WO2018072678A1 - 活塞式空气压缩机、供气系统及车辆 - Google Patents

活塞式空气压缩机、供气系统及车辆 Download PDF

Info

Publication number
WO2018072678A1
WO2018072678A1 PCT/CN2017/106511 CN2017106511W WO2018072678A1 WO 2018072678 A1 WO2018072678 A1 WO 2018072678A1 CN 2017106511 W CN2017106511 W CN 2017106511W WO 2018072678 A1 WO2018072678 A1 WO 2018072678A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
crankshaft
air compressor
pair
type air
Prior art date
Application number
PCT/CN2017/106511
Other languages
English (en)
French (fr)
Inventor
章道彪
Original Assignee
上海汽车集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海汽车集团股份有限公司 filed Critical 上海汽车集团股份有限公司
Publication of WO2018072678A1 publication Critical patent/WO2018072678A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0005Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons
    • F04B39/0022Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons piston rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/02Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders arranged oppositely relative to main shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/04Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0027Pulsation and noise damping means

Definitions

  • the invention relates to the technical field of air compressors, in particular to a piston air compressor, a gas supply system and a filtration system.
  • the air compressor is a device that converts mechanical energy into gas pressure energy.
  • the existing air compressor can be divided into three types according to the working principle: volumetric, dynamic, and thermal compressors.
  • the piston air compressor is used as a volumetric air.
  • the most common form of compressor, the longest research time and the most mature technology, is the mainstream model of small volume air compressor, widely used in automobile engine refrigeration, door switch, etc., and thus has broad application prospects.
  • the working principle of the piston air compressor is to drive the crankshaft to rotate, so that the piston in the cylinder reciprocates with the rotation of the crankshaft, thereby compressing the gas sucked into the cylinder to provide compressed gas.
  • the conventional piston type air compressor generally has the following problems: intermittent exhaust gas causes large exhaust pulsation and large vibration.
  • the problem to be solved by the present invention is that the existing piston type air compressor intermittently exhausts, causing large exhaust pulsation and large vibration.
  • the present invention provides a piston type air compressor comprising: a crankshaft; a pair of piston rod sets, comprising: first and second piston rod sets, spaced apart in a circumferential direction of the crankshaft,
  • the first and second piston connecting rod sets each include a connecting rod and a piston, one end of the connecting rod is sleeved on the crankshaft, and the other end is connected with the piston;
  • the cylinder pair includes: first and second cylinders, The circumferential distances of the crankshafts are spaced apart, the pistons of the first and second piston rod sets are respectively located in the first and second cylinders, and can reciprocate in the corresponding cylinders according to the rotation of the crankshaft, and When the piston of one of the piston rod sets of the pair of piston rod sets is in the suction working stroke, the piston of the other piston rod set is in the exhaust working stroke.
  • the number of the pair of piston rod sets and the pair of cylinders are both two or more, and all of the activities are a pair of plug links are sequentially disposed along an axial direction of the crankshaft;
  • the pair of piston rod sets are in one-to-one correspondence with the pair of cylinders, and the pistons of each pair of the piston rod sets are respectively located in the first and second cylinders of the corresponding pair of cylinders;
  • each piston of the pair of piston rod sets has a piston of the piston rod set in the suction working stroke, and the piston of the other piston rod set is in the exhaust working stroke.
  • all of the piston rod sets are evenly spaced along the circumference, and all of the cylinders are evenly spaced along the circumference.
  • the connecting rod is arranged as a curved rod, and a part of each of the first and second cylinders is located on a same plane, the plane being perpendicular to a central axis of the crankshaft.
  • the first and second cylinders each include a cylinder block and a cylinder head that is disposed on the cylinder block, and the cylinder block, the cylinder head and the piston enclose a gas compression chamber;
  • the cylinder head is provided with an intake valve and a first exhaust passage, the first exhaust passage is in communication with the gas compression chamber, and the outside air enters the gas compression chamber from the intake valve;
  • the cylinder block is provided with a second exhaust passage, and an exhaust valve is disposed in the second exhaust passage, and in the open state, the gas in the gas compression chamber passes through the first exhaust The passage is discharged from the outlet of the second exhaust passage.
  • the piston air compressor further includes: a fuselage, the crankshaft is rotatably supported on the fuselage;
  • the airframe includes an air storage chamber, an exhaust pipe, and the cylinder block, and the air storage chamber is connected to an outlet of the second exhaust passage and an exhaust pipe;
  • the gas discharged from the outlet is sequentially discharged through the gas storage chamber and the exhaust pipe.
  • the method further includes: a filter mesh fixed on the air body, located on an outer side of the intake valve in a radial direction of the crankshaft, wherein the air inlet valve is in an open state, and the gas passes through the filter mesh After filtering, it enters the gas compression chamber through the intake valve.
  • first and second piston link sets of the pair of piston link sets are 180 in the circumferential direction.
  • the interval is set, and the first and second cylinders of the pair of cylinders are disposed at intervals of 180 degrees in the circumferential direction.
  • the circumferential surface of the piston in contact with the cylinder is a ceramic wear resistant material; and/or the circumferential surface of the cylinder in contact with the piston is a ceramic wear resistant material.
  • the connecting rod is connected to the piston by a piston pin, the surface of which is a polyetheretherketone polymer coating.
  • the connecting rod is arranged as a curved rod, and the pistons of the pair of piston connecting rods are located on the same plane, the plane being perpendicular to the central axis of the crankshaft.
  • crankshaft has a crankshaft neck, one end of the connecting rod is sleeved on the crankshaft neck, and the connecting rod pair of the piston connecting rod sleeve is sleeved on the same crankshaft neck.
  • the present invention provides a gas supply system for supplying air to a fuel cell system of a vehicle, which includes the piston type air compressor of any of the above.
  • first and second piston link sets of the pair of piston rod sets are disposed at 180 degrees intervals in the circumferential direction, and the first and second cylinders of the cylinder pair are disposed at 180 degrees intervals in the circumferential direction, so that The two piston rod sets of the pair of piston rod sets are arranged symmetrically about the crankshaft, and the two cylinders of the cylinder pair are also symmetrically arranged about the crankshaft, so the overall structure of the piston type air compressor is balanced, the force is uniform, and the piston is improved. The reliability of air compressors.
  • FIG. 1 is an assembled perspective view of a pair of a crankshaft and a piston connecting rod of a piston type air compressor in an embodiment of the present invention
  • Figure 2 is a view of the crankshaft and the piston rod set shown in Figure 1 as viewed in the axial direction of the crankshaft and the cylinder With the diagram, the cylinder in the figure is simplified;
  • Figure 3 is a partial perspective view of a piston type air compressor in one embodiment of the present invention.
