WO2018072274A1 - 一种刚性罐道巡检装置及巡检方法 - Google Patents

一种刚性罐道巡检装置及巡检方法 Download PDF

Info

Publication number
WO2018072274A1
WO2018072274A1 PCT/CN2016/108878 CN2016108878W WO2018072274A1 WO 2018072274 A1 WO2018072274 A1 WO 2018072274A1 CN 2016108878 W CN2016108878 W CN 2016108878W WO 2018072274 A1 WO2018072274 A1 WO 2018072274A1
Authority
WO
WIPO (PCT)
Prior art keywords
output shaft
front wheel
rear wheel
active output
wheel
Prior art date
Application number
PCT/CN2016/108878
Other languages
English (en)
French (fr)
Inventor
周公博
高肇兴
唐超权
朱真才
曹国华
周坪
陈浩
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to AU2016426824A priority Critical patent/AU2016426824B2/en
Priority to RU2018137159A priority patent/RU2693370C1/ru
Priority to US16/093,891 priority patent/US10501132B2/en
Publication of WO2018072274A1 publication Critical patent/WO2018072274A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/024Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members specially adapted for moving on inclined or vertical surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/02Guideways; Guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/12Checking, lubricating, or cleaning means for ropes, cables or guides
    • B66B7/1207Checking means
    • B66B7/1246Checking means specially adapted for guides
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D7/00Shaft equipment, e.g. timbering within the shaft
    • E21D7/02Arrangement of guides for cages in shafts; Connection of guides for cages to shaft walls
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0025Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of elongated objects, e.g. pipes, masts, towers or railways
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/18Tracks
    • B62D55/26Ground engaging parts or elements
    • B62D55/265Ground engaging parts or elements having magnetic or pneumatic adhesion

