WO2018072264A1 - 制浆造纸生产中控制有机污染物沉积的组合物及造纸方法 - Google Patents

制浆造纸生产中控制有机污染物沉积的组合物及造纸方法 Download PDF

Info

Publication number
WO2018072264A1
WO2018072264A1 PCT/CN2016/108066 CN2016108066W WO2018072264A1 WO 2018072264 A1 WO2018072264 A1 WO 2018072264A1 CN 2016108066 W CN2016108066 W CN 2016108066W WO 2018072264 A1 WO2018072264 A1 WO 2018072264A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
oxidase
deposition
pulp
hydrolase
Prior art date
Application number
PCT/CN2016/108066
Other languages
English (en)
French (fr)
Inventor
王祥槐
谢焱
张光林
Original Assignee
瑞辰星生物技术(广州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞辰星生物技术(广州)有限公司 filed Critical 瑞辰星生物技术(广州)有限公司
Publication of WO2018072264A1 publication Critical patent/WO2018072264A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C5/00Other processes for obtaining cellulose, e.g. cooking cotton linters ; Processes characterised by the choice of cellulose-containing starting materials
    • D21C5/02Working-up waste paper
    • D21C5/022Chemicals therefor
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C5/00Other processes for obtaining cellulose, e.g. cooking cotton linters ; Processes characterised by the choice of cellulose-containing starting materials
    • D21C5/02Working-up waste paper
    • D21C5/025De-inking
    • D21C5/027Chemicals therefor
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/008Prevention of corrosion or formation of deposits on pulp-treating equipment
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/08Removal of fats, resins, pitch or waxes; Chemical or physical purification, i.e. refining, of crude cellulose by removing non-cellulosic contaminants, optionally combined with bleaching
    • D21C9/086Removal of fats, resins, pitch or waxes; Chemical or physical purification, i.e. refining, of crude cellulose by removing non-cellulosic contaminants, optionally combined with bleaching with organic compounds or compositions comprising organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/64Paper recycling

