WO2018070496A1 - 電力変換システム - Google Patents

電力変換システム Download PDF

Info

Publication number
WO2018070496A1
WO2018070496A1 PCT/JP2017/037073 JP2017037073W WO2018070496A1 WO 2018070496 A1 WO2018070496 A1 WO 2018070496A1 JP 2017037073 W JP2017037073 W JP 2017037073W WO 2018070496 A1 WO2018070496 A1 WO 2018070496A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
terminal
switching element
converter
power
Prior art date
Application number
PCT/JP2017/037073
Other languages
English (en)
French (fr)
Inventor
史人 草間
真 小曽根
孝彰 則定
豊 掃部
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201780063130.1A priority Critical patent/CN109874385B/zh
Priority to EP17859815.7A priority patent/EP3528373B1/en
Priority to JP2018545062A priority patent/JP6675106B2/ja
Priority to US16/341,387 priority patent/US10840814B2/en
Publication of WO2018070496A1 publication Critical patent/WO2018070496A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/083Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4807Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode having a high frequency intermediate AC stage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present disclosure relates generally to a power conversion system, and more particularly to a power conversion system that converts power in at least one direction.
  • Power sales in which companies or individuals sell electric power obtained from distributed power sources (for example, solar cells, fuel cells, storage batteries) to electric power companies are expanding.
  • Power sale is performed by a grid connection that connects a distributed power source to a commercial power grid.
  • the power of the distributed power source is converted into power suitable for the commercial power system using a power conversion device called a power conditioner.
  • Patent Document 1 discloses an insulating bidirectional buck-boost chopper circuit (40) provided between a battery (21) and an electric double layer capacitor (22).
  • This bidirectional buck-boost chopper circuit (40) includes a transformer (41) with a center tap.
  • the center tap of the primary winding of the transformer (41) is connected to the (+) terminal of the low voltage battery (21) via the reactor (42), and a pair of boost chopper elements (43, 45) are connected to both ends of the primary winding. ) Is connected.
  • the center tap of the secondary winding is connected to the electric double layer capacitor (22) via the voltage line (VL), and a pair of step-down chopper elements (46, 47) are connected to both ends of the secondary winding.
  • VL voltage line
  • the above-described conventional technique has a problem that a large capacity capacitor for smoothing is required and the circuit scale becomes large. Further, there is a problem that the voltage polarity applied to the primary winding cannot be stably inverted, resulting in loss of the switching element and deterioration of the withstand voltage.
  • the present disclosure has been made in view of the above-described problems, and an object thereof is to provide a power conversion system capable of reducing the circuit scale and stably reversing the polarity of the voltage applied to the primary winding. .
  • the power conversion system is a power conversion system that transmits power at least in one direction between the first connection target and the second connection target.
  • the power conversion system includes a first external connection unit, a second external connection unit, a transformer circuit unit, a third converter unit, a connection unit, and a control unit.
  • the first external connection unit is connected to the first connection target.
  • the second external connection unit is connected to the second connection target.
  • the transformer circuit section includes a primary winding provided on the first external connection section side, a secondary winding magnetically coupled to the primary winding, and the first external connection section and the primary winding.
  • the third converter unit is connected to the second external connection unit.
  • the connection part includes a first connection terminal and a second connection terminal for connecting the second converter part and the third converter part.
  • the controller is configured so that positive and negative voltages are alternately applied to the primary winding, and the voltage of the first connection terminal with respect to the second connection terminal is positive.
  • Control at least one of the converter units.
  • the control unit In the first period including an inversion period in which the polarity of the voltage of the primary winding is inverted, the control unit is configured to prevent the power from being transmitted between the transformer circuit unit and the third converter unit. Control part.
  • the control unit transmits power in a first direction from the transformer circuit unit to the third converter unit or in a second direction opposite to the first direction.
  • the third converter unit is controlled as shown in FIG.
  • FIG. 1 is a circuit diagram of a power conversion system 1 according to Embodiment 1.
  • FIG. It is a wave form diagram which shows operation
  • FIG. 3 is a diagram showing a current path flowing through a converter unit 7. It is a wave form diagram which shows operation
  • FIG. 3 is a diagram showing a current path flowing through a converter unit 7. It is a wave form diagram which shows operation
  • FIG. 6 is a circuit diagram of a power conversion system 1A according to Embodiment 2.
  • FIG. It is a figure which shows the timing chart of 1 A of power conversion systems in inverter mode.
  • FIG. 29 is a timing chart showing the inversion periods TC1 and TC2 in an enlarged manner in FIG.
  • FIG. 31 is a timing chart showing enlarged inversion periods TF1, TF2 in FIG.
  • FIG. 6 is a circuit diagram of a power conversion system 1B according to Embodiment 3. It is a figure which shows the timing chart of the power conversion system 1B in inverter mode.
  • FIG. 31 is a timing chart showing enlarged inversion periods TC1 and TC2 in FIG.
  • FIG. 6 is a circuit diagram of a power conversion system 1C according to a fourth embodiment.
  • FIG. 10 is a circuit diagram of a power conversion system 1D according to a fifth embodiment.
  • FIG. 10 is a circuit diagram of a power conversion system 1E according to Embodiment 6.
  • FIG. 10 is a circuit diagram of a power conversion system 1F according to a seventh embodiment.
  • FIG. 10 is a circuit diagram of a power conversion system 1G according to an eighth embodiment.
  • FIG. 10 is a circuit diagram of a power conversion system 1H according to a ninth embodiment.
  • FIG. 10 is a circuit diagram of a power conversion system 1I according to a tenth embodiment. It is a timing chart of the power conversion system 1I in inverter mode, and has shown the case where a phase is 0 degree
  • the circuit configuration of the snubber circuit 60 and the waveform diagram of the voltage “P3-N3” are shown.
  • the circuit configuration of the snubber circuit 60A of the first aspect of the eleventh embodiment and the waveform diagram of the voltage “P3-N3” are shown.
  • FIG. 20 is a circuit diagram of a power conversion system 1J according to Embodiment 12. It is a figure which shows the timing chart of the power conversion system 1J in a 1st transmission mode. It is a figure which shows the timing chart of the power conversion system 1J in a 2nd transmission mode.
  • FIG. 20 is a circuit diagram of a power conversion system 1K according to a thirteenth embodiment.
  • FIG. 25 is a circuit diagram of a power conversion system 1L according to a fourteenth embodiment.
  • FIG. 22 is a circuit diagram of a power conversion system 1M according to a fifteenth embodiment.
  • FIG. 22 is a circuit diagram of a power conversion system 1N according to a sixteenth embodiment. It is a figure which shows the timing chart of power conversion system 1N.
  • FIG. 18 is a circuit diagram of a power conversion system 1P according to Embodiment 17. It is a figure which shows the timing chart of the power conversion system 1P.
  • FIG. 23 is a circuit diagram of a power conversion system 1Q according to an eighteenth embodiment.
  • FIG. 38 is a circuit diagram of a power conversion system 1R according to a nineteenth embodiment.
  • FIG. 38 is a circuit diagram of a power conversion system 1S according to a twentieth embodiment.
  • FIG. 38 is a circuit diagram of a power conversion system 1T according to a twenty-first embodiment. It is a figure which shows the timing chart of power conversion system 1T. It is a circuit diagram for demonstrating operation
  • a primary DC power source is connected to a primary winding of a high-frequency transformer via an inverter, and a secondary winding of the high-frequency transformer is connected via a converter.
  • a large-capacity capacitor and an output inverter are connected, and the output inverter is connected to an AC power system or an AC load.
  • Such a conventional isolated power converter converts a DC voltage from a DC power source into a rectangular wave-shaped high-frequency AC voltage whose polarity is reversed at high speed by an inverter, and supplies the high-frequency AC voltage to the converter via a transformer. Then, smooth it to a DC voltage with a large-capacitance capacitor. And the conventional power converter device carries out PWM control of the DC voltage with an output inverter, generates an AC voltage having a desired frequency and amplitude, and outputs it to the commercial power system.
  • the conventional power conversion device requires a large-capacity capacitor between the converter and the output inverter, and there is a problem that the circuit scale increases.
  • the polarity of the voltage applied to the primary winding cannot be reversed stably, and the switching element of the converter on the primary side becomes hard switching at turn-on and turn-off, increasing the switching loss and ringing applied to the element.
  • the voltage also increased.
  • Patent Document 1 has a problem that a large capacity capacitor for smoothing is required and the circuit scale becomes large.
  • the voltage polarity applied to the primary winding cannot be stably inverted, resulting in loss of the switching element and deterioration of the withstand voltage.
  • Patent Document 1 since the primary side is a current drive type, the reactor (42) is connected to the center tap of the primary winding. Therefore, when the bidirectional buck-boost chopper circuit (40) of Patent Document 1 is applied to the present application, a large ringing voltage is generated, so that the circuit becomes unusable.
  • the purpose of the present disclosure is to eliminate the need for a smoothing large-capacitance capacitor, to reduce the circuit scale, and to stably reverse the polarity of the voltage applied to the primary winding, thereby reducing the loss and breakdown voltage of the switching element. It is to provide a power conversion system that can be reduced.
  • One aspect of the present disclosure is a power conversion device that transmits power bidirectionally between a DC power source and an AC power system or an AC load, A primary winding provided on the DC power supply side, a secondary winding magnetically coupled to the primary winding, a first converter unit connected between the DC power supply and the primary winding, and the secondary A transformer circuit unit including a second converter unit connected to the winding; A third converter connected to the AC power system or the AC load; A connection part including a first connection terminal and a second connection terminal for connecting the second converter part and the third converter part; The first converter unit is controlled so that positive and negative voltages are alternately applied to the primary winding, and the first connection terminal voltage with respect to the second connection terminal is positive.
  • the control unit In the first period including an inversion period in which the polarity of the voltage of the primary winding is inverted, the control unit is configured to prevent the power from being transmitted between the transformer circuit unit and the third converter unit. In a second period different from the first period, power is transmitted in the first direction from the transformer circuit section to the third converter section or in a second direction opposite to the first direction.
  • the third converter unit is controlled as shown in FIG.
  • the first to third converter units are so-called power converters, and include a DC / AC converter, an AC / DC converter, and a DC / DC converter.
  • This aspect controls the third converter unit so that power is not transmitted between the second converter unit and the third converter unit in the first period including the inversion period in which the polarity of the voltage of the primary winding is inverted. Therefore, according to this aspect, the first converter unit and the second converter unit can be ZCS (zero current switching), and the polarity of the voltage applied to the primary winding can be stably inverted. Therefore, the loss and breakdown voltage of the switching element can be reduced.
  • this embodiment does not require a smoothing large-capacitance capacitor as shown in Patent Document 1, the circuit scale can be reduced.
  • the first converter unit is controlled so that positive and negative voltages are alternately applied to the primary winding, but the voltage of the first connection terminal with respect to the second connection terminal is positive.
  • the second converter unit is controlled. Therefore, in this aspect, a voltage having a constant polarity is input to the third converter unit.
  • the third converter unit can be configured by a normal full-bridge circuit, and normal control can be applied.
  • this aspect in the second period different from the first period, power is transmitted in the first direction from the transformer circuit unit to the third converter unit or in the second direction opposite to the first direction. Controls the third converter unit. Therefore, this aspect can adjust the amplitude of the alternating current voltage and alternating current output from a 3rd converter part, or the electric current regenerated from an alternating current power supply to direct current power supply by changing the ratio of the 2nd period to the 1st period.
  • the first and second power supply terminals (P2 and N2) connected to the DC power supply may be further included.
  • the primary winding includes a first center tap (CT1) connected to the first power supply terminal (P2),
  • the first converter unit (51) A first switching element (AL) connected between the first winding terminal (T2) of the primary winding and the second power supply terminal (N2);
  • a second switching element (BL) connected between the second winding terminal (T1) of the primary winding and the second power supply terminal (N2) may be included.
  • the primary winding and the first converter unit are configured by a center tap type circuit.
  • the first and second power supply terminals (P2 and N2) connected to the DC power supply are further included.
  • the first converter unit (51) is composed of a full-bridge circuit,
  • the full bridge circuit is A first switching element (AH) connected between the first power supply terminal (P2) and the first winding terminal (T2) of the primary winding;
  • a second switching element (AL) connected between the first winding terminal (T2) and the second power supply terminal (N2);
  • a third switching element (BH) connected to the first power supply terminal (P2) and the second winding terminal (T1) of the primary winding;
  • a fourth switching element (BL) connected between the second winding terminal (T1) and the second power supply terminal (N2) may be included.
  • the primary winding and the first converter unit are configured by a full bridge type circuit.
  • the power supply device further includes first and second power supply terminals (P2 and N2) connected to the DC power supply
  • the first converter unit (51) is a half-bridge circuit
  • the half-bridge circuit is A first switching element (AH) connected between the first power supply terminal (P2) and the first winding terminal (T2) of the primary winding;
  • a second switching element (AL) connected between the first winding terminal (T2) and the second power supply terminal (N2);
  • a first capacitor (C * 1) connected between the first power supply terminal (P2) and the second winding terminal (T1) of the primary winding, the second winding terminal (T1) and the second winding terminal (T1). It may further include at least one of a second capacitor (C * 2) connected between the power supply terminals (N2).
  • the primary winding and the first converter unit are configured by a half ridge type circuit.
  • the secondary winding includes a second center tap (CT2) connected to the first connection terminal (P3),
  • CT2 connected to the first connection terminal (P3)
  • the second converter unit (52) A fifth switching element (XL) connected between the third winding terminal (T4) and the second connection terminal (N3) of the secondary winding;
  • a sixth switching element (YL) connected between the fourth winding terminal (T3) of the secondary winding and the second connection terminal (N3) may be included.
  • the secondary winding and the second converter unit are configured by a center tap type circuit.
  • the second converter section (52) is configured by a full-bridge circuit
  • the full bridge circuit is A fifth switching element (YH) connected between the first connection terminal (P3) and the third winding terminal (T4) of the secondary winding; A sixth switching element (YL) connected between the third winding terminal (T4) and the second connection terminal (N3); A seventh switching element (XH) connected between the fourth winding terminal (T3) and the first connection terminal (P3) of the secondary winding; An eighth switching element (XL) connected between the fourth winding terminal (T3) and the second connection terminal (N3) may be included.
  • the secondary winding and the second converter unit are configured by a full bridge type circuit.
  • the second converter unit (52) is configured by a half-bridge circuit
  • the half-bridge circuit is A fifth switching element (XH) connected between the first connection terminal (P3) and the fourth winding terminal (T3) of the secondary winding;
  • a sixth switching element (XL) connected between the fourth winding terminal (T3) and the second connection terminal (N3);
  • a third capacitor (CXH) connected between the third winding terminal (T4) and the first connection terminal (P3) of the secondary winding, the third winding terminal (T4) and the second connection terminal ( It may further include at least one of a fourth capacitor (CXL) connected between N3).
  • the secondary winding and the second converter unit are configured by a half bridge type circuit.
  • FIG. 1 it further includes a third power supply terminal (U1) and a fourth power supply terminal (W1) connected to the AC power system or the AC load,
  • the third converter unit (7) A ninth switching element (UH) connected between the first connection terminal (P3) and the third power supply terminal (U1); A tenth switching element (UL) connected between the third power supply terminal (U1) and the second connection terminal (N3); An eleventh switching element (WH) connected between the first connection terminal (P3) and the fourth power supply terminal (W1); A twelfth switching element (WL) connected between the fourth power supply terminal (W1) and the second connection terminal (N3) may be included.
  • the third converter unit is configured by a single-phase inverter.
  • the power supply system further includes third, fourth, and fifth power supply terminals (U1, V1, W1) connected to the AC power system or the AC load.
  • the third converter unit (7) is composed of a three-phase inverter, The three-phase inverter is A ninth switching element (UH) connected between the first connection terminal (P3) and the third power supply terminal (U1); A tenth switching element (UL) connected between the third power supply terminal (U1) and the second connection terminal (N3); An eleventh switching element (VH) connected between the first connection terminal (P3) and the fourth power supply terminal (V1); A twelfth switching element (VL) connected between the fourth power supply terminal (V1) and the second connection terminal (N3); A thirteenth switching element (WH) connected between the first connection terminal (P3) and the fifth power supply terminal (W1); A fourteenth switching element (WL) connected between the fifth power supply terminal (W1) and the second connection terminal (N3) may be included.
  • the third converter unit is constituted by a three-phase inverter.
  • connection portion may include a snubber circuit (60) connected between the first and second connection terminals (P3, N3).
  • ringing generated in the power conversion circuit can be suppressed.
  • the snubber circuit (60) One end of the snubber diode (63, 67) is connected to the first connection terminal (P3), and the other end of the snubber diode (63, 67) is connected to the second connection terminal (N3).
  • One or a plurality of CRD snubbers including a snubber capacitor (64) and a snubber resistor (65, 68) connected in parallel with the snubber diode (63, 67) may be included.
  • the ringing generated between the first and second connection terminals is absorbed by the snubber capacitor, and the ringing can be suppressed.
  • control unit causes the third converter unit (7) to be short-circuited between the third and fourth power supply terminals (U1, W1) in the first period. You may control.
  • This aspect is an example of control in the first period when the third converter unit is configured by a single-phase inverter.
  • the control unit turns on a switching element on the high side including the ninth switching element (UH) and the eleventh switching element (WH), and , Control to turn off the low-side switching elements including the tenth switching element (UL) and the twelfth switching element (WL), the high-side switching elements (UH, WH) to be turned off, and the low side
  • One of the control to turn on the switching elements (UL, WL) on the side may be performed.
  • This aspect is an example of control in the first period when the third converter unit is configured by a single-phase inverter.
  • the controller short-circuits the third power supply terminal (U1), the fourth power supply terminal (V1), and the fifth power supply terminal (V1) in the first period.
  • the third converter unit may be controlled.
  • This aspect is an example of control in the first period when the third converter unit is configured by a three-phase inverter.
  • the control unit includes a high side including the ninth switching element (UH), the eleventh switching element (VH), and the thirteenth switching element (WH) in the first period.
  • Control for turning on the switching element on the side and turning off the switching elements on the low side including the tenth switching element (UL), the twelfth switching element (VL), and the fourteenth switching element (WL), Either one of the control to turn off the switching elements (UL, VL, WL) on the low side and the switching elements (UL, VL, WL) on the low side may be performed.
  • This aspect is an example of control in the first period when the third inverter unit is configured by a three-phase inverter.
  • the power converter includes a first inverter mode in which the output voltage of the third converter unit is positive, a second inverter mode in which the output voltage is negative, and an input voltage of the third converter unit is positive.
  • the control unit controls the third converter unit in the same sequence in the first inverter mode and the first converter mode, and the third converter unit in the second inverter mode and the second converter mode. May be controlled in the same sequence.
  • the third converter unit is driven in the same sequence in the first inverter mode and the first converter mode. Further, in the second inverter mode and the second converter mode, the third converter unit is driven in the same sequence.
  • the first inverter mode and the first converter mode are continuously switched, and the second inverter mode and The second converter mode can be switched continuously.
  • UPS uninterruptible power supply
  • control unit controls the first converter unit so that a unit period including the first period and the second period is repeated at a constant period, and performs PWM control on the third converter unit to perform each
  • a target output voltage or input voltage or output current or input current may be generated by changing the ratio of the second period in the unit period.
  • the target voltage or current can be generated by changing the ratio of the second period in each unit period by PWM control.
  • each of the first, second, and third converter units includes a plurality of switches.
  • Each of the plurality of switches may be composed of one switching element.
  • each switch is composed of one switching element, the number of switching elements can be reduced as compared with the case where each switch is composed of a plurality of switching elements.
  • a power conversion device is a power conversion device that transmits DC power bidirectionally between a DC power supply and a DC device, A first external connection connected to one of the DC power supply and the DC device; A second external connection connected to the other of the DC power supply and the DC device; A primary winding provided on the first external connection portion side, a secondary winding magnetically coupled to the primary winding, and a first converter connected between the first external connection portion and the primary winding And a transformer circuit unit including a second converter unit connected to the secondary winding, A bidirectional DCDC converter connected to the second external connection unit; A connection part including a first connection terminal and a second connection terminal for connecting the second converter part and the DCDC converter; The first converter unit is controlled so that positive and negative voltages are alternately applied to the primary winding, and the first connection terminal voltage with respect to the second connection terminal is positive.
  • the control unit controls the DCDC converter so that power is not transmitted between the transformer circuit unit and the DCDC converter in a first period including an inversion period in which the polarity of the voltage of the primary winding is inverted.
  • the DCDC converter is configured such that power is transmitted in a first direction from the transformer circuit unit toward the DCDC converter or in a second direction opposite to the first direction. Is to control.
  • This aspect controls the DCDC converter so that power is not transmitted between the second converter unit and the DCDC converter in the first period including the inversion period in which the polarity of the voltage of the primary winding is inverted. Therefore, according to this aspect, the first converter unit and the second converter unit can be ZCS (zero current switching), and the polarity of the voltage applied to the primary winding can be stably inverted. Therefore, the loss and breakdown voltage of the switching element can be reduced.
  • this embodiment does not require a smoothing large-capacitance capacitor as shown in Patent Document 1, the circuit scale can be reduced.
  • the first converter unit is controlled so that positive and negative voltages are alternately applied to the primary winding, but the voltage of the first connection terminal with respect to the second connection terminal is positive.
  • the second converter unit is controlled. Therefore, in this aspect, a voltage having a constant polarity is input to the DCDC converter.
  • the DCDC converter can be configured by a normal DCDC converter, and normal control can be applied as it is.
  • the DCDC converter in the second period different from the first period, is configured such that power is transmitted in the first direction from the transformer circuit unit to the DCDC converter or in the second direction opposite to the first direction.
  • a DC voltage and a DC current having a magnitude corresponding to the ratio of the second period to the first period can be input or output to the DCDC converter.
  • the first external connection part (3) includes first and second external connection terminals (P2, N2),
  • the primary winding (531) includes a first center tap (CT1) connected to the first external connection terminal (P2),
  • the first converter unit (51) A first switching element (BL) connected between a first winding terminal (T1) of the primary winding (531) and the second external connection terminal (N2);
  • a second switching element (AL) connected between the second winding terminal (T2) of the primary winding (531) and the second external connection terminal (N2) may be included.
  • the primary winding and the first converter unit are configured by a center tap type circuit.
  • the first external connection part (3) includes first and second external connection terminals (P2, N2)
  • the first converter unit (51) is composed of a full-bridge circuit
  • the full-bridge circuit (51) is: A first switching element (BH) connected to the first external connection terminal (P2) and the first winding terminal (T1) of the primary winding (531); A second switching element (BL) connected between the first winding terminal (T1) and the second external connection terminal (N2); A third switching element (AH) connected between the first external connection terminal (P2) and the second winding terminal (T2) of the primary winding (531); A fourth switching element (AL) connected between the second winding terminal (T2) and the second external connection terminal (N2) may be included.
  • a first switching element (BH) connected to the first external connection terminal (P2) and the first winding terminal (T1) of the primary winding (531
  • a second switching element (BL) connected between the first winding terminal (T1) and the second external connection terminal (N2)
  • a third switching element (AH) connected between the first external connection terminal (P2)
  • the primary winding and the first converter unit are configured by a full bridge type circuit.
  • the first external connection part (3) includes first and second external connection terminals (P2, N2)
  • the first converter unit (51) is a half-bridge circuit
  • the half-bridge circuit is A first capacitor (C * 1) connected between the first external connection terminal (P2) and a first winding terminal (T1) of the primary winding (531), and the first winding terminal (T1)
  • the second capacitor (C * 2) connected between the second external connection terminals (N2)
  • a first switching element (AH) connected between the first external connection terminal (P2) and the second winding terminal (T2) of the primary winding (531
  • a second switching element (AL) connected between the second winding terminal (T2) and the second external connection terminal (N2) may be included.
  • the primary winding and the first converter unit are configured by a half ridge type circuit.
  • the secondary winding (532) includes a second center tap (CT2) connected to the first connection terminal (P3),
  • CT2 second center tap
  • the second converter unit (52) A fifth switching element (YL) connected between the third winding terminal (T3) of the secondary winding (532) and the second connection terminal (N3);
  • the secondary winding and the second converter unit are configured by a center tap type circuit.
  • the second converter unit (52) is configured by a full-bridge circuit
  • the full bridge circuit is A fifth switching element (XH) connected between the third winding terminal (T3) and the first connection terminal (P3) of the secondary winding (532); A sixth switching element (XL) connected between the third winding terminal (T3) and the second connection terminal (N3); A seventh switching element (YH) connected between the first connection terminal (P3) and the fourth winding terminal (T4) of the secondary winding (532); An eighth switching element (YL) connected between the fourth winding terminal (T4) and the second connection terminal (N3) may be included.
  • the secondary winding and the second converter unit are configured by a full bridge type circuit.
  • the second converter section (52) is configured by a half-bridge circuit
  • the half-bridge circuit is A fifth switching element (XH) connected between the first connection terminal (P3) and a third winding terminal (T3) of the secondary winding (532); A sixth switching element (XL) connected between the third winding terminal (T3) and the second connection terminal (N3); A third capacitor (CXH) connected between the fourth winding terminal (T4) and the first connection terminal (P3) of the secondary winding (532), the fourth winding terminal (T4) and the second It may further include at least one of a fourth capacitor (CXL) connected between the connection terminals (N3).
  • the secondary winding and the second converter unit are configured by a half bridge type circuit.
  • the second external connection part (15) is connected to the third external connection terminal (U2) and the fourth external connection terminal (W2) connected to the second connection terminal (N3).
  • the DCDC converter is composed of a bidirectional chopper circuit,
  • the bidirectional chopper circuit is A coil (71) having a first coil terminal connected to the third external connection terminal (U2);
  • a ninth switching element (UH) connected between the second coil terminal (U1) and the first connection terminal (P3) of the coil (71);
  • a tenth switching element (UL) connected between the second coil terminal (U1) and the second connection terminal (N3) may be included.
  • the DCDC converter is configured by a bidirectional chopper circuit.
  • control unit may control the bidirectional chopper circuit so that the second coil terminal (U1) and the second connection terminal (N3) are short-circuited in the first period.
  • This aspect is an example of control in the first period when the DCDC converter is configured with a bidirectional chopper circuit.
  • control unit may turn off the ninth switching element (UL) and turn on the tenth switching element (UL) in the first period.
  • This aspect is an example of more detailed control of the first period of the bidirectional chopper circuit.
  • control unit may turn on the ninth switching element (UL) and turn off the tenth switching element (UL) in the second period.
  • This aspect is an example of control in the second period of the bidirectional chopper circuit.
  • each of the first converter unit, the second converter unit, and the DCDC converter includes a plurality of arms, Each arm may include one switch.
  • each arm is configured by one switch, the number of switches can be reduced.
  • the switch includes a switching element such as a transistor and a free wheel diode connected to the switching element.
  • connection portion may include a snubber circuit (60) connected between the first and second connection terminals (P3, N3).
  • ringing generated in the power conversion circuit can be suppressed.
  • the snubber circuit (60) One end of the snubber diode (63, 67) is connected to the first connection terminal (P3), and the other end of the snubber diode (63, 67) is connected to the second connection terminal (N3).
  • One or a plurality of CRD snubbers including a snubber capacitor (64, 69) and a snubber resistor (65, 68) connected in parallel with the snubber diode (63, 67) may be included.
  • the ringing generated between the first and second connection terminals is absorbed by the snubber capacitor, and the ringing can be suppressed.
  • a power conversion device is a power conversion device that transmits power in a single direction between a DC power source and a device or an AC power system, A first external connection connected to one of the DC power supply and the device; A second external connection part to which the other of the DC power supply and the device or the AC power system is connected; A primary winding provided on the first external connection portion side, a secondary winding magnetically coupled to the primary winding, and a first converter connected between the first external connection portion and the primary winding And a transformer circuit unit including a second converter unit connected to the secondary winding, A third converter connected to the second external connection and transmitting power in a single direction; A connection part including a first connection terminal and a second connection terminal for connecting the second converter part and the third converter part; At least one of the first and second converter units is applied so that positive and negative voltages are alternately applied to the primary winding, and the voltage of the first connection terminal with respect to the second connection terminal is positive.
  • a control unit for controlling In the first period including an inversion period in which the polarity of the voltage of the primary winding is inverted, the control unit is configured to prevent the power from being transmitted between the transformer circuit unit and the third converter unit.
  • the third converter unit is controlled so that transmission is performed.
  • This aspect controls the third converter unit so that power is not transmitted between the second converter unit and the third converter unit in the first period including the inversion period in which the polarity of the voltage of the primary winding is inverted. Therefore, according to this aspect, the first converter unit can be ZCS (zero current switching), and the polarity of the voltage applied to the primary winding can be stably inverted. Therefore, the loss and breakdown voltage of the switching element can be reduced.
  • this embodiment does not require a smoothing large-capacitance capacitor as shown in Patent Document 1, the circuit scale can be reduced.
  • the third converter unit is connected to a DC device, for example, the third converter unit can be configured by a normal unidirectional chopper circuit, and the third converter unit can be an AC device or an AC device. In the case of being connected to the electric power system, for example, the third converter unit can be configured by a normal full bridge type circuit. As a result, this aspect can apply normal control to the third converter unit as it is.
  • the third converter unit is controlled as shown in FIG. Therefore, according to this aspect, a voltage or current having a magnitude corresponding to the ratio of the second period to the first period can be input or output to the third converter unit.
  • the first external connection part (3) includes first and second external connection terminals (P2, N2)
  • the primary winding (531) includes a first center tap (CT1) connected to the first external connection terminal (P2)
  • the first converter unit (51) A first switching element (BL) connected between the first winding terminal (T1) of the primary winding and the second external connection terminal (N2);
  • a second switching element (AL) connected between the second winding terminal (T2) of the primary winding and the second external connection terminal (N2) may be included.
  • the primary winding and the first converter unit are configured by a center tap type circuit.
  • the first external connection part (3) includes first and second external connection terminals (P2, N2)
  • the first converter unit (51) is composed of a full-bridge circuit,
  • the full bridge circuit is A first switching element (BH) connected between the first external connection terminal (P2) and the first winding terminal (T1) of the primary winding;
  • a second switching element (BL) connected between the first winding terminal (T1) and the second external connection terminal (N2);
  • a third switching element (AH) connected to the first external connection terminal (P2) and the second winding terminal (T2) of the primary winding;
  • a fourth switching element (AL) connected between the second winding terminal (T2) and the second external connection terminal (N2) may be included.
  • the primary winding and the first converter unit are configured by a full bridge type circuit.
  • the first external connection part (3) includes first and second external connection terminals (P2, N2)
  • the first converter unit (51) is a half-bridge circuit
  • the half-bridge circuit is A first capacitor (C * 1) connected between the first external connection terminal (P2) and the first winding terminal (T1) of the primary winding; the first winding terminal (T1); At least one of the second capacitor (C * 2) connected between the two external connection terminals (N2);
  • a first switching element (AH) connected between the first external connection terminal (P2) and the second winding terminal (T2) of the primary winding
  • a second switching element (AL) connected between the second winding terminal (T2) and the second power supply terminal (N2) may be included.
  • the primary winding and the first converter unit are configured by a half ridge type circuit.
  • the secondary winding (532) includes a second center tap (CT2) connected to the first connection terminal (P3),
  • CT2 second center tap
  • the second converter unit (52) A fifth switching element (DYL) connected between the third winding terminal (T3) and the second connection terminal (N3) of the secondary winding;
  • the secondary winding and the second converter unit are configured by a center tap type circuit.
  • the second converter section (52) is configured by a full-bridge circuit
  • the full bridge circuit is A fifth switching element (DXH) connected between the first connection terminal (P3) and the third winding terminal (T3) of the secondary winding; A sixth switching element (DXL) connected between the third winding terminal (T3) and the second connection terminal (N3); A seventh switching element (DYH) connected between the fourth winding terminal (T4) and the first connection terminal (P3) of the secondary winding; An eighth switching element (DYL) connected between the fourth winding terminal (T4) and the second connection terminal (N3) may be included.
  • the secondary winding and the second converter unit are configured by a full bridge type circuit.
  • the second converter unit (52) is configured by a half-bridge circuit
  • the half-bridge circuit is A fifth switching element (DXH) connected between the first connection terminal (P3) and the third winding terminal (T3) of the secondary winding;
  • a sixth switching element (DXL) connected between the third winding terminal (T3) and the second connection terminal (N3);
  • the secondary winding and the second converter unit are configured by a half bridge type circuit.
  • the device is a DC device (27)
  • the second external connection part (15) includes a third external connection terminal (U2) and a fourth external connection terminal (W2) connected to the second connection terminal (N3).
  • the third converter unit (7) is composed of a chopper circuit that transmits DC power in the first unidirectional direction,
  • the chopper circuit is A coil (71) having a first coil terminal connected to the third external connection terminal (U2);
  • a ninth switching element (UH) connected between the second coil terminal (U1) and the first connection terminal (P3) of the coil;
  • a diode (D2) having a cathode connected to the second coil terminal (U1) and an anode connected to the second connection terminal (N3) may be included.
  • This aspect is an example of a chopper circuit that transmits electric power in the first unidirectional direction.
  • control unit may turn off the ninth switching element in the first period and turn on the ninth switching element in the second period.
  • This aspect is an example of control of a chopper circuit that transmits power in the first unidirectional direction.
  • the device is a DC device (27)
  • the second external connection part (15) includes a third external connection terminal (U2) and a fourth external connection terminal (W2) connected to the second connection terminal (N3)
  • the third converter unit (7) includes a chopper circuit that transmits DC power in the second unidirectional direction,
  • the chopper circuit is A coil (71) having a first coil terminal connected to the third external connection terminal (U2);
  • a diode (D1) having an anode connected to the second coil terminal (U1) of the coil and a cathode connected to the first connection terminal (P3);
  • a ninth switching element (UL) connected between the second coil terminal (U1) and the second connection terminal (N3) may be included.
  • This aspect is an example of a chopper circuit that transmits electric power in the second unidirectional direction.
  • control unit may turn on the ninth switching element in the first period and turn off the ninth switching element in the second period.
  • This mode is an example of control of a chopper circuit that transmits power in the second unidirectional direction.
  • the device is a single-phase AC device (30),
  • the second external connection part (15) includes a third external connection terminal (U2) and 4 external connection terminals (W2)
  • the third converter unit includes a single-phase inverter,
  • the single-phase inverter is A ninth switching element (UH) connected between the first connection terminal (P3) and the third external connection terminal (U2);
  • a tenth switching element (UL) connected between the third external connection terminal (U2) and the second connection terminal (N3);
  • a twelfth switching element (WL) connected between the fourth external connection terminal (W2) and the second connection terminal (N3) may be included.
  • DC power from a DC power supply can be converted into single-phase AC power and transmitted to an AC power system or a single-phase AC device.
  • DC power from a single-phase AC device can be converted to DC power and transmitted to a DC power source.
  • the device is a three-phase AC device (27),
  • the second external connection part (15) includes a third external connection terminal (15u), a 4 external connection terminal (15w), and a fifth external connection terminal (15v)
  • the third converter unit includes a three-phase inverter,
  • the three-phase inverter is A ninth switching element (UH) connected between the first connection terminal (P3) and the third external connection terminal (15u);
  • An eleventh switching element (WH) connected between the first connection terminal (P3) and the fourth external connection terminal (15w);
  • a twelfth switching element (WL) connected between the fourth external connection terminal (15w) and the second connection terminal (N3);
  • a fourteenth switching element (VL) connected between the fifth external connection terminal (15v) and the second connection terminal (N3) may be included.
  • DC power from a DC power source can be converted into three-phase AC power and transmitted to an AC power system or a three-phase AC device.
  • AC power from a three-phase AC device can be converted into DC power and transmitted to a DC power source.
  • connection portion may include a snubber circuit (60) connected between the first and second connection terminals (P3, N3).
  • ringing generated in the power conversion circuit can be suppressed.
  • the snubber circuit (60) One end of the snubber diode (63, 67) is connected to the first connection terminal (P3), and the other end of the snubber diode (63, 67) is connected to the second connection terminal (N3).
  • One or a plurality of CRD snubbers including a snubber capacitor (64, 69) and a snubber resistor (65, 68) connected in parallel with the snubber diode (63, 67) may be included.
  • the ringing generated between the first and second connection terminals is absorbed by the snubber capacitor, and the ringing can be suppressed.
  • FIG. 1 is a circuit diagram of a power conversion system 1 according to the first embodiment.
  • the power conversion system 1 is a power conversion system that converts and transmits power bidirectionally between a DC power source 17 and an AC power system 29 or an AC load 27.
  • the power conversion system 1 includes a connection unit 3 (an example of a first external connection unit), a capacitor 4, a transformer circuit unit 5, a connection unit 6, a converter unit 7 (an example of a third converter unit), a filter circuit 9, and a connection unit. It is a power conditioner provided with 15 (an example of a 2nd external connection part).