Definitions

  • the invention belongs to the field of mine lifting system equipment detection, and particularly relates to a rigid tank road inspection device and inspection method.
  • the cross-sectional shape of the wellbore should be designed according to different mining depths and mining pressures.
  • the wellbore is designed to ensure that the pressure on the wall of the wellbore is minimal.
  • the installation position of the fresh tank can not ensure that it is equidistant from the fixed position.
  • the rigid tank road is more likely to be deformed due to external factors, how to accurately and accurately treat the tank defects. Detecting and solving in time is a major difficulty in the research direction of coal mine safety testing.
  • the present invention provides a rigid tank inspection device and inspection method for the misalignment and tilting defects of the cold-rolled rectangular tube rigid cans in the deep well lifting system.
  • a rigid tank inspection device comprising a main body bottom plate and a moving component, a transmission component, a driving component, a guiding component and a casing disposed on the main body floor;
  • the outer casing is disposed in the middle of the main body bottom plate, the driving component is disposed inside the outer casing, the driving component comprises a tilting angle sensor, the tilting angle sensor is connected to the single chip microcomputer, the single chip is connected to the driver, the driver is connected to the DC brushless motor, and the output shaft of the DC brushless motor is provided with a photoelectric encoder, photoelectric The encoder is connected to the drive;
  • the moving parts include the front wheel active output shaft, the front wheel driven output shaft, the rear wheel active output shaft, the rear wheel driven output shaft, the front wheel active output shaft, the front wheel driven output shaft are located at the front end of the main body bottom plate, and the rear wheel active output
  • the shaft and rear wheel driven output shaft are located at the rear end of the main body bottom plate, and the front wheel active output shaft, the front wheel driven output shaft, the rear wheel active output shaft, and the rear wheel driven output shaft are all provided with wheel flanges and wheel flanges.
  • a permanent magnet is arranged in the hub, and a rubber skin layer is arranged outside the hub;
  • the transmission component comprises a worm connected to the output shaft of the brushless DC motor, a worm wheel meshed with the worm disposed on the front output output shaft of the front wheel, the active output shaft of the rear wheel, an active output shaft disposed on the front wheel, and a driven output shaft of the front wheel , the rear wheel active output shaft, the rear wheel driven output shaft synchronous pulley, the front wheel active output shaft and the rear wheel driven output shaft synchronous belt a timing belt is wound on the wheel, and a timing belt is wound on the timing pulley of the front wheel driven output shaft and the rear wheel active output shaft;
  • the guiding member includes a front wheel guide wheel and a rear wheel guide wheel, and the front wheel guide wheel and the rear wheel guide wheel are both disposed outside the hub.
  • the front guide wheel and the rear wheel guide wheel are hinged to one end of the guide wheel frame through a hinge hole, and the other end of the guide wheel frame is hinged to the guide bracket through a hinge hole, the guide bracket is fixed to the main body bottom plate, and one end of the spring link is hinged
  • the hole is hinged to the guiding bracket, the other end of the spring connecting rod passes through the elliptical hole in the middle of the guiding wheel frame and is provided with an adjusting nut, and the spring link between the adjusting nut and the guiding wheel frame is sleeved with a spring; the pressure of the driving component
  • the sensor is placed between the adjustment nut and the spring.
  • front wheel guide wheel axle, the front wheel active output shaft and the front wheel driven output shaft are located in the same plane
  • rear wheel guide wheel, the rear wheel active output shaft and the rear wheel driven output shaft are located in the same plane.
  • the bolt on the wheel flange cooperates with the front wheel active output shaft, the front wheel driven output shaft, the rear wheel active output shaft, and the bolt hole on the rear wheel driven output shaft, and the key on the worm wheel and the front
  • the key output of the wheel active output shaft and the rear wheel active output shaft cooperate with each other.
  • the synchronous pulley passes the male end and the front wheel active output shaft, the front wheel driven output shaft, the rear wheel active output shaft, and the rear wheel driven output shaft. Relatively fixed.
  • the front wheel active output shaft, the front wheel driven output shaft, the rear wheel active output shaft, and the rear wheel driven output shaft are respectively provided with threads, and the thread and the lock nut cooperate with each other, and the front wheel active output shaft, The front wheel driven output shaft, the rear wheel active output shaft, and the rear wheel driven output shaft are all matched with the bearing A.
  • the bearing A is fixed on the horizontal bearing housing A, the front wheel active output shaft and the front wheel driven output.
  • the shaft, the rear wheel active output shaft and the rear wheel driven output shaft are all engaged with the bearing B in the middle, the bearing B is fixed on the horizontal bearing seat B, and the horizontal bearing seat A and the horizontal bearing seat B are fixed on the main body bottom plate.
  • the front wheel active output shaft, the front wheel driven output shaft, the rear wheel active output shaft, and the rear wheel driven output shaft are respectively provided with an upper shaft step A for mounting the positioning synchronous pulley, and is used for mounting the positioning bearing.
  • the upper shaft step B of B, the upper shaft step C for mounting the positioning wheel flange, the front wheel active output shaft and the rear wheel active output shaft are further provided with an on-axis step D for mounting the positioning worm wheel.
  • one end of the worm is connected to the output shaft of the brushless DC motor through a rigid coupling, the rigid coupling is fixedly coupled with the bearing on the vertical bearing housing A, the other end of the worm is matched with the bearing C, and the bearing C is fixed to the vertical On the bearing block B.
  • the output end of the single chip is connected to the input end of the driver through a PWM module, and the output end of the drive is connected to the input end of the single chip through a UART interface.
  • the permanent magnet comprises 8 pairs of rare earth neodymium iron boron material sub-magnets arranged according to the Halbach array, and the angle of magnetization of the adjacent two sub-magnets is 67.5 degrees.
  • the method comprises the following steps:
  • the first step, data statistics and periodic speed regulation inspection the data collected by the inclination sensor, photoelectric encoder and pressure sensor during the whole operation of the inspection device is processed as raw data and the inspection device is adjusted according to the processing result.
  • Speed inspection control the specific process is as follows:
  • the data acquisition frequency of the inclination sensor, the photoelectric encoder and the pressure sensor, the data acquisition time of the inclination sensor, the photoelectric encoder and the pressure sensor are used as the time series of the data arrangement, and the inclination sensor of each data acquisition time detects the data inclination angle.
  • the values ⁇ z and ⁇ x , the photoelectric encoder detection data velocity value v, and the pressure sensor detection data pressure values P1 and P2 are in one-to-one correspondence and read as raw data to the upper computer, wherein the inclination angle ⁇ z is the y-axis and the xy plane The angle, the inclination angle ⁇ x is the angle between the y-axis and the yz plane, the y-axis is parallel to the rigid can channel and perpendicular to the front wheel active output shaft, the x-axis is perpendicular to the front wheel active output shaft and perpendicular to the rigid can, z-axis It is perpendicular to the rigid tank channel and parallel to the front wheel active output shaft.
  • the speed value v is the running speed of the inspection device.
  • the pressure value P1 is the pressure applied by the front wheel guide wheel to the rigid tank channel.
  • P2 is the rear wheel guide wheel pair rigid tank channel. Applied pressure;
  • step d Return to step b until the periodic speed detection of the entire detection target is completed, and all the detected data is stored;
  • the second step is to calculate: the statistical data is processed, and the specific processing is as follows:
  • the relative displacement dimension of the y direction is calculated by multiplying the co-chord value of the front and rear track times by the inclination value ⁇ z and multiplying by The inclination value ⁇ x cosine value
  • the relative displacement dimension of the z direction is calculated as the cosine value of the front and rear track times multiplied by the inclination value ⁇ x , and multiplied by the sine value of the inclination value ⁇ z
  • the front and rear track are the front wheel active output Shaft and rear wheel driven output shaft spacing dimensions
  • the third step, the cumulative comparison, the specific processing is as follows:
  • the patrol device is in the first patrol cycle, and the absolute coordinate values of the front wheel active output axes are known at each data acquisition time: the x direction is 0, and the y direction is the speed value v multiplied by the patrol device. The accumulated value of the inspection time, the z direction is 0. This assumption is consistent with the initial working condition judgment of the rigid tank inspection, that is, the rigid tank path has no defects in the first driving period;
  • the speed value v of each data acquisition time is multiplied by the detection time ⁇ t, and the distance between the front and rear tracks obtained in step a after the travel route is obtained, and the absolute difference between the travel distance and the front and rear track is found.
  • the detection time corresponding to the data acquisition time is used as the target detection point relative to the initial reference point;
  • step b Repeat step b until the calculation of the absolute coordinate values of each target detection point is completed;
  • the depiction display the absolute coordinates of each target detection point are drawn in the upper computer to complete the visual detection.
  • the rigid tank road inspection and installation device of the invention can realize safe and reliable adsorption in the mine lifting system, and the adsorption mode does not cause safety hazard to the working environment of the coal mine enterprise;
  • the utility model improves the detection speed of the rigid tank channel and saves the equipment detection.
  • Time has indirectly improved the production efficiency of coal mining enterprises; its inspection method has greatly improved the accuracy of rigid tank inspection, avoiding manual operation errors and ensuring safe and reliable operation of the lifting system.
  • FIG. 1 is a schematic structural view of a patrol inspection device of the present invention
  • FIG. 2 is a schematic view of a bottom plate component of the inspection device of the present invention.
  • FIG. 3 is a structural block diagram of a driving component of the inspection device of the present invention.
  • Figure 4 is a schematic view showing the assembly of the inspection device of the present invention.
  • Figure 5 is a cross-sectional view showing the inspection device of the present invention.
  • Figure 6 is a schematic view showing the parts of the active output shaft of the inspection device of the present invention.
  • Figure 7 is a schematic view showing the components of the driven output shaft of the inspection device of the present invention.
  • Figure 8 is a schematic view showing the parts of the guide wheel frame of the inspection device of the present invention.
  • FIG. 9 is a schematic structural view of a permanent magnet of the inspection device of the present invention.
  • Figure 10 is a schematic view showing the installation of the inspection device of the present invention on a rigid tank path
  • FIG. 11 is a flowchart of a method for processing inspection data of a patrol device according to the present invention.
  • a rigid tank inspection device of the present invention comprises a main body floor 1 and a moving member 2, a transmission member 3, a driving member 4, a guiding member 5, and a casing 6 which are provided on the main body floor 1.
  • a plurality of mounting holes are formed in the main body bottom plate 1 for achieving bolting between the components.
  • the outer casing 6 is disposed in the middle of the main body bottom plate 1, and the driving member 4 is disposed inside the outer casing 6.
