WO2018074002A1 - 繊維鑑別方法 - Google Patents
繊維鑑別方法 Download PDFInfo
- Publication number
- WO2018074002A1 WO2018074002A1 PCT/JP2017/019641 JP2017019641W WO2018074002A1 WO 2018074002 A1 WO2018074002 A1 WO 2018074002A1 JP 2017019641 W JP2017019641 W JP 2017019641W WO 2018074002 A1 WO2018074002 A1 WO 2018074002A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fiber
- fibers
- discrimination
- test
- group
- Prior art date
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 696
- 238000000034 method Methods 0.000 title claims abstract description 94
- 230000004069 differentiation Effects 0.000 title abstract description 28
- 238000000862 absorption spectrum Methods 0.000 claims abstract description 104
- 238000004458 analytical method Methods 0.000 claims abstract description 89
- 230000003595 spectral effect Effects 0.000 claims abstract description 48
- 238000012360 testing method Methods 0.000 claims description 216
- 238000001228 spectrum Methods 0.000 claims description 98
- 229920000297 Rayon Polymers 0.000 claims description 66
- 239000002964 rayon Substances 0.000 claims description 56
- 229920000742 Cotton Polymers 0.000 claims description 53
- 244000025254 Cannabis sativa Species 0.000 claims description 52
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 claims description 52
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 claims description 52
- 235000009120 camo Nutrition 0.000 claims description 52
- 235000005607 chanvre indien Nutrition 0.000 claims description 52
- 239000011487 hemp Substances 0.000 claims description 51
- 230000000052 comparative effect Effects 0.000 claims description 50
- 238000012850 discrimination method Methods 0.000 claims description 43
- 239000000126 substance Substances 0.000 claims description 33
- 229920003043 Cellulose fiber Polymers 0.000 claims description 32
- 239000011159 matrix material Substances 0.000 claims description 31
- 238000009826 distribution Methods 0.000 claims description 17
- 108090000623 proteins and genes Proteins 0.000 claims description 17
- 102000004169 proteins and genes Human genes 0.000 claims description 16
- QKSIFUGZHOUETI-UHFFFAOYSA-N copper;azane Chemical compound N.N.N.N.[Cu+2] QKSIFUGZHOUETI-UHFFFAOYSA-N 0.000 claims description 11
- 238000000354 decomposition reaction Methods 0.000 claims description 11
- 235000004431 Linum usitatissimum Nutrition 0.000 claims description 8
- 241000208202 Linaceae Species 0.000 claims description 6
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 240000000491 Corchorus aestuans Species 0.000 claims description 4
- 235000011777 Corchorus aestuans Nutrition 0.000 claims description 4
- 235000010862 Corchorus capsularis Nutrition 0.000 claims description 4
- 229920001407 Modal (textile) Polymers 0.000 claims description 4
- 238000000691 measurement method Methods 0.000 claims description 4
- 241000218236 Cannabis Species 0.000 claims description 2
- 241000219146 Gossypium Species 0.000 claims description 2
- 240000006240 Linum usitatissimum Species 0.000 claims description 2
- 235000004426 flaxseed Nutrition 0.000 claims description 2
- 238000007689 inspection Methods 0.000 abstract description 9
- 229920000433 Lyocell Polymers 0.000 description 71
- 240000008564 Boehmeria nivea Species 0.000 description 35
- 210000004209 hair Anatomy 0.000 description 23
- 239000000203 mixture Substances 0.000 description 17
- 238000004566 IR spectroscopy Methods 0.000 description 16
- 235000018102 proteins Nutrition 0.000 description 15
- 241001465754 Metazoa Species 0.000 description 14
- 238000004497 NIR spectroscopy Methods 0.000 description 14
- 238000012937 correction Methods 0.000 description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 12
- 238000012545 processing Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 10
- 238000004611 spectroscopical analysis Methods 0.000 description 10
- 238000010521 absorption reaction Methods 0.000 description 9
- 239000004744 fabric Substances 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 238000010298 pulverizing process Methods 0.000 description 9
- 239000004753 textile Substances 0.000 description 9
- 210000000085 cashmere Anatomy 0.000 description 7
- 210000002268 wool Anatomy 0.000 description 7
- 229910014033 C-OH Inorganic materials 0.000 description 6
- 241000282836 Camelus dromedarius Species 0.000 description 6
- 229910014570 C—OH Inorganic materials 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 239000004627 regenerated cellulose Substances 0.000 description 6
- 229920001872 Spider silk Polymers 0.000 description 5
- 229920002678 cellulose Polymers 0.000 description 5
- 239000001913 cellulose Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 244000303258 Annona diversifolia Species 0.000 description 3
- 235000002198 Annona diversifolia Nutrition 0.000 description 3
- 241001416177 Vicugna pacos Species 0.000 description 3
- 238000000386 microscopy Methods 0.000 description 3
- 238000001028 reflection method Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000255789 Bombyx mori Species 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- 241000700112 Chinchilla Species 0.000 description 2
- 241000772415 Neovison vison Species 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 241000282840 Vicugna vicugna Species 0.000 description 2
- 238000013098 chemical test method Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 210000000050 mohair Anatomy 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000000513 principal component analysis Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 241000239290 Araneae Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 108010082495 Dietary Plant Proteins Proteins 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- DKNPRRRKHAEUMW-UHFFFAOYSA-N Iodine aqueous Chemical compound [K+].I[I-]I DKNPRRRKHAEUMW-UHFFFAOYSA-N 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- 241001504654 Mustela nivalis Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 241001416176 Vicugna Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000000735 allogeneic effect Effects 0.000 description 1
- 235000021120 animal protein Nutrition 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004141 dimensional analysis Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000009629 microbiological culture Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000491 multivariate analysis Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000000411 transmission spectrum Methods 0.000 description 1
- 238000001392 ultraviolet--visible--near infrared spectroscopy Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3563—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
Definitions
- the present invention relates to a fiber identification method for identifying the type of fiber used in a textile product or woven or knitted fabric.
- the present invention relates to a fiber discrimination method for differentiating different types of similar fibers such as cellulosic fibers and protein fibers.
- JIS L-1030-1 Fiber product mix rate test method-Part 1: Fiber discrimination
- JIS L-1030-2 Fiber product mix rate test
- the discrimination method in JIS L 1030-1 includes combustion test, chlorine check test in fiber, nitrogen check test in fiber, and microscopic test. There are a coloring test with an iodine-potassium iodide solution, a xanthoprotein reaction test, an infrared absorption spectrum measurement test, and the like.
- fibers having the same chemical composition for example, cellulose fibers such as cotton, various hemps, various rayons, copper ammonia rayon, solvent-spun cellulose fibers, cashmere, wool, yak, mohair Animal hair fibers such as Angola, Alpaca, Vicu ⁇ a, Camel and Llama are distinguished from the same or similar fibers by the chemical test method among the above test methods. Therefore, these chemical test methods cannot clearly distinguish homologous heterogeneous fibers.
- the above test method includes an infrared absorption spectrum measurement test.
- this measurement test is intended only to distinguish fibers having different chemical compositions (hereinafter referred to as “heterogeneous fibers”), and it is said that homogenous heterogeneous fibers cannot be clearly distinguished.
- cellulose fibers solvent-spun cellulose fibers such as Tencel (registered trademark) and Lyocell (registered trademark) (hereinafter also referred to as “lyocell”) have an appearance characteristic of copper ammonia rayon (hereinafter “cupra”). It has the same circular cross-section as (also called).
- fiber products using cashmere which is considered to be a particularly high-class protein fiber, are mixed with yak hair, which is difficult to distinguish from cashmere, or the wool scale is removed (referred to as “descaling”). Elaborate camouflage is performed, such as mixing. In such a case, it is difficult for an inspector who has experience in a microscopic examination to make an accurate judgment.
- Patent Document 1 proposes a method for discriminating between cellulose fiber (same as solvent-spun cellulose fiber) and cupra, which are cellulosic heterogeneous fibers.
- this discrimination method the dissolved state when both fibers are immersed in 61% or more of sulfuric acid is observed under a microscope to discriminate cellulosic homologous different fibers.
- Patent Document 2 a fiber discrimination method and a fiber discrimination device for animal hair similar and different fibers are proposed.
- This fiber discrimination method uses the terahertz spectroscopy that uses electromagnetic waves with longer wavelengths than general infrared rays to analyze the cell structure (primary structure) of animal hair fibers and the form of cell aggregation (higher order structure), and the animal hair system. It is to distinguish the same type of different fibers.
- the inventor of the present invention proposes discrimination of a fabric material using near infrared spectroscopy having a wavelength shorter than that of general infrared rays.
- This discriminating method applies a technique of spectrum fluctuation analysis by Fourier transform to near-infrared spectroscopy.
- Non-Patent Document 2 the inventor of the present invention proposes fiber discrimination and mixed ratio measurement of a blended fiber fabric by near infrared spectroscopy.
- This discrimination method is an application of an analysis method using near infrared spectroscopy and chemometrics (a coined word consisting of chemistry indicating chemistry and metrics indicating metric).
- Patent Document 1 The discrimination method of Patent Document 1 below is to observe the dissolved state of the fiber under a microscope. In this case as well, there is a problem that the discrimination results vary due to differences in the experience and know-how of the inspector. In addition, when the fibers are dyed or processed with resin, there is a problem in that the state of dissolution changes and accurate discrimination cannot be performed.
- the fiber discrimination method of the above-mentioned Patent Document 3 is a good method with which discrimination operation is comparatively simple and objective, and can differentiate between different kinds of fibers without depending on the experience and know-how of the inspector.
- the discrimination accuracy may vary depending on the combination of fibers to be discriminated.
- the present invention addresses the above problems, has a relatively simple discrimination operation, has objectivity, can distinguish between different types of similar fibers without depending on the experience and know-how of the inspector, and the discrimination It is an object of the present invention to provide a fiber discrimination method capable of realizing high discrimination accuracy by minimizing variations in discrimination accuracy caused by combinations of fibers to be performed.
- the present inventors In solving the above-mentioned problems, the present inventors, as a result of earnest research, adopt infrared spectroscopy with abundant information content of absorption spectrum, and adopt a regularization term to discriminate and analyze the obtained absorption spectrum. As a result, it was found that similar heterogeneous fibers can be distinguished with high discrimination accuracy, and the present invention has been completed.
- the fiber discrimination method according to the present invention is as follows.
- a fiber discrimination method for differentiating different types of similar fibers classified into the same type such as cellulosic fibers and protein type fibers
- For two or more types (two groups) of similar dissimilar fibers to be identified prepare multiple single fibers with known fiber types as comparison fibers, and irradiate each comparison fiber with infrared rays or near infrared rays.
- comparison fiber with infrared rays or near infrared rays.
- discriminant analysis is performed to obtain an axis w that is separated from each other and the groups are grouped according to equation (1), and a discriminant model is created from the obtained score plot.
- S B w ⁇ (S W + ⁇ I) w (1)
- S B ⁇ S W is a variance covariance matrix or a variation matrix, and when a variance covariance matrix is used, S B is an intergroup variance covariance matrix, and SW is an intragroup variance covariance matrix. is the variance matrix, when using fluctuation matrix, S B are inter-group fluctuation matrix, S W is the group fluctuation matrix.
- ⁇ is a regularization factor, I is the identity matrix.
- a fiber having an unknown fiber type is used as a test fiber, and a score obtained from spectrum data Y of the test fiber is applied to the test model in the same manner as in the creation of the test model, and the test fiber is used. The type of fiber is discriminated by checking which group belongs to.
- this invention is the fiber identification method of Claim 1,
- the step of creating the discrimination model an equal probability ellipse of a score plot obtained from the spectrum data X of each comparative fiber is created
- the step of identifying the test fiber the score obtained from the spectrum data Y of the test fiber is fitted to the equiprobability ellipse, and the group to which the test fiber belongs is verified. .
- the present invention is the fiber discrimination method according to claim 1,
- n-dimensional (n is an integer of 1 or more) normal distribution is estimated from the score obtained from the spectrum data X of each comparative fiber
- the probability density with respect to the n-dimensional normal distribution is calculated from the score obtained from the spectrum data Y of the test fiber, thereby checking which group the test fiber belongs to It is characterized by doing.
- the present invention is the fiber discrimination method according to any one of claims 1 to 3,
- To the comparison fibers and test fiber obtains the absorption spectrum by irradiating infrared range of wave number 4000 cm -1 ⁇ 600 cm -1, excluding the near infrared,
- the spectrum data X and Y are obtained by extracting an absorption spectrum in a predetermined wavenumber region from these absorption spectra.
- the present invention is the fiber discrimination method according to any one of claims 1 to 4,
- the first axis coordinate (w 1 axis) of the data X 1 is expressed by Equation (2).
- the data X 2 obtained by extracting the information in the w 1 axis direction from the data X 1 by the equation (3) is obtained.
- this invention is the fiber discrimination method of Claim 5
- a discriminant model having three-dimensional or more orthogonal axis coordinates is created by repeating the operations of the above formulas (3) and (4) a plurality of times.
- the present invention is the fiber discrimination method according to any one of claims 1 to 6,
- two types (two groups) of comparative fibers according to the following combinations, (1) Natural fiber, pair, regenerated fiber, (2) Cotton, pair, hemp, (3) Flax, VS, Hemp, (4) Viscose rayon, pair, copper ammonia rayon or solvent-spun cellulose fiber, (5) Copper ammonia rayon, pair, solvent-spun cellulose fiber,
- the discriminant model obtained by discriminating and analyzing the spectrum data X the spectral data Y of the test fiber is fitted to each discriminant model to determine which group the test fiber belongs to It is characterized by collating and distinguishing the kind of fiber.
- the present invention is the fiber discrimination method according to any one of claims 1 to 7,
- natural fibers and regenerated fibers are differentiated by using one or more sets of spectral data mainly including those in the range of wave numbers 1300 to 850 cm ⁇ 1 or in the vicinity thereof. It is characterized by.
- the present invention is the fiber identification method according to any one of claims 1 to 7,
- the distinction between cotton and hemp is to distinguish mainly using one set or two or more sets of spectral data including within the range of wave numbers of 1600 to 800 cm -1 or in the vicinity thereof.
- the present invention is the fiber discrimination method according to any one of claims 1 to 7, Cellulosic fibers are characterized by distinguishing between regenerated fibers by using one or more sets of spectral data mainly including a range of wave numbers of 1600 to 900 cm ⁇ 1 or in the vicinity thereof. To do.
- the present invention is the fiber identification method according to any one of claims 1 to 7,
- cellulosic fibers for distinguishing between copper ammonia rayon and solvent-spun cellulose fibers, one set or two or more sets of spectral data including mainly in the range of wave numbers 1500 to 800 cm ⁇ 1 or in the vicinity thereof are used. It is characterized by discrimination.
- the present invention is the fiber discrimination method according to any one of claims 1 to 7, Cellulosic fibers are characterized by distinguishing flax from hemp using one set or two or more sets of spectral data mainly in the range of wave numbers 1700 to 900 cm ⁇ 1 or in the vicinity thereof.
- the present invention is the fiber identification method according to any one of claims 1 to 12,
- the regularization coefficient ⁇ in the equation (1) is identified as being in the range of 1 to 0.
- the present invention is the fiber discrimination method according to any one of claims 1 to 13,
- the cellulosic fiber is characterized in that an absorption spectrum is obtained after pretreatment with an alkaline substance is performed on the comparative fiber and the test fiber.
- the present invention is the fiber discrimination method according to any one of claims 1 to 14,
- the method for obtaining the absorption spectra of the comparative fiber and the test fiber is an ATR method (total reflection measurement method).
- the present invention is the fiber discrimination method according to any one of claims 1 to 15,
- the same type of heterogeneous fibers classified as cellulose fibers include cotton, flax, linseed, jute, cannabis, viscose rayon, high wet modulus rayon, polynosic rayon, copper ammonia rayon, and solvent-spun cellulose fiber. It is characterized by.
- the present invention is a fiber discrimination method for differentiating different types of similar fibers classified into the same type, such as cellulosic fibers and protein fibers.
- Fibers having the same chemical composition but different origins can be distinguished by infrared absorption spectra (including near infrared absorption spectra).
- infrared absorption spectra including near infrared absorption spectra.
- the fiber of unknown fiber type is used as the test fiber, and the score obtained from the spectrum data Y of the test fiber is applied to the discrimination model in the same manner as the creation of the discrimination model, Check if it belongs to a group. This makes it possible to objectively identify the type of test fiber.
- the discrimination model in the same manner as the creation of the discrimination model, Check if it belongs to a group.
- an equal probability ellipse of a score plot obtained from the spectrum data X of each comparative fiber may be created in the discrimination model creation stage.
- the score obtained from the spectrum data Y of the test fiber is applied to the equal probability ellipse created to check which group the test fiber belongs to.
- an n-dimensional (n is an integer of 1 or more) normal distribution may be estimated from the score obtained from the spectrum data X of each comparative fiber in the discrimination model creation stage.
- the probability density for the n-dimensional normal distribution estimated from the score obtained from the spectrum data Y of the test fiber is calculated, and to which group the test fiber belongs Match.
- the comparative fibers and test fiber may be irradiated with infrared rays in the wave number range of 4000 cm -1 ⁇ 600 cm -1, excluding the near-infrared. Abundant information can be obtained from the absorption spectrum obtained with infrared rays in this range. As a result, the above-described effects can be exhibited more specifically.
- the discriminant model may be created by performing discriminant analysis twice. Specifically, determining a first axis w 1 by the above formula (1) the original spectrum data of the comparative fibers in 1st discriminant analysis as data X 1. Next, from the first axis w 1 and the data X 1 Tokyo, calculates the value t 1 of the first-axis coordinate data X 1 (w 1-axis coordinate) by the equation (2). Further, the data X 2 obtained by extracting the information in the w 1 axis direction from the data X 1 by the above equation (3) is obtained.
- the second axis w 2 is obtained by the above formula (1) using the spectrum data as the data X 2 . Then, from the second axis w 2 and the data X 2 Prefecture, calculates the value t 2 of the second-axis coordinate data X 2 (w 2-axis coordinate) by equation (4). In this way, a discrimination model subjected to orthogonal decomposition can be created. As a result, the above-described effects can be exhibited more specifically.
- the operations of the above formulas (3) and (4) may be repeated a plurality of times. Therefore, it is possible to create a discrimination model having three or more dimensions and mutually orthogonal axis coordinates. As a result, the above-described effects can be exhibited more specifically.
- the spectrum data in a predetermined wave number region extracted by a combination of similar and different fibers to be differentiated may be changed.
- the discrimination accuracy can be further improved by selecting the wave number region used for discriminant analysis.
- the value of the regularization coefficient ⁇ in the above equation (1) may be discriminated and analyzed within the range of 1 to 0.
- the accuracy of discrimination can be further improved by selecting the value of the regularization coefficient ⁇ .
- the absorption spectrum may be obtained after the comparison fiber and the test fiber are pretreated with an alkaline substance.
- the accuracy of discrimination can be further improved by performing pre-processing.
- the discrimination operation is relatively simple and objective, it is possible to discriminate between different types of fibers without depending on the experience and know-how of the inspector, and it is caused by the combination of the fibers to be discriminated. It is possible to provide a fiber discrimination method capable of realizing high discrimination accuracy by minimizing variation in discrimination accuracy.
- FIG. 2 It is a figure which shows the absorption spectrum (average spectrum) of various cellulosic fibers. It is a figure which shows the spectrum (differential spectrum) which carried out the primary differentiation of each spectrum of FIG. It is a discrimination flow figure showing the analysis procedure which discriminates test fiber in a 1st embodiment. It is the partial flowchart which extracted a part of identification flowchart of FIG. 2 is a discrimination model (FDOD plot) between “natural fibers” and “regenerated fibers” obtained in Example 1.
- FIG. 2 is a discrimination model (FDOD plot) between “cotton” and “hemp” obtained in Example 1.
- FIG. 2 is a discrimination model (FDOD plot) between “linen” and “ramie” obtained in Example 1.
- FIG. 2 is a discrimination model (FDOD plot) of “rayon” and “cupra and lyocell” obtained in Example 1.
- FIG. 2 is a discrimination model (FDOD plot) of “cupra” and “lyocell” obtained in Example 1. It is a conceptual diagram showing the image which discriminate
- 3 is an FDOD plot of “natural fibers” and “regenerated fibers” obtained in Example 2.
- FIG. 3 is an FDOD plot of “cotton” and “hemp” obtained in Example 2.
- FIG. 4 is an FDOD plot of “linen” and “ramie” obtained in Example 2.
- FIG. 4 is an FDOD plot of “rayon” and “cupra and lyocell” obtained in Example 2.
- FIG. 3 is an FDOD plot of “cupra” and “lyocell” obtained in Example 2.
- FIG. 3 is an FDOD plot of “cupra” and “lyocell” obtained in Example 2.
- fibers having the same chemical composition are defined as “similar / different fibers”.
- the heterogeneous fibers include cellulose fibers and protein fibers described below.
- the cellulosic fiber refers to all fibers made of cellulose such as natural cellulose fiber and regenerated cellulose fiber.
- natural cellulose fibers include cotton, and hemp such as flax (linen), ramie (ramie), jute, and hemp.
- the regenerated cellulose fiber include viscose rayon, high wet modulus rayon (also referred to as “HWM rayon”), polynosic rayon, copper ammonia rayon (cupra), solvent-spun cellulose fiber (tensel and lyocell), and the like.
- viscose rayon high wet modulus rayon (HWM rayon) and polynosic rayon, which are fibers regenerated by the viscose method among these regenerated cellulose fibers, are also referred to as “viscose rayon”.
- the protein fiber means not only animal fibers made of animal proteins such as wool and silk, but also fibers made of vegetable proteins and all fibers containing these proteins.
- animal fibers include animal fibers other than wool (described later) and fibers made by insects and spiders in addition to silk.
- spider silk fibers have been studied for industrial production. For example, research has been carried out to incorporate spider silk genes into silkworm genomic DNA and to sprinkle silkworms containing spider silk proteins in the same manner as silk. Yes (Shinshu University, Professor Masao Nakagaki). In addition, companies have spawned spider silk by spinning spider silk protein produced by microbial culture (Spyber Corporation).
- Animal hair fibers are considered to be particularly important.
- Animal hair fiber includes all the hair fibers mainly composed of natural keratin obtained from animals. Wool (wool of sheep), cashmere (cashmere goat hair), yak (a kind of cattle yak) Hair), mohair (Angola goat hair), Angola (Angola cocoon hair), alpaca (small humpless camel alpaca hair), Vicuna (small humpless camel vicugna hair), camel (camel hair), Examples include llama (small lobed camel llama hair), fox (fox hair), mink (weasel mink hair), chinchilla (mouse chinchilla hair) and rabbit (rabbit hair).
- optical measurement methods such as infrared absorption spectrum, which is an easy-to-use and objective differentiation method, are effective in differentiating different fibers with different chemical compositions. It has been.
- the present invention is effective in differentiating cellulosic fibers or protein fibers that are the same type of different fibers.
- IR spectroscopy infrared spectroscopy
- NIR spectroscopy near infrared spectroscopy
- This is a method for obtaining a spectrum by spectrally analyzing transmitted light or reflected light and knowing the characteristics of an object.
- IR spectroscopy is used to know the molecular structure and state of an object, and is a very general method for analyzing organic substances having different chemical compositions.
- spectroscopy is a method for measuring the emission or absorption of electromagnetic waves widely from radio waves to gamma rays.
- IR spectroscopy has a large amount of information obtained from the absorption spectrum, and is manufactured not only in the research department but also in the industry. It is also widely used in departments and quality control departments.
- NIR spectroscopy has a smaller amount of information than IR spectroscopy, but has been proposed for use in various industries due to the recent development of chemometrics based on multivariate analysis.
- discriminant analysis described later
- the wavelength range used in IR spectroscopy is in the range of 2500 nm to 17000 nm (may be 2500 nm to 20000 nm) excluding near infrared rays.
- the wave number also referred to as “WN” in the present invention
- WN the wavelength of the wave number
- the wave number range to be used by IR spectroscopy in the range of 4000 cm -1 ⁇ 600 cm -1, excluding the near-infrared.
- the wavelength range used in NIR spectroscopy is in the range of 800 nm to 2500 nm.
- the wave number range used in the NIR spectroscopy is set within the range of 12500 cm ⁇ 1 to 4000 cm ⁇ 1 .
- the boundary of the wavenumber region used in the IR spectroscopy and NIR spectroscopy is set to 4000 cm ⁇ 1 . Therefore, there may be doubts whether 4000 cm ⁇ 1 itself is near infrared or mid infrared. Therefore, in the present invention, when it is necessary to strictly interpret the meaning of "4000cm range of -1 ⁇ 600 cm -1, excluding the near-infrared", the "wave number (WN) is 4000cm -1> WN ⁇ 600cm -1 Within the range of ".
- NIR spectroscopy has been proposed for use in fiber discrimination (Patent Documents 1 and 2 above).
- Patent Documents 1 and 2 due to the small amount of information, practical discrimination of similar and different fibers has not been achieved. Therefore, the present invention is generally used only for differentiating different fibers having different chemical compositions in spite of a large amount of information obtained from the fiber, and has not been used for differentiating similar different fibers. The law can be used.
- the infrared spectrophotometer used in the present invention is inexpensive because it is used in many industries, and the cost of equipment investment and maintenance for identification can be suppressed.
- NIR spectroscopy with a small amount of information can be used by using discriminant analysis (described later) with an original device.
- FT / IR spectrophotometer a generally used Fourier transform infrared spectrophotometer
- FT / IR spectrophotometer can be used for discrimination by IR spectroscopy.
- the fiber is pulverized and a tablet is formed with potassium bromide (KBr) powder, and the transmitted light is measured by a transmission method such as the KBr tablet method. May be.
- the obtained absorption spectrum is preferably subjected to atmospheric correction, baseline correction, smoothing correction, submersion depth correction, and the like by a normal method as necessary.
- pulverizing fibers in the KBr tablet method cutting with scissors, pulverization with a mill, freeze pulverization, or the like can be used.
- the length and diameter of the fiber after pulverization may be arbitrary, but pulverization is preferable.
- cellulose fibers and protein fibers having high hygroscopicity are different in hygroscopicity between different fibers, and the absorption spectrum may be affected by free water in the fibers.
- FIG. 1 is a diagram showing absorption spectra (average spectra) of various cellulosic fibers.
- Each absorption spectrum of FIG. 1 (1-6) was measured in a wave number range of 4000 cm -1 ⁇ 600 cm -1 in the ATR method of FT / IR spectrophotometer.
