WO2018072313A1 - 换热单元及换热矩阵 - Google Patents

换热单元及换热矩阵 Download PDF

Info

Publication number
WO2018072313A1
WO2018072313A1 PCT/CN2016/112134 CN2016112134W WO2018072313A1 WO 2018072313 A1 WO2018072313 A1 WO 2018072313A1 CN 2016112134 W CN2016112134 W CN 2016112134W WO 2018072313 A1 WO2018072313 A1 WO 2018072313A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
exchange unit
energy medium
unit according
tube
Prior art date
Application number
PCT/CN2016/112134
Other languages
English (en)
French (fr)
Inventor
邱伟
杨如民
武祥辉
武维建
刘彦武
Original Assignee
四川捷元科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川捷元科技有限公司 filed Critical 四川捷元科技有限公司
Publication of WO2018072313A1 publication Critical patent/WO2018072313A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall

Definitions

  • the invention relates to the technical field of heat exchangers, in particular to a heat exchange unit and a heat exchange matrix composed of several heat exchange units.
  • a heat exchanger is a device that transfers part of the heat of a high-temperature fluid to a low-temperature fluid, also called a heat exchanger. It is a general-purpose equipment in the chemical, petroleum, power, food, pharmaceutical, and other industrial sectors, and plays an important role in industrial production. The application is very extensive.
  • the heat exchange tubes or heat exchange panels in the existing heat exchangers are mainly made of metal (for example, copper), and thus face complicated sealing problems, and production efficiency is restricted. At the same time, this also results in a large weight and volume of the heat exchanger, making it difficult to achieve weight reduction and miniaturization of the heat exchanger.
  • metal heat exchange tubes or heat exchange panels are also susceptible to corrosion, affecting the service life of the heat exchanger.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide a heat exchange unit whose heat exchange tube or heat exchange wall plate is made of plastic, so that the heat exchange unit can be realized under the premise of satisfying the heat exchange performance. Lightweight and miniaturized. At the same time, the heat exchange tube and the heat exchange wall plate made of plastic are easy to seal and improve the production efficiency. The plastic has strong corrosion resistance and improves the service life.
  • the heat exchange units can also be combined with each other. The user only needs to combine a plurality of standardized heat exchange units to form a heat exchange matrix with large heat exchange power. In production, only a standardized heat exchange unit needs to be produced, which improves production efficiency, reduces manufacturing costs and production cycle.
  • Another object of the present invention is to provide a heat exchange matrix formed by combining a plurality of the above-described heat exchange units.
  • the heat exchange unit comprises a fuselage shell and a heat exchanger disposed in the fuselage shell; at least two sets of interface groups are disposed on the fuselage shell, each set of interface groups including at least an inlet of a high temperature energy medium as a heat exchanger The interface with the outlet, the inlet and outlet of the low temperature energy medium as the heat exchanger; the interfaces for transmitting the same energy medium are electrically connected to each other inside the heat exchange unit.
  • Adjacent heat exchange units can be connected to each other through an interface, so that any number of heat exchange units can be inserted into each other through the interface to form a heat exchange matrix.
  • the heat exchanger is a shell-and-tube heat exchanger or a plate heat exchanger.
  • the heat exchange tubes of the shell-and-tube heat exchanger are made of plastic; the heat exchange wall of the plate heat exchanger is made of plastic.
  • the heat exchange tube or the heat exchange wall plate is made of a metal material having a relatively high heat transfer coefficient.
  • the density of the metal material is large, resulting in a large weight and bulk of the heat exchanger.
  • the metal heat exchange tubes and the heat exchange wall plates are also corroded, and the sealing process requires high requirements and the sealing cost is high.
  • Plastics have a lower density than metal materials. The weight of plastic in the same volume is much lower than that of metallic materials (such as brass).
  • the inventors made the heat exchange tubes or the heat exchange wall plates made of plastic.
  • the heat exchange unit provided by the embodiment of the invention can greatly reduce the weight of the whole machine and can achieve miniaturization.
  • the heat exchange tubes and heat exchange panels made of plastic are easy to seal.
  • the plastic has stronger corrosion resistance, can avoid corrosion, and increases the working life of the heat exchange unit.
  • the user can use the interface in the interface group to insert any number of heat exchange units into each other to form a large heat exchange matrix according to actual needs, and the expandability is strong. Furthermore, in the production, only a standardized heat exchange unit needs to be produced, which improves production efficiency, reduces manufacturing costs and production cycle.
  • the tube wall thickness of the heat exchange tubes is from 0.1 to 0.5 mm.
  • the tube wall thickness of the heat exchange tubes is 0.15 mm.
  • a plurality of rows of heat exchange tubes are arranged in an upper and lower layer; a plurality of support strips are disposed between the adjacent two rows of heat exchange tubes; and the support strips are used to support the adjacent two rows of heat exchange tubes.
  • the support strip is made of plastic.
  • the support strips and heat exchange tubes are made of the same plastic.
  • the plurality of rows of heat exchange tubes are arranged in an upper and lower layer; the outer diameter of the heat exchange tubes is from 3 mm to 5 mm.
  • the center distance of adjacent heat exchange tubes located in the same row is 4 mm to 6 mm.
  • the center distance between the upper and lower adjacent heat exchange tubes is 5 mm to 8 mm.
  • the heat exchange tube has an outer diameter of 3 mm. Adjacent heat exchange tubes located in the same row have a center-to-center distance of 4 mm. The center distance between the upper and lower adjacent heat exchange tubes is 7 mm.
  • the shell-and-tube heat exchanger housing of the shell-and-tube heat exchanger is made of plastic.
  • the shell and tube heat exchanger housing and the heat exchange tubes are made of the same plastic.
  • the heat exchange wall panel has a thickness of from 0.1 mm to 0.5 mm.
  • the heat exchange wall panel has a thickness of 0.15 mm.
  • the heat exchange wall plate is provided with textured ridges for supporting the heat exchange wall and turbulent flow of the fluid flowing through the ridges to increase the heat transfer coefficient.
  • the ribs are made of plastic.
  • the ribs and the heat exchange wall are made of the same plastic.
  • the heat exchange panels are arranged in multiple layers.
  • the wall spacing of the adjacent two layers of the heat exchange wall plate is 0.5 mm to 3 mm.
  • the wall spacing of the adjacent two layers of heat exchange panels is 1 mm.
  • the plate heat exchanger housing of the plate heat exchanger is made of plastic.
  • the plate heat exchanger housing and the heat exchange wall are made of the same plastic.
  • the fuselage housing of the heat exchange unit is made of plastic.
  • the interface is made of plastic.
  • the components of the heat exchange unit are all made of plastic.
  • the fuselage shell is provided with at least two combined faces; each set of faces is provided with a set of interface groups. Adjacent heat exchange units can be connected to one another via interfaces on the combination face.
  • the combined faces of the heat exchange units are used to closely conform to the combined faces of the adjacent heat exchange units to form a heat exchange matrix.
  • the combined faces are an even number, and the combined faces are disposed opposite each other.
  • the positions of the interfaces on the opposite combined surfaces are mirror-symmetrical to each other, so that when one heat exchange unit and another heat exchange unit are connected to each other, the transmissions on the corresponding combined surfaces of the two heat exchange units are the same
  • the interfaces of the energy vectors are mutually opposite.
  • the fuselage shell has at least two combined faces in the vertical direction, such that when one heat exchange unit is connected to another heat exchange unit in the vertical direction, the two heat exchanges
  • the interfaces transmitting the same energy medium on the corresponding combination surface of the unit are mutually opposite each other.
  • the fuselage shell has at least two combined faces in the horizontal direction, such that when one heat exchange unit is connected to another heat exchange unit in the horizontal direction, the two heat exchange units The interfaces transmitting the same energy medium on the respective combination faces are opposite each other.
  • the fuselage shell is a rectangular parallelepiped, and the combined surface is the six surfaces of the fuselage shell.
  • the position distribution manners of the interfaces on the six combined surfaces are as follows: the interfaces of the upper and lower combined faces are mirror-symmetrical to each other; the interfaces of the left and right combined faces are mirror-symmetrical to each other, and the interfaces of the front and rear combined faces are mirror-symmetrical to each other.
  • the combined faces of the heat exchange units are used to closely conform to the combined faces of the adjacent heat exchange units to form a heat exchange matrix.
  • the high temperature energy medium is a high temperature fluid; the low temperature energy medium is a low temperature fluid.
  • the interface is a fluid interface.
  • the high temperature fluid is a high temperature liquid or a high temperature gas
  • the low temperature fluid is a low temperature liquid or a low temperature gas
  • the interface includes a socket and a plug; the socket is secured to the body housing of the heat exchange unit.
  • the end of the plug is provided with a barb and an O-ring.
  • the barb is inserted and snapped into the inner wall of the socket to form a self-locking structure.
  • the O-ring gasket is placed between the plug and the socket for sealing purposes.
  • the movable joint is further included, and the movable joint is respectively a two-way joint and a cut-off joint. Both ends of the two-way joint constitute a plug.
  • the cut-off joint has a plug at one end and a closed end at the other end.
  • an energy medium piping system is also included.
  • the energy medium pipeline system interconnects interfaces of the same type of energy medium in different interface groups, so that the heat exchange unit can introduce the energy medium at the same time or separately through any one of the interface groups.
  • the energy media piping system is disposed within the fuselage housing and is integral with the fuselage housing.
  • the energy medium piping system includes a high temperature energy medium inlet tube, a high temperature energy medium discharge tube, a low temperature energy medium inlet tube, and a low temperature energy medium discharge tube.
  • a high temperature energy medium inlet tube connecting the high temperature energy medium inlet and the inlet of the high temperature energy medium passage of the heat exchanger;
  • a low temperature energy medium inlet tube connecting the inlet of the low temperature energy medium and the inlet of the low temperature energy medium passage of the heat exchanger;
  • the low temperature energy medium discharge tube connects the low temperature energy medium outlet to the outlet of the low temperature energy medium passage of the heat exchanger.
  • the heat exchange matrix comprises a plurality of heat exchange units of any of the above.
  • the heat exchange unit provided by the embodiment of the invention has a heat exchange tube or a heat exchange wall plate made of plastic. In this way, the weight of the whole machine can be greatly reduced and miniaturization can be achieved.
  • the heat exchange tubes and heat exchange panels made of plastic are easy to seal.