  • the connection unit 3 includes a terminal P2 (an example of a first power supply terminal) and a terminal N2 (an example of a second power supply terminal).
  • the transformer circuit unit 5 includes a converter unit 51 (an example of a first converter unit), a converter unit 52 (an example of a second converter unit), and a transformer 53.
  • Connection unit 6 includes a terminal P3 (an example of a first connection terminal), a terminal N3 (an example of a second connection terminal), and a snubber circuit 60.
  • the snubber circuit 60 includes a resistor 61 and a capacitor 62.
  • Converter unit 7 is formed of a single-phase inverter.
  • the filter circuit 9 includes a pair of coils 91 and 92 and a capacitor 93.
  • Connection unit 15 includes a terminal 15a and a terminal 15b.
  • DC power supply 17 (an example of a first connection target) is configured by, for example, a storage battery, a solar cell, a fuel cell, or the like.
  • the positive electrode of DC power supply 17 is connected to terminal P2, and the negative electrode of DC power supply 17 is connected to terminal N2.
  • to connect means to connect electrically.
  • the electric power of the DC power supply 17 is supplied to the transformer circuit unit 5 via the terminal P2 and the terminal N2.
  • the DC power supply 17 may be configured by a storage battery, a solar battery, a fuel cell, and the like and a chopper circuit.
  • the capacitor 4 is an electrolytic capacitor connected between the terminal P2 and the terminal N2, and stabilizes the voltage between the terminal P2 and the terminal N2.
  • the transformer 53 is a center tap type high-frequency transformer, and includes a primary winding 531 and a secondary winding 532 that are magnetically coupled to each other.
  • Primary winding 531 includes two coils L1 and L2 separated by center tap CT1 (an example of a first center tap).
  • the center tap CT1 is connected to the terminal P2.
  • a terminal T1 (an example of a second winding terminal) that is one end of the primary winding 531 is connected to a switching element BL (an example of a second switching element).
  • a terminal T2 (an example of a first winding terminal) that is the other end of the primary winding 531 is connected to a switching element AL (an example of a first switching element).
  • the secondary winding 532 includes two coils L3 and L4 separated by a center tap CT2 (an example of a second center tap). Center tap CT2 is connected to terminal P3. A terminal T3 (an example of a fourth winding terminal) that is one end of the secondary winding 532 is connected to a switching element YL (an example of a sixth switching element). A terminal T4 (an example of a fourth winding terminal) that is the other end of the secondary winding 532 is connected to a switching element XL (an example of a fifth switching element).
  • the coils L1, L2, L3, and L4 are magnetically coupled such that the center tap CT1, the terminal T2, the center tap CT2, and the terminal T2 have the same polarity.
  • the converter unit 51 is a high-frequency inverter that converts a DC voltage supplied from the DC power supply 17 into, for example, a 20 kHz rectangular wave-shaped high-frequency AC voltage and supplies the AC voltage to the primary winding 531 and the secondary winding 532.
  • the converter unit 51 includes two switching elements AL and BL, two diodes DA and DB, and two capacitors CA and CB.
  • the switching elements AL and BL are composed of, for example, n-type field effect transistors.
  • the switching element AL has a drain connected to the terminal T2 and a source connected to the terminal N2.
  • the switching element BL has a drain connected to the terminal T1 and a source connected to the terminal N2.
  • the diode DA has an anode connected to the source of the switching element AL and a cathode connected to the drain of the switching element AL.
  • the diode DB has an anode connected to the source of the switching element BL and a cathode connected to the drain of the switching element BL.
  • the diodes DA and DB may be body diodes of the switching elements AL and BL, respectively, or may be external diodes.
  • the capacitor CA is connected between the source and drain of the switching element AL.
  • the capacitor CB is connected between the source and drain of the switching element BL.
  • Capacitors CA and CB resonate with primary winding 531 to realize soft switching of switching elements AL, BL, YL, and XL.
  • the capacitors CA and CB may be connected between the terminals T1 and T2, or may be connected in parallel to the coils L1 and L2.
  • the converter unit 52 converts the rectangular-wave AC voltage having positive and negative polarities alternately supplied to the secondary winding 532 into a voltage having positive polarity and supplies the voltage between the terminal P3 and the terminal N3.
  • the converter unit 52 includes two switching elements YL and XL and two diodes DY and DX.
  • the switching elements YL and XL are composed of, for example, n-type field effect transistors.
  • the switching element YL has a drain connected to the terminal T3 and a source connected to the terminal N3.
  • the switching element XL has a drain connected to the terminal T4 and a source connected to the terminal N3.
  • the diode DY has an anode connected to the source of the switching element YL and a cathode connected to the drain of the switching element YL.
  • the diode DX has an anode connected to the source of the switching element XL and a cathode connected to the drain of the switching element XL.
  • the switching elements AL, BL, YL, and XL may each be configured by, for example, an npn-type insulated gate bipolar transistor instead of the field effect transistor.
  • the diodes DA, DB, DY, DX are provided as freewheeling diodes.
  • the diode DA is connected across the emitter and the collector so that a current in the direction opposite to the current flowing through the switching element AL flows when the switching element AL is turned on. The same applies to the diodes DB, DY, and DX.
  • the control unit 13 turns off the switching elements AL and XL when the switching elements BL and YL are turned on, and turns on the switching elements AL and XL when the switching elements BL and YL are turned off.
  • the control unit 13 controls the switching elements AL, BL, XL, and YL with the same duty ratio.
  • the duty ratio of the switching elements AL, BL, XL, YL is substantially 50%.
  • the term “50%” means a duty ratio obtained by subtracting a dead time (inversion period) from a duty ratio of 50%.
  • the converter unit 7 is a single-phase inverter that generates, for example, a commercial AC voltage having a frequency of 50 Hz or 60 Hz from a positive voltage supplied between the terminal P3 and the terminal N3.
  • the converter unit 7 includes a switching element UL (an example of a ninth switching element), a switching element UL (an example of a tenth switching element), a switching element WH (an example of an eleventh switching element), and a switching element WL (a twelfth switching element).
  • An example of a switching element four diodes D1 to D4, a terminal U1 (an example of a third power supply terminal), and a terminal W1 (an example of a fourth power supply terminal), and the switching elements UH, UL, WH, WL is a single-phase inverter with a full bridge connection.
  • the switching elements UH to WL are each composed of an n-type field effect transistor.
  • the switching element UH has a drain connected to the terminal P3 and a source connected to the terminal U1.
  • the switching element WH has a drain connected to the terminal P3 and a source connected to the terminal W1.
  • the switching element UL has a drain connected to the terminal U1 and a source connected to the terminal N3.
  • the switching element WL has a drain connected to the terminal W1 and a source connected to the terminal N3.
  • the diodes D1 to D4 are connected to the switching elements UH to WL so that the anode is connected to the source and the cathode is connected to the drain.
  • the switching elements UH, UL, WH, WL may each be constituted by, for example, an npn-type insulated gate bipolar transistor instead of the field effect transistor.
  • the diodes D1, D2, D3, D4 are provided as freewheeling diodes.
  • the diode D1 is connected across the emitter and the collector so that a current having a direction opposite to that flowing through the switching element UH flows when the switching element UH is turned on. The same applies to the diodes D2, D3, and D4.
  • the control unit 13 controls the amplitude of at least one of the voltage Vout and the current IL at the terminals 15a and 15b by turning ON or OFF the switching elements UH to WL. Details will be described later.
  • the coil 91 is connected between the terminal U1 and the terminal 15a, and the coil 92 is connected between the terminal W1 and the terminal 15b.
  • the capacitor 93 is connected between the terminal 15a and the terminal 15b.
  • the coils 91 and 92 and the capacitor 93 constitute a filter circuit that smoothes the rectangular wave AC voltage output from the converter unit 7. As a result, the rectangular wave AC voltage output from the converter unit 7 is converted into a sinusoidal AC voltage having an amplitude corresponding to the pulse width.
  • the terminals 15a and 15b are connected to the AC power system 29. Is done.
  • the AC load 27 (an example of a second connection target) is, for example, an electric device that is driven by a commercial AC voltage.
  • the control unit 13 includes, for example, a CPU, FPGA, ASIC, or the like, and controls the converter units 51 and 52 and the converter unit 7.
  • the control unit 13 controls the converter unit 51 so that a high-frequency AC voltage is supplied to the primary winding 531 and the secondary winding 532, and a voltage having a positive polarity is supplied between the terminal P3 and the terminal N3.
  • the converter unit 52 is controlled.
  • the control unit 13 controls the converter unit 7 so that power is not transmitted between the transformer circuit unit 5 and the converter unit 7 in the first period including the inversion period in which the polarity of the voltage of the primary winding 531 is inverted.
  • the control unit 13 converts the converter so that power is transmitted in the first direction from the transformer circuit unit 5 toward the converter unit 7 or in the second direction opposite to the first direction in a second period different from the first period.
  • the unit 7 is controlled.
  • control unit 13 assigns an inversion period and a later-described circulation period in a first period that constitutes a half cycle (an example of a unit period) of the AC voltage supplied to the primary winding 531, and the first period
  • the converter units 51, 52, and 7 are controlled so as to allocate a later-described supply period or regeneration period to a second period different from the above.
  • control unit 13 generates the target voltage Vout or current IL by changing the ratio of the second period in each unit period by PWM control of the converter unit 7.
  • the target voltage Vout or current IL is, for example, a voltage or current having the same waveform as a modulation wave signal used in PWM control.
  • the power conversion system 1 is either an inverter mode that supplies power from the DC power source 17 to the AC power system 29 or the AC load 27, or a converter mode that regenerates power from the AC power system 29 or AC load 27 to the DC power source 17. Works with.
  • the inverter mode is a mode in which a voltage drop occurs in the same direction as the current flows through the AC power system 29 or the AC load 27 between the terminals 15a and 15b, that is, the polarity of the voltage Vout and the current IL is the same.
  • the converter mode is a mode in which a voltage drop occurs in a direction opposite to the direction in which a current flows between the terminals 15a and 15b via the AC power system 29 or the AC load 27, that is, the polarity of the voltage Vout and the current IL is different. It is a different mode.
  • FIG. 2 is a waveform diagram showing the operation of the power conversion system 1 in the inverter mode.
  • (1) indicates ON / OFF of the switching elements BL and AL, the high level is ON and the low level is OFF, and (2) indicates the ON / OFF of the switching elements YL and XL. Is ON, the low level is OFF, (3) indicates ON / OFF of the switching elements UH, UL, the high level is ON, the low level is OFF, and (4) is the ON of the switching elements WH, WL, Indicates OFF, the high level is ON, and the low level is OFF.
  • FIG. 2 is a waveform diagram of the voltage VT1 of the center tap CT1 with respect to the terminal T1 and the voltage VT2 of the center tap CT1 with respect to the terminal T2, and (6) is a waveform diagram of the terminal T3.
  • FIG. 7 is a waveform diagram of a voltage VT3 of the center tap CT2 as a reference and a voltage VT4 of the center tap CT2 with respect to the terminal T4, and (7) is a waveform diagram of the current IL1 of the coil L1 and the current IL2 of the coil L2.
  • (8) are waveform diagrams of the current IL flowing through the coil 91 and the voltage Vout.
  • FIG. 3 is a diagram illustrating a current path flowing through the converter unit 7.
  • the inverter mode will be described using the voltage between the terminal P2 and the terminal N2 as the voltage VE.
  • the switching elements AL, BL, XL, and YL are PWM controlled with a duty ratio of substantially 50%.
  • the turns ratio of the coils L1 to L4 (high frequency transformer) is 1: 1: 1: 1.
  • VT1 VE
  • VT2 ⁇ VE
  • VT3 VE
  • VT4 ⁇ VE.
  • the polarity of the voltage VT1 is gradually reversed from positive to negative by the resonance operation of the exciting current of the coil L1 and the capacitors CA and CB, and the polarity of the voltage VT2 is gradually reversed from negative to positive, thereby realizing soft switching.
  • the Hereinafter, a period in which the polarities of the switching elements BL and YL and the switching elements AL and XL are switched from positive to negative or from negative to positive is referred to as an inversion period.
  • VT2 VE
  • VT1 ⁇ VE
  • VT3 ⁇ VE
  • VT4 VE.
  • converter units 51 and 52 repeat the operations of periods ST1, ST2, ST3, and ST4.
  • the converter unit 7 since the constant voltage VE is supplied to the converter unit 7, the converter unit 7 does not require a bidirectional switch, and can be configured with a normal full-bridge circuit.
  • the converter unit 7 is connected to the DC power source 17 via the transformer 53. Therefore, it can be considered that the converter unit 7 is directly connected to the DC power source 17 via the leakage inductance of the transformer 53. Accordingly, ringing occurs in the power conversion system 1 when the converter unit 7 is switched. In order to prevent this, the snubber circuit 60 is provided. However, if the polarity of the voltage “P3-N3” is reversed, the direction of the current flowing through the snubber circuit 60 is also reversed, so that the capacity of the capacitor 62 can be increased. Can not. Therefore, when the polarity of the voltage “P3-N3” is reversed, it is difficult to suppress ringing.
  • the power conversion system 1 can suppress ringing.
  • a circulation period in which the current IL flows through the circulation path 71 is established (FIG. 3).
  • the circulation path 71 is a closed loop in the converter unit 7, and power transmission from the DC power supply 17 to the converter unit 7 is interrupted.
  • Vout> Vo the current IL decreases.
  • a supply period in which the current IL flows through the supply path 72 is established (FIG. 3).
  • a current flows through the secondary winding 532, and power is transmitted from the DC power supply 17 to the converter unit 7.
  • ⁇ I20 (VE ⁇ Vout) / L ⁇ Ton
  • ⁇ I20 Vout / L ⁇ (T-Ton) Since each ⁇ I20 is equal in the stable state, the voltage Vout is expressed by the following equation.
  • D Ton / T, indicating the duty ratio. From the above equation, it is understood that the voltage Vout can be output as an AC voltage having a desired waveform by PWM control of the duty ratio D.
  • FIG. 4 is a waveform diagram showing the operation of the power conversion system 1 in the converter mode.
  • Vin the voltage between the terminal U2 and the terminal W2
  • Vout the voltage between the terminal P2 and the terminal N2
  • FIG. 5 is a diagram illustrating a current path flowing through the converter unit 7.
  • (1) to (8) in FIG. 4 are the same as (1) to (8) in FIG. In FIG. 5, the direction of the current IL is opposite to that in FIG.
  • VT1 Vout
  • VT2 ⁇ Vout
  • VT3 Vout
  • VT4 ⁇ Vout.
  • an inversion period is entered, and the polarity of the voltage VT1 is gradually inverted from positive to negative, and the polarity of the voltage VT2 is gradually inverted from negative to positive, thereby realizing soft switching.
  • VT2 Vout
  • VT1 ⁇ Vout
  • VT3 ⁇ Vout
  • VT4 Vout.
  • the current IL flows through the circulation path 81 and becomes a circulation period (see FIG. 5).
  • the circulation path 81 is the same as the circulation path 71 except that the direction of the circulation path 71 is opposite to that of the circulation path 71.
  • a regeneration period in which the current IL flows through the regeneration path 82 is established (FIG. 5).
  • the regeneration path 82 is opposite in direction to the supply path 72.
  • ⁇ I20 (Vout ⁇ Vin) / L ⁇ (T ⁇ Ton) Since each ⁇ I20 is equal in the stable state, the voltage Vout is expressed by the following equation.
  • 1 ⁇ D Doff
  • Vout 1 / Doff ⁇ Vin From the above equation, the voltage Vin can be converted into a DC voltage by PWM control of Doff.
  • the inverter mode (1) in which the voltage Vout shown in FIG. 6 is positive and the current IL is positive, and the inverter mode (2 in which the voltage Vout shown in FIG. 9 is negative and the current IL is negative are shown.
  • FIG. 6 is a waveform diagram showing the operation of the power conversion system 1 in the inverter mode (1).
  • the upper part of FIG. 6 is a waveform diagram of the voltage Vout and the current IL.
  • the lower part of FIG. 6 is a waveform diagram showing ON and OFF of the switching elements BL, YL, AL, XL, UH, UL, WH, WL in one cycle (2T) of the AC voltage supplied to the primary winding 531. is there.
  • FIG. 7 and 8 are diagrams showing the state of the switching element in each period of FIG. 7 and 8, since the voltage Vout is positive, the coil 91 side is positive “+”. In addition, because of the inverter mode, the current IL flows into the plus “+” side.
  • Period (1) is an inversion period.
  • the current IL flows through the circulation path 71 passing through the coil 92 ⁇ the switching element WH ⁇ the switching element UH ⁇ the coil 91. Therefore, power transmission is interrupted between the primary side and the secondary side of the transformer 53.
  • Period (2) is a transition period from the inversion period to the supply period.
  • Period (3) is a transition period from the inversion period to the supply period.
  • Period (4) is a supply period.
  • the converter unit 7 enters the supply mode, and the current IL flows through the supply path 72 that passes through the coil 92 ⁇ the switching element WL ⁇ the switching element YL ⁇ the coil L ⁇ b> 3 ⁇ the switching element UH ⁇ the coil 91.
  • the current on the primary side of the transformer 53 flows through a path 75 that passes through the coil L 1 ⁇ the switching element BL ⁇ the DC power supply 17. Therefore, power is transmitted between the primary side and the secondary side of the transformer 53.
  • Period (5) is a transition period from the supply period to the circulation period.
  • the current IL flows through a circulation path 73 that passes through the coil 92 ⁇ the switching element WL ⁇ the diode D ⁇ b> 2 ⁇ the coil 91. Further, since the primary side and the secondary side of the transformer 53 are blocked, no current flows on the primary side of the transformer 53.
  • Period (6) is a circulation period.
  • Period (7) is an inversion period.
  • Period (8) is a transition period from the inversion period to the supply period.
  • Period (9) is a transition period from the inversion period to the supply period.
  • Period (10) is a supply period.
  • the converter unit 7 enters the supply mode, and the current IL flows through the supply path 74 that passes through the coil 92 ⁇ the switching element WL ⁇ the switching element XL ⁇ the coil L ⁇ b> 4 ⁇ the switching element UH ⁇ the coil 91.
  • the current on the primary side of the transformer 53 flows through a path 76 passing through the coil L ⁇ b> 2 ⁇ the switching element AL ⁇ the DC power supply 17. Therefore, power is transmitted between the primary side and the secondary side of the transformer 53.
  • Period (11) is a transition period from the supply period to the circulation period.
  • Period (12) is a circulation period.
  • FIG. 9 is a waveform diagram showing the operation of the power conversion system 1 in the inverter mode (2).
  • the upper part of FIG. 9 is a waveform diagram of the voltage Vout and the current IL.
  • the lower part of FIG. 9 is a waveform diagram showing ON and OFF of the switching elements BL, YL, AL, XL, UH, UL, WH, WL in one cycle (2T) of the AC voltage supplied to the primary winding 531.
  • 10 and 11 are diagrams showing the state of the switching element in each period of FIG. 10 and 11, since the voltage Vout is negative, the coil 92 side is positive “+”. In addition, because of the inverter mode, the current IL flows into the plus “+” side.
  • Period (1) is an inversion period.
  • the current IL flows through a circulation path 77 passing through the coil 91 ⁇ the switching element UH ⁇ the switching element WH ⁇ the coil 92. Therefore, power transmission is interrupted between the primary side and the secondary side of the transformer 53.
  • Period (2) is a transition period from the inversion period to the supply period.
  • Period (3) is a transition period from the inversion period to the supply period.
  • Period (4) is a supply period.
  • the converter unit 7 is in the supply mode, and the current IL flows through the supply path 78 passing through the coil 91 ⁇ the switching element UL ⁇ the switching element YL ⁇ the coil L ⁇ b> 3 ⁇ the switching element WH ⁇ the coil 92.
  • the current on the primary side of the transformer 53 flows through a path 75 that passes through the coil L ⁇ b> 1 ⁇ the switching element BL ⁇ the DC power supply 17. Therefore, power is transmitted between the primary side and the secondary side of the transformer 53.
  • Period (5) is a transition period from the supply period to the circulation period.
  • the current IL flows through a circulation path 79 that passes through the coil 91 ⁇ the switching element UL ⁇ the diode D 4 ⁇ the coil 92. Further, since the primary side and the secondary side of the transformer 53 are blocked, no current flows on the primary side of the transformer 53.
  • Period (6) is a circulation period.
  • Period (7) is an inversion period.
  • Period (8) is a transition period from the inversion period to the supply period.
  • Period (9) is a transition period from the inversion period to the supply period.
  • Period (10) is a supply period.
  • the converter unit 7 enters the supply mode, and the current IL flows through the supply path 80 passing through the coil 91 ⁇ the switching element UL ⁇ the switching element XL ⁇ the coil L4 ⁇ the switching element WH ⁇ the coil 92.
  • the current on the primary side of the transformer 53 flows through a path 76 passing through the coil L ⁇ b> 2 ⁇ the switching element AL ⁇ the DC power supply 17. Therefore, power is transmitted between the primary side and the secondary side of the transformer 53.
  • Period (11) is a transition period from the supply period to the circulation period.
  • Period (12) is a circulation period.
  • the converter mode includes a converter mode (3) in which the voltage Vout shown in FIG. 12 is positive and the current IL is negative, and a converter mode (4 in which the voltage Vout shown in FIG. 15 is negative and the current IL is positive. )
  • FIG. 12 is a waveform diagram showing the operation of the power conversion system 1 in the converter mode (3).
  • the upper part of FIG. 12 is a waveform diagram of the voltage Vout and the current IL.
  • the lower part of FIG. 12 is a waveform diagram showing ON and OFF of the switching elements BL, YL, AL, XL, UH, UL, WH, WL in one cycle (2T) of the AC voltage supplied to the primary winding 531.
  • is there. 13 and 14 are diagrams showing the state of the switching element in each period of FIG. In FIGS. 13 and 14, since the voltage Vout is positive, the coil 91 side is positive “+”. In the converter mode, the current IL flows out from the plus “+” side.
  • Period (1) is an inversion period.
  • the current IL flows through the circulation path 81 passing through the coil 91 ⁇ the switching element UH ⁇ the switching element WH ⁇ the coil 92. Therefore, power transmission is interrupted between the primary side and the secondary side of the transformer 53.
  • the circulation path 81 is the same as the circulation path 71 shown in FIGS. 7 and 8 (however, the direction is reverse).
  • Period (2) is a transition period from the inversion period to the regeneration period.
  • Period (3) is a transition period from the inversion period to the regeneration period.
  • converter unit 7 starts the regeneration mode, and current IL passes through regenerative path 82 that passes through coil 91 ⁇ switching element UH ⁇ coil L3 ⁇ switching element YL ⁇ diode D4 ⁇ coil 92.
  • the current on the primary side of the transformer 53 flows through a path 85 that passes through the coil L1 ⁇ the DC power supply 17 ⁇ the switching element BL. Therefore, power is transmitted between the primary side and the secondary side of the transformer 53.
  • Period (4) is a regeneration period.
  • converter unit 7 is in a regeneration mode, and current IL flows through regeneration path 82 that passes through coil 91 ⁇ switching element UH ⁇ coil L 3 ⁇ switching element YL ⁇ switching element WL ⁇ coil 92.
  • the primary side current of the transformer 53 flows through the path 85. Therefore, power is transmitted between the primary side and the secondary side of the transformer 53.
  • Period (5) is a transition period from the regeneration period to the circulation mode.
  • converter unit 7 maintains the regenerative mode, and current IL flows through regenerative path 82 ⁇ coil 92 passing through coil 91 ⁇ diode D 1 ⁇ coil L 3 ⁇ switching element YL ⁇ switching element WL.
  • the primary side current of the transformer 53 flows through the path 85. Therefore, power is transmitted between the primary side and the secondary side of the transformer 53.
  • Period (6) is a circulation period.
  • the current IL flows through a circulation path 83 that passes through the coil 91 ⁇ the switching element UL ⁇ the switching element WL ⁇ the coil 92. Therefore, power transmission is interrupted between the primary side and the secondary side of the transformer 53.
  • the circulation path 83 is the same as the circulation path 73 (however, the direction is reverse).
  • Period (7) is an inversion period.
  • Period (8) is a transition period from the inversion period to the regeneration period.
  • Period (9) is a transition period from the inversion period to the regeneration period.
  • the converter unit 7 enters the regeneration mode, and the current IL flows through the regeneration path 84 passing through the coil 91 ⁇ the diode D 1 ⁇ the coil L 4 ⁇ the switching element XL ⁇ the switching element WL ⁇ the coil 92.
  • the current on the primary side of the transformer 53 flows through a path 86 that passes through the switching element AL ⁇ the coil L ⁇ b> 2 ⁇ the DC power supply 17. Therefore, power is transmitted between the primary side and the secondary side of the transformer 53.
  • Period (10) is a regeneration period.
  • converter unit 7 is in a regeneration mode, and current IL flows through regeneration path 84 passing through coil 91 ⁇ switching element UH ⁇ coil L4 ⁇ switching element XL ⁇ switching element WL ⁇ coil 92. Further, the current on the primary side of the transformer 53 flows through the path 86. Therefore, power is transmitted between the primary side and the secondary side of the transformer 53.
  • Period (11) is a transition period from the regeneration period to the circulation period.
  • the current IL flows through a regenerative path 84 passing through the coil 91 ⁇ the switching element UH ⁇ the coil L 4 ⁇ the switching element XL ⁇ the diode D 4 ⁇ the coil 92.
  • the current on the primary side of the transformer 53 flows through the path 86. Therefore, power is transmitted between the primary side and the secondary side of the transformer 53.
  • Period (12) is a circulation period.
  • FIG. 15 is a waveform diagram showing an operation of the power conversion system 1 in the converter mode (4).
  • the upper part of FIG. 15 is a waveform diagram of the voltage Vout and the current IL.
  • the lower part of FIG. 15 is a waveform diagram showing ON and OFF of the switching elements BL, YL, AL, XL, UH, UL, WH, WL in one cycle (2T) of the AC voltage supplied to the primary winding 531.
  • 16 and 17 are diagrams showing the state of the switching element in each period of FIG. In FIGS. 16 and 17, since the voltage Vout is negative, the coil 92 side is positive “+”. In the converter mode, the current IL flows out from the plus “+” side.
  • Period (1) is an inversion period.
  • the current IL flows through a circulation path 87 passing through the coil 92 ⁇ the switching element WH ⁇ the switching element UH ⁇ the coil 91. Therefore, power transmission is interrupted between the primary side and the secondary side of the transformer 53.
  • the circulation path 87 is the same as the circulation path 77 shown in FIGS. 10 and 11 (however, the direction is reverse).
  • Period (2) is a transition period from the inversion period to the regeneration period.
  • Period (3) is a transition period from the inversion period to the regeneration period.
  • the converter unit 7 starts the regeneration mode, and the current IL passes through the regeneration path 88 that passes through the coil 92 ⁇ the switching element WH ⁇ the coil L 3 ⁇ the switching element YL ⁇ the diode D 2 ⁇ the coil 91.
  • the current on the primary side of the transformer 53 flows through a path 85 that passes through the coil L1 ⁇ the DC power supply 17 ⁇ the switching element BL. Therefore, power is transmitted between the primary side and the secondary side of the transformer 53.
  • Period (4) is a regeneration period.
  • converter unit 7 is in a regeneration mode, and current IL flows through regeneration path 88 passing through coil 92 ⁇ switching element WH ⁇ coil L3 ⁇ switching element YL ⁇ switching element UL ⁇ coil 91.
  • the primary side current of the transformer 53 flows through the path 85. Therefore, power is transmitted between the primary side and the secondary side of the transformer 53.
  • Period (5) is a transition period from the regeneration period to the circulation mode.
  • the converter unit 7 maintains the regenerative mode, and the current IL flows through a regenerative path 88 that passes through the coil 92 ⁇ the diode D3 ⁇ the coil L3 ⁇ the switching element YL ⁇ the switching element UL ⁇ the coil 91.
  • the primary side current of the transformer 53 flows through the path 85. Therefore, power is transmitted between the primary side and the secondary side of the transformer 53.
  • Period (6) is a circulation period.
  • the current IL flows through a circulation path 89 that passes through the coil 92 ⁇ the switching element WL ⁇ the switching element UL ⁇ the coil 91. Therefore, power transmission is interrupted between the primary side and the secondary side of the transformer 53.
  • the circulation path 89 is the same as the circulation path 79 (however, the direction is reverse) shown in FIGS.
  • Period (7) is an inversion period.
  • Period (8) is a transition period from the inversion period to the regeneration period.
  • Period (9) is a transition period from the inversion period to the regeneration period.
  • the converter unit 7 is in the regeneration mode, and the current IL flows through the regeneration path 90 passing through the coil 92 ⁇ the diode D 3 ⁇ the coil L 4 ⁇ the switching element XL ⁇ the switching element UL ⁇ the coil 91.
  • the current on the primary side of the transformer 53 flows through the path 86. Therefore, power is transmitted between the primary side and the secondary side of the transformer 53.
  • Period (10) is a regeneration period.
  • converter unit 7 is in a regeneration mode, and current IL flows through regeneration path 90 that passes through coil 92 ⁇ switching element WH ⁇ coil L4 ⁇ switching element XL ⁇ switching element UL ⁇ coil 91. Further, the current on the primary side of the transformer 53 flows through the path 86. Therefore, power is transmitted between the primary side and the secondary side of the transformer 53.
  • Period (11) is a transition period from the regeneration period to the circulation period.
  • the current IL flows through the regenerative path 90 passing through the coil 92 ⁇ the switching element WH ⁇ the coil L 4 ⁇ the switching element XL ⁇ the diode D 2 ⁇ the coil 91.
  • the current on the primary side of the transformer 53 flows through the path 86. Therefore, power is transmitted between the primary side and the secondary side of the transformer 53.
  • Period (12) is a circulation period.
  • the inverter mode (1) in which the voltage Vout is positive and the converter mode (3) in which the voltage Vout is positive indicate that the switching elements BL, YL, AL, XL , UH, UL, WH, WL can be driven in the same sequence.
  • the inverter mode (2) in which the voltage Vout is negative and the converter mode (4) in which the voltage Vout is negative the switching elements BL, YL, AL, XL, UH, UL, WH and WL can be driven in the same sequence. I understand.
  • the polarity of the current IL may be different from that assumed due to erroneous detection of the polarity of the current IL or disturbance of the current IL due to disturbance.
  • the current IL takes the same path in both modes. Will follow.
  • the power conversion system 1 shows a polarity different from the polarity assumed by the current IL, the power conversion system 1 is not easily affected.
  • the power conversion system 1 can continuously switch between the inverter mode and the converter mode. As a result, it can be applied to independent operation such as UPS (uninterruptible power supply).
  • UPS uninterruptible power supply
  • the control unit 13 realizes the inverter mode (1) and the converter mode (3) as follows.
  • the control unit 13 performs a first cycle and a second cycle of a half cycle Ta including a period in which the voltages of the coils L1 and L3 are positive and a half cycle Tb including a period in which the voltages of the coils L1 and L3 are negative. Divide into The order of the first and second periods does not matter.
  • control part 13 implement
  • the control unit 13 alternately turns on the high side and the low side in the circulation period and the next circulation period, but the present invention is not limited to this.
  • the controller 13 may adopt a mode in which only the high side is turned on or only the low side is turned on in the circulation period and the next circulation period.
  • the former is preferable from the viewpoint of heat dispersion.
  • FIG. 18 is a circuit diagram illustrating the operation of the switching element during the inversion period.
  • a capacitor C14 provided between the terminals T1 and T2 represents the capacitors CA and CB shown in FIG.
  • the directions of the arrows of the voltages VT2 and VT4 are opposite to those in FIG.
  • the period SK1 is a transmission period in which power is transmitted between the primary side and the secondary side of the transformer 53.
  • the coil current I1 includes a drive current I01 supplied from the DC power supply 17 and an exciting current I02 of the coil L1.
  • the period SK2 is an inversion period.
  • the period SK3 is an inversion period. Due to the exciting current I02, the polarity of the voltage of the capacitor C14 is inverted with respect to the period SK2. Thereby, the polarities of the voltages of the coils L1, L2, L3, and L4 are inverted with respect to the period SK2.
  • the coil current I1 continues to flow through the path of the coil L1 ⁇ the capacitor C14 ⁇ the coil L2, and the electric charge is stored in the capacitor C14 (the terminal T1 side is positive).
  • the period SK4 is an inversion period.
  • the diode DA is turned ON.
  • the coil current I1 flows through the path of the diode DA ⁇ the coil L2 ⁇ VE.
  • the exciting current I02 0, and the coil current I1 is only the exciting current I03.
  • the period SK5 is a transmission period.
  • the voltages of -VE, -VE, -VE, and -VE are applied to the coils L1, L2, L3, and L4, respectively. Therefore, a voltage of 2VE is applied to the capacitor C14 with reference to the terminal T2.
  • a coil current I1 including a drive current I01 and an excitation current I03 flows through the coil L1, and a coil current I2 flows through the coil L4.
  • the converter units 51 and 52 perform the inversion operation by causing the coils L1 and L2 and the capacitor C14 to resonate, the inversion operation by low-loss switching (soft switching) can be realized.
  • FIG. 19 shows a case where the snubber circuit 60 is not provided
  • FIG. 20 shows a case where a snubber circuit SCR consisting of a capacitor and a resistor is provided as the snubber circuit 60
  • FIG. 21 shows a case where a snubber circuit SC consisting only of a capacitor is provided as the snubber circuit 60. Show.
  • the upper stage shows simulation circuits 100, 101, and 102 for observing ringing in the power conversion system 1
  • the middle stage shows frequency characteristics G100, G101, and G102
  • the lower stage shows power conversion.
  • the waveform of the voltage of the switching element which comprises the system 1 is shown.
  • the simulation circuit 100 includes a leakage inductance L100, a capacitor C100, and an AC power supply AC10 connected in series.
  • Leakage inductance L100 indicates the leakage inductance of the transformer 53.
  • the capacitor C100 is a capacitor equivalently showing the switching elements UH and WH on the high side of the converter unit 7 in the OFF state.
  • AC power supply AC10 is an AC power supply equivalently showing a state in which switching elements UL, WL on the low side of converter unit 7 transition from the OFF state to the ON state.
  • the capacitor C200 and the resistor R200 indicate the snubber circuit SCR, but are not incorporated in the simulation circuit 100 here.
  • the voltage V1 is the drain voltage of the switching elements UH and WH with respect to the ground G
  • the voltage V2 is the drain voltage of the switching elements UL and WL with respect to the ground G.
  • the middle part of FIG. 19 is a log-log graph showing the frequency characteristic G100 of the simulation circuit 100.
  • the vertical axis shows the voltage “V1 ⁇ V2” based on the voltage V2 in dB units, and the horizontal axis shows the frequency of the AC power supply AC10. Show.
  • the frequency characteristic G100 of the leakage inductance L100 and the capacitor C100 was generated by sweeping the frequency of the AC power supply AC10 from 10 Hz to 1 GHz and measuring the effective value of the voltage “V1-V2”.
  • the lower part of FIG. 19 is a waveform diagram showing ringing generated in the power conversion system 1 when the snubber circuit SCR is not provided.
  • the first stage shows ON / OFF of the switching elements AL, BL
  • the second stage shows the voltages V (T1, N2) and V (T2, N2) of the terminals T1, T2 with respect to the terminal N2.
  • the third stage shows the voltages V (T3, N3) and V (T4, N3) of the terminals T3 and T4 with the terminal N3 as a reference
  • the fourth stage has terminals U1, W1 with the terminal N3 as a reference.
  • the voltages V (U1, N3) and V (W1, N3) are shown.
  • FIG. 22 is a graph showing impedance characteristics of the power conversion system 1.
  • the upper part shows the impedance characteristic G11 of the leakage inductance L100
  • the middle part shows the impedance characteristic G12 of the snubber circuit SCR
  • the lower part shows the impedance characteristic G13 when the snubber circuit SCR is connected in parallel to the leakage inductance L100.
  • Each graph in FIG. 22 is a log-log graph, where the vertical axis indicates impedance (Z) and the horizontal axis indicates angular frequency ( ⁇ ).
  • the impedance characteristic G11 shows that the impedance increases with a constant slope as the angular frequency increases due to the influence of the leakage inductance L100.
  • the impedance characteristic G12 assuming that the value of the capacitor C200 is C and the value of the resistor R200 is R, in the region where ⁇ ⁇ 1 / CR, the impedance decreases with a constant slope as the angular frequency increases due to the influence of the capacitor C200. In the region where ⁇ > 1 / CR, the impedance maintains a constant value as the frequency increases due to the influence of the resistor R200.
  • the impedance characteristic G13 is the same as the impedance characteristic G11 having the lower impedance of the impedance characteristics G11 and G12 in the region of ⁇ ⁇ 1 ⁇ (LC), where L is the leakage inductance L100 and C is the value of the capacitor C200. In the region of ⁇ > 1 ⁇ (LC), the impedance characteristics G11 and G12 have the same characteristics as the impedance characteristics G12 having the lower impedance.