Definitions

  • the invention belongs to the technical field of pulping and papermaking, and particularly relates to a composition for controlling deposition of organic pollutants in a pulp and paper production process and a papermaking method.
  • sticker precipitation is usually a particle derived from a slurry of regenerated fiber, its main chemical structural features are synthetic adhesives such as adhesives and hot melts, including but not limited to: Hot melt, pressure sensitive adhesive (PSA), latex and adhesive.
  • PSA pressure sensitive adhesive
  • Sieves and centrifugal cleaners can also be used to remove stickies, resins and slag from the fiber stream, which separates the fibers from the impurities based on the difference in size and shape of the impurities and the pores or slots of the screen.
  • the screen cannot remove impurities smaller than the mesh or that can be deformed sufficiently to pass through the mesh, which limits the effect of the sieve separating the fibers from the impurities.
  • the centrifugal cleaner separates the fibers from the impurities based on the different specific gravities of the impurities and fibers. However, when the relative densities of impurities and fibers are similar, the separation effect is not good.
  • Viscosity describes the adhesion properties of impurities, and by reducing the viscosity of the impurities, the tendency of impurities to adhere to the wire and other surfaces of the paper machine during the process can be significantly reduced.
  • Previous methods for reducing the viscosity of impurities include chemical and mechanical processing of process streams. Some methods focus on the use of repulpable or recyclable adhesives. More common methods include the use of chemical additives to modify impurities or to de-viscosify impurities. Typically, the chemical additives include silicate minerals such as talc and bentonite, which adhere to the surface of the impurities, thereby altering the surface properties of the viscous material, thereby reducing stickiness.
  • the use of minerals in these methods for debonding has a number of disadvantages, including large amounts, loss of efficiency when exposed to shear stress, and possible negative effects on other operations and product quality.
  • US Patent No. 3,992,249 discloses the use of an anionic vinyl polymer containing 25-85% of a hydrophobic group to control the deposition of organics, wherein the hydrophobic groups include styrene, methylstyrene, long chain fatty alkyl groups, etc., anionic groups Including acrylic acid, methacrylic acid, styrene sulfonic acid and the like.
  • Nonionic polymeric release agents are well known in the art as materials for controlling the deposition of resins and stickies and are used to control the deposition of resins and stickies in pulp and papermaking systems. For example, U.S. Patent Nos.
  • 4,871,424 and 4,886,575 each disclose the use of a vinyl alcohol-vinyl acetate copolymer to control the deposition of resins and stickies in pulp and paper systems.
  • DeTac product of Hercules Inc., USA
  • the problem is that the effect is poor and the application range is narrow, and in particular, it is substantially ineffective for the deposition of the fatty acid soap resin.
  • Hydrophobically modified nonionic associative polymers are described in European Patent EP 0 568 229 Al, for example Hydrophobically modified carboxyethyl cellulose ether (HMHEC) prevents the deposition of organic contaminants from pulp in pulp and paper systems.
  • HMHEC Hydrophobically modified carboxyethyl cellulose ether
  • Combinations of vinyl alcohol-vinyl acetate copolymers of nonionic polymers and HMHEC with cationic polymers are disclosed in U.S. Patent Nos. 5,723,021 and 7,166,192.
  • U.S. Patent No. 8,048,268 discloses the use of a hydrophobically modified ethoxylated aminoplast thickener to control organic matter deposition problems.
  • none of these methods can truly solve the problem of organic matter deposition completely and effectively, and there are defects of poor effect.
  • lipases and esterases are protein catalysts which promote the hydrolysis of glycerides in the resin component and also react with the stickies to reduce, eliminate and/or inhibit deposition.
  • lipases and esterases are protein catalysts which promote the hydrolysis of glycerides in the resin component and also react with the stickies to reduce, eliminate and/or inhibit deposition.
  • the use of lipase to hydrolyze the main component of the resin, i.e., non-polar triglycerides, to water-soluble glycerol and polar fatty acids is used in the manufacture of paper from mechanical pulp.
  • the viscosity of the contaminant polyvinyl alcohol is a typical contaminant component of recycled paper.
  • a method of increasing the removal or control of adhesives and viscous contaminants in a papermaking process, comprising combining one or more enzymes with one or more, is disclosed in US Patent Application Publication No. 2006/0048908 Al.
  • Absorbent or adsorbent is selected from natural or synthetic inorganic And organic particles comprising crosslinked cationic, anionic or nonionic organic particles.
  • the present invention provides a composition for controlling the deposition of organic contaminants in the production of pulp and paper.
  • composition for controlling deposition of organic contaminants in pulp and paper production comprising the following components:
  • a biological enzyme having a perhydrolysis function, said biological enzyme being perhydrolases;
  • the ratio by weight of i) and ii) in the composition is from 1:0.1 to 200.
  • the perhydrolase enzyme in i) is one or more perhydrolase enzymes comprising: a carboxylate hydrolase, a thioester hydrolase, a phosphate phosphate acting on an ester bond An ester hydrolase or a phosphodiester hydrolase, a thioether hydrolase acting on an ether bond, and a polypeptide hydrolase acting on a peptide bond.
  • the polypeptide hydrolase is in the alpha-amino-acyl-peptide hydrolase, peptidyl-amino acid hydrolase, acyl-amino acid hydrolase, dipeptidyl hydrolase or peptidyl-peptide hydrolase At least one.
  • the perhydrolase enzymes in i) are acetate hydrolase and peptidyl-peptide hydrolase.
  • the precursor capable of generating hydrogen peroxide in ii) is a compound capable of producing hydrogen peroxide by a chemical reaction or an enzymatic reaction; the enzymatic reaction is an oxidase catalyzed by an oxidase The substrate reacts with oxygen or air to produce hydrogen peroxide.
  • the oxidase is glucose oxidase, monoamine oxidase, xanthate oxidase, urate oxidase, oxalate oxidase, semi-lactate oxidase, cellulose oxidase, polyphenol oxidase, fatty alcohol oxidation At least one of an enzyme or a fatty aldehyde oxidase.
  • the oxidase is at least one of glucose oxidase, monoamine oxidase, or phenol oxidase.
  • the ratio by weight of i) and ii) in the composition is from 1: 0.1 to 30.
  • the ratio by weight of i) and ii) in the composition is from 1: 0.1-20.
  • the ratio by weight of i) and ii) in the composition is from 1:0.1 to 10.
  • the ratio by weight of i) and ii) in the composition is from 1: 0.1 to 5.
  • the ratio by weight of i) and ii) in the composition is from 1:0.5 to 5.
  • the ratio by weight of i) and ii) in the composition is from 1:1 to 2.
  • Another object of the present invention is to provide a papermaking method for controlling the deposition of organic contaminants using the above composition, comprising the steps of:
  • the amount of the composition added in step (2) is from 0.01 to 20 kg per ton of dry slurry.
  • the amount of the composition added in step (2) is from 0.10 to 11 kg per ton of dry slurry.
  • the amount of the composition added in step (2) is from 0.4 to 5.5 kg per ton of dry slurry.
  • the temperature of the reaction of step (2) is 10-80 ° C, the time is 5-600 min, and the pH is 3-10.
  • the temperature of the reaction of step (2) is from 20 to 80 ° C for a period of from 20 to 300 min.
  • the temperature of the reaction of step (2) is from 45 to 65 ° C for a period of from 50 to 150 minutes.
  • Another object of the present invention is to provide the use of the above composition for controlling the deposition of organic contaminants in pulp and paper production.
  • the invention has been subjected to extensive experiments by the inventors to obtain a composition consisting of a specific ratio of peroxyhydrolase and hydrogen peroxide and/or a precursor capable of generating hydrogen peroxide, which can significantly control organic pollutants in pulp and paper production.
  • Deposition especially the deposition of viscous materials, and determining the optimum ratio of the components in the composition, and the optimum addition amount of the composition in the pulp and paper production, using the composition to treat the pulp raw material due to It can oxidatively hydrolyze with organic pollutants in the pulp (especially viscous materials, including inks), thereby changing the physical and chemical properties of organic pollutants in the pulp, reducing the viscosity of organic pollutants, and making such materials in the pulping process.
  • the present invention further includes a composition suitable for a wide range of advantages.
  • Figure 1 is a schematic view showing the reaction principle of the composition of the present invention for controlling the deposition of organic pollutants in pulp and paper production;
  • FIG. 2 is a diagram showing surface deposition results of organic pollutants (stickies) of newsprint paper produced by blank group ONP/OMG in Example 1;
  • Figure 3 is a graph showing the results of surface deposition of the control group 1 (left panel) and the control group 2 (right panel) in Example 1;
  • Example 4 is a graph showing the surface deposition results of the experimental group 2 adhesive in Example 1;
  • Figure 5 is a graph showing the surface deposition results of the experimental group 3 adhesive in Example 1;
  • Figure 6 is a graph showing the surface deposition results of the experimental group 8 stickies in Example 1;
  • Example 7 is a view showing the results of the deposition of the stickies on the surface of the dryer blade before and after the test in Example 2; wherein A is before the experiment and B is after the experiment;
  • Fig. 8 is a graph showing the results of comparison of the amount of adherent deposited before and after the test in Example 2.
  • perhydrolases or “perhydrolases” means that the peroxidase substrate which is capable of catalyzing its selection is hydrolyzed while being capable of reacting with hydrogen peroxide to cause sufficient formation.
  • An amount of peracetic acid or other organic peracid biological enzyme; the perhydrolase of the present invention produces a very high ratio of perhydrolysis to hydrolysis, which is due to its higher ratio of perhydrolysis to hydrolysis. Not suitable for use in very wide conditions and uses.
  • the perhydrolase of the present invention is characterized as having a unique primary sequence, tertiary structure or quaternary structure, which is specifically described in the published literature, such as the Chinese invention patent application CN103333870A, the US patent US7960151, the US patent 7278854, the United States. Patent 7384787 is described in detail in U.S. Patent 7,754,460.