  • the plastic has stronger corrosion resistance, can avoid corrosion, and increases the working life of the heat exchange unit.
  • the user can use the interface in the interface group to insert any number of heat exchange units into each other to form a large heat exchange matrix according to actual needs, and the expandability is strong. Furthermore, in the production, only a standardized heat exchange unit needs to be produced, which improves production efficiency, reduces manufacturing costs and production cycle.
  • the heat exchange matrix provided by the embodiment of the invention can freely increase or decrease the number of heat exchange units according to requirements, and has strong expandability.
  • FIG. 1 is a schematic perspective view of a heat exchange unit according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the internal structure of a shell-and-tube heat exchanger according to an embodiment of the present invention
  • FIG. 3 is a view showing an arrangement state of heat exchange tubes in an embodiment of the present invention.
  • FIG. 4 is a schematic exploded view of an assembly of a heat exchange unit according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an interface according to an embodiment of the present invention.
  • FIG. 6 is a state diagram of an interface corresponding to two heat exchange units connected to each other according to an embodiment of the present invention
  • Figure 7 is a state diagram of the interface of the heat exchange unit when the interface of the heat exchange unit is closed
  • FIG. 8 is a schematic structural diagram of a heat exchange matrix according to an embodiment of the present invention.
  • Fig. 9 is a schematic view showing the internal structure of a plate heat exchanger according to an embodiment of the present invention.
  • 10 - heat exchange unit 110 - fuselage shell; 120 - upper combined surface; 121 - high temperature energy medium inlet; 122 - high temperature energy medium outlet; 123 - low temperature energy medium inlet; 124 - low temperature energy medium outlet; 130-left combination face; 140-lower combination face; 150-right combination face; 151-high temperature energy medium inlet; 152-high temperature energy medium outlet; 153-low temperature energy medium inlet; 154-low temperature energy medium outlet; Heat exchanger; 210-shell-shell heat exchanger housing; 211-low temperature energy medium passage; 212-first through hole; 213-second through hole; 220-heat exchange tube; 221-high temperature energy medium passage; 230-support bar; 301-bump; 310-high temperature energy medium inlet pipe; 320-high temperature energy medium discharge pipe; 330-low temperature energy medium inlet pipe; 340-low temperature energy medium discharge pipe; 410-socket; 411-fixed convex 420-two-way joint;
  • plastic refers to engineering-plastics, such as polycarbonate (Polycarbonate, PC), polyamide (Polyamide, PA), polyacetal (Polyoxy Methylene, POM), Polyphenylene Oxide (PPO), polyester (PET, PBT), polyphenylene sulfide (PPS), polyaryl ester, and the like.
  • FIG. 1 is a schematic perspective structural view of a heat exchange unit 10 according to an embodiment of the present invention.
  • the heat exchange unit 10 includes a body casing 110 that is a rectangular parallelepiped structure.
  • a heat exchanger is disposed inside the body casing 110.
  • the heat exchanger is a shell-and-tube heat exchanger 200 (the shell-and-tube heat exchanger 200 is shown in Figures 2, 3 and 4).
  • FIG. 2 shows the internal structure of the shell-and-tube heat exchanger 200.
  • the shell-and-tube heat exchanger 200 includes a shell-and-tube heat exchanger housing 210 and a plurality of heat exchange tubes 220 disposed within the shell-and-tube heat exchanger housing 210. Both ends of the heat exchange tube 220 penetrate the shell-and-tube heat exchanger housing 210 and are exposed outside the shell-and-tube heat exchanger housing 210.
  • the heat exchange tubes 220 constitute the tube path of the shell-and-tube heat exchanger 200.
  • the tube length of the shell-and-tube heat exchanger 200 is a high-temperature energy medium passage 221 .
  • Both ends of the heat exchange tube 220 constitute an inlet and an outlet of the high temperature energy medium passage 221, respectively.
  • the space between the shell-and-tube heat exchanger housing 210 and the heat exchange tubes 220 constitutes the shell side of the shell-and-tube heat exchanger 200.
  • the shell side of the shell-and-tube heat exchanger 200 is a low temperature energy medium passage 211.
  • a first through hole 212 and a second through hole 213 are defined in the shell-and-tube heat exchanger housing 210.
  • the first through hole 212 serves as an inlet of the low temperature energy medium passage 211
  • the second through hole 213 serves as an outlet of the low temperature energy medium passage 211.
  • the high temperature energy medium enters the high temperature energy medium passage 221 through the inlet of the high temperature energy medium passage 221, and the low temperature energy medium enters the low temperature energy medium passage 211 through the first through hole 212.
  • the high temperature energy medium and the low temperature energy medium exchange heat in the shell and tube heat exchanger 200.
  • the high temperature energy medium is led out through the outlet of the high temperature energy medium channel 221.
  • the low temperature energy medium is led through the second through hole 213.
  • the high temperature energy medium is a high temperature fluid, specifically a high temperature liquid or a high temperature gas
  • the low temperature energy medium is a low temperature fluid, specifically a low temperature liquid or a low temperature gas.
  • heat exchange tubes 220 are arranged in upper and lower layers.
  • the heat exchange tube 220 is made of plastic, and the tube wall thickness of the heat exchange tube 220 is from 0.1 mm to 0.5 mm. In the present embodiment, the tube wall thickness of the heat exchange tube 220 is 0.15 mm. Since the heat exchange tube 220 is made of plastic, the weight of the heat exchange unit 10 can be greatly reduced as compared with the use of the metal heat pipe, thereby achieving weight reduction. Since the plastic has excellent corrosion resistance, the heat exchange tube 220 can be prevented from being corroded, and the working life of the heat exchange unit 10 is increased. At the same time, the heat exchange tube 220 made of plastic is easier to seal than the metal heat exchange tube.
  • the inventor discovered through research that the traditional shell-and-tube heat exchanger using metal heat exchange tube is difficult to seal due to metal.
  • the shell can only be thick steel plate. Or the casting is made, thereby further increasing the weight of the shell-and-tube heat exchanger and having poor corrosion resistance.
  • the shell-and-tube heat exchanger housing 210 of the shell-and-tube heat exchanger 200 is also made of plastic, such that between the shell-and-tube heat exchanger housing 210 and the heat exchange tube 220 The sealing can be easily achieved, and the thickness of the shell-and-tube heat exchanger housing 210 can be reduced. Thus, the weight of the shell-and-tube heat exchanger 200 is further reduced, and the corrosion resistance of the shell-and-tube heat exchanger 200 is also enhanced.
  • the shell-and-tube heat exchanger housing 210 and the heat exchange tube 220 may be made of the same kind of plastic and integrally molded by an injection molding process to provide excellent sealing performance.
  • a plurality of support strips 230 are disposed at equal intervals, and the support strips 230 are disposed to intersect with the heat exchange tubes 220 and perpendicular to the heat exchange tubes 220.
  • the support bar 230 is used to support two rows of heat exchange tubes 220 adjacent to each other.
  • the support bar 230 is made of plastic to ensure weight reduction.
  • the support strip 230 and the heat exchange tube 220 are made of the same plastic to facilitate manufacturing.
  • the outer diameter of the heat exchange tube 220 is set to 3 mm to 5 mm, and the center distance of the adjacent heat exchange tubes 220 in the same row is set to 4 mm to 6 mm.
  • the center distance of the adjacent heat exchange tubes 220 is set to be 5 mm to 8 mm.
  • the outer diameter of the heat exchange tube 220 is 3 mm; the center distance of the adjacent heat exchange tubes 220 in the same row is 4 mm; and the center distance of the upper and lower adjacent heat exchange tubes 220 is 7 mm.
  • the four outer surfaces of the body casing 110 are combined faces, which are an upper combined face 120, a left combined face 130, a lower combined face 140, and a right combined face 150, respectively.
  • a set of interface groups are respectively disposed on the upper combined surface 120, the left combined surface 130, the lower combined surface 140, and the right combined surface 150.
  • four interfaces are provided on the upper combined surface 120, and the four interfaces are respectively a high temperature energy medium inlet 121, a high temperature energy medium outlet 122, and low temperature energy.
  • the medium inlet 123 and the low temperature energy medium outlet 124 are provided on the right combination surface 150.
  • the four interfaces are respectively a high temperature energy medium inlet 151, a high temperature energy medium outlet 152, a low temperature energy medium inlet 153, and a low temperature energy medium outlet 154.
  • the lower combined surface 140 opposite the upper combined surface 120 is provided with the same four interfaces as the four interfaces on the upper combined surface 120, and the positions of the four interfaces on the lower combined surface 140 and the upper combined surface 120
  • the positions of the upper four interfaces are mirror symmetrical; on the left combined surface 130 (the back side in FIG. 1) opposite to the right combined surface 150, four interfaces identical to the four interfaces on the right combined surface 150 are provided, right combination
  • the position of the four interfaces on face 150 is mirror symmetrical with the position of the four interfaces on left combination face 130.
  • the design of the upper and lower left and right symmetrical so that when the two heat exchange units 10 are combined up or down or left and right, the interfaces transmitting the same energy medium are opposite each other and connected into one unit.
  • FIG. 4 is a schematic exploded view of the heat exchange unit 10 according to an embodiment of the present invention.
  • the three faces of the fuselage housing 110 are removed to expose the energy medium piping system.
  • the energy medium piping system includes a high temperature energy medium inlet tube 310, a high temperature energy medium discharge tube 320, a low temperature energy medium inlet tube 330, and a low temperature energy medium discharge tube 340.
  • the high temperature energy medium inlet tube 310, the high temperature energy medium discharge tube 320, the low temperature energy medium inlet tube 330, and the low temperature energy medium discharge tube 340 are formed by a plurality of protrusions 301 disposed on the outer surface of the shell and tube heat exchanger housing 210. After the fuselage housing 110 is assembled, the projection 301 is in sealing engagement with the inner surface of the fuselage housing 110 such that the energy medium piping system is integral with the fuselage housing 110.
  • the high temperature energy medium inlet tube 310 is a generally annular conduit that corresponds to the high temperature energy medium inlets 121, 151 and also corresponds to corresponding interfaces on the left and lower combination surfaces 130, 140.
  • the high temperature energy medium inlet tube 310 communicates the high temperature energy medium inlets 121, 151 and the respective interfaces on the left and right combination faces 130, 140.
  • the high temperature energy medium inlet tube 310 is also in communication with the inlet of the high temperature energy medium passage 221 of the shell and tube heat exchanger 200. In this way, the combined surfaces on the heat exchange unit 10 can be A high temperature energy medium is introduced simultaneously or separately for the shell-and-tube heat exchanger 200.