  • the snubber circuit SCR can be actively absorbed by the snubber circuit SCR so that 1 / CR ⁇ r, and the ringing can be suppressed.
  • ⁇ r 1 / ⁇ (LCp).
  • the carrier frequency ⁇ CA is a frequency of a carrier signal used for PWM control, and for example, 20 kHz can be adopted.
  • FIG. 23 is a timing chart of the power conversion system 1 in the inverter mode.
  • (1) indicates ON / OFF of the switching elements BL, AL, where the high level is ON and the low level is OFF.
  • (2) indicates ON and OFF of the switching elements UH and UL, where the high level is ON and the low level is OFF.
  • (3) indicates ON and OFF of the switching elements WH and WL, where the high level is ON and the low level is OFF.
  • (5) shows the voltage “P3-N3.
  • (6) shows the current IL and the voltage Vout.
  • (7) is the same as (1).
  • (8) shows the voltage VT1 and the current IL1.
  • (9) shows the voltage VT3 and the current IL3.
  • (10) indicates the voltage VT2 and the current IL2.
  • (11) shows the voltage VT4 and the current IL4.
  • (12) indicates the exciting current of the transformer 53.
  • the exciting current is (IL1-IL2)-(IL3-IL4).
  • the operation of the switching element YL is the same as that of the switching element BL, and the operation of the switching element XL is the same as that of the switching element AL.
  • a circulation period TB1 is started following the supply period TA1.
  • the current IL decreases linearly.
  • the currents IL1 and IL3 change substantially to 0 after rapidly decreasing. Specifically, the current IL3 is 0, but the exciting current flows through the current IL1.
  • the currents IL2 and IL4 0.
  • the voltage “P3-N3” maintains a constant value.
  • ⁇ Inversion period TC1> An inversion period TC1 is started following the circulation period TB1.
  • the voltages VT1 and VT3 are inverted from positive to negative polarity, and with reference to (10) and (11), the voltages VT2 and VT4 are inverted from negative to positive polarity. To do. Further, referring to (5), the voltage “P3-N3” maintains a constant value.
  • a circulation period TB2 is started following the supply period TA2.
  • the current IL decreases linearly. Further, referring to (8), (9), (10), and (11), the currents IL1 and IL3 are maintained substantially at zero. The currents IL2 and IL4 decrease substantially, and then change to almost zero. Specifically, the current IL4 is 0, but the current IL2 flows only in the excitation current. Further, referring to (5), the voltage “P3-N3” maintains a constant value.
  • ⁇ Inversion period TC2> An inversion period TC2 is started following the circulation period TB2.
  • the voltages VT1 and VT3 are inverted from negative to positive polarity, and with reference to (10) and (11), the voltages VT2 and VT4 are inverted from positive to negative polarity. To do. Further, referring to (5), the voltage “P3-N3” maintains a constant value.
  • the power conversion system 1 cyclically repeats the supply period TA1, the circulation period TB1, the inversion period TC1, the supply period TA2, the circulation period TB2, and the inversion period TC2, and executes the inverter mode. Further, the power conversion system 1 generates a desired voltage Vout by changing the ratio of the supply period TA1 and the supply period TA2 within one cycle by PWM control.
  • FIG. 24 is a timing chart showing the inversion periods TC1 and TC2 in an enlarged manner in FIG. 24, (1) to (6) are enlarged views of the inversion period TC2 of (1) to (6) of FIG. 23, and (7) to (8) are (1) to (6) of FIG. ) Is an enlarged view of the inversion period TC1.
  • the dead time Td is, for example, 2 ⁇ s.
  • the dead time Ta is, for example, 0.5 ⁇ s.
  • the dead time Tb is, for example, 0.5 ⁇ s.
  • the voltage VT1 is inverted from positive to negative polarity at the dead time Td.
  • FIG. 25 is a diagram illustrating a timing chart of the power conversion system 1 in the converter mode. 25, (1) to (12) show the same waveforms as (1) to (12) in FIG.
  • the current IL is positive in the direction opposite to the arrow in FIG.
  • ⁇ Circulation period TE1> Following the regeneration period TD1, the circulation period TE1 is started.
  • the current IL increases linearly.
  • ⁇ Inversion period TF1> Following the circulation period TE1, an inversion period TF1 is started.
  • the voltages VT1 and VT3 are inverted from positive to negative polarity, and with reference to (10) and (11), the voltages VT2 and VT4 are inverted from negative to positive polarity. To do. Further, referring to (5), the voltage “P3-N3” maintains a constant value.
  • a regeneration period TD2 is started following the inversion period TF1.
  • ⁇ Circulation period TE2> Following the regeneration period TD2, the circulation period TE2 is started.
  • the current IL increases linearly.
  • the currents IL1 and IL3 0, and the currents IL2 and IL4 increase substantially and then change to almost zero.
  • the current IL4 0 and the current IL2 flows only in the excitation current.
  • the voltage “P3-N3” maintains a constant value.
  • ⁇ Inversion period TF2> Following the circulation period TE2, the inversion period TF2 is started.
  • the voltages VT1 and VT3 are inverted from negative to positive polarity, and referring to (10) and (11), the voltages VT2 and VT4 are inverted from positive to negative polarity. To do. Further, referring to (5), the voltage “P3-N3” maintains a constant value.
  • the power conversion system 1 cyclically repeats the regeneration period TD1, the circulation period TE1, the inversion period TF1, the regeneration period TD2, the circulation period TE2, and the inversion period TF2, and executes the converter mode. Further, the power conversion system 1 causes the DC power supply 17 to regenerate a desired voltage Vout by changing the ratio of the regeneration period TD1 and the regeneration period TD2 within one cycle by PWM control.
  • FIG. 26 is a timing chart showing the inversion periods TF1 and TF2 in FIG.
  • (1) to (12) show the same waveforms as (1) to (12) in FIG.
  • dead times Td, Ta, and Tb are provided as in FIG. 26
  • the power conversion system 1 controls the converter unit 51 so that the positive and negative voltages are alternately applied to the coils L1 and L2, respectively, but the converter unit so that the voltage “P3-N3” becomes positive. 52 is controlled. Therefore, a voltage having a constant polarity is input to the converter unit 7.
  • the converter unit 7 can be configured by a normal full-bridge circuit, and normal control can be applied.
  • the converter unit 7 in the second period (circulation period and inversion period), the converter unit 7 is directly connected by the capacitor 4 (FIG. 1) and the leakage inductance of the transformer 53 on the equivalent circuit of the transformer 53. Become.
  • the power conversion system 1 has an inversion period in which the polarity of the coils L1 and L2 is inverted during the period in which the converter unit 7 is set in the return mode. Therefore, the power conversion system 1 is inverted by the resonance operation of the excitation current and the resonance capacitors CA and CB regardless of the load current, regardless of whether the power conversion system 1 is driven in the converter mode or the inverter mode. The action can be performed. As a result, the power conversion system 1 can stably reverse the polarity of the voltage applied to the coils L1 and L2.
  • FIG. 27 is a circuit diagram of a power conversion system 1A according to the second embodiment.
  • the converter unit 51 and the primary winding 531 are configured by a full bridge type (FB type) circuit
  • the converter unit 52 and the secondary winding 532 are full bridge type (FB type).
  • FB-FB type full bridge type
  • the converter unit 51 includes four switching elements AH, AL, BH, and BL connected in a full bridge.
  • Switching element AH has a drain connected to terminal P2 and a source connected to terminal T2.
  • the switching element AL has a drain connected to the terminal T2 and a source connected to the terminal N2.
  • the switching element BH has a drain connected to the terminal P2 and a source connected to the terminal T1.
  • the switching element BL has a drain connected to the terminal T1, and a source connected to the terminal N2.
  • the switching elements AH, AL, BH, and BL are connected to diodes DAH, DAL, DBH, and DBL, each having an anode connected to the source and a cathode connected to the drain.
  • capacitors CAH, CAL, CBH, and CBL are connected between the drain and source of the switching elements AH, AL, BH, and BL, respectively.
  • Capacitors CAH, CAL, CBH, and CBL have the same function as capacitor C14 shown in FIG. 14 and resonate with coil L11 to soft-switch converter unit 51.
  • Capacitors CAH and CBH and capacitors CAL and CBL may be connected between terminals T1 and T2, respectively. Further, only the capacitors CAL and CBL may be provided, or only the capacitors CAH and CBH may be provided.
  • the primary winding 531 since the primary winding 531 does not include a center tap, the primary winding 531 includes only the coil L11. Further, since the secondary winding 532 does not include a center tap, the secondary winding 532 includes only the coil L12.
  • the primary windings 531 and 532 are magnetically coupled so that the terminals T2 and T3 have the same polarity.
  • the converter unit 52 includes four switching elements XH, XL, YH, and YL connected in a full bridge.
  • the switching element XH has a drain connected to the terminal P3 and a source connected to the terminal T3.
  • the switching element XL has a drain connected to the terminal T3 and a source connected to the terminal N3.
  • the switching element YH has a drain connected to the terminal P3 and a source connected to the terminal T4.
  • the switching element YL has a drain connected to the terminal T4 and a source connected to the terminal N3.
  • the switching elements XH, XL, YH, and YL are connected to diodes DXH, DXL, DYH, and DYL, each having an anode connected to the source and a cathode connected to the drain.
  • FIG. 28 is a diagram showing a timing chart of the power conversion system 1A in the inverter mode.
  • (1) indicates ON / OFF of the switching elements AH, AL, where the high level is ON and the low level is OFF.
  • (2) indicates ON and OFF of the switching elements UH and UL, where the high level is ON and the low level is OFF.
  • (3) indicates ON and OFF of the switching elements WH and WL, where the high level is ON and the low level is OFF.
  • (4) shows the voltage VT1 and the current IL1.
  • (5) indicates the voltage “P3-N3”.
  • (6) shows the current IL and the voltage Vout.
  • (7) is the same as (1).
  • (8) shows the voltage VT1 and the current IL1.
  • (9) shows the voltage VT3 and the current IL3.
  • the operations of the switching elements BL, XH, and YL are the same as those of the switching element AH, and the operations of the switching elements BH, XL, and YH are the same as those of the switching element AL. Yes.
  • a circulation period TB1 is started following the supply period TA1.
  • ⁇ Inversion period TC1> An inversion period TC1 is started following the circulation period TB1.
  • a circulation period TB2 is started following the supply period TA2.
  • FIG. 29 is a timing chart showing the inversion periods TC1 and TC2 in an enlarged manner in FIG. The details of FIG. 29 are the same as those of FIG.
  • the power conversion system 1A cyclically repeats the supply period TA1, the circulation period TB1, the inversion period TC1, the supply period TA2, the circulation period TB2, and the inversion period TC2, and executes the inverter mode.
  • the power conversion system 1A generates a desired voltage Vout by changing the ratio of the supply period TA1 and the supply period TA2 within one cycle by PWM control.
  • FIG. 30 is a diagram illustrating a timing chart of the power conversion system 1A in the converter mode.
  • (1) to (10) show the same waveforms as (1) to (10) in FIG.
  • the current IL is positive in the direction opposite to the arrow shown in FIG.
  • ⁇ Circulation period TE1> Following the regeneration period TD1, the circulation period TE1 is started.
  • ⁇ Inversion period TF1> Following the circulation period TE1, an inversion period TF1 is started.
  • a regeneration period TD2 is started following the inversion period TF1.
  • ⁇ Circulation period TE2> Following the regeneration period TD2, the circulation period TE2 is started.
  • ⁇ Inversion period TF2> Following the circulation period TE2, the inversion period TF2 is started.
  • FIG. 31 is a timing chart showing the inversion periods TF1 and TF2 in FIG. 30 in an enlarged manner. The details of FIG. 30 are the same as those of FIG.
  • the power conversion system 1A cyclically repeats the regeneration period TD1, the circulation period TE1, the inversion period TF1, the regeneration period TD2, the circulation period TE2, and the inversion period TF2, and executes the converter mode. Further, the power conversion system 1A causes the DC power supply 17 to regenerate a desired voltage Vout by changing the ratio of the regeneration period TD1 and the regeneration period TD2 within one cycle by PWM control.
  • the power conversion system 1A is configured by an FB-FB type circuit, the same effect as the power conversion system 1 can be obtained.
  • FIG. 32 is a circuit diagram of a power conversion system 1B according to the third embodiment.
  • converter unit 51 and primary winding 531 are configured by a half-bridge type (HB type) circuit
  • converter unit 52 and secondary winding 532 are a center tap type (CNT type). (HB-CNT type).
  • the converter unit 51 includes two switching elements AH and AL that are half-bridge connected.
  • the switching element AH has a drain connected to the terminal P2 and a source connected to the terminal T2.
  • the switching element AL has a drain connected to the terminal T2 and a source connected to the terminal N2.
  • the switching elements AH and AL are connected to diodes DAH and DAL, respectively, whose anode is connected to the source and whose cathode is connected to the drain.
  • the capacitor C * 1 and the capacitor C * 2 are capacitors for generating a DC voltage Vm obtained by dividing the voltage VE of the DC power supply 17.
  • the capacitor C * 1 is connected between the terminal P2 and the terminal T1
  • the capacitor C * 2 is connected between the terminal T1 and the terminal N2.
  • Capacitors CAH and CAL have the same function as capacitor C14 shown in FIG. 18, and resonate with coil L11 to soft-convert converter unit 51. Capacitors CAH and CAL may be connected between terminals T1 and T2, respectively.
  • the primary winding 531 since the primary winding 531 does not include a center tap, the primary winding 531 includes only the coil L11.
  • the coil L11 is connected between the terminal T2 and the terminal T1.
  • Coils L11, L3, and L4 are magnetically coupled so that terminal T2, center tap CT2, and terminal T4 have the same polarity.
  • FIG. 33 is a diagram showing a timing chart of the power conversion system 1B in the inverter mode.
  • the waveforms of (1) to (9) in FIG. 33 are the same as the waveforms of (1) to (9) in FIG. 28 except that the DC voltage Vm is added in (4).
  • the DC voltage Vm is a voltage “T2-N2” at the terminal T2 with the terminal N2 as a reference, and changes at a substantially constant value throughout the entire period.
  • the waveform of (10) in FIG. 33 is a waveform of the voltage VT4 and the current IL4.
  • the waveform of (11) in FIG. 33 is the excitation current of IL1- (IL3-IL4).
  • the operation of the switching element YL is the same as that of the switching element AH, and the operation of the switching element XL is the same as that of the switching element AL.
  • a circulation period TB1 is started following the supply period TA1.
  • ⁇ Inversion period TC1> An inversion period TC1 is started following the circulation period TB1.
  • a circulation period TB2 is started following the supply period TA2.
  • ⁇ Inversion period TC2> An inversion period TC2 is started following the circulation period TB2.
  • FIG. 34 is a timing chart showing the inversion periods TC1 and TC2 in an enlarged manner in FIG. The details of FIG. 34 are the same as those of FIG.
  • the power conversion system 1B cyclically repeats the supply period TA1, the circulation period TB1, the inversion period TC1, the supply period TA2, the circulation period TB2, and the inversion period TC2, and executes the inverter mode.
  • the power conversion system 1B generates a desired voltage Vout by changing the ratio between the supply period TA1 and the supply period TA2 within one cycle by PWM control.
  • FIG. 35 is a timing chart of the power conversion system 1B in the converter mode.
  • the waveforms of (1) to (9) in FIG. 35 are the same as the waveforms of (1) to (9) in FIG. 30 except that the DC voltage Vm is added in (4).
  • the waveform of (10) in FIG. 35 is a waveform of the voltage VT4 and the current IL4.
  • the waveform of (11) in FIG. 35 is the exciting current of IL1- (IL3-IL4).
  • the current IL is positive in the direction opposite to the arrow in FIG.
  • the operation of the switching element YL is the same as that of the switching element AH, and the operation of the switching element XL is the same as that of the switching element AL.
  • ⁇ Circulation period TE1> Following the regeneration period TD1, the circulation period TE1 is started.
  • ⁇ Inversion period TF1> Following the circulation period TE1, an inversion period TF1 is started.
  • a regeneration period TD2 is started following the inversion period TF1.
  • ⁇ Circulation period TE2> Following the regeneration period TD2, the circulation period TE2 is started.
  • ⁇ Inversion period TF2> Following the circulation period TE2, the inversion period TF2 is started.
  • FIG. 36 is a timing chart showing the inversion periods TF1 and TF2 in FIG. 35 in an enlarged manner. The details of FIG. 36 are the same as those of FIG.
  • the power conversion system 1B cyclically repeats the regeneration period TD1, the circulation period TE1, the inversion period TF1, the regeneration period TD2, the circulation period TE2, and the inversion period TF2, and executes the converter mode. Further, the power conversion system 1B causes the DC power supply 17 to regenerate a desired voltage Vout by changing the ratio of the regeneration period TD1 and the regeneration period TD2 within one cycle by PWM control.
  • the power conversion system 1B is configured by an HB-CNT type circuit, the same effect as the power conversion system 1 can be obtained.
  • FIG. 37 is a circuit diagram of a power conversion system 1C according to the fourth embodiment.
  • the converter unit 51 and the primary winding 531 are configured by a center tap type (CNT type) circuit
  • the converter unit 52 and the secondary winding 532 are a full bridge type (FB type). (CNT-FB type).
  • the configuration of the converter unit 51 and the primary winding 531 is the same CNT type as in FIG.
  • the configuration of the converter unit 52 and the secondary winding 532 is the same FB type as that in FIG.
  • the power conversion system 1C is configured with a CNT-FB type circuit, the same effect as the power conversion system 1 can be obtained.
  • FIG. 38 is a circuit diagram of a power conversion system 1D according to the fifth embodiment.
  • converter unit 51 and primary winding 531 are configured by a half bridge type (HB type) circuit
  • converter unit 52 and secondary winding 532 are a full bridge type (FB type). (HB-FB type).
  • the configuration of the converter unit 51 and the primary winding 531 is the same HB type as in FIG.
  • the configuration of the converter unit 52 and the secondary winding 532 is the same FB type as that in FIG.
  • the power conversion system 1D is configured by an HB-FB type circuit, the same effect as the power conversion system 1 can be obtained.
  • FIG. 39 is a circuit diagram of a power conversion system 1E according to the sixth embodiment.
  • converter unit 51 and primary winding 531 are configured by a full bridge type (FB type) circuit
  • converter unit 52 and secondary winding 532 are a center tap type (CNT type). (FB-CNT type).
  • the configuration of the converter unit 51 and the primary winding 531 is the same FB type as that in FIG.
  • the power conversion system 1E is configured by an FB-CNT type circuit, the same effect as the power conversion system 1 can be obtained.
  • FIG. 40 is a circuit diagram of a power conversion system 1F according to the seventh embodiment.
  • the converter unit 51 and the primary winding 531 are configured by a center tap type (CNT type) circuit
  • the converter unit 52 and the secondary winding 532 are a half bridge type (HB type). (CNT-HB type).
  • the configuration of the converter unit 51 and the primary winding 531 is the same CNT type as in FIG.
  • the converter unit 52 includes two switching elements XH and XL that are half-bridge connected.
  • the switching element XH has a drain connected to the terminal P3 and a source connected to the terminal T3.
  • the switching element XL has a drain connected to the terminal T3 and a source connected to the terminal N3.
  • the switching elements XH and XL are connected to diodes DXH and DXL, respectively, whose anode is connected to the source and whose cathode is connected to the drain.
  • a capacitor CXH is connected between the terminal P3 and the terminal T4, and a capacitor CXL is connected between the terminal T4 and the terminal N3.
  • the capacitor CXH and the capacitor CXL are capacitors for generating a DC voltage obtained by dividing the voltage between the terminal P3 and the terminal N3.
  • the secondary winding 532 since the secondary winding 532 does not include a center tap, the secondary winding 532 includes only the coil L12.
  • the coil L12 is connected between the terminal T3 and the terminal T4.
  • the coils L1, L2, and L12 are magnetically coupled so that the center tap CT1, the terminal T2, and the terminal T3 have the same polarity, respectively.
  • the power conversion system 1F is configured by a CNT-HB type circuit, the same effect as the power conversion system 1 can be obtained.
  • FIG. 41 is a circuit diagram of a power conversion system 1G according to the eighth embodiment.
  • the converter unit 51 and the primary winding 531 are configured by a half-bridge type (HB type) circuit
  • the converter unit 52 and the secondary winding 532 are a half-bridge type (HB type). (HB-HB type).
  • the configuration of the converter unit 51 and the primary winding 531 is the same HB type as in FIG.
  • the configuration of the converter unit 52 and the secondary winding 532 is the same HB type as in FIG.
  • the same effect as the power conversion system 1 can be obtained even when the power conversion system 1G is configured by an HB-HB type circuit.
  • FIG. 42 is a circuit diagram of a power conversion system 1H according to the ninth embodiment.
  • the converter unit 51 and the primary winding 531 are configured by a full bridge type (FB type) circuit
  • the converter unit 52 and the secondary winding 532 are a half bridge type (HB type). (FB-HB type).
  • the configuration of the converter unit 51 and the primary winding 531 is the same FB type as that in FIG.
  • the configuration of the converter unit 52 and the secondary winding 532 is the same HB type as in FIG.
  • the power conversion system 1H is configured by an FB-HB type circuit, the same effect as the power conversion system 1 can be obtained.
  • FIG. 43 is a circuit diagram of a power conversion system 1I according to the tenth embodiment.
  • the power conversion system 1I according to the tenth embodiment is characterized in that, in the power conversion system 1 shown in FIG. 1, the converter unit 7 is configured by a three-phase inverter.
  • the converter unit 7 further includes switching elements VH and VL as compared to FIG.
  • the switching element VH has a drain connected to the terminal P3 and a source connected to the terminal V1.
  • the switching element VL has a drain connected to the terminal V1 and a source connected to the terminal N3.
  • the switching elements VH and VL are connected to diodes D5 and D6, respectively, whose anode is connected to the source and whose cathode is connected to the drain.
  • the filter circuit 9 includes coils 9u, 9v, 9w and capacitors 9uv, 9vw, 9uw.
  • the coil 9u is connected between the terminal 15u and the terminal U1
  • the coil 9v is connected between the terminal 15v and the terminal V1
  • the coil 9w is connected between the terminal 15w and the terminal W1.
  • the capacitor 9uv is connected between the terminal 15u and the terminal 15v
  • the capacitor 9vw is connected between the terminal 15v and the terminal 15w
  • the capacitor 9uv is connected between the terminal 15u and the terminal 15w.
  • the AC load 27 is an electrical device that is driven by a three-phase AC voltage.
  • FIG. 44 is a timing chart of the power conversion system 1I in the inverter mode, and shows a case where the phase is 0 degree.
  • (A) shows schematic waveforms of voltages Eu, Ev, and Ew, the vertical axis shows the duty ratio, and the horizontal axis shows the phase.
  • the voltages Eu, Ev, and Ew are voltages of terminals 15u, 15v, and 15w with reference to the ground voltage, and are so-called phase voltages.
  • the voltage Eu is used as a phase reference.
  • the phase of the voltage Ev is 120 degrees ahead of the voltage Eu
  • the phase of the voltage Ew is 120 degrees behind the voltage Eu.
  • (1) indicates ON / OFF of the switching elements BL, AL, where the high level is ON and the low level is OFF. Since the switching elements YL and XL are turned on and off in synchronization with the switching elements BL and AL, respectively, as in the first embodiment, illustration is omitted.
  • the switching elements UH, VH, and WH indicate ON and OFF of the switching elements UH, VH, and WH, respectively, where the high level is ON and the low level is OFF.
  • the switching elements UL, VL, WL are not shown in the figure because they are only turned ON and OFF with respect to the switching elements UH, VH, WH.
  • the ON period of the switching elements UH, VH, and WH depends on the duty ratio.
  • the ON periods of the switching elements UH, VH, and WH are bilaterally symmetric with respect to an intermediate time point between the inversion periods TC1 and TC2, and become longer as the duty ratio increases.
  • the phase is 0 degree, and the duty ratios of the voltages Eu, Ev, and Ew are “0.5”, “0.85”, and “0.15”, respectively. . Therefore, the control unit 13 turns on the switching elements in the order of the switching elements VH, UH, and WH. In response to each ON of switching elements UH, VH, WH, currents ILu, ILv, ILw change.
  • control unit 13 sequentially turns off the switching elements UH and VH according to the duty ratio.
  • currents ILu, ILv, and ILw change.
  • the power conversion system 1I cyclically repeats the inverter period in the supply period TA1, the circulation period TB1, the inversion period TC1, the circulation period TB3, the supply period TA2, the circulation period TB2, the inversion period TC2, and the circulation period TB4. Execute. Further, since the power conversion system 1I is provided with the inversion periods TC1 and TC2 when the converter unit 7 is in the circulation mode, the power conversion system 1I uses the resonance operation of the excitation current and the resonance capacitors CA and CB regardless of the load current. The inversion operation is performed, and the inversion operation can be performed stably.
  • FIG. 45 is a timing chart of the power conversion system 1I in the converter mode, and shows a case where the phase is 0 degree.
  • (A) and (1) to (7) are the same as (3) to (5) except that the switching elements UL, VL, and WL are shown instead of the switching elements UH, VH, and WH.
  • the OFF period of the switching elements UL, VL, WL depends on the duty ratio.
  • the OFF periods of the switching elements UL, VL, WL are symmetrical with respect to the intermediate point in the inversion periods TF1, TF2, and become longer as the duty ratio increases.
  • the currents ILu, ILv, and ILw are positive in the direction of the arrows in FIG.
  • the phase is 0 degree as shown in FIG. 45A, and the duty ratios of the voltages Eu, Ev, and Ew are “0.5”, “0.85”, and “0.15”, respectively. . Therefore, the control unit 13 turns off the switching elements in the order of the switching elements VL, UL, WL. In response to the switching elements UL, VL, WL being turned off, the currents ILu, ILv, ILw change.
  • control unit 13 sequentially turns on the switching elements UL and WL according to the duty ratio.
  • the currents ILu, ILv, ILw change.
  • the power conversion system 1I cyclically repeats the converter mode in the regeneration period TD1, the circulation period TE1, the inversion period TF1, the circulation period TE3, the regeneration period TD2, the circulation period TE2, the inversion period TF2, and the circulation period TE4. Execute. Moreover, since the power conversion system 1I is provided with the inversion periods TF1 and TF2 when the converter unit 7 is in the circulation mode, the inversion operation can be stably performed. Further, since the voltage between the terminal P3 and the terminal N3 can be maintained at a substantially constant voltage, the voltage between the terminal P3 and the terminal N3 can be regarded as a DC voltage, and the conventional PWM control is applied to the converter unit 7. Thus, three-phase inverter operation is also possible.
  • the power conversion system 1I changes the inverter mode and the converter mode even if the current IL has a different polarity from the assumed one. It can be switched continuously, and can also support independent operation such as UPS.
  • the eleventh embodiment differs from the first to tenth embodiments in the configuration of the snubber circuit 60.
  • FIG. 46 shows a circuit configuration of the same snubber circuit 60 as in the first embodiment and a waveform diagram of the voltage “P3-N3”.
  • FIG. 47 shows a circuit configuration of the snubber circuit 60A according to the first aspect of the eleventh embodiment and waveform diagrams of the voltage “P3-N3” and the voltage Vclp1.
  • FIG. 48 shows the circuit configuration of the snubber circuit 60B of the second aspect of the eleventh embodiment and the waveform diagrams of the voltage “P3-N3” and the voltage Vclp2.
  • FIG. 49 shows the circuit configuration of the snubber circuit 60C of the third aspect of the eleventh embodiment and the waveform diagrams of the voltage “P3-N3” and the voltages Vclp1 and Vclp2.
  • the ringing of the voltage “P3-N3” can be reduced by increasing the capacitor 62, but the loss of the resistor 61 is reduced.
  • the voltage “P3-N3” has a steady voltage of 350 V, ringing occurs in a range where the upper peak is 428 V and the lower peak is 293 V.
  • the snubber circuits 60A to 60C are configured using a CRD snubber circuit including a capacitor, a resistor, and a diode.
  • the snubber circuit 60A shown in FIG. 47 includes a diode 63, a capacitor 64, and a resistor 65 in addition to the resistor 61 and the capacitor 62.
  • the diode 63 has an anode connected to the terminal P3 and a cathode connected to the terminal N3 via the capacitor 64.
  • the resistor 65 is connected in parallel with the diode 63.
  • the capacitor 64 generates a DC voltage (voltage Vclp1) higher than the steady voltage (350V) of the voltage “P3-N3” at the connection point of the diode 63 and the capacitor 64. Further, the capacitor 64 absorbs ringing by accumulating electric charge when ringing occurs.
  • the diode 63 is a clamp diode for clamping the voltage Vclp1.
  • the resistor 65 is a discharge resistor for reducing the voltage Vclp1 to a desired voltage.
  • the snubber circuit 60A when the voltage at the terminal P3 becomes higher than the voltage Vclp1 due to ringing, the diode 63 is turned on, and a current flows through the capacitor 64 to absorb the ringing. Thereby, the snubber circuit 60A can suppress ringing on the upper side of the voltage “P3-N3” with low loss.
  • the ringing of the voltage “P3-N3” has the upper peak suppressed to 368 V, and the upper ringing with respect to the snubber circuit 60 is suppressed.
  • the snubber circuit 60B includes a diode 67, a capacitor 69, and a resistor 68 as in the snubber circuit 60A, but the diode 67 is connected to the diode 63 in the reverse direction. That is, the diode 67 has a cathode connected to the terminal P3 and an anode connected to the terminal N3 via the capacitor 69.
  • the capacitor 69 In the snubber circuit 60B, the capacitor 69 generates a voltage Vclp2 that is a DC voltage lower than the steady voltage (350V) of the voltage “P3-N3”. The capacitor 69 absorbs the ringing by discharging the charge when the ringing occurs.
  • the diode 67 is a clamp diode that clamps the voltage Vclp2.
  • the resistor 68 is a resistor for reducing the voltage Vclp2 to a desired voltage.
  • the snubber circuit 60B can suppress ringing on the lower side of the voltage “P3-N3” with low loss.
  • the ringing of the voltage “P3-N3” has the lower peak suppressed to 332 V, and the effect of suppressing the lower ringing is higher than that of the snubber circuit 60.
  • the snubber circuit 60C has a configuration in which the snubber circuits 60, 60A and 60B are combined. Since the snubber circuit 60C includes the snubber circuits 60A and 60B, the ringing of the voltage “P3-N3” has the upper peak suppressed to 368V and the lower peak suppressed to 332V. On the other hand, the ringing suppression effect is high on both the upper side and the lower side.
  • the resistors 61, 63, and R3 are adopted as the resistors 61, 63, and R3, respectively. Further, for example, 10 nF, 1 ⁇ F, and 1 ⁇ F are employed for the capacitors 62, 64, and 69, respectively.
  • the resistor 61 and the capacitor 62 function to remove ringing in the range of the voltage Vcpl1 or less and the voltage Vcpl2 or more. Further, in the snubber circuits 60A to 60C, the resistor 61 and the capacitor 62 may be omitted.
  • FIG. 50 is a circuit diagram of a power conversion system 1J according to the twelfth embodiment.
  • the power conversion system 1J is a power conversion system that converts and transmits power bidirectionally between the DC power supply 17 and the DC device 28.
  • the power conversion system 1J includes a connection unit 3 (an example of a first external connection unit), a capacitor 4, a transformer circuit unit 5, a connection unit 6, a DCDC converter 7 (an example of a third converter unit), and a connection unit 15 (a second unit). It is a power conditioner provided with an example of an external connection part.
  • the connection unit 3 includes a terminal P2 (an example of a first external connection terminal) and a terminal N2 (an example of a second external connection terminal).
  • connection unit 3 is connected to one of the DC power supply 17 and the DC device 28 (an example of a first connection target).
  • the connection unit 15 is connected to the other of the DC device 28 and the DC power supply 17 (an example of a second connection target). That is, when the DC power source 17 is connected to the connection unit 3, the DC device 28 is connected to the connection unit 15, and when the DC device 28 is connected to the connection unit 3, the DC power source 17 is connected to the connection unit 15. Is connected.
  • the transformer circuit unit 5 includes a converter unit 51 (an example of a first converter unit), a converter unit 52 (an example of a second converter unit), and a transformer 53.
  • Connection unit 6 includes a terminal P3 (an example of a first connection terminal), a terminal N3 (an example of a second connection terminal), and a snubber circuit 60.
  • the snubber circuit 60 includes a resistor 61 and a capacitor 62.
  • the DCDC converter 7 is composed of a bidirectional chopper circuit.
  • the connection unit 15 includes a terminal U2 (an example of a third external connection terminal) and a terminal W2 (an example of a fourth external connection terminal). The terminal U2 is connected to the coil 71, and the terminal W2 is connected to the terminal N3.
  • the DC power source 17 is constituted by, for example, a storage battery, a solar cell, a fuel cell, or the like.
  • the positive electrode is connected to the terminal P2, and the negative electrode is connected to the terminal N2.
  • to connect means to connect electrically.
  • the power of the DC power supply 17 is supplied to the transformer circuit unit 5 through the terminal P ⁇ b> 2 and the terminal N ⁇ b> 2.
  • the DC power source 17 when the DC power source 17 is connected to the connecting portion 15, the positive electrode is connected to the terminal U2, and the negative electrode is connected to the terminal W2.
  • the DC power supply 17 When the DC power supply 17 is connected to the connection unit 15, the power of the DC power supply 17 is supplied to the transformer circuit unit 5 via the terminal U ⁇ b> 2 and the terminal W ⁇ b> 2.
  • the capacitor 4 is an electrolytic capacitor connected between the terminal P2 and the terminal N2, and stabilizes the voltage between the terminal P2 and the terminal N2.
  • the transformer 53 is a high-frequency transformer, and includes a primary winding 531 and a secondary winding 532 that are magnetically coupled to each other.
  • Primary winding 531 includes a coil L11.
  • Primary winding 531 includes a terminal T1 (an example of a first winding terminal) and a terminal T2 (an example of a second winding terminal).
  • Secondary winding 532 includes coil L12. Secondary winding 532 includes a terminal T3 (an example of a third winding terminal) and a terminal T4 (an example of a fourth winding terminal).
  • the coils L11 and L12 are magnetically coupled so that the polarities of the terminals T2 and T3 are the same.
  • the description will be made assuming that the turns ratio of the coils L11 and L12 is 1: 1. However, this is only an example, and the turns ratio of the coils L11 and L12 may be a turn ratio different from 1: 1.
  • the converter unit 51 is a high-frequency inverter that converts a DC voltage supplied from the DC power supply 17 into, for example, a 20 kHz rectangular wave-shaped high-frequency AC voltage and supplies the AC voltage to the primary winding 531 and the secondary winding 532.
  • the converter unit 51 includes four switching elements AH, AL, BH, BL, four diodes DAH, DAL, DBH, DBL, and four capacitors CAH, CAL, CBH, CBL.
  • the switching elements AH, AL, BH, and BL are composed of, for example, n-type field effect transistors.
  • the switching element AH (an example of a third switching element) has a drain connected to the terminal P2 and a source connected to the terminal T2.
  • the switching element AL (an example of a fourth switching element) has a drain connected to the terminal T2 and a source connected to the terminal N2.
  • the switching element BH (an example of a first switching element) has a drain connected to the terminal P2 and a source connected to the terminal T1.
  • the switching element BL (an example of a second switching element) has a drain connected to the terminal T1 and a source connected to the terminal N2. That is, the converter unit 51 is configured by a full bridge type (FB type) circuit in which four switching elements are connected by a full bridge.
  • FB type full bridge type
  • the diodes DAH, DAL, DBH, and DBL each have an anode connected to the sources of the switching elements AH, AL, BH, and BL, and a cathode connected to the drains of the switching elements AH, AL, BH, and BL.
  • the diodes DAH, DAL, DBH, and DBL may be body diodes of the switching elements AH, AL, BH, and BL, or may be external diodes. Further, in this case, the diode DAH is connected across the emitter and the collector so that a current having a direction opposite to a current flowing through the switching element AH flows when the switching element AH is turned on. The same applies to the diodes DAL, DBH, DBL.
  • Capacitors CAH, CAL, CBH, and CBL are connected between the sources and drains of the switching elements AH, AL, BH, and BL, respectively.
  • Capacitors CAH, CAL, CBH, and CBL resonate with primary winding 531 to realize soft switching of switching elements AH, AL, BH, and BL.
  • Capacitors CAH and CBH and capacitors CAL and CBL may be connected between terminals T1 and T2, respectively. Further, only the capacitors CAL and CBL may be provided, or only the capacitors CAH and CBH may be provided.
  • the converter unit 52 converts the rectangular-wave AC voltage having positive and negative polarities alternately supplied to the secondary winding 532 into a voltage having positive polarity and supplies the voltage between the terminal P3 and the terminal N3.