  • hydrolases can be used in the peroxidase of the present invention, including but not limited to carboxylate hydrolase (EC 3.1.1.6) acting on ester bonds, hydrolysis of thioesters Enzyme (EC 3.1.2), phosphomonoester hydrolase (EC 3.1.3) and phosphodiester hydrolase (EC 3.1.4); thioether hydrolase (EC 3.3.1) acting on ether linkages; Peptide-bonded ⁇ -amino-acyl-peptide hydrolase (EC 3.4.x), peptidyl-amino acid hydrolase (EC 3.4.11), acyl-amino acid hydrolase (EC 3.4.21), dipeptidyl hydrolase and Peptidyl-peptide hydrolase (EC 3.4.x); all of these enzymes have high perhydrolysis to hydrolysis ratios.
  • carboxylate hydrolase EC 3.1.1.6 acting on ester bonds
  • hydrolysis of thioesters Enzyme EC 3.1.2
  • phosphomonoester hydrolase EC 3.1.3
  • Suitable hydrolases include: (1) proteases belonging to the class of peptidyl-peptide hydrolases (eg, pepsin, pepsin B, rennin, trypsin, chymotrypsin A, chymotrypsin B) , elastase, enterokinase, cathepsin C, papain, papain, ficin, fibrin, plasmin, renin, subtilisin, fungal peptidase A, collagenase, shuttle Bacillus cytoseptidase B, kallikrein, pepsin, cathepsin D, bromelin, keratinase, chymotrypsin C, pepsin C, mycobacterial B, urokinase, carboxypeptide Enzymes A and B and aminopeptidase); (2) carboxylate hydrolase comprising carboxyleste
  • hybrid perhydrolases and “fusion perhydrolases” refer to proteins engineered from at least two different proteins or “parental” proteins. In a preferred embodiment, these parent proteins are homologous to each other.
  • a preferred hybrid perhydrolase or fusion protein comprises the N-terminus of a protein and the C-terminus of the homolog of the protein. In some preferred embodiments, the two ends are combined into a clean protein corresponding to the full length.
  • perhydrolysis or “perhydrolysis” refers to the oxidation of hydrogen peroxide with certain specific chemicals and the production of peroxides, for example, the perhydrolysis of ethyl acetate with hydrogen peroxide. Can be expressed as follows:
  • peracid refers to an organic acid RCOO 2 H having the following chemical structure, wherein R is a fatty chain or an aromatic chain, such as peracetic acid, per oleic acid.
  • peroxidase substrate means all esters of aliphatic and aromatic carboxylic acids/alcohols and hydrogen peroxide in the papermaking stock and production process, said substrate being in the peroxyhydrolase Under the catalysis, hydrolysis and peroxidation occur simultaneously to produce peracid or peroxyacid; the key components in obtaining this reaction effect (ie, producing peracid by enzymatic perhydrolysis) are enzymes, enzyme substrates and hydrogen peroxide.
  • the enzyme substrate is selected from the group consisting of one or more of the following ester materials: formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, oleic acid, acidoid, twelfth Acid, tetradecanoic acid, hexadecanoic acid, octadecanoic acid and oleic acid;
  • the hydrogen peroxide can be added directly in batches or continuously "in situ”
  • the "in situ generation” means a precursor of hydrogen peroxide (H 2 O 2 ) added in the production process in the form of a percarbonate or per-sulphonate which is automatically chemically decomposed to produce hydrogen peroxide; or an oxidase produced by a biological enzyme Hydrogen peroxide, an example of which includes glucose oxidase, which produces hydrogen peroxide by catalyzing the reaction of glucose and oxygen.
  • oxidase means a biological enzyme having an oxidation of a substrate by catalytic oxidation of an oxidase using oxygen as an electron acceptor and reducing oxygen to hydrogen peroxide, including but not limited to the following enzyme species: glucose oxidase EC1.1.3.4), monoamine oxidase, xanthine oxidase, urate oxidase, oxalate oxidase, galactose oxidase, cellulose Polysaccharide monooxygenase, polyphenol oxidase, alcohol oxidase and aldehyde oxidase.
  • xanthogen oxidase (I.U.B.: 1.1.3.22) refers to a biological enzyme having catalytic oxidation of xanthogen as follows, including
  • uric acid oxidase (EC 1.7.3.3) refers to an enzyme that catalyzes the oxidation of uric acid to 5-hydroxyisouric acid:
  • monoamine oxidase (abbreviated as MAO)
  • MAO monoamine oxidase
  • EC 1.4.3.4 refers to an enzyme having an oxidative deamination reaction catalyzing a monoamine species; the monoamine species are one class containing "aryl ring-CH 2 -CH 2 - NH 2 ” compound.
  • Catalyzed by monoamine oxidase is the reaction of monoamines by oxidative deamination to form hydrogen peroxide, ammonia and corresponding aldehydes.
  • the reaction formula can be written as:
  • glucose oxidase refers to a biological enzyme having the following redox reaction catalyzing glucose and oxygen:
  • si-lactate oxidase (I.U.B.: 1.1.3.9) refers to a biological enzyme having the following redox reaction catalyzing galactose and oxygen:
  • polyphenol oxidase also known as tyrosine (I.U.B.: 1.14.18.1) refers to a biological enzyme having the following redox reaction catalyzing tyrosine and oxygen:
  • fatty alcohol oxidase (EC 1.1.3.13), also known as alcohol oxidase, refers to a biological enzyme having the following redox reaction which catalyzes the fatty alcohol and oxygen such as alcohol:
  • fatty aldehyde oxidase (EC 1.1.3.13) refers to a biological enzyme having the following redox reaction catalyzing the reaction of fatty aldehydes and oxygen:
  • oxalate oxidase (EC 1.2.3.4) refers to a biological enzyme having the following redox reactions that catalyze the oxidation of oxalic acid and oxygen:
  • Cellulose Oxidative Enzymes refers to a polysaccharide monooxygenase (PMO), which refers to a family of molecules having a molecular weight of 20-50 KDa and containing copper (II).
  • PMO polysaccharide monooxygenase
  • II copper
  • Other names for glycanoxygenase include polyglucose oxygenase or polysaccharide monooxygenase (PMO), lytic polysaccharide monooxygenase (LPMO), and glycosidation Enzyme 61 (glycosyl hydrolase 61, GH61).
  • fibrous oxidase composition means that the composition contains two components, one component being a polysaccharide monooxygenase, and the other component being capable of maintaining or increasing the activity of the fiber oxidase.
  • An auxiliary wherein the auxiliary may be one or more compounds of the following compounds, (1) a reaction substrate of a cell oxidase, oxygen or oxygen precursors, and (2) a scavenger of a reaction product (radical scavengers) And (3) a protein that promotes fiber oxidase.
  • reaction substrate for cellulase refers to an electron acceptor, oxygen, which is necessary for the reaction of a glycan oxidase in addition to fibers; the reaction substrate can be provided by: oxygen, air or oxygen releasing compounds,
  • oxygen releasing compound in the present invention means a peroxide or ozone, and the peroxide includes hydrogen peroxide, sodium peroxide, calcium peroxide, and potassium peroxide.
  • cellulolytic enzyme refers to all biological enzymes which degrade cellulose by hydrolysis reaction, and the terms cellulose hydrolase and cellulase, cell hydrolase and cellulase are often used interchangeably. According to the different modes of action of cellulase degradation of substrates, they can be divided into three categories:
  • Endocellulase is also known as endoglucanase (Endoglucanase, EG; EC 3.2.1.4);
  • Exocellulase is also known as cellobiohydrolase (CBOH; EC 3.2.1.91);
  • endocellulase also known as endog-glucanase, endo-1,4- ⁇ -D-glucanase, EC 3.2.1.4
  • endocellulase also known as endog-glucanase, endo-1,4- ⁇ -D-glucanase, EC 3.2.1.4
  • the long-chain cellulose molecules are truncated to produce a large number of non-reducing terminal small molecular cellulose having a molecular weight of about 23-146 KD;
  • exocellulase also known as exog-glucanase, exo-1,4- ⁇ -D-glucanase, EC 3.2.1.91
  • exocellulase also known as exog-glucanase, exo-1,4- ⁇ -D-glucanase, EC 3.2.1.91
  • CBH cellobiohydrolase
  • Cellobiase also known as ⁇ -glucosidase, ⁇ -1,4-glucosidase, EC 3.2.1.21
  • BG Cellobiase
  • Such enzymes typically hydrolyze cellobiose or soluble cellodextrin to glucose molecules having a molecular weight of about 76 KD.
  • CMCase refers to the enzymatic activity of the glucan of the cellulase component in their ability to degrade cellulose into glucose, cellobiose and disaccharide. Cellulase activity is generally determined by a decrease in the viscosity of the solution of carboxymethylcellulose.
  • the components of the peroxyhydrolase involved in the present invention may be separately added to the papermaking process by the products of the individual enzyme components, or the two components may be separately added to different positions or mixed into one product formula to be added to the papermaking process. The same position to achieve the best results.
  • the purpose and effect of using peroxylase in the present invention is to further hydrolyze the viscous material in the slurry by using peroxyhydrolase, and further produce a strong oxidation reaction of the peracetic acid on the viscous material to change the viscous material.
  • Physical and chemical properties so as to reduce the content of viscous material in the papermaking slurry, reduce the viscosity (see Figure 1 for a schematic diagram of the specific reaction principle). Since peracetic acid or peroxyacid can strongly oxidize all viscous materials, the method of the present invention has broad spectrum and avoids carboxylation compared with the conventional carboxylic acid ester hydrolase only for ester viscous materials. The singularity of ester hydrolysis enzymes.
  • the unit "kg/T" in the present invention refers to the number of kilograms of material added per ton of dry pulp.
  • a papermaking method for controlling deposition of organic pollutants in pulp and paper production which is mainly used for controlling organic pollutants (ie, stickies described below) in the process of producing newsprint from waste newspapers.
  • the slurry of deinked waste newspaper pulp (ONP) was obtained from a newsprint paper mill in Guangdong.
  • Conventional Adhesive Control Agents are registered trademarks of Ashland Corporation of the United States. Make a reference comparison.
  • perhydrolase and other enzymes such as oxidases and hydrolases are produced by Ruichenxing Biotechnology (Guangzhou). Co., Ltd. provides, the latter number is the company's internal enzyme code. Hydrogen peroxide (concentration of 30% W/V) and peracetic acid were supplied by Guangdong Zhongcheng Chemical Co., Ltd.
  • the conditions of the deposition test were: dry cellulose pulp 100 g (dry pulp weight), water was added to adjust the slurry to 10% aqueous cellulose papermaking pulp, and different perhydrolase compositions were used (as shown in Table 1). The reaction was carried out with a cellulose papermaking slurry at a reaction temperature of 65 ° C, a reaction time of 120 minutes, and a moderate stirring strength.
  • Container surface deposit is the ratio of the area covered by the stickies divided by the total area of the inner surface of the container;
  • Perhydrolase 3116 belongs to the class of acetate esterase (EC 3.1.1.6);
  • Perhydrolase 3421 belongs to the class of proteases (EC4.2.x).
  • FIG 7 compares the glue before the test (without adding any stickies control products, panel A) adhesive was knife cylinder and the rear surface of the test (the use of clean (TM) enzyme, panel B) of the blade surface of the dryer deposited form. It can be seen that after the use of the hydrolase, not only the amount of stickies deposited (Fig. 8) was greatly reduced, but also the viscosity and morphology (including color) were significantly changed (Fig. 7).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Paper (AREA)