  • the high temperature energy medium discharge tube 320 is generally an annular tube that corresponds to the high temperature energy medium outlets 122, 152 and also corresponds to corresponding interfaces on the left and lower combination surfaces 130, 140.
  • High temperature energy medium exhaust pipe 320 communicates high temperature energy media outlets 122, 152 and respective interfaces on left combined face 130 and lower combined face 140.
  • the high temperature energy medium discharge pipe 320 is also in communication with the outlet of the high temperature energy medium passage 221 of the shell-and-tube heat exchanger 200. In this way, the combined surfaces on the heat exchange unit 10 can simultaneously extract high temperature energy media for the shell and tube heat exchanger 200.
  • the low temperature energy medium inlet tube 330 is an annular tube as a whole, and the low temperature energy medium inlets 123, 153 correspond to each other, and also correspond to corresponding interfaces on the left combined surface 130 and the lower combined surface 140.
  • the low temperature energy medium inlet tube 330 communicates the low temperature energy medium inlets 123, 153 and the respective interfaces on the left combined surface 130 and the lower combined surface 140.
  • the low temperature energy medium inlet pipe 330 is also in communication with the inlet (first through hole 212) of the low temperature energy medium passage 211.
  • the combined surfaces on the heat exchange unit 10 can introduce low temperature energy media to the shell and tube heat exchanger 200 simultaneously or separately.
  • the low temperature energy medium discharge tube 340 is an annular tube as a whole, corresponding to the low temperature energy medium outlets 124, 154, and also corresponding to the corresponding interfaces on the left combined surface 130 and the lower combined surface 140.
  • the low temperature energy medium discharge tube 340 communicates the low temperature energy medium outlets 124, 154 and the respective interfaces on the left combined surface 130 and the lower combined surface 140.
  • the low temperature energy medium discharge pipe 340 is also in communication with the outlet (second through hole 213) of the low temperature energy medium passage 211. In this way, the combined surfaces on the heat exchange unit 10 can simultaneously or simultaneously draw a low temperature energy medium for the shell and tube heat exchanger 200.
  • the energy medium pipeline system interconnects the interfaces transmitting the same energy medium in different interface groups, so that the heat exchange unit can simultaneously or separately introduce the extraction energy medium through any one of the interface groups.
  • the heat transfer unit 10 can be introduced into the extraction energy medium simultaneously or separately from any one of the combined surfaces by the energy medium piping system.
  • FIG. 5 is a schematic structural diagram of an interface in an interface group.
  • the interface is a fluid interface and the interface includes a plug 440 and a socket 410.
  • the socket 410 is cylindrical and has a hole in the body casing 110.
  • the socket 410 is fixed in a hole formed in the body casing 110, so that the internal space of the body casing 110 and the space outside the body casing 110 are connected to each other. .
  • the inner surface of the socket 410 is provided with a fixing protrusion 411. Both ends of the two-way joint 420 are plugs 440, and the ends of the plugs 440 are provided with barbs 441.
  • Barb 441 is inserted and fixed by fixing
  • the projection 411 is engaged with the inner wall of the socket 410 to form a self-locking structure.
  • An O-ring 430 is placed between the socket 410 and the plug 440 for sealing purposes.
  • FIG. 6 shows a state when the interfaces of the two heat exchange units 10 are connected to each other.
  • the plugs 440 at the two ends of the two-way connector 420 are respectively engaged in the two sockets 410, thereby connecting the corresponding interfaces of the two heat exchange units 10.
  • FIG. 7 shows a state in which the interface of the heat exchange unit 10 needs to be closed.
  • One end of the cutoff joint 450 is a plug 440 whose other end is closed.
  • the plug 440 is thus snapped into the socket 410, thus forming a closed interface.
  • the interface does not need to be connected to other heat exchange units, it is closed by a cut-off joint 450.
  • the two-way joint 420 is used, and when the interface on the heat exchange unit 10 needs to be closed, the cut-off joint 450 is used.
  • the heat exchange unit 10 provided in this embodiment can constitute the heat exchange matrix 20.
  • six heat exchange units 10 are superimposed and combined in a 3 x 2 manner to form a heat exchange matrix 20.
  • the adjacent heat exchange units 10 are closely attached to each other, and the interfaces on the same energy medium are inserted into each other, for example, the high temperature energy medium inlet of each heat exchange unit 10 and the high temperature of the adjacent heat exchange unit 10
  • the energy medium inlets are connected together, the high temperature energy medium supplied from the heat source is accessed through the high temperature energy medium inlet of one of the heat exchange units 10, and then enters each heat exchange unit 10 to provide the high temperature energy medium passage 221 of the heat exchange unit 10 High temperature energy medium.
  • the high temperature energy medium flowing from the outlet of the high temperature energy medium passage 221 of each heat exchange unit 10 is led out through the high temperature energy medium outlet of one of the heat exchange units 10.
  • the low temperature energy medium is accessed through the low temperature energy medium inlet of one of the heat exchange units 10 and then into each heat exchange unit 10 to provide a low temperature energy medium for the low temperature energy medium passage 211 of the heat exchange unit 10.
  • the low temperature energy medium flowing from the outlet of the low temperature energy medium passage 211 of each heat exchange unit 10 is led out through the low temperature energy medium outlet of one of the heat exchange units 10.
  • the heat exchange power of the i-th heat exchange unit 10 constituting the heat exchange matrix 20 is Pi
  • the heat exchange power P of the heat exchange matrix 20 is ⁇ Pi.
  • the expansion of the heat exchange power is achieved by the matrix combination of the heat exchange units 10. Where i is a positive integer greater than or equal to 1.
  • the user can select any number of heat exchange units 10 to form a large heat exchange matrix 20 according to actual needs.
  • the production no need to customize according to user needs, It is only necessary to produce a standardized heat exchange unit 10, which improves production efficiency, reduces manufacturing costs and production cycle.
  • Its heat exchange tube 220 is made of plastic. In this way, the weight of the whole machine can be greatly reduced and miniaturization can be achieved.
  • the heat exchange tube 220 made of plastic is easy to seal.
  • the plastic has stronger corrosion resistance, can avoid corrosion, and increases the working life of the heat exchange unit 10.
  • the body casing 110 and the interface can also be made of plastic. Even the components of the heat exchange unit 10 are all made of plastic.
  • the heat exchange unit 10 has a rectangular parallelepiped structure, and its main purpose is to facilitate the tight connection between the heat exchange units 10, thereby improving the space utilization rate.
  • the shape of the heat exchange unit 10 is not limited to a rectangular parallelepiped.
  • At least two interface groups of the heat exchange unit 10 may be disposed on the same surface of the heat exchange unit 10.
  • the interface groups are respectively disposed on different combined surfaces in order to facilitate mutual insertion between adjacent heat exchange units 10.
  • the heat exchange unit 10 is provided with four combined faces, and the number of combined faces is an even number. In other embodiments, the number of combined faces may also be an odd number. Meanwhile, in the present embodiment, the six faces of the heat exchanger unit 10 having a rectangular parallelepiped structure may constitute a combined face.
  • the heat exchanger of the heat exchange unit 10 is a shell-and-tube heat exchanger 200. It will be appreciated that the plate heat exchanger can also function as a heat exchanger for the heat exchange unit 10.
  • FIG. 9 is a schematic view showing the structure of the plate heat exchanger 500.
  • a portion of the plate heat exchanger housing 510 is removed to expose the heat exchange wall 520.
  • the plurality of heat exchange wall panels 520 are arranged in a plurality of layers, wherein the interior of the plate heat exchanger casing 510 is evenly spaced by a plurality of heat exchange walls 520 to form a high temperature energy medium passage and a low temperature energy medium passage.
  • the surface of the heat exchange wall 520 is stamped with a densely distributed, longitudinally and transversely woven strip 521 for supporting the heat exchange wall 520 while flowing through the rib 521. The fluid creates turbulence to increase the heat transfer coefficient.
  • the heat exchange wall plate 520 is made of plastic, and the heat exchange wall plate 520 has a thickness of 0.1 mm to 0.5 mm. In the present embodiment, the heat exchange wall 520 has a thickness of 0.15 mm. Compared to the metal heat exchanger wall, such an extremely thin thickness compensates for the problem of insufficient heat transfer performance of the plastic. Due to the heat exchange wall 520 Made of plastic, the weight of the plate heat exchanger 500 can be greatly reduced with respect to the use of the metal heat exchange wall plate, thereby achieving weight reduction. Since the plastic has excellent corrosion resistance, it is also possible to avoid corrosion due to the heat exchange wall 520. At the same time, the heat exchange wall 520 made of plastic is easier to seal than the metal heat exchange wall.
  • the inventors have found through research that the traditional plate heat exchanger using metal heat exchanger wall plate is difficult to seal due to metal.
  • the shell In order to ensure the sealing performance of the plate heat exchanger, the shell can only be made of thick steel plate or casting. In order to further increase the weight of the plate heat exchanger and the corrosion resistance is poor.
  • the plate heat exchanger housing 510 of the plate heat exchanger 500 is also made of plastic, so that the seal between the plate heat exchanger housing 510 and the heat exchange wall 520 can be easily realized.
  • the thickness of the plate heat exchanger housing 510 can be reduced.
  • the weight of the plate heat exchanger 500 is further alleviated, and the corrosion resistance of the plate heat exchanger 500 is also enhanced.
  • the plate heat exchanger housing 510 and the heat exchange wall 520 may be made of the same kind of plastic and integrally molded by an injection molding process to provide excellent sealing performance.
  • the ribs 521 are made of plastic to ensure weight reduction.
  • the ribs 521 and the heat exchange wall 520 are made of the same plastic to facilitate manufacturing.
  • the wall spacing of the adjacent two layers of the heat exchange wall 520 is 0.5 mm to 3 mm. In the present embodiment, the wall spacing of the adjacent two layers of the heat exchange wall 520 is 1 mm. At the same time, since the thickness of the heat exchange wall plate 520 is 0.15 mm, the structure of the plate heat exchanger 500 is more compact, and a larger heat exchange area is provided per unit volume, which is advantageous for miniaturization of the plate heat exchanger 500.
  • the overall structure of the heat exchange unit of the plate heat exchanger 500 is similar to that of the heat exchange unit 10 using the shell-and-tube heat exchanger 200. , will not repeat them here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种换热单元(10)和换热矩阵(20),其中换热单元(10)包括机身壳体(110)以及设置在机身壳体(110)内的换热器;机身壳体(110)上至少设置有两组接口群,每组接口群至少包括作为换热器的高温能量媒介的入口(121)和出口(122)的接口、作为换热器的低温能量媒介的入口(123)和出口(124)的接口;传输同种能量媒介的接口在换热单元(10)内部相互导通。相邻的换热单元(10)能够通过接口相互连接,使得任意数量的换热单元(10)能够通过接口彼此插接构成换热矩阵(20)。换热器为管壳式换热器(200)或板式换热器(500)。管壳式换热器(200)的换热管(220)由塑料制成;板式换热器(500)的换热壁板(520)由塑料制成。该换热单元(10)重量轻、抗腐蚀能力强、密封容易且能够实现小型化,同时还能构成换热矩阵(20),扩展性强。