  • Figure 4 is a cross-sectional view of a piston type air compressor in an embodiment of the present invention, the cutting plane being perpendicular to the central axis of the crankshaft;
  • Figure 5 is a perspective view of a piston type air compressor in one embodiment of the present invention.
  • Figure 6 is a cross-sectional view of a piston type air compressor in accordance with one embodiment of the present invention, the cut surface being the plane in which the central axis of the crankshaft lies.
  • the embodiment provides an air filtering system and a gas supply system for supplying air to the fuel cell system, and the supplied air and the hydrogen react electrochemically in the fuel cell system to generate electricity, and the generated electric energy is used as A power source that drives the vehicle.
  • the gas supply system includes a piston type air compressor for supplying compressed air to the fuel cell system, and the structure of the piston type air compressor is described in detail below.
  • the present embodiment provides a piston type air compressor comprising a crankshaft 1, a pair of piston rod pairs 2 and a cylinder pair. among them:
  • the piston link set pair 2 includes piston link sets 2A, 2B, and the piston link sets 2A, 2B are spaced apart in the circumferential direction of the crankshaft 1.
  • the piston rod set 2A includes a link 21A and a piston 20A, and one end of the link 21A is sleeved on the crankshaft 1 and the other end is connected to the piston 20A.
  • the piston link group 2B includes a link 21B and a piston 20B. One end of the link 21B is sleeved on the crankshaft 1 and the other end is connected to the piston 20B.
  • the cylinder pair includes cylinders 3A, 3B, and the cylinders 3A, 3B are spaced apart in the circumferential direction of the crankshaft 1.
  • the piston 20A of the piston connecting rod pair 2 is located in the cylinder 3A
  • the piston 20B is located in the cylinder 3B, and can reciprocate along the dotted arrow in the cylinders 3A, 3B as the crankshaft 1 rotates, and the piston connecting rod pair 2
  • the piston 20A in the pair of piston rod sets 2 is in the exhaust working stroke
  • the piston 20B is in the suction working stroke.
  • the so-called piston 20A, 20B is in the suction working stroke and refers to the external gas. Entering the cylinders 3A, 3B, the fact that the pistons 20A, 20B are in the exhaust working stroke means that the gases in the cylinders 3A, 3B are exhausted.
  • the pistons 20A, 20B in the piston rod set 2 are successively in the exhaust working stroke under the driving of the rotating crankshaft 1, so that the piston type air compressor can continuously supply air, thus Reduced exhaust pulsation and vibration.
  • the piston rod sets 2A, 2B are disposed at intervals of 180 degrees in the circumferential direction of the crankshaft 1 such that the piston rod sets 2A, 2B are arranged on both sides of the crankshaft 1 in the radial direction of the crankshaft 1.
  • the cylinder pair includes cylinders 3A, 3B which are disposed at intervals of 180 degrees in the circumferential direction of the crankshaft 1 such that the cylinders 3A, 3B are arranged on both sides of the crankshaft 1 in the radial direction of the crankshaft 1.
  • the piston rod sets 2A, 2B of the piston rod pair 2 are symmetrically arranged with respect to the crankshaft 1, and the cylinders 3A, 3B of the cylinder pair are also symmetrically arranged with respect to the crankshaft 1, so that the piston type air compression
  • the overall structure of the machine is balanced and evenly stressed, which improves the reliability of the piston air compressor.
  • the piston rod sets 2A, 2B may also be arranged in a V shape in the circumferential direction of the crankshaft 1, that is, the interval angle between the piston rod sets 2A, 2B is greater than zero degrees and less than 180 degrees
  • the cylinders 3A, 3B may also be arranged in a V-shape in the circumferential direction of the crankshaft 1, that is, the interval angle between the cylinders 3A, 3B is greater than zero degrees and less than 180 degrees
  • the piston air compressor can be continuously supplied with air.
  • the connecting rods 21A, 21B are connected to the pistons 20A, 20B through the piston pins 22A, 22B, respectively, and the surfaces of the piston pins 22A, 22B are polyetheretherketone (PEEK) polymer coating, thereby achieving no
  • PEEK polyetheretherketone
  • the circumferential surface (substantially cylindrical surface) of the pistons 20A, 20B in contact with the cylinders 3A, 3B is a ceramic wear-resistant material such that the pistons 20A, 20B are respectively in the cylinders in the directions indicated by the dotted arrows in the figure.
  • 3A, 3B are not easy to wear when reciprocating, increasing the durability of the pistons 20A, 20B, prolonging the service life of the pistons 20A, 20B, and improving the performance of the pistons 20A, 20B.
  • the circumferential surface (substantially cylindrical surface) of the cylinders 3A, 3B in contact with the pistons 20A, 20B is a ceramic wear-resistant material such that the pistons 20A, 20B are respectively in the cylinders in the directions indicated by the dotted arrows in the figure.
  • the inner walls of the cylinders 3A and 3B are not easily worn, and the gas is increased.
  • the durability of the cylinders 3A, 3B satisfies the performance requirements of the hard thin walls of the cylinders 3A, 3B and the moisture and corrosion resistance, and has a better heat transfer capability.
  • crankshaft 1 in the present embodiment, one end of the crankshaft 1 is connected to a motor (not shown), and the motor drives the crankshaft 1 to rotate when the piston air compressor is operated.
  • the motor is coupled to the crankshaft 1 via a flexible coupling and is a high speed brushless DC motor.
  • the piston rod pair 2 the number of the cylinder pairs are all three, all the piston rod pair 2 are sequentially disposed along the axial direction of the crankshaft 1, the piston rod pair 2 and the cylinder
  • the pistons 2A of the respective piston rod set pairs 2 are located in the corresponding cylinders 3A of the cylinder pair
  • the pistons 2B of the respective piston rod set pairs 2 are located in the corresponding cylinders 3B of the cylinder pair .
  • all of the piston rod sets 2A, 2B are evenly staggered along the circumferential direction of the crankshaft 1, and the piston rod sets 2A, 2B adjacent in the circumferential direction of the crankshaft 1 are disposed at intervals of 60 degrees.
  • All of the cylinders 3A, 3B are evenly staggered in the circumferential direction of the crankshaft 1, and the cylinders 3A, 3B adjacent in the circumferential direction of the crankshaft 1 are disposed at intervals of 60 degrees. In this way, the overall structure of the piston air compressor is balanced and the force is uniform, which improves the reliability of the piston air compressor.
  • the piston type air compressor of the present embodiment can greatly reduce the rotational speed value of the motor for driving the rotation of the crankshaft 1 when the same intake air amount and exhaust gas amount are satisfied. Thereby reducing the purchase cost of the motor and the cost of use.
  • the power source that drives the work comes from the fuel cell of the vehicle, and since the rotational speed of the motor is lowered, the power generated by the fuel cell system for supply to the motor is reduced.
  • the cylinder 3A includes a cylinder block 30A and a cylinder head 31A which is provided on the cylinder block 30A.
  • the cylinder block 30A is boltedly coupled to the cylinder head 31A.
  • the cylinder block 30A, the cylinder head 31A, and the piston 20A enclose a gas compression chamber 32, and the outside air entering the gas compression chamber 32 is compressed and discharged to the gas compression chamber 32.
  • the cylinder head 31A is provided The intake valve 49 and the first exhaust passage 48 in communication with the gas compression chamber 32, the section of FIG. 4 is not cut into the first exhaust passage 48, so that the invisible first exhaust passage 48 is simplified with a broken line.
  • the cylinder block 30A is provided with a second exhaust passage 44, and the second exhaust passage 44 is provided with an exhaust valve 47.