Abstract

一种制浆造纸生产中控制有机污染物沉积的组合物,其有效成分包括:i)具有过氧水解功能的生物酶;ii)过氧化氢和/或能够产生过氧化氢的前驱物;所述组合物中i)和ii)的重量份比为1:0.1-200。还提供一种将该组合物添加到纤维造纸浆料中控制有机污染物沉积的造纸方法。

Description

制浆造纸生产中控制有机污染物沉积的组合物及造纸方法 技术领域
本发明属于制浆造纸技术领域,特别涉及一种制浆造纸生产中控制有机污染物沉积的组合物及造纸方法。
背景技术
在纸张制造工业中,一个日益关注的领域是废纸的回收和二次利用;然而,从废纸或从用于处理废纸的工艺物流中去除杂质是能够再利用废纸的关键。在造纸过程中,有机污染物的沉积(又叫沉淀)对纸产品质量和造纸生产效率都十分不利,这一问题最主要的两个具体原因为树脂沉积和胶粘物沉积。其中,树脂沉积物的主要成分是天然存在于木材中并在制浆和造纸过程中释放出来的;从物理学角度来说,“树脂沉积物”通常由浆料中粘合剂材料(天然或人造的)的微观粒子形成而累积在造纸纸张或制浆设备上。而“胶粘物沉淀”通常是来源于再生纤维的浆料中的微粒,其主要化学结构特征是合成的胶水(adhesives)和热熔胶(hot melts)等粘合剂,包括但不限于:热熔融物、压敏性粘合剂(PSA)、乳胶和粘合剂。
在过去,树脂和胶粘物的沉积现象在不同系统中具有各自典型的体现,这是由于当时造纸几乎只使用原生纤维或只使用再生纤维。为了控制这些彼此独立的问题,通常会有截然不同的处理化学品和应对策略。但是,近年来的趋势是在所有系统中都逐渐使用再生纤维,因此在发生“树脂沉积”的同时也会发生“胶粘物沉积”,造成胶粘物与树脂共同沉积的有机污染物沉积问题。
这些沉积物很容易在储浆池壁、造纸机箱、U-形箱、造纸机导线、湿压机毛毡、烘缸毛毡、干燥罐和压光机组件中找到。有机污染物沉积不但会存留在系统的金属表面上,还会存留于塑料和合成表面上,对造纸生产造成不好的影响。例如在机器、毛毯、U-形箱箱和流浆箱部件上,不利于制浆或造纸,甚至影响运转效率,降低生产能力等。如果有机污染物沉积在造纸系统中的加工设备上,沉积在稠度调节器和其它探测器械上的有机污染物会造成这些部件无法正常使用,导致系统操作困难。此外,有机物沉积会造成纸面孔洞、污物和其它纸病,这些缺陷会使纸的质量下降,并无法用于后续工序,例如涂布、印染力日工或印刷。
虽然可以对造纸机进行停机清洁,但是我们并不希望发生这种停机清洁,因为这会造成生产率的相应损失,而且当这些沉积物折断并混入纸张中时,这些污染物的存在又会更一步造成纸张质量的劣化。用于去除/控制胶粘物/污染物的机械方法包括分散、筛分和清洁。用分散将杂质粉碎成越来越小的微粒,直到它们在最终产物中是看不见的。令人遗憾地,当产物卷绕时,即使“看不见的”杂质的存在未能除去相邻层的互粘,并且这些杂质仍可显著地削弱产物的总外观。筛子和离心净浆器也可用于从纤维流中除去胶粘物、树脂和渣物,他们基于杂质和筛网的孔或狭槽的尺寸和形状差异,将纤维从杂质中分离。然而,筛子不能除去小于筛孔或可足够变形以通过筛孔的杂质,这限制了筛子从杂质中分离纤维的效果。基于杂质和纤维的不同的比重,离心净浆器将纤维从杂质中分离。然而,当杂质和纤维的相对密度相似时,分离效果不好。
粘性描述了杂质的粘合性能,通过减少杂质的粘性,可以明显减少在工艺过程中杂质粘附到造纸机金属丝及其他表面的倾向。以前减少杂质粘性的方法包括工艺物流的化学和机械处理。一些方法集中在使用可再浆化或可再生的粘合剂上。更多普遍的方法包括使用化学添加剂以改变杂质或使杂质去粘性。通常,所述化学添加剂包括硅酸盐矿物如滑石和膨润土,这些矿物和表面活性剂粘附在杂质的表面,因此改变了粘性材料的表面性质,从而减少粘性。然而,这些方法在脱粘性过程中使用矿物存在众多缺点,包括用量大、当暴露于剪应力时的效率损失,以及对其他操作和产物质量可能有负面影响等。
美国专利US 3,992,249公布了使用含25-85%疏水性基团的阴离子型乙烯聚合物控制有机物沉积,其中疏水性基团包括苯乙烯、甲基苯乙烯、长链脂肪烷基等,阴离子基团包括丙烯酸、甲基丙烯酸、苯乙烯磺酸等。非离子聚合物防粘剂作为控制树脂和胶粘物沉积的物质是本领域公知的,其被用于控制在制浆和造纸系统中的树脂和胶粘物的沉积。例如,美国专利US 4,871,424和US 4,886,575分别提出用乙烯醇-醋酸乙烯共聚物可以控制制浆和造纸系统中的树脂和胶粘物沉积。在常规技术中,常使用DeTac(美国Hercules Inc.产品)来控制有机物沉积,但其存在的问题是效果差并且适用范围窄,特别是对于脂肪酸皂类树脂沉积基本无效果。
欧洲专利EP 0568229 Al中介绍用疏水改性的非离子缔合型聚合物,例如 疏水改性的羧乙基纤维素醚(HMHEC),能防止制浆和造纸系统中有机污染物从纸浆中沉积。美国专利US 5,723,021和US 7,166,192公开了非离子型聚合物的乙烯醇-醋酸乙烯共聚物和HMHEC与阳离子型聚合物的组合。最近,美国专利US 8,048,268公开了用疏水改性氨基增稠剂(hydrophobically modified ethoxylated aminoplast thickener)控制有机物沉积问题。但是,这些方法均不能真正完全有效解决有机物沉积的问题,存在效果不佳的缺陷。
此外,己知酶可以有效地作为制浆和造纸系统中的污染物控制剂。其原理是:脂肪酶和酯酶是蛋白质催化剂,它们可以促进树脂组分中的甘油酯的水解,也可以与胶粘物反应,以使其粘性降低、消除和/或抑制沉积。如美国专利US 5,176,796阐述了在用含机械纸浆制造纸张的过程中,利用脂肪酶将树脂的主要成分,即非极性甘油三酯,水解为水溶性甘油和极性脂肪酸。美国专利US 5,507,952、US 5,356,800、US 6,471,826 B2、US专利出版物20061 0048908号和国际专利出版物WO 02/095127 A2中报道了利用脂肪分解酶来水解含醋酸乙烯的聚合物,以减小污染物的粘性,所述污染物聚乙烯醇是典型的再生纸中的胶粘物污染物成分。
但是,单独使用酶并不是控制制浆和造纸应用中有机污染物的最佳方法。例如,众所周知的一个问题就是,使用脂肪酶分解树脂而生成的脂肪酸会和水中的金属离子反应生成的难溶性脂肪皂,导致沉积,而且在树脂含量较高时,甚至比未经脂肪酶处理的树脂沉积更严重。脂肪皂化后的熔点比未转化前树脂的熔点更高,粘性更大,不溶于一般的有机溶剂,因此更难控制。为此,美国专利US 5,256,252和US 5,667,634中阐述了一种在制浆和造纸过程中控制树脂沉积的方法,其包括组合使用脂肪酶和阳离子型聚合物,以降低纤维素浆料水相中的脂肪酸浓度。美国专利US 6,471,826 B2中公开了类似的方法,该方法组合使用至少一种酯酶和阳离子型聚合物来控制再生纸中的有机污染物。美国专利申请出版物2004/0194903 Al中公开了一种用于减少或防止污染物沉积的方法,该方法包括利用一种或多种酶和非酶的液体毛布调理剂,所述调理剂由一种或多种表面活性剂和/或一种或多种阴离子型或阳离子型分散剂或聚合物构成。
美国专利申请出版物2006/0048908 Al中公开了一种提高对造纸过程中的粘合剂和粘性污染物的去除或控制的方法,其包括组合使用一种或多种酶与一种或多种吸收剂或吸附剂。所述吸收剂或吸附剂选自天然或合成的无机 和有机颗粒,其包括交联的阳离子、阴离子或非离子有机微粒。
但是,现有生物酶处理有机污染物和降低粘性的技术由于生物酶的选择性,其有效性之局限于某一种或某一类粘性材料。而造纸浆料中的粘性物质的种类多,其组成变化大,因此,目前的生物酶对胶粘物控制的效果不理想。
总之,到目前为止,还没有一种真正完全有效解决有机物沉积问题的方法。而造纸工业非常渴望得到一种经济有效的技术来解决有机物沉积这个困扰造纸生产多年的问题。
发明内容
