-M000047
Figure JPOXMLDOC01-appb-M000048
Figure JPOXMLDOC01-appb-M000049
Figure JPOXMLDOC01-appb-M000050
Figure JPOXMLDOC01-appb-M000051
Figure JPOXMLDOC01-appb-M000052
Figure JPOXMLDOC01-appb-M000053
 上記式中のEはヤング率、νはポアソン比、uは下記(式11)で表わされる真円度、eは下記(式12)で表わされる偏肉度、σRθは円周方向の残留応力、σCDOSは圧潰支配耐力である。
Figure JPOXMLDOC01-appb-M000054
Figure JPOXMLDOC01-appb-M000055
Figure JPOXMLDOC01-appb-M000056
Figure JPOXMLDOC01-appb-M000057
Figure JPOXMLDOC01-appb-M000058
 なお、hα、hβ、hγ、α、β、ξおよびηで表わされる値は予め求められる係数である。これら係数の算出方法については特に制限はないが、例えば、予め圧潰強度が求められている複数の基準鋼管について、実測値と予測値との誤差から最小二乗法により決定することが可能である。
(係数)
 なお、上記式中の係数α、β、ξおよびηは、予め求められる係数である。これら係数の算出方法については特に制限はないが、例えば、予め圧潰強度が求められている複数の基準鋼管について、実測値と予測値との誤差から最小二乗法により決定することが可能である。
 電縫鋼管の場合、(式7)、(式8)、(式9)、(式10)、(式14)および(式15)に替えて、(式16)、(式17)、(式18)、(式19)、(式20)および(式21)を用いることが好ましい。
 F(D/t)、F(D/t)、G(σCDOS)、G(σCDOS)、f(u)およびg(D/t)は予測式である(式3)の補正項である。本実施形態に係る圧潰強度予測方法では、(式7)が、
Figure JPOXMLDOC01-appb-M000059
で表されてもよい。
 また、(式8)が、
Figure JPOXMLDOC01-appb-M000060
で表されてもよい。
 また、(式9)が、
Figure JPOXMLDOC01-appb-M000061
で表されてもよい。
 また、(式10)が、
Figure JPOXMLDOC01-appb-M000062
で表されてもよい。
 また、(式14)が、
Figure JPOXMLDOC01-appb-M000063
で表されてもよい。
 また、(式15)が、
Figure JPOXMLDOC01-appb-M000064
で表されてもよい。
 上記の(式16)~(式21)は、特に好ましい係数α、β、ξおよびηを採用した場合の(式7)~(式10)、(式14)および(式15)の変形例である。
係数α、β、ξおよびηを算出する際のNの好ましい値は5である。
 なお、予測式としては(式3)を用いることで、より高精度の圧潰強度の予測ができる。しかし、予測式としては(式3)のみに限られるものではなく、以下の予測式も採用できる。なお、以下の予測式を採用する場合、(式4)~(式15)の係数を別途求めればよい。
 予測式としては、例えば文献A(American Petroleum Institute: API BUL 5C3, 1985.)に記載される(式23)~(式26)を用いることができる。
 (式23)~(式26)は、先述の圧潰様式によって選択され、(式23)は降伏圧潰領域における予測式、(式24)は塑性圧潰領域における予測式、(式25)は遷移圧潰領域における予測式、(式26)は弾性圧潰領域における予測式である。
Figure JPOXMLDOC01-appb-M000065
Figure JPOXMLDOC01-appb-M000066
Figure JPOXMLDOC01-appb-M000067
Figure JPOXMLDOC01-appb-M000068
 文献Aは、油井設計時に使用する圧潰強度予測式や鋼管のグレードごとのD/tに対する圧潰様式を記載している。本実施形態に係る予測式では、鋼管強度とD/tによって、圧潰様式を、弾性圧潰、遷移圧潰、塑性圧潰、降伏圧潰に分類している。
 弾性圧潰式は、安全係数を考慮し、理論解の71.25%の圧潰強度を与えるものである。APIでは、降伏圧潰は、鋼管内面が降伏応力に到達した時点の外圧と定めている。塑性圧潰式は、K55、N80、P110シームレス鋼管の約2500回の圧潰試験結果から回帰分析で導出している。遷移圧潰式は、弾性圧潰式と塑性圧潰式の予測線図が交差しないD/t範囲が生じることから、それを補うために構築している。
 予測式としては、例えば文献B(DET NORSKE VERITAS: Offshore Standard DNV-OS-F101, Submarine Pipelines Systems, 2007.)に記載される(式27)を用いることができる。
