WO2018072316A1 - 换热单元及换热矩阵 - Google Patents

换热单元及换热矩阵 Download PDF

Info

Publication number
WO2018072316A1
WO2018072316A1 PCT/CN2016/112166 CN2016112166W WO2018072316A1 WO 2018072316 A1 WO2018072316 A1 WO 2018072316A1 CN 2016112166 W CN2016112166 W CN 2016112166W WO 2018072316 A1 WO2018072316 A1 WO 2018072316A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
energy medium
exchange unit
temperature energy
high temperature
Prior art date
Application number
PCT/CN2016/112166
Other languages
English (en)
French (fr)
Inventor
邱伟
杨如民
武祥辉
武维建
刘彦武
Original Assignee
四川捷元科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川捷元科技有限公司 filed Critical 四川捷元科技有限公司
Publication of WO2018072316A1 publication Critical patent/WO2018072316A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • F28D7/1653Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing the conduit assemblies having a square or rectangular shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • F28F9/262Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators for radiators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • the invention relates to the technical field of heat exchangers, in particular to a heat exchange unit and a heat exchange matrix composed of several heat exchange units.
  • a heat exchanger is a device that transfers part of the heat of a high-temperature fluid to a low-temperature fluid, also called a heat exchanger. It is a general-purpose equipment in the chemical, petroleum, power, food, pharmaceutical, and other industrial sectors, and plays an important role in industrial production. The application is very extensive.
  • the user only needs to combine a plurality of standardized heat exchange units to form a heat exchange matrix with large heat exchange power.
  • In production only a standardized heat exchange unit needs to be produced, which improves production efficiency, reduces manufacturing costs and production cycle.
  • Another object of the present invention is to provide a heat exchange matrix formed by combining a plurality of the above-described heat exchange units.
  • a heat exchange unit comprising a fuselage shell and a heat exchanger disposed in the fuselage shell; At least two sets of interface groups are disposed on the body casing, each group of interfaces including at least an inlet and an outlet interface as a high temperature energy medium of the heat exchanger, and an inlet and an outlet interface as a low temperature energy medium of the heat exchanger.
  • the interfaces transmitting the same energy medium are electrically connected to each other inside the heat exchange unit.
  • Adjacent heat exchange units can be connected to each other through an interface, so that any number of heat exchange units can be inserted into each other through the interface to form a heat exchange matrix.
  • the user uses the interface in the interface group to connect any number of heat exchange units to each other to form a large heat exchange matrix, which has strong expandability. Furthermore, in the production, only a standardized heat exchange unit needs to be produced, which improves production efficiency, reduces manufacturing costs and production cycle.
  • the fuselage shell is provided with at least two combined faces; each set of faces is provided with a set of interface groups. Adjacent heat exchange units can be connected to one another via interfaces on the combination face.
  • the combined faces of the heat exchange units are used to closely conform to the combined faces of the adjacent heat exchange units to form a heat exchange matrix.
  • the combined faces are an even number, and the combined faces are disposed opposite each other.
  • the positions of the interfaces on the opposite combined surfaces are mirror-symmetrical to each other, so that when one heat exchange unit and another heat exchange unit are connected to each other, the transmissions on the corresponding combined surfaces of the two heat exchange units are the same
  • the interfaces of the energy vectors are mutually opposite.
  • the fuselage shell has at least two combined faces that are opposite in the vertical direction; such that one heat exchange unit is perpendicular to the other heat exchange unit When interconnected, the interfaces of the two heat exchange units on the corresponding combination surface transmitting the same energy medium are opposite each other.
  • the fuselage shell has at least two combined faces in the horizontal direction; when one heat exchange unit is connected to another heat exchange unit in the horizontal direction, the two heat exchange units The interfaces transmitting the same energy medium on the respective combination faces are opposite each other.
  • the fuselage shell is a rectangular parallelepiped, and the combined surface is the six surfaces of the fuselage shell.
  • the position distribution manners of the interfaces on the six combined surfaces are as follows: the interfaces of the upper and lower combined faces are mirror-symmetrical to each other; the interfaces of the left and right combined faces are mirror-symmetrical to each other, and the interfaces of the front and rear combined faces are mirror-symmetrical to each other.
  • the combined faces of the heat exchange units are used to closely conform to the combined faces of the adjacent heat exchange units to form a heat exchange matrix.
  • the high temperature energy medium is a high temperature fluid; the low temperature energy medium is a low temperature fluid.
  • the interface is a fluid interface.
  • the high temperature fluid is a high temperature liquid or a high temperature gas
  • the low temperature fluid is a low temperature liquid or a low temperature gas
  • the interface includes a socket and a plug; the socket is secured to the body housing of the heat exchange unit.
  • the end of the plug is provided with a barb and an O-ring.
  • the barb is inserted and snapped into the inner wall of the socket to form a self-locking structure.
  • the O-ring gasket is placed between the plug and the socket for sealing purposes.
  • the movable joint is further included, and the movable joint is respectively a two-way joint and a cut-off joint.
  • the two ends of the two-way joint constitute a plug; the cut-off joint has one end forming a plug and the other end being closed.
  • an energy medium piping system is also included.
  • the energy medium pipeline system interconnects interfaces of the same type of energy medium in different interface groups, so that the heat exchange unit can introduce the energy medium at the same time or separately through any one of the interface groups.
  • the energy media piping system is disposed within the fuselage housing and is integral with the fuselage housing.
  • the energy medium pipeline system comprises a high temperature energy medium inlet tube, a high temperature energy medium discharge tube, a low temperature energy medium inlet tube, and a low temperature energy medium discharge tube;
  • a high temperature energy medium inlet tube connecting the high temperature energy medium inlet and the inlet of the high temperature energy medium passage of the heat exchanger;
  • a low temperature energy medium inlet tube connecting the inlet of the low temperature energy medium and the inlet of the low temperature energy medium passage of the heat exchanger;
  • the low temperature energy medium discharge tube connects the low temperature energy medium outlet to the outlet of the low temperature energy medium passage of the heat exchanger.
  • the heat exchanger is a shell and tube heat exchanger.
  • the heat exchanger is a plate heat exchanger.
  • the heat exchange matrix comprises a plurality of heat exchange units of any of the above.
  • the heat exchange unit provided by the embodiment of the invention can be inserted into each other to form a large heat exchange matrix, which has strong expandability.
  • the user can select any number of heat exchange units to form a large heat exchange matrix according to actual needs. In the production, it is not necessary to customize according to user requirements, only need to produce standardized heat exchange unit, which improves production efficiency, reduces manufacturing cost and production cycle.
  • the heat exchange matrix provided by the embodiment of the invention can freely increase or decrease the number of heat exchange units according to requirements, and has strong expandability.
  • FIG. 1 is a schematic perspective view of a heat exchange unit according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the internal structure of a shell-and-tube heat exchanger according to an embodiment of the present invention
