WO2018072368A1 - Moule en verre d'alliage terre rare-cuivre et son procédé de fabrication - Google Patents

Moule en verre d'alliage terre rare-cuivre et son procédé de fabrication Download PDF

Info

Publication number
WO2018072368A1
WO2018072368A1 PCT/CN2017/074497 CN2017074497W WO2018072368A1 WO 2018072368 A1 WO2018072368 A1 WO 2018072368A1 CN 2017074497 W CN2017074497 W CN 2017074497W WO 2018072368 A1 WO2018072368 A1 WO 2018072368A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
copper
glass mold
copper alloy
alloy
Prior art date
Application number
PCT/CN2017/074497
Other languages
English (en)
Chinese (zh)
Inventor
戈剑鸣
Original Assignee
苏州东方模具科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州东方模具科技股份有限公司 filed Critical 苏州东方模具科技股份有限公司
Publication of WO2018072368A1 publication Critical patent/WO2018072368A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Definitions

  • the invention belongs to the field of glass mold materials, in particular to a rare earth copper alloy glass mold, and also relates to a preparation method thereof.
  • Glass mold is the main equipment for producing glass products. It is frequently contacted with high temperature glass liquid of 600 °C-1100 °C, and is subjected to oxidation, growth, heat exchange, thermal fatigue, etc., and is required due to frequent mold opening and closing.
  • the contact surface of the mold has excellent wear resistance.
  • the inner surface of the glass mold is required to have good high temperature resistance, wear resistance, oxidation resistance and corrosion resistance, thereby prolonging the service life; the outer circle of the glass mold is required to have excellent heat dissipation performance, and the overall mold has good properties. Resilience is ideally suited to high speed production needs.
  • Copper alloy glass molds have already been used in the production workshops of large factories, mainly based on ordinary zinc aluminum white copper, such as invention patent authorization announcement number CN102732745B It is recommended to have "high-nickel-copper alloy glass mold and its manufacturing method", which provides the chemical element composition and its mass percentage: Al: 8.5-10.5%, Ni: 14-16%, Zn: 7.5-9.5%, Si: 0.8-1.2%, Fe: 0.8-1.2%, Mn: 0.08-0.15%, and the rest is copper. Although such a copper alloy mold contains a high Ni content, the corrosion resistance and oxidation resistance of the material are improved, and Zn is passed.
  • rare earths are often referred to as "vitamins" of metallic materials.
  • the main functions of rare earths in copper alloys are: deoxidation, desulfurization, dehydrogenation and removal of lead and other harmful elements, purification of copper alloy components; elimination of dendrites, grain refinement, improvement of plasticity and strength, reduction of surface cracks and defects; Improve and improve the hot workability of copper alloys; improve the thermal conductivity, thermal strength, oxidation resistance and weldability of copper alloys.
  • the improvement of the performance of rare earth on copper alloy has been confirmed by a large number of experiments. For example, adding a certain amount of rare earth to common electrolytic copper can produce a high conductivity copper row with conductivity, thermal conductivity, tensile strength and elongation. The high temperature softening temperature and other indicators are superior to ordinary copper bars.
  • adding proper amount of rare earth can improve the casting performance of the alloy, improve the fluidity of the alloy melt, reduce the tendency of casting shrinkage, pore, segregation and crack, and improve the casting yield; at the same time, the rare earth has a modification effect on the metal surface, which can obviously improve
  • the alloy's oxidation resistance, hydrogen embrittlement resistance, wear resistance and corrosion resistance extend the service life of the alloy.
  • the primary task of the present invention is to provide a rare earth copper alloy glass mold which has high thermal conductivity, high strength, high toughness and good anti-oxidation and corrosion resistance, and is suitable for high-speed production of high-speed bottle making machines.
  • Another object of the invention is to provide a method for preparing a rare earth copper alloy glass mold, which is advantageous for purifying copper alloy components by deoxidation and desulfurization of rare earth, thereby helping to eliminate dendrites and refine grains, thereby improving copper.
  • the technical solution provided by the present invention is: a rare earth copper alloy glass mold having a chemical element composition and a mass % ratio thereof: 9-12% nickel, 7-10% aluminum, 8 -12% zinc, ⁇ 0.5% iron, 0.01-0.5% rare earth, and the balance is copper.
  • a rare earth copper alloy glass mold has a chemical element and a mass ratio thereof of: 10% nickel, 7% aluminum, 8% zinc, 0.4% iron, 0.2. % of rare earths, the rest being copper.