Figure JPOXMLDOC01-appb-M000069
 (式27)において、Pは圧潰強度、Pelは弾性圧潰強度、Pは塑性圧潰強度、uは真円度、Dは平均外形である。
 予測式としては、例えば文献C(玉野敏隆, 井上靖介, 三牧敏太郎: 塑性と加工, Vol.30, No.338, pp.385-390, 1989.)に記載される(式28)を用いることができる。
Figure JPOXMLDOC01-appb-M000070
 (式28)において、Pestは圧潰強度、PEAは弾性圧潰強度、PGOは全面降伏強度、Hは補正項である。
 予測式としては、例えば文献D(International Organization for Standardization: ISO/DIS 10400, Petroleum and natural gas industries, 2004.)に記載される(式29)を用いることができる。
Figure JPOXMLDOC01-appb-M000071
(式29)において、pは圧潰強度、pは内圧、pycは降伏圧潰強度、pecは弾性圧潰強度であり、Hは真円度、偏肉度、残留応力、SS曲線で定まる補正関数である。
 上記実施形態の予測方法が適用可能な鋼管の種類については特に制限はなく、継目無鋼管、電縫鋼管、アーク溶接鋼管などが挙げられる。なお、圧潰強度支配因子である、鋼管の真円度、偏肉度および円周方向における残留応力の測定は、例えば、以下の方法によって行うことができる。
 以上、本発明の圧潰強度予測方法の実施形態を説明したが、本発明は、これらの実施形態にのみ限定されないことは自明である。なお、本実施形態に係る圧潰強度予測方法では、各工程の手順は任意である。
(実施例)
 以下に、本発明の圧潰強度予測方法に関する実験例を記載する。
(実験例1)
 表1~4に示す形状の鋼管について、有限要素解析(FEA)で得られた圧潰強度と、従来方法および本発明に係る予測方法を用いて推定された予測圧潰強度との比較を行った。鋼管のD/tの値は、10、19、28、32または48のいずれかである。
従来方法としては、非特許文献1に記載の予測式を用いた。すなわち、全ての比較例において、圧潰支配耐力として、0.20%耐力を採用した。
 一方、本発明に係る予測方法としては、(式3)で表わされる予測式を用い、圧潰支配耐力としては、D/tの値が10の場合には0.50%耐力を採用し、19の場合には0.10%耐力を採用し、28~48の場合には0.05%耐力を採用した。なお、鋼管のヤング率は205800MPa、ポアソン比は0.3である。
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000077
 また、推定式で用いられる係数α、β、ξ、η、hα、hβおよびhγについては、D/tが10~48の範囲の45試料について、FEAで得られた圧潰強度と本発明方法で用いられる予測式で得られる予測圧潰強度との誤差が最小になるよう、最小二乗法を用いて算出した。各係数の算出結果を表5および表6に示す。
 表1~表4、並びに図2に示すように、従来の予測方法と比べて、本発明に係る予測方法を用いた場合には、予測誤差が大幅に改善される結果となった。
 なお、FEAは、種々の因子を取り込めるため、実測値に対して極めて精度が高い計算手法である。大径の鋼管の圧潰試験をすることは非常に難しいため、本実験例では、FEAで得られた圧潰強度と、従来方法および本発明に係る予測方法を用いて推定された予測圧潰強度とを比較している。
 FEAで得られた圧潰強度の妥当性を検討するため、6試料について圧潰試験の結果と比較を行った。その結果を図3に示す。図3に示されるように、FEAの結果は、圧潰試験結果を精度よく再現できていることが分かる。
 また、表7に、試験体A~Cについての、FEAによる圧潰強度と圧潰強度の実験値との比較を示す。FEモデル1では、鋼管の長さ方向に垂直な断面における、シーム部、シーム部から45°、90°、135°および180°の各部位における応力ひずみ曲線に基づいて計算した圧潰強度を示す。FEモデル2では、シーム部と、シーム部から45°、90°、135°および180°の部位の平均値に基づく応力ひずみ曲線に基づいて計算した圧潰強度を示す。
Figure JPOXMLDOC01-appb-T000078
 表7に示されるように、FEAによる圧潰強度の計算結果は、実際の圧潰試験結果を精度よく再現できている。
(実験例2)
 図4に、試料A-1からD-3について、圧潰強度の実験値に対する、本発明に係る圧潰強度予測方法によって得られた予測値(実施例)と、従来の予測式によって得られた予測値(比較例)との比較のグラフを示す。
この結果からわかるように、本発明に係る圧潰強度予測方法は、従来の予測式によって得られた予測値よりも精度が高い。
 本願発明の圧潰強度予測方法によれば、さまざまな寸法、すなわちさまざまな外径・肉厚の鋼管に適用可能であり、圧潰強度を正確に予測することが可能な方法を提供することができる。