Description

换热单元及换热矩阵 技术领域
本发明涉及换热器技术领域,具体涉及一种换热单元以及由若干换热单元构成的换热矩阵。
背景技术
换热器是把高温流体的部分热量传递给低温流体的设备,也叫热交换器,它是化工、石油、动力、食品、医药等工业部门的通用设备,在工业生产中占据重要地位,其应用十分广泛。
现有的换热器内的换热管或换热壁板主要采用金属(例如铜)制作,因而面临复杂的密封问题,且生产效率受到制约。同时,这还导致换热器的重量和体积大,难以实现换热器的轻量化和小型化。另外,金属的换热管或换热壁板还容易被腐蚀,影响换热器的使用寿命。
发明内容
本发明的目的即在于克服现有技术的不足,提供一种换热单元,其换热管或换热壁板采用塑料制成,从而在满足换热性能的前提下,使得换热单元能够实现轻量化和小型化。同时塑料制作的换热管和换热壁板,密封容易,提高了生产效率。塑料抗腐蚀性能强,提高了使用寿命。另外,该换热单元还能够相互组合。用户只需要将多个标准化的换热单元进行组合,即可形成大换热功率的换热矩阵。在生产中,只需要生产标准化的换热单元即可,提高了生产效率、降低了制造成本和生产周期。
本发明的另一个目的在于提供一种由若干个上述的换热单元组合形成的换热矩阵。
本发明的实施例通过以下技术方案实现:
换热单元,包括机身壳体以及设置在机身壳体内的换热器;机身壳体上至少设置有两组接口群,每组接口群至少包括作为换热器的高温能量媒介的入口 和出口的接口、作为换热器的低温能量媒介的入口和出口的接口;传输同种能量媒介的接口在换热单元内部相互导通。
相邻的换热单元能够通过接口相互连接,使得任意数量的换热单元能够通过接口彼此插接构成换热矩阵。
换热器为管壳式换热器或板式换热器。管壳式换热器的换热管由塑料制成;板式换热器的换热壁板由塑料制成。
发明人经过研究发现,在换热器中,为了提高传热性能,换热管或换热壁板利用传热系数比较高金属材料制成。然而金属材料密度大,导致换热器整体重量、体积大。另外,金属换热管和换热壁板还存在被腐蚀,以及密封工艺要求高、密封代价大的问题。相比金属材料,塑料的密度低。相同体积下塑料的重量远低于金属材料(例如黄铜)。为此,发明人将换热管或换热壁板由塑料制成。本发明实施例提供的换热单元,其整机重量能够大大降低、能够实现小型化。塑料制作的换热管和换热壁板密封容易。塑料的抗腐蚀性能更强,能够避免被腐蚀,增加了换热单元的工作寿命。
采用本发明实施例提供的换热单元,用户根据实际需要,利用接口群中的接口,将任意数量的换热单元彼此插接构成大型的换热矩阵,其扩展性强。进而在生产中,只需要生产标准化的换热单元即可,提高了生产效率、降低了制造成本和生产周期。
在本发明的一种实施例中,换热管的管壁厚度为0.1~0.5mm。
在本发明的一种实施例中,换热管的管壁厚度为0.15mm。
在本发明的一种实施例中,若干排换热管呈上下层排列;相邻两排换热管之间间隔设置有多个支撑条;支撑条用于支撑相邻两排换热管。
在本发明的一种实施例中,支撑条由塑料制成。
在本发明的一种实施例中,支撑条和换热管由同种塑料制成。
在本发明的一种实施例中,若干排换热管呈上下层排列;换热管的外径为3mm~5mm。位于同一排的相邻的换热管的中心距为4mm~6mm。上下相邻的换热管的中心距为5mm~8mm。
在本发明的一种实施例中,换热管的外径为3mm。位于同一排的相邻的换热管的中心距为4mm。上下相邻的换热管的中心距为7mm。
在本发明的一种实施例中,管壳式换热器的管壳式换热器壳体由塑料制成。
在本发明的一种实施例中,管壳式换热器壳体和换热管由同种塑料制成。
在本发明的一种实施例中,换热壁板的厚度为0.1mm~0.5mm。
在本发明的一种实施例中,换热壁板的厚度为0.15mm。
在本发明的一种实施例中,换热壁板上分布有织纹状凸条,用于支撑换热壁板,并使流过凸条的流体产生紊流以提高传热系数。
在本发明的一种实施例中,凸条由塑料制成。
在本发明的一种实施例中,凸条和换热壁板由同种塑料制成。
在本发明的一种实施例中,换热壁板呈多层排列。相邻两层的换热壁板的板壁间距为0.5mm~3mm。
在本发明的一种实施例中,相邻两层的换热壁板的板壁间距为1mm。
在本发明的一种实施例中,板式换热器的板式换热器壳体由塑料制成。
在本发明的一种实施例中,板式换热器壳体和换热壁板由同种塑料制成。
在本发明的一种实施例中,换热单元的机身壳体由塑料制成。
在本发明的一种实施例中,接口由塑料制成。
在本发明的一种实施例中,换热单元的元器件全部由塑料制成。
在本发明的一种实施例中,机身壳体具备至少两个组合面;每个组合面上设有一组接口群。相邻的换热单元能够通过组合面上的接口相互连接。
在本发明的一种实施例中,换热单元的组合面用于与相邻的换热单元的组合面相互紧密贴合,以构成换热矩阵。
在本发明的一种实施例中,组合面为偶数个,组合面两两相对设置。
在本发明的一种实施例中,相对的组合面上的接口的位置相互镜像对称,使得一个换热单元与另一个换热单元相互连接时,两个换热单元相应组合面上的传输同种能量媒介的接口相互正对。
在本发明的一种实施例中,机身壳体至少具备在垂直方向上相对的两个组合面,使得一个换热单元在垂直方向与另一个换热单元相互连接时,两个换热 单元相应组合面上的传输同种能量媒介的接口相互正对。
在本发明的一种实施例中,机身壳体至少具备在水平方向上相对的两个组合面,使得一个换热单元在水平方向与另一个换热单元相互连接时,两个换热单元相应组合面上的传输同种能量媒介的接口相互正对。
在本发明的一种实施例中,机身壳体为长方体,组合面为机身壳体的6个表面。
在本发明的一种实施例中,6个组合面上接口的位置分布方式为:上下组合面的接口相互镜像对称;左右组合面的接口相互镜像对称,前后组合面的接口相互镜像对称。
在本发明的一种实施例中,换热单元的组合面用于与相邻的换热单元的组合面相互紧密贴合,以构成换热矩阵。
在本发明的一种实施例中,高温能量媒介为高温流体;低温能量媒介为低温流体。接口为流体接口。
在本发明的一种实施例中,高温流体为高温液体或高温气体;低温流体为低温液体或低温气体。
在本发明的一种实施例中,接口包括插座与插头;插座固定在换热单元的机身壳体上。插头端部设有倒勾和O型密封圈。倒勾插入并卡合在插座的内壁,形成自锁结构。O型密封圈垫设在插头与插座之间,用于达到密封的目的。
在本发明的一种实施例中,还包括活动接头,活动接头分别为二通接头和截止接头两种结构。二通接头两端构成插头。截止接头,一端构成插头,另一端封闭。
在本发明的一种实施例中,还包括能量媒介管道系统。能量媒介管道系统将不同接口群里传输同种能量媒介的接口相互连通,使得换热单元通过任何一个接口群均可同时或分别引入引出能量媒介。
在本发明的一种实施例中,能量媒介管道系统设置在机身壳体内,并与机身壳体形成一个整体。
在本发明的一种实施例中,能量媒介管道系统包括高温能量媒介进入管、高温能量媒介排出管、低温能量媒介进入管、低温能量媒介排出管。
高温能量媒介进入管连接高温能量媒介入口以及换热器的高温能量媒介通道的入口;
高温能量媒介排出管连接高温能量媒介出口以及换热器的高温能量媒介通道的出口;
低温能量媒介进入管连接低温能量媒介入口以及换热器的低温能量媒介通道的入口;
低温能量媒介排出管连接低温能量媒介出口以及换热器的低温能量媒介通道的出口。
换热矩阵,包括若干个上述任意一种换热单元。
本发明的技术方案至少具有如下优点和有益效果:
本发明实施例提供的换热单元,其换热管或换热壁板由塑料制成。如此,整机重量能够大大降低、能够实现小型化。塑料制作的换热管和换热壁板密封容易。塑料的抗腐蚀性能更强,能够避免被腐蚀,增加了换热单元的工作寿命。采用本发明实施例提供的换热单元,用户根据实际需要,利用接口群中的接口,将任意数量的换热单元彼此插接构成大型的换热矩阵,其扩展性强。进而在生产中,只需要生产标准化的换热单元即可,提高了生产效率、降低了制造成本和生产周期。
本发明实施例提供的换热矩阵,能够根据需要,自由增减换热单元的数量,其扩展性强。
附图说明
为了更清楚的说明本发明实施例的技术方案,下面对实施例中需要使用的附图作简单介绍。应当理解,以下附图仅示出了本发明的某些实施方式,不应被看作是对本发明范围的限制。对于本领域技术人员而言,在不付出创造性劳动的情况下,能够根据这些附图获得其他附图。
图1为本发明实施例提供的换热单元的立体结构示意图;
图2为本发明实施例中管壳式换热器的内部结构示意图;
图3为本发明实施例中换热管的排列状态图;
图4为本发明实施例中换热单元的装配爆炸示意图;
图5为本发明实施例中接口的结构示意图;