  • the converter unit 52 includes four switching elements XH, XL, YH, and YL and four diodes DXH, DXL, DYH, and DYL.
  • the switching elements XH, XL, YH, and YL are composed of, for example, n-type field effect transistors.
  • the switching element XH (an example of a fifth switching element) has a drain connected to the terminal P3 and a source connected to the terminal T3.
  • the switching element XL (an example of a sixth switching element) has a drain connected to the terminal T3 and a source connected to the terminal N3.
  • the switching element YH (an example of a seventh switching element) has a drain connected to the terminal P3 and a source connected to the terminal T4.
  • the switching element YL (an example of an eighth switching element) has a drain connected to the terminal T4 and a source connected to the terminal N3. That is, the converter unit 52 is configured by a full bridge type (FB type) circuit in which four switching elements are connected by a full bridge.
  • FB type full bridge type
  • the diodes DXH, DXL, DYH, DYL have anodes connected to the sources of the switching elements XH, XL, YH, YL and cathodes connected to the drains of the switching elements XH, XL, YH, YL, respectively.
  • the switching elements XH, XL, YH, and YL may each be constituted by, for example, an npn-type insulated gate bipolar transistor instead of the field effect transistor.
  • the diodes DXH, DXL, DYH, and DYL are provided as freewheeling diodes. Further, in this case, the diode DXH is connected across the emitter and the collector so that a current having a direction opposite to that flowing through the switching element XH flows when the switching element XH is turned on. The same applies to the diodes DXL, DYH, and DYL.
  • the control unit 13 turns off the switching elements AL, BH, XL, and YH when the switching elements AH, BL, XH, and YL are turned on, and turns off the switching elements AH, BL, XH, and YL.
  • Switching elements AL, BH, XL, YH are turned on.
  • the control unit 13 controls the switching elements AH, AL, BH, BL, XH, XL, YH, and YL with the same duty ratio.
  • the duty ratio of the switching elements AH, AL, BH, BL, XH, XL, YH, and YL is substantially 50%.
  • the term “50%” means a duty ratio obtained by subtracting a dead time (an inversion period in which the switching elements AH, AL, BH, BL, XH, XL, YH, and YL are all OFF) from the duty ratio of 50%.
  • the DCDC converter 7 includes a switching element UH (an example of a ninth switching element), a switching element UL (an example of a tenth switching element), two diodes D1 and D2, a coil 71, and a capacitor 72.
  • the DCDC converter 7 steps down the positive voltage supplied between the terminal P3 and the terminal N3, for example, and supplies it to the connection unit 15. Further, in the second transmission mode described later, the DCDC converter 7 boosts, for example, the DC voltage supplied from the connection unit 15 and supplies it between the terminal P3 and the terminal N3.
  • the coil 71 is connected between the terminal U2 and the terminal U1.
  • the capacitor 72 is connected between the terminal U2 and the terminal W2.
  • the capacitor 72 may be included in the DC device 28 or the DC power supply 17.
  • the switching elements UH and UL are each composed of an n-type field effect transistor.
  • the switching element UH has a drain connected to the terminal P3 and a source connected to the terminal U1.
  • the switching element UL has a drain connected to the terminal U1 and a source connected to the terminal N3.
  • the anodes of the diodes D1 and D2 are connected to the sources of the switching elements UH and UL, and the cathodes are connected to the drains of the switching elements UH and UL, respectively.
  • the switching elements UH and UL may be configured by, for example, npn-type insulated gate bipolar transistors instead of the field effect transistors.
  • the diodes D1 and D2 are provided as freewheeling diodes.
  • the diode D1 is connected across the emitter and the collector so that a current having a direction opposite to that flowing through the switching element UH flows when the switching element UH is turned on. The same applies to the diode D2.
  • the control unit 13 uses a DC voltage output or input from the terminals U2 and W2. It controls the magnitude of at least one of a certain voltage Vout and the current Ibus flowing through the terminal P2. Details will be described later.
  • the DC device 28 is constituted by, for example, an electric device driven by DC power or a charger for charging the DC power source 17.
  • the connection unit 15 When the DC device 28 is connected to the connection unit 15, the positive electrode is connected to the terminal U2, and the negative electrode is connected to the terminal W2.
  • the DC device 28 is connected to the connection portion 3, the positive electrode is connected to the terminal P2, and the negative electrode is connected to the terminal N2.
  • the control unit 13 includes, for example, a CPU, FPGA, ASIC, or the like, and controls the converter units 51 and 52 and the DCDC converter 7.
  • the control unit 13 controls the converter unit 51 so that a high-frequency AC voltage is supplied to the primary winding 531 and the secondary winding 532, and a voltage having a positive polarity is supplied between the terminal P3 and the terminal N3.
  • the converter unit 52 is controlled.
  • the control unit 13 controls the DCDC converter 7 so that power is not transmitted between the transformer circuit unit 5 and the DCDC converter 7 in the first period including the inversion period in which the polarity of the voltage of the primary winding 531 is inverted. In the second period different from the first period, the control unit 13 performs DCDC so that power is transmitted in the first direction from the transformer circuit unit 5 toward the DCDC converter 7 or in the second direction opposite to the first direction.
  • the converter 7 is controlled.
  • control unit 13 assigns an inversion period and a later-described circulation period in a first period that constitutes a half cycle (an example of a unit period) of the AC voltage supplied to the primary winding 531, and the first period
  • the converter units 51 and 52 and the DCDC converter 7 are controlled so that a first transmission period or a second transmission period, which will be described later, is allocated to a second period different from the first period.
  • control unit 13 sets the duty ratio of the DCDC converter 7 for setting the voltage Vout or current Ibus having a target value, and controls the switching elements UH and UL with the set duty ratio.
  • the power conversion system 1J includes a first transmission mode (step-down mode) for supplying DC power from the connection unit 3 to the connection unit 15, and a second transmission mode (step-up mode) for supplying DC power from the connection unit 15 to the connection unit 3.
  • a first transmission mode for supplying DC power from the connection unit 3 to the connection unit 15
  • a second transmission mode for supplying DC power from the connection unit 15 to the connection unit 3.
  • the first transmission mode is a mode in which a voltage drop occurs in the same direction as the current flows between the terminal U2 and the terminal W2, that is, a mode in which the polarities of the voltage Vout and the current IL are the same.
  • the second transmission mode is a mode in which a voltage drop occurs in a direction opposite to the direction in which the current flows between the terminal U2 and the terminal W2, that is, a mode in which the polarities of the voltage Vout and the current IL are different.
  • FIG. 51 is a diagram showing a timing chart of the power conversion system 1J in the first transmission mode.
  • the DC power source 17 is connected to the connection unit 3 and the DC device 28 is connected to the connection unit 15.
  • the switching elements BH, XL, and YH are turned on and off at the same timing as the switching element AL. Further, the switching elements BL, XH, and YL are turned on and off at the same timing as the switching element AH.
  • (2) indicates ON and OFF of the switching elements UH and UL, where the high level is ON and the low level is OFF.
  • (3) shows a current IL flowing through the coil 71 and a current IL3 flowing through the coil L12.
  • (4) shows a voltage “P3-N3” of the terminal P3 with the terminal N3 as a reference, and a voltage VT3 of the coil L12 with the terminal T4 as a reference.
  • (5) indicates the voltage Vout of the terminal U2 with respect to the terminal W2.
  • the voltage at the terminal P2 with respect to the terminal N2 will be described as the voltage VE.
  • the period T indicates one period of the AC voltage supplied to the primary winding 531.
  • the sequence focused on the converter units 51 and 52 is shown in the periods ST1 to ST4, and the sequence focused on the DCDC converter 7 is shown in the periods labeled TA1, TB1, TC1, TB3, TA2, TB2, TC2, and TB4. .
  • the polarity of the voltages VT1 and VT3 is gradually reversed from positive to negative by the resonance operation of the exciting current of the coil L11 and the capacitors CAH, CAL, CBH, and CBL, thereby realizing soft switching.
  • the period in which the polarity is inverted is the inversion period.
  • converter units 51 and 52 repeat the operations of periods ST1, ST2, ST3, and ST4.
  • the DCDC converter 7 is connected to the DC power supply 17 or the DC device 28 via the transformer 53. Therefore, it can be considered that the DCDC converter 7 is directly connected to the DC power supply 17 or the DC device 28 via the leakage inductance of the transformer 53. Thereby, ringing occurs in the power conversion system 1J when the DCDC converter 7 is switched. In order to prevent this, the snubber circuit 60 is provided. However, if the polarity of the voltage “P3-N3” is reversed, the direction of the current flowing through the snubber circuit 60 is also reversed, so that the capacity of the capacitor 62 can be increased. Can not. Therefore, when the polarity of the voltage “P3-N3” is reversed, it is difficult to suppress ringing.
  • the power conversion system 1J can suppress ringing.
  • the first transmission period in which the current IL flows through the transmission path K1 (FIG. 50) is established.
  • the first transmission path K ⁇ b> 1 a current flows through the secondary winding 532, and power is transmitted from the connection unit 3 to the DCDC converter 7. As a result, the DCDC converter 7 enters the first transmission mode.
  • the current IL increases linearly. Further, referring to (3), the current IL3 decreases rapidly and then decreases with a gentle slope.
  • the circulation period TB1 is started following the first transmission period TA1.
  • a circulation period in which the current IL flows through the circulation path K2 (FIG. 50) is entered.
  • the circulation path K ⁇ b> 2 is a closed loop in the DCDC converter 7, and power transmission from the connection unit 3 to the DCDC converter 7 is interrupted. As a result, the DCDC converter 7 enters a circulation mode.
  • the current IL decreases linearly.
  • the current IL3 increases rapidly and then changes to zero.
  • An inversion period TC1 is started following the circulation period TB1.
  • the inversion period TC1 is the same as the above-described period ST2.
  • ⁇ Circulation period TB3> Following the inversion period TC1, a circulation period TB3 is started.
  • the inversion period TC1, and the circulation period TB3 the DCDC converter 7 continues in the circulation mode, and the transmission of power from the connection unit 3 to the DCDC converter 7 is interrupted.
  • First transmission period TA2> Following the circulation period TB3, the first transmission period TA2 is started.
  • the DCDC converter 7 enters the first transmission mode.
  • the current IL increases linearly. Further, referring to (3), the current IL3 increases rapidly and then increases with a gentle slope.
  • the circulation period TB2 is started following the first transmission period TA2.
  • the current IL decreases linearly.
  • the current IL3 has decreased rapidly and then has changed to zero.
  • the inversion period TC2 is the same as the above-described period ST4.
  • ⁇ Circulation period TB4> Following the inversion period TC2, a circulation period TB4 is started.
  • the DCDC converter 7 continues in the circulation mode, and the transmission of power from the connection unit 3 to the DCDC converter 7 is interrupted.
  • the power conversion system 1J cyclically sets the first transmission period TA1, the circulation period TB1, the inversion period TC1, the circulation period TB3, the first transmission period TA2, the circulation period TB2, the inversion period TC2, and the circulation period TB4.
  • the first transmission mode is executed repeatedly.
  • the control unit 13 sets a half period of the period T as a unit period, and sets a ratio of the first transmission periods TA1 and TA2 in the unit period as a duty ratio of the DCDC converter 7, so that a desired value is obtained from the DCDC converter 7.
  • the voltage Vout is output.
  • the voltage Vout has a slight ripple in the range from about 249 V to about 251 V, but it can be seen that it has a value of about 250 V on average. Therefore, a DC voltage of about 250 V is supplied to the connection unit 15.
  • the controller 13 adjusts the value of the voltage Vout by changing the duty ratio.
  • FIG. 52 is a diagram showing a timing chart of the power conversion system 1J in the second transmission mode.
  • the DC power source 17 is connected to the connection unit 3 and the DC device 28 is connected to the connection unit 15.
  • (1) to (4) are the same as (1) to (4) in FIG. 51
  • (5) shows the voltage Vout.
  • the switching elements BH, XL, and YH are turned on and off at the same timing as the switching element AL. Further, the switching elements BL, XH, and YL are turned on and off at the same timing as the switching element AH.
  • a sequence focusing on the converter units 51 and 52 is shown in the periods ST1 to ST4, and a sequence focusing on the DCDC converter 7 is shown in a period labeled TD1, TE1, TF1, TE3, TD2, TE2, TF2, and TE4. .
  • the second transmission period in which the current IL flows through the transmission path K3 (FIG. 50) is entered.
  • the transmission path K ⁇ b> 3 a current flows through the secondary winding 532, and power is transmitted from the DCDC converter 7 to the connection unit 3. As a result, the DCDC converter 7 enters the second transmission mode.
  • the current IL increases linearly. Further, referring to (3), the current IL3 increases rapidly and then decreases with a gentle slope.
  • the circulation period TE1 is started following the second transmission period TD1.
  • a circulation period in which the current IL flows through the circulation path K4 (FIG. 50) is entered.
  • the circulation path K ⁇ b> 4 is a closed loop in the DCDC converter 7, and power transmission from the DCDC converter 7 to the connection unit 3 is interrupted. As a result, the DCDC converter 7 enters a circulation mode.
  • the current IL decreases linearly.
  • the current IL3 has decreased rapidly and then has changed to zero.
  • ⁇ Inversion period TF1> Following the circulation period TE1, an inversion period TF1 is started.
  • the inversion period TF1 is the same as the above-described period ST2.
  • ⁇ Circulation period TE3> Following the inversion period TF1, the circulation period TE3 is started.
  • the inversion period TF1, and the circulation period TE3 the DCDC converter 7 continues in the circulation mode, and the transmission of power from the DCDC converter 7 to the connection unit 3 is interrupted.
  • ⁇ Second transmission period TD2> Following the circulation period TE3, the second transmission period TD2 is started.
  • the DCDC converter 7 enters the second transmission mode.
  • the current IL increases linearly.
  • the current IL1 rapidly decreases and then increases with a gentle slope.
  • the circulation period TE2 is started following the second transmission period TD2.
  • the current IL decreases linearly.
  • the current IL3 increases rapidly and then changes to zero.
  • the inversion period TF2 is started.
  • the inversion period TF2 is the same as the above-described period ST4.
  • ⁇ Circulation period TE4> Following the inversion period TF2, the circulation period TE4 is started.
  • the DCDC converter 7 continues the circulation mode, and the transmission of power from the DCDC converter 7 to the connection unit 3 is interrupted.
  • the power conversion system 1J cyclically sets the second transmission period TD1, the circulation period TE1, the inversion period TF1, the circulation period TE3, the second transmission period TD2, the circulation period TE2, the inversion period TF2, and the circulation period TE4.
  • the second transmission mode is executed repeatedly.
  • the control unit 13 sets a half cycle of the cycle T as a unit cycle, and sets a ratio of the second transmission periods TD1 and TD2 in the unit cycle as a duty ratio of the DCDC converter 7, thereby allowing the connection unit 3 to have a desired value.
  • the voltage Vbus is output.
  • the voltage Vbus has a slight ripple observed in the range from about 254.2V to about 254.6V, but it can be seen that it has a value of about 254V on average. Therefore, a DC voltage of about 254 V is supplied to the connection unit 3.
  • the controller 13 adjusts the value of the voltage Vbus by changing the duty ratio.
  • the first transmission mode and the second transmission mode can drive the switching elements AH, AL, BH, BL, XH, XL, YH, and YL in the same sequence. .
  • the polarity of the current IL may be different from that assumed due to erroneous detection of the polarity of the current IL or disturbance of the current IL due to disturbance.
  • the current IL follows the same path in both modes.
  • the power conversion system 1J is less susceptible to the influence. Therefore, the power conversion system 1J can continuously switch between the first transmission mode and the second transmission mode even when the polarity different from the polarity assumed by the current IL is shown. As a result, it can be applied to independent operation such as UPS (uninterruptible power supply).
  • UPS uninterruptible power supply
  • the power conversion system 1J controls the converter unit 51 so that positive and negative voltages are alternately applied to the coils L11 and L12, respectively, but the converter unit so that the voltage “P3-N3” is positive. 52 is controlled. Therefore, a voltage having a constant polarity is input to the DCDC converter 7.
  • the DCDC converter 7 can be configured by a normal DCDC converter, and normal control can be applied as it is.
  • the DCDC converter 7 in the second period (first and second transmission periods), the DCDC converter 7 is directly connected to the capacitor 4 (FIG. 50) and the leakage inductance of the transformer 53 on the equivalent circuit of the transformer 53. It becomes.
  • the capacitor 4 and the DCDC converter 7 are always directly connected at the timing when the power is transmitted.
  • the power conversion system 1J provides an inversion period in which the polarity of the coils L11 and L12 is inverted during the period in which the DCDC converter 7 is set to the circulation mode. Therefore, even if the power conversion system 1J is driven in any of the second transmission mode and the first transmission mode, the excitation current and the resonance capacitors CAH, CAL, CBH regardless of the load current. , The reversal operation can be performed by the resonance operation with CBL. As a result, the power conversion system 1J can stably reverse the polarity of the voltage applied to the coils L11 and L12.
  • converter units 51 and 52 are full bridge type (FB type)
  • converter units 51 and 52 may each be a center tap type (CNT type). It may be a half bridge type (HB type). That is, the transformer circuit unit 5 may be configured by a combination of these.
  • snubber circuit 60 instead of the snubber circuit 60, snubber circuits 60A to 60C shown in FIGS. 47 to 49 may be applied.
  • FIG. 53 is a circuit diagram of a power conversion system 1K according to the thirteenth embodiment.
  • the power conversion system 1K is a power conversion system that converts and transmits power in a first unidirectional direction from the connection unit 3 (an example of a first external connection unit) to a connection unit 15 (an example of a second external connection unit). .
  • the power conversion system 1K is a power conditioner including a connection unit 3, a capacitor 4, a transformer circuit unit 5, a connection unit 6, a converter unit 7, and a connection unit 15.
  • the connection unit 3 includes a terminal P2 (an example of a first external connection terminal) and a terminal N2 (an example of a second external connection terminal).
  • the transformer circuit unit 5 includes a converter unit 51 (an example of a first converter unit), a converter unit 52 (an example of a second converter unit), and a transformer 53.
  • Connection unit 6 includes a terminal P3 (an example of a first connection terminal), a terminal N3 (an example of a second connection terminal), and a snubber circuit 60.
  • the snubber circuit 60 includes a resistor 61 and a capacitor 62.
  • Converter unit 7 (an example of a third converter unit) is configured by a chopper circuit that transmits electric power in the first unidirectional direction.
  • the connection unit 15 includes a terminal U2 (an example of a third external connection terminal) and a terminal W2 (an example of a fourth external connection terminal). The terminal U2 is connected to the coil 71, and the terminal W2 is connected to the terminal N3.
  • DC power supply 17 (an example of a first connection target) is configured by, for example, a storage battery, a solar cell, a fuel cell, or the like.
  • the positive electrode of DC power supply 17 is connected to terminal P2, and the negative electrode of DC power supply 17 is connected to terminal N2.
  • to connect means to connect electrically.
  • the electric power of the DC power supply 17 is supplied to the transformer circuit unit 5 via the terminal P2 and the terminal N2.
  • the capacitor 4 is an electrolytic capacitor connected between the terminal P2 and the terminal N2, and stabilizes the voltage between the terminal P2 and the terminal N2.
  • the transformer 53 is a high-frequency transformer, and includes a primary winding 531 and a secondary winding 532 that are magnetically coupled to each other.
  • Primary winding 531 includes a coil L11.
  • Primary winding 531 includes a terminal T1 (an example of a first winding terminal) and a terminal T2 (an example of a second winding terminal).
  • Secondary winding 532 includes coil L12. Secondary winding 532 includes a terminal T3 (an example of a third winding terminal) and a terminal T4 (an example of a fourth winding terminal).
  • the coils L11 and L12 are magnetically coupled so that the polarities of the terminals T2 and T3 are the same.
  • the description will be made assuming that the turns ratio of the coils L11 and L12 is 1: 1. However, this is only an example, and the turns ratio of the coils L11 and L12 may be a turn ratio different from 1: 1.
  • the converter unit 51 is a high-frequency inverter that converts a DC voltage supplied from the DC power supply 17 into, for example, a 20 kHz rectangular wave-shaped high-frequency AC voltage and supplies the AC voltage to the primary winding 531 and the secondary winding 532.
  • the converter unit 51 includes four switching elements AH, AL, BH, BL, four diodes DAH, DAL, DBH, DBL, and four capacitors CAH, CAL, CBH, CBL.
  • the switching elements AH, AL, BH, and BL are composed of, for example, n-type field effect transistors.
  • the switching element AH (an example of a third switching element) has a drain connected to the terminal P2 and a source connected to the terminal T2.
  • the switching element AL (an example of a fourth switching element) has a drain connected to the terminal T2 and a source connected to the terminal N2.
  • the switching element BH (an example of a first switching element) has a drain connected to the terminal P2 and a source connected to the terminal T1.
  • the switching element BL (an example of a second switching element) has a drain connected to the terminal T1 and a source connected to the terminal N2. That is, the converter unit 51 is configured by a full bridge type (FB type) circuit in which four switching elements are connected by a full bridge.
  • FB type full bridge type
  • the diodes DAH, DAL, DBH, and DBL each have an anode connected to the sources of the switching elements AH, AL, BH, and BL, and a cathode connected to the drains of the switching elements AH, AL, BH, and BL.
  • the diodes DAH, DAL, DBH, and DBL may be body diodes of the switching elements AH, AL, BH, and BL, or may be external diodes. Further, in this case, the diode DAH is connected across the emitter and the collector so that a current having a direction opposite to a current flowing through the switching element AH flows when the switching element AH is turned on. The same applies to the diodes DAL, DBH, DBL.
  • Capacitors CAH, CAL, CBH, and CBL are connected between the sources and drains of the switching elements AH, AL, BH, and BL, respectively.
  • Capacitors CAH, CAL, CBH, and CBL resonate with primary winding 531 to realize soft switching of switching elements AH, AL, BH, and BL.
  • Capacitors CAH and CBH and capacitors CAL and CBL may be connected between terminals T1 and T2, respectively. Further, only the capacitors CAL and CBL may be provided, or only the capacitors CAH and CBH may be provided.
  • the converter unit 52 converts the rectangular-wave AC voltage having positive and negative polarities alternately supplied to the secondary winding 532 into a voltage having positive polarity and supplies the voltage between the terminal P3 and the terminal N3.
  • the converter unit 52 includes four diodes DXH, DXL, DYH, and DYL.
  • the diode DXH (an example of a fifth switching element) has a cathode connected to the terminal P3 and an anode connected to the terminal T3.
  • the diode DXL (an example of a sixth switching element) has a cathode connected to the terminal T3 and an anode connected to the terminal N3.
  • the diode DYH (an example of a seventh switching element) has a cathode connected to the terminal P3 and an anode connected to the terminal T4.
  • the diode DYL (an example of an eighth switching element) has a cathode connected to the terminal T4 and an anode connected to the terminal N3.
  • the converter unit 52 is configured by a full bridge type (FB type) circuit in which four diodes are connected by a full bridge.
  • FB type full bridge type
  • the converter unit 52 may be configured by a half-bridge type circuit in which two diodes are connected by a half-bridge.
  • the control unit 13 turns off the switching elements AL and BH when the switching elements AH and BL are turned on, and turns on the switching elements AL and BH when the switching elements AH and BL are turned off.
  • the control unit 13 controls the switching elements AH, AL, BH, and BL with the same duty ratio.
  • the duty ratio of the switching elements AH, AL, BH, and BL is substantially 50%.
  • the substantial 50% is a duty ratio obtained by subtracting a dead time (an inversion period in which the switching elements AH, AL, BH, and BL are all OFF) from a duty ratio of 50%.
  • the converter unit 7 includes a switching element UH (an example of a ninth switching element), two diodes D1 and D2, a coil 71, and a capacitor 72.
  • the converter unit 7 steps down the positive voltage supplied between the terminal P3 and the terminal N3, for example, and supplies it to the DC device 28.
  • the coil 71 is connected between the terminal U2 and the terminal U1.
  • the capacitor 72 is connected between the terminal U2 and the terminal W2.
  • the switching element UH is composed of an n-type field effect transistor.
  • the switching element UH has a drain connected to the terminal P3 and a source connected to the terminal U1.
  • the diode D1 has a cathode connected to the drain of the switching element UH and an anode connected to the source of the switching element UH.
  • the diode D2 has a cathode connected to the terminal U1 and an anode connected to the terminal N3.
  • the switching element UH may be composed of, for example, an npn-type insulated gate bipolar transistor instead of the field effect transistor.
  • the diode D1 is provided as a freewheeling diode. Further, in this case, the diode D1 is connected across the emitter and the collector so that a current having a direction opposite to that flowing through the switching element UH flows when the switching element UH is turned on.
  • the control unit 13 controls the magnitude of at least one of the voltage Vout that is a DC voltage output from the terminals U2 and W2 and the current Ibus flowing through the terminal P2 by turning the switching element UH on and off. Details will be described later.
  • the DC device 28 (an example of a second connection target) includes, for example, an electric device driven by DC power or a charger that charges the DC power source 17.
  • the control unit 13 is configured by, for example, a CPU, FPGA, ASIC, or the like, and controls the converter unit 51 and the converter unit 7.
  • the control unit 13 controls the converter unit 51 so that a high-frequency AC voltage is supplied to the primary winding 531 and the secondary winding 532, and a voltage having a positive polarity is supplied between the terminal P3 and the terminal N3. To do.
  • the control unit 13 controls the converter unit 7 so that power is not transmitted between the transformer circuit unit 5 and the converter unit 7 in the first period including the inversion period in which the polarity of the voltage of the primary winding 531 is inverted.
  • the control unit 13 controls the converter unit 7 so that power is transmitted in the first unidirectional direction from the transformer circuit unit 5 toward the converter unit 7 in a second period different from the first period.
  • control unit 13 assigns an inversion period and a later-described circulation period in a first period constituting a half cycle (an example of a unit period) of the AC voltage supplied to the primary winding 531. 51 and the converter unit 7 are controlled.
  • control unit 13 sets the duty ratio of the converter unit 7 for setting the voltage Vout or the current Ibus having a target value, and controls the switching element UH with the set duty ratio.
  • a voltage drop occurs in the same direction as the current flows through the DC device 28 between the terminal U2 and the terminal W2, that is, the polarities of the voltage Vout and the current IL are the same. Operate.
  • FIG. 54 is a diagram showing a timing chart of the power conversion system 1K.
  • (1) shows ON and OFF of the switching elements AL and AH, where the high level is ON and the low level is OFF.
  • the switching elements BH and XL are turned on and off at the same timing as the switching element AL.
  • the switching elements BL and XH are turned on and off at the same timing as the switching element AH.
  • (2) indicates ON / OFF of the switching element UH, where the high level is ON and the low level is OFF.
  • (3) shows a current IL flowing through the coil 71 and a current IL3 flowing through the coil L12.
  • (4) shows a voltage “P3-N3” of the terminal P3 with the terminal N3 as a reference, and a voltage VT3 of the coil L12 with the terminal T4 as a reference.
  • (5) indicates the voltage Vout of the terminal U2 with respect to the terminal W2.
  • the voltage at the terminal P2 with respect to the terminal N2 will be described as the voltage VE.
  • the period T indicates one period of the AC voltage supplied to the primary winding 531.
  • the sequence focused on the converter units 51 and 52 is shown in the periods ST1 to ST4, and the sequence focused on the converter unit 7 is shown in the periods labeled TA1, TB1, TC1, TB3, TA2, TB2, TC2, and TB4. .
  • the polarity of the voltages VT1 and VT3 is gradually reversed from positive to negative by the resonance operation of the exciting current of the coil L11 and the capacitors CAH, CAL, CBH, and CBL, thereby realizing soft switching.
  • the period in which the polarity is inverted is the inversion period.
  • ⁇ Period ST4> Similar to the period ST2, the control unit 13 turns off the switching elements AH, AL, BH, and BL, and inverts the polarities of the voltages VT1 and VT3.
  • the converter unit 7 is connected to the DC power source 17 via the transformer 53. Therefore, it can be considered that the converter unit 7 is directly connected to the DC power supply 17 via the leakage inductance of the transformer 53. Accordingly, ringing occurs in the power conversion system 1K when the converter unit 7 is switched. In order to prevent this, the snubber circuit 60 is provided. However, if the polarity of the voltage “P3-N3” is reversed, the direction of the current flowing through the snubber circuit 60 is also reversed, so that the capacity of the capacitor 62 can be increased. Can not. Therefore, when the polarity of the voltage “P3-N3” is reversed, it is difficult to suppress ringing.
  • the power conversion system 1K can suppress ringing.
  • the first transmission period in which the current IL flows through the first transmission path K1 (FIG. 53) is entered.
  • a current flows through the secondary winding 532, and power is transmitted in the first unidirectional direction.
  • converter unit 7 enters the first transmission mode in which power is transmitted in the first unidirectional direction.
  • the first transmission period is a period during which power is transmitted from the DC power source 17 to the DC device 28. Become.
  • the current IL increases linearly. Further, referring to (3), the current IL3 decreases rapidly and then decreases with a gentle slope.
  • the circulation period TB1 is started following the first transmission period TA1.
  • a circulation period in which the current IL flows through the circulation path K2 (FIG. 53) is entered.
  • the circulation path K ⁇ b> 2 is a closed loop in the converter unit 7, and power transmission from the DC power supply 17 to the converter unit 7 is interrupted. As a result, the converter unit 7 enters a circulation mode.
  • the current IL decreases linearly.
  • the current IL3 increases rapidly and then changes to zero.
  • An inversion period TC1 is started following the circulation period TB1.
  • the inversion period TC1 is the same as the above-described period ST2.
  • ⁇ Circulation period TB3> Following the inversion period TC1, a circulation period TB3 is started.
  • the converter unit 7 continues in the circulation mode, and power transmission from the DC power supply 17 to the converter unit 7 is interrupted.
  • First transmission period TA2> Following the circulation period TB3, the first transmission period TA2 is started.
  • the current IL increases linearly. Further, referring to (3), the current IL3 increases rapidly and then increases with a gentle slope.
  • the circulation period TB2 is started following the first transmission period TA2.
  • the current IL decreases linearly.
  • the current IL3 has decreased rapidly and then has changed to zero.
  • ⁇ Inversion period TC2> An inversion period TC2 is started following the circulation period TB2.
  • the inversion period TC2 is the same as the above-described period ST4.
  • ⁇ Circulation period TB4> Following the inversion period TC2, a circulation period TB4 is started.
  • the converter unit 7 continues in the circulation mode, and power transmission from the DC power supply 17 to the converter unit 7 is interrupted.
  • the power conversion system 1K cyclically sets the first transmission period TA1, the circulation period TB1, the inversion period TC1, the circulation period TB3, the first transmission period TA2, the circulation period TB2, the inversion period TC2, and the circulation period TB4.
  • the control unit 13 sets the half period of the cycle T as a unit period, and sets the ratio of the first transmission periods TA1 and TA2 in the unit period as the duty ratio of the converter unit 7, so that a desired value is obtained from the converter unit 7.
  • the voltage Vout is output.
  • the voltage Vout has a slight ripple observed in the range from about 249V to about 250.75V, but it can be seen that it has a value of about 250V on average. Therefore, a DC voltage of about 250 V is supplied to the DC device 28.
  • the controller 13 adjusts the value of the voltage Vout by changing the duty ratio.
  • FIG. 55 is a timing chart showing the inversion periods TC1 and TC2 in an enlarged manner in FIG. 55, (1) to (5) are enlarged views of the inversion period TC2 of (1) to (5) of FIG. 54, and (6) to (10) are (1) to (5) of FIG. ) Is an enlarged view of the inversion period TC1.
  • the dead time Td is, for example, 2 ⁇ s.
  • the dead time Ta is, for example, 0.5 ⁇ s. As a result, the switching element is protected.
  • the voltage VT3 is inverted from positive to negative polarity at the dead time Td.
  • the power conversion system 1K controls the converter unit 51 so that positive and negative voltages are alternately applied to the coils L11 and L12, and the voltage “P3-N3” becomes positive. Therefore, a voltage having a constant polarity is input to the converter unit 7.
  • the converter unit 7 can be configured by a normal chopper circuit, and normal control can be applied as it is.
  • the converter unit 7 in the second period (first transmission period), the converter unit 7 is directly connected to the capacitor 4 (FIG. 53) and the leakage inductance of the transformer 53 on the equivalent circuit of the transformer 53.
  • the capacitor 4 and the converter unit 7 are always directly connected at the timing when the power is transmitted.
  • the power conversion system 1K provides an inversion period in which the polarity of the coils L11 and L12 is inverted during the period in which the converter unit 7 is set to the circulation mode. Therefore, the power conversion system 1K can perform the inversion operation by the resonance operation of the excitation current and the resonance capacitors CAH, CAL, CBH, and CBL regardless of the load current. As a result, the power conversion system 1K can stably invert the polarity of the voltage applied to the coils L11 and L12.
  • FIG. 56 is a circuit diagram of a power conversion system 1L according to the fourteenth embodiment.
  • converter unit 51 and primary winding 531 are configured by a center tap type (CNT type) circuit
  • converter unit 52 and secondary winding 532 are a center tap type (CNT type).
  • CNT-CNT type center tap type
  • the same components as those in the thirteenth embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the power conversion system 1L according to the fourteenth embodiment is also a power conversion system that transmits power in the first unidirectional direction, as in the thirteenth embodiment.
  • the transformer 53 is a center tap type high-frequency transformer, and includes a primary winding 531 and a secondary winding 532 that are magnetically coupled to each other.
  • Primary winding 531 includes two coils L1 and L2 separated by center tap CT1 (an example of a first center tap).
  • the center tap CT1 is connected to the terminal P2.
  • a terminal T1 that is one end of the primary winding 531 is connected to a switching element BL (an example of a first switching element).
  • a terminal T2 (an example of a second winding terminal) that is the other end of the primary winding 531 is connected to a switching element AL (an example of a second switching element).
  • the secondary winding 532 includes two coils L3 and L4 separated by a center tap CT2 (an example of a second center tap). Center tap CT2 is connected to terminal P3. A terminal T3 (an example of a third winding terminal) that is one end of the secondary winding 532 is connected to a diode DYL (an example of a fifth switching element). A terminal T4 (an example of a fourth winding terminal) that is the other end of the secondary winding 532 is connected to a diode DXL (an example of a sixth switching element).
  • the coils L1, L2, L3, and L4 are magnetically coupled such that the center tap CT1, terminal T2, center tap CT2, and terminal T4 have the same polarity.
  • turns ratio of the coils L1 to L4 (high frequency transformer) is 1: 1: 1: 1.
  • the converter unit 51 includes two switching elements AL and BL, two diodes DAL and DBL, and two capacitors CAL and CBL. Since the connection relation of the elements constituting the converter unit 51 is the same as that of the elements denoted by the same reference numerals in FIG. 53, description thereof is omitted.
  • the converter unit 52 includes two diodes DYL and DXL.
  • the diode DYL has a cathode connected to the terminal T3 and an anode connected to the terminal N3.
  • the diode DXL has a cathode connected to the terminal T4 and an anode connected to the terminal N3.
  • ⁇ Period ST1> to ⁇ Period ST4> shown below correspond to ⁇ Period ST1> to ⁇ Period ST4> described in Embodiment 13.
  • voltages VT1, VT2, VT3, and VT4 shown in FIG. 56 are voltages of coils L1, L2, L3, and L4 with respect to terminals T1, T2, T3, and T4, respectively.
  • the operation of the converter unit 7 is the same as that in the thirteenth embodiment, and thus the description thereof is omitted.
  • VT1 VE
  • VT2 ⁇ VE
  • VT3 VE
  • VT4 ⁇ VE.
  • the diode DYL is turned ON and the diode DXL is turned OFF
  • VT2 VE
  • VT1 ⁇ VE
  • VT3 ⁇ VE
  • VT4 VE.
  • ⁇ Period ST4> Similar to the period ST2, the control unit 13 turns the switching elements AL, BL OFF, and inverts the polarities of the voltages VT1 to VT4.
  • the same effect as the power conversion system 1K can be obtained.
  • FIG. 57 is a circuit diagram of a power conversion system 1M according to the fifteenth embodiment.
  • converter unit 51 and primary winding 531 are configured by a half-bridge type (HB type) circuit
  • converter unit 52 and secondary winding 532 are a center tap type (CNT type). (HB-CNT type).
  • HB-CNT type center tap type
  • the power conversion system 1M according to the fifteenth embodiment is also a power conversion system that transmits power in the first unidirectional direction, as in the thirteenth and fourteenth embodiments.
  • the converter unit 51 includes two switching elements AH and AL that are half-bridge connected.
  • the switching element AH (an example of the first switching element) has a drain connected to the terminal P2 and a source connected to the terminal T2.
  • the switching element AL (an example of a second switching element) has a drain connected to the terminal T2 and a source connected to the terminal N2.