  • the driving member 4 includes a tilting sensor, a pressure sensor, a tilting sensor, a pressure sensor connected to the single chip microcomputer, and the single chip is connected to the driver 4- 3.
  • the driver 4-3 is connected to the DC brushless motor 4-2, the DC brushless motor 4-2 output shaft is provided with a photoelectric encoder, and the photoelectric encoder is connected to the driver 4-3.
  • the DC brushless motor 4-2 is fixed on the motor bracket 4-1, and the motor bracket 4-1 and the driver 4-3 are fixed on the boss on the one bottom plate.
  • the external power supply supplies energy to the DC brushless motor 4-2 through the driver 4-3; the tilt angle sensor ensures the accuracy adjustment of the motor speed; the single-chip output PWM realizes the rotation speed control of the driver 4-3-, and reads the motor through the driver UART interface.
  • Speed information is an important parameter for calculating the target defect.
  • the moving part 2 includes a front wheel active output shaft 2-4, a front wheel driven output shaft 2-7, a rear wheel active output shaft 2-12, and a rear wheel driven output shaft 2-13.
  • the front wheel active output shaft 2-4, the front wheel driven output shaft 2-7 are located at the front end of the main body bottom plate 1
  • the rear wheel active output shaft 2-12, and the rear wheel driven output shaft 2-13 are located at the rear end of the main body bottom plate 1
  • front Wheel active output shaft 2-4, front wheel driven output shaft 2-7, rear wheel active output shaft 2-12, rear wheel driven output shaft 2-13 are provided with wheel flange 2-9, wheel flange 2-9 is connected to the hub 2-10, the permanent magnet 2-11 is arranged in the hub 2-10, and the rubber skin 2-2 is arranged outside the hub.
  • the bolts on the wheel flange 2-9 and the front wheel active output shaft 2-4, the front wheel driven output shaft 2-7, the rear wheel active output shaft 2-12, and the rear wheel driven output shaft 2-13 The bolt holes 2-4-6 cooperate with each other to axially position the wheel flanges 2-9; the keys on the worm wheel 3-7 and the front wheel active output shaft 2-4, and the rear wheel active output shaft 2-12 on the keyway 2 -4-1 phase Mutual cooperation, realize the circumferential positioning of the worm wheel 3-7; the synchronous pulley 3-5 passes the male end and the front wheel active output shaft 2-4, the front wheel driven output shaft 2-7, the rear wheel active output shaft 2 12.
  • the rear wheel driven output shafts 2-13 are relatively fixed to realize the circumferential positioning of the synchronous pulleys 3-5.
  • the front wheel active output shaft 2-4, the front wheel driven output shaft 2-7, the rear wheel active output shaft 2-12, and the rear wheel driven output shaft 2-13 are each provided with a thread 2-4-7.
  • the threads 2-4-7 cooperate with the locknut 2-1 to further axially position the wheel flanges 2-9.
  • the front wheel active output shaft 2-4, the front wheel driven output shaft 2-7, the rear wheel active output shaft 2-12, the rear wheel driven output shaft 2-13 and the other end are matched with the bearing A2-6, the bearing A2- 6 fixed to horizontal bearing housing A2-5, front wheel active output shaft 2-4, front wheel driven output shaft 2-7, rear wheel active output shaft 2-12, rear wheel driven output shaft 2-13
  • the middle part is matched with the bearing B2-8, the bearing B2-8 is fixed on the horizontal bearing seat B2-3, and the horizontal bearing seat A2-5 and the horizontal bearing seat B2-3 are fixed on the main body bottom plate 1.
  • the front wheel active output shaft 2-4, the front wheel driven output shaft 2-7, the rear wheel active output shaft 2-12, and the rear wheel driven output shaft 2-13 are all provided for mounting a positioning timing pulley 3- 5 on-axis step A2-4-3, on-axis step B2-4-4 for mounting locating bearing B2-8, on-axis step C2-4-5 for mounting locating wheel flange 2-9, front
  • the wheel active output shaft 2-4 and the rear wheel active output shaft 2-12 are further provided with an on-axis step D2-4-2 for mounting the positioning worm wheel 3-7.
  • the transmission member 3 includes a worm 3-2 connected to the output shaft of the brushless DC motor 4-2, and is disposed on the front wheel active output shaft 2-4 and the rear wheel active output shaft 2-12.
  • the worm wheel 3-7 meshing with the worm 3-2, the front wheel active output shaft 2-4, the front wheel driven output shaft 2-7, the rear wheel active output shaft 2-12, and the rear wheel driven output shaft 2 -13 timing pulley 3-5, a timing belt 3-6 is wound on the front pulley active output shaft 2-4 and the rear wheel driven output shaft 2-13 timing pulley 3-5, and the front wheel is driven
  • a timing belt 3-6 is wound around the output pulley 2-7 and the timing pulley 3-5 of the rear wheel active output shaft 2-12.
  • one end of the worm 3-2 is connected to the output shaft of the brushless DC motor 4-2 through the rigid coupling 3-3, and the rigid coupling 3-3 is fixedly coupled with the bearing on the vertical bearing housing A3-4.
  • the other end of the worm 3-2 is matched with the bearing C3-8, the bearing C3-8 is fixed on the vertical bearing housing B3-1, and the vertical bearing housing A3-4 and the vertical bearing housing B3-1 are fixed on the main body base plate 1. .
  • the front wheel active output shaft 2-4 and the timing pulley 3-5 on the rear wheel driven output shaft 2-13 are powered by a timing belt 3-6 to transmit power from the drive member to the moving member, the front wheel from The synchronous output pulleys 2-7 and the synchronous pulleys 3-5 of the rear-wheel active output shafts 2-12 are powered by a timing belt 3-6 to realize the direction conversion transmission of the power and the driving on both sides of the inspection apparatus.
  • the guide member 5 includes a front wheel guide wheel 5-1 and a rear wheel guide wheel 5-7, and the front wheel guide wheel 5-1 and the rear wheel guide wheel 5-7 are both disposed on the hub 2. -10 outer guide wheel 5-1.
  • the front guide wheel 5-1 and the rear wheel guide wheel 5-7 are hinged to one end of the guide wheel frame 5-2 through an adjustable hinge hole, and the adjustable hinge hole comprises a first-level hole hinge 5-2-3, a secondary hole Hinge 5-2-4, the other end of the guide wheel frame 5-2 is hinged with the guide bracket 5-6 through the hinge hole 5-2-1, the guide bracket 5-6 is fixed to the main body bottom plate 1, and the spring link 5-3 is open at one end.
  • the hinged hole is hinged to the guide bracket 5-6, and the other end of the spring link 5-3 passes through the elliptical hole 5-2-2 in the middle of the guide wheel frame 5-2 and is provided with an adjustment nut 5-5, in the adjustment nut 5-
  • the spring link 5-3 between the 5 and the guide wheel frame 5-2 is sleeved with a spring 5-4.
  • the pressure sensor of the drive member 4 is disposed between the adjustment nut 5-5 and the spring 5-4.
  • the front guide wheel 5-1 and the rear wheel guide wheel 5-7 are hinged to the guide wheel frame 5-2 through the first hole hinge 5-2-3 to realize large width detection; the front guide wheel 5-1 and the rear wheel guide wheel 5 -7 through the secondary hole hinge 5-2-4 hinged with the guide wheel frame 5-2, to achieve small width detection; by adjusting the position of the adjustment nut 5-5, to achieve a change in the amount of compression of the spring 5-4, and then change The initial pressure value between the guide wheel 5-1, the rear wheel guide wheel 5-7 and the target to be measured, thereby achieving the guiding function of the guide wheel during the detection process.
  • the front wheel guide wheel 5-1 shaft, the front wheel active output shaft 2-4, and the front wheel driven output shaft 2-7 are located in the same plane, and the rear wheel guide wheels 5-7 and the rear wheel are active.
  • the output shaft 2-12 and the rear wheel output output shaft 2-13 are located in the same plane.
  • the permanent magnets 2-11 include 8 pairs of rare earth neodymium iron boron material sub-magnets 2-11-1 arranged according to a Halbach array, and magnetization directions of adjacent two sub-magnets 2-11-1.
  • the angle is 67.5 degrees.
  • the present invention is mounted on a rigid tank path 7, and the driving member 4 transmits power to the moving member 2 through the transmission member 3, and the moving member 2 is inspected by its own permanent magnet 2-11 adsorption characteristics.
  • the safe adsorption and operation of the device, the guiding member 5 relies on the adjustable spring 5-4 to realize that the front wheel guide wheel 5-1 and the rear wheel guide wheel 5-7 are in close contact with the rigid tank path, and the detecting device realizes the patrol device through the photoelectric encoder
  • the detection method includes the following steps:
  • the first step, data statistics and periodic speed regulation inspection the data collected by the inclination sensor, photoelectric encoder and pressure sensor during the whole operation of the inspection device is processed as raw data and the inspection device is adjusted according to the processing result.
  • Speed inspection control the specific process is as follows:
  • the data acquisition frequency of the inclination sensor, the photoelectric encoder and the pressure sensor, the data acquisition time of the inclination sensor, the photoelectric encoder and the pressure sensor are used as the time series of the data arrangement, and the inclination sensor of each data acquisition time detects the data inclination angle.
  • the values ⁇ z and ⁇ x , the photoelectric encoder detection data velocity value v, and the pressure sensor detection data pressure values P1 and P2 are in one-to-one correspondence and read as raw data to the upper computer, wherein the inclination angle ⁇ z is the y-axis and the xy plane The angle, the inclination angle ⁇ x is the angle between the y-axis and the yz plane, the y-axis is parallel to the rigid can channel and perpendicular to the front wheel active output shaft, the x-axis is perpendicular to the front wheel active output shaft and perpendicular to the rigid can, z-axis It is perpendicular to the rigid tank channel and parallel to the front wheel active output shaft.
  • the speed value v is the running speed of the inspection device.
  • the pressure value P1 is the pressure applied by the front wheel guide wheel to the rigid tank channel.
  • P2 is the rear wheel guide wheel pair rigid tank channel. Applied pressure;
  • the rigid tank channel is generally formed by a series of multi-section tanks, and the defects of the tank channel are mainly concentrated at the joint, so in the middle of the tank channel
  • the area realizes high-speed inspection to save the detection time, and realizes low-speed inspection in the joint area near the end to ensure the detection accuracy. Therefore, set L1 to the total length of the single-section tank, and L2 is the artificially defined single. The high-speed inspection length of the joint at the end of the section of the tank;
  • step d Return to step b until the periodic speed detection of the entire detection target is completed, and all the detected data is stored;
  • the second step is to calculate: the statistical data is processed, and the specific processing is as follows:
  • the relative displacement dimension of the y direction is calculated by multiplying the co-chord value of the front and rear track times by the inclination value ⁇ z and multiplying by The inclination value ⁇ x cosine value
  • the relative displacement dimension of the z direction is calculated as the cosine value of the front and rear track times multiplied by the inclination value ⁇ x , and multiplied by the sine value of the inclination value ⁇ z
  • the front and rear track are the front wheel active output Shaft and rear wheel driven output shaft spacing dimensions
  • the third step, the cumulative comparison, the specific processing is as follows:
  • the patrol device is in the first patrol cycle, and the absolute coordinate values of the front wheel active output axes are known at each data acquisition time: the x direction is 0, and the y direction is the speed value v multiplied by the patrol device. The accumulated value of the inspection time, the z direction is 0. This assumption is consistent with the initial working condition judgment of the rigid tank inspection, that is, the rigid tank path has no defects in the first driving period;
  • the speed value v of each data acquisition time is multiplied by the detection time ⁇ t, and the distance between the front and rear tracks obtained in step a after the travel route is obtained, and the absolute difference between the travel distance and the front and rear track is found.
  • the detection time corresponding to the data acquisition time is used as the target detection point relative to the initial reference point;
  • step b Repeat step b until the calculation of the absolute coordinate values of each target detection point is completed;
  • the depiction display the absolute coordinates of each target detection point are drawn in the upper computer to complete the visual detection.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