  • the exhaust valve 47 When the exhaust valve 47 is in an open state, the gas in the gas compression chamber 32 passes through the first exhaust passage 48. It is discharged from the outlet of the second exhaust passage 44.
  • Both the intake valve 49 and the exhaust valve 47 are check valves.
  • crankshaft 1 when the piston type air compressor is in operation, the crankshaft 1 is rotated by a motor (not shown), and the piston 20A is rotated in the cylinder block 30A in the direction indicated by the dotted arrow in the figure as the crankshaft 1 rotates.
  • the volume of the gas compression chamber 32 changes periodically.
  • the piston 20A starts to move in the reverse direction in the direction indicated by the upward dotted arrow in the figure, the volume of the gas compression chamber 32 gradually decreases, the air pressure of the gas compression chamber 32 rises, and the air pressure in the gas compression chamber 32 exceeds the exhaust gas.
  • the exhaust pressure of the valve 47 is released, the exhaust valve 47 is opened, and the compressed gas in the gas compression chamber 32 is sequentially discharged through the first exhaust passage 48 and the second exhaust passage 44.
  • the exhaust valve 47 is closed.
  • the cylinder 3B constituting the cylinder pair with the cylinder 3A has the same configuration as the cylinder 3A, and like the cylinder 3A, the intake valve, the first exhaust passage, the second exhaust passage, and the exhaust valve are also provided on the cylinder 3B (not identified ), since the structure is the same, it will not be described here.
  • the working process of the piston 20B in the cylinder 3B is substantially the same as the working process of the piston 20A in the cylinder 3A described above, except that when the piston 20A is in the intake working stroke, the piston 20B is in the exhaust working stroke, and when the piston 20A is in the exhaust working stroke At the time, the piston 20B is in the intake working stroke, so that the cylinder 3A and the cylinder 3B successively achieve continuous exhaust.
  • the piston type air compressor further includes a fuselage 4, and the crankshaft 1 is rotatably supported on the body 4, and an axial end of the crankshaft 1 extends out of the body 4. Outside, with Motor (not shown) is connected.
  • the airframe 4 includes an air storage chamber 43, an exhaust pipe 46, and cylinder blocks 30A, 30B.
  • the air storage chamber 43 communicates with the outlet of the second exhaust passage 44 and the exhaust pipe 46, and the outlet from the second exhaust passage 44.
  • the discharged compressed gas flow is stored in the gas storage chamber 43 so that the piston type air compressor can respond to the gas supply demand of the large gas supply amount at any time, thereby avoiding a sudden change in the motor speed due to a sudden increase in the gas supply demand, and improving the motor.
  • the service life since the gas storage chamber 43 is integrated in the piston type air compressor, the entire gas supply system is compact in structure and small in space. When the piston type air compressor starts to supply air outward, the gas in the air reservoir 43 is exhausted from the exhaust pipe 46.
  • the piston type air compressor further includes a screen 45 fixed to the body 4, that is, the screen 45 is integrated in the piston type air compressor, and the screen 45 is located in the radial direction of the crankshaft 1.
  • the gas On the outside of the intake valve 49, in the open state, the gas is filtered through the filter 45 and then enters the gas compression chamber 32 through the intake valve 49, so that the gas discharged from the piston type air compressor is relatively clean and does not need to be in the fuel.
  • a special filtering device is provided in the battery system for filtering the gas discharged from the piston air compressor, thereby reducing the volume occupied by the fuel cell system.
  • the body 4 includes a front end cover 41, a rear end cover 42, and an intermediate body 40.
  • the intermediate body 40 is located between the front end cover 41 and the rear end cover 42 in the axial direction of the crankshaft 1, and is intermediate Both ends of the body 40 in the axial direction are fixed to the front end cover 41 and the rear end cover 42, respectively.
  • the intermediate body 40 is bolted to the front end cover 41
  • the intermediate body 40 is bolted to the rear end cover 42
  • the exhaust pipe 46 is disposed on the rear end cover 42.
  • the rear end cover 42 and the intermediate body 40 surround Into the gas storage chamber 43.
  • the screen 45 is fixed to the intermediate body 40 and surrounds the intermediate body 40 around the crankshaft 1 for a full circle, thereby increasing the filtering area of the intake air and improving the intake efficiency.
  • the cylinders 3A, 3B are arranged in a uniformly spaced manner along the circumferential direction of the crankshaft 1, and the fuselage 4 is arranged in a disk shape, so that the piston type air compressor has a compact structure and a small volume, so that the installation is convenient.
  • the piston air compressor can be made more efficient in low-speed operation areas, so that it can better meet the urban traffic conditions of low-speed driving in the country, and the piston air compressor under low-speed urban traffic conditions. Simply supply less air to the fuel cell system.
  • the crankshaft 1 has three crank journals 10 each parallel to the central axis of the crankshaft 1, and the three crank journals 10 are spaced apart in the axial direction of the crankshaft 1 and evenly spaced in the circumferential direction of the crankshaft 1,
  • the two crank journals 10 adjacent in the circumferential direction of the crankshaft 1 are disposed at intervals of 120 degrees.
  • One ends of the connecting rods 21A, 21B are sleeved on the crank journal 10, and the connecting rods 21A, 21B on the pair of piston connecting rods 2 are sleeved on the same crank journal 10, thereby saving the number of the crankshaft 10 on the crankshaft 1 and reducing
  • the space occupied by the piston type air compressor in the axial direction of the crankshaft 1, that is, the piston type air compressor is more compact and smaller in the axial direction of the crankshaft 1, making the installation of the piston type air compressor more convenient.
  • the connecting rods 21A, 21B are all curved rods, and are not planar like the connecting rods in the existing piston connecting rod set, and the connecting rods 21A, 21B are at least one length in the longitudinal direction. It is perpendicular to the central axis of the crankshaft 1. 2 to 3, a part of each of the cylinders 3A, 3B is located on the same plane which is perpendicular to the central axis of the crankshaft 1, reducing the space occupied by the piston type air compressor in the axial direction of the crankshaft 1, that is, The piston type air compressor is more compact and smaller in the axial direction of the crankshaft 1, making the installation of the piston type air compressor more convenient.
  • the pistons 20A, 20B of the piston rod pair 2 are located on the same plane which is perpendicular to the central axis of the crankshaft 1, reducing the piston air compressor in the axial direction of the crankshaft 1.
  • the occupied space, that is, the piston type air compressor is more compact and smaller in the axial direction of the crankshaft 1, making the installation of the piston type air compressor more convenient.
  • the pair of piston rod pairs and the number of the cylinder pairs are not limited to the embodiment, and they may all be one, two or four or more.
  • the two piston rod groups adjacent in the circumferential direction of the crankshaft are arranged at intervals of 90 degrees, and the two adjacent to each other in the circumferential direction of the crankshaft.
  • the cylinders are arranged at 90 degree intervals.
  • the two piston rod groups adjacent in the circumferential direction of the crankshaft are arranged at intervals of 45 degrees, and the two adjacent to each other in the circumferential direction of the crankshaft.
  • the cylinders are arranged at 45 degree intervals.
  • piston type air compressor of the present invention can be used not only for supplying air to a fuel cell system of a vehicle but also for other applications where a compressed gas is required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Compressor (AREA)