Claims (7)

  1.  鋼管の圧潰強度を予測する方法であって、
     予め圧潰強度が求められている複数の基準鋼管を用いて、鋼管の、外径D(mm)を肉厚t(mm)で除算したD/t、材料特性、圧潰強度支配因子および圧潰支配耐力と、予測圧潰強度との関係を示す予測式を導出する工程と;
     評価対象となる鋼管について、外径D(mm)を肉厚t(mm)で除算したD/t、材料特性および圧潰強度支配因子を求める工程と;
     前記評価対象となる鋼管の円周方向における圧縮応力ひずみ曲線を求める工程と;
     前記圧縮応力ひずみ曲線に基づき、前記評価対象となる鋼管に永久ひずみを生じさせる応力を、前記圧潰支配耐力として求める工程と;
     求められた、前記D/t、前記材料特性、前記圧潰強度支配因子および前記圧潰支配耐力から、前記予測式に基づき、前記評価対象となる鋼管の予測圧潰強度を算出する工程と;
    を備え、
     前記永久ひずみは、前記評価対象となる鋼管の前記D/tの値に応じて設定される、
    ことを特徴とする圧潰強度予測方法。
  2.  前記圧潰支配耐力は、前記評価対象となる鋼管のD/tの値が、降伏圧潰領域にある場合には0.50%耐力であり、塑性圧潰領域にある場合には0.10%耐力であり、遷移圧潰領域または弾性圧潰領域にある場合には0.05%耐力である、
    ことを特徴とする請求項1に記載の圧潰強度予測方法。
  3.  前記圧潰支配耐力は、前記評価対象となる鋼管のD/tの値が、
      10の場合には0.50%耐力であり、19の場合には0.10%耐力であり、28~48の場合には0.05%耐力であり、
      10を超えて19未満の場合には、0.50%耐力と0.10%耐力との内挿計算により求め、
      19を超えて28未満の場合には、0.10%耐力と0.05%耐力との内挿計算により求める、
    ことを特徴とする請求項1に記載の圧潰強度予測方法。
  4.  前記永久ひずみは、下記(式1)又は(式2)で表される
    ことを特徴とする請求項1に記載の圧潰強度予測方法。
    D/t≦28の場合:
    Figure JPOXMLDOC01-appb-M000001
    D/t>28の場合:
    Figure JPOXMLDOC01-appb-M000002
  5.  前記材料特性は、前記評価対象となる鋼管のヤング率およびポアソン比を含み;
     前記圧潰強度支配因子は、前記鋼管の真円度、偏肉度および円周方向における残留応力から選択される1種以上を含む;
    ことを特徴とする請求項1から4のいずれか一項に記載の圧潰強度予測方法。
  6.  前記予測式は、下記(式3)で表わされる、
    ことを特徴とする請求項5に記載の圧潰強度予測方法。
    Figure JPOXMLDOC01-appb-M000003
     但し、上記(式3)中のPは予測圧潰強度であり、P、Pは、それぞれ、弾性圧潰強度、全面降伏強度であり、Hおよびγは補正項であり、下記(式4)~(式15)により算出される。なお、下記(式4)~(式15)中のEはヤング率、νはポアソン比、uは下記(式11)で表わされる真円度、eは下記(式12)で表わされる偏肉度、σRθは円周方向の残留応力、σCDOSは圧潰支配耐力であり、hα、hβ、hγ、α、β、ξおよびηで表わされる値は予め求められる係数である。
    Figure JPOXMLDOC01-appb-M000004
    Figure JPOXMLDOC01-appb-M000005
    Figure JPOXMLDOC01-appb-M000006
    Figure JPOXMLDOC01-appb-M000007
    Figure JPOXMLDOC01-appb-M000008
    Figure JPOXMLDOC01-appb-M000009
    Figure JPOXMLDOC01-appb-M000010
    Figure JPOXMLDOC01-appb-M000011
    Figure JPOXMLDOC01-appb-M000012
    Figure JPOXMLDOC01-appb-M000013
    Figure JPOXMLDOC01-appb-M000014
    Figure JPOXMLDOC01-appb-M000015
  7.  前記(式7)が、
    Figure JPOXMLDOC01-appb-M000016
    で表され、
     前記(式8)が、
    Figure JPOXMLDOC01-appb-M000017
    で表され、
     前記(式9)が、
    Figure JPOXMLDOC01-appb-M000018
    で表され、
     前記(式10)が、
    Figure JPOXMLDOC01-appb-M000019
    で表され、
     前記(式14)が、
    Figure JPOXMLDOC01-appb-M000020
    で表され、
     前記(式15)が、
    Figure JPOXMLDOC01-appb-M000021
    で表される、
    ことを特徴とする請求項6に記載の圧潰強度予測方法。
PCT/JP2017/037425 2016-10-18 2017-10-16 圧潰強度予測方法 WO2018074433A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018500349A JP6350771B1 (ja) 2016-10-18 2017-10-16 圧潰強度予測方法
US16/337,691 US11017054B2 (en) 2016-10-18 2017-10-16 Collapse strength prediction method
KR1020197011003A KR20190047075A (ko) 2016-10-18 2017-10-16 압궤 강도 예측 방법
CA3038483A CA3038483A1 (en) 2016-10-18 2017-10-16 Collapse strength prediction method
CN201780063939.4A CN109890526B (zh) 2016-10-18 2017-10-16 压溃强度预测方法
EP17862516.6A EP3530365A4 (en) 2016-10-18 2017-10-16 METHOD OF PREDICTING CRUSHING RESISTANCE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-204404 2016-10-18
JP2016204404 2016-10-18