  • FIG. 3 is a schematic exploded view of an assembly of a heat exchange unit according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an interface according to an embodiment of the present invention.
  • FIG. 5 is a state diagram of the interfaces corresponding to two heat exchange units connected to each other according to an embodiment of the present invention
  • FIG. 6 is a state diagram of an interface of a heat exchange unit in an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a heat exchange matrix according to an embodiment of the present invention.
  • 10 - heat exchange unit 110 - fuselage shell; 120 - upper combined surface; 121 - high temperature energy medium inlet; 122 - high temperature energy medium outlet; 123 - low temperature energy medium inlet; 124 - low temperature energy medium outlet; 130-left combination face; 140-lower combination face; 150-right combination face; 151-high temperature energy medium inlet; 152-high temperature energy medium outlet; 153-low temperature energy medium inlet; 154-low temperature energy medium outlet; Heat exchanger; 210-shell-shell heat exchanger housing; 211-low temperature energy medium passage; 212-first through hole; 213-second through hole; 220-heat exchange tube; 221-high temperature energy medium passage; 301-protrusion; 310-high temperature energy medium inlet tube; 320-high temperature energy medium discharge tube; 330-low temperature energy medium inlet tube; 340-low temperature energy medium discharge tube; 410-socket; 411-fixed protrusion; 420-two Through joint; 430-O type
  • the following embodiments provide a heat exchange unit that can be inserted into each other to form a large heat exchange matrix, which is highly expandable.
  • the user can select any number of heat exchange units to form a large heat exchange matrix according to actual needs. In the production, it is not necessary to customize according to user requirements, only need to produce standardized heat exchange unit, which improves production efficiency, reduces manufacturing cost and production cycle.
  • FIG. 1 is a schematic perspective structural view of a heat exchange unit 10 according to an embodiment of the present invention.
  • the heat exchange unit 10 includes a body casing 110 that is a rectangular parallelepiped structure.
  • a heat exchanger is disposed inside the body casing 110.
  • the heat exchanger is a shell-and-tube heat exchanger 200 (the shell-and-tube heat exchanger 200 is shown in Figures 2 and 3).
  • FIG. 2 shows the internal structure of the shell-and-tube heat exchanger 200.
  • the shell-and-tube heat exchanger 200 includes a shell-and-tube heat exchanger housing 210 and a plurality of heat exchange tubes 220 disposed within the shell-and-tube heat exchanger housing 210. Both ends of the heat exchange tube 220 penetrate the shell-and-tube heat exchanger housing 210 and are exposed outside the shell-and-tube heat exchanger housing 210.
  • the heat exchange tubes 220 constitute the tube path of the shell-and-tube heat exchanger 200.
  • the tube length of the shell-and-tube heat exchanger 200 is a high-temperature energy medium passage 221 .
  • Both ends of the heat exchange tube 220 constitute an inlet and an outlet of the high temperature energy medium passage 221, respectively.
  • the space between the shell-and-tube heat exchanger housing 210 and the heat exchange tubes 220 constitutes the shell side of the shell-and-tube heat exchanger 200.
  • the shell side of the shell-and-tube heat exchanger 200 is a low temperature energy medium passage 211.
  • a first through hole 212 and a second through hole 213 are defined in the shell-and-tube heat exchanger housing 210.
  • the first through hole 212 serves as an inlet of the low temperature energy medium passage 211
  • the second through hole 213 serves as an outlet of the low temperature energy medium passage 211.
  • the high temperature energy medium enters the high temperature energy medium passage 221 through the inlet of the high temperature energy medium passage 221, and the low temperature energy medium enters the low temperature energy medium passage 211 through the first through hole 212.
  • the high temperature energy medium and the low temperature energy medium exchange heat in the shell and tube heat exchanger 200. Then, the high temperature energy medium is led out through the outlet of the high temperature energy medium passage 221, and the low temperature energy medium is led out through the second through hole 213.
  • the high temperature energy medium is a high temperature fluid, specifically a high temperature liquid or a high temperature gas; and the low temperature energy medium is a low temperature fluid, specifically a low temperature liquid or a low temperature gas.
  • the so-called "high temperature” and “low temperature” are relatively speaking, that is, the temperature of the two energy media is compared, the high temperature is the high temperature energy medium, and the low temperature is the low temperature energy medium.
  • the heat exchange unit 10 shown in FIG. 1 has four outer surfaces of the fuselage housing 110 as a combination
  • the faces are the upper combined face 120, the left combined face 130, the lower combined face 140, and the right combined face 150, respectively.
  • a set of interface groups are respectively disposed on the upper combined surface 120, the left combined surface 130, the lower combined surface 140, and the right combined surface 150.
  • four interfaces are provided on the upper combined surface 120, and the four interfaces are respectively a high temperature energy medium inlet 121, a high temperature energy medium outlet 122, and low temperature energy.
  • the medium inlet 123 and the low temperature energy medium outlet 124 are provided on the right combination surface 150.
  • the four interfaces are respectively a high temperature energy medium inlet 151, a high temperature energy medium outlet 152, a low temperature energy medium inlet 153, and a low temperature energy medium outlet 154.
  • the lower combined surface 140 opposite the upper combined surface 120 is provided with the same four interfaces as the four interfaces on the upper combined surface 120, and the positions of the four interfaces on the lower combined surface 140 and the upper combined surface 120
  • the positions of the upper four interfaces are mirror symmetrical; on the left combined surface 130 (the back side in FIG. 1) opposite to the right combined surface 150, four interfaces identical to the four interfaces on the right combined surface 150 are provided, right combination
  • the position of the four interfaces on face 150 is mirror symmetrical with the position of the four interfaces on left combination face 130.
  • the design of the upper and lower left and right symmetrical so that when the two heat exchange units 10 are combined up or down or left and right, the interfaces transmitting the same energy medium are opposite each other and connected into one unit.
  • FIG. 3 is a schematic exploded view of the heat exchange unit 10 according to an embodiment of the present invention.
  • the three faces of the fuselage housing 110 are removed to expose the energy medium piping system.
  • the energy medium piping system includes a high temperature energy medium inlet tube 310, a high temperature energy medium discharge tube 320, a low temperature energy medium inlet tube 330, and a low temperature energy medium discharge tube 340.
  • the high temperature energy medium inlet tube 310, the high temperature energy medium discharge tube 320, the low temperature energy medium inlet tube 330, and the low temperature energy medium discharge tube 340 are formed by a plurality of protrusions 301 disposed on the outer surface of the shell and tube heat exchanger housing 210. Assembly in the fuselage housing 110 is completed Thereafter, the projection 301 is in sealing engagement with the inner surface of the body housing 110 such that the energy medium piping system is integral with the fuselage housing 110.
  • the high temperature energy medium inlet tube 310 is a generally annular conduit that corresponds to the high temperature energy medium inlets 121, 151 and also corresponds to corresponding interfaces on the left and lower combination surfaces 130, 140.
  • the high temperature energy medium inlet tube 310 communicates the high temperature energy medium inlets 121, 151 and the respective interfaces on the left and right combination faces 130, 140.