Abstract

一种活塞式空气压缩机、供气系统及车辆,该压缩机包括:曲轴(1);活塞连杆组对(2),包括:第一、二活塞连杆组(2A、2B),在曲轴(1)的周向上间隔设置,第一、二活塞连杆组(2A、2B)均包括连杆(21A、21B)和活塞(20A、20B),连杆(21A、21B)的一端套设在曲轴(1)上,另一端与活塞(20A、20B)连接;气缸对,包括:第一、二气缸(3A、3B),在曲轴(1)的周向上间隔设置,第一、二活塞连杆组(2A、2B)的活塞(20A、20B)分别位于第一、二气缸(3A、3B)内,并能随曲轴(1)的旋转而在对应的气缸(3A、3B)内往复运动,且活塞连杆组对(2)的其中一个活塞连杆组(2A、2B)的活塞(20A、20B)处于吸气工作行程时,另一个活塞连杆组(2A、 2B)的活塞(20A、 20B)处于排气工作行程。该活塞式压缩机能够连续供气,减小了排气脉动和振动。

Description

[根据细则37.2由ISA制定的发明名称] 活塞式空气压缩机、供气系统及车辆 技术领域
本发明涉及空气压缩机技术领域,特别是涉及一种活塞式空气压缩机、供气系统及滤清系统。
背景技术
空气压缩机是将机械能转换成气体压力能的装置,现有空气压缩机按工作原理可分为容积式、动力式、热力式压缩机三大类,其中,活塞式空气压缩机作为容积式空气压缩机最常见的形式,研究时间最久、工艺最成熟,是小型容积式空气压缩机的主流机型,广泛应用于汽车发动机制冷、车门开关等,因而具有广阔的应用前景。
活塞式空气压缩机的工作原理为:驱动曲轴旋转,使气缸内的活塞随曲轴的旋转而做往复运动,从而对吸入气缸内的气体进行压缩,从而提供压缩气体。然而,现有活塞式空气压缩机普遍存在下述问题:间断排气,造成排气脉动大、振动大。
发明内容
本发明要解决的问题是:现有活塞式空气压缩机间断排气,造成排气脉动大、振动大。
为解决上述问题,本发明提供了一种活塞式空气压缩机,包括:曲轴;活塞连杆组对,包括:第一、二活塞连杆组,在所述曲轴的周向上间隔设置,所述第一、二活塞连杆组均包括连杆和活塞,所述连杆的一端套设在所述曲轴上,另一端与所述活塞连接;气缸对,包括:第一、二气缸,在所述曲轴的周向上间隔设置,所述第一、二活塞连杆组的活塞分别位于所述第一、二气缸内,并能随所述曲轴的旋转而在对应的气缸内往复运动,且所述活塞连杆组对的其中一个活塞连杆组的活塞处于吸气工作行程时,另一个活塞连杆组的活塞处于排气工作行程。
可选地,所述活塞连杆组对、气缸对的数量均为两个以上,所有所述活 塞连杆组对沿所述曲轴的轴向依次设置;
所述活塞连杆组对与气缸对一一对应,各个所述活塞连杆组对的活塞分别位于相对应的所述气缸对的第一、二气缸内;
在所述曲轴旋转的同一时刻,各个所述活塞连杆组对中均有一个活塞连杆组的活塞处于所述吸气工作行程、另一个活塞连杆组的活塞处于所述排气工作行程。
可选地,所有所述活塞连杆组沿所述周向均匀间隔排列,所有所述气缸沿所述周向均匀间隔排列。
可选地,所述连杆设置为弯杆,且各个所述第一、二气缸的一部分位于同一平面上,所述平面垂直于所述曲轴的中轴线。
可选地,所述第一、二气缸均包括气缸体和盖设在所述气缸体上的气缸盖,所述气缸体、气缸盖和活塞围成气体压缩室;
所述气缸盖设有进气阀以及第一排气通道,所述第一排气通道与气体压缩室连通,外界气体自所述进气阀进入气体压缩室内;
所述气缸体设有第二排气通道,所述第二排气通道内设有排气阀,所述排气阀在打开状态下,所述气体压缩室内的气体经过所述第一排气通道后从所述第二排气通道的出口排出。
可选地,所述活塞式空气压缩机还包括:机身,所述曲轴可旋转地支撑在所述机身上;
所述机身包括储气腔、排气管以及所述气缸体,所述储气腔与所述第二排气通道的出口、排气管均连通;
所述活塞式空气压缩机供气时,自所述出口排出的气体依次经过所述储气腔、排气管排出。
可选地,还包括:滤网,固定在所述机身上,在所述曲轴的径向上位于所述进气阀的外侧,所述进气阀在打开状态下,气体经所述滤网过滤后经所述进气阀进入所述气体压缩室内。
可选地,所述活塞连杆组对中的第一、二活塞连杆组在所述周向上呈180 度间隔设置,所述气缸对中的第一、二气缸在所述周向上呈180度间隔设置。
可选地,所述活塞的与气缸接触的周表面为陶瓷耐磨材料;和/或,所述气缸的与活塞接触的周表面为陶瓷耐磨材料。
可选地,所述连杆通过活塞销与活塞连接,所述活塞销的表面为聚醚醚酮聚合物涂层。
可选地,所述连杆设置为弯杆,且所述活塞连杆组对的活塞位于同一平面上,所述平面垂直于曲轴的中轴线。
可选地,所述曲轴具有曲轴颈,所述连杆的一端套设在所述曲轴颈上,所述活塞连杆组对的连杆套设在同一所述曲轴颈上。
另外,本发明还提供了一种供气系统,用于为车辆的燃料电池系统供应空气,其包括上述任一所述的活塞式空气压缩机。
与现有技术相比,本发明的技术方案具有以下优点:
活塞式空气压缩机工作时,曲轴旋转,活塞连杆组对中的两个活塞随着曲轴的旋转分别在气缸对的两个气缸内往复运动,且活塞连杆组对的其中一个活塞处于吸气工作行程(即外界气体进入气缸内)、另一个活塞处于排气工作行程(即气缸内的气体排出),这样一来,活塞连杆组对中的两个活塞能够相继处于排气工作行程,使得活塞式空气压缩机能够连续供气,因而减小了排气脉动和振动。
进一步地,活塞连杆组对中的第一、二活塞连杆组在所述周向上呈180度间隔设置,气缸对中的第一、二气缸在所述周向上呈180度间隔设置,使得活塞连杆组对中的两个活塞连杆组关于曲轴对称布置,气缸对中的两个气缸也关于曲轴对称布置,故活塞式空气压缩机的整体结构分布平衡,受力均匀,提高了活塞式空气压缩机的可靠性。
附图说明
图1是本发明的一个实施例中活塞式空气压缩机的曲轴和活塞连杆组对的装配立体图;
图2是图1所示曲轴和活塞连杆组对沿曲轴的轴向看过去时与气缸的装 配图,图中的气缸简化示意;
图3是本发明的一个实施例中活塞式空气压缩机的局部立体图;
图4是本发明的一个实施例中活塞式空气压缩机的剖面图,剖切面垂直于曲轴的中轴线;
图5是本发明的一个实施例中活塞式空气压缩机的立体图;