图6为本发明实施例中两个换热单元对应的接口相互连接时的状态图;
图7为本发明实施例中换热单元的接口封闭时的状态图;
图8为本发明实施例中换热矩阵的结构示意图;
图9为本发明实施例中板式换热器的内部结构示意图。
图中:10-换热单元;110-机身壳体;120-上组合面;121-高温能量媒介入口;122-高温能量媒介出口;123-低温能量媒介入口;124-低温能量媒介出口;130-左组合面;140-下组合面;150-右组合面;151-高温能量媒介入口;152-高温能量媒介出口;153-低温能量媒介入口;154-低温能量媒介出口;200-管壳式换热器;210-管壳式换热器壳体;211-低温能量媒介通道;212-第一通孔;213-第二通孔;220-换热管;221-高温能量媒介通道;230-支撑条;301-凸起;310-高温能量媒介进入管;320-高温能量媒介排出管;330-低温能量媒介进入管;340-低温能量媒介排出管;410-插座;411-固定凸起;420-二通接头;430-O型密封圈;440-插头;441-倒钩;450-截止接头;500-板式换热器;510-板式换热器壳体;520-换热壁板;521-凸条;20-换热矩阵。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图,对本发明实施例中的技术方案进行清楚、完整的描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。
因此,以下对本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的部分实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征和技术方案可以相互组合。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本发明的描述中,需要说明的是,术语、“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,或者是本领域技术人员惯常理解的方位或位置关系,这类术语仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在下面的实施例中,所谓塑料是指工程塑料(engineering-plastics),例如聚碳酸酯(Polycarbonate,PC)、聚酰胺(尼龙,Polyamide,PA)、聚甲醛(Polyacetal,Polyoxy Methylene,POM)、聚苯醚(Polyphenylene Oxide,PPO)、聚酯(PET,PBT)、聚苯硫醚(Polyphenylene Sulfide,PPS)、聚芳基酯等。
实施例:
请参照图1,图1为本发明实施例提供的换热单元10的立体结构示意图。换热单元10包括为长方体结构的机身壳体110。在机身壳体110内部设置有换热器。在本实施例中,换热器为管壳式换热器200(管壳式换热器200在图2、图3和图4中示出)。
请参照图2,图2示出了管壳式换热器200的内部结构。管壳式换热器200包括管壳式换热器壳体210以及若干个设置在管壳式换热器壳体210内的换热管220。换热管220的两端贯穿管壳式换热器壳体210并暴露在管壳式换热器壳体210外。换热管220构成管壳式换热器200的管程。在本实施例中,管壳式换热器200的管程为高温能量媒介通道221。换热管220的两端分别构成高温能量媒介通道221的进口和出口。管壳式换热器壳体210与换热管220之间的空间构成管壳式换热器200的壳程。在本实施例中,管壳式换热器200的壳程为低温能量媒介通道211。在管壳式换热器壳体210上开设有第一通孔212和第二通孔213。第一通孔212作为低温能量媒介通道211的进口,第二通孔213作为低温能量媒介通道211的出口。这样,高温能量媒介通过高温能量媒介通道221的进口进入高温能量媒介通道221,低温能量媒介通过第一通孔212进入低温能量媒介通道211。高温能量媒介和低温能量媒介在管壳式换热器200中进行热交换。然后,高温能量媒介通过高温能量媒介通道221的出口导出, 低温能量媒介通过第二通孔213导出。在本实施例中:高温能量媒介为高温流体,具体为高温液体或高温气体;低温能量媒介为低温流体,具体为低温液体或低温气体。所谓“高温”和“低温”是相对而言的,即将两种能量媒介的温度进行比较,温度高的为高温能量媒介,温度低的为低温能量媒介。
参照图3,换热管220呈上下层排列。管壳式换热器200中,换热管220由塑料制成,换热管220的管壁厚度为在0.1mm~0.5mm。在本实施例中,换热管220的管壁厚度为0.15mm。由于换热管220由塑料制成,相对于采用金属散热管,换热单元10的重量能够大幅度降低,从而实现了轻量化。由于塑料具备优良的抗腐蚀性能,从而也能够避免换热管220被腐蚀,增加了换热单元10的工作寿命。同时,塑料制作的换热管220相对于金属换热管,其密封更加容易。
发明人经过研究发现,传统的采用金属换热管的管壳式换热器,由于金属的密封难度较大,为了保证管壳式换热器的密封性能,使得其壳体只能采用厚钢板或者铸件制成,从而进一步增加了管壳式换热器的重量,且耐腐蚀性差。
为此,在本实施例中,管壳式换热器200的管壳式换热器壳体210也采用塑料制成,使得管壳式换热器壳体210和换热管220之间的密封能够容易的实现,管壳式换热器壳体210的厚度能够降低。这样,进一步减轻了管壳式换热器200的重量,管壳式换热器200的抗腐蚀性能也得到增强。作为一种实施例,管壳式换热器壳体210和换热管220可以采用相同种类的塑料制成,通过注塑工艺一体成型,从而提供优良的密封性能。
在相邻两排换热管220之间,等间距设置有多个支撑条230,支撑条230与换热管220交叉设置且与换热管220相互垂直。支撑条230用于支撑上下相邻的两排换热管220。在本实施例中,支撑条230由塑料制成,以保证轻量化。作为一种实施例,支撑条230与换热管220采用同种塑料制成,以便于制造。
为了在实现小型化的同时提高换热效率,将换热管220的外径设置为3mm~5mm,将位于同一排的相邻的换热管220的中心距设置为4mm~6mm,将上下相邻的换热管220的中心距设置为5mm~8mm。在本实施例中,换热管220的外径为3mm;位于同一排的相邻的换热管220的中心距为4mm;上下相邻的换热管220的中心距为7mm。采用上述的小管径、大密度排列的换热管220,在单位体 积上获得较大的热交换面积,从而在满足高换热效率的前提下实现更小的体积。
图1所示的换热单元10,其机身壳体110的四个外表面为组合面,分别为上组合面120、左组合面130、下组合面140和右组合面150。在上组合面120、左组合面130、下组合面140和右组合面150上分别设置有一组接口群。以图1上能够看见的上组合面120和右组合面150为例:在上组合面120上设有四个接口,四个接口分别为高温能量媒介入口121、高温能量媒介出口122、低温能量媒介入口123、低温能量媒介出口124;在右组合面150上设有四个接口,四个接口分别为高温能量媒介入口151、高温能量媒介出口152、低温能量媒介入口153、低温能量媒介出口154。事实上,在与上组合面120相对的下组合面140上设有与上组合面120上的四个接口相同的四个接口,下组合面140上的四个接口的位置与上组合面120上的四个接口的位置镜像对称;在与右组合面150相对的左组合面130(图1中的背面)上设有与右组合面150上的四个接口相同的四个接口,右组合面150上的四个接口的位置与左组合面130上的四个接口的位置镜像对称。这种上下左右相对称的设计,使得当两个换热单元10上下组合或左右组合时,传输同种能量媒介的接口相互正对并连接成一个整体。
请参照图4,图4为本发明实施例提供的换热单元10的装配爆炸示意图。在图4中,机身壳体110的三个面被拆下,以露出能量媒介管道系统。
能量媒介管道系统包括高温能量媒介进入管310、高温能量媒介排出管320、低温能量媒介进入管330、低温能量媒介排出管340。
高温能量媒介进入管310、高温能量媒介排出管320、低温能量媒介进入管330、低温能量媒介排出管340由设置在管壳式换热器壳体210外表面上的多个凸起301形成。在机身壳体110装配完成后,凸起301与机身壳体110的内表面密封配合,从而使得能量媒介管道系统与机身壳体110形成一个整体。