Publications (1)

Publication Number Publication Date
WO2018074433A1 true WO2018074433A1 (ja) 2018-04-26

Family

ID=62019218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037425 WO2018074433A1 (ja) 2016-10-18 2017-10-16 圧潰強度予測方法

Country Status (7)

Country Link
US (1) US11017054B2 (ja)
EP (1) EP3530365A4 (ja)
JP (1) JP6350771B1 (ja)
KR (1) KR20190047075A (ja)
CN (1) CN109890526B (ja)
CA (1) CA3038483A1 (ja)
WO (1) WO2018074433A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019174452A (ja) * 2018-03-27 2019-10-10 Jfeスチール株式会社 鋼管の耐圧潰特性の評価方法
JP6969713B1 (ja) * 2020-09-11 2021-11-24 Jfeスチール株式会社 鋼管圧潰強度予測モデルの生成方法、鋼管の圧潰強度予測方法、鋼管の製造特性決定方法、及び鋼管の製造方法
JPWO2021240900A1 (ja) * 2020-05-26 2021-12-02
WO2022054336A1 (ja) * 2020-09-11 2022-03-17 Jfeスチール株式会社 鋼管圧潰強度予測モデルの生成方法、鋼管の圧潰強度予測方法、鋼管の製造特性決定方法、及び鋼管の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2580039B (en) * 2018-12-19 2023-06-14 Verderg Pipe Tech Ltd Method of inspecting pipe joints for use in a subsea pipeline
US20220229942A1 (en) * 2021-01-19 2022-07-21 Landmark Graphics Corporation Hybrid collapase strength for borehole tubular design
CN113449447B (zh) * 2021-04-28 2022-09-23 天津钢管制造有限公司 双层套管抗外压挤毁能力的获取方法
CN113378385B (zh) * 2021-06-10 2022-04-19 浙江大学 一种预测回火对加钒钢制筒节极限载荷影响的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005008912A (ja) * 2003-06-16 2005-01-13 Sumitomo Metal Ind Ltd 埋設拡管用油井管

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3293289B2 (ja) 1993-12-22 2002-06-17 日本鋼管株式会社 高コラプス強度鋼管の製造方法
WO2005038067A1 (ja) 2003-10-20 2005-04-28 Jfe Steel Corporation 拡管用継目無油井鋼管およびその製造方法
CA2610476A1 (en) * 2005-06-07 2006-12-14 Lawrence D. Reaveley Methods and systems for mitigating residual tensile stresses
CN101845939A (zh) 2009-03-25 2010-09-29 宝山钢铁股份有限公司 一种石油套管及其制造方法
EP2594655B1 (en) 2010-07-13 2018-09-05 Nippon Steel & Sumitomo Metal Corporation Dual-phase structure oil well pipe and method for producing same
CN101898246B (zh) * 2010-07-19 2012-07-04 北京科技大学 一种用铁基废料制备shs陶瓷内衬金属管材的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005008912A (ja) * 2003-06-16 2005-01-13 Sumitomo Metal Ind Ltd 埋設拡管用油井管