图6是本发明的一个实施例中活塞式空气压缩机的剖面图,剖切面为曲轴的中轴线所在的平面。
具体实施方式
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
本实施例提供了一种空气滤清系统和供气系统,该供气系统用于向燃料电池系统供应空气,供应的空气与氢气在燃料电池系统内发生电化学反应从而发电,产生的电能作为驱动车辆行驶的动力源。该供气系统包括活塞式空气压缩机,活塞式空气压缩机用于为燃料电池系统供应压缩空气,下面对活塞式空气压缩机的结构做详细介绍。
结合图1至图2所示,本实施例提供了一种活塞式空气压缩机,其包括曲轴1、活塞连杆组对2和气缸对。其中:
活塞连杆组对2包括活塞连杆组2A、2B,活塞连杆组2A、2B在曲轴1的周向上间隔设置。活塞连杆组2A包括连杆21A和活塞20A,连杆21A的一端套设在曲轴1上、另一端与活塞20A连接。活塞连杆组2B包括连杆21B和活塞20B,连杆21B的一端套设在曲轴1上、另一端与活塞20B连接。
所述气缸对包括气缸3A、3B,气缸3A、3B在曲轴1的周向上间隔设置。活塞连杆组对2的活塞20A位于气缸3A内、活塞20B位于气缸3B内,并能随曲轴1的旋转而在气缸3A、3B内沿着虚线箭头往复运动,且活塞连杆组对2中的活塞20A处于吸气工作行程时、活塞20B处于排气工作行程,活塞连杆组对2中的活塞20A处于排气工作行程时、活塞20B处于吸气工作行程。在本发明的技术方案中,所谓活塞20A、20B处于吸气工作行程是指外界气体 进入气缸3A、3B内,所谓活塞20A、20B处于排气工作行程是指气缸3A、3B内的气体排出。
由此可见,在本发明的技术方案中,在旋转地曲轴1的驱动下活塞连杆组2中的活塞20A、20B相继处于排气工作行程,使得活塞式空气压缩机能够连续供气,因而减小了排气脉动和振动。
在本实施例中,活塞连杆组2A、2B在曲轴1的周向上呈180度间隔设置,使得活塞连杆组2A、2B在曲轴1的径向上布置在曲轴1的两侧。所述气缸对包括气缸3A、3B,气缸3A、3B在曲轴1的周向上呈180度间隔设置,使得气缸3A、3B在曲轴1的径向上布置在曲轴1的两侧。因此,在本方案中,活塞连杆组对2中的活塞连杆组2A、2B关于曲轴1对称布置,所述气缸对中的气缸3A、3B也关于曲轴1对称布置,故活塞式空气压缩机的整体结构分布平衡,受力均匀,提高了活塞式空气压缩机的可靠性。
需说明的是,在其它实施例中,活塞连杆组2A、2B在曲轴1的周向上也可以呈V字型排布,即活塞连杆组2A、2B之间的间隔角大于零度且小于180度,相对应地,气缸3A、3B在曲轴1的周向上也可以呈V字型排布,即气缸3A、3B之间的间隔角大于零度且小于180度,在这种情况下,仍能实现活塞式空气压缩机连续供气。
参考图2所示,连杆21A、21B分别通过活塞销22A、22B与活塞20A、20B连接,活塞销22A、22B的表面为聚醚醚酮(PEEK)聚合物涂层,以此来实现无油润滑,避免了现有活塞销采用脂润滑方式存在的易润滑失效、润滑脂易溢出以及在真空环境下易蒸发的不足。
在本实施例中,活塞20A、20B的与气缸3A、3B接触的周表面(大致为圆柱面)为陶瓷耐磨材料,使得活塞20A、20B在沿着图中虚线箭头所示方向分别在气缸3A、3B内做往复运动时不易磨损,增加了活塞20A、20B的耐久性,延长了活塞20A、20B的使用寿命,改善了活塞20A、20B的性能。
在本实施例中,气缸3A、3B的与活塞20A、20B接触的周表面(大致为圆柱面)为陶瓷耐磨材料,使得活塞20A、20B在沿着图中虚线箭头所示方向分别在气缸3A、3B内做往复运动时气缸3A、3B的内壁不易磨损,增加了气 缸3A、3B的耐久性,并满足了气缸3A、3B硬质薄壁以及防潮防腐的性能要求,且具有较佳的传热能力。
继续结合图1至图2所示,在本实施例中,曲轴1的轴向一端用于与电机(未图示)连接,活塞式空气压缩机工作时,该电机驱动曲轴1旋转。在本实施例中,该电机通过弹性联轴器与曲轴1连接,并为高速无刷直流电机。
在本实施例中,活塞连杆组对2、所述气缸对的数量均为三个,所有活塞连杆组对2沿曲轴1的轴向依次设置,活塞连杆组对2与所述气缸对一一对应,各个活塞连杆组对2的活塞2A位于相对应的所述气缸对的气缸3A内,各个活塞连杆组对2的活塞2B位于相对应的所述气缸对的气缸3B内。
进一步地,在本实施例中,所有活塞连杆组2A、2B沿曲轴1的周向均匀交错排列,在曲轴1的周向上相邻的活塞连杆组2A、2B呈60度间隔设置。所有气缸3A、3B沿曲轴1的周向均匀交错排列,在曲轴1的周向上相邻的气缸3A、3B呈60度间隔设置。这样一来,活塞式空气压缩机的整体结构分布平衡,受力均匀,提高了活塞式空气压缩机的可靠性。
在曲轴1旋转的同一时刻,所有活塞连杆组对2中的活塞20A均处于吸气工作行程、活塞20B均处于排气工作行程,或者,所有活塞连杆组对2中的活塞20A均处于排气工作行程、活塞20B均处于吸气工作行程,这样一来,本实施例的活塞式空气压缩机工作时,在同一时刻始终同时有三个气缸3A或三个气缸3B内的气体排出,因而增大了活塞式空气压缩机的供气量,保证了活塞式空气压缩机在曲轴1较低转速下的供气量。与现有活塞式空气压缩机相比,在满足相同进气量和排气量时,本实施例的活塞式空气压缩机可以较大程度地降低用来驱动曲轴1旋转的电机的转速值,从而降低了电机的购买成本以及使用成本。另外,驱动该工作的电源来自于车辆的燃料电池,由于电机的转速降低,故燃料电池系统所产生用来供应至电机的电力减小。
结合图3至图4所示,在本实施例中,气缸3A包括气缸体30A和盖设在气缸体30A上的气缸盖31A。在具体实施例中,气缸体30A与气缸盖31A螺栓固定连接。气缸体30A、气缸盖31A和活塞20A围成气体压缩室32,进入气体压缩室32的外界气体被压缩后排出气体压缩室32。气缸盖31A设有 进气阀49以及与气体压缩室32连通的第一排气通道48,图4的剖切面未剖切到第一排气通道48,故不可见的第一排气通道48用虚线简化示意。气缸体30A设有第二排气通道44,第二排气通道44内设有排气阀47,排气阀47在打开状态下,气体压缩室32内的气体经过第一排气通道48后从第二排气通道44的出口排出。进气阀49、排气阀47均为单向阀。