  • the high temperature energy medium inlet tube 310 is also in communication with the inlet of the high temperature energy medium passage 221 of the shell and tube heat exchanger 200. As such, the combined surfaces on the heat exchange unit 10 can simultaneously introduce high temperature energy media to the shell and tube heat exchanger 200, respectively.
  • the high temperature energy medium discharge tube 320 is generally an annular tube that corresponds to the high temperature energy medium outlets 122, 152 and also corresponds to corresponding interfaces on the left and lower combination surfaces 130, 140.
  • High temperature energy medium exhaust pipe 320 communicates high temperature energy media outlets 122, 152 and respective interfaces on left combined face 130 and lower combined face 140.
  • the high temperature energy medium discharge pipe 320 is also in communication with the outlet of the high temperature energy medium passage 221 of the shell-and-tube heat exchanger 200. In this way, the combined surfaces on the heat exchange unit 10 can simultaneously extract high temperature energy media for the shell and tube heat exchanger 200.
  • the low temperature energy medium inlet tube 330 is an annular tube as a whole, and the low temperature energy medium inlets 123, 153 correspond to each other, and also correspond to corresponding interfaces on the left combined surface 130 and the lower combined surface 140.
  • the low temperature energy medium inlet tube 330 communicates the low temperature energy medium inlets 123, 153 and the respective interfaces on the left combined surface 130 and the lower combined surface 140.
  • the low temperature energy medium inlet pipe 330 is also in communication with the inlet (first through hole 212) of the low temperature energy medium passage 211.
  • the combined surfaces on the heat exchange unit 10 can introduce low temperature energy media to the shell and tube heat exchanger 200 simultaneously or separately.
  • the low temperature energy medium discharge pipe 340 is an annular pipe as a whole, and the low temperature energy medium is discharged.
  • the ports 124, 154 correspond to each other and also correspond to corresponding interfaces on the left combined face 130 and the lower combined face 140.
  • the low temperature energy medium discharge tube 340 communicates the low temperature energy medium outlets 124, 154 and the respective interfaces on the left combined surface 130 and the lower combined surface 140.
  • the low temperature energy medium discharge pipe 340 is also in communication with the outlet (second through hole 213) of the low temperature energy medium passage 211. In this way, the combined surfaces on the heat exchange unit 10 can simultaneously or simultaneously draw a low temperature energy medium for the shell and tube heat exchanger 200.
  • the energy medium pipeline system interconnects the interfaces transmitting the same energy medium in different interface groups, so that the heat exchange unit can simultaneously or separately introduce the extraction energy medium through any one of the interface groups.
  • the heat transfer unit 10 can be introduced into the extraction energy medium simultaneously or separately from any one of the combined surfaces by the energy medium piping system.
  • FIG. 4 is a schematic structural diagram of an interface in an interface group.
  • the interface is a fluid interface and the interface includes a plug 440 and a socket 410.
  • the socket 410 is cylindrical and has a hole in the body casing 110.
  • the socket 410 is fixed in a hole formed in the body casing 110, so that the internal space of the body casing 110 and the space outside the body casing 110 are connected to each other. .
  • the inner surface of the socket 410 is provided with a fixing protrusion 411. Both ends of the two-way joint 420 are plugs 440, and the ends of the plugs 440 are provided with barbs 441.
  • the barb 441 is inserted and engaged with the inner wall of the socket 410 by the fixing protrusion 411 to form a self-locking structure.
  • An O-ring 430 is placed between the socket 410 and the plug 440 for sealing purposes.
  • FIG. 5 shows a state in which the interfaces of the two heat exchange units 10 are connected to each other.
  • the plugs 440 at the two ends of the two-way connector 420 are respectively engaged in the two sockets 410, thereby connecting the corresponding interfaces of the two heat exchange units 10.
  • FIG. 6 shows a state in which the interface of the heat exchange unit 10 needs to be closed.
  • One end of the cutoff joint 450 is a plug 440 whose other end is closed.
  • the plug 440 is thus snapped into the socket 410, thus forming a closed interface. No need to exchange heat with other interfaces
  • the units are connected, they are closed by a cut-off joint 450.
  • the two-way joint 420 is used, and when the interface on the heat exchange unit 10 needs to be closed, the cut-off joint 450 is used.
  • the heat exchange unit 10 provided in this embodiment can constitute the heat exchange matrix 20.
  • six heat exchange units 10 are superimposed and combined in a 3 x 2 manner to form a heat exchange matrix 20.
  • the adjacent heat exchange units 10 are closely attached to each other, and the interfaces on the same energy medium are inserted into each other, for example, the high temperature energy medium inlet of each heat exchange unit 10 and the high temperature of the adjacent heat exchange unit 10
  • the energy medium inlets are connected together, the high temperature energy medium supplied from the heat source is accessed through the high temperature energy medium inlet of one of the heat exchange units 10, and then enters each heat exchange unit 10 to provide the high temperature energy medium passage 221 of the heat exchange unit 10 High temperature energy medium.
  • the high temperature energy medium flowing from the outlet of the high temperature energy medium passage 221 of each heat exchange unit 10 is led out through the high temperature energy medium outlet of one of the heat exchange units 10.
  • the low temperature energy medium is accessed through the low temperature energy medium inlet of one of the heat exchange units 10 and then into each heat exchange unit 10 to provide a low temperature energy medium for the low temperature energy medium passage 211 of the heat exchange unit 10.
  • the low temperature energy medium flowing from the outlet of the low temperature energy medium passage 211 of each heat exchange unit 10 is led out through the low temperature energy medium outlet of one of the heat exchange units 10.
  • the heat exchange power of the i-th heat exchange unit 10 constituting the heat exchange matrix 20 is Pi
  • the heat exchange power P of the heat exchange matrix 20 is ⁇ Pi.
  • the expansion of the heat exchange power is achieved by the matrix combination of the heat exchange units 10. Where i is a positive integer greater than or equal to 1.
  • the user can select any number of heat exchange units 10 to form a large heat exchange matrix 20 according to actual needs. Further, in the production, it is not necessary to customize according to the user's needs, and only the standardized heat exchange unit 10 needs to be produced, which improves the production efficiency, reduces the manufacturing cost and the production cycle.
  • the heat exchange unit 10 has a rectangular parallelepiped structure, and its main purpose is to facilitate the tight connection between the heat exchange units 10, thereby improving the space utilization rate.
  • the shape of the heat exchange unit 10 is not limited to a rectangular parallelepiped.
  • At least two interface groups of the heat exchange unit 10 may be disposed on the same surface of the heat exchange unit 10.
  • the interface groups are respectively disposed on different combined surfaces in order to facilitate mutual insertion between adjacent heat exchange units 10.
  • the heat exchange unit 10 is provided with four combined faces, and the number of combined faces is an even number. In other embodiments, the number of combined faces may also be an odd number. Meanwhile, in the present embodiment, the six faces of the heat exchanger unit 10 having a rectangular parallelepiped structure may constitute a combined face.
  • the heat exchanger of the heat exchange unit 10 is a shell-and-tube heat exchanger 200. It will be appreciated that the plate heat exchanger can also function as a heat exchanger for the heat exchange unit 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种换热单元(10),包括机身壳体(110)以及设置在机身壳体(110)内的换热器;机身壳体(110)上至少设置有两组接口群,每组接口群至少包括作为换热器的高温能量媒介的入口(121)和出口(122)的接口、作为换热器的低温能量媒介的入口(123)和出口(124)的接口;传输同种能量媒介的接口在换热单元(10)内部相互导通。相邻的换热单元(10)能够通过接口相互连接,使得任意数量的换热单元(10)能够通过接口彼此插接构成换热矩阵(20)。用户只需要将多个标准化的换热单元(10)进行组合,即可形成大换热功率的换热矩阵。