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3530365A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019174452A (ja) * 2018-03-27 2019-10-10 Jfeスチール株式会社 鋼管の耐圧潰特性の評価方法
JPWO2021240900A1 (ja) * 2020-05-26 2021-12-02
WO2021240900A1 (ja) * 2020-05-26 2021-12-02 Jfeスチール株式会社 鋼管圧潰強度予測モデルの生成方法、鋼管の圧潰強度予測方法、鋼管の製造特性決定方法、及び鋼管の製造方法
JP7103514B2 (ja) 2020-05-26 2022-07-20 Jfeスチール株式会社 鋼管圧潰強度予測モデルの生成方法、鋼管の圧潰強度予測方法、鋼管の製造特性決定方法、及び鋼管の製造方法
JP6969713B1 (ja) * 2020-09-11 2021-11-24 Jfeスチール株式会社 鋼管圧潰強度予測モデルの生成方法、鋼管の圧潰強度予測方法、鋼管の製造特性決定方法、及び鋼管の製造方法
WO2022054336A1 (ja) * 2020-09-11 2022-03-17 Jfeスチール株式会社 鋼管圧潰強度予測モデルの生成方法、鋼管の圧潰強度予測方法、鋼管の製造特性決定方法、及び鋼管の製造方法

Also Published As

Publication number Publication date
US20200034403A1 (en) 2020-01-30
JPWO2018074433A1 (ja) 2018-10-18
CN109890526B (zh) 2020-07-07
JP6350771B1 (ja) 2018-07-04
EP3530365A1 (en) 2019-08-28
CA3038483A1 (en) 2018-04-26
CN109890526A (zh) 2019-06-14
EP3530365A4 (en) 2020-07-08
US11017054B2 (en) 2021-05-25
KR20190047075A (ko) 2019-05-07

Similar Documents

Publication Publication Date Title
JP6350771B1 (ja) 圧潰強度予測方法
Kweon et al. A methodology for determining the true stress-strain curve of SA-508 low alloy steel from a tensile test with finite element analysis
CN108520135A (zh) 一种腐蚀管道Folias膨胀系数计算内压荷载的方法
Chen et al. Residual bending capacity for pipelines with corrosion defects
JP6773154B2 (ja) 鋼管の耐圧潰特性の評価方法
Zhang et al. Influence of yield-to-tensile strength ratio (Y/T) on failure assessment of defect-free and corroded X70 steel pipeline
CN109255139B (zh) 一种高温管道中表面多裂纹合并方法
Li et al. Prediction of the Critical Collapse Pressure of Ultra-Deep Water Flexible Risers--a Literature Review.
Chen et al. An analytical approach for assessing the collapse strength of an unbonded flexible pipe
Bergant et al. Experimental determination of J-resistance curves of nuclear steam generator tubes
Held et al. Incremental hole-drilling method vs. thin components: a simple correction approach
Aamlid et al. Collapse capacity of UOE deepwater linepipe
Marangon et al. Some analytical remarks on the influence of phase angle on stress fields ahead of sharp V-notches under tension and torsion loads
Usami et al. Estimation of work-hardening curve for large strain using friction-free compression test
Chatzopoulou et al. Effects of UOE manufacturing process on pressurized bending response of offshore pipes
Sarzosa et al. Experimental validation of relationship between fracture parameters J and CTOD for SE (B) and SE (T) specimens during ductile crack growth
Chatzopoulou et al. Finite element analysis of UOE pipes under external pressure and bending
Marley et al. Assessment of Recent Experimental Data on Collapse Capacity of UOE Pipeline
Manikanta et al. Fracture Behavior of 6061 Al-Alloy Pipes under Bursting Loads with Crack Depth Variation
KR101456868B1 (ko) 냉간 가공된 금속의 충격인성에너지 예측방법
Fahed et al. Development of a Closed-Form Expression for the Assessment of the Integrity of Internally Corroded Pipelines
Khan et al. Effects on plasticity and structural integrity of tube expansion
Jang et al. Application of Artificial Neural Network to Multi-Variables Regression for Estimations of J-Integral for Surface Cracked Pipes
Ohms et al. Evaluation of ductile tearing for API-5L X70 pipeline grade steel using SENT specimens
CN115392064A (zh) 一种管段强度的计算方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018500349

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17862516

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3038483

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20197011003

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017862516

Country of ref document: EP

Effective date: 20190520