  • the switching elements AH and AL are connected to diodes DAH and DAL, respectively, whose anode is connected to the source and whose cathode is connected to the drain.
  • the capacitor C * 1 and the capacitor C * 2 are capacitors for generating a DC voltage Vm obtained by dividing the voltage VE of the DC power supply 17.
  • the capacitor C * 1 is connected between the terminal P2 and the terminal T1
  • the capacitor C * 2 is connected between the terminal T1 and the terminal N2.
  • Capacitors CAH and CAL have the same function as capacitor C14 shown in FIG. 5 and resonate with coil L11 to soft-switch converter unit 51. Capacitors CAH and CAL may be connected between terminals T1 and T2, respectively.
  • the primary winding 531 does not include a center tap, and thus is configured only by the coil L11.
  • the coil L11 is connected between the terminal T2 and the terminal T1.
  • Coils L11, L3, and L4 are magnetically coupled so that terminal T2, center tap CT2, and terminal T4 have the same polarity.
  • the configuration of the converter unit 52 and the secondary winding 532 is the same CNT type as that in FIG.
  • ⁇ Period ST1> to ⁇ Period ST4> shown below correspond to ⁇ Period ST1> to ⁇ Period ST4> described in Embodiment 13.
  • voltages VT1, VT3, and VT4 shown in FIG. 7 are voltages of coils L11, L3, and L4 with reference to terminals T1, T3, and T4, respectively.
  • the operation of the converter unit 7 is the same as that in the thirteenth embodiment, and thus the description thereof is omitted.
  • the polarity of the voltages VT1 and VT3 is gradually reversed from positive to negative by the resonance operation of the exciting current of the coil L11 and the capacitors CAH and CAL, thereby realizing soft switching.
  • ⁇ Period ST4> Similar to the period ST2, the control unit 13 turns the switching elements AH, AL OFF, and inverts the polarities of the voltages VT1, VT3, VT4.
  • the power conversion system 1M is configured by an HB-CNT type circuit, the same effect as the power conversion system 1K can be obtained.
  • both converter units 51 and 52 are full bridge type (FB type), and in the fourteenth embodiment, both converter units 51 and 52 are center tap type (CNT type).
  • the converter unit 51 is a half-bridge type (HB type) and the converter unit 52 is a center tap type.
  • the combination of the converter units 51 and 52 is not limited to the above combination.
  • the converter unit 51 may be a center tap type
  • the converter unit 52 may be a full bridge type
  • both the converter units 51 and 52 may be a half bridge type.
  • snubber circuit 60 instead of the snubber circuit 60, snubber circuits 60A to 60C shown in FIGS. 47 to 49 may be applied.
  • FIG. 58 is a circuit diagram of power conversion system 1N according to the sixteenth embodiment.
  • the power conversion system 1N according to the sixteenth embodiment is characterized in that the converter unit 7 is configured by a single-phase inverter.
  • converter units 51 and 52 are each a CNT type as in FIG.
  • a filter circuit 9 is provided between the converter unit 7 and the connection unit 15.
  • the filter circuit 9 includes a pair of coils 91 and 92 and a capacitor 93.
  • the converter unit 7 is a single-phase inverter that generates, for example, a commercial AC voltage having a frequency of 50 Hz or 60 Hz from a positive voltage supplied between the terminal P3 and the terminal N3.
  • the converter unit 7 includes a switching element UL (an example of a ninth switching element), a switching element UL (an example of a tenth switching element), a switching element WH (an example of an eleventh switching element), and a switching element WL (a twelfth switching element).
  • An example of a switching element four diodes D1 to D4, a terminal U1, and a terminal W1, a single-phase inverter in which the switching elements UH, UL, WH, WL are connected in a full bridge.
  • the switching elements UH to WL are each composed of an n-type field effect transistor.
  • the switching element UH has a drain connected to the terminal P3 and a source connected to the terminal U1.
  • the switching element WH has a drain connected to the terminal P3 and a source connected to the terminal W1.
  • the switching element UL has a drain connected to the terminal U1 and a source connected to the terminal N3.
  • the switching element WL has a drain connected to the terminal W1 and a source connected to the terminal N3.
  • the diodes D1 to D4 are connected to the switching elements UH to WL so that the anode is connected to the source and the cathode is connected to the drain.
  • the switching elements UH, UL, WH, WL may each be constituted by, for example, an npn-type insulated gate bipolar transistor instead of the field effect transistor.
  • the diodes D1, D2, D3, D4 are provided as freewheeling diodes.
  • the diode D1 is connected across the emitter and the collector so that a current having a direction opposite to that flowing through the switching element UH flows when the switching element UH is turned on. The same applies to the diodes D2, D3, and D4.
  • the control unit 13 controls the amplitude of at least one of the voltage Vout at the terminals U2 and W2 or the current Ibus flowing through the terminal P2 by turning ON or OFF the switching elements UH to WL. Details will be described later.
  • the coil 91 is connected between the terminal U1 and the terminal U2, and the coil 92 is connected between the terminal W1 and the terminal W2.
  • the capacitor 93 is connected between the terminal U2 and the terminal W2.
  • the coils 91 and 92 and the capacitor 93 constitute a filter circuit that smoothes the rectangular wave AC voltage output from the converter unit 7. As a result, the rectangular wave AC voltage output from the converter unit 7 is converted into a sinusoidal AC voltage having an amplitude corresponding to the pulse width.
  • the terminals U2 and W2 are connected to the AC power system 29.
  • the AC device 30 When supplying power from the DC power supply 17 to the AC device 30, the terminals U ⁇ b> 2 and W ⁇ b> 2 are connected to the AC device 30.
  • the AC device 30 is, for example, an electric device that is driven by a commercial AC voltage.
  • the control unit 13 is configured by, for example, a CPU, FPGA, ASIC, or the like, and controls the converter unit 51 and the converter unit 7.
  • the control unit 13 controls the converter unit 51 so that a high-frequency AC voltage is supplied to the primary winding 531 and the secondary winding 532, and a voltage having a positive polarity is supplied between the terminal P3 and the terminal N3. To do.
  • control unit 13 assigns an inversion period and a circulation period in a first period that constitutes a half cycle (an example of a unit period) of the AC voltage supplied to the primary winding 531. What is the first period?
  • the converter units 51 and 7 are controlled so that a first transmission period, which will be described later, is allocated to different second periods.
  • control unit 13 generates the target voltage Vout or current Ibus by changing the ratio of the second period in each unit period by PWM control of the converter unit 7.
  • the target voltage Vout or current IL is, for example, a voltage or current having the same waveform as a modulation wave signal used in PWM control.
  • FIG. 59 is a diagram showing a timing chart of the power conversion system 1N.
  • (1) shows ON and OFF of the switching elements BL and AL, where the high level is ON and the low level is OFF.
  • (2) indicates ON and OFF of the switching elements UH and UL, where the high level is ON and the low level is OFF.
  • (3) indicates ON and OFF of the switching elements WH and WL, where the high level is ON and the low level is OFF.
  • (5) indicates the voltage “P3-N3”.
  • (6) shows the current IL and the voltage Vout.
  • (7) is the same as (1).
  • (8) shows the voltage VT1 and the current IL1.
  • (9) shows the voltage VT3 and the current IL3.
  • (10) indicates the voltage VT2 and the current IL2.
  • (11) shows the voltage VT4 and the current IL4.
  • (12) indicates the exciting current of the transformer 53.
  • the exciting current is (IL1-IL2)-(IL3-IL4).
  • the circulation period TB1 is started following the first transmission period TA1.
  • the current IL decreases linearly.
  • the currents IL1 and IL3 change substantially to 0 after rapidly decreasing. Specifically, the current IL3 is 0, but the exciting current flows through the current IL1.
  • the currents IL2 and IL4 0.
  • the voltage “P3-N3” maintains a constant value.
  • the voltages VT1 and VT3 are inverted from positive to negative polarity, and with reference to (10) and (11), the voltages VT2 and VT4 are inverted from negative to positive polarity. To do. Further, referring to (5), the voltage “P3-N3” maintains a constant value.
  • VT1 ⁇ VE
  • VT2 VE
  • VT3 ⁇ VE
  • VT4 VE
  • the circulation period TB2 is started following the first transmission period TA2.
  • the current IL decreases linearly. Further, referring to (8), (9), (10), and (11), the currents IL1 and IL3 are maintained substantially at zero. The currents IL2 and IL4 decrease substantially, and then change to almost zero. Specifically, the current IL4 is 0, but the current IL2 flows only in the excitation current. Further, referring to (5), the voltage “P3-N3” maintains a constant value.
  • the voltages VT1 and VT3 are inverted from negative to positive polarity, and with reference to (10) and (11), the voltages VT2 and VT4 are inverted from positive to negative polarity. To do. Further, referring to (5), the voltage “P3-N3” maintains a constant value.
  • the power conversion system 1N cyclically repeats the first transmission period TA1, the circulation period TB1, the inversion period TC1, the first transmission period TA2, the circulation period TB2, and the inversion period TC2, and the AC power system 29 or the AC Power is supplied to the device 30.
  • the power conversion system 1N generates a desired voltage Vout by changing the ratio of the first transmission period TA1 and the first transmission period TA2 within one cycle by PWM control.
  • the converter unit 7 is a single-phase inverter
  • the converter unit 7 is not limited to a single-phase inverter, and may be a three-phase inverter.
  • the case where power is supplied from the DC power source 17 to the AC power system 29 (ie, the first direction) has been described as an example.
  • the DC power source 17 ie, the second direction
  • the AC power system 29 May be configured to supply power.
  • FIG. 60 is a circuit diagram of a power conversion system 1P according to the seventeenth embodiment.
  • the power conversion system 1 ⁇ / b> P is a power conversion system that converts power in a second unidirectional direction from the connection unit 15 toward the connection unit 3 and transmits it.
  • a DC power supply 17 (an example of a second connection target) is connected to the connection unit 15, and a DC device 28 (an example of a first connection target) is connected to the connection unit 3. Is connected.
  • the positive terminal of the DC device 28 is connected to the terminal P2 (an example of the first external connection terminal), and the negative electrode of the DC device 28 is connected to the terminal N2 (an example of the second external connection terminal).
  • the positive electrode of the DC power supply 17 is connected to the terminal U2 (an example of the third external connection terminal), and the negative electrode of the DC power supply 17 is connected to the terminal W2 (an example of the fourth external connection terminal).
  • the power conversion system 1P includes the converter unit 51 and the primary winding 531 as a full-bridge type (FB type) circuit, and the converter unit 52
  • the secondary winding 532 is formed of a full bridge type (FB type) circuit (FB-FB type).
  • FB type full bridge type circuit
  • the configuration of the converter unit 51 and the primary winding 531 is the same FB type as that in FIG. However, FIG. 60 is different in that the switching elements AH, AL, BH, and BL are omitted.
  • the diode DAH has an anode connected to the terminal T2, a cathode connected to the terminal P2
  • the diode DAL has an anode connected to the terminal N2
  • a diode DBH has an anode connected to the terminal T1.
  • the cathode is connected to the terminal P2
  • the anode of the diode DBL is connected to the terminal N2, and the cathode is connected to the terminal T1.
  • the configurations of the converter unit 52 and the secondary winding 532 are the same FB type as that in FIG. However, FIG. 60 is different in that switching elements XH, XL, YH, and YL are added.
  • the switching element XH has a source connected to the terminal T3, a drain connected to the terminal P3, a switching element XL has a source connected to the terminal N3, a drain connected to the terminal T3, and the switching element YH
  • the source is connected to the terminal T4, the drain is connected to the terminal P3, and the switching element YL has the source connected to the terminal N3 and the drain connected to the terminal T4.
  • the converter unit 7 includes a chopper circuit that transmits power in the second unidirectional direction.
  • converter unit 7 includes a switching element UL (an example of a ninth switching element), two diodes D1 and D2, a coil 71, and a capacitor 72.
  • the converter unit 7 boosts the voltage Vout supplied from the DC device 28 and supplies the boosted voltage between the terminal P3 and the terminal N3.
  • the coil 71 is connected between the terminal U2 and the terminal U1.
  • the capacitor 72 is connected between the terminal U2 and the terminal W2.
  • the switching element UL is composed of an n-type field effect transistor.
  • the switching element UL has a drain connected to the terminal U1 and a source connected to the terminal N3.
  • the diode D2 has a cathode connected to the drain of the switching element UL and an anode connected to the source of the switching element UL.
  • the diode D1 has a cathode connected to the terminal P3 and an anode connected to the terminal U1.
  • the switching element UL may be composed of, for example, an npn-type insulated gate bipolar transistor instead of the field effect transistor.
  • the diode D2 is provided as a freewheeling diode. Further, in this case, the diode D2 is connected across the emitter and the collector so that a current having a direction opposite to a current flowing through the switching element UL flows when the switching element UL is turned on.
  • the control unit 13 controls at least one of the current Iout flowing through the terminal U2 and the voltage Vbus between the terminal P2 and the terminal N2 by turning the switching element UL on and off. Details will be described later.
  • the control unit 13 controls the converter unit 7 so that power is not transmitted between the transformer circuit unit 5 and the converter unit 7 in the first period including the inversion period in which the polarity of the voltage of the primary winding 531 is inverted.
  • the control unit 13 controls the converter unit 7 so that power is transmitted in the second unidirectional direction from the converter unit 7 toward the transformer circuit unit 5 in a second period different from the first period.
  • control unit 13 assigns an inversion period and a later-described circulation period in a first period constituting a half cycle (an example of a unit period) of the AC voltage supplied to the primary winding 531. 51 and 52 and the converter unit 7 are controlled.
  • control unit 13 sets the duty ratio of the converter unit 7 to obtain the voltage Vbus or the current Iout having a target value, and controls the switching element UL with the set duty ratio.
  • the power conversion system 1P operates such that a voltage drop occurs between the terminal U2 and the terminal W2 in a direction opposite to the direction in which the current flows through the DC power supply 17, that is, the polarity of the voltage Vout and the current IL is different. To do.
  • FIG. 61 is a diagram showing a timing chart of the power conversion system 1P.
  • (1) shows ON and OFF of the switching elements XH and XL, where the high level is ON and the low level is OFF.
  • the switching element YL is turned on and off at the same timing as the switching element XH.
  • the switching element YH is turned on and off at the same timing as the switching element XL.
  • (2) indicates ON / OFF of the switching element UL, where the high level is ON and the low level is OFF.
  • (3) shows a current IL flowing through the coil 71 and a current IL3 flowing through the coil L12.
  • (4) shows a voltage “P3-N3” of the terminal P3 with the terminal N3 as a reference, and a voltage VT3 of the coil L12 with the terminal T4 as a reference.
  • (5) indicates the voltage Vbus.
  • the voltage at the terminal P2 with respect to the terminal N2 will be described as the voltage VE.
  • the period T indicates one period of the AC voltage supplied to the primary winding 531.
  • the voltage VE is a voltage obtained by boosting the voltage Vout by the converter unit 7.
  • the sequence focused on the converter units 51 and 52 is shown in the periods ST1 to ST4, and the sequence focused on the converter unit 7 is shown in the periods labeled TD1, TE1, TF1, TE3, TD2, TE2, TF2, and TE4. .
  • the polarity of the voltages VT1 and VT3 is gradually reversed from positive to negative by the resonance operation of the exciting current of the coil L11 and the capacitors CAH, CAL, CBH, and CBL, thereby realizing soft switching.
  • the period in which the polarity is inverted is the inversion period.
  • ⁇ Period ST4> Similar to the period ST2, the control unit 13 turns off the switching elements XH, XL, YH, and YL and inverts the polarities of the voltages VT1 and VT3.
  • the second transmission period is a period during which power is transmitted from the DC power source 17 to the DC device 28. Become.
  • the current IL increases linearly. Further, referring to (3), the current IL3 increases rapidly and then decreases with a gentle slope.
  • the circulation period TE1 is started following the second transmission period TD1.
  • a circulation period in which the current IL flows through the circulation path K4 (FIG. 60) is entered.
  • the circulation path K ⁇ b> 4 is a closed loop in the converter unit 7, and power transmission from the converter unit 7 to the DC power source 17 is interrupted. As a result, the converter unit 7 enters a circulation mode.
  • the current IL decreases linearly.
  • the current IL3 has increased substantially and then has changed to almost zero.
  • ⁇ Inversion period TF1> Following the circulation period TE1, an inversion period TF1 is started.
  • the inversion period TF1 is the same as the above-described period ST2.
  • ⁇ Circulation period TE3> Following the inversion period TF1, the circulation period TE3 is started.
  • the converter unit 7 continues the circulation mode, and the transmission of power from the converter unit 7 to the DC power source 17 is interrupted.
  • ⁇ Second transmission period TD2> Following the circulation period TE3, the second transmission period TD2 is started.
  • the current IL increases linearly. Further, referring to (3), the current IL3 rapidly decreases and then increases with a gentle slope.
  • the circulation period TE2 is started following the second transmission period TD2.
  • the current IL decreases linearly.
  • the current IL3 has increased substantially and then has changed to almost zero.
  • the inversion period TF2 is started.
  • the inversion period TF2 is the same as the above-described period ST4.
  • ⁇ Circulation period TE4> Following the inversion period TF2, the circulation period TE4 is started.
  • the converter unit 7 continues in the circulation mode, and the transmission of power from the converter unit 7 to the DC power source 17 is interrupted.
  • the power conversion system 1P cyclically sets the second transmission period TD1, the circulation period TE1, the inversion period TF1, the circulation period TE3, the second transmission period TD2, the circulation period TE2, the inversion period TF2, and the circulation period TE4.
  • the power of the DC device 28 is repeatedly supplied.
  • the control unit 13 sets the voltage Vbus to a desired value by setting the half cycle of the cycle T as a unit cycle and setting the ratio of the second transmission periods TD1 and TD2 in the unit cycle as the duty ratio of the converter unit 7. To do. Referring to (5), the voltage Vbus has a slight ripple observed in the range from about 254V to about 254.35V, but it can be seen that it has a value of about 254.175V on average. Therefore, a DC voltage of about 254.175 V is supplied to the DC device 28.
  • the controller 13 adjusts the value of the voltage Vbus by changing the duty ratio.
  • FIG. 62 is a timing chart showing the inversion periods TF1 and TF2 in FIG. 61 in an enlarged manner. 62, (1) to (5) are enlarged views of the inversion period TF2 of (1) to (5) of FIG. 61, and (6) to (10) are (1) to (5) of FIG. ) Is an enlarged view of the inversion period TF1.
  • the dead time Td is, for example, 2 ⁇ s.
  • the dead time Ta is, for example, 0.5 ⁇ s. As a result, the switching element is protected.
  • the voltage VT3 is inverted from positive to negative polarity at the dead time Td.
  • the same effect as the thirteenth embodiment can be obtained even when power is transmitted in the second unidirectional direction.
  • FIG. 63 is a circuit diagram of a power conversion system 1Q according to the eighteenth embodiment.
  • the converter unit 51 and the primary winding 531 are configured by a center tap type (CNT type) circuit
  • the secondary winding 532 is formed of a center tap type (CNT type) circuit (CNT-CNT type).
  • CNT type center tap type circuit
  • the configuration of the converter unit 51 and the primary winding 531 is the same CNT type as in FIG. However, FIG. 63 is different in that the switching elements AL and BL are omitted. Specifically, the diode DAL has an anode connected to the terminal N2, a cathode connected to the terminal T2, and the diode DBL has an anode connected to the terminal N2 and a cathode connected to the terminal T1.
  • the configuration of the converter unit 52 and the secondary winding 532 is the same CNT type as that in FIG. However, in FIG. 63, switching elements YL and XL are added. Specifically, the switching element YL has a source connected to the terminal N3 and a drain connected to the terminal T3. The switching element XL has a source connected to the terminal N3 and a drain connected to the terminal T4.
  • ⁇ Period ST1> to ⁇ Period ST4> shown below correspond to ⁇ Period ST1> to ⁇ Period ST4> described in Embodiment 17.
  • voltages VT1, VT2, VT3, and VT4 shown in FIG. 63 are voltages of coils L1, L2, L3, and L4 with respect to terminals T1, T2, T3, and T4, respectively.
  • the operation of the converter unit 7 is the same as that in the seventeenth embodiment, and thus description thereof is omitted.
  • ⁇ Period ST4> Similar to the period ST2, the control unit 13 turns off the switching elements YL and XL, and inverts the polarities of the voltages VT1 to VT4.
  • the power conversion system 1Q is configured by a CNT-CNT type circuit, the same effect as the power conversion system 1P can be obtained.
  • FIG. 64 is a circuit diagram of a power conversion system 1R according to the nineteenth embodiment.
  • converter unit 51 and primary winding 531 are configured by a half-bridge type (HB type) circuit
  • converter unit 52 and secondary winding 532 are a center tap type (CNT type).
  • CNT type center tap type
  • HB-CNT type center tap type
  • the power conversion system 1Q according to the nineteenth embodiment is also a power conversion system that transmits power in the second unidirectional direction, as in the seventeenth and eighteenth embodiments.
  • the converter unit 51 is the same HB type as in FIG. However, the switching elements AH and AL are omitted. Specifically, the diode DAH has an anode connected to the terminal T2, a cathode connected to the terminal P2, and the diode DAL has an anode connected to the terminal N2 and a cathode connected to the terminal T2.
  • Converter section 52 and secondary winding 532 are the same CNT type as in FIG. However, switching elements YL and XL are added. Specifically, the switching element YL has a source connected to the terminal N3 and a drain connected to the terminal T3. The switching element XL has a source connected to the terminal N3 and a drain connected to the terminal T4.
  • ⁇ Period ST1> to ⁇ Period ST4> shown below correspond to ⁇ Period ST1> to ⁇ Period ST4> described in Embodiment 17.
  • voltages VT1, VT3, and VT4 shown in FIG. 64 are voltages of coils L11, L3, and L4 with reference to terminals T1, T3, and T4, respectively.
  • the operation of the converter unit 7 is the same as that in the seventeenth embodiment, and thus the description thereof is omitted.
  • the polarity of the voltages VT1 and VT3 is gradually reversed from positive to negative by the resonance operation of the exciting current of the coil L11 and the capacitors CAH and CAL, thereby realizing soft switching.
  • VT1 ⁇ VE
  • VT3 ⁇ VE
  • ⁇ Period ST4> Similar to the period ST2, the control unit 13 turns the switching elements YL, XL OFF and inverts the polarities of the voltages VT1, VT3, VT4.
  • the power conversion system 1R is configured by an HB-CNT type circuit, the same effect as the power conversion system 1P can be obtained.
  • the converter units 51 and 52 are both full bridge type (FB type), and in the eighteenth embodiment, both the converter units 51 and 52 are center tap type (CNT type).
  • the converter unit 51 is a half-bridge type (HB type) and the converter unit 52 is a center tap type.
  • the combination of the converter units 51 and 52 is not limited to the above combination.
  • the converter unit 51 may be a center tap type
  • the converter unit 52 may be a full bridge type
  • both the converter units 51 and 52 may be a half bridge type.
  • snubber circuit 60 instead of the snubber circuit 60, snubber circuits 60A to 60C shown in FIGS. 47 to 49 may be applied.
  • FIG. 65 is a circuit diagram of a power conversion system 1S according to the twentieth embodiment.
  • the power conversion system 1S of the twentieth embodiment is characterized in that the converter unit 7 is configured by a single-phase inverter.
  • converter units 51 and 52 are each a CNT type as in FIG.
  • the configurations of the converter unit 7 and the filter circuit 9 are the same as those in FIG.
  • the power conversion system 1S according to the twentieth embodiment is also a power conversion system that transmits power in the second unidirectional direction, as in the seventeenth, eighteenth, and nineteenth embodiments.
  • the controller 13 controls the amplitude of at least one of the voltage Vbus at the terminals P2 and U2 and the current Iout flowing through the terminal U2 by turning on or off the switching elements UH to WL. Details will be described later.
  • the terminals U2 and W2 are connected to the AC power system 29.
  • the terminals U ⁇ b> 2 and W ⁇ b> 2 are connected to the AC device 30.
  • the control unit 13 assigns an inversion period and a circulation period in a first period that constitutes a half cycle (an example of a unit period) of the AC voltage supplied to the primary winding 531, and a second period different from the first period
  • the converter units 52 and 7 are controlled so as to allocate the second transmission period to the second transmission period.
  • the converter unit 7 is a single-phase inverter
  • the converter unit 7 is not limited to a single-phase inverter, and may be a three-phase inverter.
  • the power conversion system 1T includes a transformer circuit unit 5, a converter unit 7, and a control unit 13.
  • the transformer circuit unit 5 performs power conversion on at least one of the power from the first connection target (DC power supply 17 in this case) and the power to the first connection target.
  • the converter unit 7 performs power conversion on at least one of the power from the second connection target (here, the AC power system 29) and the power to the second connection target.
  • the control unit 13 stops the converter unit 7 and operates the transformer circuit unit 5 for a predetermined period when the converter unit 7 is disconnected from the second connection target.
  • the power conversion system 1T can reduce stress applied to the switch units (switching elements XL and YL) by operating the transformer circuit unit 5 even when the terminals 15a and 15b are opened. .
  • the power conversion system 1T is used for power conversion between an AC power system 29 as a second connection target and a DC power source (for example, a storage battery) 17 as a first connection target, as shown in FIG. .
  • the “AC power system” here refers to the entire system for an electric power company such as an electric power company to supply power to a power receiving facility of a consumer.
  • the power conversion system 1T includes a connection part (first external connection part) 3 to which the DC power supply 17 is electrically connected and a connection part (second output) to which the AC power system 29 is electrically connected. External connection portion) 15.
  • the power conversion system 1T converts AC power input from the AC power system 29 into DC power, and supplies the converted DC power to the DC power supply 17.
  • the power conversion system 1T converts the DC power input from the DC power supply 17 into AC power, and outputs the converted AC power to the AC power system 3.
  • the power conversion system 1T is configured to perform bidirectional power conversion between the terminals P2 and N2 and the terminals 15a and 15b so as to support both charging and discharging of the DC power supply 17.
  • the power conversion system 1T according to the present embodiment is a bidirectional DC / AC inverter.
  • the power conversion system 1T can charge the DC power supply 17 or supply the discharge power of the DC power supply 17 to a load connected to the AC power system 29.
  • a power storage system including the power conversion system 1T and the DC power supply 17 is introduced into a non-residential facility such as an office building, a hospital, a commercial facility, or a school. To do.
  • the power conversion system 1T includes a connection unit 3, a capacitor 4, a transformer circuit unit 5, a connection unit 6, a converter unit 7, a filter circuit 9, and a control unit. 13 and a connection portion 15.
  • Connection unit 3 includes a terminal P2 and a terminal N2.
  • Connection unit 6 includes a terminal P3, a terminal N3, and a snubber circuit 60.
  • the connection unit 15 includes a terminal 15a and a terminal 15b.
  • the DC power supply 17 is electrically connected between the two terminals P2 and N2 so that the terminal P2 has a high potential (positive electrode).
  • An AC power system 29 is electrically connected between the two terminals 15a and 15b.
  • the “terminal” here may not be a component for connecting an electric wire or the like, and may be, for example, a lead of an electronic component or a part of a conductor included in a circuit board.
  • the opening / closing part 2 is electrically connected between the two terminals 15a and 15b and the AC power system 29 (see FIG. 66).
  • the opening / closing unit 2 is configured to open / close in accordance with an opening / closing signal output from the control unit 13. Therefore, the control unit 13 grasps the open / closed state of the open / close unit 2.
  • the opening / closing unit 2 is a relay for disconnecting the power conversion system 1T from the AC power system 29, for example.
  • the capacitor 4 is a capacitor for smoothing to a DC voltage, and may be an electric field capacitor or a film capacitor having a desired capacity. Here, it is an electrolytic capacitor, and is electrically connected between the two terminals P2, N2.
  • the capacitor 4 has a function of stabilizing the voltage between the two terminals P2 and N2.
  • the snubber circuit 60 has a resistor 61 and a capacitor 62.
  • the resistor 61 and the capacitor 62 are electrically connected in series between the two terminals P3 and N3.
  • a DC voltage is generated between the two terminals P3 and N3.
  • the transformer circuit unit 5 is electrically connected between the capacitor 4 and the connection unit 6.
  • Transformer circuit unit 5 includes a converter unit 51 (an example of a first converter unit), a converter unit 52 (an example of a second converter unit), and a transformer 53.
  • the converter unit 51 includes two switching elements AL and BL, two diodes DA and DB, and two capacitors CA and CB.
  • the switching elements AL and BL are made of, for example, a depletion type n-channel MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor).
  • the diode DA is a free-wheeling diode, and has an anode connected to the source of the switching element AL and a cathode connected to the drain of the switching element AL.
  • the diode DB is a free-wheeling diode similar to the diode DA, and has a cathode connected to the source of the switching element BL and an anode connected to the drain of the switching element BL.
  • the capacitor CA is connected between the source and drain of the switching element AL, and the capacitor CB is connected between the source and drain of the switching element BL.
  • the converter unit 52 includes two switching elements YL and XL and two diodes DY and DX.
  • the switching elements YL and XL are made of, for example, a depletion type n-channel MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor).
  • the diode DY is a free-wheeling diode, and has an anode connected to the source of the switching element YL and a cathode connected to the drain of the switching element YL.
  • the diode DX is a freewheeling diode, and has a cathode connected to the source of the switching element XL and an anode connected to the drain of the switching element XL.
  • the diodes DA, DB, DY, DX may be MOSFET parasitic diodes.
  • the transformer 53 is a high-frequency insulation transformer with a center tap, and includes a primary winding 531 and a secondary winding 532 that are magnetically coupled to each other.
  • the primary winding 531 is configured by a series circuit of two windings L1 and L2 having a primary side center tap (primary side intermediate terminal) CT1 as a connection point.
  • the secondary winding 532 is configured by a series circuit of two windings L3 and L4 with the secondary side center tap (secondary side intermediate terminal) CT2 as a connection point.
  • the primary side center tap CT1 is electrically connected to the positive terminal (terminal P2) of the capacitor 4, in other words, to the first end of the DC power source 17.
  • the secondary side center tap CT2 is electrically connected to the high potential side terminal P3 of the two terminals P3 and N3.
  • the turns ratio of the windings L1, L2, L3, and L4 is 1: 1: 1: 1.
  • the primary winding 531 has a primary side first winding terminal 5311 and a primary side second winding terminal 5312.
  • the primary side first winding terminal 5311 is provided at the end of the winding L2 opposite to the winding L1, and is electrically connected to the second end of the DC power source 17 via the switching element AL.
  • the primary second winding terminal 5312 is provided at the end of the winding L1 opposite to the winding L2, and is electrically connected to the second end of the DC power supply 17 via the switching element BL. .
  • the secondary winding 532 has a secondary side first winding terminal 5321 and a secondary side second winding terminal 5322.
  • the secondary side first winding terminal 5321 is provided at the end of the winding L4 opposite to the winding L3, and is electrically connected to the terminal N3 via the switching element XL.
  • the secondary side second winding terminal 5322 is provided at the end of the winding L3 opposite to the winding L4, and is electrically connected to the terminal N3 via the switching element YL.
  • the switching element AL is electrically connected in series with the winding L2 between both ends of the capacitor 4.
  • the switching element BL is electrically connected in series with the winding L ⁇ b> 1 between both ends of the capacitor 4.
  • a series circuit of the winding L2 and the switching element AL and a series circuit of the winding L1 and the switching element BL are electrically connected in parallel between the two terminals P2 and N2.
  • the drain of the switching element AL is electrically connected to the primary side center tap CT1 via the winding L2
  • the drain of the switching element BL is electrically connected to the primary side center tap CT1 via the winding L1.
  • the sources of the switching elements AL and BL are both electrically connected to the negative terminal (terminal N2) of the capacitor 4.
  • the switching element YL is electrically connected in series with the winding L3 between both ends of the snubber circuit 60.
  • the switching element XL is electrically connected in series with the winding L4 between both ends of the snubber circuit 60.
  • a series circuit of the winding L3 and the switching element YL and a series circuit of the winding L4 and the switching element XL are electrically connected in parallel between the two terminals P3 and N3.
  • the drain of the switching element YL is electrically connected to the secondary side center tap CT2 via the winding L3
  • the drain of the switching element XL is connected to the secondary side center tap CT2 via the winding L4. Is electrically connected.
  • the sources of the switching elements YL and XL are both electrically connected to the low potential side terminal N3 of the two terminals P3 and N3.
  • the converter unit 7 is electrically connected between the snubber circuit 60 and the two terminals 15a and 15b.
  • the converter unit 7 has four switching elements UH, UL, WH, and WL.
  • the four switching elements UH, UL, WH, WL are respectively connected with reflux diodes D1 to D4 in antiparallel.
  • the converter unit 7 constitutes a DC / AC converter (inverter) that performs conversion from a DC voltage to an AC voltage or an AC voltage to a DC voltage between the snubber circuit 60 and the filter circuit 9.
  • the converter unit 7 converts the DC power from the transformer circuit unit 5 into single-phase AC power to the AC power system 29 or converts the single-phase AC power from the AC power system 29 to the transformer circuit unit 5.
  • each of the switching elements UH, UL, WH, WL is composed of a depletion type n-channel MOSFET.
  • the switching elements UH, UL, WH, WL are connected by a full bridge. That is, the switching element UH is electrically connected in series with the switching element UL between both ends of the snubber circuit 60.
  • the switching element WH is electrically connected in series with the switching element WL between both ends of the snubber circuit 60.
  • the series circuit of the switching elements UH and UL and the series circuit of the switching elements WH and WL are electrically connected in parallel.
  • the drains of the switching elements UH and WH are both electrically connected to the high potential side terminal P3 of the two terminals P3 and N3.
  • the sources of the switching elements UL and WL are both electrically connected to the low potential side terminal N3 of the two terminals P3 and N3.
  • the filter circuit 9 has two coils 91 and 92 and a capacitor 93 as shown in FIG.
  • One end of the coil 91 in other words, one of the pair of terminals on the converter unit 7 side in the filter circuit 9 is electrically connected to a connection point between the source of the switching element UH and the drain of the switching element UL.
  • One end of the coil 92 in other words, the other of the pair of terminals on the converter unit 7 side in the filter circuit 9 is electrically connected to a connection point between the source of the switching element WH and the drain of the switching element WL.
  • the other ends of the coils 91 and 92 in other words, the pair of terminals on the side of the terminals 15a and 15b in the filter circuit 9 are electrically connected to the two terminals 15a and 15b.
  • the converter unit 7 is electrically connected to the two terminals 15 a and 15 b via the filter circuit 9.
  • a capacitor 93 is electrically connected between the other end of the coil 91 and the other end of the coil 92.
  • the control unit 13 outputs control signals AL, BL, YL, XL, UH, UL, WH, WL for controlling the eight switching elements AL, BL, YL, XL, UH, UL, WH, WL, respectively. .
  • the control signals AL, BL, YL, XL, UH, UL, WH, WL are applied to the gates of the switching elements AL, BL, YL, XL, UH, UL, WH, WL directly or through a drive circuit.
  • the switching element is turned on / off individually for AL, BL, YL, XL, UH, UL, WH, WL.
  • the control unit 13 controls the switching elements AL, BL, YL, XL, UH, UL, WH, WL by a PWM (Pulse Width Modulation) method capable of adjusting the duty ratio.
  • the control unit 13 includes, for example, a microcomputer including a CPU (Central Processing Unit), an FPGA (Field-Programmable Gate Array), or an ASIC (Application Specific Integrated Circuit).
  • the power conversion system 1T is configured to perform bidirectional power conversion via the transformer 53 between the two terminals P2 and N2 and the two terminals 15a and 15b.
  • the power conversion system 1T has two operation modes of “inverter mode” and “converter mode”.
  • the inverter mode is an operation mode in which DC power input to the two terminals P2 and N2 is converted into AC power and output from the two terminals 15a and 15b.
  • the converter mode is an operation mode in which AC power input to the two terminals 15a and 15b is converted into DC power and output from the two terminals P2 and N2.
  • the control unit 13 controls the switching elements AL, BL, XL, and YL of the transformer circuit unit 5 so that the combination of the switching elements AL and XL and the combination of the switching elements BL and YL are alternately turned on.
  • the duty ratio of the switching elements AL and XL is 50%.
  • a voltage “ ⁇ E” is generated at both ends of the winding L4
  • a voltage “E” is generated at both ends of the winding L3. . Therefore, the voltage “E” is alternately applied to the two terminals P3 and N3 from the winding L3 and the winding L4.
  • the control unit 13 controls the output voltage of the converter unit 7 by PWM control of the converter unit 7. Specifically, during the supply period when the switching elements UH and WL (or the switching elements UL and WH) are turned on, current is supplied from the winding L3 (or winding L4) to the two terminals 15a and 15b through the converter unit 7. Is done. On the other hand, in the circulation period in which the switching elements UH and WH (or the switching elements UL and WL) are turned on, currents from the coils 91 and 92 flow through the converter unit 7 as a return path. The control unit 13 controls the output voltage of the converter unit 7 by changing the ratio between the supply period and the circulation period. The inversion operation in the secondary winding 532 of the transformer 53 of the transformer circuit unit 5 is performed in the circulation period.