Description

换热单元及换热矩阵 技术领域
本发明涉及换热器技术领域,具体涉及一种换热单元以及由若干换热单元构成的换热矩阵。
背景技术
换热器是把高温流体的部分热量传递给低温流体的设备,也叫热交换器,它是化工、石油、动力、食品、医药等工业部门的通用设备,在工业生产中占据重要地位,其应用十分广泛。
然而现有的换热器普遍需要依据实际使用时的换热功率需求情况进行定制。这导致换热器的生产效率低、制造成本高、生产周期长。
发明内容
本发明的目的在于克服现有技术的不足,提供一种能够相互组合的换热单元。用户只需要将多个标准化的换热单元进行组合,即可形成大换热功率的换热矩阵。在生产中,只需要生产标准化的换热单元即可,提高了生产效率、降低了制造成本和生产周期。
本发明的另一个目的在于提供一种由若干个上述的换热单元组合形成的换热矩阵。
本发明的实施例通过以下技术方案实现:
换热单元,包括机身壳体以及设置在机身壳体内的换热器;机 身壳体上至少设置有两组接口群,每组接口群至少包括作为换热器的高温能量媒介的入口和出口的接口、作为换热器的低温能量媒介的入口和出口的接口。传输同种能量媒介的接口在换热单元内部相互导通。
相邻的换热单元能够通过接口相互连接,使得任意数量的换热单元能够通过接口彼此插接构成换热矩阵。
用户根据实际需要,利用接口群中的接口,将任意数量的换热单元彼此插接构成大型的换热矩阵,其扩展性强。进而在生产中,只需要生产标准化的换热单元即可,提高了生产效率、降低了制造成本和生产周期。
在本发明的一种实施例中,机身壳体具备至少两个组合面;每个组合面上设有一组接口群。相邻的换热单元能够通过组合面上的接口相互连接。
在本发明的一种实施例中,换热单元的组合面用于与相邻的换热单元的组合面相互紧密贴合,以构成换热矩阵。
在本发明的一种实施例中,组合面为偶数个,组合面两两相对设置。
在本发明的一种实施例中,相对的组合面上的接口的位置相互镜像对称,使得一个换热单元与另一个换热单元相互连接时,两个换热单元相应组合面上的传输同种能量媒介的接口相互正对。
在本发明的一种实施例中,机身壳体至少具备在垂直方向上相对的两个组合面;使得一个换热单元在垂直方向与另一个换热单元 相互连接时,两个换热单元相应组合面上的传输同种能量媒介的接口相互正对。
在本发明的一种实施例中,机身壳体至少具备在水平方向上相对的两个组合面;使得一个换热单元在水平方向与另一个换热单元相互连接时,两个换热单元相应组合面上的传输同种能量媒介的接口相互正对。
在本发明的一种实施例中,机身壳体为长方体,组合面为机身壳体的6个表面。
在本发明的一种实施例中,6个组合面上接口的位置分布方式为:上下组合面的接口相互镜像对称;左右组合面的接口相互镜像对称,前后组合面的接口相互镜像对称。
在本发明的一种实施例中,换热单元的组合面用于与相邻的换热单元的组合面相互紧密贴合,以构成换热矩阵。
在本发明的一种实施例中,高温能量媒介为高温流体;低温能量媒介为低温流体。接口为流体接口。
在本发明的一种实施例中,高温流体为高温液体或高温气体;低温流体为低温液体或低温气体。
在本发明的一种实施例中,接口包括插座与插头;插座固定在换热单元的机身壳体上。插头端部设有倒勾和O型密封圈。倒勾插入并卡合在插座的内壁,形成自锁结构。O型密封圈垫设在插头与插座之间,用于达到密封的目的。
在本发明的一种实施例中,还包括活动接头,活动接头分别为二通接头和截止接头两种结构。二通接头两端构成插头;截止接头,一端构成插头,另一端封闭。
在本发明的一种实施例中,还包括能量媒介管道系统。能量媒介管道系统将不同接口群里传输同种能量媒介的接口相互连通,使得换热单元通过任何一个接口群均可同时或分别引入引出能量媒介。
在本发明的一种实施例中,能量媒介管道系统设置在机身壳体内,并与机身壳体形成一个整体。
在本发明的一种实施例中,能量媒介管道系统包括高温能量媒介进入管、高温能量媒介排出管、低温能量媒介进入管、低温能量媒介排出管;
高温能量媒介进入管连接高温能量媒介入口以及换热器的高温能量媒介通道的入口;
高温能量媒介排出管连接高温能量媒介出口以及换热器的高温能量媒介通道的出口;
低温能量媒介进入管连接低温能量媒介入口以及换热器的低温能量媒介通道的入口;
低温能量媒介排出管连接低温能量媒介出口以及换热器的低温能量媒介通道的出口。
在本发明的一种实施例中,换热器为管壳式换热器。
在本发明的一种实施例中,换热器为板式换热器。
换热矩阵,包括若干个上述任意一种换热单元。
本发明的技术方案至少具有如下优点和有益效果:
本发明实施例提供的换热单元,能够彼此插接形成大型的换热矩阵,其扩展性强。用户能够根据实际需要,选用任意数量的换热单元构成大型的换热矩阵。进而在生产中,无需按用户需求定制,只需要生产标准化的换热单元即可,提高了生产效率、降低了制造成本和生产周期。
本发明实施例提供的换热矩阵,能够根据需要,自由增减换热单元的数量,其扩展性强。
附图说明
为了更清楚的说明本发明实施例的技术方案,下面对实施例中需要使用的附图作简单介绍。应当理解,以下附图仅示出了本发明的某些实施方式,不应被看作是对本发明范围的限制。对于本领域技术人员而言,在不付出创造性劳动的情况下,能够根据这些附图获得其他附图。
图1为本发明实施例提供的换热单元的立体结构示意图;
图2为本发明实施例中管壳式换热器的内部结构示意图;
图3为本发明实施例中换热单元的装配爆炸示意图;
图4为本发明实施例中接口的结构示意图;
图5为本发明实施例中两个换热单元对应的接口相互连接时的状态图;
图6为本发明实施例中换热单元的接口封闭时的状态图;
图7为本发明实施例中换热矩阵的结构示意图。