一种刚性罐道巡检装置及巡检方法,巡检装置包括主体底板(1)上的移动部件(2)、传动部件(3)、驱动部件(4)、导向部件(5)、外壳(6);驱动部件(4)包括连接单片机的倾角传感器、压力传感器,单片机连接驱动器(4-3),驱动器(4-3)连接直流无刷电机(4-2),直流无刷电机(4-2)的输出轴设有连接驱动器(4-3)的光电编码器;移动部件(2)包括主动输出轴(2-4,2-12)、从动输出轴(2-7,2-13),主动输出轴(2-4,2-12)和从动输出轴(2-7,2-13)上的车轮法兰(2-9)与轮毂(2-10)相连,轮毂(2-10)内设有永磁体(2-11),轮毂(2-10)外部设有橡胶皮层(2-2);传动部件(3)包括与直流无刷电机(4-2)的输出轴相连的蜗杆(3-2)、在主动输出轴(2-4,2-12)上的与蜗杆(3-2)相啮合的蜗轮(3-7)、在主动输出轴(2-4,2-12)和从动输出轴(2-7,2-13)上的同步带轮(3-5)以及缠绕在同步带轮(3-5)上的同步带(3-6);导向部件(5)包括导向轮(5-1,5-7)。刚性罐道巡检装置及巡检方法提高了刚性罐道检测速度,间接提高了煤矿企业的生产效率。