基于此,本发明提供一种制浆造纸生产中控制有机污染物沉积的组合物。
解决上述技术问题的具体技术方案如下:
一种制浆造纸生产中控制有机污染物沉积的组合物,所述组合物的有效成分包括以下组分:
i)具有过氧水解功能的生物酶,所述生物酶为过水解酶(perhydrolases);
ii)过氧化氢和/或能够产生过氧化氢的前驱物(hydrogen peroxide precursors);
所述组合物中i)和ii)的重量份比为1:0.1-200。
在其中一些实施例中,i)中所述过水解酶为一种或多种过水解酶,所述过水解酶包括:作用于酯键的羧酸酯水解酶、硫酯水解酶、磷酸单酯水解酶或磷酸二酯水解酶,作用于醚键的硫醚水解酶和作用于肽键的多肽水解酶。
在其中一些实施例中,所述多肽水解酶为α-氨基-酰基-肽水解酶、肽基-氨基酸水解酶、酰基-氨基酸水解酶、二肽基水解酶或肽基-肽水解酶中的至少一种。
在其中一些实施例中,i)中所述过水解酶为醋酸酯类水解酶和肽基-肽水解酶。
在其中一些实施例中,ii)中所述能够产生过氧化氢的前驱物为能通过化学反应或酶学反应产生过氧化氢的化合物;所述酶学反应是能通过氧化酶催化的氧化酶底物和氧气或空气产生过氧化氢的反应。
在其中一些实施例中,所述氧化酶为葡萄糖氧化酶、单胺氧化酶、黄原酸氧化酶、尿酸氧化酶、草酸氧化酶、半乳酸氧化酶、纤维素氧化酶、多酚氧化酶、脂肪醇氧化酶或脂肪醛氧化酶中的至少一种。
在其中一些实施例中,所述氧化酶为葡萄糖氧化酶、单胺氧化酶或酚氧化酶中的至少一种。
在其中一些实施例中,所述组合物中i)和ii)的重量份比为1:0.1-30。
在其中一些实施例中,所述组合物中i)和ii)的重量份比为1:0.1-20。
在其中一些实施例中,所述组合物中i)和ii)的重量份比为1:0.1-10。
在其中一些实施例中,所述组合物中i)和ii)的重量份比为1:0.1-5。
在其中一些实施例中,所述组合物中i)和ii)的重量份比为1:0.5-5。
在其中一些实施例中,所述组合物中i)和ii)的重量份比为1:1-2。
本发明的另一目的在于提供一种用上述组合物控制有机污染物沉积的造纸方法,包括如下步骤:
(1)形成含水的纤维素造纸浆料A;
(2)将上述组合物添加到步骤(1)所述的纤维素造纸浆料A中进行反应,得造纸浆料B;
(3)将步骤(2)所述的造纸浆料B送上网,滤水,固体组分形成纸页;
(4)将步骤(3)得到的纸页经过压榨和干燥,得到纸产品。
在其中一些实施例中,步骤(2)中所述组合物的添加量为每吨干浆料0.01-20kg。
在其中一些实施例中,步骤(2)中所述组合物的添加量为每吨干浆料0.10-11kg。
在其中一些实施例中,步骤(2)中所述组合物的添加量为每吨干浆料0.4-5.5kg。
在其中一些实施例中,步骤(2)所述反应的温度为10-80℃,时间为5-600min,pH为3-10。
在其中一些实施例中,步骤(2)所述反应的温度为20-80℃,时间为20-300min。
在其中一些实施例中,步骤(2)所述反应的温度为45-65℃,时间为50-150min。
本发明的另一目的在于提供上述组合物在制浆造纸生产中控制有机污染物沉积中的应用。
本发明所述的一种制浆造纸生产中控制有机污染物沉积的组合物及造纸方法具有以下优点和有益效果:
本发明经发明人的大量实验,得出由特定比例的过氧水解酶和过氧化氢和/或能够产生过氧化氢的前驱物组成的组合物,可显著控制制浆造纸生产中有机污染物沉积,特别是粘性物质的沉积,并确定了该组合物中各组分的最佳配比,及该组合物在制浆造纸生产中的最佳添加量,采用该组合物处理纸浆原料,由于其可与纸浆中的有机污染物(尤其是粘性物质,包括油墨)发生氧化水解反应,从而改变了纸浆中有机污染物的理化性质,降低有机污染物的粘性,使得这类物质在制浆过程中更易被分离和去除,从而预防、减少、去除、甚至消除纸浆造纸系统中有机污染物(尤其是粘性物质)沉积问题,减少有机污染物对造纸可能带来的负面影响和危害,提高了造纸生产的效率和产品质量,尤其是降低了断纸率,且降低能耗,为造纸企业节约了生产成本,提高了经济利润;另外,本发明所述组合物还具有适用范围广的优点。
附图说明
图1为本发明所述组合物在制浆造纸生产中控制有机污染物沉积中的反应原理示意图;
图2为实施例1中空白组ONP/OMG生产新闻纸有机污染物(胶粘物)的表面沉积结果图;
图3为实施例1中对照组1(左图)和对照组2(右图)胶粘物的表面沉积结果图;
图4为实施例1中实验组2胶粘物的表面沉积结果图;
图5为实施例1中实验组3胶粘物的表面沉积结果图;
图6为实施例1中实验组8胶粘物的表面沉积结果图;
图7为实施例2中试验前和实验后烘缸刮刀表面的胶粘物沉积的形态结果图;其中,A为实验前,B为实验后;
图8为实施例2中试验前和试验后胶粘物沉积量的对比结果图。
具体实施方式
本发明中,术语“过水解酶”或“过氧水解酶”(英文:perhydrolases)是指,能够催化其选择的过氧水解酶底物进行水解,同时能够与过氧化氢反应,导致形成足够量的过乙酸或其它有机过酸的生物酶;本发明的过水解酶产生非常高的过水解与水解的比值,这些酶因其较高的过水解与水解的比值,而特 别适于用在非常宽的使用条件和用途中。本发明的过水解酶被表征为具有独特的一级序列、三级结构或者四级结构,其具体描述在已经公开的文献中,如中国发明专利申请CN103333870A,美国专利US7960151,美国专利7927854,美国专利7384787,美国专利7754460有详叙。
除了以上文献描述的过水解酶之外,多种水解酶可用于本发明中的过氧水解酶,包括但不限于作用于酯键的羧酸酯水解酶(EC 3.1.1.6)、硫酯水解酶(EC 3.1.2)、磷酸单酯水解酶(EC 3.1.3)和磷酸二酯水解酶(EC 3.1.4);作用于醚键的硫醚水解酶(EC 3.3.1);作用于肽键的α-氨基-酰基-肽水解酶(EC 3.4.x)、肽基-氨基酸水解酶(EC 3.4.11)、酰基-氨基酸水解酶(EC 3.4.21)、二肽基水解酶和肽基-肽水解酶(EC 3.4.x);所有这些酶有高的过水解与水解比值。在它们之中,优选的是醋酸酯类水解酶和肽基-肽水解酶。合适的水解酶包括:(1)属于肽基-肽水解酶类的蛋白酶(例如,胃蛋白酶、胃蛋白酶B、凝乳酶(rennin)、胰蛋白酶、胰凝乳蛋白酶A、胰凝乳蛋白酶B、弹性蛋白酶、肠激酶、组织蛋白酶C、木瓜蛋白酶、木瓜凝乳蛋白酶、无花果蛋白酶(ficin)、凝血酶、纤维蛋白溶酶、肾素、枯草杆菌蛋白酶、由霉菌肽酶A、胶原酶、梭状芽胞苷菌肽酶B、激肽释放酶、胃蛋白酶、组织蛋白酶D、菠萝蛋白酶(bromelin)、角蛋白酶、胰凝乳蛋白酶C、胃蛋白酶C、由霉菌肤酶B、尿激酶、羧肽酶A和B和氨肽酶);(2)羧酸酯水解酶,包含羧基酯酶、脂酶、果胶酯酶和叶绿素酶;和(3)具有高过水解对水解比值的酶。在它们之中特别有效的是脂酶,以及显示出高的过水解对水解比值的酯酶,以及进行蛋白质工程改造的酯酶、角质酶和脂酶。
术语“杂合过水解酶(hybrid perhydrolases)”和“融合过水解酶(fusion perhydrolases)”是指,从至少两个不同的蛋白或“亲代”蛋白经工程改造得到的蛋白质。在优选实施方案中,这些亲代蛋白质彼此同源。例如,在一些实施方案中,优选的杂合过水解酶或融合蛋白含有一种蛋白的N末端和该蛋白同源物的C末端。在一些优选实施方案中,这两个末端被合并为对应于全长的洁性蛋白质。
术语“过水解”或“过水解反应”(英文:perhydrolysis)是指过氧化氢与某些特定的化学物质进行氧化反应并产生过氧化物质,例如,乙酸乙酯与过氧化氢的过水解反应可以如下表达:
Figure PCTCN2016108066-appb-000001
术语“过酸(peracid)”是指具有以下化学结构的有机酸RCOO2H,式中R是脂肪链或芳香链,例如过乙酸(peracetic acid),过油酸(per oleic acid)。