  • the power conversion system 1T converts the DC power from the DC power source (storage battery) 17 into AC power and outputs the AC power to the AC power system 29 from the two terminals 15a and 15b.
  • the power conversion system 1T operates the transformer circuit unit 5 (converter units 51 and 52) and the converter unit 7 basically in the same sequence as the inverter mode. That is, in the power conversion system 1T, if the output voltage of the converter unit 7 is lower than the voltage of the AC power system 29, the AC power from the AC power system 29 is converted into DC power, and the DC power is supplied from the two terminals P2 and N2. It is output to the power source 17.
  • the control unit 13 normally stops the transformer circuit unit 5 (converter units 51 and 52) and the converter unit 7.
  • the regenerative current from the coils 91 and 92 flows, for example, through the diode D3 toward the secondary side center tap CT2 of the transformer circuit unit 5.
  • the control unit 13 stops the converter unit 7 and operates the transformer circuit unit 5 for a predetermined period when the converter unit 7 and the AC power system 29 are disconnected. In other words, the control unit 13 stops the converter unit 7 and operates the transformer circuit unit 5 for a predetermined period when the opening / closing unit 2 is opened. Specifically, the control unit 13 causes the transformer circuit unit 5 to perform the same operation as before the opening / closing unit 2 is opened during the predetermined period. In other words, the control unit 13 operates the transformer circuit unit 5 so that the power on the secondary winding 532 side is regenerated in the primary winding 531 during the predetermined period. That is, the control unit 13 sets the duty ratio of the switching elements AL and XL (or the switching elements BL and YL) to 50% in the predetermined period.
  • the predetermined period is a predetermined period here.
  • Sig1 is an open / close signal from the control unit 13 to the open / close unit 2
  • Sig2 is a control signal from the control unit 13 to the converter unit 7
  • Sig3 is from the control unit 13. This is a control signal to the transformer circuit unit 5.
  • the control unit 13 outputs a low-level opening / closing signal Sig1 to the opening / closing unit 2 at time t1.
  • the opening / closing unit 2 is opened by an opening / closing signal Sig 1 from the control unit 13.
  • the control unit 13 outputs a low-level control signal Sig2 to the converter unit 7 at time t2.
  • Converter unit 7 stops its operation in accordance with control signal Sig2 from control unit 13. In other words, converter unit 7 turns off switching elements UH, UL, WH, WL in accordance with control signal Sig2.
  • the control unit 13 outputs a high-level control signal Sig3 to the transformer circuit unit 5 until time t3.
  • the transformer circuit unit 5 performs an on / off operation with a duty ratio of 50% in accordance with the control signal Sig3 from the control unit 13.
  • the control unit 13 outputs a low-level control signal Sig3 to the transformer circuit unit 5 at time t3.
  • the transformer circuit unit 5 stops its operation in accordance with the control signal Sig3 from the control unit 13. In other words, the transformer circuit unit 5 turns off the switching elements AL, BL, XL, YL according to the control signal Sig3.
  • the converter unit 7 is stopped and the transformer circuit unit 5 is operated during a period Ti1 from time t2 to time t3. That is, the period Ti1 is a predetermined period. Then, during the period Ti1, by operating the transformer circuit unit 5, energy generated on the secondary winding 532 side can be regenerated on the primary winding 531 side. Details of the regenerative operation will be described below with reference to FIGS. 68A and 68B.
  • the operation of the power conversion system 1T when the switching elements BL and YL are on will be described with reference to FIG. 68A.
  • the energy even accumulated in the coils 91 and 92 is regenerated to the converter unit 7 side.
  • the regenerative current flows in the direction of the coil 91 ⁇ the capacitor 93 ⁇ the coil 92 (the direction of the arrow A1 in FIG. 68A), for example.
  • This regenerative current flows, for example, through the diode D3 to the secondary side center tap CT2 of the transformer circuit unit 5 (see arrow A2 in FIG. 68A).
  • the switching element YL since the switching element YL is on, the regenerative current is wound in the direction from the secondary side center tap CT2 toward the secondary side second winding terminal 5322 (direction of arrow A3 in FIG. 68A). Flowing into.
  • the winding directions of the winding L1 and the winding L3 are the same, a current in the direction opposite to that of the winding L3 flows through the winding L1 on the primary side.
  • the switching element BL since the switching element BL is on, the current flows through the path of the winding L1 ⁇ the capacitor 4 ⁇ the switching element BL ⁇ the winding L1 (see arrow A4 in FIG. 68A).
  • the energy accumulated in the coils 91 and 92 is regenerated in the capacitor 4.
  • the operation of the power conversion system 1T when the switching elements AL and XL are on will be described with reference to FIG. 68B.
  • the energy accumulated in the coils 91 and 92 is regenerated to the converter unit 7 side.
  • the regenerative current flows in the direction of the coil 91 ⁇ the capacitor 93 ⁇ the coil 92 (the direction of the arrow B1 in FIG. 68B) by the energy.
  • This regenerative current flows, for example, through the diode D3 to the secondary side center tap CT2 of the transformer circuit unit 5 (see arrow B2 in FIG. 68B).
  • the switching element XL since the switching element XL is on, the regenerative current flows to the winding L4 in the direction from the secondary side center tap CT2 toward the secondary side first winding terminal 5321 (direction of arrow B3 in FIG. 68B). Flowing.
  • the winding directions of the winding L2 and the winding L4 are the same, a current in the direction opposite to that of the winding L4 flows through the winding L2 on the primary side.
  • the switching element AL since the switching element AL is on, the current flows through the path of the winding L2 ⁇ the capacitor 4 ⁇ the switching element AL ⁇ the winding L2 (see arrow B4 in FIG. 68B).
  • the energy accumulated in the coils 91 and 92 is regenerated in the capacitor 4.
  • control part 13 stops the transformer circuit part 5 when the said predetermined period passes.
  • control unit 13 turns off the four switching elements AL, BL, XL, and YL.
  • the sequence described above is a sequence when the DC power supply (storage battery) 17 is discharged (inverter mode), but is stored in the coils 91 and 92 according to the same sequence when the DC power supply 17 is charged (converter mode). Energy can be regenerated in the capacitor 4.
  • the transformer circuit unit 5 when the opening / closing unit 2 is in the open state, the transformer circuit unit 5 performs the same operation as before the opening / closing unit 2 is in the open state. ing.
  • the control unit 13 operates the transformer circuit unit 5 so that the power on the secondary winding 532 side is regenerated in the primary winding 531 during the predetermined period. Therefore, the energy stored in the coils 91 and 92 of the filter circuit 9 can be regenerated in the DC power supply 17 side, in other words, in the capacitor 4 connected between both ends of the DC power supply 17.
  • the stress applied to the switching elements YL and XL can be reduced.
  • the converter unit 7 is stopped by the control signal Sig2 after the open / close unit 2 is opened by the open / close signal Sig1.
  • the switching unit 2 may actually be opened after the converter unit 7 is stopped due to a response delay of the switching unit 2, but the operation order of the switching unit 2 and the converter unit 7 is You can replace it.
  • the opening / closing part 2 is changed.
  • the stop process (gate block) of the converter unit 7 is dealt with without setting the open state.
  • the operation of the converter unit 7 on the output side is stopped (gate block). Therefore, in this case, if the transformer circuit unit 5 is also stopped, the switching elements XL and YL may be excessively stressed by the regenerative current from the coils 91 and 92 as in the above-described embodiment.
  • control unit 13 is configured to stop the converter unit 7 and operate the transformer circuit unit 5 for a predetermined period. Since the operation is the same as that of the above-described embodiment, the description is omitted here.
  • the power storage system including the power conversion system 1T and the DC power supply (storage battery) 17 is not limited to a non-residential facility, and may be introduced into a house or applied to a facility other than a facility such as an electric vehicle.
  • the power conversion system 1T is not limited to power conversion between the AC power system 29 and the DC power source 17, and is, for example, between a power generation facility such as a solar power generation device or a fuel cell and the AC power system 29. It may be used for power conversion.
  • the power conversion system 1T is not limited to a configuration that performs power conversion in both directions.
  • the power conversion system 1T performs power conversion only in one direction (one direction) from the two terminals P2 and N2 to the two terminals 15a and 15b. It may be a configuration.
  • switching elements AL, BL, XL, YL, UH, UL, WL, WL are MOSFETs
  • the switching elements AL, BL, XL, instead of the return diodes DA, DB, DY, DX, D1 to D4 are used.
  • YL, UH, UL, WL, WL parasitic diodes may be used.
  • each of the switching elements AL, BL, XL, YL, UH, UL, WL, WL is not limited to a MOSFET, and may be, for example, an IGBT (Insulated Gate Gate Bipolar Transistor) or the like.
  • the converter unit 7 is a single-phase inverter has been described as an example, but the converter unit 7 may be a three-phase converter.
  • the second connection target is the AC power system 29
  • the second connection target is not limited to the AC power system 29, but is, for example, an AC load using AC power as an operation power supply. May be.
  • the first connection target is the DC power supply 17
  • the first connection target is not limited to the DC power supply 17 and may be, for example, a DC load or bidirectional. It may be a DC / DC converter that performs power conversion.
  • the converter units 51 and 52 are the center tap type (CNT type)
  • the converter units 51 and 52 may each be a full bridge type (FB type). It may be a half bridge type (HB type). That is, the transformer circuit unit 5 may be configured by a combination of these.
  • snubber circuit 60 instead of the snubber circuit 60, snubber circuits 60A to 60C shown in FIGS. 47 to 49 may be applied.
  • the power conversion system (1, 1A to 1T) includes a DC power supply (17) (an example of a first connection target) and an AC load (27) (first 2 is an example of a power conversion system that transmits electric power in at least one direction.
  • the power conversion system (1, 1A to 1T) includes a connection unit (3) (an example of a first external connection unit), a connection unit (15) (an example of a second external connection unit), and a transformer circuit unit (5).
  • a converter unit (7) (an example of a third converter unit), a connection unit (6), and a control unit (13).
  • the connection (3) is connected to the DC load (17).
  • the connection (15) is connected to the AC load (27).
  • the transformer circuit section (5) includes a primary winding (531), a secondary winding (532), a converter section (51) (an example of a first converter section), and a converter section (52) (second converter section). Example).
  • the primary winding (531) is provided on the DC power supply (17) side.
  • the secondary winding (532) is magnetically coupled to the primary winding (531).
  • the converter part (51) is connected between the connection part (3) and the primary winding (531).
  • the converter unit (52) is connected to the secondary winding (532).
  • the converter part (7) is connected to the connection part (15).
  • the connection part (6) includes a terminal (P3) (an example of a first connection terminal) and a terminal (N3) (an example of a second connection terminal) for connecting the converter part (52) and the converter part (7).
  • the control unit (13) is configured so that positive and negative voltages are alternately applied to the primary winding (531), and the voltage of the terminal (P3) with respect to the terminal (N3) becomes positive. Control at least one of the parts (52).
  • the control unit (13) does not transmit power between the transformer circuit unit (5) and the converter unit (7) in the first period including the inversion period in which the polarity of the voltage of the primary winding (531) is inverted. Thus, the converter unit (7) is controlled. In the second period different from the first period, the control unit (13) transmits power in the first direction from the transformer circuit unit (5) to the converter unit (7) or in the second direction opposite to the first direction.
  • the converter unit (7) is controlled such that
  • a large-capacitance capacitor for smoothing is not required, the circuit scale can be reduced, and the polarity of the voltage applied to the primary winding (531) can be stably inverted, whereby the switching element ( AL, BL, YL, XL, UH, UL, WH, WL) and the breakdown voltage can be reduced.
  • the first connection target is the DC power supply (17), and the second connection target is the AC power system (29).
  • the first connection target is a DC power source (17) and the second connection target is an AC load (27), and the first connection target is a DC load (28) and the second connection target.
  • the target is either the case of the AC power system (29).
  • the power conversion system (1, 1A to 1I) transmits power bidirectionally between the first connection target and the second connection target.
  • power can be transmitted bidirectionally between the first connection target and the second connection target.
  • the first connection target is a DC power source (17) and the second connection target is a DC load (28).
  • the one connection target is a DC load (28) and the second connection target is a DC power source (17), or the case where both the first connection target and the second connection target are DC power sources (17) It is.
  • the power conversion system (1J) transmits DC power bidirectionally between the first connection target and the second connection target.
  • the first connection target is one of the DC power source (17) and the DC device (27) (an example of a load).
  • the two connection targets are the other of the DC power source (17) and the DC device (27) or the AC power system (29).
  • the power conversion system (1K to 1S) transmits power in one direction between the DC power source (17) and the DC device (27) or the AC power system (29).
  • electric power can be transmitted in a single direction between the DC power source (17) and the DC device (27) or the AC power system (29).
  • connection portion (6) is connected between the terminal (P3) and the terminal (N3).
  • a snubber circuit (60) is included.
  • the snubber circuit (60) can suppress ringing that occurs in the power conversion system (1, 1A to 1T).
  • the power conversion system (1, 1A to 1I) includes, in any of the first to fourth aspects, two or more power supply terminals (U1, W1) connected to the second connection target.
  • the control unit (13) controls the third converter unit (7) so that the two or more power supply terminals (U1, W1) are short-circuited in the first period.
  • the control unit (13) performs one of the first control and the second control in the first period.
  • the first control is control for turning on two or more high-side switching elements (UH, WH) and turning off two or more low-side switching elements (UL, WL).
  • the second control is a control for turning off the high-side switching elements (UH, WH) and turning on the low-side switching elements (UL, WL).
  • the high-side switching element (UH, WH) is connected to any one of the terminal (P3) and the two or more power supply terminals (U1, W1).
  • the low-side switching element (UL, WL) is connected to any one of the terminal (N3) and the two or more power supply terminals (U1, W1).
  • the seventh aspect it is possible to prevent electric power from being transmitted between the transformer circuit section (5) and the converter section (7).
  • the power conversion system (1, 1A to 1J) according to the eighth aspect is the first inverter mode, the second inverter mode, the first converter mode, and the second converter according to any one of the first to third aspects. Drive in either mode.
  • the first inverter mode the output voltage output from the converter unit (7) to the second external connection unit (15) is positive, and in the second inverter mode, the output voltage is negative.
  • the first converter mode the input voltage input to the converter unit (7) via the second external connection unit (15) is positive, and in the second converter mode, the input voltage is negative.
  • the control unit (13) controls the converter unit (7) in the same sequence in the first inverter mode and the first converter mode, and the converter unit (7) is the same in the second inverter mode and the second converter mode. Control by the sequence.
  • the eighth aspect even if the polarity of the output current or input current of the converter unit (7) indicates a polarity different from the assumed polarity, the first inverter mode and the first converter mode are continuously switched, In addition, the second inverter mode and the second converter mode can be switched continuously. As a result, it can be applied to independent operation such as UPS (uninterruptible power supply).
  • UPS uninterruptible power supply
  • the first connection target is the DC power supply (17).
  • the second connection target is a load.
  • the load (device) is a DC device (27) (DC load).
  • the connection part (15) includes a terminal (U2) (an example of a first external connection terminal) and a terminal (W2) (an example of a second external connection terminal) connected to the terminal (N3).
  • the converter unit (7) includes a chopper circuit that transmits DC power in the first direction.
  • the chopper circuit includes a coil (71), a switching element (UH), and a diode (D2).
  • the first coil terminal of the coil (71) is connected to the terminal (U2).
  • the switching element (UH) is connected between the second coil terminal (U1) and the terminal (P3) of the coil (71).
  • the diode (D2) has a cathode connected to the second coil terminal (U1) and an anode connected to the terminal (N3).
  • power can be transmitted in the first direction.
  • the control unit (13) turns off the switching element (UH) in the first period and turns off the switching element (UH) in the second period. Turn on.
  • power can be transmitted in the first direction.
  • the first connection target is a load.
  • the second connection target is a DC power supply (17) or an AC power system (29).
  • the load (device) is a DC device (27) (DC load).
  • the connection part (15) includes a terminal (U2) (an example of a first external connection terminal) and a terminal (W2) (an example of a second external connection terminal) connected to the terminal (N3).
  • the converter unit (7) includes a chopper circuit that transmits DC power in the second direction.
  • the chopper circuit includes a coil (71), a diode (D1), and a switching element (UL).
  • the first coil terminal of the coil (71) is connected to the terminal (U2).
  • the diode (D1) has an anode connected to the second coil terminal (U1) of the coil (71) and a cathode connected to the terminal (P3).
  • the switching element (UL) is connected between the second coil terminal (U1) and the terminal (N3).
  • power can be transmitted in the second direction.
  • the control unit (13) turns on the switching element (UL) in the first period and turns on the switching element (UL) in the second period. Turn off.
  • power can be transmitted in the second direction.
  • control unit (13) converts the closed loop in which the current flows without passing through the transformer circuit unit (5) in the first period to the converter unit ( 7) It has a circulation mode that is formed inside and circulates current in a closed loop.
  • the control unit (13) controls the power between the converter unit (7) and the AC power system (29).
  • the converter unit (7) is stopped and the transformer circuit unit (5) is operated for a predetermined period.
  • the secondary winding is operated by operating the transformer circuit unit (5) for a predetermined period. Electric power generated on the line (532) side can be regenerated on the primary winding (531) side.