  • a rare earth copper alloy glass mold has a chemical element and a mass ratio thereof of: 12% nickel, 9% aluminum, 10% zinc, and 0.3% iron. 0.5% rare earth, the rest is copper.
  • a rare earth copper alloy glass mold has a chemical element and a mass ratio thereof of: 9% nickel, 10% aluminum, 12% zinc, and 0.35% iron. 0.01% rare earth, the rest is copper.
  • the rare earth copper alloy glass mold has a hardness of 190-250 HBW and a thermal conductivity of 282-302 w/(m.k).
  • the technical solution provided by the present invention is: a method for preparing a rare earth copper alloy glass mold, comprising the following steps:
  • the aluminum, nickel, iron and copper are put into the furnace, and the brass alloy is added when the melting temperature reaches 1200-1250 ° C.
  • the electricity is allowed to stand for 5-10 min to make impurities.
  • the upper part is floated to purify the copper water, and then the slag is slag, and then the copper-rare earth intermediate alloy is added. After the copper-rare earth intermediate alloy is melted, the slag is again slag and the mass analysis of the chemical element is adjusted by spectral analysis to obtain the rare earth copper alloy to be poured.
  • Glass mold solution
  • step B) casting, firstly, the molten rare earth copper alloy glass mold melt to be poured in step A) is heated to 1280-1320 ° C, and then poured into a resin sand mold, before casting, in the resin sand mold A cold iron core for forming a cavity of the glass mold is placed in the cavity, the casting is completed, and then the cold iron core is removed to obtain an annealing to be annealed.
  • Rare earth copper alloy glass mold
  • step C) annealing the rare earth copper alloy glass mold to be annealed obtained in step B) is subjected to stress relief annealing, after the stress relief annealing is completed, and after cooling, it is cooled to room temperature to obtain a rare earth copper alloy glass mold.
  • the electrolytic copper described in the step A) is 1# electrolytic copper
  • the nickel is 1# electrolytic nickel
  • the zinc is 1# zinc.
  • the mass % content of the chemical element is adjusted by spectral analysis as described in step A) by adjusting the mass % content of the chemical element to: 9-12% nickel, 7- 10% aluminum, 8-12% zinc, ⁇ 0.5% iron, 0.01-0.5% rare earth, and the balance copper.
  • the copper-rare earth intermediate alloy described in the step A) is a cerium-based heavy rare earth and is added in the form of a copper-bismuth intermediate alloy, the chemical element of the copper-bismuth intermediate alloy and The mass % thereof is: ReO: 1-11%, Cu: 45-55%, Si: 10-15%, Fe: 20-25%, Mg: ⁇ 5%, B: ⁇ 5%.
  • the standing time described in step B) is 40-60 min; the stress relief annealing described in step C) is carried out in an annealing furnace, and The stress annealing temperature is 600-630 ° C, the time after the stress relief annealing is 4-6 h, and after cooling for 4-6 h, it is cooled to room temperature at a cooling rate of ⁇ 50 ° C / h.
  • the technical effects of the technical solution provided by the invention are as follows: First, since the aluminum element in the formulation has a certain deoxidation effect, the casting property of the alloy can be improved, the fluidity of the alloy can be improved, and the ⁇ phase in the copper alloy can be reduced, Increasing the ⁇ phase and preventing the precipitation of the brittle ⁇ phase can indirectly improve the toughness of the material. Second, since the Ni element in the formulation acts as an element which can be infinitely miscible with the matrix Cu, forming a continuous solid solution, thereby improving the resistance of the alloy.
  • Corrosion performance improve strength without reducing elongation and toughness;
  • the anti-wear performance Fourthly, since the Fe element added in the formula can refine the crystal grains, the mechanical properties and the impact corrosion resistance of the material can be improved; Fifth, the rare earth element added in the formula is used as the vitamin of the metal alloy, Changed the way in which trace elements of copper alloys exist in the alloy, causing them to crystallize Change, improving unevenness in the distribution of these trace elements in the alloy, purifying the alloy matrix and the grain boundaries and improves the toughness and thermal conductivity of the material, thereby increasing the life of the mold.
  • the brass alloy is added when the temperature to be smelted reaches 1230 ° C.
  • the melting temperature reaches 1280 ° C
  • the electricity is allowed to stand for 10 min, the impurities are fully floated to purify the copper water, and then the slag is added, and then the copper-rare earth is added.