Description

一种刚性罐道巡检装置及巡检方法 技术领域
本发明属于矿井提升系统设备检测领域,具体涉及一种刚性罐道巡检装置及巡检方法。
背景技术
目前我国对矿井刚性罐道的检测主要依靠检修人员,且无独立驱动自主检测设备,对刚性罐道缺陷检测精度较低。当刚性罐道的倾斜变形达到一定程度时,会造成提升容器的运行平稳度下降,给提升系统带来安全隐患,其严重时,甚至会造成提升容器的脱轨、卡罐、坠罐等事故。
随着煤矿开采深度的增加,其圆形井筒横截面形状是否是最优方案受到国内外广大学者的关注,部分学者提出井筒横截面形状应根据不同的开采深度及开采压力,设计椭圆、多边形柱状井筒,以保证井筒壁面所受压力最小。已该种建井方式进行作业时,刚罐道安装位置不能保证其到固定位置等距,该种情况下的刚罐道更容易由于外部因素导致变形,如何实时、准确地将刚罐道缺陷检测出来并及时解决是煤矿安全检测研究方向的一大难点。
发明内容
发明目的:本发明针对深井提升系统中冷弯轧制方管刚性罐道的错位、倾斜缺陷,提供一种刚性罐道巡检装置及巡检方法。
为了实现上述目的,本发明采用了如下的技术方案:一种刚性罐道巡检装置,包括主体底板以及设置在主体底板上的移动部件、传动部件、驱动部件、导向部件、外壳;
外壳设置在主体底板的中部,驱动部件设置在外壳内部,驱动部件包括倾角传感器,倾角传感器连接单片机,单片机连接驱动器,驱动器连接直流无刷电机,直流无刷电机输出轴设有光电编码器,光电编码器连接驱动器;
移动部件包括前轮主动输出轴、前轮从动输出轴、后轮主动输出轴、后轮从动输出轴,前轮主动输出轴、前轮从动输出轴位于主体底板前端,后轮主动输出轴、后轮从动输出轴位于主体底板后端,前轮主动输出轴、前轮从动输出轴、后轮主动输出轴、后轮从动输出轴上均设有车轮法兰,车轮法兰与轮毂相连,轮毂内设有永磁体,轮毂外部设有橡胶皮层;
传动部件包括与直流无刷电机输出轴相连的蜗杆、设置在前轮主动输出轴、后轮主动输出轴上的与蜗杆相啮合的蜗轮、设置在前轮主动输出轴、前轮从动输出轴、后轮主动输出轴、后轮从动输出轴的同步带轮,在前轮主动输出轴和后轮从动输出轴的同步带 轮上缠绕一个同步带,在前轮从动输出轴和后轮主动输出轴的同步带轮上缠绕一个同步带;
导向部件包括前轮导向轮和后轮导向轮,前轮导向轮和后轮导向轮均设置在轮毂外侧。
进一步的,所述前导向轮、后轮导向轮均通过铰接孔与导向轮架一端铰接,导向轮架另一端通过铰接孔与导向支架铰接,导向支架与主体底板固定,弹簧连杆一端通过铰接孔与导向支架铰接,弹簧连杆另一端穿过导向轮架中部的椭圆孔并设有调整螺母,在调整螺母与导向轮架之间的弹簧连杆上套有弹簧;所述驱动部件的压力传感器设置于调整螺母和弹簧之间。
进一步的,所述前轮导向轮轴、前轮主动输出轴、前轮从动输出轴位于同一平面内,后轮导向轮、后轮主动输出轴、后轮从动输出轴位于同一平面内。
进一步的,所述车轮法兰上的螺栓与前轮主动输出轴、前轮从动输出轴、后轮主动输出轴、后轮从动输出轴上的螺栓孔相互配合,蜗轮上的键与前轮主动输出轴、后轮主动输出轴上的键槽相互配合,同步带轮通过凸端顶丝与前轮主动输出轴、前轮从动输出轴、后轮主动输出轴、后轮从动输出轴相对固定。
进一步的,所述前轮主动输出轴、前轮从动输出轴、后轮主动输出轴、后轮从动输出轴一端均设有螺纹,螺纹与防松螺母相互配合,前轮主动输出轴、前轮从动输出轴、后轮主动输出轴、后轮从动输出轴另一端均与轴承A配合,轴承A固定于与卧式轴承座A上,前轮主动输出轴、前轮从动输出轴、后轮主动输出轴、后轮从动输出轴中部均与轴承B配合,轴承B固定于卧式轴承座B上,卧式轴承座A、卧式轴承座B均固定于主体底板上。
进一步的,所述前轮主动输出轴、前轮从动输出轴、后轮主动输出轴、后轮从动输出轴均设有用于安装定位同步带轮的轴上台阶A、用于安装定位轴承B的轴上台阶B、用于安装定位车轮法兰的轴上台阶C,前轮主动输出轴、后轮主动输出轴还设有用于安装定位蜗轮的轴上台阶D。
进一步的,所述蜗杆一端通过刚性联轴器与直流无刷电机输出轴相连,刚性联轴器固定与立式轴承座A上的轴承配合,蜗杆另一端与轴承C配合,轴承C固定于立式轴承座B上。
进一步的,所述单片机输出端通过PWM模块连接驱动器输入端,驱动器输出端通过UART接口连接单片机输入端。
进一步的,所述永磁体包括8对按照Halbach阵列排布的稀土钕铁硼材料子磁体,相邻两块子磁体的充磁方向夹角为67.5度。
根据上所述巡检装置的刚性罐道巡检方法,其特征在于,该方法包括以下步骤:
第一步,数据统计及周期性调速巡检:将倾角传感器、光电编码器和压力传感器在巡检装置整个运行过程中采集到的数据作为原始数据进行处理并根据处理结果实现巡检装置调速巡检控制,具体处理过程如下:
a、根据倾角传感器、光电编码器和压力传感器的数据采集频率,将倾角传感器、光电编码器和压力传感器各数据采集时刻作为数据排布的时间序列,将各数据采集时刻的倾角传感器检测数据倾角值θz和θx、光电编码器检测数据速度值v、压力传感器检测数据压力值P1和P2一一对应并作为原始数据读入至上位机,其中,倾角值θz为y轴与x-y平面夹角,倾角值θx为y轴与y-z平面夹角,y轴平行于刚性罐道并且垂直于前轮主动输出轴,x轴垂直于前轮主动输出轴并且垂直于刚性罐道,z轴垂直于刚性罐道并平行于前轮主动输出轴,速度值v为巡检装置运行速度,压力值P1为前轮导向轮对刚性罐道施加的压力,P2为后轮导向轮对刚性罐道施加的压力;
b、逐次累加每一数据采集时刻速度值v与检测时间Δt,得到行驶路程后与(L1-L2)进行比对,当结果小于(L1-L2)时,巡检装置自动实现高速巡检,当结果大于(L1-L2)时,继续累加并对其结果与L1进行大小比较,若大于(L1-L2)并小于L1,则巡检装置实现低速巡检,当结果大于L1时,对累加结果进行清零,完成一个周期的调速巡检过程,其中,Δt为相邻两次数据采集时刻的时间差,L1为单节刚罐道总长度,L2为人为定义的单节刚罐道端部的接头高速巡检长度;
c、将上一个巡检周期的最后一个数据采集时刻作为开始点;
d、返回步骤b,直至完成对整个检测目标的周期性调速检测,并将所有检测到的数据进行存储;
第二步,计算:将统计后的数据进行处理,其具体处理过程如下:
a、提取每一个数据采集时刻的倾角值θz和θx,并计算该时刻下压力值P1和P2的差值,判断差值是否为0,若差值为零,则倾角值θz有效,若差值不为零,则倾角值θz无效并取0;
b、计算每一个数据采集时刻下前轮主动输出轴相对后轮从动输出轴在x方向相对位移尺寸、y方向的相对位移尺寸和z方向的相对位移尺寸,其x方向相对位移尺寸计算方式为前后轮距乘以倾角值θz的余弦值,再乘以倾角值θx正弦值,其y方向的相对位移尺寸计算方式为前后轮距乘以倾角值θz的余弦值,再乘以倾角值θx余弦值,其z方向的相对位移尺寸计算方式为前后轮距乘以倾角值θx的余弦值,再乘以倾角值θz的正弦值,其中前后轮距为前轮主动输出轴和后轮从动输出轴间距尺寸;
c、将计算后的结果进行数据存储,完成所有数据的计算;
第三步,累加对比,其具体处理过程如下:
a、假设巡检装置在第一个巡检周期内,每一个数据采集时刻下前轮主动输出轴各的绝对坐标值已知:x方向为0,y方向为速度值v乘以巡检装置巡检时间的累加值,z方向为0,该假设符合对刚性罐道检测初始的工况判断,即第一个行驶周期内内刚性罐道没有缺陷;
b、选择第一个巡检周期内的第一个数据采集时刻作为起始参考点;
c、逐次累加起始参考点以后各数据采集时刻速度值v与检测时间Δt乘积,得到行驶路程后与步骤a得到的前后轮距进行比对,寻找行驶路程与前后轮距的差值的绝对值最小时所对应的检测时刻,将该数据采集时刻作为相对于起始参考点的目标检测点;
d、计算目标检测点绝对坐标值,其方法为提取起始参考点的x绝对坐标值、y绝对坐标值、z绝对坐标值,将其与第二步步骤b中计算得到目标检测点的x方向的相对位移尺寸、y方向的相对位移尺寸、z方向的相对位移尺寸一一对应加和,继而得到目标检测点x方向的绝对坐标,y方向绝对坐标、z方向绝对坐标值;
e、将步骤c中起始参考点的下一数据采集时刻变更为起始参考点;
f、重复步骤b,直至完成各个目标检测点绝对坐标值的计算;
第四步,描绘显示:将各目标检测点绝对坐标在上位机中进行描绘,完成可视化检测。
有益效果:本发明刚性罐道巡检装装置能够实现矿井提升系统中安全可靠吸附,其吸附方式不会对煤矿企业工作环境造成安全隐患;其提高了刚性罐道检测速度,节省了设备检测的时间,间接提高了煤矿企业的生产效率;其巡检方法大幅度提高刚性罐道检测精度,避免了人工作业误差,保证了提升系统安全可靠工作。
附图说明
图1为本发明巡检装置结构示意图;
图2为本发明巡检装置底板零件示意图;
图3为本发明巡检装置驱动部件的结构框图;
图4为本发明巡检装置装配示意图;
图5为本发明巡检装置剖视示意图;
图6为本发明巡检装置主动输出轴零件示意图;
图7为本发明巡检装置从动输出轴零件示意图;
图8为本发明巡检装置导向轮架零件示意图;
图9为本发明巡检装置永磁体结构示意图;
图10为本发明巡检装置在刚性罐道上的安装示意图;
图11为本发明巡检装置巡检数据处理方法流程图。
图中:1-主体底板;2-移动部件,2-1-防松螺母,2-2-橡胶皮层,2-3-卧式轴承座B,2-4-前轮主动输出轴,2-4-1-键槽,2-4-2-轴上台阶D,2-4-3-轴上台阶A,2-4-4-轴上台阶B,2-4-5-轴上台阶C,2-4-6-螺栓孔,2-4-7-螺纹,2-5-卧式轴承座A,2-6-轴承A,2-7-前轮从动输出轴,2-8-轴承B,2-9-车轮法兰,2-10-轮毂,2-11-永磁体,2-11-1子磁体,2-12-后轮主动输出轴,2-13-后轮从动输出轴;3-传动部件包括,3-1-立式轴承座B,3-2-蜗杆,3-3-刚性联轴器,3-4-立式轴承座A,3-5-同步带轮,3-6-同步带,3-7-蜗轮,3-8-轴承C;4-驱动部件,4-1-电机支架,4-2-直流无刷电机,4-3-驱动器;5-导向部件,5-1-前轮导向轮,5-2-导向轮架,5-3-弹簧连杆,5-4-弹簧,5-5-调整螺母,5-6-导向支架;5-7-后轮导向轮;6-外壳;7-刚性罐道。
具体实施方式:
下面结合附图对本发明做更进一步的解释。