高温能量媒介进入管310整体为环状的管道,其与高温能量媒介入口121、151对应,同时也与左组合面130和下组合面140上相应的接口对应。高温能量媒介进入管310将高温能量媒介入口121、151以及左组合面130和下组合面140上相应的接口连通。同时,高温能量媒介进入管310还与管壳式换热器200的高温能量媒介通道221的进口连通。如此,使得换热单元10上的组合面均可 同时或分别为管壳式换热器200引入高温能量媒介。
高温能量媒介排出管320整体为环状的管道,其与高温能量媒介出口122、152对应,同时也与左组合面130和下组合面140上相应的接口对应。高温能量媒介排出管320将高温能量媒介出口122、152以及左组合面130和下组合面140上相应的接口连通。同时,高温能量媒介排出管320还与管壳式换热器200的高温能量媒介通道221的出口连通。如此,使得换热单元10上的组合面均可同时或分别为管壳式换热器200引出高温能量媒介。
低温能量媒介进入管330整体为环状的管道,低温能量媒介入口123、153对应,同时也与左组合面130和下组合面140上相应的接口对应。低温能量媒介进入管330将低温能量媒介入口123、153以及左组合面130和下组合面140上相应的接口连通。同时低温能量媒介进入管330还与低温能量媒介通道211的进口(第一通孔212)连通。如此,使得换热单元10上的组合面均可同时或分别为管壳式换热器200引入低温能量媒介。
低温能量媒介排出管340整体为环状的管道,低温能量媒介出口124、154对应,同时也与左组合面130和下组合面140上相应的接口对应。低温能量媒介排出管340将低温能量媒介出口124、154以及左组合面130和下组合面140上相应的接口连通。同时低温能量媒介排出管340还与低温能量媒介通道211的出口(第二通孔213)连通。如此,使得换热单元10上的组合面均可同时或分别为管壳式换热器200引出低温能量媒介。
如此,能量媒介管道系统将不同接口群里传输同种能量媒介的接口相互连通,使得换热单元通过任何一个接口群均可同时或分别引入引出能量媒介。在本实施例中,通过能量媒介管道系统使得换热单元10从任何一个组合面均可同时或分别引入引出能量媒介。
请参照图5,图5为接口群中接口的结构示意图。接口为流体接口,接口包括插头440和插座410。插座410为筒状,在机身壳体110上开孔,插座410固定在机身壳体110上开设的孔中,使得机身壳体110内部空间和机身壳体110外部的空间相互连通。插座410的内表面设置有固定凸起411。二通接头420的两端为插头440,插头440的端部设置有倒钩441。倒钩441插入并通过固定 凸起411卡合在插座410的内壁,形成自锁结构。在插座410和插头440之间垫设有O型密封圈430,用于达到密封的目的。
请参照图6,图6示出了两个换热单元10对应的接口相互连接时的状态。二通接头420两端的插头440分别卡合在两个插座410中,从而将两个换热单元10相应的接口连接。
请参照图7,图7示出了换热单元10的接口需要封闭时的状态。截止接头450的一端为插头440,其另一端封闭。如此插头440卡合在插座410中,如此形成封闭的接口。在接口不需要与其他换热单元相连时,通过截止接头450对其进行封闭。
在需要将两个换热单元10相应的接口相互连接时,采用二通接头420,在需要将换热单元10上的接口封闭时,使用截止接头450。
参照图8,本实施例提供的换热单元10能够构成换热矩阵20。在图8中,六个换热单元10以3×2的方式叠加组合在一起形成换热矩阵20。六个换热单元10各自相邻组合面紧密贴合,其上的传输同种能量媒介的接口彼此插接,例如:各个换热单元10的高温能量媒介入口与相邻换热单元10的高温能量媒介入口连接在一起,从热源供给的高温能量媒介通过其中一个换热单元10的高温能量媒介入口接入,然后进入每个换热单元10,为换热单元10的高温能量媒介通道221提供高温能量媒介。同理,从每个换热单元10的高温能量媒介通道221的出口流出的高温能量媒介通过其中一个换热单元10的高温能量媒介出口导出。低温能量媒介通过其中一个换热单元10的低温能量媒介入口接入,然后进入每个换热单元10,为换热单元10的低温能量媒介通道211提供低温能量媒介。同理,从每个换热单元10的低温能量媒介通道211的出口流出的低温能量媒介通过其中一个换热单元10的低温能量媒介出口导出。
如此,构成换热矩阵20的第i个换热单元10的换热功率为Pi,则换热矩阵20的换热功率P=∑Pi。通过换热单元10的矩阵式组合,实现了换热功率的扩展。其中,i为大于等于1的正整数。
采用本实施例提供的换热单元10,用户能够根据实际需要,选用任意数量的换热单元10构成大型的换热矩阵20。进而在生产中,无需按用户需求定制, 只需要生产标准化的换热单元10即可,提高了生产效率、降低了制造成本和生产周期。
其换热管220由塑料制成。如此,整机重量能够大大降低、能够实现小型化。塑料制作的换热管220密封容易。塑料的抗腐蚀性能更强,能够避免被腐蚀,增加了换热单元10的工作寿命。
为了进一步轻量化并提高密封性能,机身壳体110和接口也可以采用塑料制成。甚至换热单元10的元器件全部由塑料制成。
需要说明的是,在本实施例中,换热单元10为长方体结构,其主要目的在于便于换热单元10之间的紧密连接,从而提高空间使用率。在其他具体的实施方式中,换热单元10的形状不限于长方体。
还需要说明的是,换热单元10的至少两个接口群可以设置在换热单元10的同一面上。在本实施例中,之所以将接口群分别设置在不同的组合面上,是为了便于相邻换热单元10之间的相互插接。
还需要说明的是,在本实施例中,换热单元10具备四个组合面,组合面的数量为偶数个。在其他具体实施方式中,组合面的数量也可以为奇数个。同时,本实施例中,长方体结构的换热单元10的六个面都可以构成组合面。
在本实施例中,换热单元10的换热器为管壳式换热器200。可以理解,板式换热器也能够作为换热单元10的换热器。
图9即示意性的示出了板式换热器500的结构示意图。在图9中,拆下了板式换热器壳体510的一部分,以露出换热壁板520。
如图9所示,多块换热壁板520呈多层排列,其中板式换热器壳体510内部用多块换热壁板520均匀隔开,形成高温能量媒介通道和低温能量媒介通道。换热壁板520表面上冲压形成有密集分布、纵横相间的织纹状的凸条521,这种织纹状的凸条521用于支撑换热壁板520,同时使流过凸条521的流体产生紊流,以提高传热系数。
板式换热器500中,换热壁板520由塑料制成,换热壁板520的厚度为0.1mm~0.5mm。在本实施例中,换热壁板520的厚度为0.15mm。相对于金属换热壁板,这样极薄的厚度弥补了塑料传热性能不足的问题。由于换热壁板520 由塑料制成,相对于采用金属换热壁板,板式换热器500的重量能够大幅度降低,从而实现了轻量化。由于塑料具备优良的抗腐蚀性能,从而也能够避免由于换热壁板520被腐蚀。同时,塑料制作的换热壁板520相对于金属换热壁板,其密封更加容易。
发明人经过研究发现,传统的采用金属换热壁板的板式换热器,由于金属的密封难度较大,为了保证板式换热器的密封性能,使得其壳体只能采用厚钢板或者铸件制成,从而进一步增加了板式换热器的重量,且耐腐蚀性差。
为此,在本实施例中,板式换热器500的板式换热器壳体510也采用塑料制成,使得板式换热器壳体510和换热壁板520之间的密封能够容易的实现,板式换热器壳体510的厚度能够降低。这样,进一步减轻了板式换热器500的重量,板式换热器500的抗腐蚀性能也得到增强。作为一种实施例,板式换热器壳体510和换热壁板520可以采用相同种类的塑料制成,通过注塑工艺一体成型,从而提供优良的密封性能。
在本实施例中,凸条521由塑料制成,以保证轻量化。作为一种实施例,凸条521与换热壁板520采用同种塑料制成,以便于制造。
相邻两层的换热壁板520的板壁间距为0.5mm~3mm,在本实施例中相邻两层的换热壁板520的板壁间距为1mm。同时由于换热壁板520的厚度为0.15mm,从而使得板式换热器500的结构更加紧凑,并在单位体积上提供更大的换热面积,有利于板式换热器500的小型化。
将板式换热器500用于构成换热单元的换热器时,采用将板式换热器500的换热单元的整体结构与采用管壳式换热器200的换热单元10的整体结构类似,此处不再赘述。
以上所述仅为本发明的部分实施例而已,并不用于限制本发明,对于本领域技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (39)