  • control unit (13) causes the power on the secondary winding (532) side to be transmitted to the primary winding (531) side in a predetermined period.
  • the transformer circuit section (5) is operated so as to be regenerated.
  • the electric power generated on the secondary winding (532) side can be regenerated on the primary winding (531) side.
  • the configuration according to the second to fifteenth aspects is not an essential configuration of the power conversion system (1, 1A to 1T) and can be omitted as appropriate.
  • the present disclosure can be used for, for example, a stationary battery storage power conditioner, EV / PHV V2H (Vehicle to Home) power conditioner, motor drive, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

回路規模を小さくし、かつ一次巻線にかかる電圧の極性の反転を安定的に行う。制御部(13)は、一次巻線(531)の電圧の極性が反転する反転期間を含む第1期間において、トランス回路部(5)及びコンバータ部(7)間で電力の伝達が行われないようにコンバータ部(7)を制御する。制御部(13)は、第1期間とは異なる第2期間において、トランス回路部(5)からコンバータ部(7)に向かう第1方向又は第1方向とは逆の第2方向で電力の伝達が行われるようにコンバータ部(7)を制御する。

Description

電力変換システム
 本開示は、一般に電力変換システムに関し、より詳細には、少なくとも単方向において電力を変換する電力変換システムに関する。
 近年、会社または個人が、分散型電源(例えば、太陽電池、燃料電池、蓄電池)から得た電力を電力会社に売るビジネス(売電)が拡大している。売電は、分散型電源を商用電力系統と接続する系統連系によって実施される。系統連系では、パワーコンディショナと称される電力変換装置を用いて、分散型電源の電力を、商用電力系統に適応した電力に変換する。
 特許文献1は、バッテリー(21)及び電気二重層コンデンサ(22)間に設けられた絶縁型の双方向昇降圧チョッパ回路(40)を開示する。この双方向昇降圧チョッパ回路(40)は、センタータップ付きのトランス(41)を備えている。トランス(41)の一次巻線のセンタータップはリアクトル(42)を介して低電圧バッテリー(21)の(+)端子に接続され、一次巻線の両端には一対の昇圧チョッパ素子(43,45)が接続されている。また、二次巻線のセンタータップは電圧ライン(VL)を介して電気二重層コンデンサ(22)に接続され、二次巻線の両端に一対の降圧チョッパ素子(46,47)が接続されている。
 しかし、上記の従来技術は、平滑用の大容量コンデンサが必要となり、回路規模が大きくなるという課題がある。また、一次巻線にかかる電圧極性の反転を安定的に行うことができず、スイッチング素子の損失及び耐圧の悪化を招くという課題がある。
特開平7-23505号公報
 本開示は上記問題点に鑑みて為されており、回路規模を小さくし、かつ一次巻線にかかる電圧の極性の反転を安定的に行うことができる電力変換システムを提供することを目的とする。
 本開示の一態様に係る電力変換システムは、第1接続対象と第2接続対象との間で少なくとも単方向に電力を伝達する電力変換システムである。前記電力変換システムは、第1外部接続部と、第2外部接続部と、トランス回路部と、第3コンバータ部と、接続部と、制御部と、を備える。前記第1外部接続部は、前記第1接続対象に接続される。前記第2外部接続部は、前記第2接続対象に接続される。前記トランス回路部は、前記第1外部接続部側に設けられた一次巻線と、前記一次巻線と磁気結合される二次巻線と、前記第1外部接続部及び前記一次巻線間に接続される第1コンバータ部と、前記二次巻線に接続される第2コンバータ部とを含む。前記第3コンバータ部は、前記第2外部接続部に接続される。前記接続部は、前記第2コンバータ部及び前記第3コンバータ部間を接続する第1接続端子及び第2接続端子を含む。前記制御部は、前記一次巻線に正及び負の電圧が交互に印加され、かつ前記第2接続端子に対する前記第1接続端子の電圧が正となるように前記第1コンバータ部及び前記第2コンバータ部の少なくとも一方を制御する。前記制御部は、前記一次巻線の電圧の極性が反転する反転期間を含む第1期間において、前記トランス回路部及び前記第3コンバータ部間で電力の伝達が行われないように前記第3コンバータ部を制御する。前記制御部は、前記第1期間とは異なる第2期間において、前記トランス回路部から前記第3コンバータ部に向かう第1方向又は前記第1方向とは逆の第2方向で電力の伝達が行われるように前記第3コンバータ部を制御する。
実施の形態1に係る電力変換システム1の回路図である。 インバータモードにおける電力変換システム1の動作を示す波形図である。 コンバータ部7に流れる電流経路を示す図である。 コンバータモードにおける電力変換システム1の動作を示す波形図である。 コンバータ部7に流れる電流経路を示す図である。 インバータモード(1)における電力変換システム1の動作を示す波形図である。 図6の各期間におけるスイッチング素子の状態を示す図である。 図6の各期間におけるスイッチング素子の状態を示す図である。 インバータモード(2)における電力変換システム1の動作を示す波形図である。 図9の各期間におけるスイッチング素子の状態を示す図である。 図9の各期間におけるスイッチング素子の状態を示す図である。 コンバータモード(3)における電力変換システム1の動作を示す波形図である。 図12の各期間におけるスイッチング素子の状態を示す図である。 図12の各期間におけるスイッチング素子の状態を示す図である。 コンバータモード(4)における電力変換システム1の動作を示す波形図である。 図15の各期間におけるスイッチング素子の状態を示す図である。 図15の各期間におけるスイッチング素子の状態を示す図である。 反転期間におけるスイッチング素子の動作を示す回路図である。 スナバ回路60の効果を説明する図である。 スナバ回路60の効果を説明する図である。 スナバ回路60の効果を説明する図である。 電力変換システム1のインピーダンス特性を示すグラフである。 インバータモードにおける電力変換システム1のタイミングチャートを示す図である。 図23において反転期間TC1,TC2を拡大して示したタイミングチャートである。 コンバータモードにおける電力変換システム1のタイミングチャートを示す図である。 図25において反転期間TF1,TF2を拡大して示したタイミングチャートである。 実施の形態2に係る電力変換システム1Aの回路図である。 インバータモードにおける電力変換システム1Aのタイミングチャートを示す図である。 図28において反転期間TC1,TC2を拡大して示したタイミングチャートである。 コンバータモードにおける電力変換システム1Aのタイミングチャートを示す図である。 図30において反転期間TF1,TF2を拡大して示したタイミングチャートである。 実施の形態3に係る電力変換システム1Bの回路図である。 インバータモードにおける電力変換システム1Bのタイミングチャートを示す図である。 図30において反転期間TC1,TC2を拡大して示したタイミングチャートである。 コンバータモードにおける電力変換システム1Bのタイミングチャートを示す図である。 図35において反転期間TF1,TF2を拡大して示したタイミングチャートである。 実施の形態4に係る電力変換システム1Cの回路図である。 実施の形態5に係る電力変換システム1Dの回路図である。 実施の形態6に係る電力変換システム1Eの回路図である。 実施の形態7に係る電力変換システム1Fの回路図である。 実施の形態8に係る電力変換システム1Gの回路図である。 実施の形態9に係る電力変換システム1Hの回路図である。 実施の形態10に係る電力変換システム1Iの回路図である。 インバータモードにおける電力変換システム1Iのタイミングチャートであり、位相が0度の場合を示している。 コンバータモードにおける電力変換システム1Iのタイミングチャートであり、位相が0度の場合を示している。 スナバ回路60の回路構成と、電圧「P3-N3」の波形図とを示す。 実施の形態11の第1態様のスナバ回路60Aの回路構成と、電圧「P3-N3」の波形図とを示す。 実施の形態11の第2態様のスナバ回路60Bの回路構成と、電圧「P3-N3」の波形図とを示す。 実施の形態11の第3態様のスナバ回路60Cの回路構成と、電圧「P3-N3」の波形図とを示す。 実施の形態12に係る電力変換システム1Jの回路図である。 第1伝達モードにおける電力変換システム1Jのタイミングチャートを示す図である。 第2伝達モードにおける電力変換システム1Jのタイミングチャートを示す図である。 実施の形態13に係る電力変換システム1Kの回路図である。 電力変換システム1Kのタイミングチャートを示す図である。 図53において反転期間TC1,TC2を拡大して示したタイミングチャートである。 実施の形態14に係る電力変換システム1Lの回路図である。 実施の形態15に係る電力変換システム1Mの回路図である。 実施の形態16に係る電力変換システム1Nの回路図である。 電力変換システム1Nのタイミングチャートを示す図である。 実施の形態17に係る電力変換システム1Pの回路図である。 電力変換システム1Pのタイミングチャートを示す図である。 図61において反転期間TF1,TF2を拡大して示したタイミングチャートである。 実施の形態18に係る電力変換システム1Qの回路図である。 実施の形態19に係る電力変換システム1Rの回路図である。 実施の形態20に係る電力変換システム1Sの回路図である。 実施の形態21に係る電力変換システム1Tの回路図である。 電力変換システム1Tのタイミングチャートを示す図である。 電力変換システム1Tの動作を説明するための回路図である。
 (本開示に至る経緯)
 直流電力を交流電力に変換する絶縁型電力変換装置として、一次側の直流電源をインバータを介して高周波トランスの一次側巻線に接続し、前記高周波トランスの二次側巻線をコンバータを介して大容量コンデンサおよび出力インバータに接続し、前記出力インバータを交流電力系統もしくは交流負荷に接続したものがある(特許文献1)。
 このような従来の絶縁型電力変換装置は、直流電源からの直流電圧をインバータにより極性が高速で反転する矩形波状の高周波交流電圧に変換し、この高周波交流電圧をトランスを介してコンバータに供給し、大容量コンデンサにより直流電圧に平滑させる。そして、従来の電力変換装置は、その直流電圧を出力インバータによりPWM制御することで、所望の周波数及び振幅を持つ交流電圧を生成し、商用電力系統に出力する。
 しかし、従来の電力変換装置は、コンバータと出力インバータとの間に大容量コンデンサが必要であり、回路規模が増大する課題があった。また、一次巻線に掛かる電圧極性の反転を安定的に行うことができず、一次側のコンバータのスイッチ素子はターンONおよびターンOFFにてハードスイッチングとなり、スイッチング損失が増大し、素子に掛かるリンギング電圧も大きくなるといった課題があった。
 このように、上記の特許文献1は、平滑用の大容量コンデンサが必要となり回路規模が大きくなるという課題がある。また、一次巻線に掛かる電圧極性の反転を安定的に行うことができず、スイッチング素子の損失及び耐圧の悪化を招くという課題がある。
 また、特許文献1は、一次側が電流駆動型であるので、一次巻線のセンタータップにリアクトル(42)が接続されている。したがって、特許文献1の双方向昇降圧チョッパ回路(40)を本願に適用すると、大きなリンギング電圧が発生するので、回路が使いものにならなくなってしまう。
 本開示の目的は、平滑用の大容量コンデンサが不要となり回路規模を小さくすることができ、且つ、一次巻線に掛かる電圧極性の反転を安定的に行うことで、スイッチング素子の損失及び耐圧を低下させることができる電力変換システムを提供することである。
 (概要1)
 本開示の一態様は、直流電源と交流電力系統又は交流負荷との間で双方向に電力を伝達する電力変換装置であって、
 前記直流電源側に設けられた一次巻線と、前記一次巻線と磁気結合される二次巻線と、前記直流電源及び前記一次巻線間に接続される第1コンバータ部と、前記二次巻線に接続される第2コンバータ部とを含むトランス回路部と、
 前記交流電力系統又は前記交流負荷に接続される第3コンバータ部と、
 前記第2コンバータ部及び前記第3コンバータ部間を接続する第1接続端子及び第2接続端子を含む接続部と、
 前記一次巻線に正及び負の電圧が交互に印加されるように前記第1コンバータ部を制御し、且つ、前記第2接続端子に対する前記第1接続端子の電圧が正となるように前記第2コンバータ部を制御する制御部とを含み、
 前記制御部は、前記一次巻線の電圧の極性が反転する反転期間を含む第1期間において、前記トランス回路部及び前記第3コンバータ部間で電力の伝達が行われないように前記第3コンバータ部を制御し、前記第1期間とは異なる第2期間において、前記トランス回路部から前記第3コンバータ部に向かう第1方向又は前記第1方向とは逆の第2方向で電力の伝達が行われるように前記第3コンバータ部を制御する。
 ここで、第1~第3コンバータ部は、いわゆる電力変換器のことであり、DC/AC変換器、AC/DC変換器、DC/DC変換器を含む。
 本態様は、一次巻線の電圧の極性が反転する反転期間を含む第1期間において、第2コンバータ部及び第3コンバータ部間で電力の伝達が行わないように第3コンバータ部を制御する。そのため、本態様は、第1コンバータ部及び第2コンバータ部をZCS(zero current switching)することが可能となり、一次巻線にかかる電圧の極性の反転を安定的に行うことができる。そのため、スイッチング素子の損失及び耐圧を低下させることができる。
 また、本態様は、特許文献1に示すような平滑用の大容量コンデンサが不要なので、回路規模を小さくできる。
 また、本態様は、一次巻線に正及び負の電圧が交互に印加されるように第1コンバータ部が制御されているが、第2接続端子に対する第1接続端子の電圧が正となるように第2コンバータ部を制御する。そのため、本態様は、第3コンバータ部に極性が一定の電圧が入力される。その結果、本態様は、第3コンバータ部を通常のフルブリッジ型の回路で構成でき、通常の制御を適用できる。
 また、本態様は、第1期間とは異なる第2期間において、トランス回路部から第3コンバータ部に向かう第1方向又は第1方向とは逆の第2方向で電力の伝達が行われるように第3コンバータ部を制御する。そのため、本態様は、第1期間に対する第2期間の割合を変化させることで、第3コンバータ部から出力される交流電圧及び交流電流又は交流電源から直流電源へ回生する電流の振幅を調整できる。
 上記態様において、図1を参照し、前記直流電源と接続される第1及び第2電源端子(P2及びN2)を更に含み、
 前記一次巻線は、前記第1電源端子(P2)と接続される第1センタータップ(CT1)を含み、
 前記第1コンバータ部(51)は、
 前記一次巻線の第1巻線端子(T2)及び前記第2電源端子(N2)間に接続される第1スイッチング素子(AL)と、
 前記一次巻線の第2巻線端子(T1)及び前記第2電源端子(N2)間に接続される第2スイッチング素子(BL)とを含んでもよい。
 本態様は、一次巻線及び第1コンバータ部をセンタータップ型の回路で構成したものである。
 上記態様において、図27を参照し、前記直流電源と接続される第1及び第2電源端子(P2及びN2)を更に含み、
 前記第1コンバータ部(51)は、フルブリッジ型の回路で構成され、
 前記フルブリッジ型の回路は、
 前記第1電源端子(P2)及び前記一次巻線の第1巻線端子(T2)間に接続される第1スイッチング素子(AH)と、
 前記第1巻線端子(T2)及び第2電源端子(N2)間に接続される第2スイッチング素子(AL)と、
 前記第1電源端子(P2)及び前記一次巻線の第2巻線端子(T1)に接続される第3スイッチング素子(BH)と、
 前記第2巻線端子(T1)及び第2電源端子(N2)間に接続される第4スイッチング素子(BL)とを含んでもよい。
 本態様は、一次巻線及び第1コンバータ部をフルブリッジ型の回路で構成したものである。
 上記態様において、図32を参照し、前記直流電源と接続される第1及び第2電源端子(P2及びN2)を更に含み、
 前記第1コンバータ部(51)は、ハーフブリッジ型の回路で構成され、
 前記ハーフブリッジ型の回路は、
 前記第1電源端子(P2)及び前記一次巻線の第1巻線端子(T2)間に接続される第1スイッチング素子(AH)と、
 前記第1巻線端子(T2)及び前記第2電源端子(N2)間に接続される第2スイッチング素子(AL)とを含み、
 前記第1電源端子(P2)及び前記一次巻線の第2巻線端子(T1)間に接続される第1コンデンサ(C*1)と、前記第2巻線端子(T1)及び前記第2電源端子(N2)間に接続される第2コンデンサ(C*2)との少なくとも一方を更に含んでもよい。
 本態様は、一次巻線及び第1コンバータ部をハーフリッジ型の回路で構成したものである。
 上記態様において、図1を参照し、前記二次巻線は、前記第1接続端子(P3)と接続される第2センタータップ(CT2)を含み、
 前記第2コンバータ部(52)は、
 前記二次巻線の第3巻線端子(T4)及び前記第2接続端子(N3)間に接続される第5スイッチング素子(XL)と、
 前記二次巻線の第4巻線端子(T3)及び前記第2接続端子(N3)間に接続される第6スイッチング素子(YL)とを含んでもよい。
 本態様は、二次巻線及び第2コンバータ部をセンタータップ型の回路で構成したものである。
 上記態様において、図27を参照し、前記第2コンバータ部(52)は、フルブリッジ型の回路で構成され、
 前記フルブリッジ型の回路は、
 前記第1接続端子(P3)及び前記二次巻き線の第3巻線端子(T4)間に接続される第5スイッチング素子(YH)と、
 前記第3巻線端子(T4)及び前記第2接続端子(N3)間に接続される第6スイッチング素子(YL)と、
 前記二次巻線の第4巻線端子(T3)及び第1接続端子(P3)間に接続される第7スイッチング素子(XH)と、
 前記第4巻線端子(T3)及び第2接続端子(N3)間に接続される第8スイッチング素子(XL)とを含んでもよい。
 本態様は、二次巻線及び第2コンバータ部をフルブリッジ型の回路で構成したものである。
 上記態様において、図40を参照し、前記第2コンバータ部(52)は、ハーフブリッジ型の回路で構成され、
 前記ハーフブリッジ型の回路は、
 前記第1接続端子(P3)及び前記二次巻線の第4巻線端子(T3)間に接続される第5スイッチング素子(XH)と、
 前記第4巻線端子(T3)及び前記第2接続端子(N3)間に接続される第6スイッチング素子(XL)とを含み、
 前記二次巻線の第3巻線端子(T4)及び第1接続端子(P3)間に接続される第3コンデンサ(CXH)と、前記第3巻線端子(T4)及び第2接続端子(N3)間に接続される第4コンデンサ(CXL)との少なくとも一方を更に含んでもよい。
 本態様は、二次巻線及び第2コンバータ部をハーフブリッジ型の回路で構成したものである。
 上記態様において、図1を参照し、前記交流電力系統又は交流負荷と接続される第3電源端子(U1)及び第4電源端子(W1)を更に含み、
 前記第3コンバータ部(7)は、
 前記第1接続端子(P3)及び前記第3電源端子(U1)間に接続される第9スイッチング素子(UH)と、
 前記第3電源端子(U1)及び前記第2接続端子(N3)間に接続される第10スイッチング素子(UL)と、
 前記第1接続端子(P3)及び前記第4電源端子(W1)間に接続される第11スイッチング素子(WH)と、
 前記第4電源端子(W1)及び前記第2接続端子(N3)間に接続される第12スイッチング素子(WL)とを含んでもよい。
 本態様は、第3コンバータ部を単相インバータで構成したものである。
 上記態様において、図43を参照し、前記交流電力系統又は交流負荷と接続される第3、第4、及び第5電源端子(U1,V1,W1)を更に含み、
 前記第3コンバータ部(7)は、三相インバータで構成され、
 前記三相インバータは、
 前記第1接続端子(P3)及び第3電源端子(U1)間に接続される第9スイッチング素子(UH)と、
 前記第3電源端子(U1)及び前記第2接続端子(N3)間に接続される第10スイッチング素子(UL)と、
 前記第1接続端子(P3)及び前記第4電源端子(V1)間に接続される第11スイッチング素子(VH)と、
 前記第4電源端子(V1)及び前記第2接続端子(N3)間に接続される第12スイッチング素子(VL)と、
 前記第1接続端子(P3)及び前記第5電源端子(W1)間に接続される第13スイッチング素子(WH)と、
 前記第5電源端子(W1)及び前記第2接続端子(N3)間に接続される第14スイッチング素子(WL)とを含んでもよい。
 本態様は、第3コンバータ部を三相インバータで構成したものである。
 上記態様において、図1を参照し、前記接続部は、前記第1及び第2接続端子(P3,N3)間に接続されるスナバ回路(60)を含んでもよい。
 本態様によれば、電力変換回路内に発生するリンギングを抑制できる。
 上記態様において図49を参照し、前記スナバ回路(60)は、
 一端が前記第1接続端子(P3)に接続されるスナバダイオード(63,67)と、前記スナバダイオード(63,67)の他端と前記第2接続端子(N3)との間に接続されるスナバコンデンサ(64)と、前記スナバダイオード(63,67)と並列接続されるスナバ抵抗(65,68)とを含む1又は複数のCRDスナバを含んでもよい。
 本態様によれば、第1,第2接続端子間で発生するリンギングがスナバコンデンサにより吸収され、リンギングを抑制できる。
 上記態様において、図1を参照し、前記制御部は、前記第1期間において、前記第3及び第4電源端子(U1,W1)間が短絡されるように前記第3コンバータ部(7)を制御してもよい。
 本態様は、第3コンバータ部を単相インバータで構成した場合の第1期間の制御の一例である。
 上記態様において、図1を参照し、前記制御部は、前記第1期間において、前記第9スイッチング素子(UH)及び第11スイッチング素子(WH)を含むハイサイド側のスイッチング素子をオンし、且つ、前記第10スイッチング素子(UL)及び第12スイッチング素子(WL)を含むローサイド側のスイッチング素子をオフする制御と、前記ハイサイド側のスイッチング素子(UH,WH)をオフし、且つ、前記ローサイド側のスイッチング素子(UL,WL)をオンする制御とのいずれか一方を行ってもよい。
 本態様は、第3コンバータ部を単相インバータで構成した場合の第1期間の制御の一例である。
 上記態様において、図43を参照し、前記制御部は、前記第1期間において、前記第3電源端子(U1)、第4電源端子(V1)、及び前記第5電源端子(V1)間が短絡されるように前記第3コンバータ部を制御してもよい。
 本態様は、第3コンバータ部を三相インバータで構成した場合の第1期間の制御の一例である。
 上記態様において、図43を参照し、前記制御部は、前記第1期間において、前記第9スイッチング素子(UH)、第11スイッチング素子(VH)、及び第13スイッチング素子(WH)を含むハイサイド側のスイッチング素子をオンし、且つ、前記第10スイッチング素子(UL)、第12スイッチング素子(VL)、及び第14スイッチング素子(WL)を含むローサイド側のスイッチング素子をオフする制御と、前記ハイサイド側のスイッチング素子(UH,VH,WH)をオフし、且つ、前記ローサイド側のスイッチング素子(UL,VL,WL)をオンする制御とのいずれか一方を行ってもよい。
 本態様は、第3インバータ部を三相インバータで構成した場合の第1期間の制御の一例である。
 上記態様において、前記電力変換装置は、前記第3コンバータ部の出力電圧が正の第1インバータモードと、前記出力電圧が負の第2インバータモードと、前記第3コンバータ部の入力電圧が正の第1コンバータモードと、前記入力電圧が負の第2コンバータモードとのいずれかのモードで駆動し、
 前記制御部は、前記第1インバータモードと前記第1コンバータモードとにおいて、前記第3コンバータ部を同一シーケンスで制御し、前記第2インバータモードと前記第2コンバータモードとにおいて、前記第3コンバータ部を同一シーケンスで制御してもよい。
 本態様によれば、第1インバータモードと第1コンバータモードにおいて、第3コンバータ部が同一シーケンスで駆動される。また、第2インバータモードと第2コンバータモードにおいて、第3コンバータ部が同一シーケンスで駆動される。
 そのため、第3コンバータ部の出力電流又は入力電流の極性が想定する極性と異なる極性を示したとしても、第1インバータモードと第1コンバータモードとを連続的に切り替え、且つ、第2インバータモードと第2コンバータモードとを連続的に切り替えることができる。その結果、UPS(無停電電源装置)などの自立運転にも適応できる。
 上記態様において、前記制御部は、前記第1期間及び前記第2期間からなる単位期間が一定周期で繰り返されるように前記第1コンバータ部を制御し、前記第3コンバータ部をPWM制御して各単位期間における前記第2期間の割合を変更することで目標とする出力電圧若しくは入力電圧又は出力電流若しくは入力電流を生成してもよい。
 本態様によれば、PWM制御により各単位期間における第2期間の割合を変更することで、目標とする電圧又は電流が生成できる。
 上記態様において、前記第1、第2、及び第3コンバータ部は、それぞれ、複数のスイッチで構成され、
 前記複数のスイッチは、それぞれ、1つのスイッチング素子で構成されていてもよい。
 本態様によれば、各スイッチは、1つのスイッチング素子で構成されているので、各スイッチを複数のスイッチング素子で構成する場合に比べて、スイッチング素子の個数を少なくできる。
 (概要2)
 本開示の一態様に係る電力変換装置は、直流電源と直流機器との間で双方向に直流電力を伝達する電力変換装置であって、
 前記直流電源及び前記直流機器の一方に接続される第1外部接続部と、
 前記直流電源及び前記直流機器の他方に接続される第2外部接続部と、
 前記第1外部接続部側に設けられた一次巻線と、前記一次巻線と磁気結合される二次巻線と、前記第1外部接続部及び前記一次巻線間に接続される第1コンバータ部と、前記二次巻線に接続される第2コンバータ部とを含むトランス回路部と、
 前記第2外部接続部に接続される双方向のDCDCコンバータと、
 前記第2コンバータ部及び前記DCDCコンバータ間を接続する第1接続端子及び第2接続端子を含む接続部と、
 前記一次巻線に正及び負の電圧が交互に印加されるように前記第1コンバータ部を制御し、且つ、前記第2接続端子に対する前記第1接続端子の電圧が正となるように前記第2コンバータ部を制御する制御部とを含み、
 前記制御部は、前記一次巻線の電圧の極性が反転する反転期間を含む第1期間において、前記トランス回路部及び前記DCDCコンバータ間で電力の伝達が行われないように前記DCDCコンバータを制御し、前記第1期間とは異なる第2期間において、前記トランス回路部から前記DCDCコンバータに向かう第1方向又は前記第1方向とは逆の第2方向で電力の伝達が行われるように前記DCDCコンバータを制御するものである。
 本態様は、一次巻線の電圧の極性が反転する反転期間を含む第1期間において、第2コンバータ部及びDCDCコンバータ間で電力の伝達が行わないようにDCDCコンバータを制御する。そのため、本態様は、第1コンバータ部及び第2コンバータ部をZCS(zero current switching)することが可能となり、一次巻線にかかる電圧の極性の反転を安定的に行うことができる。そのため、スイッチング素子の損失及び耐圧を低下させることが出来る。
 また、本態様は、特許文献1に示すような平滑用の大容量コンデンサが不要なので、回路規模を小さくできる。
 また、本態様は、一次巻線に正及び負の電圧が交互に印加されるように第1コンバータ部が制御されているが、第2接続端子に対する第1接続端子の電圧が正となるように第2コンバータ部を制御する。そのため、本態様は、DCDCコンバータに極性が一定の電圧が入力される。その結果、本態様は、DCDCコンバータを通常のDCDCコンバータで構成でき、通常の制御をそのまま適用できる。
 また、本態様は、第1期間とは異なる第2期間において、トランス回路部からDCDCコンバータに向かう第1方向又は第1方向とは逆の第2方向で電力の伝達が行われるようにDCDCコンバータを制御する。そのため、本態様は、第1期間に対する第2期間の割合に応じた大きさを持つ直流電圧及び直流電流をDCDCコンバータに入力又は出力させることができる。
 また、上記態様において、図1を参照し、前記第1外部接続部(3)は、第1及び第2外部接続端子(P2,N2)を含み、
 前記一次巻線(531)は、前記第1外部接続端子(P2)と接続される第1センタータップ(CT1)を含み、
 前記第1コンバータ部(51)は、
 前記一次巻線(531)の第1巻線端子(T1)及び前記第2外部接続端子(N2)間に接続される第1スイッチング素子(BL)と、
 前記一次巻線(531)の第2巻線端子(T2)及び前記第2外部接続端子(N2)間に接続される第2スイッチング素子(AL)とを含んでもよい。
 本態様は、一次巻線及び第1コンバータ部をセンタータップ型の回路で構成したものである。
 上記態様において、図50を参照し、前記第1外部接続部(3)は、第1及び第2外部接続端子(P2,N2)を含み、
 前記第1コンバータ部(51)は、フルブリッジ型の回路で構成され、
 前記フルブリッジ型の回路(51)は、
 前記第1外部接続端子(P2)及び前記一次巻線(531)の第1巻線端子(T1)に接続される第1スイッチング素子(BH)と、
 前記第1巻線端子(T1)及び第2外部接続端子(N2)間に接続される第2スイッチング素子(BL)と、
 前記第1外部接続端子(P2)及び前記一次巻線(531)の第2巻線端子(T2)間に接続される第3スイッチング素子(AH)と、
 前記第2巻線端子(T2)及び第2外部接続端子(N2)間に接続される第4スイッチング素子(AL)とを含んでもよい。
 本態様は、一次巻線及び第1コンバータ部をフルブリッジ型の回路で構成したものである。
 上記態様において、図38を参照し、前記第1外部接続部(3)は、第1及び第2外部接続端子(P2,N2)を含み、
 前記第1コンバータ部(51)は、ハーフブリッジ型の回路で構成され、
 前記ハーフブリッジ型の回路は、
 前記第1外部接続端子(P2)及び前記一次巻線(531)の第1巻線端子(T1)間に接続される第1コンデンサ(C*1)と、前記第1巻線端子(T1)及び前記第2外部接続端子(N2)間に接続される第2コンデンサ(C*2)との少なくとも一方と、
 前記第1外部接続端子(P2)及び前記一次巻線(531)の第2巻線端子(T2)間に接続される第1スイッチング素子(AH)と、
 前記第2巻線端子(T2)及び前記第2外部接続端子(N2)間に接続される第2スイッチング素子(AL)とを含んでもよい。
 本態様は、一次巻線及び第1コンバータ部をハーフリッジ型の回路で構成したものである。
 上記態様において、図1を参照し、前記二次巻線(532)は、前記第1接続端子(P3)と接続される第2センタータップ(CT2)を含み、
 前記第2コンバータ部(52)は、
 前記二次巻線(532)の第3巻線端子(T3)及び前記第2接続端子(N3)間に接続される第5スイッチング素子(YL)と、
 前記二次巻線(532)の第4巻線端子(T4)及び前記第2接続端子(N3)間に接続される第6スイッチング素子(XL)とを含んでもよい。
 本態様は、二次巻線及び第2コンバータ部をセンタータップ型の回路で構成したものである。
 上記態様において、図50を参照し、前記第2コンバータ部(52)は、フルブリッジ型の回路で構成され、
 前記フルブリッジ型の回路は、
 前記二次巻線(532)の第3巻線端子(T3)及び第1接続端子(P3)間に接続される第5スイッチング素子(XH)と、
 前記第3巻線端子(T3)及び第2接続端子(N3)間に接続される第6スイッチング素子(XL)と、
 前記第1接続端子(P3)及び前記二次巻線(532)の第4巻線端子(T4)間に接続される第7スイッチング素子(YH)と、
 前記第4巻線端子(T4)及び前記第2接続端子(N3)間に接続される第8スイッチング素子(YL)とを含んでもよい。
 本態様は、二次巻線及び第2コンバータ部をフルブリッジ型の回路で構成したものである。
 上記態様において、図42を参照し、前記第2コンバータ部(52)は、ハーフブリッジ型の回路で構成され、
 前記ハーフブリッジ型の回路は、
 前記第1接続端子(P3)及び前記二次巻線(532)の第3巻線端子(T3)間に接続される第5スイッチング素子(XH)と、
 前記第3巻線端子(T3)及び前記第2接続端子(N3)間に接続される第6スイッチング素子(XL)とを含み、
 前記二次巻線(532)の第4巻線端子(T4)及び第1接続端子(P3)間に接続される第3コンデンサ(CXH)と、前記第4巻線端子(T4)及び第2接続端子(N3)間に接続される第4コンデンサ(CXL)との少なくとも一方を更に含んでもよい。
 本態様は、二次巻線及び第2コンバータ部をハーフブリッジ型の回路で構成したものである。
 上記態様において、図50を参照し、前記第2外部接続部(15)は、第3外部接続端子(U2)、及び前記第2接続端子(N3)に接続される第4外部接続端子(W2)を含み、
 前記DCDCコンバータは、双方向チョッパ回路で構成され、
 前記双方向チョッパ回路は、
 前記第3外部接続端子(U2)に第1コイル端子が接続されるコイル(71)と、
 前記コイル(71)の第2コイル端子(U1)及び前記第1接続端子(P3)間に接続される第9スイッチング素子(UH)と、
 前記第2コイル端子(U1)及び前記第2接続端子(N3)間に接続される第10スイッチング素子(UL)とを含んでもよい。
 本態様は、DCDCコンバータを双方向チョッパ回路で構成したものである。
 上記態様において、前記制御部は、前記第1期間において、前記第2コイル端子(U1)及び第2接続端子(N3)間が短絡されるように前記双方向チョッパ回路を制御してもよい。
 本態様は、DCDCコンバータを双方向チョッパ回路で構成した場合の第1期間の制御の一例である。
 上記態様において、前記制御部は、前記第1期間において、前記第9スイッチング素子(UH)をオフし、且つ、前記第10スイッチング素子(UL)をオンしてもよい。
 本態様は、双方向チョッパ回路の第1期間の制御のより詳細な一例である。
 上記態様において、前記制御部は、前記第2期間において、前記第9スイッチング素子(UH)をオンし、且つ、前記第10スイッチング素子(UL)をオフしてもよい。
 本態様は、双方向チョッパ回路の第2期間の制御の一例である。
 上記態様において、前記第1コンバータ部、前記第2コンバータ部、及び前記DCDCコンバータは、それぞれ、複数のアームを含み、
 各アームは、1つのスイッチを含んでもよい。
 本態様によれば、各アームは、1つのスイッチで構成されているので、スイッチの個数を少なくできる。なお、スイッチとは、トランジスタ等のスイッチング素子と、このスイッチング素子に接続される還流ダイオードとを含む。
 上記態様において、図50を参照し、前記接続部は、前記第1及び第2接続端子(P3,N3)間に接続されるスナバ回路(60)を含んでもよい。
 本態様によれば、電力変換回路内に発生するリンギングを抑制できる。
 上記態様において図49を参照し、前記スナバ回路(60)は、
 一端が前記第1接続端子(P3)に接続されるスナバダイオード(63,67)と、前記スナバダイオード(63,67)の他端と前記第2接続端子(N3)との間に接続されるスナバコンデンサ(64,69)と、前記スナバダイオード(63,67)と並列接続されるスナバ抵抗(65,68)とを含む1又は複数のCRDスナバを含んでもよい。
 本態様によれば、第1,第2接続端子間で発生するリンギングがスナバコンデンサにより吸収され、リンギングを抑制できる。
 (概要3)
 本開示の一態様に係る電力変換装置は、直流電源と機器又は交流電力系統との間で単方向に電力を伝達する電力変換装置であって、
 前記直流電源及び前記機器の一方に接続される第1外部接続部と、
 前記直流電源及び機器のいずれか他方又は前記交流電力系統が接続される第2外部接続部と、
 前記第1外部接続部側に設けられた一次巻線と、前記一次巻線と磁気結合される二次巻線と、前記第1外部接続部及び前記一次巻線間に接続される第1コンバータ部と、前記二次巻線に接続される第2コンバータ部とを含むトランス回路部と、
 前記第2外部接続部に接続され、単方向に電力を伝達する第3コンバータ部と、
 前記第2コンバータ部及び前記第3コンバータ部間を接続する第1接続端子及び第2接続端子を含む接続部と、
 前記一次巻線に正及び負の電圧が交互に印加され、且つ、前記第2接続端子に対する前記第1接続端子の電圧が正となるように前記第1及び前記第2コンバータ部の少なくとも一方を制御する制御部とを含み、
 前記制御部は、前記一次巻線の電圧の極性が反転する反転期間を含む第1期間において、前記トランス回路部及び前記第3コンバータ部間で電力の伝達が行われないように前記第3コンバータ部を制御し、前記第1期間とは異なる第2期間において、前記トランス回路部から前記第3コンバータ部に向かう第1単方向又は前記第1単方向とは逆の第2単方向で電力の伝達が行われるように前記第3コンバータ部を制御する。
 本態様は、一次巻線の電圧の極性が反転する反転期間を含む第1期間において、第2コンバータ部及び第3コンバータ部間で電力の伝達が行わないように第3コンバータ部を制御する。そのため、本態様は、第1コンバータ部をZCS(zero current switching)することが可能となり、一次巻線にかかる電圧の極性の反転を安定的に行うことができる。そのため、スイッチング素子の損失及び耐圧を低下させることができる。
 また、本態様は、特許文献1に示すような平滑用の大容量コンデンサが不要なので、回路規模を小さくできる。
 また、本態様は、一次巻線に正及び負の電圧が交互に印加され、且つ、第2接続端子に対する第1接続端子の電圧が正となるように第1及び第2コンバータ部の少なくとも一方を制御する。そのため、本態様は、第3コンバータ部に極性が一定の電圧が入力される。その結果、本態様は、第3コンバータ部が、例えば、直流機器に接続される場合においては、第3コンバータ部を通常の単方向のチョッパ回路で構成でき、第3コンバータ部が交流機器又は交流電力系統に接続される場合においては、例えば第3コンバータ部を通常のフルブリッジ型の回路で構成できる。その結果、本態様は第3コンバータ部に対して通常の制御をそのまま適用できる。
 また、本態様は、第1期間とは異なる第2期間において、トランス回路部から第3コンバータ部に向かう第1単方向又は第1単方向とは逆の第2単方向で電力の伝達が行われるように第3コンバータ部を制御する。そのため、本態様は、第1期間に対する第2期間の割合に応じた大きさを持つ電圧又は電流を第3コンバータ部に入力又は出力させることができる。
 上記態様において、図56を参照し、前記第1外部接続部(3)は、第1及び第2外部接続端子(P2,N2)を含み、
 前記一次巻線(531)は、前記第1外部接続端子(P2)と接続される第1センタータップ(CT1)を含み、
 前記第1コンバータ部(51)は、
 前記一次巻線の第1巻線端子(T1)及び前記第2外部接続端子(N2)間に接続される第1スイッチング素子(BL)と、
 前記一次巻線の第2巻線端子(T2)及び前記第2外部接続端子(N2)間に接続される第2スイッチング素子(AL)とを含んでもよい。
 本態様は、一次巻線及び第1コンバータ部をセンタータップ型の回路で構成したものである。
 上記態様において、図53を参照し、前記第1外部接続部(3)は、第1及び第2外部接続端子(P2,N2)を含み、
 前記第1コンバータ部(51)は、フルブリッジ型の回路で構成され、
 前記フルブリッジ型の回路は、
 前記第1外部接続端子(P2)及び前記一次巻線の第1巻線端子(T1)間に接続される第1スイッチング素子(BH)と、
 前記第1巻線端子(T1)及び第2外部接続端子(N2)間に接続される第2スイッチング素子(BL)と、
 前記第1外部接続端子(P2)及び前記一次巻線の第2巻線端子(T2)に接続される第3スイッチング素子(AH)と、
 前記第2巻線端子(T2)及び第2外部接続端子間(N2)に接続される第4スイッチング素子(AL)とを含んでもよい。
 本態様は、一次巻線及び第1コンバータ部をフルブリッジ型の回路で構成したものである。
 上記態様において、図57を参照し、前記第1外部接続部(3)は、第1及び第2外部接続端子(P2,N2)を含み、
 前記第1コンバータ部(51)は、ハーフブリッジ型の回路で構成され、
 前記ハーフブリッジ型の回路は、
 前記第1外部接続端子(P2)及び前記一次巻線の第1巻線端子(T1)間に接続される第1コンデンサ(C*1)と、前記第1巻線端子(T1)及び前記第2外部接続端子(N2)間に接続される第2コンデンサ(C*2)との少なくとも一方と、
 前記第1外部接続端子(P2)及び前記一次巻線の第2巻線端子(T2)間に接続される第1スイッチング素子(AH)と、
 前記第2巻線端子(T2)及び前記第2電源端子(N2)間に接続される第2スイッチング素子(AL)とを含んでもよい。
 本態様は、一次巻線及び第1コンバータ部をハーフリッジ型の回路で構成したものである。
 上記態様において、図56を参照し、前記二次巻線(532)は、前記第1接続端子(P3)と接続される第2センタータップ(CT2)を含み、
 前記第2コンバータ部(52)は、
 前記二次巻線の第3巻線端子(T3)及び前記第2接続端子(N3)間に接続される第5スイッチング素子(DYL)と、
 前記二次巻線の第4巻線端子(T4)及び前記第2接続端子(N3)間に接続される第6スイッチング素子(DXL)とを含んでもよい。
 本態様は、二次巻線及び第2コンバータ部をセンタータップ型の回路で構成したものである。
 上記態様において、図53を参照し、前記第2コンバータ部(52)は、フルブリッジ型の回路で構成され、
 前記フルブリッジ型の回路は、
 前記第1接続端子(P3)及び前記二次巻線の第3巻線端子(T3)間に接続される第5スイッチング素子(DXH)と、
 前記第3巻線端子(T3)及び前記第2接続端子(N3)間に接続される第6スイッチング素子(DXL)と、
 前記二次巻線の第4巻線端子(T4)及び第1接続端子(P3)間に接続される第7スイッチング素子(DYH)と、
 前記第4巻線端子(T4)及び第2接続端子(N3)間に接続される第8スイッチング素子(DYL)とを含んでもよい。
 本態様は、二次巻線及び第2コンバータ部をフルブリッジ型の回路で構成したものである。
 上記態様において、前記第2コンバータ部(52)は、ハーフブリッジ型の回路で構成され、
 前記ハーフブリッジ型の回路は、
 前記第1接続端子(P3)及び前記二次巻線の第3巻線端子(T3)間に接続される第5スイッチング素子(DXH)と、
 前記第3巻線端子(T3)及び前記第2接続端子(N3)間に接続される第6スイッチング素子(DXL)とを含み、
 前記二次巻線の第4巻線端子(T4)及び第1接続端子(P3)間に接続される第3コンデンサ(CXH)と、前記第4巻線端子(T4)及び第2接続端子(N3)間に接続される第4コンデンサ(CXL)との少なくとも一方を更に含んでもよい。
 本態様は、二次巻線及び第2コンバータ部をハーフブリッジ型の回路で構成したものである。
 上記態様において、図53を参照し、前記機器は直流機器(27)であり、
 前記第2外部接続部(15)は、第3外部接続端子(U2)及び前記第2接続端子(N3)に接続される第4外部接続端子(W2)を含み、
 前記第3コンバータ部(7)は、前記第1単方向に直流電力を伝達するチョッパ回路で構成され、
 前記チョッパ回路は、
 前記第3外部接続端子(U2)に第1コイル端子が接続されるコイル(71)と、
 前記コイルの第2コイル端子(U1)及び前記第1接続端子(P3)間に接続される第9スイッチング素子(UH)と、
 カソードが前記第2コイル端子(U1)に接続され、アノードが前記第2接続端子(N3)に接続されるダイオード(D2)とを含んでもよい。
 本態様は、第1単方向に電力を伝達するチョッパ回路の一例である。
 上記態様において、前記制御部は、前記第1期間において、前記第9スイッチング素子をオフし、前記第2期間において前記第9スイッチング素子をオンしてもよい。
 本態様は、第1単方向に電力を伝達するチョッパ回路の制御の一例である。
 上記態様において、図60を参照し、前記機器は直流機器(27)であり、
 前記第2外部接続部(15)は、第3外部接続端子(U2)、及び前記第2接続端子(N3)に接続される第4外部接続端子(W2)を含み、
 前記第3コンバータ部(7)は、前記第2単方向に直流電力を伝達するチョッパ回路で構成され、
 前記チョッパ回路は、
 前記第3外部接続端子(U2)に第1コイル端子が接続されるコイル(71)と、
 アノードが前記コイルの第2コイル端子(U1)に接続され、カソードが前記第1接続端子(P3)に接続されるダイオード(D1)と、
 前記第2コイル端子(U1)及び前記第2接続端子(N3)間に接続される第9スイッチング素子(UL)とを含んでもよい。
 本態様は、第2単方向に電力を伝達するチョッパ回路の一例である。
 上記態様において、前記制御部は、前記第1期間において、前記第9スイッチング素子をオンし、前記第2期間において、前記第9スイッチング素子をオフしてもよい。
 本態様は、第2単方向に電力を伝達するチョッパ回路の制御の一例である。
 上記態様において、図58を参照し、前記機器は単相交流機器(30)であり、
 前記第2外部接続部(15)は、第3外部接続端子(U2)、及び4外部接続端子(W2)を含み、
 前記第3コンバータ部は、単相インバータで構成され、
 前記単相インバータは、
 前記第1接続端子(P3)及び前記第3外部接続端子(U2)間に接続される第9スイッチング素子(UH)と、
 前記第3外部接続端子(U2)及び前記第2接続端子(N3)間に接続される第10スイッチング素子(UL)と、
 前記第1接続端子(P3)及び前記第4外部接続端子(W2)間に接続される第11スイッチング素子(WH)と、
 前記第4外部接続端子(W2)及び前記第2接続端子(N3)間に接続される第12スイッチング素子(WL)とを含んでもよい。
 本態様によれば、直流電源からの直流電力を単相交流電力に変換し、交流電力系統又は単相交流機器に伝達できる。又は、単相交流機器からの直流電力を直流電力に変換し、直流電源に伝達できる。
 上記態様において、図43を参照し、前記機器は三相交流機器(27)であり、
 前記第2外部接続部(15)は、第3外部接続端子(15u)、4外部接続端子(15w)、及び第5外部接続端子(15v)を含み、
 前記第3コンバータ部は、三相インバータで構成され、
 前記三相インバータは、
 前記第1接続端子(P3)及び第3外部接続端子(15u)間に接続される第9スイッチング素子(UH)と、
 前記第3外部接続端子(15u)及び前記第2接続端子(N3)間に接続される第10スイッチング素子(UL)と、
 前記第1接続端子(P3)及び前記第4外部接続端子(15w)間に接続される第11スイッチング素子(WH)と、
 前記第4外部接続端子(15w)及び前記第2接続端子(N3)間に接続される第12スイッチング素子(WL)と、
 前記第1接続端子(P3)及び前記第5外部接続端子(15v)間に接続される第13スイッチング素子(VH)と、