术语“过氧水解酶底物”是指,在造纸原料和生产工艺中所有含脂肪族和芳香族羧酸/醇的酯类化合物和过氧化氢,所述的底物在过氧水解酶的催化下,同时发生水解和过氧化反应,产生过酸或过氧酸;在得到此反应效果(即通过酶促过水解产生过酸)的关键成分是酶、酶底物和过氧化氢。在一些优选实施方案中,酶底物选自下列一种或多种的酯类材料:甲酸、乙酸、丙酸、丁酸、戊酸、己酸、辛酸、王酸、类酸、十二炕酸、十四炕酸、十六炕酸、十八炕酸和油酸;所述的过氧化氢可以直接批量加入,或持续地“原位产生”;所述的“原位产生”是指,在生产工艺中加入的过氧化氢(H2O2)的前驱物,其形式是自动化学分解产生过氧化氢的过碳酸盐或过棚酸盐;或者通过生物酶催化的氧化酶产生过氧化氢,所述氧化酶的例子包含葡萄糖氧化酶,其通过催化葡萄糖和氧气反应产生过氧化氢,
(1)
Figure PCTCN2016108066-appb-000002
(2)
Figure PCTCN2016108066-appb-000003
术语“氧化酶”是指,具有通过使用氧气作为电子受体催化氧化酶底物氧化并把氧气还原成为过氧化氢的生物酶,包括但不限于如下的生物酶种类:葡萄糖氧化酶(glucose oxidase EC1.1.3.4),单胺氧化酶(monoamine oxidase),黄原酸氧化酶(xanthine oxidase),尿酸氧化酶(urate oxidase),草酸氧化酶(oxalate oxidase),半乳酸氧化酶(galactose oxidase),纤维素氧化酶(polysaccharide monooxygenase),多酚氧化酶(polyphenol oxidase),脂肪醇氧化酶(alcohol oxidase)和脂肪醛氧化酶(aldehyde oxidase)。
所述“黄原酸氧化酶”(I.U.B.:1.1.3.22)是指,具有催化如下黄原酸氧化反应的生物酶,包括
(i)
Figure PCTCN2016108066-appb-000004
(ii)
Figure PCTCN2016108066-appb-000005
术语“尿酸氧化酶”(EC 1.7.3.3)是指,一种催化尿酸氧化为5-羟基异尿酸的酶:
尿酸+O2+H2O→5-羟基异尿酸+H2O2
术语“单胺氧化酶(缩写MAO)”(EC 1.4.3.4)是指,具有催化单胺类物质氧化脱氨反应的酶;所述单胺类物质是一类含有“芳环-CH2-CH2-NH2”的化合物。单胺氧化酶所催化的,是单胺被氧化脱氨,生成过氧化氢、氨和相应醛的反应。反应通式可以写为:
Figure PCTCN2016108066-appb-000006
术语“葡萄糖氧化酶”(I.U.B.:1.1.3.4)是指,具有催化葡萄糖和氧气的如下氧化还原反应的生物酶:
Figure PCTCN2016108066-appb-000007
Figure PCTCN2016108066-appb-000008
术语“半乳酸氧化酶”(I.U.B.:1.1.3.9)是指,具有催化半乳糖和氧气的如下氧化还原反应的生物酶:
Figure PCTCN2016108066-appb-000009
术语“多酚氧化酶”又称酪胺酸(I.U.B.:1.14.18.1)是指,具有催化酪胺酸和氧气的如下氧化还原反应的生物酶:
Figure PCTCN2016108066-appb-000010
术语“脂肪醇氧化酶”(EC 1.1.3.13)又称酒精氧化酶是指,具有催化酒精等脂肪醇和氧气的如下氧化还原反应的生物酶:
Figure PCTCN2016108066-appb-000011
术语“脂肪醛氧化酶”(EC 1.1.3.13)是指,具有催化脂肪醛和氧气的如下氧化还原反应的生物酶:
Figure PCTCN2016108066-appb-000012
术语“草酸氧化酶”(EC 1.2.3.4)是指,具有催化草酸和氧气的如下氧化还原反应的生物酶:
Figure PCTCN2016108066-appb-000013
术语“纤维氧化酶(Cellulose Oxidative Enzymes)”是指聚糖氧合酶(polysaccharide monooxygenase,PMO),所述“聚糖氧合酶”是指是一族分子量在20-50KDa、含有铜(II)的小分子金属酶(metalloenzyme),能与纤维表面进行加氧或者去氢的氧化反应,从而改变纤维表面化学性质的生物酶。聚糖氧合酶的其它名称包括聚葡糖加氧酶或者称聚葡糖单加氧酶(polysaccharide monooxygenase,PMO),裂解性聚糖氧合酶(lytic polysaccharide monooxygenase,LPMO),以及糖苷水化酶61族(glycosyl hydrolase 61,GH61)。
术语“纤维氧化酶组合物”是指该组合物含有如下两种组分,一个组分是聚糖氧合酶(polysaccharide monooxygenase),和另外一个组分是能保持或者增加对纤维氧化酶活性的辅助物,其中该辅助物可以是以下化合物的一个或多个化合物,(1)纤维氧化酶的反应底物氧气或者氧气释放化合物(oxygen precursors)、(2)反应产物的清除剂(radical scavengers)、和(3)对纤维氧化酶具有促进作用的蛋白质。
术语“纤维氧化酶的反应底物”是指除了纤维以外,聚糖氧化酶发生反应所必需的电子受体--氧气;该反应底物可以通过如下方式提供:氧气、空气或者氧气释放化合物,本发明中的氧气释放化合物是指过氧化物或者臭氧,其中过氧化物包括过氧化氢、过氧化钠、过氧化钙、过氧化钾。
术语“纤维素水解酶”是指所有的通过水解反应来降解纤维素的生物酶,目前常常把纤维素水解酶和纤维素酶、纤维水解酶和纤维酶等术语交替使用。根据纤维素酶降解底物时不同的作用方式可将其分成3类:
(1)内切纤维素酶又称之为内切葡聚糖酶(Endoglucanase,EG;EC 3.2.1.4);
(2)外切纤维素酶又称之为纤维二糖水解酶(Cellobiohydrolase,CBH;EC 3.2.1.91);
(3)β-葡萄糖苷酶(β-glucosidase,BGL;EC 3.2.1.21)。
(a)内切纤维素酶(又称内切葡聚糖酶,endo-1,4-β-D-glucanase,EC 3.2.1.4),该类酶主要作用于纤维素内部的非结晶区,随机水解β-1,4-糖苷键, 将长链纤维素分子截短,产生大量非还原性末端的小分子纤维素,其分子量大小约为23-146KD;
(b)外切纤维素酶(又称外切葡聚糖酶,exo-1,4-β-D-glucanase,EC 3.2.1.91),该类酶作用于纤维素线状分子末端,水解β-1,4-D-14糖苷键,依次切下一个纤维二糖分子,故又称为纤维二糖水解酶(cellobiohydrolase,CBH),分子量约38-118KD。
(c)纤维二糖酶(又称β-葡萄糖苷酶,β-1,4-glucosidase,EC 3.2.1.21),简称BG。这类酶一般将纤维二糖或可溶性的纤维糊精水解成葡萄糖分子,其分子量约为76KD。
术语“纤维素酶的酶活性(CMCase)”是指,纤维素酶组分在它们将纤维素降解成葡萄糖、纤维二糖和二糖的能力方面的葡聚糖的酶活性。纤维素酶的活性一般用羧甲基纤维素的溶液粘度的降低来确定。
本发明所涉及的过氧水解酶的组分可以是以其单个酶组分的产品分别加入造纸过程中,也可以将两组分分别加入不同的位置或者是混合成一个产品配方加入造纸过程中同一个位置,以达到最佳的效果。
本发明所涉及的使用过氧水解酶的目的和效果是利用过氧水解酶对浆料中粘性材料直接水解反应的同时,所产生的过乙酸对粘性材料进一步的强氧化反应,改变粘性材料的物理化学性质,从而达到降低粘性物质在造纸浆料中的含量,减少粘性(具体反应原理示意图参见图1)。由于过乙酸或过氧酸对所有粘性材料都可能进行强的氧化反应,因此,与传统的羧酸酯水解酶只针对酯类粘性材料相比,本发明的方法有广谱性,避免了羧酸酯水解酶的单一性问题。