图中:10-换热单元;110-机身壳体;120-上组合面;121-高温能量媒介入口;122-高温能量媒介出口;123-低温能量媒介入口;124-低温能量媒介出口;130-左组合面;140-下组合面;150-右组合面;151-高温能量媒介入口;152-高温能量媒介出口;153-低温能量媒介入口;154-低温能量媒介出口;200-管壳式换热器;210-管壳式换热器壳体;211-低温能量媒介通道;212-第一通孔;213-第二通孔;220-换热管;221-高温能量媒介通道;301-凸起;310-高温能量媒介进入管;320-高温能量媒介排出管;330-低温能量媒介进入管;340-低温能量媒介排出管;410-插座;411-固定凸起;420-二通接头;430-O型密封圈;440-插头;441-倒钩;450-截止接头;20-换热矩阵。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图,对本发明实施例中的技术方案进行清楚、完整的描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。
因此,以下对本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的部分实施例。基于本发 明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征和技术方案可以相互组合。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本发明的描述中,需要说明的是,术语、“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,或者是本领域技术人员惯常理解的方位或位置关系,这类术语仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
现有的换热器普遍需要依据实际使用时的热交换情况进行定制。这导致换热器的生产效率低、制造成本高、生产周期长。
为此,下面的实施例提供一种换热单元,这样的换热单元能够彼此插接形成大型的换热矩阵,其扩展性强。用户能够根据实际需要,选用任意数量的换热单元构成大型的换热矩阵。进而在生产中,无需按用户需求定制,只需要生产标准化的换热单元即可,提高了生产效率、降低了制造成本和生产周期。
实施例:
请参照图1,图1为本发明实施例提供的换热单元10的立体结构示意图。换热单元10包括为长方体结构的机身壳体110。在机身壳体110内部设置有换热器。在本实施例中,换热器为管壳式换热器200(管壳式换热器200在图2和图3中示出)。
请参照图2,图2示出了管壳式换热器200的内部结构。管壳式换热器200包括管壳式换热器壳体210以及若干个设置在管壳式换热器壳体210内的换热管220。换热管220的两端贯穿管壳式换热器壳体210并暴露在管壳式换热器壳体210外。换热管220构成管壳式换热器200的管程。在本实施例中,管壳式换热器200的管程为高温能量媒介通道221。换热管220的两端分别构成高温能量媒介通道221的进口和出口。管壳式换热器壳体210与换热管220之间的空间构成管壳式换热器200的壳程。在本实施例中,管壳式换热器200的壳程为低温能量媒介通道211。在管壳式换热器壳体210上开设有第一通孔212和第二通孔213。第一通孔212作为低温能量媒介通道211的进口,第二通孔213作为低温能量媒介通道211的出口。这样,高温能量媒介通过高温能量媒介通道221的进口进入高温能量媒介通道221,低温能量媒介通过第一通孔212进入低温能量媒介通道211。高温能量媒介和低温能量媒介在管壳式换热器200中进行热交换。然后,高温能量媒介通过高温能量媒介通道221的出口导出,低温能量媒介通过第二通孔213导出。在本实施例中:高温能量媒介为高温流体,具体为高温液体或高温气体;低温能量媒介为低温流体,具体为低温液体或低温气体。所谓“高温”和“低温”是相对而言的,即将两种能量媒介的温度进行比较,温度高的为高温能量媒介,温度低的为低温能量媒介。
图1所示的换热单元10,其机身壳体110的四个外表面为组合 面,分别为上组合面120、左组合面130、下组合面140和右组合面150。在上组合面120、左组合面130、下组合面140和右组合面150上分别设置有一组接口群。以图1上能够看见的上组合面120和右组合面150为例:在上组合面120上设有四个接口,四个接口分别为高温能量媒介入口121、高温能量媒介出口122、低温能量媒介入口123、低温能量媒介出口124;在右组合面150上设有四个接口,四个接口分别为高温能量媒介入口151、高温能量媒介出口152、低温能量媒介入口153、低温能量媒介出口154。事实上,在与上组合面120相对的下组合面140上设有与上组合面120上的四个接口相同的四个接口,下组合面140上的四个接口的位置与上组合面120上的四个接口的位置镜像对称;在与右组合面150相对的左组合面130(图1中的背面)上设有与右组合面150上的四个接口相同的四个接口,右组合面150上的四个接口的位置与左组合面130上的四个接口的位置镜像对称。这种上下左右相对称的设计,使得当两个换热单元10上下组合或左右组合时,传输同种能量媒介的接口相互正对并连接成一个整体。
请参照图3,图3为本发明实施例提供的换热单元10的装配爆炸示意图。在图3中,机身壳体110的三个面被拆下,以露出能量媒介管道系统。
能量媒介管道系统包括高温能量媒介进入管310、高温能量媒介排出管320、低温能量媒介进入管330、低温能量媒介排出管340。
高温能量媒介进入管310、高温能量媒介排出管320、低温能量媒介进入管330、低温能量媒介排出管340由设置在管壳式换热器壳体210外表面上的多个凸起301形成。在机身壳体110装配完成 后,凸起301与机身壳体110的内表面密封配合,从而使得能量媒介管道系统与机身壳体110形成一个整体。