- Avicel registered trademark, Asahi Kasei Kogyo
- the absorption spectra of rayon (3), cupra (4), and lyocell (5) that are regenerated fibers from 3600 cm ⁇ 1 to 3100 cm ⁇ 1 are the natural fibers of cotton (1) and hemp (2).
- a wider peak width is shown.
- a sharp peak appears at 3330 cm ⁇ 1 in natural fibers such as cotton (1) and hemp (2), but in regenerated fibers such as rayon (3), cupra (4), and lyocell (5).
- the main peak appearing over the 1200 cm -1 ⁇ 800 cm -1, cotton (1) is a natural fiber
- two peaks appear in the vertex hemp compound (2)
- natural fibers and regenerated fibers which are cellulosic fibers having the same chemical composition, can be distinguished from the absorption spectrum obtained by IR spectroscopy is that the crystalline state of cellulose constituting these fibers is different. It seems to be.
- natural fibers are type I crystals and regenerated fibers constitute type II crystals.
- the orientation state of cellulose molecules natural fibers have a parallel structure in which the reducing ends of the molecules are directed in the same direction, and regenerated fibers have an antiparallel structure in which the reducing ends of the molecules are alternately changed in position.
- the fiber identification method according to the present invention will be described in detail by each embodiment.
- the present invention is not limited to the following embodiments.
- the spectrum data X obtained from the absorption spectra of each type of comparative fiber is discriminated and analyzed and prepared as an obtained discriminant model. This process is referred to as “discriminant model preparation process” in each embodiment.
- the spectrum data Y obtained from the absorption spectrum of the test fiber is collated with the discrimination model.
- the type of the test fiber is identified using as an index the consistency between the spectrum data Y of the test fiber and the discrimination model obtained from the spectrum data X of the comparative fiber. This step is referred to as a “discrimination step” in each embodiment.
- discrimination between each single fiber is performed with respect to multiple types of single fiber. For example, in the case of cellulosic fibers, differentiation between natural fibers and regenerated fibers, differentiation between cotton and hemp, differentiation between linen and ramie in hemp, differentiation between regenerated fibers, and differentiation between cupra and lyocell, etc. Will be described.
- the discrimination is performed based on the degree of matching of the test fiber score with the equal probability ellipse of the discrimination model score.
- Discrimination model preparation step In the first embodiment, when a combination of fibers to be differentiated, for example, cotton and hemp are differentiated, an absorption spectrum is obtained using these fibers as comparative fibers. In addition, you may make it perform various correction
- MSC multiplicative scattering correction
- each absorption spectrum is calculated
- the absorption spectrum may be obtained with linen, ramie, jute, hemp and the like as hemp as one hemp group.
- an absorption spectrum may be obtained with linen and ramie as separate groups, and each group may be distinguished from a cotton group.
- fiber processing with an alkaline substance may be performed in order to improve dyeability and physical properties at the stage of becoming a woven or knitted fabric.
- this fiber processing generally an immersion treatment with an alkaline aqueous solution or liquid ammonia is performed.
- an immersion treatment with a sodium hydroxide aqueous solution for cotton is called “mercerizing” and is widely performed.
- an infrared absorption spectrum changes a little depending on whether the fiber processing by an alkaline substance is given to the cellulosic fiber which is a discrimination object. Therefore, if discrimination is performed using a sample group in which the presence / absence of fiber processing with an alkaline substance is mixed, the discrimination accuracy may be lowered.
- cellulosic fiber products that have been subjected to fiber processing with an alkaline substance and cellulosic fiber products that have not been subjected to fiber processing with an alkaline substance are on the market. Accordingly, the present inventors have found that the discrimination accuracy is improved by obtaining an infrared absorption spectrum after pre-treating the comparative fiber and the test fiber with an alkaline substance having a predetermined concentration. In other words, by performing pretreatment with an alkaline substance on comparative fibers and test fibers mixed with or without fiber processing with an alkaline substance, these are unified and absorbed as cellulosic fibers subjected to fiber processing with an alkaline substance. The spectrum is approximated and the discrimination accuracy is considered to improve.
- the conditions for the pretreatment with the alkaline substance are not particularly limited, and may be appropriately selected depending on the kind and concentration of the alkaline substance to be used, the kind of fiber to be treated, and the like.
- the cellulosic fiber is cotton, it is 8 to 24% by weight as an alkaline substance, preferably 10 to 20% by weight, more preferably 15 to By using a 20 wt% sodium hydroxide aqueous solution and soaking at room temperature, the discrimination accuracy is improved.
- both the comparison fiber when preparing the discrimination model and the infrared absorption spectrum that has been pretreated with the alkaline substance and the infrared absorption spectrum that has not been applied to the test fiber to be identified are obtained.
- the discrimination accuracy is further improved by using these in combination.
- each fiber has distinction between woven and knitted fabrics, differences in yarn thickness, presence or absence of dyeing, presence or absence of fiber processing agents, and the like. Therefore, the absorption spectrum of each group is obtained in consideration of the relationship between the influence of these pieces of information on the absorption spectrum and the wave number range (described later) used for analysis.
- an FT / IR spectrophotometer is used when obtaining the absorption spectrum of the comparative fiber. This is because the FT / IR spectrophotometer is inexpensive because it is used in many industries, and the cost of equipment investment and maintenance for identification can be suppressed.
- the ATR method is used for measurement. This is because, in many cases, the fibers to be identified are already in a woven or knitted state as a fiber product, and there is an advantage that the fibers can be identified in a non-destructive state in the woven or knitted state.
- the kind of prism used for ATR method is not specifically limited, In the case of a fiber sample, it is generally preferable to use a ZnSe prism.
- the first embodiment it obtains the respective absorption spectrum by irradiating infrared range of wave number 4000 cm -1 ⁇ 600 cm -1, excluding the near-infrared.
- “excluding near infrared rays” does not mean that “the absorption spectrum of the near infrared portion is not measured” when measuring the absorption spectrum.
- range of the absorption spectrum to be used for discrimination is intended to be within the range of the wave number 4000cm -1 ⁇ 600cm -1".
- the analysis may be performed using the absorption spectrum of all regions within the wave number range of 4000 cm ⁇ 1 to 600 cm ⁇ 1 .
- the analysis may be performed by selecting a specific wave number range.
- spectrum data in a predetermined wave number range is used for analysis. This is because by limiting the wave number range used for the analysis, infrared absorption necessary for discrimination is emphasized and noise is eliminated to improve discrimination accuracy.
- a measurement region may be determined in advance, and an absorption spectrum may be obtained only within that range.
- the predetermined wave number range here as appropriate depending on the type and combination of fibers to be identified.
- the present inventors differentiate between natural fibers and regenerated fibers, between cotton and hemp, between linen and ramie, between regenerated fibers, and between cupra and lyocell, etc. , It was confirmed that there was an appropriate wave number range for each.
- the predetermined wave number range used for discrimination you may make it analyze only in one wave number range, or you may make it analyze combining two or more several wave number ranges.
- first-order differentiation, second-order differentiation, or higher-order differentiation processing is preferably performed. This is because spectral information can be enhanced by such differential processing, such as sharpening a peak buried in the spectrum or eliminating the influence of the background.
- the method and dimension used in the differentiation process are not particularly limited and are preferably selected as appropriate depending on the type and combination of fibers to be identified.
- FIG. 2 shows the spectra (1 to 5) obtained by first-order differentiation of the spectra (1 to 5) in FIG. 1 by the Savitzky-Golay method.
- spectrum data in a predetermined wavenumber region effective for analysis is extracted from the obtained differential spectrum.
- the method for extracting the spectral data is not particularly limited. You may make it select the wave number range by the specific functional group considered to be required for an analysis with respect to the kind and combination of the fiber to identify. Further, spectrum data in a wave number range considered to have noise for analysis may be positively excluded. For example, in the case of cellulosic fibers, spectral data in the range of wave numbers from 2750 to 1850 cm ⁇ 1 may not be used for analysis. This is because there is little information effective for analysis from this wave number range, and conversely, absorption of CO 2 or the like may appear as noise.
- spectral data in the range of wave numbers 3500 cm ⁇ 1 to 3000 cm ⁇ 1 O—H
- wave numbers 1200 cm ⁇ 1 to 1000 cm ⁇ 1 C—OH, C— Since spectrum data of O-C, C-C) and the like are considered important, they may be analyzed in combination.
- spectral data within a wave number range of 3500 cm ⁇ 1 to 3000 cm ⁇ 1 is easily affected by the hygroscopic state, and it is conceivable to distinguish them by eliminating them.
- the present inventors have performed a discriminant analysis using a combination of wavenumber regions having a large infrared absorption, and have been able to extract a specific wavenumber region considered to be particularly effective. For example, in the discrimination between natural fibers and regenerated fibers, spectral data in the range of wave numbers 1300 to 850 cm ⁇ 1 (C—OH, C—O—C, C—C) were extracted. Further, in the discrimination between cotton and linen, spectral data in the range of wave numbers 1600 to 800 cm ⁇ 1 (O—H, C—OH, C—O—C, C—C) were extracted.
- spectral data within a wave number range of 1600 to 900 cm ⁇ 1 (O—H, C—OH, C—O—C, C—C) was extracted.
- the discrimination between regenerated fibers that is, the discrimination between rayon and “cupra and lyocell”
- the spectrum within the wave number range of 1500 to 800 cm ⁇ 1 (OH, C—OH, C—O—C, C—C) Data was extracted.
- spectral data in the range of wave numbers 1700 to 900 cm ⁇ 1 O—H, C—OH, C—O—C, C—C
- discriminant analysis is to obtain a criterion (discriminant function) for discriminating which group will be entered when new data is obtained when the data given in advance is divided into different groups.
- a criterion discriminant function
- the technique used for discriminant analysis is not particularly limited, and any technique may be adopted.
- FDA Fisher's linear discriminant analysis
- FDOD Fisher's linear discriminant orthogonal decomposition
- FDOD in order to obtain an axis w that separates two groups (an axis w that is separated from each other and each group is combined), two axes w 1 and w 2 that are orthogonal to each other are obtained by orthogonal decomposition.
- the first embodiment is characterized in that regularization is performed in FDOD.
- the regularization term ⁇ I is introduced in the following formula (1).
- S B w ⁇ (S W + ⁇ I) w (1)
- S B ⁇ S W is a variance-covariance matrix or a variation matrix.
- S B represents an inter-group variance covariance matrix
- S W represents an intra-group variance covariance matrix.
- S B ⁇ S W represents an inter-group variation matrix
- S W represents an intra-group variation matrix.
- ⁇ represents a regularization coefficient
- I represents a unit matrix.
- the value of the regularization coefficient ⁇ in the equation (1) is preferably in the range of 1 to 0, and 1 ⁇ 10 ⁇ 3 to 1 ⁇ 10 ⁇ 8 . More preferably, it is within the range.
- discriminating accuracy of a model sample is lowered by regularization in discriminant analysis.
- this may mean that overlearning is prevented.
- overlearning occurs, a discriminant model that is excessively compatible with the model sample (in this case, the comparison fiber) is created, and the compatibility with the test sample (in this case, the test fiber) becomes poor, resulting in poor generalization performance. It becomes.
- the present inventors have found that both high discrimination accuracy and good generalization performance can be achieved by selecting an appropriate regularization coefficient ⁇ .
- the discriminant analysis is performed twice in order to perform the orthogonal decomposition of the above-described axes.
- First extracts the spectral data X of a specific wave number range above the absorption spectrum of each comparison fibers is the same as the data X 1.
- Using this data X 1 obtains a first axis w 1 performs 1st discriminant analysis by the above formula (1).
- a regularization coefficient ⁇ 1 selected in advance is used.
- the analysis software used for discriminant analysis is not particularly limited. In the first embodiment, the analysis was performed using a program constructed by the inventor himself.
- the value t 1 (projection) of the first axis coordinate (w 1- axis coordinate) of the data X 1 is calculated by the following equation (2). also referred to) is calculated as t 1.
- w 1 T w 1 TX 1 (2)
- w 1 T a transposed vector of w 1 .
- data X 2 (also referred to as a residual matrix) is obtained by extracting information in the w 1 axis direction from the previous data X 1 by the following equation (3).
- the second axis w 2 is obtained by performing the second discriminant analysis by the above formula (1) using the data X 2 .
- a regularization coefficient ⁇ 2 selected in advance is used.
- the regularization coefficient ⁇ 2 used at this time may be a value different from the regularization coefficient ⁇ 1 used in the first discriminant analysis.
- the value t 2 (also referred to as projection t 2 ) of the second axis coordinate (w 2 axis coordinate) of the data X 2 is calculated by Expression (4). To do.
- w 2 T w 2 TX 2 (4)
- w 2 T represents a transposed vector of w 2 .
- a discrimination model subjected to orthogonal decomposition can be created using the two axes w 1 and w 2 orthogonal to each other obtained in this way.
- the two groups are clearly distinguished with the axes w 1 and w 2 as orthogonal axes.
- a value corresponding to the projection t 1 and projection t 2 of each comparative fiber belonging to each group is referred to as a score of the comparative fiber.
- a score of the comparative fiber For two axes w 1, w 2, a plot of the scores of each comparison fibers that score plot (FDOD plot).
- FDOD plot a plot of the scores of each comparison fibers that score plot.
- an equal probability ellipse is created for each of two score plots obtained as a discrimination model.
- a discrimination model subjected to orthogonal decomposition is created using the two axes w 1 and w 2 which are orthogonal to each other.
- a high-dimensional discrimination model having three or more axes orthogonal to each other may be created.
- an absorption spectrum of a test fiber to be identified is obtained.
- a method for obtaining an absorption spectrum, a method for performing various corrections on the absorption spectrum, and a method for performing a process such as differentiation on the obtained absorption spectrum are the same as those for the above-described comparative fiber.
- spectrum data Y in the same wave number region as that of the comparison fiber is extracted from the obtained differential spectrum, and the test fiber scores (corresponding to the projection t 1 and the projection t 2 ) are calculated in the same manner as the comparison fiber.
- the obtained test fiber score is fitted to the equiprobability ellipse of the discrimination model to discriminate which group the test fiber belongs to.
- the type of test fiber is unknown, but it has been found that the test fiber is a cellulosic fiber by relatively simple microscopy. However, it is not clear which of the cellulosic fibers the test fiber is. Therefore, in the first embodiment, it is preferable to perform fiber discrimination according to the following procedure.
- FIG. 3 is a discrimination flowchart showing an analysis procedure for discriminating the test fiber in the first embodiment.
- the test fiber is a natural fiber or a regenerated fiber.
- a discrimination model obtained from natural fibers and regenerated fibers is used.
- the test fiber is a natural fiber
- a discrimination model obtained from cotton and hemp is used.
- whether linen or ramie is the most common linen is discriminated.
- a discrimination model obtained from linen and ramie is used.
- test fiber when it is determined that the test fiber is a regenerated fiber, it is subsequently determined whether the test fiber is rayon or “cupra or lyocell”. At this time, a discrimination model obtained from rayon and “cupra and lyocell” is used.
- test fiber when it is determined that the test fiber is “cupra or lyocell”, it is subsequently determined whether the test fiber is cupra or lyocell. At this time, a discriminant model obtained from cupra and lyocell is used.
- FIG. 4 is a partial flow diagram in which a part of the discrimination flow diagram of FIG. 3 is extracted.
- the test fiber indistinguishable in FIG. 4 may be a mixed fiber of natural fibers and regenerated fibers, or fibers other than cellulosic fibers may be mixed.
- the type of the test fiber can be objectively discriminated.
- the identification method of the first embodiment will be described in detail with reference to Example 1.
- This Example 1 performs discrimination between each single fiber according to the first embodiment, and performs discrimination according to a discrimination flow diagram (see FIG. 3) with respect to a plurality of test fibers.
- Each of the test fibers has been found to be a cellulosic fiber in preliminary identification such as microscopy.
- Example 1 Discrimination model preparation step In Example 1, first, 73 natural fibers of 27 cotton points, 25 linen points, and 21 ramie points were prepared as single fibers with known fiber types. Moreover, 109 regenerated fibers of 48 points of rayon, 30 points of cupra and 31 points of lyocell were prepared as single fibers with known fiber types. A total of 182 single fibers were used as comparative fibers of Example 1. In addition, about 73 points
- a discriminant model was created using the discriminant model creation group. Two combinations of the first group (A1) to the tenth group (E2) were combined to form five combinations. Next, a predetermined wave number region characterizing each combination was extracted from these differential spectra. Furthermore, two regularization coefficients ⁇ 1 and ⁇ 2 for discriminant analysis for each combination were specified. In the first embodiment, the discrimination models A to E, the extracted wave number range, and the values of the two regularization coefficients ⁇ 1 and ⁇ 2 are shown below.
- the using data X 1 performs two discriminant analysis for five sets of combination was calculated score for each comparison fibers (corresponding to the projection t 1 and projective t 2).
- Discrimination models (provisional models) A to E were obtained by plotting the scores of the comparative fibers of each group on two axes w 1 and w 2 orthogonal to each other.
- Example 1 an equal probability ellipse was created for each group of discriminant models (provisional models) A to E using an equal probability ellipse creation group.
- a comparative fiber for creating an equal probability ellipse is used separately from the comparative fiber for creating a discrimination model. The reason is considered as follows. That is, when a discriminant model is created in discriminant analysis, an axis w that separates the groups and collects the groups is obtained. Therefore, when an equiprobability ellipse is created using only this narrow area data, the fit to the equiprobability ellipse may be deteriorated due to slight differences in the data of the test fiber.
- One is a method in which a discrimination model is created by increasing the number of comparison fibers (number of samples) in each group, and the fit from the equiprobability ellipse created therefrom is improved.
- the other is to create a discriminant model with a limited number of comparison fibers, and use the comparison fiber for creating an equal probability ellipse separately from the comparison fiber for creating the discriminant model, and the equal probability considering bad information.
- This is a method of creating an ellipse. In Example 1, since the number of comparison fibers is limited, the latter method was adopted.
- Example 1 an equal probability ellipse with a 95% confidence level was created. Specifically, scores (corresponding to projection t 1 and projection t 2 ) are obtained for each comparison fiber for equal probability ellipses of the eleventh group (A3) to twentieth group (E4) by the same method as described above. Calculated. These scores were plotted on each discriminant model A to E on which each group was plotted. Next, an equal probability ellipse with a 95% confidence level was created using a program constructed by the inventor himself.
- FIGS. 5 to 9 show the discrimination models (complete models) A to E (FDOD plots) obtained in the first embodiment. Further, the ellipse surrounding the group in which each discrimination model is described is an equal probability ellipse with a 95% confidence level for each group.
- FIG. 5 is an FDOD plot of discrimination model A: “natural fiber” and “regenerated fiber”, with the first discrimination axis (w 1 axis) as the horizontal axis and the second discrimination axis (w 2 axis) as the vertical axis. Two groups of “natural fibers” and “regenerated fibers” were clearly stratified.
- FIG. 5 is an FDOD plot of discrimination model A: “natural fiber” and “regenerated fiber”, with the first discrimination axis (w 1 axis) as the horizontal axis and the second discrimination axis (w 2 axis) as the vertical axis. Two groups of “natural fibers” and “regenerated fibers” were clearly stratified.
- FIG. 6 is a scatter diagram of the discriminant model B: “cotton” and “hemp”, with the first discriminant axis as the horizontal axis and the second discriminant axis as the vertical axis, and “cotton” and “hemp”. Groups were clearly stratified.
- FIG. 7 is a scatter diagram of the discriminant model C: “linen” and “ramie”, with the first discriminant axis as the horizontal axis and the second discriminant axis as the vertical axis, and two groups of “linen” and “ramie”. Clearly stratified.
- FIG. 7 is a scatter diagram of the discriminant model C: “linen” and “ramie”, with the first discriminant axis as the horizontal axis and the second discriminant axis as the vertical axis, and two groups of “linen” and “ramie”. Clearly stratified.
- FIG. 7 is a scatter diagram of the discriminant model C: “linen” and “ramie”, with the first discriminant axi
- FIG. 8 is a scatter diagram of the discriminant model D: “rayon” and “cupra and lyocell”, with the first discriminant axis as the horizontal axis and the second discriminant axis as the vertical axis, and “rayon” and “cupra and lyocell”. Two groups were clearly stratified.
- FIG. 9 is a scatter diagram of the discriminant model E: “cupra” and “lyocell”. The first discriminant axis is a horizontal axis and the second discriminant axis is a vertical axis, and two groups of “cupra” and “lyocell” are Clearly stratified.
- the analysis data group obtained in this way was stored as a database of Example 1 as a discrimination model for each combination.
- Example 2 Identification process In the identification of Example 1, five test fibers Z1 to Z5 made of a single fiber of cellulosic fibers were prepared. First, similarly to the creation of the discrimination model, the absorption spectra of the test fibers Z1 to Z5 to be discriminated were obtained, and the differential spectrum was obtained.
- test fibers Z1 to Z5 belong to the group of “natural fibers” or “regenerated fibers”. Specifically, spectrum data Y in the same wave number region (wave number 1200 to 850 cm ⁇ 1 ) as that of the discrimination model A was extracted from the obtained differential spectrum. Scores (corresponding to projection t 1 and projection t 2 ) were calculated from the spectrum data Y of the test fibers Z 1 to Z 5 obtained in this way by the same method as described above. The scores of these test fibers Z1 to Z5 were plotted on the discrimination model A of “natural fibers” and “regenerated fibers” in FIG. 5 (Z1 to Z5 in FIG. 5). In FIG.
- test fibers Z1 to Z5 of Example 1 are fibers belonging to the first group (A1) of “natural fibers”.
- the test fibers Z3 to Z5 are fibers belonging to the second group (A2) of “regenerated fibers”.
- test fiber Z1 is a fiber belonging to the third group (B1) of “cotton”.
- test fiber Z2 is a fiber belonging to the fourth group (B2) of “Hemp”.
- test fiber Z2 identified as “Hemp” belongs to “linen” or “ramie”.
- spectrum data Y in the same wave number region (wave number 1400 to 900 cm ⁇ 1 ) as the discriminant model C was extracted from the obtained differential spectrum.
- a score (corresponding to projection t 1 and projection t 2 ) was calculated from each spectrum data Y of the test fiber Z 2 obtained in this way by the same method as described above.
- the score of the test fiber Z2 was plotted on the discrimination model C of “linen” and “ramie” in FIG. 7 (Z2 in FIG. 7).
- FIG. 7 it can be seen that the test fiber Z2 of Example 1 is a fiber belonging to the fifth group (C1) of “linen”.
- test fibers Z3 to Z5 identified as “regenerated fibers” belong to “rayon” or “cupra and lyocell” groups were discriminated whether the test fibers Z3 to Z5 identified as “regenerated fibers” belong to “rayon” or “cupra and lyocell” groups. Specifically, spectrum data Y in the same wave number region (wave number 1400 to 900 cm ⁇ 1 ) as the discriminant model D was extracted from the obtained differential spectrum. Scores (corresponding to projection t 1 and projection t 2 ) were calculated from the spectrum data Y of the test fibers Z 3 to Z 5 obtained in this way by the same method as described above. The scores of the test fibers Z3 to Z5 were plotted on the discrimination model D of “rayon” and “cupra and lyocell” in FIG. 8 (Z3 to Z5 in FIG. 8). In FIG.
- test fiber Z3 is a fiber belonging to the seventh group (D1) of “rayon”.
- test fibers Z4 and Z5 are fibers belonging to the eighth group (D2) of “cupra and lyocell”.
- test fibers Z4 and Z5 identified as “cupra and lyocell” belong to “cupra” and “lyocell”.
- spectrum data Y in the same wave number region (wave number 1400 to 900 cm ⁇ 1 ) as that of the discrimination model E was extracted from the obtained differential spectrum.
- Scores (corresponding to projection t 1 and projection t 2 ) were calculated from the spectrum data Y of the test fibers Z 4 and Z 5 obtained in this way by the same method as described above.
- the scores of these test fibers Z4 and Z5 were plotted on the discrimination model E of “cupra” and “lyocell” in FIG. 9 (Z4 and Z5 in FIG. 9).
- test fiber Z4 is a fiber belonging to the ninth group (E1) of “cupra”.
- test fiber Z5 is a fiber belonging to the tenth group (E2) of “Lyocell”.
- the type of fiber could be easily and accurately distinguished from the test fiber consisting of a single fiber. Therefore, in the present invention, the discrimination operation is comparatively simple and objective, it is possible to discriminate between similar and different types of fibers without depending on the experience and know-how of the inspector, and it is caused by the combination of the fibers to be discriminated. It is possible to provide a fiber discrimination method capable of realizing high discrimination accuracy by minimizing variation in discrimination accuracy.
- Second Embodiment As in the first example, discrimination between each single fiber is performed for a plurality of types of single fibers. For example, in the case of cellulosic fibers, differentiation between natural fibers and regenerated fibers, differentiation between cotton and hemp, differentiation between linen and ramie in hemp, differentiation between regenerated fibers, and differentiation between cupra and lyocell, etc. Will be described. In the second embodiment, discrimination is performed from the probability density of the test fiber score with respect to the normal distribution of the score group of the discrimination model.
- Each operation of the discriminant model preparation step in the second embodiment is basically the same as that in the first embodiment.
- the absorption spectrum of each group of comparative fibers is obtained.
- the correction of the absorption spectrum is the same as in the first embodiment.
- the pretreatment method using an alkaline substance is also the same as in the first embodiment.
- the ATR method is used in the FT / IR spectrophotometer when obtaining the absorption spectrum of the comparative fiber. Also, as in the first embodiment, it obtains the respective absorption spectrum by irradiating infrared range of wave number 4000 cm -1 ⁇ 600 cm -1, excluding the near-infrared.
- the spectral data differentiation process and the like are also the same as in the first embodiment.
- the wave number range of the spectrum data extracted for each combination of comparative fibers is basically the same as that in the first embodiment. However, in the second embodiment, there are some in which a plurality of wave number ranges are extracted by dividing into a narrower wave number range. The used wave number range will be described in detail in Example 2 below.
- discriminant analysis is performed on the extracted spectrum data to create a discriminant model.
- FDOD Fisher's linear discriminant orthogonal decomposition
- the discriminant analysis is performed twice.
- First extracts the spectral data X of a specific wave number range from the absorption spectra of the comparative fibers are to as data X 1.
- the data X 1 with obtaining the first axis w 1 performs 1st discriminant analysis by the same equation (1) and the first embodiment. At this time, a regularization coefficient ⁇ 1 selected in advance is used. In the second embodiment as well, the analysis was performed using a program constructed by the inventor himself.