本发明所述单位“kg/T”是指每吨绝干浆中添加物料的千克数。
以下将结合具体实施例对本发明做进一步说明。
实施例1
一种制浆造纸生产中控制有机污染物沉积的造纸方法,该方法主要用于以回收废旧报纸生产新闻纸的过程中对有机污染物(即下述的胶粘物)的控制。
一、材料
脱墨废旧报纸浆(ONP)的浆料从广东一家新闻纸生产纸厂得到。常规的 胶粘物控制剂采用美国Ashland公司的注册商标产品
Figure PCTCN2016108066-appb-000014
做参考对比。除了对比的StickyAway(聚乙烯醇乙酸酯水解酶,polyvinyl acohol acetate-esterase)由美国Novozymes公司提供外,过水解酶及其它氧化酶和水解酶等生物酶产品均由瑞辰星生物技术(广州)有限公司提供,后面的数字为公司内部酶种编码。双氧水(浓度为30%W/V)和过乙酸由广东中成化工股份有限公司提供。
二、具体方法
使用面粉混合器
Figure PCTCN2016108066-appb-000015
模拟制浆造纸生产中的工序中的纸浆混合和烘干流程,测定在不同条件下胶粘物在混合缸和搅拌叶瓣表面的沉积量,然后比较各种组分对有机物沉积的影响。
沉积试验的条件为:干纤维素浆料100克(干浆重),加水将浆料调节到10%的含水纤维素造纸浆料,采用不同的过水解酶组合物(如表1所示)与纤维素造纸浆料反应,反应温度为65℃,反应时间为120分钟,搅拌强度中等。
沉积试验结束,测定不同条件下胶粘物在混合缸和搅拌叶瓣表面的沉积量,具体如下表1所示。
三、结果
结果参见表1、图2-图6,从表1可看出,本实施例所用的过水解酶组合物实验组1-8对控制胶粘物沉积的效果比对照组1-3具有更好的效果,特别是当选用合适的组合时,其表现的效果是最佳的,可显著减少胶粘物沉积量;图2为空白组的胶粘物沉积结果,图3为对照组1(左图)和对照组2(右图)的胶粘物沉积结果,图4和图5为实验组2和3的典型结果,图6为实验组8的典型结果。从上述图表中可看出:过水解酶组合物显著减少胶粘物沉积量。
表1不同条件下过水解酶组合对胶粘物的沉积情况对比
Figure PCTCN2016108066-appb-000016
Figure PCTCN2016108066-appb-000017
注:1.“搅拌瓣表面”为被胶粘物覆盖的面积除以搅拌瓣总表面积的比值;
2.“容器表面沉积”为被胶粘物覆盖的面积除以容器内表面总面积的比值;
3.“过水解酶3116”属于醋酸酯酯酶(EC3.1.1.6)类;
4.“过水解酶3421”属于蛋白酶(EC4.2.x)类。
实施例2
华东某大型包装纸生产企业生产瓦楞纸和箱板纸。近年来,回收OCC废纸的胶粘物日趋严重。该公司曾经试过多种的胶粘物控制产品,都未得到满意的效果。根据该纸厂生产的原料、胶粘物组成和工艺条件,在实验室测试 了多个过水解酶的组合物配方,最后选定一个最佳的组合物(实施例1中的实验组4,即以下所述的洁净酶TM)上机试验,并与基于StickyAway的产品(美国巴克曼公司产品,商标名为Maxizyme)的胶粘物控制酶进行了为期近二个月的直接对比。结果如表2和图7-8所示。
表2的结果表明,在相同的使用成本下,基于过水解酶的洁净酶TM比基于StickyAway酯酶(Maxizyme)的效果好得多。例如,在试验洁净酶TM之前,胶粘物引发的断纸时间在前烘段十分严重,并随着毛毯的使用时间增加而增加(见表2中时间段为实验前所示的数据);加上洁净酶TM之后,断纸逐步减少,使用三周之后,断纸时间从洁净酶TM试验之前的日均153分钟下降到了36分钟(见表2中时间段为洁净酶所示的数据)。相反,停用洁净酶TM之后,虽然添加国外公司的胶粘物控制酶(Maxizyme)产品,但断纸时间却持续增加,如下表所示(见表2中时间段为对比的实验数据)。
表2基于过水解酶的复合酶配方对胶粘物引起的断纸的影响
Figure PCTCN2016108066-appb-000018
注:对比=基于StickAway的产品(Maxizyme)试验;对比后=停止StickyAway产品(Maxizyme)之后,不添加任何胶粘物控制产品。
图7对比了试验前(不添加任何胶粘物控制产品,图A)烘缸刮刀表面的胶粘物与试验后(使用洁净酶TM,图B)的烘缸刮刀表面的胶粘物沉积的形态。可见,使用过水解酶之后,不仅胶粘物沉积的量(图8)大大减少,而且粘性和形态(包括颜色)显著改变(图7)。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种制浆造纸生产中控制有机污染物沉积的组合物,其特征在于,所述组合物的有效成分包括以下组分:
    i)具有过氧水解功能的生物酶,所述生物酶为过氧水解酶;
    ii)过氧化氢和/或能够产生过氧化氢的前驱物;
    所述组合物中i)和ii)的重量份比为1:0.1-200。
  2. 根据权利要求1所述的一种制浆造纸生产中控制有机污染物沉积的组合物,其特征在于,i)中所述过氧水解酶为羧酸酯水解酶、硫酯水解酶、磷酸单酯水解酶、磷酸二酯水解酶、硫醚水解酶或多肽水解酶中的至少一种;及/或
    ii)中所述能够产生过氧化氢的前驱物为能通过化学反应或酶学反应产生过氧化氢的化合物;所述酶学反应是能通过氧化酶催化的氧化酶底物和氧气或空气产生过氧化氢的反应。
  3. 根据权利要求2所述的一种制浆造纸生产中控制有机污染物沉积的组合物,其特征在于,所述氧化酶为葡萄糖氧化酶、单胺氧化酶、黄原酸氧化酶、尿酸氧化酶、草酸氧化酶、半乳酸氧化酶、纤维素氧化酶、多酚氧化酶、脂肪醇氧化酶或脂肪醛氧化酶中的至少一种。
  4. 根据权利要求1-3任一项所述的一种制浆造纸生产中控制有机污染物沉积的组合物,其特征在于,所述组合物中i)和ii)的重量份比为1:0.1-30。
  5. 根据权利要求4所述的一种制浆造纸生产中控制有机污染物沉积的组合物,其特征在于,所述组合物中i)和ii)的重量份比为1:0.1-10。
  6. 一种用权利要求1-5任一项所述的组合物控制有机污染物沉积的造纸方法,其特征在于,包括如下步骤:
    (1)形成含水的纤维素造纸浆料A;
    (2)将权利要求1-5任一项所述的组合物添加到步骤(1)所述的纤维素造纸浆料A中进行反应,得造纸浆料B;
    (3)将步骤(2)所述的造纸浆料B送上网,滤水,固体组分形成纸页;
    (4)将步骤(3)得到的纸页经过压榨和干燥,得到纸产品。
  7. 根据权利要求6所述的一种控制有机污染物沉积的造纸方法,其特征在于,步骤(2)中所述组合物的用量为每吨干浆料中添加组合物0.01-20kg。
  8. 根据权利要求7所述的一种控制有机污染物沉积的造纸方法,其特征在于,步骤(2)中所述组合物的用量为每吨干浆料中添加组合物0.1-11kg。
  9. 根据权利要求6-8任一项所述的一种控制有机污染物沉积的造纸方法,其特征在于,步骤(2)所述反应的温度为10-80℃,时间为5-600min,pH为3-10。
  10. 权利要求1-5任一项所述的组合物在制浆造纸生产中控制有机污染物沉积中的应用。
PCT/CN2016/108066 2016-10-19 2016-11-30 制浆造纸生产中控制有机污染物沉积的组合物及造纸方法 WO2018072264A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610912319.0A CN106436417B (zh) 2016-10-19 2016-10-19 制浆造纸生产中控制有机污染物沉积的组合物及造纸方法
CN201610912319.0 2016-10-19