高温能量媒介进入管310整体为环状的管道,其与高温能量媒介入口121、151对应,同时也与左组合面130和下组合面140上相应的接口对应。高温能量媒介进入管310将高温能量媒介入口121、151以及左组合面130和下组合面140上相应的接口连通。同时,高温能量媒介进入管310还与管壳式换热器200的高温能量媒介通道221的进口连通。如此,使得换热单元10上的组合面均可同时或分别为管壳式换热器200引入高温能量媒介。
高温能量媒介排出管320整体为环状的管道,其与高温能量媒介出口122、152对应,同时也与左组合面130和下组合面140上相应的接口对应。高温能量媒介排出管320将高温能量媒介出口122、152以及左组合面130和下组合面140上相应的接口连通。同时,高温能量媒介排出管320还与管壳式换热器200的高温能量媒介通道221的出口连通。如此,使得换热单元10上的组合面均可同时或分别为管壳式换热器200引出高温能量媒介。
低温能量媒介进入管330整体为环状的管道,低温能量媒介入口123、153对应,同时也与左组合面130和下组合面140上相应的接口对应。低温能量媒介进入管330将低温能量媒介入口123、153以及左组合面130和下组合面140上相应的接口连通。同时低温能量媒介进入管330还与低温能量媒介通道211的进口(第一通孔212)连通。如此,使得换热单元10上的组合面均可同时或分别为管壳式换热器200引入低温能量媒介。
低温能量媒介排出管340整体为环状的管道,低温能量媒介出 口124、154对应,同时也与左组合面130和下组合面140上相应的接口对应。低温能量媒介排出管340将低温能量媒介出口124、154以及左组合面130和下组合面140上相应的接口连通。同时低温能量媒介排出管340还与低温能量媒介通道211的出口(第二通孔213)连通。如此,使得换热单元10上的组合面均可同时或分别为管壳式换热器200引出低温能量媒介。
如此,能量媒介管道系统将不同接口群里传输同种能量媒介的接口相互连通,使得换热单元通过任何一个接口群均可同时或分别引入引出能量媒介。在本实施例中,通过能量媒介管道系统使得换热单元10从任何一个组合面均可同时或分别引入引出能量媒介。
请参照图4,图4为接口群中接口的结构示意图。接口为流体接口,接口包括插头440和插座410。插座410为筒状,在机身壳体110上开孔,插座410固定在机身壳体110上开设的孔中,使得机身壳体110内部空间和机身壳体110外部的空间相互连通。插座410的内表面设置有固定凸起411。二通接头420的两端为插头440,插头440的端部设置有倒钩441。倒钩441插入并通过固定凸起411卡合在插座410的内壁,形成自锁结构。在插座410和插头440之间垫设有O型密封圈430,用于达到密封的目的。
请参照图5,图5示出了两个换热单元10对应的接口相互连接时的状态。二通接头420两端的插头440分别卡合在两个插座410中,从而将两个换热单元10相应的接口连接。
请参照图6,图6示出了换热单元10的接口需要封闭时的状态。截止接头450的一端为插头440,其另一端封闭。如此插头440卡合在插座410中,如此形成封闭的接口。在接口不需要与其他换热 单元相连时,通过截止接头450对其进行封闭。
在需要将两个换热单元10相应的接口相互连接时,采用二通接头420,在需要将换热单元10上的接口封闭时,使用截止接头450。
参照图7,本实施例提供的换热单元10能够构成换热矩阵20。在图7中,六个换热单元10以3×2的方式叠加组合在一起形成换热矩阵20。六个换热单元10各自相邻组合面紧密贴合,其上的传输同种能量媒介的接口彼此插接,例如:各个换热单元10的高温能量媒介入口与相邻换热单元10的高温能量媒介入口连接在一起,从热源供给的高温能量媒介通过其中一个换热单元10的高温能量媒介入口接入,然后进入每个换热单元10,为换热单元10的高温能量媒介通道221提供高温能量媒介。同理,从每个换热单元10的高温能量媒介通道221的出口流出的高温能量媒介通过其中一个换热单元10的高温能量媒介出口导出。低温能量媒介通过其中一个换热单元10的低温能量媒介入口接入,然后进入每个换热单元10,为换热单元10的低温能量媒介通道211提供低温能量媒介。同理,从每个换热单元10的低温能量媒介通道211的出口流出的低温能量媒介通过其中一个换热单元10的低温能量媒介出口导出。
如此,构成换热矩阵20的第i个换热单元10的换热功率为Pi,则换热矩阵20的换热功率P=∑Pi。通过换热单元10的矩阵式组合,实现了换热功率的扩展。其中,i为大于等于1的正整数。
采用本实施例提供的换热单元10,用户能够根据实际需要,选用任意数量的换热单元10构成大型的换热矩阵20。进而在生产中,无需按用户需求定制,只需要生产标准化的换热单元10即可,提高了生产效率、降低了制造成本和生产周期。
需要说明的是,在本实施例中,换热单元10为长方体结构,其主要目的在于便于换热单元10之间的紧密连接,从而提高空间使用率。在其他具体的实施方式中,换热单元10的形状不限于长方体。
还需要说明的是,换热单元10的至少两个接口群可以设置在换热单元10的同一面上。在本实施例中,之所以将接口群分别设置在不同的组合面上,是为了便于相邻换热单元10之间的相互插接。
还需要说明的是,在本实施例中,换热单元10具备四个组合面,组合面的数量为偶数个。在其他具体实施方式中,组合面的数量也可以为奇数个。同时,本实施例中,长方体结构的换热单元10的六个面都可以构成组合面。
在本实施例中,换热单元10的换热器为管壳式换热器200。可以理解的,板式换热器也能够作为换热单元10的换热器。
以上所述仅为本发明的部分实施例而已,并不用于限制本发明,对于本领域技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (20)