参考图4所示,活塞式空气压缩机工作时,曲轴1在电机(未图示)的驱动下旋转,活塞20A随着曲轴1的旋转在气缸体30A内沿着图中虚线箭头所示方向往复运动,气体压缩室32的体积会发生周期性变化。
当活塞20A沿着图中向下的虚线箭头所示方向运动时,气体压缩室32的体积逐渐增大,外界气体推开进气阀49进入气体压缩室32内,当气体压缩室32增大至最大时,进气阀49关闭,在这个过程中活塞20A处于进气工作行程。
然后,活塞20A开始沿着图中向上的虚线箭头所示方向反向运动,气体压缩室32的体积逐渐减小,气体压缩室32的气压升高,当气体压缩室32内的气压超过排气阀47的排气压力时,排气阀47打开,气体压缩室32内经压缩的气体先后经由第一排气通道48、第二排气通道44排出。当活塞20A沿着图中向上的虚线箭头所示方向运动至极限位置时,排气阀47关闭。
当活塞20A再次沿着图中向下的虚线箭头所示方向反向运动时,上述过程重复出现。总之,活塞20A往复运动一次,气缸体30A内相继实现进气、压缩、排气的过程,即完成一个工作循环。
与气缸3A组成气缸对的气缸3B的构造与气缸3A相同,与气缸3A一样,在气缸3B上也设置有进气阀、第一排气通道、第二排气通道和排气阀(未标识),由于构造相同,故在此不再赘述。气缸3B内活塞20B的工作过程与上述气缸3A内活塞20A的工作过程大致相同,区别在于,当活塞20A处于进气工作行程时,活塞20B处于排气工作行程,当活塞20A处于排气工作行程时,活塞20B处于进气工作行程,使得气缸3A、气缸3B相继实现连续排气。
在本实施例中,结合图3至图6所示,活塞式空气压缩机还包括机身4,曲轴1可旋转地支撑在机身4上,且曲轴1的轴向一端伸出机身4外,以与 电机(未图示)连接。机身4包括储气腔43、排气管46以及气缸体30A、30B,储气腔43与第二排气通道44的出口、排气管46均连通,自第二排气通道44的出口排出的压缩过的气体流向储气腔43存储起来,使得活塞式空气压缩机能够随时响应大供气量的供气需求,避免了因供气需求突然增大而造成电机转速突变,提高了电机的使用寿命。另外,由于储气腔43集成在活塞式空气压缩机内,故整个供气系统结构紧凑,占用空间小。当活塞式空气压缩机开始向外供气时,储气腔43内的气体自排气管46排出。
进一步地,在本实施例中,活塞式空气压缩机还包括固定在机身4上的滤网45,即滤网45集成在活塞式空气压缩机内,滤网45在曲轴1的径向上位于进气阀49的外侧,进气阀49在打开状态下,气体经滤网45过滤后经进气阀49进入气体压缩室32内,使得活塞式空气压缩机排出的气体较为干净,无需在燃料电池系统中设置专门的过滤装置,该过滤装置用来过滤活塞式空气压缩机排出的气体,因而减少了燃料电池系统占用的体积。
进一步地,在本实施例中,机身4包括前端盖41、后端盖42和中间机体40,中间机体40在曲轴1的轴向上位于前端盖41、后端盖42之间,且中间机体40在轴向上的两端分别与前端盖41、后端盖42固定。在具体实施例中,中间机体40与前端盖41螺栓固定连接,中间机体40与后端盖42螺栓固定连接,排气管46设置在后端盖42上,后端盖42与中间机体40围成储气腔43。滤网45固定在中间机体40上,并绕着曲轴1环绕中间机体40一整圈,从而增加了进气的过滤面积,提高了进气效率。
在具体实施例中,与气缸3A、3B沿曲轴1的周向均匀间隔排列的方式相适应,机身4设置为圆盘状,使得活塞式空气压缩机的结构紧凑、体积小,因而安装方便,另外,还可以使活塞式空气压缩机在低速运行区域的效率较高,这样能够更好的满足国内低速行驶的城市交通工况,在低速行驶的城市交通工况下,活塞式空气压缩机只需为燃料电池系统供应较少的空气。
参考图1所示,曲轴1具有三个均与曲轴1的中轴线平行的曲轴颈10,三个曲轴颈10在曲轴1的轴向上间隔设置,且在曲轴1的周向上均匀间隔设置,在曲轴1的周向上相邻的两个曲轴颈10呈120度间隔设置。
连杆21A、21B的一端套设在曲轴颈10上,活塞连杆组对2上的连杆21A、21B套设在同一曲轴颈10上,从而节省了曲轴1上曲轴颈10的数量,减少了活塞式空气压缩机在曲轴1的轴向上占用的空间,即活塞式空气压缩机在曲轴1的轴向上更为紧凑,体积更小,使得活塞式空气压缩机的安装更为方便。
进一步地,在本实施例中,连杆21A、21B均为弯杆,而并非像现有活塞连杆组中的连杆一样为平面式,连杆21A、21B在长度方向上至少有一段并非垂直于曲轴1的中轴线。结合图2至图3所示,各个气缸3A、3B的一部分位于同一平面上,该平面垂直于曲轴1的中轴线,减少了活塞式空气压缩机在曲轴1的轴向上占用的空间,即活塞式空气压缩机在曲轴1的轴向上更为紧凑,体积更小,使得活塞式空气压缩机的安装更为方便。
进一步地,在本实施例中,活塞连杆组对2的活塞20A、20B位于同一平面上,所述平面垂直于曲轴1的中轴线,减少了活塞式空气压缩机在曲轴1的轴向上占用的空间,即活塞式空气压缩机在曲轴1的轴向上更为紧凑,体积更小,使得活塞式空气压缩机的安装更为方便。
需说明的是,在本发明的技术方案中,活塞连杆组对、所述气缸对的数量均不应局限于本实施例,其可以均为一个,两个或四个以上。
当活塞连杆组对、所述气缸对的数量均为两个时,在曲轴的周向上相邻的两个活塞连杆组之间呈90度间隔设置,在曲轴的周向上相邻的两个气缸之间呈90度间隔设置。
当活塞连杆组对、所述气缸对的数量均为四个时,在曲轴的周向上相邻的两个活塞连杆组之间呈45度间隔设置,在曲轴的周向上相邻的两个气缸之间呈45度间隔设置。
另外,需强调的是,本发明上述的活塞式空气压缩机不仅能用于向车辆的燃料电池系统供应空气,还能应用在其它需要供应压缩气体的场合。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (14)