Publications (1)

Publication Number Publication Date
WO2018072264A1 true WO2018072264A1 (zh) 2018-04-26

Family

ID=58176405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108066 WO2018072264A1 (zh) 2016-10-19 2016-11-30 制浆造纸生产中控制有机污染物沉积的组合物及造纸方法

Country Status (2)

Country Link
CN (2) CN106436417B (zh)
WO (1) WO2018072264A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109518513A (zh) * 2018-11-13 2019-03-26 岳阳林纸股份有限公司 一种造纸脱墨浆胶粘物控制剂使用效果检测装置及方法
CN110512458B (zh) * 2019-09-25 2020-06-16 山鹰国际控股股份公司 一种去除纸浆中胶黏物的处理工艺
CN114182557B (zh) * 2021-12-13 2023-03-17 上海金堂轻纺新材料科技有限公司 一种制浆造纸用茶皂素组合物、其制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080078519A1 (en) * 2006-09-21 2008-04-03 Enzymatic Deinking Technologies, Llc Rapid Fatty Acid Assay for Use in Pulp Pitch Control
CN101384769A (zh) * 2006-02-14 2009-03-11 诺维信北美公司 化学浆处理组合物和方法
US20110136907A1 (en) * 2009-12-07 2011-06-09 Dicosimo Robert Perhydrolase providing improved peracid stability
CN103333870A (zh) * 2003-12-03 2013-10-02 丹尼斯科美国公司 过水解酶

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007106293A1 (en) * 2006-03-02 2007-09-20 Genencor International, Inc. Surface active bleach and dynamic ph
ES2359858T3 (es) * 2006-11-06 2011-05-27 Hercules Incorporated Control de resina y sustancias adherentes en procesos de fabricación de pasta y papel.
CN101680172B (zh) * 2007-05-16 2013-04-17 巴科曼实验室国际公司 控制纤维中的有机污染物的方法
JP2012502173A (ja) * 2008-09-10 2012-01-26 ダニスコ・ユーエス・インク 酵素性繊維品漂白組成物及びその使用方法
EP2365058A1 (en) * 2010-03-01 2011-09-14 The Procter & Gamble Company Solid laundry detergent composition having an excellent anti-encrustation profile
CN106053301B (zh) * 2016-06-06 2019-01-15 瑞辰星生物技术(广州)有限公司 监测制浆造纸系统中胶粘物分布情况的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103333870A (zh) * 2003-12-03 2013-10-02 丹尼斯科美国公司 过水解酶
CN101384769A (zh) * 2006-02-14 2009-03-11 诺维信北美公司 化学浆处理组合物和方法
US20080078519A1 (en) * 2006-09-21 2008-04-03 Enzymatic Deinking Technologies, Llc Rapid Fatty Acid Assay for Use in Pulp Pitch Control
US20110136907A1 (en) * 2009-12-07 2011-06-09 Dicosimo Robert Perhydrolase providing improved peracid stability

Also Published As

Publication number Publication date
CN106436417B (zh) 2019-03-05
CN106436417A (zh) 2017-02-22
CN109610217A (zh) 2019-04-12

Similar Documents

Publication Publication Date Title
JP5492766B2 (ja) 繊維中の有機夾雑物を制御する方法
Bajpai Solving the problems of recycled fiber processing with enzymes.
US20060048908A1 (en) System for control of stickies in recovered and virgin paper processing
US20090020243A1 (en) Use of Cyclodextrins for Reducing Deposits During Paper Production
WO2018072264A1 (zh) 制浆造纸生产中控制有机污染物沉积的组合物及造纸方法
KR20000003300A (ko) 부상부유 및 효소처리를 이용한 골판지 고지의 재생방법
AU2007214449A1 (en) Chemical pulp treatment compositions and methods
US20150053358A1 (en) Methods To Control Organic Contaminants In Fibers Using Zeolites
US20130180677A1 (en) Methods To Control Organic Contaminants In Fibers
Yang et al. Status and trends of enzyme cocktails for efficient and ecological production in the pulp and paper industry
CN104262606B (zh) 聚苯乙烯苯酚聚氧烷基类聚合物及其制备方法和应用
Balda et al. Microbial enzymes for eco-friendly recycling of waste paper by deinking
US20040099385A1 (en) Neutral deinking with a deinking composition comprising a lipase and a fatty acid ester
Pathak et al. Fungal enzymes application for recycling of waste papers
CN105386364B (zh) 制浆造纸生产中降低和去除有机污染物沉积及油墨的方法
US10767314B2 (en) Methods to reduce rewinder breaks during paper production from recycled paper furnish
WO2007018368A1 (en) Flotation-deinking method with improving yield for waste paper
JP2009235625A (ja) 古紙パルプの製造方法
Verma et al. Enzymatic deinking with cellulases: a review
KR100273932B1 (ko) 부상부유법 탈묵 전용 효소 적용에 의한 고지의 재생방법
Wang Development of Enzyme-Based Biotechnology for Removing Stickies and Regaining Fiber Quality in Paper Recycling
Balda et al. 2 Microbial Enzymes for
WO2016015570A1 (zh) 用于改变和改善纤维性质的纤维氧化酶组合物及造纸方法和应用
Ryu et al. Application of Enzymatic Hydrolysis for the Yield Optimization in Froth-Flotation of ONP
WO2016015571A1 (zh) 用于改善纸张白度的纤维氧化酶组合物及造纸方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919451

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16919451

Country of ref document: EP

Kind code of ref document: A1