  1. 换热单元,其特征在于:
    所述换热单元包括机身壳体以及设置在所述机身壳体内的换热器;所述机身壳体上至少设置有两组接口群,每组所述接口群至少包括作为所述换热器的高温能量媒介的入口和出口的接口、作为所述换热器的低温能量媒介的入口和出口的接口;传输同种能量媒介的接口在所述换热单元内部相互导通;
    相邻的所述换热单元能够通过所述接口相互连接,使得任意数量的所述换热单元能够通过所述接口彼此插接构成换热矩阵。
  2. 根据权利要求1所述的换热单元,其特征在于:
    所述机身壳体具备至少两个组合面;每个所述组合面上设有一组所述接口群;
    相邻的所述换热单元能够通过所述组合面上的接口相互连接。
  3. 根据权利要求2所述的换热单元,其特征在于:
    所述换热单元的所述组合面用于与相邻的所述换热单元的所述组合面相互紧密贴合,以构成所述换热矩阵。
  4. 根据权利要求2所述的换热单元,其特征在于:
    所述组合面为偶数个,所述组合面两两相对设置。
  5. 根据权利要求4所述的换热单元,其特征在于:
    相对的所述组合面上的所述接口的位置相互镜像对称,使得一个所述换热单元与另一个所述换热单元相互连接时,两个所述换热单元相应所述组合面上的传输同种能量媒介的接口相互正对。
  6. 根据权利要求5所述的换热单元,其特征在于:
    所述机身壳体至少具备在垂直方向上相对的两个所述组合面,使得一个所述换热单元在垂直方向与另一个所述换热单元相互连接时,两个所述换热单元相应所述组合面上的传输同种能量媒介的接口相互正对。
  7. 根据权利要求5所述的换热单元,其特征在于:
    所述机身壳体至少具备在水平方向上相对的两个所述组合面,使得一个所述换热单元在水平方向与另一个所述换热单元相互连接时,两个所述换热单元相应所述组合面上的传输同种能量媒介的接口相互正对。
  8. 根据权利要求2所述的换热单元,其特征在于:
    所述机身壳体为长方体,所述组合面为所述机身壳体的6个表面。
  9. 根据权利要求8所述的换热单元,其特征在于:
    6个所述组合面上接口的位置分布方式为:上下组合面的所述接口相互镜像对称;左右组合面的所述接口相互镜像对称,前后组合面的所述接口相互镜像对称。
  10. 根据权利要求8所述的换热单元,其特征在于:
    所述换热单元的所述组合面用于与相邻的所述换热单元的所述组合面相互紧密贴合,以构成所述换热矩阵。
  11. 根据权利要求1所述的换热单元,其特征在于:
    所述高温能量媒介为高温流体;
    所述低温能量媒介为低温流体;
    所述接口为流体接口。
  12. 根据权利要求11所述的换热单元,其特征在于:
    所述高温流体为高温液体或高温气体;
    所述低温流体为低温液体或低温气体。
  13. 根据权利要求11所述的换热单元,其特征在于:
    所述接口包括插座与插头;所述插座固定在所述换热单元的机身壳体上;
    所述插头端部设有倒勾和O型密封圈;
    所述倒勾插入并卡合在所述插座的内壁,形成自锁结构;
    所述O型密封圈垫设在所述插头与插座之间,用于达到密封的目的。
  14. 根据权利要求13所述的换热单元,其特征在于:
    还包括活动接头,所述活动接头分别为二通接头和截止接头两 种结构;
    所述二通接头两端构成所述插头;
    所述截止接头,一端构成所述插头,另一端封闭。
  15. 根据权利要求11所述的换热单元,其特征在于:
    还包括能量媒介管道系统;
    所述能量媒介管道系统将不同所述接口群里传输同种能量媒介的接口相互连通,使得所述换热单元通过任何一个所述接口群均可同时或分别引入引出能量媒介。
  16. 根据权利要求15所述的换热单元,其特征在于:
    所述能量媒介管道系统设置在所述机身壳体内,并与所述机身壳体形成一个整体。
  17. 根据权利要求15所述的换热单元,其特征在于:
    所述能量媒介管道系统包括高温能量媒介进入管、高温能量媒介排出管、低温能量媒介进入管、低温能量媒介排出管;
    所述高温能量媒介进入管连接高温能量媒介入口以及所述换热器的高温能量媒介通道的入口;
    所述高温能量媒介排出管连接高温能量媒介出口以及所述换热器的高温能量媒介通道的出口;
    所述低温能量媒介进入管连接低温能量媒介入口以及所述换热 器的低温能量媒介通道的入口;
    所述低温能量媒介排出管连接低温能量媒介出口以及所述换热器的低温能量媒介通道的出口。
  18. 根据权利要求1~17中任意一项所述的换热单元,其特征在于:
    所述换热器为管壳式换热器。
  19. 根据权利要求1~17中任意一项所述的换热单元,其特征在于:
    所述换热器为板式换热器。
  20. 换热矩阵,其特征在于:
    包括若干个如权利要求1~19中任意一项所述的换热单元。
PCT/CN2016/112166 2016-10-17 2016-12-26 换热单元及换热矩阵 WO2018072316A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610901803.3 2016-10-17
CN201610901803.3A CN106288880B (zh) 2016-10-17 2016-10-17 换热单元及换热矩阵