  1. 换热单元,其特征在于:
    所述换热单元包括机身壳体以及设置在所述机身壳体内的换热器;所述机身壳体上至少设置有两组接口群,每组所述接口群至少包括作为所述换热器的高温能量媒介的入口和出口的接口、作为所述换热器的低温能量媒介的入口和出口的接口;传输同种能量媒介的接口在所述换热单元内部相互导通;
    相邻的所述换热单元能够通过所述接口相互连接,使得任意数量的所述换热单元能够通过所述接口彼此插接构成换热矩阵;
    所述换热器为管壳式换热器或板式换热器;
    所述管壳式换热器的换热管由塑料制成;
    所述板式换热器的换热壁板由塑料制成。
  2. 根据权利要求1所述的换热单元,其特征在于:
    所述换热管的管壁厚度为0.1~0.5mm。
  3. 根据权利要求2所述的换热单元,其特征在于:
    所述换热管的管壁厚度为0.15mm。
  4. 根据权利要求1所述的换热单元,其特征在于:
    若干排所述换热管呈上下层排列;相邻两排所述换热管之间间隔设置有多个支撑条;所述支撑条用于支撑相邻两排所述换热管。
  5. 根据权利要求4所述的换热单元,其特征在于:
    所述支撑条由塑料制成。
  6. 根据权利要求5所述的换热单元,其特征在于:
    所述支撑条和所述换热管由同种塑料制成。
  7. 根据权利要求1所述的换热单元,其特征在于:
    若干排所述换热管呈上下层排列;所述换热管的外径为3mm~5mm;
    位于同一排的相邻的所述换热管的中心距为4mm~6mm;
    上下相邻的所述换热管的中心距为5mm~8mm。
  8. 根据权利要求7所述的换热单元,其特征在于:
    所述换热管的外径为3mm;
    位于同一排的相邻的所述换热管的中心距为4mm;
    上下相邻的所述换热管的中心距为7mm。
  9. 根据权利要求1所述的换热单元,其特征在于:
    所述管壳式换热器的管壳式换热器壳体由塑料制成。
  10. 根据权利要求9所述的换热单元,其特征在于:
    所述管壳式换热器壳体和所述换热管由同种塑料制成。
  11. 根据权利要求1所述的换热单元,其特征在于:
    所述换热壁板的厚度为0.1mm~0.5mm。
  12. 根据权利要求11所述的换热单元,其特征在于:
    所述换热壁板的厚度为0.15mm。
  13. 根据权利要求1所述的换热单元,其特征在于:
    所述换热壁板上分布有织纹状凸条,用于支撑所述换热壁板,并使流过所述凸条的流体产生紊流以提高传热系数。
  14. 根据权利要求13所述的换热单元,其特征在于:
    所述凸条由塑料制成。
  15. 根据权利要求14所述的换热单元,其特征在于:
    所述凸条和所述换热壁板由同种塑料制成。
  16. 根据权利要求1所述的换热单元,其特征在于:
    所述换热壁板呈多层排列;
    相邻两层的所述换热壁板的板壁间距为0.5mm~3mm。
  17. 根据权利要求16所述的换热单元,其特征在于:
    相邻两层的所述换热壁板的板壁间距为1mm。
  18. 根据权利要求1所述的换热单元,其特征在于:
    所述板式换热器的板式换热器壳体由塑料制成。
  19. 根据权利要求18所述的换热单元,其特征在于:
    所述板式换热器壳体和所述换热壁板由同种塑料制成。
  20. 根据权利要求1所述的换热单元,其特征在于:
    所述换热单元的机身壳体由塑料制成。
  21. 根据权利要求1所述的换热单元,其特征在于:
    所述接口由塑料制成。
  22. 根据权利要求1所述的换热单元,其特征在于:
    所述换热单元的元器件全部由塑料制成。
  23. 根据权利要求1~22中任意一项所述的换热单元,其特征在于:
    所述机身壳体具备至少两个组合面;每个所述组合面上设有一组所述接口群;
    相邻的所述换热单元能够通过所述组合面上的接口相互连接。
  24. 根据权利要求23所述的换热单元,其特征在于:
    所述换热单元的所述组合面用于与相邻的所述换热单元的所述组合面相互紧密贴合,以构成所述换热矩阵。
  25. 根据权利要求23所述的换热单元,其特征在于:
    所述组合面为偶数个,所述组合面两两相对设置。
  26. 根据权利要求24所述的换热单元,其特征在于:
    相对的所述组合面上的所述接口的位置相互镜像对称,使得一个所述换热单元与另一个所述换热单元相互连接时,两个所述换热单元相应所述组合面上的传输同种能量媒介的接口相互正对。
  27. 根据权利要求26所述的换热单元,其特征在于:
    所述机身壳体至少具备在垂直方向上相对的两个所述组合面,使得一个所述换热单元在垂直方向与另一个所述换热单元相互连接时,两个所述换热单元相应所述组合面上的传输同种能量媒介的接口相互正对。
  28. 根据权利要求26所述的换热单元,其特征在于:
    所述机身壳体至少具备在水平方向上相对的两个所述组合面,使得一个所述换热单元在水平方向与另一个所述换热单元相互连接时,两个所述换热单元相应所述组合面上的传输同种能量媒介的接口相互正对。
  29. 根据权利要求23所述的换热单元,其特征在于:
    所述机身壳体为长方体,所述组合面为所述机身壳体的6个表面。
  30. 根据权利要求29所述的换热单元,其特征在于:
    6个所述组合面上接口的位置分布方式为:上下组合面的所述接口相互镜像对称;左右组合面的所述接口相互镜像对称,前后组合面的所述接口相互镜像对称。
  31. 根据权利要求29所述的换热单元,其特征在于:
    所述换热单元的所述组合面用于与相邻的所述换热单元的所述组合面相互紧密贴合,以构成所述换热矩阵。
  32. 根据权利要求1~22中任意一项所述的换热单元,其特征在于:
    所述高温能量媒介为高温流体;
    所述低温能量媒介为低温流体;
    所述接口为流体接口。
  33. 根据权利要求32所述的换热单元,其特征在于:
    所述高温流体为高温液体或高温气体;
    所述低温流体为低温液体或低温气体。
  34. 根据权利要求32中任意一项所述的换热单元,其特征在于:
    所述接口包括插座与插头;所述插座固定在所述换热单元的机身壳体上;
    所述插头端部设有倒勾和O型密封圈;
    所述倒勾插入并卡合在所述插座的内壁,形成自锁结构;
    所述O型密封圈垫设在所述插头与所述插座之间,用于达到密封的目的。
  35. 根据权利要求34所述的换热单元,其特征在于:
    还包括活动接头,所述活动接头分别为二通接头和截止接头两种结构;
    所述二通接头两端构成所述插头;
    所述截止接头,一端构成所述插头,另一端封闭。
  36. 根据权利要求32所述的换热单元,其特征在于:
    还包括能量媒介管道系统;
    所述能量媒介管道系统将不同所述接口群里传输同种能量媒介的接口相互连通,使得所述换热单元通过任何一个所述接口群均可同时或分别引入引出能量媒介。
  37. 根据权利要求36所述的换热单元,其特征在于:
    所述能量媒介管道系统设置在所述机身壳体内,并与所述机身壳体形成一个整体。
  38. 根据权利要求36所述的换热单元,其特征在于:
    所述能量媒介管道系统包括高温能量媒介进入管、高温能量媒介排出管、低温能量媒介进入管、低温能量媒介排出管;
    所述高温能量媒介进入管连接高温能量媒介入口以及所述换热器的高温能量媒介通道的入口;
    所述高温能量媒介排出管连接高温能量媒介出口以及所述换热器的高温能量媒介通道的出口;
    所述低温能量媒介进入管连接低温能量媒介入口以及所述换热器的低温能量媒介通道的入口;
    所述低温能量媒介排出管连接低温能量媒介出口以及所述换热器的低温能量媒介通道的出口。
  39. 换热矩阵,其特征在于:
    包括若干个如权利要求1~38中任意一项所述的换热单元。
PCT/CN2016/112134 2016-10-18 2016-12-26 换热单元及换热矩阵 WO2018072313A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610906466.7 2016-10-18
CN201610906466.7A CN106288881A (zh) 2016-10-18 2016-10-18 换热单元及换热矩阵