- the first shaft w 1 and the data X 1 Prefecture, the same formula as the first embodiment (2) by a first-axis coordinate data X 1 obtained in the 1st discriminant analysis (w 1 axis coordinates) Value t 1 (also referred to as projection t 1 ) is calculated.
- data X 2 (also referred to as a residual matrix) is obtained by extracting information in the w 1 axis direction from the previous data X 1 by the same equation (3) as in the first embodiment.
- the second axis w 2 is obtained by performing the second discriminant analysis using the data X 2 by the same equation (1) as in the first embodiment.
- a regularization coefficient ⁇ 2 selected in advance is used.
- a discrimination model subjected to orthogonal decomposition can be created using the two axes w 1 and w 2 orthogonal to each other obtained in this way.
- the two groups are clearly distinguished with the axes w 1 and w 2 as orthogonal axes.
- a value corresponding to the projection t 1 and projection t 2 of each comparative fiber belonging to each group is referred to as a score of the comparative fiber.
- the two-dimensional normal distribution of the score group obtained from the spectrum data is estimated for each of the two groups of the discrimination model.
- probability density functions Fa (x) and Fb (x) of a two-dimensional normal distribution of each score group are obtained for two groups (group a and group b) of the discriminant model.
- the discrimination model subjected to the orthogonal decomposition is created using the two axes w 1 and w 2 orthogonal to each other as described above.
- a high-dimensional discrimination model having three or more axes orthogonal to each other may be created.
- an n-dimensional discriminant model is created instead of two-dimensional, an n-dimensional (n is an integer of 1 or more) normal distribution is estimated from each score group to obtain an n-dimensional probability density function. To do.
- an absorption spectrum of the test fiber Z to be identified is obtained.
- a method for obtaining an absorption spectrum, a method for performing various corrections on the absorption spectrum, and a method for performing a process such as differentiation on the obtained absorption spectrum are the same as those for the above-described comparative fiber.
- spectrum data Y in the same wave number region as that of the comparative fiber is extracted from the obtained differential spectrum, and the score of the test fiber Z (corresponding to the projection t 1 and the projection t 2 ) is calculated in the same manner as the comparative fiber.
- test fiber Z score the test fiber for each group is obtained from the probability density functions Fa (x) and Fb (x) of the two groups (group a and group b) of the discriminant model.
- the probability density dz, a, dz, b of Z is calculated.
- the probability density ratio Rz, a for one group (for example, group a) of the test fibers is calculated from the probability density dz, a, dz, b of the obtained test fibers by the following equation (5). .
- the group (group a or group b) to which the test fiber Z belongs is determined based on the probability density ratio Rz, a thus obtained.
- an arbitrary discrimination criterion is set based on the probability density ratio Rz, a for the group a of the test fibers Z (or the probability density ratio Rz, b for the group b).
- the discrimination criterion based on the probability density ratio Rz, a for group a is Rz, a ⁇ 0.9... Belonging to group a Rz, a ⁇ 0.1... Belonging to group b 0.1 ⁇ Rz, a ⁇ 0.9.
- the probability that the test fiber Z belongs to the group a is 90% or more, and the probability that the test fiber Z belongs to the group b can be determined to be less than 10%.
- Rz, a ⁇ 0.1 the probability that the test fiber Z belongs to group b is greater than 90%, and the probability that it belongs to group a can be determined to be 10% or less.
- 0.1 ⁇ Rz, a ⁇ 0.9 it is determined that discrimination is impossible.
- the discrimination criterion is not limited to 90%, and may be an arbitrary criterion. Generally, it is preferably about 85% to 95%.
- FIG. 10 is a conceptual diagram showing an image for identifying a test fiber in the second embodiment.
- the region G1 on the group a side of the determination line L1 close to the group a is determined as the group a.
- a region G3 surrounded by two discrimination lines L3 and L4 that are close to the group b is determined as the group b.
- a region G2 surrounded by the discrimination line L1 and the discrimination line L3 is a region where 0.1 ⁇ Rz, a ⁇ 0.9 and is determined to be indistinguishable.
- a region G4 surrounded by the discrimination line L2 and the discrimination line L4 is also a region where 0.1 ⁇ Rz, a ⁇ 0.9 and is determined to be indistinguishable.
- Such test fibers may be two or more kinds of mixed fibers, or may be fibers other than cellulosic fibers.
- the probability density dz, a, dz, b may all be small, and the probability density ratio Rz, a may be 0.9 or more or 0.1 or less.
- Such test fibers may be two or more kinds of mixed fibers, or may be fibers other than cellulosic fibers.
- the region G5 is relatively close to the group b, it is determined as the group a from the value of the probability density ratio Rz, a.
- the determination is not made based only on the value of the probability density ratio Rz, a, but is confirmed by the FDOD plot of the score group of the discrimination model and, if necessary, the equiprobability ellipse. It is preferable to do.
- Example 2 the identification method of the second embodiment will be described in detail with reference to Example 2.
- discrimination between single fibers is performed in the same manner as in the first embodiment, and a plurality of test fibers are discriminated according to a discrimination flowchart (see FIG. 3).
- Each of the test fibers has been found to be a cellulosic fiber in preliminary identification such as microscopy.
- Example 2 (1) Discrimination model preparation step In Example 2, first, 75 natural fibers of 25 cotton, 25 linen and 25 ramie were prepared as single fibers of known fiber types. In addition, as single fibers of known fiber types, 45 regenerated fibers, 45 points of rayon, 25 points of cupra, 25 points of lyocell, were prepared. A total of 170 single fibers were used as comparative fibers of Example 2. In addition, about 75 points of cotton and linen (linen and ramie) and 40 points of regenerated fibers (14 points of rayon, 13 points of cupra, 13 points of lyocell), an aqueous sodium hydroxide solution (17% by weight) at room temperature The pretreatment by was performed.
- absorption spectra were obtained for these 170 knitted and knitted fabrics in total. Measurement of absorption spectrum, in the same manner as in Example 1 using an infrared spectrophotometer FT / IR-4700 (JASCO Corporation), in the ATR method by ZnSe prism, absorption at a wavenumber of 4000 cm -1 ⁇ 600 cm -1 The spectrum was measured. Next, each absorption spectrum after multiplicative scattering correction (MSC) was first-order differentiated by the Savitzky-Golay method to obtain a differential spectrum. The obtained absorption spectrum (differential spectrum) was classified as a group for creating a discriminant model by FDOD.
- MSC multiplicative scattering correction
- a discriminant model was created using the discriminant model creation group. Two combinations of the first group (A3) to the tenth group (E4) were combined to form five combinations. Next, a predetermined wave number region characterizing each combination was extracted from these differential spectra. Furthermore, two regularization coefficients ⁇ 1 and ⁇ 2 for discriminant analysis for each combination were specified.
- the discrimination models A to E, the extracted wave number range, and the values of the two regularization coefficients ⁇ 1 and ⁇ 2 are shown below. However, in the second embodiment, the extracted wave number ranges are different from those in the first embodiment, and a plurality of narrowly divided wave number ranges are extracted.
- two score groups of comparative fibers included in the two groups to be distinguished correspond to the discrimination model.
- the discriminant model A it corresponds to a combination of score groups of each comparison fiber of the first group (A3) and the second group (A4).
- discrimination models (score groups of each comparative fiber to be discriminated) A to E were obtained. Therefore, in the present Example 2, it is an essential requirement to create discriminant models (FDOD plots) A to E in which the score groups of the comparative fibers of each group are plotted on two axes w 1 and w 2 that are orthogonal to each other. Not what you want. However, it is preferable to create an FDOD plot and, if necessary, an equiprobability ellipse to confirm belonging to the determined group or not belonging to any group (distinguishable).
- Probability density functions F E3 (x) and F E4 (x) were determined in D3 (x), F D4 (x), and discriminant model E.
- Example 2 Discrimination process
- the same five test fibers Z6 to Z10 made of a single fiber of cellulosic fibers as in Example 1 were prepared.
- the absorption spectra of the test fibers Z6 to Z10 to be discriminated were obtained, and the differential spectrum was obtained.
- test fibers Z6 to Z10 belong to the group of “natural fibers” or “regenerated fibers”. Specifically, spectrum data Y in the same wave number region (wave number 1300 to 900 cm ⁇ 1 ) as that of the discrimination model A was extracted from the obtained differential spectrum. Scores (corresponding to projection t 1 and projection t 2 ) were calculated from the spectrum data Y of the test fibers Z 6 to Z 10 obtained in this way by the same method as described above.
- the probability density d Z6 , A3 , d Z6 , A4 of the test fiber Z6 for each group A3, A4 from the probability density functions F A3 (x), F A4 (x). was calculated.
- probability density d Z7 , A3 , d Z7 , A4 of test fiber Z7 , probability density d Z8 , A3 , d Z8 , A4 of test fiber Z8 , probability density d Z9 , A3 of test fiber Z9, d Z9 , A4 and probability density d Z10 , A3 , d Z10 , A4 of the test fiber Z10 were calculated. Table 1 shows the calculated probability density values.
- the probability density ratio R Z6 , A3 of the test fiber Z6 with respect to the group A3 was calculated from the probability density d Z6 , A3 , d Z6 , A4 of the obtained test fiber Z6 by the following equation (5-1).
- R Z6 , A3 d Z6 , A3 / (d Z6 , A3 + d Z6 , A4 ) (5-1)
- the probability density ratio R Z7 for the group A3 of the test fibers Z7, A3, probability density ratio R Z8 for the group A3 of the test fibers Z8, A3, probability for the group A3 of the test fiber Z9 density ratio R Z9 was calculated. Table 1 shows the calculated probability density ratio values.
- test fibers Z6 to Z10 are fibers belonging to the first group (A3) of “natural fibers”.
- test fibers Z8 to Z10 are fibers belonging to the second group (A4) of “regenerated fibers”.
- FIG. 11 is an FDOD plot of “natural fibers” and “regenerated fibers” obtained in Example 2. 11, the first determination axis (w 1 axis) second discriminant axis and horizontal axis (w 2 axis) as the vertical axis, the two groups of the "natural fiber", "recycled fibers" A3, A4 clearly Stratified.
- each plot of the test fibers Z6 to Z10 was within the equiprobability ellipse of either one of the two groups A3 and A4, which coincided with the discrimination result based on the probability density ratio. From this, it was confirmed that the discrimination result based on the probability density ratio of Example 2 is accurate and not erroneous.
- test fibers Z6 and Z7 identified as “natural fibers” belong to “cotton” or “linen”.
- the same wavenumber range and discriminant model B from the obtained derivative spectra (wave number 1600 ⁇ 1400 cm -1, wave number 1200 ⁇ 1100 cm -1, wave number 1000 ⁇ 800 cm -1) and extracted spectral data Y. Scores (corresponding to projection t 1 and projection t 2 ) were calculated from the spectrum data Y of the test fibers Z 6 and Z 7 obtained in this way by the same method as described above.
- the probability density d Z6 , B3 , d Z6 , B4 of the test fiber Z6 for each group B3, B4 from the probability density functions F B3 (x), F B4 (x). was calculated.
- probability densities d Z7 , B3 , d Z7 , B4 of the test fiber Z7 were calculated.
- Table 2 shows the calculated probability density values.
- the probability density ratio R Z6 , B3 of the test fiber Z6 with respect to the group B3 was calculated by the following equation (5-2). .
- R Z6 , B3 d Z6 , B3 / (d Z6 , B3 + d Z6 , B4 ) (5-2)
- the probability density ratio R Z7 , B3 of the test fiber Z7 to the group B3 was calculated. Table 2 shows the calculated probability density ratio values.
- test fiber Z6 is a fiber belonging to the third group (B3) of “cotton”.
- test fiber Z7 is a fiber belonging to the fourth group (B4) of “Hemp”.
- FIG. 12 is an FDOD plot of “cotton” and “hemp” obtained in Example 2. 12, the first determination axis (w 1 axis) horizontal axis and the second discrimination axis (w 2 axis) as the vertical axis, the two groups of "hemp acids” and "cotton” B3, B4 clearly layers It was separated. In addition, each plot of the test fibers Z6 and Z7 was within the equal probability ellipse of either one of the two groups B3 and B4, which coincided with the determination result based on the probability density ratio. From this, it was confirmed that the discrimination result based on the probability density ratio of Example 2 is accurate and not erroneous.
- test fiber Z7 identified as “hemp” belongs to “linen” or “ramie”. Specifically, the same wavenumber range and discriminant model C from the differential spectrum obtained (wave number 1600 ⁇ 1500 cm -1, wave number 1400 ⁇ 1100 cm -1, wave number 1000 ⁇ 900 cm -1) and extracted spectral data Y. A score (corresponding to projection t 1 and projection t 2 ) was calculated from each spectrum data Y of the test fiber Z 7 obtained in this way by the same method as described above.
- the probability density d Z7 , C3 , d Z7 , C4 of the test fiber Z7 for each group C3, C4 from the probability density functions F C3 (x), F C4 (x). was calculated.
- Table 3 shows the calculated probability density values.
- the probability density ratio R Z7 , C3 of the test fiber Z7 with respect to the group C3 was calculated from the probability density d Z7 , C3 , d Z7 , C4 of the obtained test fiber Z7 by the following formula (5-3). .
- FIG. 13 is an FDOD plot of “linen” and “ramie” obtained in Example 2.
- the plot of the test fiber Z7 is within the equiprobability ellipse of the group C4, which coincides with the determination result by the probability density ratio. From this, it was confirmed that the discrimination result based on the probability density ratio of Example 2 is accurate and not erroneous.
- test fibers Z8 to Z10 identified as “regenerated fibers” belong to “rayon” or “cupra and lyocell” groups.
- the same wavenumber range and discriminant model D from the differential spectrum obtained (wave number 1500 ⁇ 1400 cm -1, wave number 1300 ⁇ 1000 cm -1, wave number 900 ⁇ 800 cm -1) and extracted spectral data Y.
- Scores (corresponding to projection t 1 and projection t 2 ) were calculated from the spectrum data Y of the test fibers Z8 to Z10 obtained in this way by the same method as described above.
- the probability density d Z8 , D3 , d Z8 , D4 of the test fiber Z8 for each group D3, D4 from the probability density functions F D3 (x), F D4 (x). was calculated.
- the probability densities d Z9 , D3 , d Z9 , D4 of the test fiber Z9 and the probability densities d Z10 , D3 , d Z10 , D4 of the test fiber Z10 were calculated. Table 4 shows the calculated probability density values.
- the probability density ratio R Z8 , D3 of the test fiber Z8 with respect to the group D3 was calculated from the probability density d Z8 , D3 , d Z8 , D4 of the obtained test fiber Z8 by the following equation (5-4). .
- R Z8 , D3 d Z8 , D3 / (d Z8 , D3 + d Z8 , D4 ) (5-4)
- the probability density ratios R Z9 and D3 of the test fiber Z9 to the group D3 and the probability density ratios R Z10 and D3 of the test fiber Z10 to the group D3 were calculated. Table 4 shows the calculated probability density ratio values.
- test fiber Z8 is a fiber belonging to the seventh group (D3) of “Rayon”.
- test fibers Z9 and Z10 are fibers belonging to the eighth group (D4) of “cupra and lyocell”.
- FIG. 14 is an FDOD plot of “rayon” and “cupra and lyocell” obtained in Example 2. 14, the first determination axis (w 1 axis) second discriminant axis and horizontal axis (w 2 axis) as the vertical axis, the two groups of the "rayon,”"cupra and lyocell” D3, D4 clearly Stratified. In addition, each plot of the test fibers Z8 to Z10 was within the equal probability ellipse of either one of the two groups B3 and B4, which coincided with the discrimination result by the probability density ratio. From this, it was confirmed that the discrimination result based on the probability density ratio of Example 2 is accurate and not erroneous.
- test fibers Z9 and Z10 identified as “cupra and lyocell” belong to “cupra” and “lyocell”. Specifically, it was extracted spectral data Y wavenumber range similar to the discriminant model E from the determined differential spectrum (wavenumber 1700 ⁇ 1600 cm -1, wave number 1500 ⁇ 1300 cm -1, wave number 1100 ⁇ 1000cm -1). Scores (corresponding to projection t 1 and projection t 2 ) were calculated from the spectrum data Y of the test fibers Z9 and Z10 obtained in this way by the same method as described above.
- the probability density d Z9 , E3 , d Z9 , E4 of the test fiber Z9 for each group E3, E4 from the probability density functions F E3 (x), F E4 (x). was calculated.
- probability densities d Z10 , E3 , d Z10 , E4 of the test fiber Z10 were calculated.
- Table 5 shows the calculated probability density values.
- the probability density ratio R Z9 , E3 of the test fiber Z9 with respect to the group E3 was calculated from the probability density d Z9 , E3 , d Z9 , E4 of the obtained test fiber Z9 by the following formula (5-5). .
- test fiber Z9 is a fiber belonging to the ninth group (E3) of “cupra”.
- test fiber Z10 is a fiber belonging to the tenth group (E4) of “Lyocell”.
- FIG. 15 is an FDOD plot of “cupra” and “lyocell” obtained in Example 2. 15, the first determination axis (w 1 axis) horizontal axis and the second discrimination axis (w 2 axis) as the vertical axis, two groups E3 of "Cupra” and “Lyocell", E4 clearly stratified It was done. In addition, each plot of the test fibers Z9 and Z10 is within the equiprobability ellipse of one of the two groups E3 and E4, which coincides with the determination result based on the probability density ratio. From this, it was confirmed that the discrimination result based on the probability density ratio of Example 2 is accurate and not erroneous.
- the type of fiber could be easily and accurately distinguished from the test fiber made of a single fiber. Therefore, in the present invention, the discrimination operation is comparatively simple and objective, it is possible to discriminate between similar and different types of fibers without depending on the experience and know-how of the inspector, and it is caused by the combination of the fibers to be discriminated. It is possible to provide a fiber discrimination method capable of realizing high discrimination accuracy by minimizing variation in discrimination accuracy.
- cellulose fibers are used as examples for distinguishing fibers having the same chemical composition.
- the present invention is not limited to this, and silk and various animal hair fibers as protein fibers. Differentiating between fibers or other fibers having the same chemical composition may be performed.
- discrimination between two groups is discriminated and analyzed.
- the present invention is not limited to this, and discrimination between three or more groups is discriminantly analyzed simultaneously. Also good.
- discrimination is performed based on the absorption spectrum obtained by IR spectroscopic analysis.
- the present invention is not limited to this, and discrimination may be performed based on the transmission spectrum obtained by IR spectroscopic analysis. Good.
- an absorption spectrum within a wave number range of 4000 to 600 cm ⁇ 1 is measured, and spectrum data in a predetermined wave number range used for analysis is extracted from the absorption spectrum. Instead, only the absorption spectrum in one or two or more predetermined wavenumber regions used for analysis may be measured.
- discrimination is performed based on an absorption spectrum obtained by IR spectroscopic analysis.
- the present invention is not limited to this, and discrimination may be performed based on an absorption spectrum obtained by NIR spectroscopic analysis. Good.
- an FT / IR spectrophotometer When obtaining an absorption spectrum by this NIR spectroscopic analysis, an FT / IR spectrophotometer may be used as in the case of IR spectroscopic analysis, or an FT / NIR spectrophotometer, a distributed NIR spectrophotometer, A dispersion type UV-VIS-NIR spectrophotometer or the like may be used. Moreover, when measuring an absorption spectrum using these spectrophotometers in NIR spectroscopy, it is common to use a diffuse reflection method. (6) In each of the above embodiments, the absorption spectrum is obtained by the ATR method. However, the present invention is not limited to this, and other methods such as the KBr tablet method after pulverizing the comparative fiber or the test fiber are used.
- an absorption spectrum may be obtained.
- discriminant analysis is performed using a combination of wavenumber regions having a large infrared absorption, and a specific wavenumber region considered to be particularly effective is extracted.
- the wave number range may be extracted by using the extraction of the wave number range by analysis software.
- two-dimensional analysis using a combination of the first axis and the second axis orthogonal to each other is used.
- the present invention is not limited to this, and three or more axes orthogonal to each other are used.
- the analysis may be performed in three or more dimensions.
- Example 1 In Example 1 above, only spectral data within a wave number range of 1200 to 850 cm ⁇ 1 is used for differentiation between natural fibers and regenerated fibers, and in Example 2 above, only wave numbers of 1300 to 900 cm ⁇ 1 are used.
- the present invention is not limited to this.
- spectral data in the range of wave numbers 3500 to 3000 cm ⁇ 1 or in the vicinity thereof may be used in combination.
- using only spectral data in the range of wave numbers 1400 ⁇ 900 cm -1 in the differential between cotton and hemp include, in the above embodiment 2, the wave number 1600 ⁇ 1400 cm -1, wave number 1200 ⁇ 1100 cm -1, but is intended to use a combination of wave number 1000 ⁇ 800 cm -1, is not limited to this, for example, in the range of wave numbers 3500 ⁇ 3000 cm -1 or the spectral data in the range in the vicinity thereof You may make it use it combining.
- Example 1 only the spectral data in the range of wave numbers 1400 to 900 cm ⁇ 1 is used to distinguish between regenerated fibers, and in Example 2 above, wave numbers 1500 to 1400 cm ⁇ 1 , wave numbers 1300 to 1000 cm -1, but is intended to use a combination of wave number 900 ⁇ 800 cm -1, is not limited to this, for example, in the range of wave numbers 3500 ⁇ 3000 cm -1 or in combination of spectral data in the range in the vicinity thereof It may be used.
- the present invention provides an accurate discrimination means for such market demands and does not rely on the experience and know-how of the inspector unlike the conventional method.