  1. 一种活塞式空气压缩机,其特征在于,包括:
    曲轴;
    活塞连杆组对,包括:第一、二活塞连杆组,在所述曲轴的周向上间隔设置,所述第一、二活塞连杆组均包括连杆和活塞,所述连杆的一端套设在所述曲轴上,另一端与所述活塞连接;
    气缸对,包括:第一、二气缸,在所述曲轴的周向上间隔设置,所述第一、二活塞连杆组的活塞分别位于所述第一、二气缸内,并能随所述曲轴的旋转而在对应的气缸内往复运动,且所述活塞连杆组对的其中一个活塞连杆组的活塞处于吸气工作行程时,另一个活塞连杆组的活塞处于排气工作行程。
  2. 如权利要求1所述的活塞式空气压缩机,其特征在于,所述活塞连杆组对、气缸对的数量均为两个以上,所有所述活塞连杆组对沿所述曲轴的轴向依次设置;
    所述活塞连杆组对与气缸对一一对应,各个所述活塞连杆组对的活塞分别位于相对应的所述气缸对的第一、二气缸内;
    在所述曲轴旋转的同一时刻,各个所述活塞连杆组对中均有一个活塞连杆组的活塞处于所述吸气工作行程、另一个活塞连杆组的活塞处于所述排气工作行程。
  3. 如权利要求2所述的活塞式空气压缩机,其特征在于,所有所述活塞连杆组沿所述周向均匀间隔排列,所有所述气缸沿所述周向均匀间隔排列。
  4. 如权利要求3所述的活塞式空气压缩机,其特征在于,所述连杆设置为弯杆,且各个所述第一、二气缸的一部分位于同一平面上,所述平面垂直于所述曲轴的中轴线。
  5. 如权利要求1所述的活塞式空气压缩机,其特征在于,所述第一、二气缸均包括气缸体和盖设在所述气缸体上的气缸盖,所述气缸体、气缸盖和活塞围成气体压缩室;
    所述气缸盖设有进气阀以及第一排气通道,所述第一排气通道与气体压缩室连通,外界气体自所述进气阀进入气体压缩室内;
    所述气缸体设有第二排气通道,所述第二排气通道内设有排气阀,所述 排气阀在打开状态下,所述气体压缩室内的气体经过所述第一排气通道后从所述第二排气通道的出口排出。
  6. 如权利要求5所述的活塞式空气压缩机,其特征在于,所述活塞式空气压缩机还包括:机身,所述曲轴可旋转地支撑在所述机身上;
    所述机身包括储气腔、排气管以及所述气缸体,所述储气腔与所述第二排气通道的出口、排气管均连通;
    所述活塞式空气压缩机供气时,自所述出口排出的气体依次经过所述储气腔、排气管排出。
  7. 如权利要求6所述的活塞式空气压缩机,其特征在于,还包括:滤网,固定在所述机身上,在所述曲轴的径向上位于所述进气阀的外侧,所述进气阀在打开状态下,气体经所述滤网过滤后经所述进气阀进入所述气体压缩室内。
  8. 如权利要求1至7任一项所述的活塞式空气压缩机,其特征在于,所述活塞连杆组对中的第一、二活塞连杆组在所述周向上呈180度间隔设置,所述气缸对中的第一、二气缸在所述周向上呈180度间隔设置。
  9. 如权利要求1至7任一项所述的活塞式空气压缩机,其特征在于,所述活塞的与气缸接触的周表面为陶瓷耐磨材料;和/或,所述气缸的与活塞接触的周表面为陶瓷耐磨材料。
  10. 如权利要求1至7任一项所述的活塞式空气压缩机,其特征在于,所述连杆通过活塞销与活塞连接,所述活塞销的表面为聚醚醚酮聚合物涂层。
  11. 如权利要求1至7任一项所述的活塞式空气压缩机,其特征在于,所述连杆设置为弯杆,且所述活塞连杆组对的活塞位于同一平面上,所述平面垂直于曲轴的中轴线。
  12. 如权利要求1至7任一项所述的活塞式空气压缩机,其特征在于,所述曲轴具有曲轴颈,所述连杆的一端套设在所述曲轴颈上,所述活塞连杆组对的连杆套设在同一所述曲轴颈上。
  13. 一种供气系统,用于为车辆的燃料电池系统供应空气,其特征在于,包括权利要求1至12任一项所述的活塞式空气压缩机。
  14. 一种车辆,其特征在于,包括燃料电池系统和权利要求13所述的供气系统。
PCT/CN2017/106511 2016-10-20 2017-10-17 活塞式空气压缩机、供气系统及车辆 WO2018072678A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610914739.2 2016-10-20
CN201610914739.2A CN107965435A (zh) 2016-10-20 2016-10-20 活塞式空气压缩机、供气系统及车辆