  • the intermediate alloy after the copper-rare earth intermediate alloy is melted, is slag again and at the same time the spectral analysis is used to adjust the mass % of the chemical element: 10% nickel, 7% aluminum, 8% zinc, 0.4% iron, 0.2%
  • the rare earth, the rest is copper, and the rare earth copper alloy glass mold solution to be poured is obtained.
  • the electrolytic copper described in this step is 1# electrolytic copper, the nickel is 1# electrolytic nickel, and the zinc is 1# zinc.
  • the copper-rare earth intermediate alloy described in this step is a cerium-based heavy rare earth and is added in the form of a copper-rhenium intermediate alloy.
  • the chemical element of the copper-bismuth intermediate alloy and its mass % ratio are: ReO: 1%, Cu : 55%, Si: 15%, Fe: 25%, Mg: 2%, B: 2% ;
  • step B) Casting, firstly, the rare earth copper alloy glass mold melt to be poured according to step A) is heated to 1300 ° C, and then poured into a resin sand mold, before pouring, in the inner cavity of the resin sand mold Place a cold iron core for forming the inner cavity of the glass mold, and then let stand for 40 minutes after the pouring is completed, and then remove the cold iron core to obtain a rare earth copper alloy glass mold to be annealed;
  • step C) annealing the rare earth copper alloy glass mold to be annealed obtained in step B) is introduced into the annealing furnace for stress relief annealing, the temperature of the stress relief annealing is 600 ° C, and the holding time after the stress relief annealing is 6 h, after 6 h of heat preservation
  • the mixture was cooled to room temperature at a cooling rate of ⁇ 50 ° C / h to obtain a rare earth copper alloy glass mold.
  • the hardness of the rare earth copper alloy glass mold was 190 HBW and the thermal conductivity was 302 W (m ⁇ k).
  • the mass% content is: 12% nickel, 9% aluminum, 10% zinc, 0.3% iron, 0.5% rare earth, and the balance is copper, and the rare earth copper alloy glass mold solution to be poured is obtained.
  • the electrolytic copper is 1# electrolytic copper
  • the nickel is 1# electrolytic nickel
  • the zinc is 1# zinc
  • the copper-rare earth intermediate alloy described in this step is a cerium-based heavy rare earth and is copper-cerium.
  • the chemistry of the copper-bismuth intermediate alloy Its mass% pigment ratio: ReO: 11%, Cu: 45%, Si: 13%, Fe: 22%, Mg: 4%, B: 5%;
  • step B) Casting, firstly, the molten rare earth copper alloy glass mold melt to be poured in step A) is heated to 1320 ° C, and then poured into a resin sand mold, before pouring, in the inner cavity of the resin sand mold. Placed to form a glass mold The cold iron core of the inner cavity is allowed to stand for 60 minutes after the pouring is completed, and then the cold iron core is removed to obtain a rare earth copper alloy glass mold to be annealed;
  • step C) annealing the rare earth copper alloy glass mold to be annealed obtained in step B) is introduced into the annealing furnace for stress relief annealing, the temperature of the stress relief annealing is 630 ° C, the holding time after the stress relief annealing is 4 h, and after 4 h of heat preservation The mixture was cooled to room temperature at a cooling rate of ⁇ 50 ° C / h to obtain a rare earth copper alloy glass mold.
  • the hardness of the rare earth copper alloy glass mold was 250 HBW and the thermal conductivity was 282 W (m ⁇ k).
  • the mass% content is: 9% nickel, 10% aluminum, 12% zinc, 0.35% iron, 0.01% rare earth, and the balance is copper, and the rare earth copper alloy glass mold solution to be poured is obtained in this step.
  • the electrolytic copper is 1# electrolytic copper
  • the nickel is 1# electrolytic nickel
  • the zinc is 1# zinc
  • the copper-rare earth intermediate alloy described in this step is a cerium-based heavy rare earth and is copper-cerium.
  • the copper-bismuth intermediate alloy Its mass% elemental ratio: ReO: 6%, Cu: 55%, Si: 10%, Fe: 20%, Mg: 5%, B: 4%;
  • step B) Casting, firstly, the molten rare earth copper alloy glass mold melt to be poured in step A) is heated to 1295 ° C, and then poured into a resin sand mold, before casting, in the inner cavity of the resin sand mold. Place a cold iron core for forming the inner cavity of the glass mold, and let stand for 50 minutes after the pouring is completed, and then remove the cold iron core to obtain a rare earth copper alloy glass mold to be annealed;
  • step C) annealing the rare earth copper alloy glass mold to be annealed obtained in step B) is introduced into the annealing furnace for stress relief annealing, the temperature of the stress relief annealing is 615 ° C, the holding time after the stress relief annealing is 5 h, and after 5 h of heat preservation The mixture was cooled to room temperature at a cooling rate of ⁇ 50 ° C / h to obtain a rare earth copper alloy glass mold.
  • the hardness of the rare earth copper alloy glass mold was 230 HBW and the thermal conductivity was 294 W (m ⁇ k).