- the present invention provides an effective discrimination means for market stability and international fair trade, and is simply a conventional method JIS L 1030-1 (Fiber product mixture rate test method-1st Part: Fiber discrimination) and JIS L 1030-2 (Fiber product mixing rate test method-Part 2: Fiber mixing rate) be able to.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
鑑別操作が比較的簡単で客観性を有し、検査員の経験やノウハウに頼ることなく同系異種繊維の鑑別をすることができ、且つ、鑑別する繊維の組み合わせによって生じる鑑別精度のバラツキを極力小さくして、高度な鑑別精度を実現することのできる繊維鑑別方法を提供する。 鑑別しようとする2種類(2グループ)以上の同系異種繊維に対して、それぞれ繊維の種類が既知の単一繊維を比較繊維として複数準備し、各比較繊維に対して赤外線又は近赤外線を照射してそれぞれの吸収スペクトルを求める。これらのスペクトルデータXを基に、グループ間は離れ且つ各グループは纏まる軸wを求める判別分析を行い、得られたスコアプロットから判別モデルを作成しておく。次に、繊維の種類が未知の繊維を被検繊維とし、判別モデルの作成と同様にして求めた当該被検繊維のスペクトルデータYから求めたスコアを判別モデルに当て嵌めて、被検繊維がいずれのグループに属するかを照合して、繊維の種類を鑑別する。
Description
本発明は、繊維製品或いは織編物などに使用されている繊維の種類を鑑別する繊維鑑別方法に関するものである。特に、セルロース系繊維やタンパク質系繊維など同系に分類される同系異種繊維を鑑別する繊維鑑別方法に関するものである。
市場には多くの繊維製品が広い用途に流通している。また、繊維製品の生産地と消費地がグローバルに展開される今日においては、繊維製品の輸出入の際に取引の安全や信頼を確保するために、各国の繊維関係の検査機関で繊維鑑別が行われている。
これらの検査機関、例えば、日本の検査機関においては、JIS L 1030‐1(繊維製品の混用率試験方法‐第1部:繊維鑑別)、及び、JIS L 1030‐2(繊維製品の混用率試験方法‐第2部:繊維混用率)に基づいて鑑別を行っている。
例えば、JIS L 1030‐1(繊維製品の混用率試験方法‐第1部:繊維鑑別)における鑑別方法には、燃焼試験、繊維中の塩素の確認試験、繊維中の窒素の確認試験、顕微鏡試験、よう素‐よう化カリウム溶液による着色試験、キサントプロテイン反応試験、赤外吸収スペクトルの測定試験などがある。
これらの試験法はそれぞれ有効なものであり、これらを組み合わせることにより多くの繊維が鑑別できる。しかし、化学的組成が同じ繊維(以下「同系異種繊維」という)、例えば、綿、各種麻、各種レーヨン、銅アンモニアレーヨン、溶剤紡糸セルロース繊維などのセルロース系繊維や、カシミヤ、ウール、ヤク、モヘア、アンゴラ、アルパカ、ビキューナ、キャメル、リャマなどの獣毛繊維は、上記各試験法のうち化学的試験法では同一繊維或いは類似繊維と鑑別される。従って、これらの化学的試験法では同系異種繊維を明確に区別することはできない。
また、上記試験法には赤外吸収スペクトルの測定試験も含まれる。しかし、この測定試験は、専ら化学的組成が異なる繊維(以下「異系繊維」という)を鑑別するものであり、同系異種繊維を明確に区別することはできないとされている。
そこで、これらのセルロース系繊維やタンパク質系繊維などの同系異種繊維の鑑別には、主にその外観的特徴の違いを指標とする顕微鏡試験が有効であり、広く行われている。この顕微鏡試験による繊維鑑別を行うには、検査員が光学顕微鏡を用いて目視により検査対象の繊維を標準写真見本と対比させて行っている。
従って、これらの方法においては、各検査機関の検査員の経験とノウハウの違いによる鑑別結果のバラツキが生じるという問題があった。更に、高価なタンパク質系繊維、特に獣毛繊維などには手の込んだ偽装が行われていることがあり、上記方法のみでは正確な鑑別が行えないという問題があった。
更に、セルロース系繊維の中でもテンセル(登録商標)、リヨセル(登録商標)などの溶剤紡糸セルロース繊維(以下、代表して「リヨセル」ともいう)の外観的特徴は、銅アンモニアレーヨン(以下「キュプラ」ともいう)とほぼ同じ円形断面をしている。また、タンパク質系繊維の中でも特に高級品とされるカシミヤを用いた繊維製品には、カシミヤと見分けが付きにくいヤクの毛を混合し、或いは、ウールのスケールを除去(「脱スケール」という)して混合するなど手の込んだ偽装が行われている。このような場合には、顕微鏡試験に経験を積んだ検査員でも正確な判断が困難である。
これに対して、下記特許文献1においては、セルロース系の同系異種繊維である繊維素繊維(溶剤紡糸セルロース繊維に同じ)とキュプラの鑑別方法が提案されている。この鑑別方法は、両繊維が61%以上の硫酸に浸漬した時の溶解状態を顕微鏡下で観察してセルロース系の同系異種繊維を鑑別するというものである。
また、下記特許文献2においては、獣毛系の同系異種繊維に対する繊維鑑別方法および繊維鑑別装置が提案されている。この繊維鑑別方法は、一般の赤外線より波長の長い電磁波を利用したテラヘルツ分光法を用いて獣毛繊維の細胞構造(一次構造)や細胞の集合形式(高次構造)を解析して獣毛系の同系異種繊維を鑑別するというものである。
更に、下記非特許文献1においては、本発明の発明者により、一般の赤外線より波長の短い近赤外分光法を用いた布地材質の判別が提案されている。この判別方法は、近赤外分光法にフーリエ変換によるスペクトルのゆらぎ解析の手法を応用したものである。
また、下記非特許文献2においては、本発明の発明者により、近赤外分光法による混紡繊維布地の繊維鑑別と混用率測定が提案されている。この鑑別方法は、近赤外分光法とケモメトリックス(化学を示すchemistryと計量学を示すmetricsからなる造語)を用いた解析手法を応用したものである。
下記特許文献1の鑑別方法は、繊維の溶解状態を顕微鏡下で観察するというものであり、この場合にも検査員の経験とノウハウの違いによる鑑別結果のバラツキが生じるという問題があった。また、繊維に染色や樹脂加工などが施されている場合には、溶解状態が変化して正確な鑑別が行えないという問題があった。
また、下記特許文献2の繊維鑑別方法においては、鑑別対象である繊維をテラヘルツ電磁波の波長より十分に小さいサイズ(10μm程度)にしなければ、入射テラヘルツ電磁波が散乱して検出器に入射するテラヘルツ電磁波の強度が減衰する。その為、粉砕に伴う温度上昇を防ぎながら凍結粉砕する方法が要求される。これらの操作は煩雑であり、また、粉砕により繊維の高次構造が破壊され、情報量が減少するという問題があった。
一方、下記非特許文献1の判別方法においては、判別の可能性は示唆されるものの、未だ正確な鑑別をするには至っていない。また、下記非特許文献2の鑑別方法においては、主に異系繊維である綿‐ポリエステル混紡布地の混用率を求める可能性を示唆するものであり、同系異種繊維の鑑別や混用率の鑑別を提案するものではない。
このような問題に対処して、本発明者らは、先に下記特許文献3の繊維鑑別方法を提案した。この繊維鑑別方法においては、対比する2種類の同系異種繊維(比較繊維)に対して波数4000cm-1~600cm-1の範囲内の赤外線を照射して求めた吸収スペクトルデータを主成分分析してデータベースを蓄積する。次に、繊維の種類が未知の繊維(被検繊維)の吸収スペクトルを求め、データベースのデータ群と照合して、被検繊維の種類及び混用率を鑑別するというものである。
分光研究、第53巻、第4号、P.249-256(2004)
分光研究、第58巻、第6号、P.268-274(2009)
上記特許文献3の繊維鑑別方法は、鑑別操作が比較的簡単で客観性を有し、検査員の経験やノウハウに頼ることなく同系異種繊維の鑑別をすることのできる良好な方法である。しかし、主成分分析による鑑別では、鑑別する繊維の組み合わせによって鑑別精度にバラツキが生じることがあった。特に、セルロース系繊維の鑑別において、レーヨンと(キュプラ及びリヨセル)との鑑別や、キュプラとリヨセルとの鑑別で高度な鑑別精度(例えば、正答率90%以上)を保証することができない場合があった。
そこで、本発明は、上記問題に対処して、鑑別操作が比較的簡単で客観性を有し、検査員の経験やノウハウに頼ることなく同系異種繊維の鑑別をすることができ、且つ、鑑別する繊維の組み合わせによって生じる鑑別精度のバラツキを極力小さくして、高度な鑑別精度を実現することのできる繊維鑑別方法を提供することを目的とする。
上記課題の解決にあたり、本発明者らは、鋭意研究の結果、吸収スペクトルの情報量が豊富な赤外分光法を採用し、得られた吸収スペクトルを判別分析するにあたり正則化項を採用することにより同系異種繊維を高度な鑑別精度で鑑別できることを見出し、本発明の完成に至った。
即ち、本発明に係る繊維鑑別方法は、請求項1の記載によると、
セルロース系繊維やタンパク質系繊維など同系に分類される同系異種繊維を鑑別する繊維鑑別方法であって、
鑑別しようとする2種類(2グループ)以上の同系異種繊維に対して、それぞれ繊維の種類が既知の単一繊維を比較繊維として複数準備し、各比較繊維に対して赤外線又は近赤外線を照射してそれぞれの吸収スペクトルを求め、
これらの吸収スペクトルから得られたスペクトルデータXを用いて、式(1)によりグループ間は離れ且つ各グループは纏まる軸wを求める判別分析を行い、得られたスコアプロットから判別モデルを作成しておき、
SBw=λ(SW+ζI)w ・・・(1)
(ここで、SB・SWは、分散共分散行列又は変動行列であって、分散共分散行列を使用する場合には、SBはグループ間分散共分散行列、SWはグループ内分散共分散行列であり、変動行列を使用する場合には、SBはグループ間変動行列、SWはグループ内変動行列である。一方、ζは正則化係数、Iは単位行列である。)
次に、繊維の種類が未知の繊維を被検繊維とし、前記判別モデルの作成と同様にして当該被検繊維のスペクトルデータYから求めたスコアを前記判別モデルに当て嵌めて、前記被検繊維がいずれのグループに属するかを照合して、繊維の種類を鑑別する。
セルロース系繊維やタンパク質系繊維など同系に分類される同系異種繊維を鑑別する繊維鑑別方法であって、
鑑別しようとする2種類(2グループ)以上の同系異種繊維に対して、それぞれ繊維の種類が既知の単一繊維を比較繊維として複数準備し、各比較繊維に対して赤外線又は近赤外線を照射してそれぞれの吸収スペクトルを求め、
これらの吸収スペクトルから得られたスペクトルデータXを用いて、式(1)によりグループ間は離れ且つ各グループは纏まる軸wを求める判別分析を行い、得られたスコアプロットから判別モデルを作成しておき、
SBw=λ(SW+ζI)w ・・・(1)
(ここで、SB・SWは、分散共分散行列又は変動行列であって、分散共分散行列を使用する場合には、SBはグループ間分散共分散行列、SWはグループ内分散共分散行列であり、変動行列を使用する場合には、SBはグループ間変動行列、SWはグループ内変動行列である。一方、ζは正則化係数、Iは単位行列である。)
次に、繊維の種類が未知の繊維を被検繊維とし、前記判別モデルの作成と同様にして当該被検繊維のスペクトルデータYから求めたスコアを前記判別モデルに当て嵌めて、前記被検繊維がいずれのグループに属するかを照合して、繊維の種類を鑑別する。
また、本発明は、請求項2の記載によると、請求項1に記載の繊維鑑別方法であって、
前記判別モデルの作成段階において、各比較繊維のスペクトルデータXから求めたスコアプロットの等確率楕円を作成し、
前記被検繊維の鑑別段階において、当該被検繊維のスペクトルデータYから求めたスコアを前記等確率楕円に当て嵌めて、前記被検繊維がいずれのグループに属するかを照合することを特徴とする。
前記判別モデルの作成段階において、各比較繊維のスペクトルデータXから求めたスコアプロットの等確率楕円を作成し、
前記被検繊維の鑑別段階において、当該被検繊維のスペクトルデータYから求めたスコアを前記等確率楕円に当て嵌めて、前記被検繊維がいずれのグループに属するかを照合することを特徴とする。
また、本発明は、請求項3の記載によると、請求項1に記載の繊維鑑別方法であって、
前記判別モデルの作成段階において、各比較繊維のスペクトルデータXから求めたスコアからn次元(nは1以上の整数)の正規分布の推定を行い、
前記被検繊維の鑑別段階において、当該被検繊維のスペクトルデータYから求めたスコアから前記n次元の正規分布に対する確率密度を算出することにより、前記被検繊維がいずれのグループに属するかを照合することを特徴とする。
前記判別モデルの作成段階において、各比較繊維のスペクトルデータXから求めたスコアからn次元(nは1以上の整数)の正規分布の推定を行い、
前記被検繊維の鑑別段階において、当該被検繊維のスペクトルデータYから求めたスコアから前記n次元の正規分布に対する確率密度を算出することにより、前記被検繊維がいずれのグループに属するかを照合することを特徴とする。
また、本発明は、請求項4の記載によると、請求項1~3のいずれか1つに記載の繊維鑑別方法であって、
前記比較繊維及び被検繊維に対して、近赤外線を除く波数4000cm-1~600cm-1の範囲内の赤外線を照射して前記吸収スペクトルを求め、
これらの吸収スペクトルから所定の波数域における吸収スペクトルを抽出して前記スペクトルデータX及びYを求めることを特徴とする。
前記比較繊維及び被検繊維に対して、近赤外線を除く波数4000cm-1~600cm-1の範囲内の赤外線を照射して前記吸収スペクトルを求め、
これらの吸収スペクトルから所定の波数域における吸収スペクトルを抽出して前記スペクトルデータX及びYを求めることを特徴とする。
また、本発明は、請求項5の記載によると、請求項1~4のいずれか1つに記載の繊維鑑別方法であって、
前記判別モデルの作成にあたり、
第1回判別分析において各比較繊維の元のスペクトルデータをデータX1として求めた第1軸w1とデータX1とから、式(2)によりデータX1の第1軸座標(w1軸座標)の値t1を算出し、
t1=w1 TX1 ・・・(2)
(ここで、w1 Tはw1の転置ベクトル)
式(3)により前記データX1からw1軸方向の情報を引き抜いたデータX2を求め、
X2=X1-w1t1 ・・・(3)
次に、第2回判別分析においてスペクトルデータをデータX2として求めた第2軸w2とデータX2とから、式(4)によりデータX2の第2軸座標(w2軸座標)の値t2を算出して、
t2=w2 TX2 ・・・(4)
(ここで、w2 Tはw2の転置ベクトル)
直交分解のなされた判別モデルを作成することを特徴とする。
前記判別モデルの作成にあたり、
第1回判別分析において各比較繊維の元のスペクトルデータをデータX1として求めた第1軸w1とデータX1とから、式(2)によりデータX1の第1軸座標(w1軸座標)の値t1を算出し、
t1=w1 TX1 ・・・(2)
(ここで、w1 Tはw1の転置ベクトル)
式(3)により前記データX1からw1軸方向の情報を引き抜いたデータX2を求め、
X2=X1-w1t1 ・・・(3)
次に、第2回判別分析においてスペクトルデータをデータX2として求めた第2軸w2とデータX2とから、式(4)によりデータX2の第2軸座標(w2軸座標)の値t2を算出して、
t2=w2 TX2 ・・・(4)
(ここで、w2 Tはw2の転置ベクトル)
直交分解のなされた判別モデルを作成することを特徴とする。
また、本発明は、請求項6の記載によると、請求項5に記載の繊維鑑別方法であって、
上記式(3)及び式(4)の操作を複数回繰り返すことにより3次元以上の互いに直交する軸座標を有する判別モデルを作成することを特徴とする。
上記式(3)及び式(4)の操作を複数回繰り返すことにより3次元以上の互いに直交する軸座標を有する判別モデルを作成することを特徴とする。
また、本発明は、請求項7の記載によると、請求項1~6のいずれか1つに記載の繊維鑑別方法であって、
セルロース系繊維において、下記の各組み合わせに係る2種類(2グループ)の比較繊維、
(1)天然繊維、対、再生繊維、
(2)綿、対、麻類、
(3)亜麻、対、苧麻、
(4)ビスコース系レーヨン、対、銅アンモニアレーヨン又は溶剤紡糸セルロース繊維、
(5)銅アンモニアレーヨン、対、溶剤紡糸セルロース繊維、
のスペクトルデータXを判別分析して得られた各判別モデルを使用して、前記被検繊維のスペクトルデータYを前記各判別モデルに当て嵌めて、前記被検繊維がいずれのグループに属するかを照合して、繊維の種類を鑑別することを特徴とする。
セルロース系繊維において、下記の各組み合わせに係る2種類(2グループ)の比較繊維、
(1)天然繊維、対、再生繊維、
(2)綿、対、麻類、
(3)亜麻、対、苧麻、
(4)ビスコース系レーヨン、対、銅アンモニアレーヨン又は溶剤紡糸セルロース繊維、
(5)銅アンモニアレーヨン、対、溶剤紡糸セルロース繊維、
のスペクトルデータXを判別分析して得られた各判別モデルを使用して、前記被検繊維のスペクトルデータYを前記各判別モデルに当て嵌めて、前記被検繊維がいずれのグループに属するかを照合して、繊維の種類を鑑別することを特徴とする。
また、本発明は、請求項8の記載によると、請求項1~7のいずれか1つに記載の繊維鑑別方法であって、
セルロース系繊維において、天然繊維と再生繊維との鑑別には主に波数1300~850cm-1の範囲内若しくはその近傍の範囲内を含む1組又は2組以上のスペクトルデータを使用して鑑別することを特徴とする。
セルロース系繊維において、天然繊維と再生繊維との鑑別には主に波数1300~850cm-1の範囲内若しくはその近傍の範囲内を含む1組又は2組以上のスペクトルデータを使用して鑑別することを特徴とする。
また、本発明は、請求項9の記載によると、請求項1~7のいずれか1つに記載の繊維鑑別方法であって、
セルロース系繊維において、綿と麻類との鑑別には主に波数1600~800cm-1の範囲内若しくはその近傍の範囲内を含む1組又は2組以上のスペクトルデータを使用して鑑別することを特徴とする。
セルロース系繊維において、綿と麻類との鑑別には主に波数1600~800cm-1の範囲内若しくはその近傍の範囲内を含む1組又は2組以上のスペクトルデータを使用して鑑別することを特徴とする。
また、本発明は、請求項10の記載によると、請求項1~7のいずれか1つに記載の繊維鑑別方法であって、
セルロース系繊維において、再生繊維どうしの鑑別には主に波数1600~900cm-1の範囲内若しくはその近傍の範囲内を含む1組又は2組以上のスペクトルデータを使用して鑑別することを特徴とする。
セルロース系繊維において、再生繊維どうしの鑑別には主に波数1600~900cm-1の範囲内若しくはその近傍の範囲内を含む1組又は2組以上のスペクトルデータを使用して鑑別することを特徴とする。
また、本発明は、請求項11の記載によると、請求項1~7のいずれか1つに記載の繊維鑑別方法であって、
セルロース系繊維において、銅アンモニアレーヨンと溶剤紡糸セルロース繊維との鑑別には主に波数1500~800cm-1の範囲内若しくはその近傍の範囲内を含む1組又は2組以上のスペクトルデータを使用して鑑別することを特徴とする。
セルロース系繊維において、銅アンモニアレーヨンと溶剤紡糸セルロース繊維との鑑別には主に波数1500~800cm-1の範囲内若しくはその近傍の範囲内を含む1組又は2組以上のスペクトルデータを使用して鑑別することを特徴とする。
また、本発明は、請求項12の記載によると、請求項1~7のいずれか1つに記載の繊維鑑別方法であって、
セルロース系繊維において、亜麻と苧麻との鑑別には主に波数1700~900cm-1の範囲内若しくはその近傍の範囲内を含む1組又は2組以上のスペクトルデータを使用して鑑別することを特徴とする。
セルロース系繊維において、亜麻と苧麻との鑑別には主に波数1700~900cm-1の範囲内若しくはその近傍の範囲内を含む1組又は2組以上のスペクトルデータを使用して鑑別することを特徴とする。
また、本発明は、請求項13の記載によると、請求項1~12のいずれか1つに記載の繊維鑑別方法であって、
前記式(1)における正則化係数ζの値を、1~0の範囲内として鑑別することを特徴とする。
前記式(1)における正則化係数ζの値を、1~0の範囲内として鑑別することを特徴とする。
また、本発明は、請求項14の記載によると、請求項1~13のいずれか1つに記載の繊維鑑別方法であって、
セルロース系繊維において、比較繊維及び被検繊維に対してアルカリ性物質による前処理を施してから吸収スペクトルを求めることを特徴とする。
セルロース系繊維において、比較繊維及び被検繊維に対してアルカリ性物質による前処理を施してから吸収スペクトルを求めることを特徴とする。
また、本発明は、請求項15の記載によると、請求項1~14のいずれか1つに記載の繊維鑑別方法であって、
前記比較繊維及び前記被検繊維の吸収スペクトルを求める方法は、ATR法(全反射測定法)であることを特徴とする。
前記比較繊維及び前記被検繊維の吸収スペクトルを求める方法は、ATR法(全反射測定法)であることを特徴とする。
また、本発明は、請求項16の記載によると、請求項1~15のいずれか1つに記載の繊維鑑別方法であって、
前記セルロース系繊維に分類される同系異種繊維としては、綿、亜麻、苧麻、黄麻、大麻、ビスコースレーヨン、ハイウェットモジュラスレーヨン、ポリノジックレーヨン、銅アンモニアレーヨン、及び、溶剤紡糸セルロース繊維が含まれることを特徴とする。
前記セルロース系繊維に分類される同系異種繊維としては、綿、亜麻、苧麻、黄麻、大麻、ビスコースレーヨン、ハイウェットモジュラスレーヨン、ポリノジックレーヨン、銅アンモニアレーヨン、及び、溶剤紡糸セルロース繊維が含まれることを特徴とする。
上記構成によれば、本発明は、セルロース系繊維やタンパク質系繊維など同系に分類される同系異種繊維を鑑別する繊維鑑別方法である。化学的組成が同じ繊維であって起源を異にする繊維どうしを赤外吸収スペクトル(近赤外吸収スペクトルを含む)により鑑別することができる。上記構成によれば、まず、鑑別しようとする2種類(2グループ)以上の同系異種繊維に対して、それぞれ繊維の種類が既知の単一繊維を比較繊維として複数準備する。次に、これらの比較繊維に対して赤外線又は近赤外線を照射してそれぞれの吸収スペクトルを求める。次に、これらの吸収スペクトルから得られたスペクトルデータXを基にして、上記式(1)により軸wを求める判別分析を行い、得られたスコアプロットから判別モデルを作成しておく。この軸wにより、グループ間は離れ且つ各グループは纏まることができるので各グループの繊維を明確に区別することができる。
次に、繊維の種類が未知の繊維を被検繊維とし、判別モデルの作成と同様にして当該被検繊維のスペクトルデータYから求めたスコアを判別モデルに当て嵌めて、被検繊維がいずれのグループに属するかを照合する。このことにより、被検繊維の種類を客観的に鑑別することができる。このように、比較繊維から得られた複数のスペクトルデータXを判別分析し、得られた判別モデルを利用することにより、より正確な繊維鑑別を比較的簡単、且つ、客観的に行うことができる。
従って、上記構成によれば、客観的な繊維鑑別をすることができ、被検繊維の種類を正確に鑑別することができる。これらの操作は比較的簡単であり、また、機器分析であることから、検査員の経験とノウハウの違いによる鑑別結果のバラツキが生じるということがない。
また、上記構成によれば、判別モデルの作成段階において、各比較繊維のスペクトルデータXから求めたスコアプロットの等確率楕円を作成するようにしてもよい。次に、被検繊維の鑑別段階において、当該被検繊維のスペクトルデータYから求めたスコアを作成した等確率楕円に当て嵌めて、被検繊維がいずれのグループに属するかを照合する。このことにより、上記効果をより一層具体的に発揮することができる。
また、上記構成によれば、判別モデルの作成段階において、各比較繊維のスペクトルデータXから求めたスコアからn次元(nは1以上の整数)の正規分布の推定するようにしてもよい。次に、被検繊維の鑑別段階において、当該被検繊維のスペクトルデータYから求めたスコアから推定したn次元の正規分布に対する確率密度を算出して、被検繊維がいずれのグループに属するかを照合する。このことにより、上記効果をより一層具体的に発揮することができる。
また、上記構成によれば、比較繊維及び被検繊維に対して、近赤外線を除く波数4000cm-1~600cm-1の範囲内の赤外線を照射するようにしてもよい。この範囲の赤外線で得られる吸収スペクトルからは豊富な情報が得られる。このことにより、上記効果をより一層具体的に発揮することができる。
また、上記構成によれば、2回の判別分析を行って判別モデルを作成するようにしてもよい。具体的には、第1回判別分析において各比較繊維の元のスペクトルデータをデータX1として上記式(1)により第1軸w1を求める。次に、この第1軸w1とデータX1とから、上記式(2)によりデータX1の第1軸座標(w1軸座標)の値t1を算出する。更に、上記式(3)によりデータX1からw1軸方向の情報を引き抜いたデータX2を求める。
次に、第2回判別分析においてスペクトルデータをデータX2として上記式(1)により第2軸w2を求める。次に、この第2軸w2とデータX2とから、式(4)によりデータX2の第2軸座標(w2軸座標)の値t2を算出する。このようにして、直交分解のなされた判別モデルを作成することができる。このことにより、上記効果をより一層具体的に発揮することができる。
また、上記構成によれば、上記式(3)及び式(4)の操作を複数回繰り返すようにしてもよい。よって、3次元以上の互いに直交する軸座標を有する判別モデルを作成することができる。このことにより、上記効果をより一層具体的に発揮することができる。
また、上記構成によれば、比較繊維及び被検繊維の判別分析を行う際に、鑑別対象とする同系異種繊維の組み合わせにより抽出する所定の波数域のスペクトルデータを変化させるようにしてもよい。このように、判別分析に用いる波数域を選択することで鑑別の精度を更に向上させることができる。
また、上記構成によれば、上記式(1)における正則化係数ζの値を、1~0の範囲内の範囲内として判別分析するようにしてもよい。このように、正則化係数ζの値を選択することで鑑別の精度を更に向上させることができる。
また、上記構成によれば、比較繊維及び被検繊維に対してアルカリ性物質による前処理を施してから吸収スペクトルを求めるようにしてもよい。このように、前処理を施すことにより鑑別の精度を更に向上させることができる。
よって、本発明によれば鑑別操作が比較的簡単で客観性を有し、検査員の経験やノウハウに頼ることなく同系異種繊維の鑑別をすることができ、且つ、鑑別する繊維の組み合わせによって生じる鑑別精度のバラツキを極力小さくして、高度な鑑別精度を実現することのできる繊維鑑別方法を提供することができる。
本発明においては、化学的組成が同じ繊維を「同系異種繊維」として定義する。この同系異種繊維としては、以下の述べるセルロース系繊維及びタンパク質系繊維などが挙げられる。本発明において、セルロース系繊維とは、天然セルロース繊維や再生セルロース繊維などのセルロースからなる全ての繊維をいう。天然セルロース繊維としては、綿、及び、亜麻(リネン)、苧麻(ラミー)、黄麻(ジュート)、大麻(ヘンプ)などの麻類が挙げられる。再生セルロース繊維としては、ビスコースレーヨン、ハイウェットモジュラスレーヨン(「HWMレーヨン」ともいう)、ポリノジックレーヨン、銅アンモニアレーヨン(キュプラ)、溶剤紡糸セルロース繊維(テンセル及びリヨセル)などが挙げられる。以下、これらの再生セルロース繊維のうちビスコース法により再生される繊維であるビスコースレーヨン、ハイウェットモジュラスレーヨン(HWMレーヨン)、及び、ポリノジックレーヨンを「ビスコース系レーヨン」ともいう。
本発明において、タンパク系質繊維とは、羊毛や絹などの動物性タンパク質からなる動物繊維だけでなく、植物性タンパク質からなる繊維、及び、これらのタンパク質を含有する全ての繊維をいう。ここで、動物繊維には、羊毛以外の獣毛繊維(後述する)や、絹以外に昆虫やクモなどが作る繊維も含まれる。特に、クモ糸繊維は、工業的な生産が検討されており、例えば、クモ糸遺伝子をカイコのゲノムDNAに組み込み、絹と同様にしてカイコにクモ糸のタンパク質を含有した糸を吐かせる研究がある(信州大学、中垣雅雄教授)。また、微生物培養で製造したクモ糸のタンパク質を紡糸してクモ糸を製造する企業が出現している(スパイバー株式会社)。