Publications (1)

Publication Number Publication Date
WO2018072313A1 true WO2018072313A1 (zh) 2018-04-26

Family

ID=57719224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112134 WO2018072313A1 (zh) 2016-10-18 2016-12-26 换热单元及换热矩阵

Country Status (2)

Country Link
CN (1) CN106288881A (zh)
WO (1) WO2018072313A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106440880B (zh) * 2016-10-17 2019-03-08 四川捷元科技有限公司 单元组合式换热矩阵
CN106288880B (zh) * 2016-10-17 2019-03-08 四川捷元科技有限公司 换热单元及换热矩阵

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013009668A2 (en) * 2011-07-14 2013-01-17 Vickers Julie Disposable heat exchanger assembly for sterile and aseptic biotechnology and pharmaceutical manufacturing applications
US20140202669A1 (en) * 2013-01-21 2014-07-24 Denso International America, Inc. Dual radiator engine cooling module - single coolant loop
CN104236375A (zh) * 2013-04-26 2014-12-24 德扬技术控股有限公司 具有通过连接器相互连接的各部分的模块化热交换器
CN204514168U (zh) * 2015-03-27 2015-07-29 赵节 一种全塑型热交换器
CN205279503U (zh) * 2015-11-26 2016-06-01 四川捷元科技有限公司 吸收式制冷单元一体式水流管道系统
CN205425891U (zh) * 2016-03-19 2016-08-03 枣庄福源环能机械制造有限公司 一种导热散热板组合体
CN205425504U (zh) * 2015-11-26 2016-08-03 四川捷元科技有限公司 单元组合式制冷矩阵
CN205425506U (zh) * 2015-11-26 2016-08-03 四川捷元科技有限公司 吸收式制冷单元
CN106288880A (zh) * 2016-10-17 2017-01-04 四川捷元科技有限公司 换热单元及换热矩阵

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202119299U (zh) * 2011-04-28 2012-01-18 王颖 火力发电废汽循环再利用装置
CN206208073U (zh) * 2016-10-17 2017-05-31 四川捷元科技有限公司 换热单元及换热矩阵
CN206208072U (zh) * 2016-10-18 2017-05-31 四川捷元科技有限公司 换热单元及换热矩阵

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013009668A2 (en) * 2011-07-14 2013-01-17 Vickers Julie Disposable heat exchanger assembly for sterile and aseptic biotechnology and pharmaceutical manufacturing applications
US20140202669A1 (en) * 2013-01-21 2014-07-24 Denso International America, Inc. Dual radiator engine cooling module - single coolant loop
CN104236375A (zh) * 2013-04-26 2014-12-24 德扬技术控股有限公司 具有通过连接器相互连接的各部分的模块化热交换器
CN204514168U (zh) * 2015-03-27 2015-07-29 赵节 一种全塑型热交换器
CN205279503U (zh) * 2015-11-26 2016-06-01 四川捷元科技有限公司 吸收式制冷单元一体式水流管道系统
CN205425504U (zh) * 2015-11-26 2016-08-03 四川捷元科技有限公司 单元组合式制冷矩阵
CN205425506U (zh) * 2015-11-26 2016-08-03 四川捷元科技有限公司 吸收式制冷单元
CN205425891U (zh) * 2016-03-19 2016-08-03 枣庄福源环能机械制造有限公司 一种导热散热板组合体
CN106288880A (zh) * 2016-10-17 2017-01-04 四川捷元科技有限公司 换热单元及换热矩阵

Also Published As

Publication number Publication date
CN106288881A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2018072316A1 (zh) 换热单元及换热矩阵
WO2018072313A1 (zh) 换热单元及换热矩阵
CN206208073U (zh) 换热单元及换热矩阵
US20230152005A1 (en) Method of manufacturing heat exchanger pipe
CN103477178A (zh) 热交换管及其制造方法
WO2018072317A1 (zh) 单元组合式换热矩阵
CN206208072U (zh) 换热单元及换热矩阵
CN207404824U (zh) 水箱组件和苏打水机
CN220041989U (zh) 一种冷板组件、冷却系统和用电装置
CN209745048U (zh) 一种高效管壳式换热器
CN110548463B (zh) 一种连续流反应装置
KR101445786B1 (ko) 보일러용 열교환기
CN112461032B (zh) 一种分段式换热管组装装置
CN114166045A (zh) 一种嵌入式板翅换热器结构
CN212006841U (zh) 一种高效换热装置
CN112161490A (zh) 表面式冷却器及空调器
CN106440866A (zh) 一种多排扁管的水冷式平行流换热器
CN112146475A (zh) 集流管及换热器
CN221376024U (zh) 一种分体式分配器
CN220358173U (zh) 一种电芯换热组件、电池及用电设备
CN213631678U (zh) 表面式冷却器及空调器
CN111059926A (zh) 一种易于拆装的换热器
WO2021179360A1 (zh) 芯片组件及烟气热交换器
CN214998103U (zh) 一种空压机热能回收装置
CN210464137U (zh) 一种外包不锈钢管内搪玻璃列管式换热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16919490

Country of ref document: EP

Kind code of ref document: A1