如图1所示,本发明的一种刚性罐道巡检装置,包括主体底板1以及设置在主体底板1上的移动部件2、传动部件3、驱动部件4、导向部件5、外壳6。
如图2所示,主体底板1上开设有若干装配孔,用于实现各部件之间的螺栓连接。
如图3和4所示,外壳6设置在主体底板1的中部,驱动部件4设置在外壳6内部,驱动部件4包括倾角传感器、压力传感器,倾角传感器、压力传感器连接单片机,单片机连接驱动器4-3,驱动器4-3连接直流无刷电机4-2,直流无刷电机4-2输出轴设有光电编码器,光电编码器连接驱动器4-3。直流无刷电机4-2固定于电机支架4-1上,电机支架4-1、驱动器4-3均固定于1底板上的凸台上。
外部电源通过驱动器4-3为直流无刷电机4-2提供能量;倾角传感器保证电机转速的精度调整;单片机输出PWM实现对驱动器4-3-的转速控制,并通过驱动器UART接口读取电机的速度信息作为计算检测目标缺陷的重要参数。
如图4-7所示,移动部件2包括前轮主动输出轴2-4、前轮从动输出轴2-7、后轮主动输出轴2-12、后轮从动输出轴2-13。前轮主动输出轴2-4、前轮从动输出轴2-7位于主体底板1前端,后轮主动输出轴2-12、后轮从动输出轴2-13位于主体底板1后端,前轮主动输出轴2-4、前轮从动输出轴2-7、后轮主动输出轴2-12、后轮从动输出轴2-13上均设有车轮法兰2-9,车轮法兰2-9与轮毂2-10相连,轮毂2-10内设有永磁体2-11,轮毂外部设有橡胶皮层2-2。
所述车轮法兰2-9上的螺栓与前轮主动输出轴2-4、前轮从动输出轴2-7、后轮主动输出轴2-12、后轮从动输出轴2-13上的螺栓孔2-4-6相互配合,轴向定位车轮法兰2-9;蜗轮3-7上的键与前轮主动输出轴2-4、后轮主动输出轴2-12上的键槽2-4-1相 互配合,实现蜗轮3-7周向定位;同步带轮3-5通过凸端顶丝与前轮主动输出轴2-4、前轮从动输出轴2-7、后轮主动输出轴2-12、后轮从动输出轴2-13相对固定,实现同步带轮3-5周向定位。
所述前轮主动输出轴2-4、前轮从动输出轴2-7、后轮主动输出轴2-12、后轮从动输出轴2-13一端均设有螺纹2-4-7,螺纹2-4-7与防松螺母2-1相互配合,进一步轴向定位车轮法兰2-9。前轮主动输出轴2-4、前轮从动输出轴2-7、后轮主动输出轴2-12、后轮从动输出轴2-13另一端均与轴承A2-6配合,轴承A2-6固定于与卧式轴承座A2-5上,前轮主动输出轴2-4、前轮从动输出轴2-7、后轮主动输出轴2-12、后轮从动输出轴2-13中部均与轴承B2-8配合,轴承B2-8固定于卧式轴承座B2-3上,卧式轴承座A2-5、卧式轴承座B2-3均固定于主体底板1上。
所述前轮主动输出轴2-4、前轮从动输出轴2-7、后轮主动输出轴2-12、后轮从动输出轴2-13均设有用于安装定位同步带轮3-5的轴上台阶A2-4-3、用于安装定位轴承B2-8的轴上台阶B2-4-4、用于安装定位车轮法兰2-9的轴上台阶C2-4-5,前轮主动输出轴2-4、后轮主动输出轴2-12还设有用于安装定位蜗轮3-7的轴上台阶D2-4-2。
如图4和5所示,传动部件3包括与直流无刷电机4-2输出轴相连的蜗杆3-2、设置在前轮主动输出轴2-4、后轮主动输出轴2-12上的与蜗杆3-2相啮合的蜗轮3-7、设置在前轮主动输出轴2-4、前轮从动输出轴2-7、后轮主动输出轴2-12、后轮从动输出轴2-13的同步带轮3-5,在前轮主动输出轴2-4和后轮从动输出轴2-13的同步带轮3-5上缠绕一个同步带3-6,在前轮从动输出轴2-7和后轮主动输出轴2-12的同步带轮3-5上缠绕一个同步带3-6。其中,所述蜗杆3-2一端通过刚性联轴器3-3与直流无刷电机4-2输出轴相连,刚性联轴器3-3固定与立式轴承座A3-4上的轴承配合,蜗杆3-2另一端与轴承C3-8配合,轴承C3-8固定于立式轴承座B3-1上,立式轴承座A3-4、立式轴承座B3-1均固定于主体底板1上。
前轮主动输出轴2-4和后轮从动输出轴2-13上的同步带轮3-5通过一个同步带3-6进行动力传递,将动力从驱动部件传递到移动部件,前轮从动输出轴2-7和后轮主动输出轴2-12的同步带轮3-5通过一个同步带3-6进行动力传递,实现动力的方向转换传递及巡检设备的两侧驱动。
如图4、5、8所示,导向部件5包括前轮导向轮5-1和后轮导向轮5-7,前轮导向轮5-1和后轮导向轮5-7均设置在轮毂2-10外侧的导向轮5-1。
所述前导向轮5-1、后轮导向轮5-7均通过可调铰接孔与导向轮架5-2一端铰接,可调铰接孔包括一级孔铰接5-2-3、二级孔铰接5-2-4,导向轮架5-2另一端通过铰接孔5-2-1与导向支架5-6铰接,导向支架5-6与主体底板1固定,弹簧连杆5-3一端通 过铰接孔与导向支架5-6铰接,弹簧连杆5-3另一端穿过导向轮架5-2中部的椭圆孔5-2-2并设有调整螺母5-5,在调整螺母5-5与导向轮架5-2之间的弹簧连杆5-3上套有弹簧5-4。所述驱动部件4的压力传感器设置于调整螺母5-5和弹簧5-4之间。
前导向轮5-1、后轮导向轮5-7通过一级孔铰接5-2-3与导向轮架5-2铰接,实现大宽度检测;前导向轮5-1、后轮导向轮5-7通过二级孔铰接5-2-4与导向轮架5-2铰接,实现小宽度检测;通过调整调整螺母5-5的位置,实现对弹簧5-4压缩量的改变,进而改变前导向轮5-1、后轮导向轮5-7与被测目标间的初始压力值,进而实现检测过程中导向轮的导向功能。
本实施例中,所述前轮导向轮5-1轴、前轮主动输出轴2-4、前轮从动输出轴2-7位于同一平面内,后轮导向轮5-7、后轮主动输出轴2-12、后轮从动输出轴2-13位于同一平面内。
如图9所示,所述永磁体2-11包括8对按照Halbach阵列排布的稀土钕铁硼材料子磁体2-11-1,相邻两块子磁体2-11-1的充磁方向夹角为67.5度。
如图10和11所述,将本发明安装于刚性罐道7上,驱动部件4通过传动部件3将动力传到移动部件2上,移动部件2通过自身永磁体2-11吸附特性实现巡检装置的安全吸附及运行,导向部件5依靠可调节弹簧5-4实现前轮导向轮5-1和后轮导向轮5-7紧贴刚性罐道,检测装置通过光电编码器实现巡检装置行驶速度的检测,通过倾角传感器实现巡检装置位姿的检测,并通过检测算法实现被测目标状态的实时检测。
如图11所示,根据上述巡检装置的刚性罐道巡检方法,该检测方法包括以下步骤:
第一步,数据统计及周期性调速巡检:将倾角传感器、光电编码器和压力传感器在巡检装置整个运行过程中采集到的数据作为原始数据进行处理并根据处理结果实现巡检装置调速巡检控制,具体处理过程如下:
a、根据倾角传感器、光电编码器和压力传感器的数据采集频率,将倾角传感器、光电编码器和压力传感器各数据采集时刻作为数据排布的时间序列,将各数据采集时刻的倾角传感器检测数据倾角值θz和θx、光电编码器检测数据速度值v、压力传感器检测数据压力值P1和P2一一对应并作为原始数据读入至上位机,其中,倾角值θz为y轴与x-y平面夹角,倾角值θx为y轴与y-z平面夹角,y轴平行于刚性罐道并且垂直于前轮主动输出轴,x轴垂直于前轮主动输出轴并且垂直于刚性罐道,z轴垂直于刚性罐道并平行于前轮主动输出轴,速度值v为巡检装置运行速度,压力值P1为前轮导向轮对刚性罐道施加的压力,P2为后轮导向轮对刚性罐道施加的压力;
b、逐次累加每一数据采集时刻速度值v与检测时间Δt,得到行驶路程后与(L1-L2)进行比对,当结果小于(L1-L2)时,巡检装置自动实现高速巡检,当结果大于(L1-L2)时, 继续累加并对其结果与L1进行大小比较,若大于(L1-L2)并小于L1,则巡检装置实现低速巡检,当结果大于L1时,对累加结果进行清零,完成一个周期的调速巡检过程,其中,Δt为相邻两次数据采集时刻的时间差,刚性罐道一般由多节刚罐道串接而成,刚罐道缺陷主要集中于接头处,故在刚罐道中间区域实现高速巡检,以节省检测时间,而在接近其端部的接头区域内实现低速巡检,以保证检测精度,所以设定L1为单节刚罐道总长度,L2为人为定义的单节刚罐道端部的接头高速巡检长度;
c、将上一个巡检周期的最后一个数据采集时刻作为开始点;
d、返回步骤b,直至完成对整个检测目标的周期性调速检测,并将所有检测到的数据进行存储;
第二步,计算:将统计后的数据进行处理,其具体处理过程如下:
a、提取每一个数据采集时刻的倾角值θz和θx,并计算该时刻下压力值P1和P2的差值,判断差值是否为0,若差值为零,则倾角值θz有效,若差值不为零,则倾角值θz无效并取0;
b、计算每一个数据采集时刻下前轮主动输出轴相对后轮从动输出轴在x方向相对位移尺寸、y方向的相对位移尺寸和z方向的相对位移尺寸,其x方向相对位移尺寸计算方式为前后轮距乘以倾角值θz的余弦值,再乘以倾角值θx正弦值,其y方向的相对位移尺寸计算方式为前后轮距乘以倾角值θz的余弦值,再乘以倾角值θx余弦值,其z方向的相对位移尺寸计算方式为前后轮距乘以倾角值θx的余弦值,再乘以倾角值θz的正弦值,其中前后轮距为前轮主动输出轴和后轮从动输出轴间距尺寸;
c、将计算后的结果进行数据存储,完成所有数据的计算;
第三步,累加对比,其具体处理过程如下:
a、假设巡检装置在第一个巡检周期内,每一个数据采集时刻下前轮主动输出轴各的绝对坐标值已知:x方向为0,y方向为速度值v乘以巡检装置巡检时间的累加值,z方向为0,该假设符合对刚性罐道检测初始的工况判断,即第一个行驶周期内内刚性罐道没有缺陷;
b、选择第一个巡检周期内的第一个数据采集时刻作为起始参考点;
c、逐次累加起始参考点以后各数据采集时刻速度值v与检测时间Δt乘积,得到行驶路程后与步骤a得到的前后轮距进行比对,寻找行驶路程与前后轮距的差值的绝对值最小时所对应的检测时刻,将该数据采集时刻作为相对于起始参考点的目标检测点;
d、计算目标检测点绝对坐标值,其方法为提取起始参考点的x绝对坐标值、y绝对坐标值、z绝对坐标值,将其与第二步步骤b中计算得到目标检测点的x方向的相对位移尺寸、y方向的相对位移尺寸、z方向的相对位移尺寸一一对应加和,继而得到目标 检测点x方向的绝对坐标,y方向绝对坐标、z方向绝对坐标值;
e、将步骤c中起始参考点的下一数据采集时刻变更为起始参考点;
f、重复步骤b,直至完成各个目标检测点绝对坐标值的计算;
第四步,描绘显示:将各目标检测点绝对坐标在上位机中进行描绘,完成可视化检测。