これらのタンパク系質繊維の中で、特に重要と考えられるのが獣毛繊維である。獣毛繊維とは、動物より得られる天然ケラチン質を主成分とする毛繊維の全てを含むものであり、ウール(羊の羊毛)、カシミヤ(カシミヤ山羊の毛)、ヤク(牛の一種ヤクの毛)、モヘア(アンゴラ山羊の毛)、アンゴラ(アンゴラ兎の毛)、アルパカ(小型こぶなしラクダのアルパカの毛)、ビキューナ(小型こぶなしラクダのビクーニャの毛)、キャメル(ラクダの毛)、リャマ(小型こぶなしラクダのリャマの毛)、フォックス(キツネの毛)、ミンク(イタチの一種ミンクの毛)、チンチラ(ネズミの一種チンチラの毛)、ラビット(ウサギの毛)などが挙げられる。
これらの同系異種繊維は、化学的組成が同じであり鑑別が容易ではない。特に、操作が簡単で客観的な鑑別法である赤外吸収スペクトルなどの光学的測定法は、化学的組成が異なる異系繊維の鑑別に効果を発揮するが、同系異種繊維の鑑別は難しいとされてきた。これに対して、本発明は同系異種繊維であるセルロース系繊維どうし、或いは、タンパク質系繊維どうしの鑑別などにおいて効果が発揮される。
例えば、セルロース系繊維においては、天然セルロース繊維と再生セルロース繊維との識別が可能となる。また、同じ天然セルロース繊維である綿と麻類との識別が可能となる。また、同じ麻類である亜麻(リネン)と苧麻(ラミー)との識別などが可能となる。更に、同じ再生セルロース繊維であるビスコース系レーヨンと「キュプラ及びリヨセル」との識別が可能となる。また、同じ再生セルロース繊維であり繊維断面形状が円形であり顕微鏡観察では判定し辛い、キュプラとリヨセルとの識別が可能となる。更に、タンパク質系繊維においては、高級なカシミヤとこれに酷似するヤク、脱スケールしたウールとの識別が可能となる。
ここで、本発明において判別分析(後述する)によって繊維鑑別をする際に、繊維の種類が既知の繊維(以下「比較繊維」という)、及び、鑑別対象である繊維(以下「被検繊維」という)から赤外吸収スペクトル(近赤外スペクトルを含む)を得る方法について説明する。この方法は、一般に赤外分光法(以下「IR分光法」という)又は近赤外分光法(以下「NIR分光法」という)といわれ、測定対象の物質に赤外線(近赤外線)を照射し、透過光或いは反射光を分光することでスペクトルを得て対象物の特性を知る方法である。特に、IR分光法は、対象物の分子構造や状態を知るために使用され、化学的組成が異なる有機物の分析には極めて一般的な方法である。
一般に分光法は、ラジオ波からガンマ線まで広く電磁波の放出或いは吸収を測定する方法であって、その中でIR分光法は、吸収スペクトルから得られる情報量が多く、産業において研究部門だけでなく製造部門、品質管理部門でも広く普及している。一方、NIR分光法は、IR分光法に比べ得られる情報量は少ないが、近年の多変量解析によるケモメトリックスの発展により、各産業において鑑別への使用が提案されている。本発明においては、情報解析法として独自の工夫を加えた判別分析(後述する)を使用してIR分光法及びNIR分光法のいずれの分光法にも対応することができる。なお、本発明においても情報量の多さと鑑別精度とを考慮すると、IR分光法を使用することが好ましい。
一般に赤外線は、近赤外線、中赤外線、及び遠赤外線として区別されるが、更に細かく区別する場合もあり、その波長範囲の定義が明確でない。そこで、本発明においては、IR分光法で使用する波長範囲として、近赤外線を除く2500nm~17000nm(2500nm~20000nmとしてもよい)の範囲内とする。また、IR分光法では、波長よりも波数(本発明においては「WN」ともいう)を使用することが多い。本発明においては、IR分光法で使用する波数範囲として、近赤外線を除く4000cm-1~600cm-1の範囲内とする。一方、本発明においては、NIR分光法で使用する波長範囲として、800nm~2500nmの範囲内とする。また、NIR分光法で使用する波数範囲として、12500cm-1~4000cm-1の範囲内とする。
なお、IR分光法とNIR分光法とで使用する波数域の境界は、4000cm-1とされている。従って、4000cm-1自体が近赤外線であるのか、或いは、中赤外線であるのかで疑義が生じる場合がある。そこで、本発明においては、「近赤外線を除く4000cm-1~600cm-1の範囲内」という意味を厳格に解釈する必要があるときには、「波数(WN)が4000cm-1>WN≧600cm-1の範囲内」とすることができる。
上述のように、NIR分光法は、繊維の鑑別への利用が提案されている(上記特許文献1及び2)。しかし、その情報量の少なさから同系異種繊維の実用的な鑑別には至っていない。そこで、本発明は、繊維から得られる情報量が多いにもかかわらず、これまで化学的組成が異なる異系繊維の鑑別のみに利用され、同系異種繊維の鑑別に利用されていない一般のIR分光法を利用できるものである。また、本発明に使用する赤外分光光度計は、多くの産業で使用されていることから廉価であり、鑑別のための設備投資やメンテナンスの費用が抑えられる。なお、本発明は、独自の工夫を加えた判別分析(後述する)を使用することにより、情報量の少ないNIR分光法を利用できるものである。
以下、IR分光法によって本発明を詳細に説明する。本発明においてIR分光法で鑑別するには、一般に使用されているフーリエ変換赤外分光光度計(以下「FT/IR分光光度計」という)を使用することができる。比較繊維及び被検繊維の吸収スペクトルを得るには、繊維を微粉砕して臭化カリウム(KBr)粉末と共に錠剤を形成して、その透過光を測定するKBr錠剤法などの透過法で測定してもよい。或いは、織編物を破壊することなくそのまま反射光を測定できるATR法(全反射測定法)や、FT/IR分光光度計の普及と共に広く使われるようになった拡散反射法などの反射法で測定するようにしてもよい。また、得られた吸収スペクトルは、必要により通常の方法により大気補正、ベースライン補正、平滑化補正、潜り込み深さ補正などを行うことが好ましい。
なお、KBr錠剤法において繊維を粉砕する場合には、ハサミでの切断、ミルによる粉砕、或いは、凍結粉砕などを利用することができる。また、粉砕後の繊維の長さ及び径は任意でよいが、微粉砕することが好ましい。また、KBr錠剤法とATR法のいずれを採用する場合であっても、繊維の吸湿状態を制御することが好ましい。特に、吸湿性の高いセルロース系繊維やタンパク質系繊維においては、同系異種繊維間で吸湿性が異なり吸収スペクトルが繊維中の自由水の影響を受けることがあるからである。
ここで、セルロース系繊維を例として、これに含まれる綿、麻類(リネン及びラミー)、ビスコース系レーヨン(以下、単に「レーヨン」という)、キュプラ、リヨセルの各繊維の吸収スペクトルを比較する。図1は、各種セルロース系繊維の吸収スペクトル(平均スペクトル)を示す図である。図1の各吸収スペクトル(1~6)は、FT/IR分光光度計のATR法で波数4000cm-1~600cm-1の範囲内で測定した。なお、図1においては、標準サンプルとして結晶セルロース(6)であるアビセル(登録商標、旭化成工業)を標準サンプルとして各繊維(1~5)と比較した。これらの吸収スペクトルは、標準偏差で規格化した平均スペクトルである。
図1において、3600cm-1~3100cm-1にかけて、再生繊維であるレーヨン(3)、キュプラ(4)、リヨセル(5)の吸収スペクトルは、天然繊維である綿(1)、麻類(2)に比べ、広いピーク幅を示している。また、天然繊維である綿(1)、麻類(2)には、3330cm-1に鋭いピークが現れるが、再生繊維であるレーヨン(3)、キュプラ(4)、リヨセル(5)には現れない。更に、1200cm-1~800cm-1にかけて現れるメインピークにおいて、天然繊維である綿(1)、麻類(2)には頂点に2つのピークが現れるが、再生繊維であるレーヨン(3)、キュプラ(4)、リヨセル(5)には1つのピークしか現れない。
このように、波数4000cm-1~600cm-1の範囲内の吸収スペクトルを詳細に観察することにより、天然繊維と再生繊維とを鑑別できる可能性がある。しかし、これらの吸収スペクトルを比較するだけでは、セルロース系繊維において、天然繊維と再生繊維とを明確に鑑別することは容易ではない。また、同じ天然繊維である綿と麻類との鑑別、同じ麻類であるリネンとラミーとの鑑別、再生繊維どうしの鑑別、及び形状の類似したキュプラとリヨセルとの鑑別などは難しい。
本発明において、化学的組成が同じセルロース系繊維である天然繊維と再生繊維とがIR分光法で得られた吸収スペクトルから鑑別できる理由は、これらの繊維を構成するセルロースの結晶状態が異なることによるものと思われる。一般にセルロース系繊維の結晶構造については、天然繊維がI型結晶であり、再生繊維がII型結晶を構成している。また、セルロース分子の配向状態について、天然繊維は分子の還元末端を同一方向に向けるパラレル構造を示し、再生繊維は分子の還元末端が交互に位置を変えるアンチパラレル構造を示している。
これらの結晶状態の違いにより、天然繊維と再生繊維の吸収スペクトルにおいては吸収位置のシフトや吸収強度の変化が生じるものと思われる。更に、本発明者らは、同じセルロース系天然繊維である綿と麻類において、或いは、同じセルロース系再生繊維であるレーヨン、キュプラ、リヨセルにおいても、結晶化度、結晶の大きさ、結晶の分布が異なることから、IR分光法の吸収スペクトルに何らかの情報が含まれているものと予測した。
以下、本発明に係る繊維鑑別方法について、各実施形態により詳細に説明する。なお、本発明は、下記の各実施形態にのみ限定されるものではない。本発明においては、各種類の比較繊維の吸収スペクトルから得られたスペクトルデータXを判別分析し、得られた判別モデルとして準備する。この工程を各実施形態においては「判別モデル準備工程」という。次に、同様にして被検繊維の吸収スペクトルから得られたスペクトルデータYを判別モデルと照合する。この照合において、被検繊維のスペクトルデータYと比較繊維のスペクトルデータXから得られた判別モデルとの一致性を指標として、被検繊維の種類を鑑別する。この工程を各実施形態においては「鑑別工程」という。
《第1実施形態》
本第1実施形態においては、複数種類の単一繊維に対して、各単一繊維間の鑑別を行うものである。例えば、セルロース系繊維においては、天然繊維と再生繊維との鑑別、綿と麻類との鑑別、麻類におけるリネンとラミーとの鑑別、再生繊維どうしの鑑別、及び、キュプラとリヨセルとの鑑別などについて説明する。なお、本第1実施形態においては、判別モデルのスコアの等確率楕円に対する被検繊維のスコアの適合度合から鑑別を行うものである。
本第1実施形態においては、複数種類の単一繊維に対して、各単一繊維間の鑑別を行うものである。例えば、セルロース系繊維においては、天然繊維と再生繊維との鑑別、綿と麻類との鑑別、麻類におけるリネンとラミーとの鑑別、再生繊維どうしの鑑別、及び、キュプラとリヨセルとの鑑別などについて説明する。なお、本第1実施形態においては、判別モデルのスコアの等確率楕円に対する被検繊維のスコアの適合度合から鑑別を行うものである。
(1)判別モデル準備工程
本第1実施形態においては、鑑別しようとする繊維の組み合わせ、例えば、綿と麻類との鑑別を行う場合には、これらの繊維を比較繊維として吸収スペクトルを求める。なお、これらの吸収スペクトルに対しては、所定の方法で各種補正を行うようにしてもよい。これらの補正としては、例えば、波数の変化による赤外光の潜り込み深さの補正、或いは、乗算的散乱補正(MSC)などがある。
本第1実施形態においては、鑑別しようとする繊維の組み合わせ、例えば、綿と麻類との鑑別を行う場合には、これらの繊維を比較繊維として吸収スペクトルを求める。なお、これらの吸収スペクトルに対しては、所定の方法で各種補正を行うようにしてもよい。これらの補正としては、例えば、波数の変化による赤外光の潜り込み深さの補正、或いは、乗算的散乱補正(MSC)などがある。
ここで、綿の吸収スペクトルを求める場合には、綿からなる複数の試料を1つのグループとしてそれぞれの吸収スペクトルを求める。また、麻類の吸収スペクトルを求める場合にも、麻類からなる複数の試料を1つのグループとしてそれぞれの吸収スペクトルを求める。ここで、麻類としてリネン、ラミー、ジュート、ヘンプなどを1つの麻類グループとして吸収スペクトルを求めるようにしてもよい。また、例えば、リネンとラミーとを別グループとして吸収スペクトルを求め、それぞれのグループを綿のグループと鑑別するようにしてもよい。
また、セルロース系繊維製品の場合には、織編物となった段階で染色性や物性を向上させるためにアルカリ性物質による繊維加工が施されることがある。この繊維加工としては、一般にアルカリ水溶液、又は、液体アンモニアなどによる浸漬処理が行われる。特に、綿に対する水酸化ナトリウム水溶液による浸漬処理を「マーセライズ加工」といい、広く行われている。なお、鑑別対象であるセルロース系繊維にアルカリ性物質による繊維加工が施されているか否かにより、赤外吸収スペクトルが若干変化することが考えられる。従って、アルカリ性物質による繊維加工の有無が混在した試料群による鑑別を行うと、鑑別精度が低下することも考えられる。
また、市場にはアルカリ性物質による繊維加工が施されたセルロース系繊維製品とアルカリ性物質による繊維加工が施されていないセルロース系繊維製品が流通する。そこで、本発明者らは、比較繊維及び被検繊維に対して所定濃度のアルカリ性物質による前処理をしてから赤外吸収スペクトルを求めることにより、鑑別精度が向上することを見出した。すなわち、アルカリ性物質による繊維加工の有無が混在した比較繊維及び被検繊維に対してアルカリ性物質による前処理を行うことにより、これらがアルカリ性物質による繊維加工が施されたセルロース系繊維として統一され、吸収スペクトルが近似して鑑別精度が向上するものと考える。
このアルカリ性物質による前処理の条件は、特に限定するものではなく、使用するアルカリ性物質の種類や濃度、処理する繊維の種類などにより適宜選定すればよい。例えば、セルロース系繊維が綿である場合には、通常のマーセライズ加工と同様にアルカリ性物質として8重量%~24重量%濃度、好ましくは10重量%~20重量%濃度、更に好ましくは15重量%~20重量%濃度の水酸化ナトリウム水溶液を使用し、室温にて浸漬処理することにより鑑別精度が向上する。
なお、判別モデルを準備する際の比較繊維、及び、鑑別対象である被検繊維に対して上記のアルカリ性物質による前処理を施した赤外吸収スペクトルと施していない赤外吸収スペクトルの両方を求め、これらを併用して鑑別することにより鑑別精度は更に向上する。
更に、各繊維には、織編物の区別、糸の太さの違い、染色の有無、繊維加工剤の有無などがある。従って、これらの情報が吸収スペクトルに与える影響と、解析に使用する波数域(後述する)との関係を考慮して各グループの吸収スペクトルを求めるようにする。
本第1実施形態においては、比較繊維の吸収スペクトルを求める際にFT/IR分光光度計を使用する。FT/IR分光光度計は、多くの産業で使用されていることから廉価であり、鑑別のための設備投資やメンテナンスの費用が抑えられるからである。また、本第1実施形態においては、測定にATR法を使用する。鑑別しようとする繊維は、多くの場合、既に繊維製品として織編物の状態にあり、この織編物の状態のまま非破壊で鑑別できるという利点があるからである。なお、ATR法に使用するプリズムの種類は、特に限定するものではないが、繊維試料の場合、一般にZnSeプリズムを使用することが好ましい。
本第1実施形態においては、近赤外線を除く波数4000cm-1~600cm-1の範囲内の赤外線を照射してそれぞれの吸収スペクトルを求める。ここで、「近赤外線を除く」とは、吸収スペクトルを測定する際に「近赤外線部分の吸収スペクトルを測定しない」という意味に解するものではない。「鑑別に使用する吸収スペクトルの範囲が波数4000cm-1~600cm-1の範囲内のものである」と解するものである。
また、本発明においては、波数4000cm-1~600cm-1の範囲内の全ての領域の吸収スペクトルで解析を行うようにしてもよい。或いは、特定の波数域を選択して解析を行うようにしてもよい。本第1実施形態においては、所定の波数域におけるスペクトルデータを解析に使用する。解析に使用する波数域を限定することにより、鑑別に必要な赤外吸収が強調されると共にノイズを排除して鑑別精度が向上するからである。
ここで、所定の波数域におけるスペクトルデータの抽出には、予め測定領域を決めておき、その範囲内でのみ吸収スペクトルを求めるようにしてもよい。しかし、一般には使用する分光光度計の全測定領域で得られた吸収スペクトルから解析に必要とする所定の波数域のスペクトルデータを抽出することが好ましい。
なお、ここでいう所定の波数域は、鑑別する繊維の種類と組み合わせにより適宜選択することが好ましい。本発明者らは、セルロース系繊維において、天然繊維と再生繊維との鑑別、綿と麻類との鑑別、リネンとラミーとの鑑別、再生繊維どうしの鑑別、及び、キュプラとリヨセルとの鑑別などにおいて、それぞれに適切な波数域が存在することを確認した。なお、鑑別に使用される所定の波数域については、1つの波数域だけで解析するようにしてもよく、或いは、2又はそれ以上の複数の波数域を組み合わせて解析するようにしてもよい。
ここで、比較繊維のスペクトルデータを解析するに当たり、まず、スペクトルデータの処理をすることが好ましい。スペクトルデータの処理には、例えば、1次微分、2次微分、或いはそれ以上の高次微分処理などを行うことが好ましい。これらの微分処理により、スペクトルに埋もれたピークの先鋭化やバックグランドの影響の消去など、スペクトル情報の増強を行うことができるからである。微分処理で使用する方法と次元は、特に限定するものではなく、鑑別する繊維の種類と組み合わせにより適宜選択することが好ましい。一例として、図1の各スペクトル(1~5)をSavitzky-Golay法により1次微分した各スペクトル(1~5)を図2に示す。
次に、得られた微分スペクトルから解析に有効な所定の波数域のスペクトルデータを抽出する。スペクトルデータを抽出する方法は特に限定するものではない。鑑別する繊維の種類と組み合わせに対して、解析に必要と考えられる特定の官能基による波数域を選定するようにしてもよい。また、解析に対してノイズを有すると考えられる波数域のスペクトルデータを積極的に排除するようにしてもよい。例えば、セルロース系繊維の場合には、波数2750~1850cm-1の範囲内のスペクトルデータを解析に使用しないようにしてもよい。この波数域からは解析に有効な情報が少なく、逆に、CO2の吸収などがノイズとして現れることが考えられるからである。
例えば、セルロース系繊維の鑑別においては、波数3500cm-1~3000cm-1の範囲内(O-H)のスペクトルデータ、及び、波数1200cm-1~1000cm-1の範囲内(C-OH、C-O-C、C-C)のスペクトルデータなどが重要と考えられるので、これらを組み合わせて解析するようにしてもよい。但し、吸湿性の高いセルロース系繊維の鑑別においては、波数3500cm-1~3000cm-1の範囲内のスペクトルデータが吸湿状態の影響を受けやすく、これらを排除して鑑別することも考えられる。
本発明者らは、赤外吸収の大きな波数域の組み合わせを用いて判別分析を行い、特に有効と考えられる特定の波数域を抽出することができた。例えば、天然繊維と再生繊維との鑑別において、波数1300~850cm-1の範囲内(C-OH、C-O-C、C-C)のスペクトルデータを抽出した。また、綿と麻類との鑑別において、波数1600~800cm-1の範囲内(O-H、C-OH、C-O-C、C-C)のスペクトルデータを抽出した。また、リネンとラミーとの鑑別において、波数1600~900cm-1の範囲内(O-H、C-OH、C-O-C、C-C)のスペクトルデータを抽出した。また、再生繊維どうしの鑑別すなわちレーヨンと「キュプラ及びリヨセル」との鑑別において、波数1500~800cm-1の範囲内(O-H、C-OH、C-O-C、C-C)のスペクトルデータを抽出した。また、キュプラとリヨセルとの鑑別において、波数1700~900cm-1の範囲内(O-H、C-OH、C-O-C、C-C)のスペクトルデータを抽出した。
次に、抽出したスペクトルデータを判別分析して判別モデルを作成する。ここで、判別分析とは、事前に与えられているデータが異なるグループに分かれる場合、新しいデータが得られた際に、どちらのグループに入るのかを判別するための基準(判別関数)を得るための
1495603678060_0
の手法をいう。判別分析として使用される手法は、特に限定するものではなく、どのような手法を採用するようにしてもよい。例えば、フィッシャーの判別分析であるFDA(Fisher’s linear discriminant analysis)などが一般的である。これに対して、本発明者らは、判別分析の手法に独自の工夫を加えたFDOD(Fisher’s linear discriminant orthogonal decomposition)を使用した。以下にFDODによる判別分析を具体的に説明する。
1495603678060_0
の手法をいう。判別分析として使用される手法は、特に限定するものではなく、どのような手法を採用するようにしてもよい。例えば、フィッシャーの判別分析であるFDA(Fisher’s linear discriminant analysis)などが一般的である。これに対して、本発明者らは、判別分析の手法に独自の工夫を加えたFDOD(Fisher’s linear discriminant orthogonal decomposition)を使用した。以下にFDODによる判別分析を具体的に説明する。
FDODにおいては、2つのグループを分離する軸w(グループ間は離れ且つ各グループは纏まる軸w)を求めるにあたり、直交分解により互いに直交する2つの軸w1、w2を求めることを特徴とする。また、本第1実施形態においては、FDODにおいて正則化を行うことを特徴とする。具体的には、下記式(1)において、正則化項ζIを導入する。
SBw=λ(SW+ζI)w ・・・(1)
上記式(1)において、SB・SWは、分散共分散行列又は変動行列である。SB・SWに分散共分散行列を使用する場合には、SBはグループ間分散共分散行列、SWはグループ内分散共分散行列を表している。一方、SB・SWに変動行列を使用する場合には、SBはグループ間変動行列、SWはグループ内変動行列を表している。また、ζは正則化係数、Iは単位行列を表している。なお、本第1実施形態においては、前記式(1)における正則化係数ζの値を、1~0の範囲内とすることが好ましく、また、1×10-3~1×10-8の範囲内とすることがより好ましい。
上記式(1)において、SB・SWは、分散共分散行列又は変動行列である。SB・SWに分散共分散行列を使用する場合には、SBはグループ間分散共分散行列、SWはグループ内分散共分散行列を表している。一方、SB・SWに変動行列を使用する場合には、SBはグループ間変動行列、SWはグループ内変動行列を表している。また、ζは正則化係数、Iは単位行列を表している。なお、本第1実施形態においては、前記式(1)における正則化係数ζの値を、1~0の範囲内とすることが好ましく、また、1×10-3~1×10-8の範囲内とすることがより好ましい。
一般に、判別分析において正則化を行うことにより、モデルサンプル(この場合は比較繊維)の判別精度が低下するといわれている。このことは、一方で過学習を防止するという意味も考えられる。過学習を起こすと、モデルサンプル(この場合は比較繊維)に過度に適合した判別モデルができてしまい、テストサンプル(この場合は被検繊維)への適合性が悪くなり汎化性能の悪い状態となる。そこで、本発明者らは適切な正則化係数ζを選択することにより、高い判別精度と良好な汎化性能を両立できることを見出した。
本第1実施形態においては、上述の軸の直交分解を行うために2回の判別分析を行う。まず、各比較繊維の吸収スペクトルから上述の特定波数域のスペクトルデータXを抽出し、これをデータX1とする。このデータX1を用いて上記式(1)により第1回判別分析を行って第1軸w1を求める。このとき、予め選定した正則化係数ζ1を使用する。なお、判別分析に使用する解析ソフトについては、特に限定するものではない。本第1実施形態においては、発明者自らが構成したプログラムを使用して解析した。
次に、第1回判別分析で得られた第1軸w1とデータX1とから、下記式(2)によりデータX1の第1軸座標(w1軸座標)の値t1(射影t1ともいう)を算出する。
t1=w1
TX1 ・・・(2)
ここで、w1 Tはw1の転置ベクトルを表している。
ここで、w1 Tはw1の転置ベクトルを表している。
次に、第2回判別分析に使用するデータを求めるためにデフレーションという操作を行う。具体的には、下記式(3)により先のデータX1からw1軸方向の情報を引き抜いたものをデータX2(残差行列ともいう)とする。
X2=X1-w1t1 ・・・(3)
次に、このデータX2を用いて上記式(1)により第2回判別分析を行って第2軸w2を求める。このとき、予め選定した正則化係数ζ2を使用する。この時使用する正則化係数ζ2は、第1回判別分析で使用した正則化係数ζ1と異なる値であってもよい。このようにして求めた第2軸w2とデータX2とから、式(4)によりデータX2の第2軸座標(w2軸座標)の値t2(射影t2ともいう)を算出する。
次に、このデータX2を用いて上記式(1)により第2回判別分析を行って第2軸w2を求める。このとき、予め選定した正則化係数ζ2を使用する。この時使用する正則化係数ζ2は、第1回判別分析で使用した正則化係数ζ1と異なる値であってもよい。このようにして求めた第2軸w2とデータX2とから、式(4)によりデータX2の第2軸座標(w2軸座標)の値t2(射影t2ともいう)を算出する。
t2=w2
TX2 ・・・(4)
ここで、w2 Tはw2の転置ベクトルを表している。
ここで、w2 Tはw2の転置ベクトルを表している。
このようにして求めた互いに直交する2つの軸w1、w2を用いて、直交分解のなされた判別モデルを作成することができる。この判別モデルにおいては、軸w1、w2を直交軸として2つのグループが明確に区別される。
各グループに属する各比較繊維の射影t1及び射影t2に対応する値をその比較繊維のスコアという。2つの軸w1、w2に対して、各比較繊維のスコアをプロットしたものをスコアプロット(FDODプロット)という。本第1実施形態においては、判別モデルとして得られた2つのスコアプロットについて、それぞれ等確率楕円を作成する。なお、これらの判別モデル及び等確率楕円については、下記の実施例1において詳述する。
また、本第1実施形態においては、上述のように互いに直交する2つの軸w1、w2を用いて、直交分解のなされた判別モデルを作成するものであるが、上記式(3)及び式(4)の操作を繰り返すことにより、互いに直交する3軸以上の高次元の判別モデルを作成するようにしてもよい。
(2)鑑別工程
本第1実施形態の鑑別工程においては、まず、鑑別しようとする被検繊維の吸収スペクトルを求める。吸収スペクトルを求める方法、吸収スペクトルに各種補正をする方法、及び、得られた吸収スペクトルに微分処理などの処理を行う方法は、上述の比較繊維に対する方法と同様である。次に、求めた微分スペクトルから比較繊維と同じ波数域のスペクトルデータYを抽出し、比較繊維と同様にして被検繊維のスコア(射影t1及び射影t2に対応)を算出する。次に、得られた被検繊維のスコアを判別モデルの等確率楕円に当て嵌めて、被検繊維がいずれのグループに属する繊維であるかを鑑別する。
本第1実施形態の鑑別工程においては、まず、鑑別しようとする被検繊維の吸収スペクトルを求める。吸収スペクトルを求める方法、吸収スペクトルに各種補正をする方法、及び、得られた吸収スペクトルに微分処理などの処理を行う方法は、上述の比較繊維に対する方法と同様である。次に、求めた微分スペクトルから比較繊維と同じ波数域のスペクトルデータYを抽出し、比較繊維と同様にして被検繊維のスコア(射影t1及び射影t2に対応)を算出する。次に、得られた被検繊維のスコアを判別モデルの等確率楕円に当て嵌めて、被検繊維がいずれのグループに属する繊維であるかを鑑別する。
なお、本鑑別工程においては、被検繊維の種類は未知であるが、比較的簡単な顕微鏡法などで被検繊維がセルロース系繊維であることが判明している。しかし、被検繊維がセルロース系繊維のうちのいずれの繊維であるかが不明である。そこで、本第1実施形態においては、次のような手順で繊維鑑別することが好ましい。
図3は、本第1実施形態において被検繊維を鑑別する解析手順を表す鑑別フロー図である。図3において、まず、被検繊維が天然繊維であるか再生繊維であるかを鑑別する。このときには、天然繊維と再生繊維とから得られた判別モデルを使用する。ここで、被検繊維が天然繊維であると鑑別された場合には、続いて被検繊維が綿であるか麻類であるかを鑑別する。このときには、綿と麻類とから得られた判別モデルを使用する。更に、被検繊維が麻類であると鑑別された場合には、続いて被検繊維がどのような麻であるかを鑑別する。なお、図3においては、麻類として最も一般的なリネンであるかラミーであるかを鑑別する。このときには、リネンとラミーとから得られた判別モデルを使用する。