Abstract

L'invention concerne un moule en verre d'alliage terre rare-cuivre et son procédé de fabrication, et relève du domaine des matériaux de moules en verre. La composition en termes d'éléments chimiques et la fraction massique du moule en verre d'alliage terre rare-cuivre sont les suivantes : de 9 à 12 % de nickel, de 7 à 10 % d'aluminium, de 8 à 12 % de zinc, moins de 0,5 % de fer et 0,01 à 0,5 % de terre rare, le reste étant du cuivre. Étapes : préparer un alliage de laiton à partir de zinc et de cuivre électrolytique ; introduire l'aluminium, le nickel, le fer et le cuivre dosés dans un four de fusion, ajouter l'alliage de laiton, laisser reposer pour que les crasses remontent à la surface, effectuer un décrassage, ajouter un alliage intermédiaire cuivre-terre rare, et procéder à un nouveau décrassage ; élever la température de la masse fondue pour moule en verre d'alliage terre rare-cuivre à verser, décharger du four et verser dans un moule de coulée en sable résineux ; effectuer un recuit de réduction de contrainte sur le moule en verre d'alliage terre rare-cuivre obtenu à recuire, conserver la chaleur et refroidir à la température ambiante, pour obtenir ainsi un produit fini. L'aptitude à l'écoulement et la ténacité de l'alliage sont améliorées ; ainsi que sa résistance mécanique et dureté, et sa résistance à l'abrasion est renforcée ; les propriétés mécaniques et la résistance à la corrosion par impact des matériaux sont améliorées, de même que leur ténacité et conductivité thermique.
PCT/CN2017/074497 2016-10-19 2017-02-23 Moule en verre d'alliage terre rare-cuivre et son procédé de fabrication WO2018072368A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610910458.X 2016-10-19
CN201610910458.XA CN106566946A (zh) 2016-10-19 2016-10-19 稀土铜合金玻璃模具及其制备方法

Publications (1)

Publication Number Publication Date
WO2018072368A1 true WO2018072368A1 (fr) 2018-04-26

Family

ID=58533988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074497 WO2018072368A1 (fr) 2016-10-19 2017-02-23 Moule en verre d'alliage terre rare-cuivre et son procédé de fabrication

Country Status (2)

Country Link
CN (1) CN106566946A (fr)
WO (1) WO2018072368A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114540657A (zh) * 2022-03-24 2022-05-27 中南大学 一种具有宽频电磁屏蔽的稀土铜合金材料及其制备方法
CN115365774A (zh) * 2022-08-17 2022-11-22 陕西斯瑞扶风先进铜合金有限公司 一种凿岩机用高强耐磨铜合金传动蜗轮的制备工艺
CN115389283A (zh) * 2022-06-24 2022-11-25 赣州艾科锐检测技术有限公司 一种稀土金属或合金检测中的内控样品及制备方法和应用
CN116144972A (zh) * 2023-02-03 2023-05-23 有研工程技术研究院有限公司 一种阻尼铜合金材料及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108085537A (zh) * 2017-12-19 2018-05-29 常熟市伟恒模具铸造有限公司 控制合模面变形的铜合金玻璃模具生产方法
CN109338155B (zh) * 2018-12-13 2020-11-27 常熟建华模具科技股份有限公司 稀土铜合金轻量化玻璃模具及其制备方法
CN111334684B (zh) * 2020-03-20 2021-04-20 苏州东方模具科技股份有限公司 固溶态高韧高导热铜合金玻璃模具及其制备方法
CN114558988B (zh) * 2022-02-28 2023-12-22 苏州东方模具科技股份有限公司 一种高导热铜合金玻璃模具模底及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5987926A (en) * 1997-05-23 1999-11-23 Saint-Gobain Emballage Mold made of cuproaluminum alloy for the manufacture of glass products
CN102732745A (zh) * 2012-07-12 2012-10-17 常熟市精工模具制造有限公司 高镍铜合金玻璃模具及其制造方法
CN102775047A (zh) * 2012-07-31 2012-11-14 苏州东方模具科技股份有限公司 玻璃模具的双金属口模及其制备方法
CN103173648A (zh) * 2013-03-05 2013-06-26 苏州东海玻璃模具有限公司 铜合金玻璃模具口模材料及其制备方法
CN104230147A (zh) * 2014-09-19 2014-12-24 常熟市精工模具制造有限公司 抗开裂镶硼镍合金的铜合金玻璃模具