Publications (1)

Publication Number Publication Date
WO2018072316A1 true WO2018072316A1 (zh) 2018-04-26

Family

ID=57717762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112166 WO2018072316A1 (zh) 2016-10-17 2016-12-26 换热单元及换热矩阵

Country Status (2)

Country Link
CN (2) CN109269327B (zh)
WO (1) WO2018072316A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106440880B (zh) * 2016-10-17 2019-03-08 四川捷元科技有限公司 单元组合式换热矩阵
CN106288881A (zh) * 2016-10-18 2017-01-04 四川捷元科技有限公司 换热单元及换热矩阵
CN108088301A (zh) * 2017-12-25 2018-05-29 江西鑫田车业有限公司 一种通用型散热器
CN111380381B (zh) * 2020-03-30 2021-05-07 香港環能有限公司 一种过饱和表面蒸发换热装置及应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1760625A (zh) * 2005-11-16 2006-04-19 南京工业大学 一种全焊式换热器及其应用
CN101691972A (zh) * 2009-10-14 2010-04-07 上海醇华电子有限公司 一种可用于换热器和电加热器的主体构件
CN102384675A (zh) * 2011-08-09 2012-03-21 江苏中圣高科技产业有限公司 可拆卸式余热回收高效换热器
US20140202669A1 (en) * 2013-01-21 2014-07-24 Denso International America, Inc. Dual radiator engine cooling module - single coolant loop
CN205279503U (zh) * 2015-11-26 2016-06-01 四川捷元科技有限公司 吸收式制冷单元一体式水流管道系统
CN205425506U (zh) * 2015-11-26 2016-08-03 四川捷元科技有限公司 吸收式制冷单元
CN205425504U (zh) * 2015-11-26 2016-08-03 四川捷元科技有限公司 单元组合式制冷矩阵
CN106288881A (zh) * 2016-10-18 2017-01-04 四川捷元科技有限公司 换热单元及换热矩阵
CN106440880A (zh) * 2016-10-17 2017-02-22 四川捷元科技有限公司 单元组合式换热矩阵
CN206208073U (zh) * 2016-10-17 2017-05-31 四川捷元科技有限公司 换热单元及换热矩阵
CN206208072U (zh) * 2016-10-18 2017-05-31 四川捷元科技有限公司 换热单元及换热矩阵

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100303683A1 (en) * 2009-05-04 2010-12-02 Kelvin John Hendrie Cooling module and reactor comprising the same
CN202119299U (zh) * 2011-04-28 2012-01-18 王颖 火力发电废汽循环再利用装置
CN202229631U (zh) * 2011-08-25 2012-05-23 东南大学 一种热交换器
CN205014868U (zh) * 2015-09-17 2016-02-03 天津恒盛鑫泰科技发展有限公司 一种用于制碱业立式钛换热器
CN105486124B (zh) * 2016-01-12 2017-12-01 赵弘毅 高效模块式热交换器
CN105953620A (zh) * 2016-06-23 2016-09-21 江阴中南重工有限公司 一种串联高效浮头式换热器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1760625A (zh) * 2005-11-16 2006-04-19 南京工业大学 一种全焊式换热器及其应用
CN101691972A (zh) * 2009-10-14 2010-04-07 上海醇华电子有限公司 一种可用于换热器和电加热器的主体构件
CN102384675A (zh) * 2011-08-09 2012-03-21 江苏中圣高科技产业有限公司 可拆卸式余热回收高效换热器
US20140202669A1 (en) * 2013-01-21 2014-07-24 Denso International America, Inc. Dual radiator engine cooling module - single coolant loop
CN205279503U (zh) * 2015-11-26 2016-06-01 四川捷元科技有限公司 吸收式制冷单元一体式水流管道系统
CN205425506U (zh) * 2015-11-26 2016-08-03 四川捷元科技有限公司 吸收式制冷单元
CN205425504U (zh) * 2015-11-26 2016-08-03 四川捷元科技有限公司 单元组合式制冷矩阵
CN106440880A (zh) * 2016-10-17 2017-02-22 四川捷元科技有限公司 单元组合式换热矩阵
CN206208073U (zh) * 2016-10-17 2017-05-31 四川捷元科技有限公司 换热单元及换热矩阵
CN106288881A (zh) * 2016-10-18 2017-01-04 四川捷元科技有限公司 换热单元及换热矩阵
CN206208072U (zh) * 2016-10-18 2017-05-31 四川捷元科技有限公司 换热单元及换热矩阵

Also Published As

Publication number Publication date
CN106288880B (zh) 2019-03-08
CN109269327A (zh) 2019-01-25
CN109269327B (zh) 2020-12-01
CN106288880A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2018072316A1 (zh) 换热单元及换热矩阵
CN103162470B (zh) 具备多向连接器的双套管热交换器及具备其的车辆用空调装置
CN206208072U (zh) 换热单元及换热矩阵
WO2022253206A1 (zh) 换热器
WO2018072313A1 (zh) 换热单元及换热矩阵
WO2018072317A1 (zh) 单元组合式换热矩阵
CN206208073U (zh) 换热单元及换热矩阵
CN105737635A (zh) 换热装置
CN109899613B (zh) 一种非接触开启式快速接头
CN208042830U (zh) 一种模块化换热单体及使用该模块化换热单体的换热器
CN207073887U (zh) 一种快速连接接头以及空调
CN112161490A (zh) 表面式冷却器及空调器
CN207335502U (zh) 一种冲压式冷板组件
CN111059926A (zh) 一种易于拆装的换热器
CN213631678U (zh) 表面式冷却器及空调器
CN221099479U (zh) 一种换热管路系统及分容柜
CN218523789U (zh) 换热器和空调器
CN207741381U (zh) 一种换热器及空调
CN215373627U (zh) 一种可模块化连接的套管换热器
CN218583859U (zh) 微通道换热器以及换热设备
CN220358173U (zh) 一种电芯换热组件、电池及用电设备
CN214998103U (zh) 一种空压机热能回收装置
WO2017088766A1 (zh) 吸收式制冷单元和吸收式制冷矩阵
WO2023221638A1 (zh) 一种散热装置、连接结构及电子设备
WO2021179360A1 (zh) 芯片组件及烟气热交换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16919456

Country of ref document: EP

Kind code of ref document: A1