同様に、図3において、被検繊維が再生繊維であると鑑別された場合には、続いて被検繊維がレーヨンであるか「キュプラ又はリヨセル」であるかを鑑別する。このときには、レーヨンと「キュプラ及びリヨセル」とから得られた判別モデルを使用する。ここで、被検繊維が「キュプラ又はリヨセル」であると鑑別された場合には、続いて被検繊維がキュプラであるかリヨセルであるかを鑑別する。このときには、キュプラとリヨセルとから得られた判別モデルを使用する。
また、図4は、図3の鑑別フロー図の一部を抽出した部分フロー図である。図4において、被検繊維が天然繊維であるか再生繊維であるかを鑑別した際に、天然繊維と再生繊維とから得られた判別モデルでは対応できないものがある。この場合、図4の判別不可の被検繊維は、天然繊維と再生繊維の混合繊維であるか、或いは、セルロース系繊維以外の繊維が混合されている可能性がある。
このようにして、図3の鑑別フロー図に従って鑑別を行うことにより、被検繊維の種類を客観的に鑑別することができる。次に、本第1実施形態の鑑別方法を実施例1により具体的に説明する。
本実施例1は、上記第1実施形態に係る各単一繊維間の鑑別を行うものであり、複数の被検繊維に対して鑑別フロー図(図3参照)に従って鑑別を行うものである。なお、各被検繊維は、いずれも顕微鏡法などの予備鑑定においてセルロース系繊維であることが判明している。
(1)判別モデル準備工程
本実施例1においては、まず、繊維の種類が既知の単一繊維として、綿27点、リネン25点、ラミー21点の天然繊維73点を準備した。また、繊維の種類が既知の単一繊維として、レーヨン48点、キュプラ30点、リヨセル31点の再生繊維109点を準備した。これら合計182点の単一繊維を本実施例1の比較繊維とした。なお、綿及び麻類(リネン及びラミー)73点、並びに、再生繊維の一部40点(レーヨン14点、キュプラ13点、リヨセル13点)に関しては、室温において水酸化ナトリウム水溶液(17重量%)による前処理を行った。
本実施例1においては、まず、繊維の種類が既知の単一繊維として、綿27点、リネン25点、ラミー21点の天然繊維73点を準備した。また、繊維の種類が既知の単一繊維として、レーヨン48点、キュプラ30点、リヨセル31点の再生繊維109点を準備した。これら合計182点の単一繊維を本実施例1の比較繊維とした。なお、綿及び麻類(リネン及びラミー)73点、並びに、再生繊維の一部40点(レーヨン14点、キュプラ13点、リヨセル13点)に関しては、室温において水酸化ナトリウム水溶液(17重量%)による前処理を行った。
次に、これら合計182点の織編物について、その吸収スペクトルを得た。吸収スペクトルの測定は、赤外分光光度計FT/IR‐4700(日本分光株式会社)を使用し、ZnSeプリズムによるATR法で、波数4000cm-1~600cm-1の吸収スペクトルを測定した。次に、乗算的散乱補正(MSC)後の各吸収スペクトルをSavitzky-Golay法により1次微分して微分スペクトルを得た。
次に、これらの吸収スペクトル(微分スペクトル)をFDODによる判別モデル作成用グループと等確率楕円作成用グループに分類した。吸収スペクトルを判別モデル作成用グループと等確率楕円作成用グループに分類する理由については後述する。
[判別モデル作成用グループ]
・第1グループ(A1):30点の天然繊維(綿15点、リネン7点及びラミー8点)
・第2グループ(A2):30点の再生繊維(前処理レーヨン10点、前処理キュプラ10点及び前処理リヨセル10点)
・第3グループ(B1):15点の綿
・第4グループ(B2):15点の麻類(リネン7点及びラミー8点)
・第5グループ(C1):15点のリネン
・第6グループ(C2):15点のラミー
・第7グループ(D1):35点の未処理レーヨン
・第8グループ(D2):35点のキュプラ及びリヨセル(未処理キュプラ18点及び未処理リヨセル17点)
・第9グループ(E1):15点の未処理キュプラ
・第10グループ(E2):15点の未処理リヨセル
このような上記10グループを得た。
・第1グループ(A1):30点の天然繊維(綿15点、リネン7点及びラミー8点)
・第2グループ(A2):30点の再生繊維(前処理レーヨン10点、前処理キュプラ10点及び前処理リヨセル10点)
・第3グループ(B1):15点の綿
・第4グループ(B2):15点の麻類(リネン7点及びラミー8点)
・第5グループ(C1):15点のリネン
・第6グループ(C2):15点のラミー
・第7グループ(D1):35点の未処理レーヨン
・第8グループ(D2):35点のキュプラ及びリヨセル(未処理キュプラ18点及び未処理リヨセル17点)
・第9グループ(E1):15点の未処理キュプラ
・第10グループ(E2):15点の未処理リヨセル
このような上記10グループを得た。
[等確率楕円作成用グループ]
・第11グループ(A3):10点の天然繊維(綿5点、リネン2点及びラミー3点)
・第12グループ(A4):10点の再生繊維(前処理レーヨン4点、前処理キュプラ3点及び前処理リヨセル3点)
・第13グループ(B3):10点の綿
・第14グループ(B4):10点の麻類(リネン7点及びラミー3点)
・第15グループ(C3):5点のリネン
・第16グループ(C4):5点のラミー
・第17グループ(D3):10点の未処理レーヨン
・第18グループ(D4):10点のキュプラ及びリヨセル(未処理キュプラ5点及び未処理リヨセル5点)
・第19グループ(E3):10点の未処理キュプラ
・第20グループ(E4):10点の未処理リヨセル
このような上記10グループを得た。
・第11グループ(A3):10点の天然繊維(綿5点、リネン2点及びラミー3点)
・第12グループ(A4):10点の再生繊維(前処理レーヨン4点、前処理キュプラ3点及び前処理リヨセル3点)
・第13グループ(B3):10点の綿
・第14グループ(B4):10点の麻類(リネン7点及びラミー3点)
・第15グループ(C3):5点のリネン
・第16グループ(C4):5点のラミー
・第17グループ(D3):10点の未処理レーヨン
・第18グループ(D4):10点のキュプラ及びリヨセル(未処理キュプラ5点及び未処理リヨセル5点)
・第19グループ(E3):10点の未処理キュプラ
・第20グループ(E4):10点の未処理リヨセル
このような上記10グループを得た。
次に、判別モデル作成用グループを用いて判別モデルを作成した。上記第1グループ(A1)~第10グループ(E2)のうち2つずつ組み合わせて、5組の組み合わせとした。次に、これらの微分スペクトルから各組み合わせを特徴付ける所定の波数域を抽出した。更に、各組み合わせに対する判別分析用の2つの正則化係数ζ1、ζ2を特定した。本実施例1において、各判別モデルA~Eと抽出した波数域及び2つの正則化係数ζ1、ζ2の値を下記に示す。
[判別モデルA]:天然繊維と再生繊維
・第1グループ(A1)と第2グループ(A2):波数1200~850cm-1
・第1回判別分析用の正則化係数:ζ1=1×10-5
・第2回判別分析用の正則化係数:ζ2=1×10-5
[判別モデルB]:綿と麻類
・第3グループ(B1)と第4グループ(B2):波数1400~900cm-1
・第1回判別分析用の正則化係数:ζ1=1×10-7
・第2回判別分析用の正則化係数:ζ2=1×10-7
[判別モデルC]:リネンとラミー
・第5グループ(C1)と第6グループ(C2):波数1400~900cm-1
・第1回判別分析用の正則化係数:ζ1=1×10-7
・第2回判別分析用の正則化係数:ζ2=1×10-7
[判別モデルD]:レーヨンと(キュプラ及びリヨセル)
・第7グループ(D1)と第8グループ(D2):波数1400~900cm-1
・第1回判別分析用の正則化係数:ζ1=1×10-6
・第2回判別分析用の正則化係数:ζ2=1×10-6
[判別モデルE]:キュプラとリヨセル
・第9グループ(E1)と第10グループ(E2):波数1400~900cm-1
・第1回判別分析用の正則化係数:ζ1=1×10-6
・第2回判別分析用の正則化係数:ζ2=1×10-6
このようにして抽出した波数域における各グループのスペクトルデータXを第1回目の判別分析に使用するデータX1とした。このデータX1を使用して5組の組み合わせに対する2回の判別分析を行い、それぞれの比較繊維のスコア(射影t1及び射影t2に対応)を算出した。各グループの比較繊維のスコアを互いに直交する2つの軸w1、w2にプロットして判別モデル(仮モデル)A~Eを得た。
・第1グループ(A1)と第2グループ(A2):波数1200~850cm-1
・第1回判別分析用の正則化係数:ζ1=1×10-5
・第2回判別分析用の正則化係数:ζ2=1×10-5
[判別モデルB]:綿と麻類
・第3グループ(B1)と第4グループ(B2):波数1400~900cm-1
・第1回判別分析用の正則化係数:ζ1=1×10-7
・第2回判別分析用の正則化係数:ζ2=1×10-7
[判別モデルC]:リネンとラミー
・第5グループ(C1)と第6グループ(C2):波数1400~900cm-1
・第1回判別分析用の正則化係数:ζ1=1×10-7
・第2回判別分析用の正則化係数:ζ2=1×10-7
[判別モデルD]:レーヨンと(キュプラ及びリヨセル)
・第7グループ(D1)と第8グループ(D2):波数1400~900cm-1
・第1回判別分析用の正則化係数:ζ1=1×10-6
・第2回判別分析用の正則化係数:ζ2=1×10-6
[判別モデルE]:キュプラとリヨセル
・第9グループ(E1)と第10グループ(E2):波数1400~900cm-1
・第1回判別分析用の正則化係数:ζ1=1×10-6
・第2回判別分析用の正則化係数:ζ2=1×10-6
このようにして抽出した波数域における各グループのスペクトルデータXを第1回目の判別分析に使用するデータX1とした。このデータX1を使用して5組の組み合わせに対する2回の判別分析を行い、それぞれの比較繊維のスコア(射影t1及び射影t2に対応)を算出した。各グループの比較繊維のスコアを互いに直交する2つの軸w1、w2にプロットして判別モデル(仮モデル)A~Eを得た。
次に、判別モデル(仮モデル)A~Eの各グループに対して、等確率楕円作成用グループを用いて等確率楕円を作成した。本実施例1において、判別モデル作成用の比較繊維とは別に等確率楕円作成用の比較繊維を使用する。その理由は、次のように考えられる。すなわち、判別分析において判別モデルを作成した場合には、グループ間は離れ且つ各グループは纏まる軸wが求められる。従って、この狭い領域のデータのみで等確率楕円を作成した場合には、被検繊維のデータ上の僅かの違いで等確率楕円への当てはまりが悪くなる場合が生じる。
これを解消するには、2つの方法が考えられる。1つは、各グループの比較繊維の数(サンプル数)を非常に多くして判別モデルを作成し、これらから作成した等確率楕円からの当てはまりを良くする方法である。いま1つは、限られた数の比較繊維で判別モデルを作成し、判別モデル作成用の比較繊維とは別に等確率楕円作成用の比較繊維を使用して当てはまりの悪い情報を考慮した等確率楕円を作成する方法である。本実施例1においては、比較繊維の数が限られることから、後者の方法を採用した。
本実施例1においては、95%信頼水準の等確率楕円を作成した。具体的には、上記第11グループ(A3)~第20グループ(E4)の等確率楕円用の各比較繊維に対して、上記と同じ手法によりスコア(射影t1及び射影t2に対応)を算出した。これらのスコアをそれぞれのグループがプロットされた各判別モデルA~Eにプロットした。次に、発明者自らが構成したプログラムを使用して95%信頼水準の等確率楕円を作成した。
図5~図9は、本実施例1で得られた各判別モデル(完成モデル)A~E(FDODプロット)である。また、各判別モデルの記載されたグループを囲む楕円は、各グループに対する95%信頼水準の等確率楕円である。図5は、判別モデルA:「天然繊維」と「再生繊維」のFDODプロットであり、第1判別軸(w1軸)を横軸とし第2判別軸(w2軸)を縦軸として、「天然繊維」と「再生繊維」の2つのグループが明確に層別された。図6は、判別モデルB:「綿」と「麻類」の散布図であり、第1判別軸を横軸とし第2判別軸を縦軸として、「綿」と「麻類」の2つのグループが明確に層別された。図7は、判別モデルC:「リネン」と「ラミー」の散布図であり、第1判別軸を横軸とし第2判別軸を縦軸として、「リネン」と「ラミー」の2つのグループが明確に層別された。図8は、判別モデルD:「レーヨン」と「キュプラ及びリヨセル」の散布図であり、第1判別軸を横軸とし第2判別軸を縦軸として、「レーヨン」と「キュプラ及びリヨセル」の2つのグループが明確に層別された。図9は、判別モデルE:「キュプラ」と「リヨセル」の散布図であり、第1判別軸を横軸とし第2判別軸を縦軸として、「キュプラ」と「リヨセル」の2つのグループが明確に層別された。このようにして求めた解析データ群を各組み合わせに対する判別モデルとして本実施例1のデータベースとして蓄積した。
(2)鑑別工程
本実施例1の鑑別においては、セルロース系繊維の単一繊維からなる5つの被検繊維Z1~Z5を準備した。まず、判別モデルの作成と同様にして、鑑別しようとする被検繊維Z1~Z5の吸収スペクトルを求め、微分スペクトルを得た。
本実施例1の鑑別においては、セルロース系繊維の単一繊維からなる5つの被検繊維Z1~Z5を準備した。まず、判別モデルの作成と同様にして、鑑別しようとする被検繊維Z1~Z5の吸収スペクトルを求め、微分スペクトルを得た。
まず、被検繊維Z1~Z5が「天然繊維」と「再生繊維」のいずれのグループに属するかを鑑別した。具体的には、求めた微分スペクトルから判別モデルAと同様の波数域(波数1200~850cm-1)のスペクトルデータYを抽出した。このようにして得られた被検繊維Z1~Z5の各スペクトルデータYから上記と同じ手法によりスコア(射影t1及び射影t2に対応)を算出した。これら被検繊維Z1~Z5のスコアを図5の「天然繊維」と「再生繊維」の判別モデルAにプロットした(図5のZ1~Z5)。図5において、本実施例1の被検繊維Z1~Z5のうち、被検繊維Z1とZ2は「天然繊維」の第1グループ(A1)に属する繊維であることが分かる。一方、被検繊維Z3~Z5は「再生繊維」の第2グループ(A2)に属する繊維であることが分かる。
次に、「天然繊維」と鑑別された被検繊維Z1、Z2が「綿」と「麻類」のいずれのグループに属するかを鑑別した。具体的には、求めた微分スペクトルから判別モデルBと同様の波数域(波数1400~900cm-1)のスペクトルデータYを抽出した。このようにして得られた被検繊維Z1、Z2の各スペクトルデータYから上記と同じ手法によりスコア(射影t1及び射影t2に対応)を算出した。これら被検繊維Z1、Z2のスコアを図6の「綿」と「麻類」の判別モデルBにプロットした(図6のZ1、Z2)。図6において、本実施例1の被検繊維Z1、Z2のうち、被検繊維Z1は「綿」の第3グループ(B1)に属する繊維であることが分かる。一方、被検繊維Z2は「麻類」の第4グループ(B2)に属する繊維であることが分かる。
次に、「麻類」と鑑別された被検繊維Z2が「リネン」と「ラミー」のいずれのグループに属するかを鑑別した。具体的には、求めた微分スペクトルから判別モデルCと同様の波数域(波数1400~900cm-1)のスペクトルデータYを抽出した。このようにして得られた被検繊維Z2の各スペクトルデータYから上記と同じ手法によりスコア(射影t1及び射影t2に対応)を算出した。この被検繊維Z2のスコアを図7の「リネン」と「ラミー」の判別モデルCにプロットした(図7のZ2)。図7において、本実施例1の被検繊維Z2は「リネン」の第5グループ(C1)に属する繊維であることが分かる。
一方、「再生繊維」と鑑別された被検繊維Z3~Z5が「レーヨン」と「キュプラ及びリヨセル」のいずれのグループに属するかを鑑別した。具体的には、求めた微分スペクトルから判別モデルDと同様の波数域(波数1400~900cm-1)のスペクトルデータYを抽出した。このようにして得られた被検繊維Z3~Z5の各スペクトルデータYから上記と同じ手法によりスコア(射影t1及び射影t2に対応)を算出した。これら被検繊維Z3~Z5のスコアを図8の「レーヨン」と「キュプラ及びリヨセル」の判別モデルDにプロットした(図8のZ3~Z5)。図8において、本実施例1の被検繊維Z3~Z5のうち、被検繊維Z3は「レーヨン」の第7グループ(D1)に属する繊維であることが分かる。一方、被検繊維Z4、Z5は「キュプラ及びリヨセル」の第8グループ(D2)に属する繊維であることが分かる。
次に、「キュプラ及びリヨセル」と鑑別された被検繊維Z4、Z5が「キュプラ」と「リヨセル」のいずれのグループに属するかを鑑別した。具体的には、求めた微分スペクトルから判別モデルEと同様の波数域(波数1400~900cm-1)のスペクトルデータYを抽出た。このようにして得られた被検繊維Z4、Z5のスペクトルデータYから上記と同じ手法によりスコア(射影t1及び射影t2に対応)を算出した。これら被検繊維Z4、Z5のスコアを図9の「キュプラ」と「リヨセル」の判別モデルEにプロットした(図9のZ4、Z5)。図9において、本実施例1の被検繊維Z4、Z5のうち、被検繊維Z4は「キュプラ」の第9グループ(E1)に属する繊維であることが分かる。一方、被検繊維Z5、は「リヨセル」の第10グループ(E2)に属する繊維であることが分かる。
以上説明したように、本第1実施形態においては、単一繊維からなる被検繊維に対して、繊維の種類を容易かつ正確に鑑別することができた。よって、本発明においては、鑑別操作が比較的簡単で客観性を有し、検査員の経験やノウハウに頼ることなく同系異種繊維の鑑別をすることができ、且つ、鑑別する繊維の組み合わせによって生じる鑑別精度のバラツキを極力小さくして、高度な鑑別精度を実現することのできる繊維鑑別方法を提供することができる。
《第2実施形態》
本第2実施形態においては、上記第1実施例と同様に、複数種類の単一繊維に対して、各単一繊維間の鑑別を行うものである。例えば、セルロース系繊維においては、天然繊維と再生繊維との鑑別、綿と麻類との鑑別、麻類におけるリネンとラミーとの鑑別、再生繊維どうしの鑑別、及び、キュプラとリヨセルとの鑑別などについて説明する。なお、本第2実施形態においては、判別モデルのスコア群の正規分布に対する被検繊維のスコアの確率密度から鑑別を行うものである。
本第2実施形態においては、上記第1実施例と同様に、複数種類の単一繊維に対して、各単一繊維間の鑑別を行うものである。例えば、セルロース系繊維においては、天然繊維と再生繊維との鑑別、綿と麻類との鑑別、麻類におけるリネンとラミーとの鑑別、再生繊維どうしの鑑別、及び、キュプラとリヨセルとの鑑別などについて説明する。なお、本第2実施形態においては、判別モデルのスコア群の正規分布に対する被検繊維のスコアの確率密度から鑑別を行うものである。
(1)判別モデル準備工程
本第2実施形態における判別モデル準備工程の各操作は、基本的には上記第1実施形態と同様である。まず、比較繊維の各グループの吸収スペクトルを求める。吸収スペクトルの補正についても、上記第1実施形態と同様である。また、アルカリ性物質による前処理をする方法についても、上記第1実施形態と同様である。
本第2実施形態における判別モデル準備工程の各操作は、基本的には上記第1実施形態と同様である。まず、比較繊維の各グループの吸収スペクトルを求める。吸収スペクトルの補正についても、上記第1実施形態と同様である。また、アルカリ性物質による前処理をする方法についても、上記第1実施形態と同様である。
本第2実施形態においては、上記第1実施例と同様に、比較繊維の吸収スペクトルを求める際にFT/IR分光光度計でATR法を使用する。また、上記第1実施形態と同様に、近赤外線を除く波数4000cm-1~600cm-1の範囲内の赤外線を照射してそれぞれの吸収スペクトルを求める。また、スペクトルデータの微分処理などに関しても、上記第1実施形態と同様である。
次に、得られた微分スペクトルから解析に有効な所定の波数域のスペクトルデータを抽出する。本第2実施形態においては、比較繊維の各組み合わせに対して抽出したスペクトルデータの波数域は、基本的には上記第1実施形態と同様である。但し、本第2実施形態においては、更に狭い波数域に分割して複数の波数域を抽出したものもある。なお、使用した波数域については、下記の実施例2において詳述する。
次に、抽出したスペクトルデータを判別分析して判別モデルを作成する。本第2実施形態においては、上記第1実施例と同様に、本発明者らが独自の工夫を加えた判別分析の手法であるFDOD(Fisher’s linear discriminant orthogonal decomposition)を使用した。また、本第2実施形態においても、2回の判別分析を行う。
まず、各比較繊維の吸収スペクトルから特定波数域のスペクトルデータXを抽出し、これをデータX1とする。このデータX1を用いて上記第1実施形態と同じ式(1)により第1回判別分析を行って第1軸w1を求める。このとき、予め選定した正則化係数ζ1を使用する。なお、本第2実施形態においても、発明者自らが構成したプログラムを使用して解析した。
次に、第1回判別分析で得られた第1軸w1とデータX1とから、上記第1実施形態と同じ式(2)によりデータX1の第1軸座標(w1軸座標)の値t1(射影t1ともいう)を算出する。次に、上記第1実施形態と同じ式(3)により先のデータX1からw1軸方向の情報を引き抜いたものをデータX2(残差行列ともいう)とする。次に、このデータX2を用いて上記第1実施形態と同じ式(1)により第2回判別分析を行って第2軸w2を求める。このとき、予め選定した正則化係数ζ2を使用する。このようにして求めた第2軸w2とデータX2とから、上記第1実施形態と同じ式(4)によりデータX2の第2軸座標(w2軸座標)の値t2(射影t2ともいう)を算出する。
このようにして求めた互いに直交する2つの軸w1、w2を用いて、直交分解のなされた判別モデルを作成することができる。この判別モデルにおいては、軸w1、w2を直交軸として2つのグループが明確に区別される。各グループに属する各比較繊維の射影t1及び射影t2に対応する値をその比較繊維のスコアという。本第2実施形態においては、判別モデルの2つのグループについて、それぞれスペクトルデータから求めたスコア群の2次元の正規分布の推定を行う。具体的には、判別モデルの2つのグループ(グループa、グループb)について、それぞれ各スコア群の2次元の正規分布の確率密度関数Fa(x)、Fb(x)を求める。なお、これらの判別モデル及び確率密度関数Fa(x)、Fb(x)については、下記の実施例2において詳述する。
また、本第2実施形態においては、上述のように互いに直交する2つの軸w1、w2を用いて、直交分解のなされた判別モデルを作成するものであるが、上記式(3)及び式(4)の操作を繰り返すことにより、互いに直交する3軸以上の高次元の判別モデルを作成するようにしてもよい。なお、2次元ではなくn次元の判別モデルを作成した場合には、各スコア群からn次元(nは1以上の整数)の正規分布の推定を行い、n次元の確率密度関数を求めるようにする。
(2)鑑別工程
本第2実施形態の鑑別工程においては、まず、鑑別しようとする被検繊維Zの吸収スペクトルを求める。吸収スペクトルを求める方法、吸収スペクトルに各種補正をする方法、及び、得られた吸収スペクトルに微分処理などの処理を行う方法は、上述の比較繊維に対する方法と同様である。次に、求めた微分スペクトルから比較繊維と同じ波数域のスペクトルデータYを抽出し、比較繊維と同様にして被検繊維Zのスコア(射影t1及び射影t2に対応)を算出する。次に、得られた被検繊維Zのスコアを用いて、判別モデルの2つのグループ(グループa、グループb)それぞれの確率密度関数Fa(x)、Fb(x)から各グループに対する被検繊維Zの確率密度dz,a、dz,bを算出する。
本第2実施形態の鑑別工程においては、まず、鑑別しようとする被検繊維Zの吸収スペクトルを求める。吸収スペクトルを求める方法、吸収スペクトルに各種補正をする方法、及び、得られた吸収スペクトルに微分処理などの処理を行う方法は、上述の比較繊維に対する方法と同様である。次に、求めた微分スペクトルから比較繊維と同じ波数域のスペクトルデータYを抽出し、比較繊維と同様にして被検繊維Zのスコア(射影t1及び射影t2に対応)を算出する。次に、得られた被検繊維Zのスコアを用いて、判別モデルの2つのグループ(グループa、グループb)それぞれの確率密度関数Fa(x)、Fb(x)から各グループに対する被検繊維Zの確率密度dz,a、dz,bを算出する。
次に、得られた被検繊維の確率密度dz,a、dz,bから、下記式(5)により被検繊維の一方のグループ(例えば、グループa)に対する確率密度比Rz,aを算出する。
Rz,a=dz,a/(dz,a+dz,b) ・・・(5)
本第2実施形態においては、このようにして得られた確率密度比Rz,aによって、被検繊維Zがいずれのグループ(グループa又はグループb)に属する繊維であるかを判別する。
本第2実施形態においては、このようにして得られた確率密度比Rz,aによって、被検繊維Zがいずれのグループ(グループa又はグループb)に属する繊維であるかを判別する。
まず、被検繊維Zのグループaに対する確率密度比Rz,a(又は、グループbに対する確率密度比Rz,b)による任意の判別基準を設定する。例えば、グループaに対する確率密度比Rz,aによる判別基準を、
Rz,a≧0.9 ・・・グループaに属する
Rz,a≦0.1 ・・・グループbに属する
0.1<Rz,a<0.9 ・・・判別不能
とする。
Rz,a≧0.9 ・・・グループaに属する
Rz,a≦0.1 ・・・グループbに属する
0.1<Rz,a<0.9 ・・・判別不能
とする。
この場合、Rz,a≧0.9であれば、被検繊維Zのグループaに属する確率は90%以上であって、グループbに属する確率は10%未満と判別できる。逆に、Rz,a≦0.1であれば、被検繊維Zのグループbに属する確率は90%より大きく、グループaに属する確率は10%以下と判別できる。一方、0.1<Rz,a<0.9であれば、判別不能と判断する。なお、判別基準は、90%に限るものではなく、任意の基準であってもよい。一般に、85%~95%程度であることが好ましい。
図10は、本第2実施形態において被検繊維を鑑別するイメージを表す概念図である。図10において、グループaの分布とグループbの分布に対して、確率密度比Rz,a=0.9の2本の判別ラインL1、L2と、確率密度比Rz,a=0.1の2本の判別ラインL3、L4とが存在する。グループaに近い判別ラインL1のグループaの側の領域G1は、グループaと判別される。また、グループbに近い2本の判別ラインL3と判別ラインL4とで囲まれた領域G3は、グループbと判別される。これに対して、判別ラインL1と判別ラインL3とで囲まれた領域G2は、0.1<Rz,a<0.9の領域であって判別不能と判別される。同様に、判別ラインL2と判別ラインL4とで囲まれた領域G4も、0.1<Rz,a<0.9の領域であって判別不能と判別される。このような被検繊維は、2種以上の混合繊維であるか、或いは、セルロース系繊維以外の繊維である可能性がある。
一方、グループaの分布とグループbの分布から大きく離れた領域G5が存在する。この領域G5においては、確率密度dz,a、dz,bの値がいずれも小さくなり、確率密度比Rz,aの値が0.9以上又は0.1以下となることがある。このような被検繊維は、2種以上の混合繊維であるか、或いは、セルロース系繊維以外の繊維である可能性がある。この場合、領域G5はグループbに相対的に近いにもかかわらず、確率密度比Rz,aの値からはグループaと判別されることになる。このような誤判別を避けるために、本第2実施形態においては、確率密度比Rz,aの値のみから判断するのではなく、判別モデルのスコア群のFDODプロット及び必要により等確率楕円により確認することが好ましい。
次に、本第2実施形態の鑑別方法を実施例2により具体的に説明する。本実施例2は、上記実施例1と同様に各単一繊維間の鑑別を行うものであり、複数の被検繊維に対して鑑別フロー図(図3参照)に従って鑑別を行うものである。なお、各被検繊維は、いずれも顕微鏡法などの予備鑑定においてセルロース系繊維であることが判明している。
(1)判別モデル準備工程