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04259344A (ja) * 1991-02-15 1992-09-14 Sekisui Chem Co Ltd 成形金型用合金
JPH0959730A (ja) * 1995-08-21 1997-03-04 Mitatsukusu:Kk ガラス成形金型等の耐熱金型用銅合金
JPH10219373A (ja) * 1997-02-12 1998-08-18 Mitatsukusu:Kk プレス成形金型用銅合金
CN100491558C (zh) * 2007-04-12 2009-05-27 南昌航空工业学院 一种高性能钇基重稀土铜合金模具材料及其制备方法
CN102557392A (zh) * 2012-03-06 2012-07-11 常熟市精工模具制造有限公司 内腔镶硼镍合金的铜合金口模

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5987926A (en) * 1997-05-23 1999-11-23 Saint-Gobain Emballage Mold made of cuproaluminum alloy for the manufacture of glass products
CN102732745A (zh) * 2012-07-12 2012-10-17 常熟市精工模具制造有限公司 高镍铜合金玻璃模具及其制造方法
CN102775047A (zh) * 2012-07-31 2012-11-14 苏州东方模具科技股份有限公司 玻璃模具的双金属口模及其制备方法
CN103173648A (zh) * 2013-03-05 2013-06-26 苏州东海玻璃模具有限公司 铜合金玻璃模具口模材料及其制备方法
CN104230147A (zh) * 2014-09-19 2014-12-24 常熟市精工模具制造有限公司 抗开裂镶硼镍合金的铜合金玻璃模具

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114540657A (zh) * 2022-03-24 2022-05-27 中南大学 一种具有宽频电磁屏蔽的稀土铜合金材料及其制备方法
CN115389283A (zh) * 2022-06-24 2022-11-25 赣州艾科锐检测技术有限公司 一种稀土金属或合金检测中的内控样品及制备方法和应用
CN115365774A (zh) * 2022-08-17 2022-11-22 陕西斯瑞扶风先进铜合金有限公司 一种凿岩机用高强耐磨铜合金传动蜗轮的制备工艺
CN115365774B (zh) * 2022-08-17 2024-03-08 陕西斯瑞扶风先进铜合金有限公司 一种凿岩机用高强耐磨铜合金传动蜗轮的制备工艺
CN116144972A (zh) * 2023-02-03 2023-05-23 有研工程技术研究院有限公司 一种阻尼铜合金材料及其制备方法
CN116144972B (zh) * 2023-02-03 2024-01-09 有研工程技术研究院有限公司 一种阻尼铜合金材料及其制备方法

Also Published As

Publication number Publication date
CN106566946A (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
WO2018072368A1 (fr) Moule en verre d'alliage terre rare-cuivre et son procédé de fabrication
CN104946936B (zh) 一种架空导线用高导电率稀土硬铝单丝材料
CN103014534B (zh) 铸造热锻模具钢及其加工工艺
CN102260818B (zh) 高硅耐腐蚀铸铁的制造方法
CN107794451B (zh) 一种塑料模具钢718及其生产工艺
CN111101034A (zh) 一种低稀土高性能的稀土铝合金及其制备方法
CN103173648B (zh) 铜合金玻璃模具口模材料的制备方法
CN104745954A (zh) 一种合金钢及其制作方法
CN104164589A (zh) 一种高强耐磨铜合金及其制备方法
CN100491558C (zh) 一种高性能钇基重稀土铜合金模具材料及其制备方法
CN107201465B (zh) 高硬度铝合金导线
CN103667820A (zh) 铝合金槽型件及其制备工艺
CN109735741B (zh) 一种多相强化的电子封装用铜合金及其制备方法
CN101381825B (zh) 一种环保易切削青铜合金加工工艺
CN102618765B (zh) 一种抗热裂低线收缩率铸造镁合金
CN105861935A (zh) 一种热塑性优良的Fe-36Ni因瓦合金材料及其制备方法
CN106244848B (zh) 微合金化有色金属铜基玻璃模具材料及其制造方法
CN109735740B (zh) 一种添加有稀土的多相强化型电子封装材料及其制备方法
CN107475561A (zh) 高铁铜基合金玻璃模具材料及其制备方法
CN109338155B (zh) 稀土铜合金轻量化玻璃模具及其制备方法
CN104831110B (zh) 一种Cu‑Cr‑Ag合金结晶器铜板及其制备工艺
CN112981190A (zh) 用于模铸的铝合金和使用该用于模铸的铝合金制造铸造铝合金的方法
CN102517476B (zh) 一种减小疏松和缩松的高强度铝合金及其制备方法
CN103014458A (zh) 改进型7005铝合金冰箱发泡模铸件的加工工艺
CN104404357A (zh) 合金压铸用模具钢的加工工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17862449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17862449

Country of ref document: EP

Kind code of ref document: A1