Claims (10)

  1. 一种刚性罐道巡检装置,其特征在于:包括主体底板(1)以及设置在主体底板(1)上的移动部件(2)、传动部件(3)、驱动部件(4)、导向部件(5)、外壳(6);
    外壳(6)设置在主体底板(1)的中部,驱动部件(4)设置在外壳(6)内部,驱动部件(4)包括倾角传感器、压力传感器,倾角传感器、压力传感器连接单片机,单片机连接驱动器(4-3),驱动器(4-3)连接直流无刷电机(4-2),直流无刷电机(4-2)输出轴设有光电编码器,光电编码器连接驱动器(4-3);
    移动部件(2)包括前轮主动输出轴(2-4)、前轮从动输出轴(2-7)、后轮主动输出轴(2-12)、后轮从动输出轴(2-13),前轮主动输出轴(2-4)、前轮从动输出轴(2-7)位于主体底板(1)前端,后轮主动输出轴(2-12)、后轮从动输出轴(2-13)位于主体底板(1)后端,前轮主动输出轴(2-4)、前轮从动输出轴(2-7)、后轮主动输出轴(2-12)、后轮从动输出轴(2-13)上均设有车轮法兰(2-9),车轮法兰(2-9)与轮毂(2-10)相连,轮毂(2-10)内设有永磁体(2-11),轮毂外部设有橡胶皮层(2-2);
    传动部件(3)包括与直流无刷电机(4-2)输出轴相连的蜗杆(3-2)、设置在前轮主动输出轴(2-4)、后轮主动输出轴(2-12)上的与蜗杆(3-2)相啮合的蜗轮(3-7)、设置在前轮主动输出轴(2-4)、前轮从动输出轴(2-7)、后轮主动输出轴(2-12)、后轮从动输出轴(2-13)的同步带轮(3-5),在前轮主动输出轴(2-4)和后轮从动输出轴(2-13)的同步带轮(3-5)上缠绕一个同步带(3-6),在前轮从动输出轴(2-7)和后轮主动输出轴(2-12)的同步带轮(3-5)上缠绕一个同步带(3-6);
    导向部件(5)包括前轮导向轮(5-1)和后轮导向轮(5-7),前轮导向轮(5-1)和后轮导向轮(5-7)均设置在轮毂(2-10)外侧。
  2. 根据权利要求1所述的一种刚性罐道巡检装置,其特征在于:所述前导向轮(5-1)、后轮导向轮(5-7)均通过铰接孔与导向轮架(5-2)一端铰接,导向轮架(5-2)另一端通过铰接孔与导向支架(5-6)铰接,导向支架(5-6)与主体底板(1)固定,弹簧连杆(5-3)一端通过铰接孔与导向支架(5-6)铰接,弹簧连杆(5-3)另一端穿过导向轮架(5-2)中部的椭圆孔并设有调整螺母(5-5),在调整螺母(5-5)与导向轮架(5-2)之间的弹簧连杆(5-3)上套有弹簧(5-4);所述驱动部件(4)的压力传感器设置于调整螺母(5-5)和弹簧(5-4)之间。
  3. 根据权利要求2所述的一种刚性罐道巡检装置,其特征在于:所述前轮导向轮(5-1)轴、前轮主动输出轴(2-4)、前轮从动输出轴(2-7)位于同一平面内,后轮导向轮(5-7)、后轮主动输出轴(2-12)、后轮从动输出轴(2-13)位于同一平面内。
  4. 根据权利要求3所述的一种刚性罐道巡检装置,其特征在于:所述车轮法兰(2-9)上的螺栓与前轮主动输出轴(2-4)、前轮从动输出轴(2-7)、后轮主动输出轴(2-12)、后轮从动输出轴(2-13)上的螺栓孔(2-4-6)相互配合,蜗轮(3-7)上的键与前轮主动输出轴(2-4)、后轮主动输出轴(2-12)上的键槽(2-4-1)相互配合,同步带轮(3-5)通过凸端顶丝与前轮主动输出轴(2-4)、前轮从动输出轴(2-7)、后轮主动输出轴(2-12)、后轮从动输出轴(2-13)相对固定。
  5. 根据权利要求4所述的一种刚性罐道巡检装置,其特征在于:所述前轮主动输出轴(2-4)、前轮从动输出轴(2-7)、后轮主动输出轴(2-12)、后轮从动输出轴(2-13)一端均设有螺纹(2-4-7),螺纹(2-4-7)与防松螺母(2-1)相互配合,前轮主动输出轴(2-4)、前轮从动输出轴(2-7)、后轮主动输出轴(2-12)、后轮从动输出轴(2-13)另一端均与轴承A(2-6)配合,轴承A(2-6)固定于与卧式轴承座A(2-5)上,前轮主动输出轴(2-4)、前轮从动输出轴(2-7)、后轮主动输出轴(2-12)、后轮从动输出轴(2-13)中部均与轴承B(2-8)配合,轴承B(2-8)固定于卧式轴承座B(2-3)上,卧式轴承座A(2-5)、卧式轴承座B(2-3)均固定于主体底板(1)上。
  6. 根据权利要求5所述的一种刚性罐道巡检装置,其特征在于:所述前轮主动输出轴(2-4)、前轮从动输出轴(2-7)、后轮主动输出轴(2-12)、后轮从动输出轴(2-13)均设有用于安装定位同步带轮(3-5)的轴上台阶A(2-4-3)、用于安装定位轴承B(2-8)的轴上台阶B(2-4-4)、用于安装定位车轮法兰(2-9)的轴上台阶C(2-4-5),前轮主动输出轴(2-4)、后轮主动输出轴(2-12)还设有用于安装定位蜗轮(3-7)的轴上台阶D(2-4-2)。
  7. 根据权利要求6所述的一种刚性罐道巡检装置,其特征在于:所述蜗杆(3-2)一端通过刚性联轴器(3-3)与直流无刷电机(4-2)输出轴相连,刚性联轴器(3-3)固定与立式轴承座A(3-4)上的轴承配合,蜗杆(3-2)另一端与轴承C(3-8)配合,轴承C(3-8)固定于立式轴承座B(3-1)上。
  8. 根据权利要求7所述的一种刚性罐道巡检装置,其特征在于:所述单片机输出端通过PWM模块连接驱动器(4-3)输入端,驱动器(4-3)输出端通过UART接口连接单片机输入端。
  9. 根据权利要求8所述的一种刚性罐道巡检装置,其特征在于:所述永磁体(2-11)包括8对按照Halbach阵列排布的稀土钕铁硼材料子磁体(2-11-1),相邻两块子磁体(2-11-1)的充磁方向夹角为67.5度。
  10. 根据权利要求3所述巡检装置的刚性罐道巡检方法,其特征在于,该方法包括以下步骤:
    第一步,数据统计及周期性调速巡检:将倾角传感器、光电编码器和压力传感器在巡检装置整个运行过程中采集到的数据作为原始数据进行处理并根据处理结果实现巡检装置调速巡检控制,具体处理过程如下:
    a、根据倾角传感器、光电编码器和压力传感器的数据采集频率,将倾角传感器、光电编码器和压力传感器各数据采集时刻作为数据排布的时间序列,将各数据采集时刻的倾角传感器检测数据倾角值θz和θx、光电编码器检测数据速度值v、压力传感器检测数据压力值P1和P2一一对应并作为原始数据读入至上位机,其中,倾角值θz为y轴与x-y平面夹角,倾角值θx为y轴与y-z平面夹角,y轴平行于刚性罐道并且垂直于前轮主动输出轴,x轴垂直于前轮主动输出轴并且垂直于刚性罐道,z轴垂直于刚性罐道并平行于前轮主动输出轴,速度值v为巡检装置运行速度,压力值P1为前轮导向轮对刚性罐道施加的压力,P2为后轮导向轮对刚性罐道施加的压力;
    b、逐次累加每一数据采集时刻速度值v与检测时间Δt,得到行驶路程后与(L1-L2)进行比对,当结果小于(L1-L2)时,巡检装置自动实现高速巡检,当结果大于(L1-L2)时,继续累加并对其结果与L1进行大小比较,若大于(L1-L2)并小于L1,则巡检装置实现低速巡检,当结果大于L1时,对累加结果进行清零,完成一个周期的调速巡检过程,其中,Δt为相邻两次数据采集时刻的时间差,L1为单节刚罐道总长度,L2为人为定义的单节刚罐道端部的接头高速巡检长度;
    c、将上一个巡检周期的最后一个数据采集时刻作为开始点;
    d、返回步骤b,直至完成对整个检测目标的周期性调速检测,并将所有检测到的数据进行存储;
    第二步,计算:将统计后的数据进行处理,其具体处理过程如下:
    a、提取每一个数据采集时刻的倾角值θz和θx,并计算该时刻下压力值P1和P2的差值,判断差值是否为0,若差值为零,则倾角值θz有效,若差值不为零,则倾角值θz无效并取0;
    b、计算每一个数据采集时刻下前轮主动输出轴相对后轮从动输出轴在x方向相对位移尺寸、y方向的相对位移尺寸和z方向的相对位移尺寸,其x方向相对位移尺寸计算方式为前后轮距乘以倾角值θz的余弦值,再乘以倾角值θx正弦值,其y方向的相对位移尺寸计算方式为前后轮距乘以倾角值θz的余弦值,再乘以倾角值θx余弦值,其z方向的相对位移尺寸计算方式为前后轮距乘以倾角值θx的余弦值,再乘以倾角值θz的正弦值,其中前后轮距为前轮主动输出轴和后轮从动输出轴间距尺寸;
    c、将计算后的结果进行数据存储,完成所有数据的计算;
    第三步,累加对比,其具体处理过程如下:
    a、假设巡检装置在第一个巡检周期内,每一个数据采集时刻下前轮主动输出轴各的绝对坐标值已知:x方向为0,y方向为速度值v乘以巡检装置巡检时间的累加值,z方向为0,该假设符合对刚性罐道检测初始的工况判断,即第一个行驶周期内内刚性罐道没有缺陷;
    b、选择第一个巡检周期内的第一个数据采集时刻作为起始参考点;
    c、逐次累加起始参考点以后各数据采集时刻速度值v与检测时间Δt乘积,得到行驶路程后与步骤a得到的前后轮距进行比对,寻找行驶路程与前后轮距的差值的绝对值最小时所对应的检测时刻,将该数据采集时刻作为相对于起始参考点的目标检测点;
    d、计算目标检测点绝对坐标值,其方法为提取起始参考点的x绝对坐标值、y绝对坐标值、z绝对坐标值,将其与第二步步骤b中计算得到目标检测点的x方向的相对位移尺寸、y方向的相对位移尺寸、z方向的相对位移尺寸一一对应加和,继而得到目标检测点x方向的绝对坐标,y方向绝对坐标、z方向绝对坐标值;
    e、将步骤c中起始参考点的下一数据采集时刻变更为起始参考点;
    f、返回步骤b,直至完成各个目标检测点绝对坐标值的计算;
    第四步,描绘显示:将各目标检测点绝对坐标在上位机中进行描绘,完成可视化检测。
PCT/CN2016/108878 2016-10-17 2016-12-07 一种刚性罐道巡检装置及巡检方法 WO2018072274A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2016426824A AU2016426824B2 (en) 2016-10-17 2016-12-07 Device and method for periodically inspecting rigid guide
RU2018137159A RU2693370C1 (ru) 2016-10-17 2016-12-07 Устройство для периодического контроля жесткой направляющей для клети
US16/093,891 US10501132B2 (en) 2016-10-17 2016-12-07 Inspection apparatus and method for patrol-inspection of rigid cage channel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610901585.3A CN106394717B (zh) 2016-10-17 2016-10-17 一种刚性罐道巡检装置及巡检方法
CN201610901585.3 2016-10-17