本実施例2においては、まず、繊維の種類が既知の単一繊維として、綿25点、リネン25点、ラミー25点の天然繊維75点を準備した。また、繊維の種類が既知の単一繊維として、レーヨン45点、キュプラ25点、リヨセル25点の再生繊維95点を準備した。これら合計170点の単一繊維を本実施例2の比較繊維とした。なお、綿及び麻類(リネン及びラミー)75点、並びに、再生繊維の一部40点(レーヨン14点、キュプラ13点、リヨセル13点)に関しては、室温において水酸化ナトリウム水溶液(17重量%)による前処理を行った。
本実施例2においては、まず、繊維の種類が既知の単一繊維として、綿25点、リネン25点、ラミー25点の天然繊維75点を準備した。また、繊維の種類が既知の単一繊維として、レーヨン45点、キュプラ25点、リヨセル25点の再生繊維95点を準備した。これら合計170点の単一繊維を本実施例2の比較繊維とした。なお、綿及び麻類(リネン及びラミー)75点、並びに、再生繊維の一部40点(レーヨン14点、キュプラ13点、リヨセル13点)に関しては、室温において水酸化ナトリウム水溶液(17重量%)による前処理を行った。
次に、これら合計170点の織編物について、その吸収スペクトルを得た。吸収スペクトルの測定は、上記実施例1と同様に赤外分光光度計FT/IR‐4700(日本分光株式会社)を使用し、ZnSeプリズムによるATR法で、波数4000cm-1~600cm-1の吸収スペクトルを測定した。次に、乗算的散乱補正(MSC)後の各吸収スペクトルをSavitzky-Golay法により1次微分して微分スペクトルを得た。得られた吸収スペクトル(微分スペクトル)をFDODによる判別モデル作成用グループとして分類した。
[判別モデル作成用グループ]
・第1グループ(A3):40点の天然繊維(綿20点、リネン10点及びラミー10点)
・第2グループ(A4):40点の再生繊維(前処理レーヨン14点、前処理キュプラ13点及び前処理リヨセル13点)
・第3グループ(B3):25点の綿
・第4グループ(B4):25点の麻類(リネン12点及びラミー13点)
・第5グループ(C3):25点のリネン
・第6グループ(C4):25点のラミー
・第7グループ(D3):45点の未処理レーヨン
・第8グループ(D4):45点のキュプラ及びリヨセル(未処理キュプラ24点及び未処理リヨセル21点)
・第9グループ(E3):25点の未処理キュプラ
・第10グループ(E4):25点の未処理リヨセル
このような上記10グループを得た。
・第1グループ(A3):40点の天然繊維(綿20点、リネン10点及びラミー10点)
・第2グループ(A4):40点の再生繊維(前処理レーヨン14点、前処理キュプラ13点及び前処理リヨセル13点)
・第3グループ(B3):25点の綿
・第4グループ(B4):25点の麻類(リネン12点及びラミー13点)
・第5グループ(C3):25点のリネン
・第6グループ(C4):25点のラミー
・第7グループ(D3):45点の未処理レーヨン
・第8グループ(D4):45点のキュプラ及びリヨセル(未処理キュプラ24点及び未処理リヨセル21点)
・第9グループ(E3):25点の未処理キュプラ
・第10グループ(E4):25点の未処理リヨセル
このような上記10グループを得た。
次に、判別モデル作成用グループを用いて判別モデルを作成した。上記第1グループ(A3)~第10グループ(E4)のうち2つずつ組み合わせて、5組の組み合わせとした。次に、これらの微分スペクトルから各組み合わせを特徴付ける所定の波数域を抽出した。更に、各組み合わせに対する判別分析用の2つの正則化係数ζ1、ζ2を特定した。本実施例2において、各判別モデルA~Eと抽出した波数域及び2つの正則化係数ζ1、ζ2の値を下記に示す。但し、本実施例2においては、抽出した波数域が上記実施例1とは異なり、狭く区分した波数域を複数抽出したものもある。
[判別モデルA]:天然繊維と再生繊維
・第1グループ(A3)と第2グループ(A4):波数1300~900cm-1
・第1回判別分析用の正則化係数:ζ1=1×10-6
・第2回判別分析用の正則化係数:ζ2=1×10-3
[判別モデルB]:綿と麻類
・第3グループ(B3)と第4グループ(B4):波数1600~1400cm-1、波数1200~1100cm-1、波数1000~800cm-1
・第1回判別分析用の正則化係数:ζ1=1×10-6
・第2回判別分析用の正則化係数:ζ2=1×10-4
[判別モデルC]:リネンとラミー
・第5グループ(C3)と第6グループ(C4):波数1600~1500cm-1、波数1400~1100cm-1、波数1000~900cm-1
・第1回判別分析用の正則化係数:ζ1=1×10-6
・第2回判別分析用の正則化係数:ζ2=1×10-6
[判別モデルD]:レーヨンと(キュプラ及びリヨセル)
・第7グループ(D3)と第8グループ(D4):波数1500~1400cm-1、波数1300~1000cm-1、波数900~800cm-1
・第1回判別分析用の正則化係数:ζ1=1×10-4
・第2回判別分析用の正則化係数:ζ2=1×10-7
[判別モデルE]:キュプラとリヨセル
・第9グループ(E3)と第10グループ(E4):波数1700~1600cm-1、波数1500~1300cm-1、波数1100~1000cm-1
・第1回判別分析用の正則化係数:ζ1=1×10-6
・第2回判別分析用の正則化係数:ζ2=1×10-5
このようにして抽出した波数域における各グループのスペクトルデータXを第1回目の判別分析に使用するデータX1とした。このデータX1を使用して5組の組み合わせに対する2回の判別分析を行い、それぞれの比較繊維のスコア(射影t1及び射影t2に対応)を算出した。
・第1グループ(A3)と第2グループ(A4):波数1300~900cm-1
・第1回判別分析用の正則化係数:ζ1=1×10-6
・第2回判別分析用の正則化係数:ζ2=1×10-3
[判別モデルB]:綿と麻類
・第3グループ(B3)と第4グループ(B4):波数1600~1400cm-1、波数1200~1100cm-1、波数1000~800cm-1
・第1回判別分析用の正則化係数:ζ1=1×10-6
・第2回判別分析用の正則化係数:ζ2=1×10-4
[判別モデルC]:リネンとラミー
・第5グループ(C3)と第6グループ(C4):波数1600~1500cm-1、波数1400~1100cm-1、波数1000~900cm-1
・第1回判別分析用の正則化係数:ζ1=1×10-6
・第2回判別分析用の正則化係数:ζ2=1×10-6
[判別モデルD]:レーヨンと(キュプラ及びリヨセル)
・第7グループ(D3)と第8グループ(D4):波数1500~1400cm-1、波数1300~1000cm-1、波数900~800cm-1
・第1回判別分析用の正則化係数:ζ1=1×10-4
・第2回判別分析用の正則化係数:ζ2=1×10-7
[判別モデルE]:キュプラとリヨセル
・第9グループ(E3)と第10グループ(E4):波数1700~1600cm-1、波数1500~1300cm-1、波数1100~1000cm-1
・第1回判別分析用の正則化係数:ζ1=1×10-6
・第2回判別分析用の正則化係数:ζ2=1×10-5
このようにして抽出した波数域における各グループのスペクトルデータXを第1回目の判別分析に使用するデータX1とした。このデータX1を使用して5組の組み合わせに対する2回の判別分析を行い、それぞれの比較繊維のスコア(射影t1及び射影t2に対応)を算出した。
本実施例2においては、判別する2つのグループに含まれる比較繊維の2つのスコア群が判別モデルに対応する。例えば、判別モデルAにおいては、第1グループ(A3)と第2グループ(A4)の各比較繊維のスコア群の組み合わせに対応する。このようにして、判別モデル(判別する各比較繊維のスコア群)A~Eを得た。従って、本実施例2においては、各グループの比較繊維のスコア群を互いに直交する2つの軸w1、w2にプロットした判別モデル(FDODプロット)A~Eを作成することを必須の要件とするものではない。但し、判別したグループに属すること、又はいずれのグループにも属さないこと(判別不可)を確認するためにFDODプロット及び必要により等確率楕円を作成しておくことが好ましい。
次に、判別モデル(判別する各比較繊維のスコア群)A~Eの各グループ(A3~E4)について、それぞれスコア群の2次元の正規分布の推定を行った。例えば、判別モデルAにおいては、2つのグループA3、A4の各スコア群について、2次元の正規分布の確率密度関数FA3(x)、FA4(x)を求めた。確率密度関数を求めるにあたっては、通常の方法を使用すればよい。同様にして、判別モデルBにおいて確率密度関数FB3(x)、FB4(x)、判別モデルCにおいて確率密度関数FC3(x)、FC4(x)、判別モデルDにおいて確率密度関数FD3(x)、FD4(x)、判別モデルEにおいて確率密度関数FE3(x)、FE4(x)を求めた。
(2)鑑別工程
本実施例2の鑑別においては、上記実施例1と同じ、セルロース系繊維の単一繊維からなる5つの被検繊維Z6~Z10を準備した。まず、判別モデルの作成と同様にして、鑑別しようとする被検繊維Z6~Z10の吸収スペクトルを求め、微分スペクトルを得た。
本実施例2の鑑別においては、上記実施例1と同じ、セルロース系繊維の単一繊維からなる5つの被検繊維Z6~Z10を準備した。まず、判別モデルの作成と同様にして、鑑別しようとする被検繊維Z6~Z10の吸収スペクトルを求め、微分スペクトルを得た。
まず、被検繊維Z6~Z10が「天然繊維」と「再生繊維」のいずれのグループに属するかを鑑別した。具体的には、求めた微分スペクトルから判別モデルAと同様の波数域(波数1300~900cm-1)のスペクトルデータYを抽出した。このようにして得られた被検繊維Z6~Z10の各スペクトルデータYから上記と同じ手法によりスコア(射影t1及び射影t2に対応)を算出した。
得られた被検繊維Z6のスコアを用いて、確率密度関数FA3(x)、FA4(x)から各グループA3、A4に対する被検繊維Z6の確率密度dZ6,A3、dZ6,A4を算出した。同様にして、被検繊維Z7の確率密度dZ7,A3、dZ7,A4、被検繊維Z8の確率密度dZ8,A3、dZ8,A4、被検繊維Z9の確率密度dZ9,A3、dZ9,A4、被検繊維Z10の確率密度dZ10,A3、dZ10,A4を算出した。算出した各確率密度の値を表1に示す。
得られた被検繊維Z6の確率密度dZ6,A3、dZ6,A4から、下記式(5-1)により被検繊維Z6のグループA3に対する確率密度比RZ6,A3を算出した。
RZ6,A3=dZ6,A3/(dZ6,A3+dZ6,A4) ・・・(5-1)
同様にして、被検繊維Z7のグループA3に対する確率密度比RZ7,A3、被検繊維Z8のグループA3に対する確率密度比RZ8,A3、被検繊維Z9のグループA3に対する確率密度比RZ9,A3、被検繊維Z10のグループA3に対する確率密度比RZ10,A3を算出した。算出した各確率密度比の値を表1に示す。
同様にして、被検繊維Z7のグループA3に対する確率密度比RZ7,A3、被検繊維Z8のグループA3に対する確率密度比RZ8,A3、被検繊維Z9のグループA3に対する確率密度比RZ9,A3、被検繊維Z10のグループA3に対する確率密度比RZ10,A3を算出した。算出した各確率密度比の値を表1に示す。
表1において、グループA3に対する確率密度比の判別基準を次のように定めた場合、
RZ,A3≧0.9 ・・・グループA3に属する
RZ,A3≦0.1 ・・・グループA4に属する
0.1<RZ,A3<0.9 ・・・判別不能
本実施例2の被検繊維Z6~Z10のうち、被検繊維Z6とZ7は「天然繊維」の第1グループ(A3)に属する繊維であることが分かる。一方、被検繊維Z8~Z10は「再生繊維」の第2グループ(A4)に属する繊維であることが分かる。
RZ,A3≧0.9 ・・・グループA3に属する
RZ,A3≦0.1 ・・・グループA4に属する
0.1<RZ,A3<0.9 ・・・判別不能
本実施例2の被検繊維Z6~Z10のうち、被検繊維Z6とZ7は「天然繊維」の第1グループ(A3)に属する繊維であることが分かる。一方、被検繊維Z8~Z10は「再生繊維」の第2グループ(A4)に属する繊維であることが分かる。
なお、本実施例2においては、上述のように、判別結果を確認するためにFDODプロット及びこれに基づいた99.7%信頼水準の等確率楕円を作成しておいた。図11は、本実施例2で得られた「天然繊維」と「再生繊維」のFDODプロットである。図11において、第1判別軸(w1軸)を横軸とし第2判別軸(w2軸)を縦軸として、「天然繊維」と「再生繊維」の2つのグループA3、A4が明確に層別された。また、被検繊維Z6~Z10の各プロットが2つのグループA3、A4のいずれか一方の等確率楕円の中に納まっており、確率密度比による判別結果と一致した。このことから、本実施例2の確率密度比による判別結果は、正確なものであり誤判別ではないことが確認された。
次に、「天然繊維」と鑑別された被検繊維Z6、Z7が「綿」と「麻類」のいずれのグループに属するかを鑑別した。具体的には、求めた微分スペクトルから判別モデルBと同様の波数域(波数1600~1400cm-1、波数1200~1100cm-1、波数1000~800cm-1)のスペクトルデータYを抽出した。このようにして得られた被検繊維Z6、Z7の各スペクトルデータYから上記と同じ手法によりスコア(射影t1及び射影t2に対応)を算出した。
得られた被検繊維Z6のスコアを用いて、確率密度関数FB3(x)、FB4(x)から各グループB3、B4に対する被検繊維Z6の確率密度dZ6,B3、dZ6,B4を算出した。同様にして、被検繊維Z7の確率密度dZ7,B3、dZ7,B4を算出した。算出した各確率密度の値を表2に示す。次に、得られた被検繊維Z6の確率密度dZ6,B3、dZ6,B4から、下記式(5-2)により被検繊維Z6のグループB3に対する確率密度比RZ6,B3を算出した。
RZ6,B3=dZ6,B3/(dZ6,B3+dZ6,B4) ・・・(5-2)
同様にして、被検繊維Z7のグループB3に対する確率密度比RZ7,B3を算出した。算出した各確率密度比の値を表2に示す。
同様にして、被検繊維Z7のグループB3に対する確率密度比RZ7,B3を算出した。算出した各確率密度比の値を表2に示す。
表2において、グループB3に対する確率密度比の判別基準を次のように定めた場合、
RZ,B3≧0.9 ・・・グループB3に属する
RZ,B3≦0.1 ・・・グループB4に属する
0.1<RZ,B3<0.9 ・・・判別不能
本実施例2の被検繊維Z6、Z7のうち、被検繊維Z6は「綿」の第3グループ(B3)に属する繊維であることが分かる。一方、被検繊維Z7は「麻類」の第4グループ(B4)に属する繊維であることが分かる。
RZ,B3≧0.9 ・・・グループB3に属する
RZ,B3≦0.1 ・・・グループB4に属する
0.1<RZ,B3<0.9 ・・・判別不能
本実施例2の被検繊維Z6、Z7のうち、被検繊維Z6は「綿」の第3グループ(B3)に属する繊維であることが分かる。一方、被検繊維Z7は「麻類」の第4グループ(B4)に属する繊維であることが分かる。
図12は、本実施例2で得られた「綿」と「麻類」のFDODプロットである。図12において、第1判別軸(w1軸)を横軸とし第2判別軸(w2軸)を縦軸として、「綿」と「麻類」の2つのグループB3、B4が明確に層別された。また、被検繊維Z6、Z7の各プロットが2つのグループB3、B4のいずれか一方の等確率楕円の中に納まっており、確率密度比による判別結果と一致した。このことから、本実施例2の確率密度比による判別結果は、正確なものであり誤判別ではないことが確認された。
次に、「麻類」と鑑別された被検繊維Z7が「リネン」と「ラミー」のいずれのグループに属するかを鑑別した。具体的には、求めた微分スペクトルから判別モデルCと同様の波数域(波数1600~1500cm-1、波数1400~1100cm-1、波数1000~900cm-1)のスペクトルデータYを抽出した。このようにして得られた被検繊維Z7の各スペクトルデータYから上記と同じ手法によりスコア(射影t1及び射影t2に対応)を算出した。
得られた被検繊維Z7のスコアを用いて、確率密度関数FC3(x)、FC4(x)から各グループC3、C4に対する被検繊維Z7の確率密度dZ7,C3、dZ7,C4を算出した。算出した各確率密度の値を表3に示す。次に、得られた被検繊維Z7の確率密度dZ7,C3、dZ7,C4から、下記式(5-3)により被検繊維Z7のグループC3に対する確率密度比RZ7,C3を算出した。
RZ7,C3=dZ7,C3/(dZ7,C3+dZ7,C4) ・・・(5-3)
算出した確率密度比の値を表3に示す。
算出した確率密度比の値を表3に示す。
表3において、グループC3に対する確率密度比の判別基準を次のように定めた場合、
RZ,C3≧0.9 ・・・グループC3に属する
RZ,C3≦0.1 ・・・グループC4に属する
0.1<RZ,C3<0.9 ・・・判別不能
本実施例2の被検繊維Z7は「ラミー」の第6グループ(C4)に属する繊維であることが分かる。
RZ,C3≧0.9 ・・・グループC3に属する
RZ,C3≦0.1 ・・・グループC4に属する
0.1<RZ,C3<0.9 ・・・判別不能
本実施例2の被検繊維Z7は「ラミー」の第6グループ(C4)に属する繊維であることが分かる。
図13は、本実施例2で得られた「リネン」と「ラミー」のFDODプロットである。図13において、第1判別軸(w1軸)を横軸とし第2判別軸(w2軸)を縦軸として、「リネン」と「ラミー」の2つのグループC3、C4が明確に層別された。また、被検繊維Z7のプロットがグループC4の等確率楕円の中に納まっており、確率密度比による判別結果と一致した。このことから、本実施例2の確率密度比による判別結果は、正確なものであり誤判別ではないことが確認された。
一方、「再生繊維」と鑑別された被検繊維Z8~Z10が「レーヨン」と「キュプラ及びリヨセル」のいずれのグループに属するかを鑑別した。具体的には、求めた微分スペクトルから判別モデルDと同様の波数域(波数1500~1400cm-1、波数1300~1000cm-1、波数900~800cm-1)のスペクトルデータYを抽出した。このようにして得られた被検繊維Z8~Z10の各スペクトルデータYから上記と同じ手法によりスコア(射影t1及び射影t2に対応)を算出した。
得られた被検繊維Z8のスコアを用いて、確率密度関数FD3(x)、FD4(x)から各グループD3、D4に対する被検繊維Z8の確率密度dZ8,D3、dZ8,D4を算出した。同様にして、被検繊維Z9の確率密度dZ9,D3、dZ9,D4、被検繊維Z10の確率密度dZ10,D3、dZ10,D4を算出した。算出した各確率密度の値を表4に示す。次に、得られた被検繊維Z8の確率密度dZ8,D3、dZ8,D4から、下記式(5-4)により被検繊維Z8のグループD3に対する確率密度比RZ8,D3を算出した。
RZ8,D3=dZ8,D3/(dZ8,D3+dZ8,D4) ・・・(5-4)
同様にして、被検繊維Z9のグループD3に対する確率密度比RZ9,D3、被検繊維Z10のグループD3に対する確率密度比RZ10,D3を算出した。算出した各確率密度比の値を表4に示す。
同様にして、被検繊維Z9のグループD3に対する確率密度比RZ9,D3、被検繊維Z10のグループD3に対する確率密度比RZ10,D3を算出した。算出した各確率密度比の値を表4に示す。
表4において、グループD3に対する確率密度比の判別基準を次のように定めた場合、
RZ,D3≧0.9 ・・・グループD3に属する
RZ,D3≦0.1 ・・・グループD4に属する
0.1<RZ,D3<0.9 ・・・判別不能
本実施例2の被検繊維Z8~Z10のうち、被検繊維Z8は「レーヨン」の第7グループ(D3)に属する繊維であることが分かる。一方、被検繊維Z9、Z10は「キュプラ及びリヨセル」の第8グループ(D4)に属する繊維であることが分かる。
RZ,D3≧0.9 ・・・グループD3に属する
RZ,D3≦0.1 ・・・グループD4に属する
0.1<RZ,D3<0.9 ・・・判別不能
本実施例2の被検繊維Z8~Z10のうち、被検繊維Z8は「レーヨン」の第7グループ(D3)に属する繊維であることが分かる。一方、被検繊維Z9、Z10は「キュプラ及びリヨセル」の第8グループ(D4)に属する繊維であることが分かる。
図14は、本実施例2で得られた「レーヨン」と「キュプラ及びリヨセル」のFDODプロットである。図14において、第1判別軸(w1軸)を横軸とし第2判別軸(w2軸)を縦軸として、「レーヨン」と「キュプラ及びリヨセル」の2つのグループD3、D4が明確に層別された。また、被検繊維Z8~Z10の各プロットが2つのグループB3、B4のいずれか一方の等確率楕円の中に納まっており、確率密度比による判別結果と一致した。このことから、本実施例2の確率密度比による判別結果は、正確なものであり誤判別ではないことが確認された。
次に、「キュプラ及びリヨセル」と鑑別された被検繊維Z9、Z10が「キュプラ」と「リヨセル」のいずれのグループに属するかを鑑別した。具体的には、求めた微分スペクトルから判別モデルEと同様の波数域(波数1700~1600cm-1、波数1500~1300cm-1、波数1100~1000cm-1)のスペクトルデータYを抽出た。このようにして得られた被検繊維Z9、Z10のスペクトルデータYから上記と同じ手法によりスコア(射影t1及び射影t2に対応)を算出した。
得られた被検繊維Z9のスコアを用いて、確率密度関数FE3(x)、FE4(x)から各グループE3、E4に対する被検繊維Z9の確率密度dZ9,E3、dZ9,E4を算出した。同様にして、被検繊維Z10の確率密度dZ10,E3、dZ10,E4を算出した。算出した各確率密度の値を表5に示す。次に、得られた被検繊維Z9の確率密度dZ9,E3、dZ9,E4から、下記式(5-5)により被検繊維Z9のグループE3に対する確率密度比RZ9,E3を算出した。
RZ9,E3=dZ9,E3/(dZ9,E3+dZ9,E4) ・・・(5-5)
同様にして、被検繊維Z10のグループE3に対する確率密度比RZ10,E3を算出した。算出した各確率密度比の値を表5に示す。
同様にして、被検繊維Z10のグループE3に対する確率密度比RZ10,E3を算出した。算出した各確率密度比の値を表5に示す。
表5において、グループE3に対する確率密度比の判別基準を次のように定めた場合、
RZ,E3≧0.9 ・・・グループE3に属する
RZ,E3≦0.1 ・・・グループE4に属する
0.1<RZ,E3<0.9 ・・・判別不能
本実施例2の被検繊維Z9、Z10のうち、被検繊維Z9は「キュプラ」の第9グループ(E3)に属する繊維であることが分かる。一方、被検繊維Z10、は「リヨセル」の第10グループ(E4)に属する繊維であることが分かる。
RZ,E3≧0.9 ・・・グループE3に属する
RZ,E3≦0.1 ・・・グループE4に属する
0.1<RZ,E3<0.9 ・・・判別不能
本実施例2の被検繊維Z9、Z10のうち、被検繊維Z9は「キュプラ」の第9グループ(E3)に属する繊維であることが分かる。一方、被検繊維Z10、は「リヨセル」の第10グループ(E4)に属する繊維であることが分かる。
図15は、本実施例2で得られた「キュプラ」と「リヨセル」のFDODプロットである。図15において、第1判別軸(w1軸)を横軸とし第2判別軸(w2軸)を縦軸として、「キュプラ」と「リヨセル」の2つのグループE3、E4が明確に層別された。また、被検繊維Z9、Z10の各プロットが2つのグループE3、E4のいずれか一方の等確率楕円の中に納まっており、確率密度比による判別結果と一致した。このことから、本実施例2の確率密度比による判別結果は、正確なものであり誤判別ではないことが確認された。
以上説明したように、本第2実施形態においては、単一繊維からなる被検繊維に対して、繊維の種類を容易かつ正確に鑑別することができた。よって、本発明においては、鑑別操作が比較的簡単で客観性を有し、検査員の経験やノウハウに頼ることなく同系異種繊維の鑑別をすることができ、且つ、鑑別する繊維の組み合わせによって生じる鑑別精度のバラツキを極力小さくして、高度な鑑別精度を実現することのできる繊維鑑別方法を提供することができる。
なお、本発明の実施にあたり、上記各実施形態及び各実施例に限らず次のような種々の変形例が挙げられる。
(1)上記各実施形態においては、化学的組成が同じ繊維どうしの鑑別例としてセルロース系繊維で説明するものであるが、これに限るものではなく、タンパク質系繊維としての絹や各種獣毛繊維どうしの鑑別や、その他の化学的組成が同じ繊維どうしの鑑別を行うようにしてもよい。
(2)上記各実施形態においては、2つのグループ間の鑑別を判別分析するものであるが、これに限るものではなく、3つ或いはそれ以上のグループ間の鑑別を同時に判別分析するようにしてもよい。
(3)上記各実施形態においては、IR分光分析により得られる吸収スペクトルにより鑑別を行うものであるが、これに限るものではなく、IR分光分析により得られる透過スペクトルにより鑑別を行うようにしてもよい。
(4)上記各実施形態においては、波数4000~600cm-1の範囲内の吸収スペクトルを測定し、これから解析に使用する所定の波数域におけるスペクトルデータを抽出するものであるが、これに限るものではなく、解析に使用する1つ又は2つ以上の所定の波数域における吸収スペクトルのみを測定するようにしてもよい。
(5)上記各実施形態においては、IR分光分析により得られる吸収スペクトルにより鑑別を行うものであるが、これに限るものではなく、NIR分光分析により得られる吸収スペクトルにより鑑別を行うようにしてもよい。このNIR分光分析により吸収スペクトルを得る場合には、IR分光分析と同様にFT/IR分光光度計を使用するようにしてもよく、或いは、FT/NIR分光光度計、分散型NIR分光光度計、分散型UV-VIS-NIR分光光度計などを使用するようにしてもよい。また、NIR分光分析においてこれらの分光光度計を使用して吸収スペクトルを測定する場合には、拡散反射法などを使用することが一般的である。
(6)上記各実施形態においては、ATR法により吸収スペクトルを求めるものであるが、これに限るものではなく、その他の方法、例えば、比較繊維或いは被検繊維を微粉砕してからKBr錠剤法などで吸収スペクトルを求めるようにしてもよい。
(7)上記各実施例においては、赤外吸収の大きな波数域の組み合わせを用いて判別分析を行い、特に有効と考えられる特定の波数域を抽出するものであるが、これに限るものではなく、解析ソフトによる波数域の抽出などを利用して波数域を抽出するようにしてもよい。
(8)上記各実施例においては、互いに直交する第1軸と第2軸との組み合わせによる2次元の分析を使用したが、これらに限るものではなく、互いに直交する3つ以上の軸を用いて3次元以上で分析するようにしてもよい。
(9)上記実施例1においては、天然繊維と再生繊維との鑑別に波数1200~850cm-1の範囲内のスペクトルデータのみを使用し、上記実施例2においては、波数1300~900cm-1のみを使用するものであるが、これに限るものではなく、例えば、波数3500~3000cm-1の範囲内若しくはその近傍の範囲内のスペクトルデータを組み合わせて使用するようにしてもよい。
(10)上記実施例1においては、綿と麻類との鑑別に波数1400~900cm-1の範囲内のスペクトルデータのみを使用し、上記実施例2においては、波数1600~1400cm-1、波数1200~1100cm-1、波数1000~800cm-1の組み合わせを使用するものであるが、これに限るものではなく、例えば、波数3500~3000cm-1の範囲内若しくはその近傍の範囲内のスペクトルデータを組み合わせて使用するようにしてもよい。
(11)上記実施例1においては、リネンとラミーとの鑑別に波数1400~900cm-1の範囲内のスペクトルデータのみを使用し、上記実施例2においては、波数1600~1500cm-1、波数1400~1100cm-1、波数1000~900cm-1の組み合わせを使用するものであるが、これに限るものではなく、例えば、波数3500~3000cm-1の範囲内若しくはその近傍の範囲内のスペクトルデータを組み合わせて使用するようにしてもよい。
(12)上記実施例1においては、再生繊維どうしの鑑別に波数1400~900cm-1の範囲内のスペクトルデータのみを使用し、上記実施例2においては、波数1500~1400cm-1、波数1300~1000cm-1、波数900~800cm-1の組み合わせを使用するものであるが、これに限るものではなく、例えば、波数3500~3000cm-1の範囲内若しくはその近傍の範囲内のスペクトルデータを組み合わせて使用するようにしてもよい。
(13)上記実施例1においては、キュプラとリヨセルとの鑑別に波数1400~900cm-1の範囲内のスペクトルデータのみを使用し、上記実施例2においては、波数1700~1600cm-1、波数1500~1300cm-1、波数1100~1000cm-1の組み合わせを使用するものであるが、これに限るものではなく、例えば、波数3500~3000cm-1の範囲内若しくはその近傍の範囲内のスペクトルデータを組み合わせて使用するようにしてもよい。