Publications (1)

Publication Number Publication Date
WO2018072678A1 true WO2018072678A1 (zh) 2018-04-26

Family

ID=61996692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106511 WO2018072678A1 (zh) 2016-10-20 2017-10-17 活塞式空气压缩机、供气系统及车辆

Country Status (2)

Country Link
CN (1) CN107965435A (zh)
WO (1) WO2018072678A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112065684A (zh) * 2020-10-09 2020-12-11 施雪侠 一种活塞式空气压缩机
CN114483521A (zh) * 2022-02-12 2022-05-13 浙江凯途机电有限公司 新型全无油压缩机及其主机

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4645428A (en) * 1985-10-31 1987-02-24 Manuel Arregui Radial piston pump
CN1061078A (zh) * 1990-10-31 1992-05-13 方明 工程陶瓷制成主要结构件的球面活塞式空气压缩机
JPH08284813A (ja) * 1995-04-11 1996-10-29 Mamoru Tsuchiya 逆シリンダ型ロータリポンプ
CN101435419A (zh) * 2008-12-12 2009-05-20 浙江鸿友压缩机制造有限公司 径向多缸同步回转压缩机
CN202531398U (zh) * 2012-05-02 2012-11-14 赛屋(天津)涂层技术有限公司 压缩机塑料活塞销
CN203081685U (zh) * 2013-01-27 2013-07-24 陈加云 双缸双作用直线往复式空压机
CN104220748A (zh) * 2012-02-03 2014-12-17 英瓦卡尔公司 泵送装置
CN204827843U (zh) * 2015-06-25 2015-12-02 台州市拓安机电有限公司 一种双缸无油直联空压机
CN105720284A (zh) * 2016-03-25 2016-06-29 郑州宇通客车股份有限公司 一种燃料电池与使用该燃料电池的车辆

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3490683A (en) * 1968-06-18 1970-01-20 Vilter Manufacturing Corp Gas compressor
CN2526529Y (zh) * 2001-11-26 2002-12-18 奚文祥 活塞式偏心轮压缩机
US20120192583A1 (en) * 2009-07-20 2012-08-02 Carrier Corporation Suction Cutoff Unloader Valve For Compressor Capacity Control
JP5458438B2 (ja) * 2010-03-16 2014-04-02 株式会社医器研 ロータリ式シリンダ装置
CN103850910A (zh) * 2014-03-16 2014-06-11 王彦彬 同平面多缸多级凸轮与轴承组合连杆式压缩机
CN105114283B (zh) * 2015-07-21 2018-05-01 石家庄佳信汽车制动系统有限公司 直线对置活塞式电动真空泵

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4645428A (en) * 1985-10-31 1987-02-24 Manuel Arregui Radial piston pump
CN1061078A (zh) * 1990-10-31 1992-05-13 方明 工程陶瓷制成主要结构件的球面活塞式空气压缩机
JPH08284813A (ja) * 1995-04-11 1996-10-29 Mamoru Tsuchiya 逆シリンダ型ロータリポンプ
CN101435419A (zh) * 2008-12-12 2009-05-20 浙江鸿友压缩机制造有限公司 径向多缸同步回转压缩机
CN104220748A (zh) * 2012-02-03 2014-12-17 英瓦卡尔公司 泵送装置
CN202531398U (zh) * 2012-05-02 2012-11-14 赛屋(天津)涂层技术有限公司 压缩机塑料活塞销
CN203081685U (zh) * 2013-01-27 2013-07-24 陈加云 双缸双作用直线往复式空压机
CN204827843U (zh) * 2015-06-25 2015-12-02 台州市拓安机电有限公司 一种双缸无油直联空压机
CN105720284A (zh) * 2016-03-25 2016-06-29 郑州宇通客车股份有限公司 一种燃料电池与使用该燃料电池的车辆

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112065684A (zh) * 2020-10-09 2020-12-11 施雪侠 一种活塞式空气压缩机
CN114483521A (zh) * 2022-02-12 2022-05-13 浙江凯途机电有限公司 新型全无油压缩机及其主机

Also Published As

Publication number Publication date
CN107965435A (zh) 2018-04-27

Similar Documents

Publication Publication Date Title
CN110219793B (zh) 一种二级压缩的无油活塞式压缩机
CN201568303U (zh) 对称平衡式同步旋转压缩机械
WO2018072678A1 (zh) 活塞式空气压缩机、供气系统及车辆
CN202673625U (zh) 一种封闭式双缸制冷压缩机
CN201193566Y (zh) 斜盘式二冲程对置活塞内燃机
CN205533217U (zh) 一种压缩机泵体结构及压缩机
CN100376764C (zh) 液压式混合燃料喷射轴流飞轮气涡转子高速发动机
CN109340078B (zh) 一种双对置活塞压缩机结构
CN210460976U (zh) 一种二级压缩的无油活塞式压缩机
CN101782056A (zh) 双缸滑块式空气压缩机
WO2022041908A1 (zh) 一种空压机
CN2291517Y (zh) 摆动活塞压缩机
CN201277161Y (zh) 一种制冷剂回收机的多缸无油压缩机
CN114483521A (zh) 新型全无油压缩机及其主机
CN201723419U (zh) 内燃结构式空气压缩机
CN212508687U (zh) 一种活塞式空气压缩机活塞连杆结构及无油两级空压机
KR100876530B1 (ko) 왕복동식 4사이클 2단압축기
CN209781151U (zh) 一种无油活塞式空气压缩机
CN209892396U (zh) 一种车用无油活塞式两级空压机
CN208749444U (zh) 发动机气缸及活塞连杆组
CN1908439B (zh) 整体式特大排量超高压活塞串联多缸多级摆动活塞压缩机
CN201148954Y (zh) 多活塞式空气压缩机
WO2000043653A1 (en) Expansion-compression engine with angularly reciprocating piston
CN2779070Y (zh) 液压式混合燃料喷射轴流飞轮气涡转子高速发动机
CN204458243U (zh) 一种三缸客车空调压缩机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17862849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29.08.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17862849

Country of ref document: EP

Kind code of ref document: A1