Publications (1)

Publication Number Publication Date
WO2018072274A1 true WO2018072274A1 (zh) 2018-04-26

Family

ID=58012059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108878 WO2018072274A1 (zh) 2016-10-17 2016-12-07 一种刚性罐道巡检装置及巡检方法

Country Status (5)

Country Link
US (1) US10501132B2 (zh)
CN (1) CN106394717B (zh)
AU (1) AU2016426824B2 (zh)
RU (1) RU2693370C1 (zh)
WO (1) WO2018072274A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109374727A (zh) * 2018-11-21 2019-02-22 中国石油大学(北京) 储罐检测机器人
CN110696855A (zh) * 2019-11-06 2020-01-17 西安多维通讯设备有限公司 全自动轨道检查仪

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107143722A (zh) * 2017-05-22 2017-09-08 四川建筑职业技术学院 一种用于地下管道检测机器人的爬行装置
CN108118412B (zh) * 2018-02-27 2023-02-10 黄磊 一种微型细纱机断纱检测装置
US11472671B2 (en) * 2019-11-07 2022-10-18 Otis Elevator Company Inspection assembly for elevator system
CN111595809A (zh) * 2020-06-08 2020-08-28 霍州煤电集团有限责任公司辛置煤矿 基于太赫兹扫描的煤矿立井罐道检测系统及方法
CN113916279B (zh) * 2021-08-30 2023-04-21 北京科技大学 一种楔横轧成形轴向轧制力与轧件转速测量装置
CN114212160A (zh) * 2021-12-29 2022-03-22 上海智楹机器人科技有限公司 一种磁向可控的吸附轮及其壁面移动机器人
CN114526430B (zh) * 2022-02-18 2023-10-20 安徽理工大学 罐道巡检小车

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2766782A1 (fr) * 1997-07-31 1999-02-05 Renault Vehicules Ind Systeme de guidage pour vehicule de transport en commun
CN201677943U (zh) * 2009-10-28 2010-12-22 兰州瑞奇戈德测控技术有限公司 一种管道环焊缝无损检测爬行装置
CN103802086A (zh) * 2014-02-17 2014-05-21 广州供电局有限公司 巡检机器人
CN205558975U (zh) * 2016-04-15 2016-09-07 徐月苗 一种煤矿巡检机器人

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU520512A1 (ru) * 1974-04-02 1976-07-05 Научно-Исследовательский Горнорудный Институт Устройство дл контрол проводников жесткой армировки шахтных стволов
SU802156A1 (ru) * 1978-06-02 1981-02-07 Специализированное Проектно-Конструкторскоебюро Tpecta "Рослифтремонт" Устройство дл контрол положени лифТОВыХ НАпРАВл ющиХ КАбиНы B шАХТЕ лифТА
FR2530214A1 (fr) * 1982-07-15 1984-01-20 Commissariat Energie Atomique Vehicule autopropulse a bras articules, reservoir et dispositif d'entrainement debrayable pouvant etre montes sur ledit vehicule
FI72947C (fi) * 1985-09-27 1987-08-10 Kone Oy Foerfarande och anordning foer kontinuerlig kompensering av en hisskorgs horisontala kast.
JPS6390484A (ja) * 1986-10-03 1988-04-21 Hitachi Ltd 壁面吸着走行機
JPH02262484A (ja) * 1989-04-03 1990-10-25 Toshiba Corp 移動機構
SU1684212A1 (ru) * 1989-07-11 1991-10-15 Научно-Исследовательский Горнорудный Институт Способ контрол движени сосуда шахтной подъемной установки
CN200995920Y (zh) * 2007-01-11 2007-12-26 中国矿业大学 刚性罐道状态检测装置
US7594448B2 (en) * 2007-11-08 2009-09-29 Fabtec Solutions, Llc Crawler for inspecting pipes
US8605145B2 (en) * 2009-02-27 2013-12-10 R. Brooks Associates, Inc. Inspection system and inspection process utilizing magnetic inspection vehicle
KR101231910B1 (ko) * 2011-07-13 2013-02-08 한국전력기술 주식회사 배관검사장치 및 이를 이용한 배관검사방법
CN202574445U (zh) * 2012-02-23 2012-12-05 西华大学 一种多种形状截面爬杆机器人
CN104649092B (zh) * 2015-01-27 2017-05-10 中国矿业大学 刚性罐道平整度缺陷先期检测方法
CN105035200B (zh) * 2015-07-02 2017-04-05 中国矿业大学 一种超深立井钢丝绳罐道垂直爬绳巡检机器人

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2766782A1 (fr) * 1997-07-31 1999-02-05 Renault Vehicules Ind Systeme de guidage pour vehicule de transport en commun
CN201677943U (zh) * 2009-10-28 2010-12-22 兰州瑞奇戈德测控技术有限公司 一种管道环焊缝无损检测爬行装置
CN103802086A (zh) * 2014-02-17 2014-05-21 广州供电局有限公司 巡检机器人
CN205558975U (zh) * 2016-04-15 2016-09-07 徐月苗 一种煤矿巡检机器人

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109374727A (zh) * 2018-11-21 2019-02-22 中国石油大学(北京) 储罐检测机器人
CN109374727B (zh) * 2018-11-21 2024-02-02 中国石油大学(北京) 储罐检测机器人
CN110696855A (zh) * 2019-11-06 2020-01-17 西安多维通讯设备有限公司 全自动轨道检查仪

Also Published As

Publication number Publication date
US10501132B2 (en) 2019-12-10
AU2016426824B2 (en) 2019-04-04
CN106394717B (zh) 2019-04-05
AU2016426824A1 (en) 2018-11-15
US20190225287A1 (en) 2019-07-25
RU2693370C1 (ru) 2019-07-02
CN106394717A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
WO2018072274A1 (zh) 一种刚性罐道巡检装置及巡检方法
CN209280943U (zh) 一种基于雷达探测的隧道缺陷检测装置
CN108407610A (zh) 一种链条传动的四轮驱动机器人底盘
CN112077859B (zh) 一种工业轨道探伤机器人
CN201436965U (zh) 手动操纵式擦窗机平台
CN202606459U (zh) 一种高压水射式风管清洗装置
CN201301353Y (zh) 电镀生产设备中低轨搬运车
CN105756559A (zh) 一种飞轮储能式电驱动修井/钻井装置及其动力提供方法
CN219996406U (zh) 一种铁路扣件螺栓自动检测装置
CN210236888U (zh) 带限位和平衡装置的电动行车
CN108861419B (zh) 一种多功能皮带运输机巡检系统
CN208188300U (zh) 一种新能源汽车电池生产用检测台
CN208568504U (zh) 一种钢筋混凝土杆损伤在线监测装置
CN105347173A (zh) 一种自动抓取多种井盖的装置
CN203699227U (zh) 可携带装置的自动行走设备
CN209600666U (zh) 一种基于滚动密封的负压吸附履带式爬壁机器人
CN207456467U (zh) 一种运动状态检测装置
CN102146647B (zh) Crts i、iii型轨道板铺设视频传感机构
CN202125244U (zh) 一种循环吸水钻井地探机
CN220206656U (zh) 一种阀体平直度检测工装
CN219902178U (zh) 一种用于公路隧道的智能轨道巡检机器人
CN212745921U (zh) 一种组合式门式起重机用风速仪的连接机构
CN110954336A (zh) 差速器性能检测机构
CN214689469U (zh) 一种智能轨道检测小车
CN219984927U (zh) 硅铁合金破碎装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016426824

Country of ref document: AU

Date of ref document: 20161207

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16919283

Country of ref document: EP

Kind code of ref document: A1