(1)上記各実施形態においては、化学的組成が同じ繊維どうしの鑑別例としてセルロース系繊維で説明するものであるが、これに限るものではなく、タンパク質系繊維としての絹や各種獣毛繊維どうしの鑑別や、その他の化学的組成が同じ繊維どうしの鑑別を行うようにしてもよい。
(2)上記各実施形態においては、2つのグループ間の鑑別を判別分析するものであるが、これに限るものではなく、3つ或いはそれ以上のグループ間の鑑別を同時に判別分析するようにしてもよい。
(3)上記各実施形態においては、IR分光分析により得られる吸収スペクトルにより鑑別を行うものであるが、これに限るものではなく、IR分光分析により得られる透過スペクトルにより鑑別を行うようにしてもよい。
(4)上記各実施形態においては、波数4000~600cm-1の範囲内の吸収スペクトルを測定し、これから解析に使用する所定の波数域におけるスペクトルデータを抽出するものであるが、これに限るものではなく、解析に使用する1つ又は2つ以上の所定の波数域における吸収スペクトルのみを測定するようにしてもよい。
(5)上記各実施形態においては、IR分光分析により得られる吸収スペクトルにより鑑別を行うものであるが、これに限るものではなく、NIR分光分析により得られる吸収スペクトルにより鑑別を行うようにしてもよい。このNIR分光分析により吸収スペクトルを得る場合には、IR分光分析と同様にFT/IR分光光度計を使用するようにしてもよく、或いは、FT/NIR分光光度計、分散型NIR分光光度計、分散型UV-VIS-NIR分光光度計などを使用するようにしてもよい。また、NIR分光分析においてこれらの分光光度計を使用して吸収スペクトルを測定する場合には、拡散反射法などを使用することが一般的である。
(6)上記各実施形態においては、ATR法により吸収スペクトルを求めるものであるが、これに限るものではなく、その他の方法、例えば、比較繊維或いは被検繊維を微粉砕してからKBr錠剤法などで吸収スペクトルを求めるようにしてもよい。
(7)上記各実施例においては、赤外吸収の大きな波数域の組み合わせを用いて判別分析を行い、特に有効と考えられる特定の波数域を抽出するものであるが、これに限るものではなく、解析ソフトによる波数域の抽出などを利用して波数域を抽出するようにしてもよい。
(8)上記各実施例においては、互いに直交する第1軸と第2軸との組み合わせによる2次元の分析を使用したが、これらに限るものではなく、互いに直交する3つ以上の軸を用いて3次元以上で分析するようにしてもよい。
(9)上記実施例1においては、天然繊維と再生繊維との鑑別に波数1200~850cm-1の範囲内のスペクトルデータのみを使用し、上記実施例2においては、波数1300~900cm-1のみを使用するものであるが、これに限るものではなく、例えば、波数3500~3000cm-1の範囲内若しくはその近傍の範囲内のスペクトルデータを組み合わせて使用するようにしてもよい。
(10)上記実施例1においては、綿と麻類との鑑別に波数1400~900cm-1の範囲内のスペクトルデータのみを使用し、上記実施例2においては、波数1600~1400cm-1、波数1200~1100cm-1、波数1000~800cm-1の組み合わせを使用するものであるが、これに限るものではなく、例えば、波数3500~3000cm-1の範囲内若しくはその近傍の範囲内のスペクトルデータを組み合わせて使用するようにしてもよい。
(11)上記実施例1においては、リネンとラミーとの鑑別に波数1400~900cm-1の範囲内のスペクトルデータのみを使用し、上記実施例2においては、波数1600~1500cm-1、波数1400~1100cm-1、波数1000~900cm-1の組み合わせを使用するものであるが、これに限るものではなく、例えば、波数3500~3000cm-1の範囲内若しくはその近傍の範囲内のスペクトルデータを組み合わせて使用するようにしてもよい。
(12)上記実施例1においては、再生繊維どうしの鑑別に波数1400~900cm-1の範囲内のスペクトルデータのみを使用し、上記実施例2においては、波数1500~1400cm-1、波数1300~1000cm-1、波数900~800cm-1の組み合わせを使用するものであるが、これに限るものではなく、例えば、波数3500~3000cm-1の範囲内若しくはその近傍の範囲内のスペクトルデータを組み合わせて使用するようにしてもよい。
(13)上記実施例1においては、キュプラとリヨセルとの鑑別に波数1400~900cm-1の範囲内のスペクトルデータのみを使用し、上記実施例2においては、波数1700~1600cm-1、波数1500~1300cm-1、波数1100~1000cm-1の組み合わせを使用するものであるが、これに限るものではなく、例えば、波数3500~3000cm-1の範囲内若しくはその近傍の範囲内のスペクトルデータを組み合わせて使用するようにしてもよい。
市場には多くの繊維製品が広い用途に流通している。また、繊維製品の生産地と消費地がグローバルに展開される今日においては、繊維製品の輸出入の際に取引の安全や信頼を確保するために、輸出入の際に迅速、且つ、正確な鑑別方法が望まれている。特に、化学的組成が同じセルロース系繊維どうしの過誤混入や、化学的組成が同じカシミヤなどの高級獣毛繊維と安価な他の獣毛繊維との正確な鑑別が望まれている。
本発明は、このような市場の要求に対して的確な鑑別手段を提供するものであり、また、従来法のように検査員の経験やノウハウに頼ることがない。特に、化学的組成が同じ繊維どうしの種類を客観的に鑑別できること、また、過誤混入や偽装がなされていても正確な鑑別結果が得られるということは、これまでにない画期的な鑑別手段となる。
このことから、本発明は、市場の安定や国際間の公正取引に有効な鑑別手段を提供するものであり、単に従来法であるJIS L 1030‐1(繊維製品の混用率試験方法‐第1部:繊維鑑別)、及び、JIS L 1030‐2(繊維製品の混用率試験方法‐第2部:繊維混用率)を補完する鑑別手段に留まらず、国際標準として利用可能な鑑別手段を提供することができる。
1…綿、2…麻類、3…レーヨン、4…キュプラ、5…リヨセル、6…結晶セルロース、
A~E…判別モデル、
A1、A3…天然繊維のグループ、A2、A4…再生繊維のグループ、
B1、B3…綿のグループ、B2、B4…麻類のグループ、
C1、C3…リネンのグループ、C2、C4…ラミーのグループ、
D1、D3…レーヨンのグループ、D2、D4…キュプラ及びリヨセルのグループ、
E1、E3…キュプラのグループ、E2、E4…リヨセルのグループ、
G1~G5…領域、L1~L4…判別ライン、
X、Y…スペクトルデータ、X1、X2…データ、
Z1~Z10…被検繊維。
A~E…判別モデル、
A1、A3…天然繊維のグループ、A2、A4…再生繊維のグループ、
B1、B3…綿のグループ、B2、B4…麻類のグループ、
C1、C3…リネンのグループ、C2、C4…ラミーのグループ、
D1、D3…レーヨンのグループ、D2、D4…キュプラ及びリヨセルのグループ、
E1、E3…キュプラのグループ、E2、E4…リヨセルのグループ、
G1~G5…領域、L1~L4…判別ライン、
X、Y…スペクトルデータ、X1、X2…データ、
Z1~Z10…被検繊維。
Claims (16)
- セルロース系繊維やタンパク質系繊維など同系に分類される同系異種繊維を鑑別する繊維鑑別方法であって、
鑑別しようとする2種類(2グループ)以上の同系異種繊維に対して、それぞれ繊維の種類が既知の単一繊維を比較繊維として複数準備し、各比較繊維に対して赤外線又は近赤外線を照射してそれぞれの吸収スペクトルを求め、
これらの吸収スペクトルから得られたスペクトルデータXを用いて、式(1)によりグループ間は離れ且つ各グループは纏まる軸wを求める判別分析を行い、得られたスコアプロットから判別モデルを作成しておき、
SBw=λ(SW+ζI)w ・・・(1)
(ここで、SB・SWは、分散共分散行列又は変動行列であって、分散共分散行列を使用する場合には、SBはグループ間分散共分散行列、SWはグループ内分散共分散行列であり、変動行列を使用する場合には、SBはグループ間変動行列、SWはグループ内変動行列である。一方、ζは正則化係数、Iは単位行列である。)
次に、繊維の種類が未知の繊維を被検繊維とし、前記判別モデルの作成と同様にして当該被検繊維のスペクトルデータYから求めたスコアを前記判別モデルに当て嵌めて、前記被検繊維がいずれのグループに属するかを照合して、繊維の種類を鑑別する繊維鑑別方法。 - 前記判別モデルの作成段階において、各比較繊維のスペクトルデータXから求めたスコアプロットの等確率楕円を作成し、
前記被検繊維の鑑別段階において、当該被検繊維のスペクトルデータYから求めたスコアを前記等確率楕円に当て嵌めて、前記被検繊維がいずれのグループに属するかを照合することを特徴とする請求項1に記載の繊維鑑別方法。 - 前記判別モデルの作成段階において、各比較繊維のスペクトルデータXから求めたスコアからn次元(nは1以上の整数)の正規分布の推定を行い、
前記被検繊維の鑑別段階において、当該被検繊維のスペクトルデータYから求めたスコアから前記n次元の正規分布に対する確率密度を算出することにより、前記被検繊維がいずれのグループに属するかを照合することを特徴とする請求項1に記載の繊維鑑別方法。 - 前記比較繊維及び被検繊維に対して、近赤外線を除く波数4000cm-1~600cm-1の範囲内の赤外線を照射して前記吸収スペクトルを求め、
これらの吸収スペクトルから所定の波数域における吸収スペクトルを抽出して前記スペクトルデータX及びYを求めることを特徴とする請求項1~3のいずれか1つに記載の繊維鑑別方法。 - 前記判別モデルの作成にあたり、
第1回判別分析において各比較繊維の元のスペクトルデータをデータX1として求めた第1軸w1とデータX1とから、式(2)によりデータX1の第1軸座標(w1軸座標)の値t1を算出し、
t1=w1 TX1 ・・・(2)
(ここで、w1 Tはw1の転置ベクトル)
式(3)により前記データX1からw1軸方向の情報を引き抜いたデータX2を求め、
X2=X1-w1t1 ・・・(3)
次に、第2回判別分析においてスペクトルデータをデータX2として求めた第2軸w2とデータX2とから、式(4)によりデータX2の第2軸座標(w2軸座標)の値t2を算出して、
t2=w2 TX2 ・・・(4)
(ここで、w2 Tはw2の転置ベクトル)
直交分解のなされた判別モデルを作成することを特徴とする請求項1~4のいずれか1つに記載の繊維鑑別方法。 - 上記式(3)及び式(4)の操作を複数回繰り返すことにより3次元以上の互いに直交する軸座標を有する判別モデルを作成することを特徴とする請求項5に記載の繊維鑑別方法。
- セルロース系繊維において、下記の各組み合わせに係る2種類(2グループ)の比較繊維、
(1)天然繊維、対、再生繊維、
(2)綿、対、麻類、
(3)亜麻、対、苧麻、
(4)ビスコース系レーヨン、対、銅アンモニアレーヨン又は溶剤紡糸セルロース繊維、
(5)銅アンモニアレーヨン、対、溶剤紡糸セルロース繊維、
のスペクトルデータXを判別分析して得られた各判別モデルを使用して、前記被検繊維のスペクトルデータYを前記各判別モデルに当て嵌めて、前記被検繊維がいずれのグループに属するかを照合して、繊維の種類を鑑別することを特徴とする請求項1~6のいずれか1つに記載の繊維鑑別方法。 - セルロース系繊維において、天然繊維と再生繊維との鑑別には主に波数1300~850cm-1の範囲内若しくはその近傍の範囲内を含む1組又は2組以上のスペクトルデータを使用して鑑別することを特徴とする請求項1~7のいずれか1つに記載の繊維鑑別方法。
- セルロース系繊維において、綿と麻類との鑑別には主に波数1600~800cm-1の範囲内若しくはその近傍の範囲内を含む1組又は2組以上のスペクトルデータを使用して鑑別することを特徴とする請求項1~7のいずれか1つに記載の繊維鑑別方法。
- セルロース系繊維において、再生繊維どうしの鑑別には主に波数1600~900cm-1の範囲内若しくはその近傍の範囲内を含む1組又は2組以上のスペクトルデータを使用して鑑別することを特徴とする請求項1~7のいずれか1つに記載の繊維鑑別方法。
- セルロース系繊維において、銅アンモニアレーヨンと溶剤紡糸セルロース繊維との鑑別には主に波数1500~800cm-1の範囲内若しくはその近傍の範囲内を含む1組又は2組以上のスペクトルデータを使用して鑑別することを特徴とする請求項1~7のいずれか1つに記載の繊維鑑別方法。
- セルロース系繊維において、亜麻と苧麻との鑑別には主に波数1700~900cm-1の範囲内若しくはその近傍の範囲内を含む1組又は2組以上のスペクトルデータを使用して鑑別することを特徴とする請求項1~7のいずれか1つに記載の繊維鑑別方法。
- 前記式(1)における正則化係数ζの値を、1~0の範囲内として鑑別することを特徴とする請求項1~12のいずれか1つに記載の繊維鑑別方法。
- セルロース系繊維において、比較繊維及び被検繊維に対してアルカリ性物質による前処理を施してから吸収スペクトルを求めることを特徴とする請求項1~13のいずれか1つに記載の繊維鑑別方法。
- 前記比較繊維及び前記被検繊維の吸収スペクトルを求める方法は、ATR法(全反射測定法)であることを特徴とする請求項1~14のいずれか1つに記載の繊維鑑別方法。
- 前記セルロース系繊維に分類される同系異種繊維としては、綿、亜麻、苧麻、黄麻、大麻、ビスコースレーヨン、ハイウェットモジュラスレーヨン、ポリノジックレーヨン、銅アンモニアレーヨン、及び、溶剤紡糸セルロース繊維が含まれることを特徴とする請求項1~15のいずれか1つに記載の繊維鑑別方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780063271.3A CN109844500A (zh) | 2016-10-18 | 2017-05-26 | 纤维鉴别方法 |
JP2018546142A JP6771576B2 (ja) | 2016-10-18 | 2017-05-26 | 繊維鑑別方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-204437 | 2016-10-18 | ||
JP2016204437 | 2016-10-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018074002A1 true WO2018074002A1 (ja) | 2018-04-26 |
Family
ID=62019116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/019641 WO2018074002A1 (ja) | 2016-10-18 | 2017-05-26 | 繊維鑑別方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6771576B2 (ja) |
CN (1) | CN109844500A (ja) |
WO (1) | WO2018074002A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020034565A (ja) * | 2014-08-22 | 2020-03-05 | 一般財団法人ニッセンケン品質評価センター | 繊維鑑別方法 |
CN112649391A (zh) * | 2020-12-03 | 2021-04-13 | 浙江大学 | 一种纤维质量等级在线检测系统及其应用 |
CN112697743A (zh) * | 2021-01-14 | 2021-04-23 | 中国林业科学研究院木材工业研究所 | 一种基于二维相关红外光谱的檀香紫檀笔筒鉴别方法 |
CN114705652A (zh) * | 2022-04-06 | 2022-07-05 | 福建省纤维检验中心 | 一种铜氨纤维、莱赛尔纤维的定性鉴别方法及应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100036795A1 (en) * | 2005-10-13 | 2010-02-11 | Busch Kenneth W | Classification of Fabrics by Near-Infrared Spectroscopy |
CN101876633A (zh) * | 2009-11-13 | 2010-11-03 | 中国矿业大学 | 一种基于太赫兹时域光谱的纺织纤维鉴别方法 |
JP2011047759A (ja) * | 2009-08-26 | 2011-03-10 | Shinshu Univ | 繊維製品の検査方法 |
WO2015146821A1 (ja) * | 2014-03-28 | 2015-10-01 | 国立大学法人秋田大学 | 繊維鑑別方法 |
WO2016027792A1 (ja) * | 2014-08-22 | 2016-02-25 | 一般財団法人ニッセンケン品質評価センター | 繊維鑑別方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104568778B (zh) * | 2015-01-15 | 2018-04-17 | 浙江理工大学 | 一种基于高光谱成像的纺织品成分鉴别方法 |
CN104730004B (zh) * | 2015-03-25 | 2017-06-13 | 浙江理工大学 | 基于紫外漫反射光谱的纺织纤维的鉴别方法 |
CN104764872A (zh) * | 2015-03-30 | 2015-07-08 | 河北出入境检验检疫局检验检疫技术中心 | 莱赛尔纤维的鉴别方法及其应用 |
CN105274103B (zh) * | 2015-11-22 | 2018-05-25 | 保琦蓓 | 一种鉴别汉麻、苎麻、亚麻原麻纤维种类的pcr引物组以及pcr鉴别方法 |
CN108120687A (zh) * | 2016-11-28 | 2018-06-05 | 西派特(北京)科技有限公司 | 一种纺织纤维快速检测装置 |
-
2017
- 2017-05-26 WO PCT/JP2017/019641 patent/WO2018074002A1/ja active Application Filing
- 2017-05-26 CN CN201780063271.3A patent/CN109844500A/zh active Pending
- 2017-05-26 JP JP2018546142A patent/JP6771576B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100036795A1 (en) * | 2005-10-13 | 2010-02-11 | Busch Kenneth W | Classification of Fabrics by Near-Infrared Spectroscopy |
JP2011047759A (ja) * | 2009-08-26 | 2011-03-10 | Shinshu Univ | 繊維製品の検査方法 |
CN101876633A (zh) * | 2009-11-13 | 2010-11-03 | 中国矿业大学 | 一种基于太赫兹时域光谱的纺织纤维鉴别方法 |
WO2015146821A1 (ja) * | 2014-03-28 | 2015-10-01 | 国立大学法人秋田大学 | 繊維鑑別方法 |
WO2016027792A1 (ja) * | 2014-08-22 | 2016-02-25 | 一般財団法人ニッセンケン品質評価センター | 繊維鑑別方法 |
Non-Patent Citations (1)
Title |
---|
TSUYOSHI UI: "Differentiation of Hemp ans Ramie Through Principle Component Analysis of Infrared Spectroscopic Spectrum", JOURNAL OF THE JAPAN RESEARCH ASSOCIATION FOR TEXTILE END-USES, vol. 55, no. 11, 25 November 2014 (2014-11-25), pages 842 - 848 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020034565A (ja) * | 2014-08-22 | 2020-03-05 | 一般財団法人ニッセンケン品質評価センター | 繊維鑑別方法 |
CN112649391A (zh) * | 2020-12-03 | 2021-04-13 | 浙江大学 | 一种纤维质量等级在线检测系统及其应用 |
CN112697743A (zh) * | 2021-01-14 | 2021-04-23 | 中国林业科学研究院木材工业研究所 | 一种基于二维相关红外光谱的檀香紫檀笔筒鉴别方法 |
CN114705652A (zh) * | 2022-04-06 | 2022-07-05 | 福建省纤维检验中心 | 一种铜氨纤维、莱赛尔纤维的定性鉴别方法及应用 |
Also Published As
Publication number | Publication date |
---|---|
CN109844500A (zh) | 2019-06-04 |
JP6771576B2 (ja) | 2020-10-21 |
JPWO2018074002A1 (ja) | 2019-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016027792A1 (ja) | 繊維鑑別方法 | |
WO2018074002A1 (ja) | 繊維鑑別方法 | |
Bergo et al. | NIRS identification of Swietenia macrophylla is robust across specimens from 27 countries | |
Gierlinger | Revealing changes in molecular composition of plant cell walls on the micron-level by Raman mapping and vertex component analysis (VCA) | |
Zięba-Palus et al. | Analysis of degraded papers by infrared and Raman spectroscopy for forensic purposes | |
Zoccola et al. | Identification of wool, cashmere, yak, and angora rabbit fibers and quantitative determination of wool and cashmere in blend: a near infrared spectroscopy study | |
Was-Gubala et al. | Application of Raman spectroscopy for differentiation among cotton and viscose fibers dyed with several dye classes | |
CN101876633B (zh) | 一种基于太赫兹时域光谱的纺织纤维鉴别方法 | |
Horikawa et al. | Near-infrared spectroscopy as a potential method for identification of anatomically similar Japanese diploxylons | |
Geminiani et al. | Differentiating between natural and modified cellulosic fibres using ATR-FTIR spectroscopy | |
CN104568778A (zh) | 一种基于高光谱成像的纺织品成分鉴别方法 | |
Pozzi et al. | Statistical methods and library search approaches for fast and reliable identification of dyes using surface-enhanced Raman spectroscopy (SERS) | |
Zhang et al. | Obtaining pure spectra of hemicellulose and cellulose from poplar cell wall Raman imaging data | |
WO2021139644A1 (zh) | 一种皮革真实属性的鉴别方法 | |
Shou et al. | Application of near infrared spectroscopy for discrimination of similar rare woods in the Chinese market | |
Barrett et al. | Forensic discrimination of dyed hair color: II. Multivariate statistical analysis | |
Enlow et al. | Discrimination of nylon polymers using attenuated total reflection mid-infrared spectra and multivariate statistical techniques | |
Sharma et al. | Rapid and non-destructive differentiation of Shahtoosh from Pashmina/Cashmere wool using ATR FT-IR spectroscopy | |
Notayi et al. | The application of Raman spectroscopic ratiometric analysis for distinguishing between wool and mohair | |
Karoui et al. | Development of a rapid method based on front face fluorescence spectroscopy for the monitoring of egg freshness: 1—evolution of thick and thin egg albumens | |
Jesus et al. | Making wood inspection easier: FTIR spectroscopy and machine learning for Brazilian native commercial wood species identification | |
Kita et al. | Wood identification of two anatomically similar Cupressaceae species based on two-dimensional microfibril angle mapping | |
JP6595982B2 (ja) | 繊維鑑別方法 | |
Adi et al. | Anatomical properties and near infrared spectra characteristics of four shorea species from Indonesia | |
Lv et al. | Identification of less-ripen, ripen, and over-ripen grapes during harvest time based on visible and near-infrared (Vis-NIR) spectroscopy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17863007 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018546142 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17863007 Country of ref document: EP Kind code of ref document: A1 |