 前記第5外部接続端子(15v)及び前記第2接続端子(N3)間に接続される第14スイッチング素子(VL)とを含んでもよい。
 本態様によれば、直流電源からの直流電力を三相交流電力に変換し、交流電力系統又は三相交流機器に伝達できる。又は、三相交流機器からの交流電力を直流電力に変換し、直流電源に伝達できる。
 上記態様において、図53を参照し、前記接続部は、前記第1及び第2接続端子(P3,N3)間に接続されるスナバ回路(60)を含んでもよい。
 本態様によれば、電力変換回路内に発生するリンギングを抑制できる。
 上記態様において図49を参照し、前記スナバ回路(60)は、
 一端が前記第1接続端子(P3)に接続されるスナバダイオード(63,67)と、前記スナバダイオード(63,67)の他端と前記第2接続端子(N3)との間に接続されるスナバコンデンサ(64,69)と、前記スナバダイオード(63,67)と並列接続されるスナバ抵抗(65,68)とを含む1又は複数のCRDスナバを含んでもよい。
 本態様によれば、第1,第2接続端子間で発生するリンギングがスナバコンデンサにより吸収され、リンギングを抑制できる。
 以下、図面に基づいて本開示の実施形態を詳細に説明する。
 (実施の形態1)
 図1は、実施の形態1に係る電力変換システム1の回路図である。電力変換システム1は、直流電源17と交流電力系統29又は交流負荷27との間で双方向に電力を変換して伝達する電力変換システムである。
 電力変換システム1は、接続部3(第1外部接続部の一例)、コンデンサ4、トランス回路部5、接続部6、コンバータ部7(第3コンバータ部の一例)、フィルタ回路9、及び接続部15(第2外部接続部の一例)を備えるパワーコンディショナである。接続部3は、端子P2(第1電源端子の一例)と、端子N2(第2電源端子の一例)とを含む。
 トランス回路部5は、コンバータ部51(第1コンバータ部の一例)、コンバータ部52(第2コンバータ部の一例)、及びトランス53を含む。接続部6は、端子P3(第1接続端子の一例)と、端子N3(第2接続端子の一例)と、スナバ回路60とを含む。スナバ回路60は、抵抗61及びコンデンサ62を含む。コンバータ部7は、単相インバータで構成されている。フィルタ回路9は、一対のコイル91,92及びコンデンサ93を含む。接続部15は、端子15aと端子15bとを含む。
 直流電源17(第1接続対象の一例)は、例えば、蓄電池、太陽電池、燃料電池などで構成される。直流電源17の正極は端子P2と接続され、直流電源17の負極は端子N2と接続される。以下、接続するとは電気的に接続することを意味する。直流電源17の電力は、端子P2及び端子N2を介して、トランス回路部5に供給される。なお、直流電源17は、蓄電池、太陽電池、燃料電池などとチョッパ回路とで構成されていてもよい。
 コンデンサ4は、端子P2及び端子N2間に接続された電解コンデンサであり、端子P2及び端子N2間の電圧を安定化させる。
 トランス53は、センタータップ型の高周波トランスであり、互いに磁気的に結合された一次巻線531と、二次巻線532とを含む。一次巻線531は、センタータップCT1(第1センタータップの一例)により分離される2つのコイルL1,L2を含む。
 センタータップCT1は、端子P2と接続される。一次巻線531の一端である端子T1(第2巻線端子の一例)は、スイッチング素子BL(第2スイッチング素子の一例)に接続されている。一次巻線531の他端である端子T2(第1巻線端子の一例)は、スイッチング素子AL(第1スイッチング素子の一例)に接続されている。
 二次巻線532は、センタータップCT2(第2センタータップの一例)により分離される2つのコイルL3,L4を含む。センタータップCT2は、端子P3と接続されている。二次巻線532の一端である端子T3(第4巻線端子の一例)は、スイッチング素子YL(第6スイッチング素子の一例)に接続されている。二次巻線532の他端である端子T4(第4巻線端子の一例)は、スイッチング素子XL(第5スイッチング素子の一例)に接続されている。コイルL1,L2,L3,L4は、それぞれ、センタータップCT1,端子T2,センタータップCT2,端子T2の極性が同じになるように磁気結合されている。
 コンバータ部51は、直流電源17から供給される直流電圧を例えば20kHzの矩形波状の高周波の交流電圧に変換し、一次巻線531及び二次巻線532に供給する高周波インバータである。コンバータ部51は、2個のスイッチング素子AL,BLと、2個のダイオードDA,DBと、2個のコンデンサCA,CBとを備える。
 スイッチング素子AL,BLは、例えば、n型の電界効果トランジスタで構成されている。スイッチング素子ALは、ドレインが端子T2と接続され、ソースが端子N2と接続されている。スイッチング素子BLはドレインが端子T1と接続され、ソースが端子N2と接続されている。
 ダイオードDAは、アノードがスイッチング素子ALのソースに接続され、カソードがスイッチング素子ALのドレインに接続されている。ダイオードDBは、アノードがスイッチング素子BLのソースに接続され、カソードがスイッチング素子BLのドレインに接続されている。
 ダイオードDA,DBは、それぞれ、スイッチング素子AL,BLのボディダイオードであってもよいし、外付けのダイオードであってもよい。
 コンデンサCAは、スイッチング素子ALのソース及びドレイン間に接続されている。コンデンサCBは、スイッチング素子BLのソース及びドレイン間に接続されている。コンデンサCA,CBは、一次巻線531と共振することで、スイッチング素子AL,BL,YL,XLのソフトスイッチングを実現する。なお、コンデンサCA,CBは端子T1、T2間に接続されてもよいし、コイルL1,L2それぞれに並列に接続されてもよい。
 コンバータ部52は、二次巻線532に交互に供給される正及び負の極性を持つ矩形波状の交流電圧を、正の極性を持つ電圧に変換し、端子P3及び端子N3間に供給する。コンバータ部52は、2個のスイッチング素子YL,XLと、2個のダイオードDY,DXとを備える。
 スイッチング素子YL,XLは、例えば、n型の電界効果トランジスタで構成されている。スイッチング素子YLは、ドレインが端子T3と接続され、ソースが端子N3と接続されている。スイッチング素子XLはドレインが端子T4と接続され、ソースが端子N3と接続されている。
 ダイオードDYは、アノードがスイッチング素子YLのソースに接続され、カソードがスイッチング素子YLのドレインに接続されている。ダイオードDXは、アノードがスイッチング素子XLのソースに接続され、カソードがスイッチング素子XLのドレインに接続されている。
 スイッチング素子AL,BL,YL,XLは、それぞれ、電界効果型トランジスタに代えて、例えばnpn型の絶縁ゲートバイポーラトランジスタで構成されてもよい。この場合、ダイオードDA,DB,DY,DXは還流ダイオードとして設けられる。更にこの場合、ダイオードDAは、スイッチング素子ALがオンされているときにスイッチング素子ALに流れる電流と逆向きの電流が流れるように、エミッタ及びコレクタにわたって接続される。このことは、ダイオードDB,DY,DXも同じである。
 制御部13は、スイッチング素子BL,YLをONしているときにスイッチング素子AL,XLをOFFし、スイッチング素子BL,YLをOFFしているときにスイッチング素子AL,XLをONする。ここで、制御部13は、スイッチング素子AL,BL,XL,YLを同じデューティ比で制御する。なお、図2の例では、スイッチング素子AL,BL,XL,YLのデューティ比は、実質的に50%である。実質的に50%とは、50%のデューティ比からデッドタイム(反転期間)を差し引いたデューティ比である。
 コンバータ部7は、端子P3及び端子N3間に供給される正の電圧から例えば、周波数が50Hz又は60Hzの商用の交流電圧を生成する単相インバータである。コンバータ部7は、スイッチング素子UH(第9スイッチング素子の一例)と、スイッチング素子UL(第10スイッチング素子の一例)と、スイッチング素子WH(第11スイッチング素子の一例)と、スイッチング素子WL(第12スイッチング素子の一例)と、4つのダイオードD1~D4と、端子U1(第3電源端子の一例)と、端子W1(第4電源端子の一例)とを含み、スイッチング素子、UH,UL,WH,WLがフルブリッジ接続された単相インバータである。
 スイッチング素子UH~WLは、それぞれ、n型の電界効果型トランジスタで構成されている。スイッチング素子UHは、ドレインが端子P3と接続され、ソースが端子U1と接続されている。スイッチング素子WHはドレインが端子P3と接続され、ソースが端子W1と接続されている。
 スイッチング素子ULはドレインが端子U1に接続され、ソースが端子N3に接続されている。スイッチング素子WLはドレインが端子W1に接続され、ソースが端子N3に接続されている。
 ダイオードD1~D4は、それぞれ、アノードがソースに接続され、カソードがドレインに接続されるようにスイッチング素子UH~WLと接続されている。
 スイッチング素子UH,UL,WH,WLは、それぞれ、電界効果型トランジスタに代えて、例えばnpn型の絶縁ゲートバイポーラトランジスタで構成されてもよい。この場合、ダイオードD1,D2,D3,D4は還流ダイオードとして設けられる。更にこの場合、ダイオードD1は、スイッチング素子UHがオンされているときにスイッチング素子UHに流れる電流と逆向きの電流が流れるように、エミッタ及びコレクタにわたって接続される。このことは、ダイオードD2,D3,D4も同じである。
 制御部13は、スイッチング素子UH~WLをON又はOFFすることによって、端子15a,15bにおける電圧Voutまたは電流ILの少なくとも一方の振幅を制御する。詳しくは、後で説明する。
 コイル91は、端子U1及び端子15a間に接続され、コイル92は、端子W1及び端子15b間に接続される。コンデンサ93は端子15a及び端子15b間に接続される。コイル91,92とコンデンサ93とは、コンバータ部7から出力された矩形波状の交流電圧を平滑化するフィルタ回路を構成する。これにより、コンバータ部7から出力された矩形波状の交流電圧は、パルス幅に応じた振幅を持つ正弦波状の交流電圧に変換される。
 直流電源17から交流電力系統29に電力を供給するとき(売電)、または、交流電力系統29から電力供給を受けて直流電源17を充電するとき、端子15a,15bが交流電力系統29に接続される。
 直流電源17から交流負荷27に電力を供給するとき、または、交流負荷27から電力供給を受けて直流電源17を充電するとき、端子15a,15bが交流負荷27に接続される。交流負荷27(第2接続対象の一例)は、例えば、商用の交流電圧で駆動する電気機器である。
 制御部13は、例えば、CPU、FPGA、又はASIC等で構成され、コンバータ部51,52及びコンバータ部7を制御する。
 制御部13は、一次巻線531及び二次巻線532に高周波の交流電圧が供給されるようにコンバータ部51を制御し、且つ、端子P3及び端子N3間に正の極性を持つ電圧が供給されるようにコンバータ部52を制御する。
 制御部13は、一次巻線531の電圧の極性が反転する反転期間を含む第1期間において、トランス回路部5及びコンバータ部7間で電力の伝達が行わないようにコンバータ部7を制御する。制御部13は、第1期間とは異なる第2期間において、トランス回路部5からコンバータ部7に向かう第1方向又は第1方向とは逆の第2方向で電力の伝達が行われるようにコンバータ部7を制御する。
 詳細には、制御部13は、一次巻線531に供給される交流電圧の半周期(単位期間の一例)を構成する第1期間において、反転期間と後述の循環期間とを割り付け、第1期間とは異なる第2期間に後述の供給期間又は回生期間を割り付けるようにコンバータ部51,52,7を制御する。
 より詳細には、制御部13は、コンバータ部7をPWM制御して各単位期間における第2期間の割合を変更することで目標とする電圧Vout又は電流ILを生成する。目標とする電圧Vout又は電流ILとは、例えば、PWM制御で用いられる変調波信号と同じ波形を持つ電圧又は電流である。
 次に、電力変換システム1の動作を説明する。
 電力変換システム1は、直流電源17から交流電力系統29又は交流負荷27に電力を供給するインバータモードと、交流電力系統29又は交流負荷27から直流電源17に電力を回生するコンバータモードとのいずれかで動作する。
 インバータモードは、端子15a,15bの間において、交流電力系統29又は交流負荷27を介して電流が流れる向きと同じ向きに電圧降下が発生するモード、すなわち、電圧Voutと電流ILとの極性が同じモードである。コンバータモードは、端子15a,15bの間において、交流電力系統29又は交流負荷27を介して電流が流れる向きと逆の向きに電圧降下が発生するモード、すなわち、電圧Voutと電流ILとの極性が異なるモードである。
 図2は、インバータモードにおける電力変換システム1の動作を示す波形図である。図2において、(1)はスイッチング素子BL,ALのON、OFFを示し、ハイレベルがON、ローレベルがOFFであり、(2)はスイッチング素子YL,XLのON、OFFを示し、ハイレベルがON、ローレベルがOFFであり、(3)はスイッチング素子UH,ULのON、OFFを示し、ハイレベルがON、ローレベルがOFFであり、(4)はスイッチング素子WH,WLのON、OFFを示し、ハイレベルがON、ローレベルがOFFである。
 また、図2において、(5)は端子T1を基準とするセンタータップCT1の電圧VT1と、端子T2を基準とするセンタータップCT1の電圧VT2との波形図であり、(6)は端子T3を基準とするセンタータップCT2の電圧VT3と端子T4を基準とするセンタータップCT2の電圧VT4との波形図であり、(7)はコイルL1の電流IL1とコイルL2の電流IL2との波形図であり、(8)はコイル91に流れる電流ILと電圧Voutとの波形図である。図3は、コンバータ部7に流れる電流経路を示す図である。
 以下、端子P2及び端子N2間の電圧を電圧VEとしてインバータモードについて説明する。なお、スイッチング素子AL,BL,XL,YLはデューティ比が実質的に50%でPWM制御されている。以下、コイルL1~L4(高周波トランス)の巻数比は1:1:1:1であるとして説明する。但し、これは一例であり、コイルL1~L4の巻数比は1:1:1:1とは異なる巻数比が採用されてもよい。
 <期間ST1>
 制御部13は、スイッチング素子BL,YL=ON、スイッチング素子AL,XL=OFFにする。これにより、VT1=VEとなり、VT2=-VE、VT3=VE,VT4=-VEとなる。
 このとき、端子N2を基準とする端子T1の電圧「T1-N2」=0、端子N2を基準とする端子T2の電圧「T2-N2」=2VEとなる。また、端子N3を基準とする端子T3の電圧「T3-N3」=0、端子N3を基準とする端子T4の電圧「T4-N3」=2VEとなる。よって、端子N3を基準とする端子P3の電圧「P3-N3」=VEになる。
 <期間ST2>
 制御部13は、スイッチング素子UH,WH=OFF、スイッチング素子UL,WL=ONにし、電流ILを循環させた状態で、スイッチング素子AL,BL,XL,YL=OFFにする。これにより、コイルL1の励磁電流とコンデンサCA,CBとの共振動作により、電圧VT1の極性が正から負に次第に反転され、電圧VT2の極性が負から正に次第に反転され、ソフトスイッチングが実現される。以下、スイッチング素子BL,YLとスイッチング素子AL,XLとの極性が正から負、又は負から正に切り替わる期間を反転期間と呼ぶ。
 <期間ST3>
 制御部13は、スイッチング素子BL,YL=OFFの状態で、スイッチング素子AL,XL=ONにする。これにより、VT2=VEとなり、VT1=-VE、VT3=-VE、VT4=VEになる。
 このとき、電圧「T1-N2」=2VE、電圧「T2-N2」=0、電圧「T3-N3」=2VE、電圧「T4-N3」=0となる。
 <期間ST4>
 期間ST2と同様、制御部13は、スイッチング素子AL,BL,YL,XL=OFFにし、電圧VT1~VT4の極性を反転させる。
 以後、コンバータ部51,52は、期間ST1、ST2、ST3、ST4の動作を繰り返す。これにより、電圧「P3-N3」=VEが維持され、コンバータ部7に供給される。その結果、コンバータ部7には一定の電圧VEが供給されるので、コンバータ部7は、双方向スイッチの構成が不要となり、通常のフルブリッジ型の回路で構成できる。
 なお、コンバータ部7は、トランス53を介して直流電源17と接続されている。そのため、コンバータ部7は、トランス53の漏れインダクタンスを介して直流電源17と直接的に接続さているとみなすことができる。これにより、コンバータ部7のスイッチング時に、電力変換システム1内でリンギングが生じる。これを防止するためにスナバ回路60が設けられているが、電圧「P3-N3」の極性が反転すると、スナバ回路60に流れる電流の向きも反転するので、コンデンサ62を大容量化することができない。そのため、電圧「P3-N3」の極性が反転すると、リンギングを抑制することが困難である。
 一方、電力変換システム1は、電圧「P3-N3」の極性が反転しないので、コンデンサ62の容量を、電圧「P3-N3」の極性が反転する場合に比べて大きくすることができる。そのため、電力変換システム1は、リンギングを抑制できる。
 <期間ST5>
 制御部13は、VT1=VEの固定期間に、スイッチング素子UH,WH=ON、スイッチング素子UL,WL=OFFにする。これにより、電流ILが循環経路71を流れる循環期間となる(図3)。循環経路71は、コンバータ部7内で閉ループになっており、直流電源17からコンバータ部7への電力の伝達が遮断されている。その結果、コンバータ部7は循環モードになり、端子W1を基準とする端子U1の電圧Voは、Vo=0となる。この場合、Vout>Voなので、電流ILは減少する。
 <期間ST6>
 制御部13は、VT1=VEの固定期間に、スイッチング素子UH,WL=ON、UL,WH=OFFにする。これにより、電流ILが供給経路72を流れる供給期間となる(図3)。供給経路72は、二次巻線532に電流が流れており、直流電源17からコンバータ部7へ電力が伝達されている。その結果、コンバータ部7は、供給モードとなり、電圧Voは、Vo=VEとなる。この場合、Vout<Voなので、電流ILは増大する。
 <期間ST7>
 制御部13は、VT2=VEの固定期間にスイッチング素子UL,WL=ON、スイッチング素子UH,WH=OFFにする。コンバータ部7は、期間ST5と同様、循環モードになり、電圧Voは、Vo=0になる。この場合、Vout>Voなので、電流ILは減少する。
 <期間ST8>
 制御部13は、VT2=VEの固定期間にスイッチング素子UH,WL=ON、UL,WH=OFFにする。コンバータ部7は、期間ST6と同様、供給モードになり、電圧Voは、Vo=VEになる。この場合、Vout<Voなので、電流ILは増大する。
 このように、コンバータ部7は、VT1=VE又はVT2=VEの固定期間中に循環モードと供給モードとで動作する。したがって、制御部13は、コンバータ部7をPWM制御して、循環期間と供給期間との割合が変えることで、所望の電圧Voutを生成できる。
 <補足>
 ここで、一次巻線531に供給される交流電圧の半周期をTとし、Vo=VEの期間をTon、期間Ton中での電流ILの増加量をΔI20とすると、ΔI20は下記の式で表される。
 ΔI20=(VE-Vout)/L×Ton
 Vo=0の期間をToff(=T-Ton)、期間Toff中での電流ILの減少量をΔI20とすると、ΔI20は下記の式で表される。
 ΔI20=Vout/L×(T-Ton)
 安定状態では、それぞれのΔI20は等しいので、電圧Voutは下記の式で表される。
 Vout=Ton/T×VE=D×VE
 但し、D=Ton/Tであり、デューティ比を示す。上式より、デューティ比DをPWM制御することで、電圧Voutを所望の波形を持つ交流電圧として出力できることが分かる。
 次に、コンバータモードについて説明する。図4は、コンバータモードにおける電力変換システム1の動作を示す波形図である。ここでは、図5に示すとおり端子U2及び端子W2間の電圧をVin、端子P2及び端子N2間の電圧をVoutとして説明する。図5は、コンバータ部7に流れる電流経路を示す図である。
 図4の(1)~(8)は図2の(1)~(8)と同じである。また、図5では、電流ILの向きは図3と反対向きに取られている。
 <期間ST1>
 制御部13は、スイッチング素子BL,YL=ON、スイッチング素子AL,XL=OFFにする。これにより、VT1=Voutとなり、VT2=-Vout、VT3=Vout,VT4=-Voutになる。
 このとき、電圧「T1-N2」=0、電圧「T2-N2」=2Voutとなる。また、電圧「T3-N3」=0、電圧「T4-N3」=2Voutとなる。よって、電圧「P3-N3」=Voutとなる。
 <期間ST2>
 制御部13は、スイッチング素子UH,WH=OFF、スイッチング素子UL,WL=ONにし、電流ILを循環させた状態で、スイッチング素子AL,BL,XL,YL=OFFにする。これにより、反転期間になり、電圧VT1の極性が正から負に次第に反転され、電圧VT2の極性が負から正に次第に反転され、ソフトスイッチングが実現される。
 <期間ST3>
 制御部13は、スイッチング素子BL,YL=OFFの状態で、スイッチング素子AL,XL=ONにする。これにより、VT2=Voutとなり、VT1=-Vout、VT3=-Vout、VT4=Voutになる。
 このとき、電圧「T1-N2」=2Vout、電圧「T2-N2」=0、電圧「T3-N3」=2Vout、電圧「T4-N3」=0となる。
 <期間ST4>
 期間ST2と同様、制御部13は、スイッチング素子AL,BL,YL,XL=OFFにし、電圧VT1~VT4の極性を反転させる。以後、制御部13は、期間ST1~ST4の動作を繰り返す。これにより、電圧「P3-N3」=VE(Vout)が維持される。
 <期間ST5>
 制御部13は、VT1=Voutの固定期間に、スイッチング素子UH,WH=ON、スイッチング素子UL,WL=OFFにする。これにより、電流ILが循環経路81を流れ、循環期間となる(図5参照)。循環経路81は、循環経路71と方向が逆である以外は循環経路71と同じである。その結果、コンバータ部7は循環モードになり、電圧Voは、Vo=0となる。この場合、Vin>Voなので、電流ILは増大する。
 <期間ST6>
 制御部13は、VT1=Voutの固定期間に、スイッチング素子UH,WL=ON、スイッチング素子UL,WH=OFFにする。これにより、電流ILが回生経路82を流れる回生期間となる(図5)。回生経路82は、供給経路72と方向が逆である。その結果、コンバータ部7は、回生モードとなり、電圧Voは、Vo=Voutとなる。この場合、Vin<Voなので、電流ILは減少する。
 <期間ST7>
 制御部13は、VT2=Voutの固定期間にスイッチング素子UL,WL=ON、スイッチング素子UH,WH=OFFにする。コンバータ部7は、期間ST5と同様、循環モードになり、電圧Voは、Vo=0になる。この場合、Vin>Voなので、電流ILは増大する。
 <期間ST8>
 制御部13は、VT2=Voutの固定期間にスイッチング素子UH,WL=ON、UL,WH=OFFにする。コンバータ部7は、期間ST6と同様、回生モードになり、電圧Voは、Vo=Voutになる。この場合、Vin<Voなので、電流ILは減少する。
 このように、コンバータ部7は、VT1=Vout又はVT2=Voutの固定期間中に循環モードと回生モードとで動作する。したがって、制御部13は、コンバータ部7をPWM制御して、循環期間と回生期間との割合を変えることで、所望の電圧Voutを生成できる。
 <補足>
 ここで、一次巻線531に供給される交流電圧の半周期をTとし、Vo=0の期間をTon、期間Ton中での電流ILの増加量をΔI20とすると、ΔI20は下記の式で表される。
 ΔI20=Vin/L×Ton
 Vo=Voutを印加している期間をToff(=T-Ton)、期間Toff中での電流ILの減少量をΔI20とすると、ΔI20は下記の式で表される。
 ΔI20=(Vout-Vin)/L×(T-Ton)
 安定状態では、それぞれのΔI20は等しいので、電圧Voutは下記の式で表される。
 Vout=T/(T-Ton)×Vin=1/(1-D)×Vin
 上式を1-D=Doffで表すと下記の式となる。
 Vout=1/Doff×Vin
 上式より、DoffをPWM制御することで、電圧Vinを直流電圧に変換できる。
 次に、インバータモードにおける電力変換システム1のスイッチング動作の詳細について説明する。
 インバータモードには、図6で示す電圧Voutが正であり、電流ILが正であるインバータモード(1)と、図9で示す電圧Voutが負であり、電流ILが負であるインバータモード(2)とがある。
 <インバータモード(1)>
 図6は、インバータモード(1)における電力変換システム1の動作を示す波形図である。図6の上段は、電圧Vout及び電流ILの波形図である。図6の下段は、一次巻線531に供給される交流電圧の1周期(2T)でのスイッチング素子BL,YL,AL,XL,UH,UL,WH,WLのON、OFFを示す波形図である。
 図7,図8は、図6の各期間におけるスイッチング素子の状態を示す図である。なお、図7,図8では、電圧Voutが正なので、コイル91側が正「+」になる。また、インバータモードなので、電流ILはプラス「+」側に流れ込む。
 <期間(1)>
 期間(1)は反転期間である。制御部13は、スイッチング素子AL,BL,YL,XL=OFF、スイッチング素子UH,WH=ON、スイッチング素子UL,WL=OFFにする。このとき、電流ILは、コイル92→スイッチング素子WH→スイッチング素子UH→コイル91を通る循環経路71を流れる。そのため、トランス53の一次側と二次側とで電力の伝達が遮断される。
 <期間(2)>
 期間(2)は反転期間から供給期間への過渡期間である。制御部13は、スイッチング素子BL,YL=ONにする。このとき、コンバータ部7の状態は期間(1)と変わらないので、電流ILは循環経路71を流れる。
 <期間(3)>
 期間(3)は反転期間から供給期間への過渡期間である。制御部13は、スイッチング素子WH=OFFにする。スイッチング素子WH=OFFにしても、スイッチング素子WHに接続されたダイオードD3を介して電流ILは循環経路71を流れる。
 <期間(4)>
 期間(4)は供給期間である。制御部13は、スイッチング素子UH,WL=ON、スイッチング素子UL,WH=OFFにする。このとき、コンバータ部7は、供給モードになり、電流ILは、コイル92→スイッチング素子WL→スイッチング素子YL→コイルL3→スイッチング素子UH→コイル91を通る供給経路72を流れる。また、トランス53の一次側の電流は、コイルL1→スイッチング素子BL→直流電源17を通る経路75を流れる。したがって、トランス53の一次側と二次側とで電力の伝達が行われる。
 <期間(5)>
 期間(5)は供給期間から循環期間への過渡期間である。制御部13は、スイッチング素子UH=OFFにする。このとき、電流ILは、コイル92→スイッチング素子WL→ダイオードD2→コイル91を通る循環経路73を流れる。また、トランス53の一次側と二次側とが遮断されるので、トランス53の一次側に電流は流れない。
 <期間(6)>
 期間(6)は循環期間である。制御部13は、スイッチング素子UL=ONにする。このとき、電流ILは、循環経路73を流れる。そのため、トランス53の一次側と二次側とで電力の伝達が遮断される。
 <期間(7)>
 期間(7)は反転期間である。制御部13は、スイッチング素子AL,BL,YL,XL=OFFにする。このとき、電流ILは、循環経路73を流れる。そのため、トランス53の一次側と二次側とで電力の伝達が遮断される。
 <期間(8)>
 期間(8)は反転期間から供給期間への過渡期間である。制御部13は、スイッチング素子AL,XL=ONにする。このとき、コンバータ部7の状態は期間(7)と変わらないので、電流ILは、循環経路73を流れる。
 <期間(9)>
 期間(9)は反転期間から供給期間への過渡期間である。制御部13は、スイッチング素子UL=OFFにする。スイッチング素子UL=OFFにしても、スイッチング素子ULに接続されたダイオードD2を介して電流ILは循環経路73を流れる。
 <期間(10)>
 期間(10)は供給期間である。制御部13は、スイッチング素子UH,WL=ON、スイッチング素子UL,WH=OFFにする。このとき、コンバータ部7は、供給モードになり、電流ILは、コイル92→スイッチング素子WL→スイッチング素子XL→コイルL4→スイッチング素子UH→コイル91を通る供給経路74を流れる。また、トランス53の一次側の電流は、コイルL2→スイッチング素子AL→直流電源17を通る経路76を流れる。したがって、トランス53の一次側と二次側とで電力の伝達が行われる。
 <期間(11)>
 期間(11)は供給期間から循環期間への過渡期間である。制御部13は、スイッチング素子WL=OFFにする。このとき、電流ILは、スイッチング素子WHに接続されたダイオードD3を通る循環経路71を流れる。したがって、トランス53の一次側と二次側とで電力の伝達が遮断される。
 <期間(12)>
 期間(12)は循環期間である。制御部13は、スイッチング素子WH=ONにする。このとき、電流ILは、循環経路71を流れる。そのため、トランス53の一次側と二次側とで電力の伝達が遮断される。
 <インバータモード(2)>
 図9は、インバータモード(2)における電力変換システム1の動作を示す波形図である。図9の上段は、電圧Vout及び電流ILの波形図である。図9の下段は、一次巻線531に供給される交流電圧の1周期(2T)でのスイッチング素子BL,YL,AL,XL,UH,UL,WH,WLのON、OFFを示す波形図である。図10、図11は、図9の各期間におけるスイッチング素子の状態を示す図である。なお、図10,図11では、電圧Voutが負なので、コイル92側が正「+」になる。また、インバータモードなので、電流ILはプラス「+」側に流れ込む。
 <期間(1)>
 期間(1)は反転期間である。制御部13は、スイッチング素子AL,BL,YL,XL=OFF、スイッチング素子UH,WH=ON、スイッチング素子UL,WL=OFFにする。このとき、電流ILは、コイル91→スイッチング素子UH→スイッチング素子WH→コイル92を通る循環経路77を流れる。そのため、トランス53の一次側と二次側とで電力の伝達が遮断される。
 <期間(2)>
 期間(2)は反転期間から供給期間への過渡期間である。制御部13は、スイッチング素子BL,YL=ONにする。このとき、コンバータ部7の状態は期間(1)と変わらないので、電流ILは循環経路77を流れる。
 <期間(3)>
 期間(3)は反転期間から供給期間への過渡期間である。制御部13は、スイッチング素子UH=OFFにする。スイッチング素子UH=OFFにしても、スイッチング素子UHに接続されたダイオードD1を介して電流ILは循環経路77を流れる。
 <期間(4)>
 期間(4)は供給期間である。制御部13は、スイッチング素子UL,WH=ON、スイッチング素子UH,WL=OFFにする。このとき、コンバータ部7は、供給モードになり、電流ILは、コイル91→スイッチング素子UL→スイッチング素子YL→コイルL3→スイッチング素子WH→コイル92を通る供給経路78を流れる。また、トランス53の一次側の電流は、コイルL1→スイッチング素子BL→直流電源17を通る経路75を流れる。したがって、トランス53の一次側と二次側とで電力の伝達が行われる。
 <期間(5)>
 期間(5)は供給期間から循環期間への過渡期間である。制御部13は、スイッチング素子WH=OFFにする。このとき、電流ILは、コイル91→スイッチング素子UL→ダイオードD4→コイル92を通る循環経路79を流れる。また、トランス53の一次側と二次側とが遮断されるので、トランス53の一次側に電流は流れない。
 <期間(6)>
 期間(6)は循環期間である。制御部13は、スイッチング素子WL=ONにする。このとき、電流ILは、循環経路79を流れる。そのため、トランス53の一次側と二次側とで電力の伝達が遮断される。
 <期間(7)>
 期間(7)は反転期間である。制御部13は、スイッチング素子AL,BL,YL,XL=OFFにする。このとき、電流ILは、循環経路79を流れる。そのため、トランス53の一次側と二次側とで電力の伝達が遮断される。
 <期間(8)>
 期間(8)は反転期間から供給期間への過渡期間である。制御部13は、スイッチング素子AL,XL=ONにする。このとき、コンバータ部7の状態は期間(7)と変わらないので、電流ILは、循環経路79を流れる。
 <期間(9)>
 期間(9)は反転期間から供給期間への過渡期間である。制御部13は、スイッチング素子WL=OFFにする。スイッチング素子WL=OFFにしても、スイッチング素子WLに接続されたダイオードD4を介して電流ILは循環経路79を流れる。
 <期間(10)>
 期間(10)は供給期間である。制御部13は、スイッチング素子UL,WH=ON、スイッチング素子UH,WL=OFFにする。このとき、コンバータ部7は、供給モードになり、電流ILは、コイル91→スイッチング素子UL→スイッチング素子XL→コイルL4→スイッチング素子WH→コイル92を通る供給経路80を流れる。また、トランス53の一次側の電流は、コイルL2→スイッチング素子AL→直流電源17を通る経路76を流れる。したがって、トランス53の一次側と二次側とで電力の伝達が行われる。
 <期間(11)>
 期間(11)は供給期間から循環期間への過渡期間である。制御部13は、スイッチング素子UL=OFFにする。このとき、電流ILは、スイッチング素子UHに接続されたダイオードD1を通る循環経路77を流れる。したがって、トランス53の一次側と二次側とで電力の伝達が遮断される。
 <期間(12)>
 期間(12)は循環期間である。制御部13は、スイッチング素子UH=ONにする。このとき、電流ILは、循環経路77を流れる。そのため、トランス53の一次側と二次側とで電力の伝達が遮断される。
 次に、コンバータモードにおける電力変換システム1のスイッチング動作の詳細について説明する。コンバータモードには、図12で示す電圧Voutが正であり、電流ILが負であるコンバータモード(3)と、図15で示す電圧Voutが負であり、電流ILが正であるコンバータモード(4)とがある。
 <コンバータモード(3)>
 図12は、コンバータモード(3)における電力変換システム1の動作を示す波形図である。図12の上段は、電圧Vout及び電流ILの波形図である。図12の下段は、一次巻線531に供給される交流電圧の1周期(2T)でのスイッチング素子BL,YL,AL,XL,UH,UL,WH,WLのON、OFFを示す波形図である。図13,図14は、図12の各期間におけるスイッチング素子の状態を示す図である。なお、図13,図14では、電圧Voutが正なので、コイル91側が正「+」になる。また、コンバータモードなので、電流ILはプラス「+」側から流れ出る。
 <期間(1)>
 期間(1)は反転期間である。制御部13は、スイッチング素子AL,BL,YL,XL=OFF、スイッチング素子UH,WH=ON、スイッチング素子UL,WL=OFFにする。このとき、電流ILは、コイル91→スイッチング素子UH→スイッチング素子WH→コイル92を通る循環経路81を流れる。そのため、トランス53の一次側と二次側とで電力の伝達が遮断される。循環経路81は図7,図8に示す循環経路71(但し、向きは逆)と同じである。
 <期間(2)>
 期間(2)は反転期間から回生期間への過渡期間である。制御部13は、スイッチング素子BL,YL=ONにする。このとき、コンバータ部7の状態は期間(1)と変わらないので、電流ILは循環経路81を流れる。
 <期間(3)>
 期間(3)は反転期間から回生期間へ過渡期間である。制御部13は、スイッチング素子WH=OFFにする。このとき、コンバータ部7は、回生モードを開始し、電流ILは、コイル91→スイッチング素子UH→コイルL3→スイッチング素子YL→ダイオードD4→コイル92を通る回生経路82を通る。また、トランス53の一次側の電流は、コイルL1→直流電源17→スイッチング素子BLを通る経路85を流れる。したがって、トランス53の一次側と二次側とで電力の伝達が行われる。
 <期間(4)>
 期間(4)は回生期間である。制御部13は、スイッチング素子UH,WL=ON、スイッチング素子UL,WH=OFFにする。このとき、コンバータ部7は、回生モードになり、電流ILは、コイル91→スイッチング素子UH→コイルL3→スイッチング素子YL→スイッチング素子WL→コイル92を通る回生経路82を流れる。また、トランス53の一次側の電流は、経路85を流れる。したがって、トランス53の一次側と二次側とで電力の伝達が行われる。
 <期間(5)>
 期間(5)は回生期間から循環モードへの過渡期間である。制御部13は、スイッチング素子UH=OFFにする。このとき、コンバータ部7は回生モードを維持し、電流ILは、コイル91→ダイオードD1→コイルL3→スイッチング素子YL→スイッチング素子WLを通る回生経路82→コイル92を流れる。また、トランス53の一次側の電流は、経路85を流れる。したがって、トランス53の一次側と二次側とで電力の伝達が行われる。
 <期間(6)>
 期間(6)は循環期間である。制御部13は、スイッチング素子UL=ONにする。このとき、電流ILは、コイル91→スイッチング素子UL→スイッチング素子WL→コイル92を通る循環経路83を流れる。そのため、トランス53の一次側と二次側とで電力の伝達が遮断される。循環経路83は循環経路73と同じ(但し、向きは逆)である。
 <期間(7)>
 期間(7)は反転期間である。制御部13は、スイッチング素子AL,BL,YL,XL=OFFにする。このとき、電流ILは、循環経路83を流れる。そのため、トランス53の一次側と二次側とで電力の伝達が遮断される。
 <期間(8)>
 期間(8)は反転期間から回生期間への過渡期間である。制御部13は、スイッチング素子AL,XL=ONにする。このとき、コンバータ部7の状態は期間(7)と変わらないので、電流ILは、循環経路83を流れる。
 <期間(9)>
 期間(9)は反転期間から回生期間への過渡期間である。制御部13は、スイッチング素子UL=OFFにする。このとき、コンバータ部7は回生モードになって、電流ILは、コイル91→ダイオードD1→コイルL4→スイッチング素子XL→スイッチング素子WL→コイル92を通る回生経路84を流れる。また、トランス53の一次側の電流は、スイッチング素子AL→コイルL2→直流電源17を通る経路86を流れる。したがって、トランス53の一次側と二次側とで電力の伝達が行われる。
 <期間(10)>
 期間(10)は回生期間である。制御部13は、スイッチング素子UH,WL=ON、スイッチング素子UL,WH=OFFにする。このとき、コンバータ部7は、回生モードになり、電流ILは、コイル91→スイッチング素子UH→コイルL4→スイッチング素子XL→スイッチング素子WL→コイル92を通る回生経路84を流れる。また、トランス53の一次側の電流は、経路86を流れる。したがって、トランス53の一次側と二次側とで電力の伝達が行われる。
 <期間(11)>
 期間(11)は回生期間から循環期間への過渡期間である。制御部13は、スイッチング素子WL=OFFにする。このとき、電流ILは、コイル91→スイッチング素子UH→コイルL4→スイッチング素子XL→ダイオードD4→コイル92を通る回生経路84を流れる。また、トランス53の一次側の電流は、経路86を流れる。したがって、トランス53の一次側と二次側とで電力の伝達が行われる。
 <期間(12)>
 期間(12)は循環期間である。制御部13は、スイッチング素子WH=ONにする。このとき、電流ILは、循環経路81を流れる。そのため、トランス53の一次側と二次側とで電力の伝達が遮断される。
 <コンバータモード(4)>
 図15は、コンバータモード(4)における電力変換システム1の動作を示す波形図である。図15の上段は、電圧Vout及び電流ILの波形図である。図15の下段は、一次巻線531に供給される交流電圧の1周期(2T)でのスイッチング素子BL,YL,AL,XL,UH,UL,WH,WLのON、OFFを示す波形図である。図16,図17は、図15の各期間におけるスイッチング素子の状態を示す図である。なお、図16,図17では、電圧Voutが負なので、コイル92側が正「+」になる。また、コンバータモードなので、電流ILはプラス「+」側から流れ出る。
 <期間(1)>
 期間(1)は反転期間である。制御部13は、スイッチング素子AL,BL,YL,XL=OFF、スイッチング素子UH,WH=ON、スイッチング素子UL,WL=OFFにする。このとき、電流ILは、コイル92→スイッチング素子WH→スイッチング素子UH→コイル91を通る循環経路87を流れる。そのため、トランス53の一次側と二次側とで電力の伝達が遮断される。循環経路87は、図10,図11に示す循環経路77(但し、向きは逆)と同じである。
 <期間(2)>
 期間(2)は反転期間から回生期間への過渡期間である。制御部13は、スイッチング素子BL,YL=ONにする。このとき、コンバータ部7の状態は期間(1)と変わらないので、電流ILは循環経路87を流れる。
 <期間(3)>
 期間(3)は反転期間から回生期間へ過渡期間である。制御部13は、スイッチング素子UH=OFFにする。このとき、コンバータ部7は、回生モードを開始し、電流ILは、コイル92→スイッチング素子WH→コイルL3→スイッチング素子YL→ダイオードD2→コイル91を通る回生経路88を通る。また、トランス53の一次側の電流は、コイルL1→直流電源17→スイッチング素子BLを通る経路85を流れる。したがって、トランス53の一次側と二次側とで電力の伝達が行われる。
 <期間(4)>
 期間(4)は回生期間である。制御部13は、スイッチング素子UL,WH=ON、スイッチング素子UH,WL=OFFにする。このとき、コンバータ部7は、回生モードになり、電流ILは、コイル92→スイッチング素子WH→コイルL3→スイッチング素子YL→スイッチング素子UL→コイル91を通る回生経路88を流れる。また、トランス53の一次側の電流は、経路85を流れる。したがって、トランス53の一次側と二次側とで電力の伝達が行われる。
 <期間(5)>
 期間(5)は回生期間から循環モードへの過渡期間である。制御部13は、スイッチング素子WH=OFFにする。このとき、コンバータ部7は回生モードを維持し、電流ILは、コイル92→ダイオードD3→コイルL3→スイッチング素子YL→スイッチング素子UL→コイル91を通る回生経路88を流れる。また、トランス53の一次側の電流は、経路85を流れる。したがって、トランス53の一次側と二次側とで電力の伝達が行われる。
 <期間(6)>
 期間(6)は循環期間である。制御部13は、スイッチング素子WL=ONにする。このとき、電流ILは、コイル92→スイッチング素子WL→スイッチング素子UL→コイル91を通る循環経路89を流れる。そのため、トランス53の一次側と二次側とで電力の伝達が遮断される。循環経路89は、図10,図11に示す循環経路79(但し、向きは逆)と同じである。
 <期間(7)>
 期間(7)は反転期間である。制御部13は、スイッチング素子AL,BL,YL,XL=OFFにする。このとき、電流ILは、循環経路89を流れる。そのため、トランス53の一次側と二次側とで電力の伝達が遮断される。
 <期間(8)>
 期間(8)は反転期間から回生期間への過渡期間である。制御部13は、スイッチング素子AL,XL=ONにする。このとき、コンバータ部7の状態は期間(7)と変わらないので、電流ILは、循環経路89を流れる。
 <期間(9)>
 期間(9)は反転期間から回生期間への過渡期間である。制御部13は、スイッチング素子WL=OFFにする。このとき、コンバータ部7は回生モードになって、電流ILは、コイル92→ダイオードD3→コイルL4→スイッチング素子XL→スイッチング素子UL→コイル91を通る回生経路90を流れる。また、トランス53の一次側の電流は、経路86を流れる。したがって、トランス53の一次側と二次側とで電力の伝達が行われる。
 <期間(10)>
 期間(10)は回生期間である。制御部13は、スイッチング素子UL,WH=ON、スイッチング素子UH,WL=OFFにする。このとき、コンバータ部7は、回生モードになり、電流ILは、コイル92→スイッチング素子WH→コイルL4→スイッチング素子XL→スイッチング素子UL→コイル91を通る回生経路90を流れる。また、トランス53の一次側の電流は、経路86を流れる。したがって、トランス53の一次側と二次側とで電力の伝達が行われる。
 <期間(11)>
 期間(11)は回生期間から循環期間への過渡期間である。制御部13は、スイッチング素子UL=OFFにする。このとき、電流ILは、コイル92→スイッチング素子WH→コイルL4→スイッチング素子XL→ダイオードD2→コイル91を通る回生経路90を流れる。また、トランス53の一次側の電流は、経路86を流れる。したがって、トランス53の一次側と二次側とで電力の伝達が行われる。
 <期間(12)>
 期間(12)は循環期間である。制御部13は、スイッチング素子UH=ONにする。このとき、電流ILは、循環経路87を流れる。そのため、トランス53の一次側と二次側とで電力の伝達が遮断される。
 図6,図9,図12,図15の波形図を比較すると、電圧Voutが正のインバータモード(1)及び電圧Voutが正のコンバータモード(3)は、スイッチング素子BL,YL,AL,XL,UH,UL,WH,WLを同一のシーケンスで駆動できることが分かる。また、電圧Voutが負のインバータモード(2)及び電圧Voutが負のコンバータモード(4)は、スイッチング素子BL,YL,AL,XL,UH,UL,WH,WLを同一のシーケンスで駆動できることが分かる。
 例えば、電流ILの極性の誤検出や外乱による電流ILの乱れにより、電流ILが想定する極性とは異なる極性を示すことがある。電力変換システム1は、インバータモード(1)及びコンバータモード(3)とが同一シーケンスなので(インバータモード(2)及びコンバータモード(4)とが同一シーケンスなので)、両モードにおいて電流ILは同一経路をたどることになる。その結果、電力変換システム1は、電流ILが想定する極性と異なる極性を示したとしても、その影響を受けにくくなる。
 例えば、電力変換システム1が、インバータモードのあるタイミングでVE=340V、端子U2及び端子W2間の電圧=34Vとなるように動作している場合を考察する。すなわち、電力変換システム1がインバータモードにおいてデューティ比DがD=0.1で動作しているタイミングについて考察する。このタイミングにおいて瞬間的に逆向きの電流ILが発生したとする。この場合、インバータモードは、コンバータモードと同一シーケンスなので、電力変換システム1は、デューティ比DoffがDoff=0.1のコンバータモードと等価の動作となり、端子U2及び端子W2間の電圧34VからVE=340Vを生成するように動作する。したがって、電力変換システム1は、電流ILが想定する極性とは異なる極性を示したとしても、インバータモードとコンバータモードとを連続的に切り替えることができる。その結果、UPS(無停電電源装置)などの自立運転にも適応できる。
 詳細には、制御部13は、以下のようにして、インバータモード(1)及びコンバータモード(3)を実現する。制御部13は、コイルL1,L3の電圧の極性が正の期間を含む半周期Taと、コイルL1,L3の電圧が負の期間を含む半周期Tbとのそれぞれを、第1,第2期間に分ける。なお、第1,第2期間の順序は問わない。そして、制御部13は、半周期Taの第1期間において、スイッチング素子UH,WH(以下、単に「ハイサイド側」と記述する。)=ON、スイッチング素子UL,WL(以下、単に「ローサイド側」と記述する。)=OFFにして循環期間を設定した後、ハイサイド側=ON、ローサイド側=OFFの状態でスイッチング素子BL,AL,YL,XL=OFFにして反転期間を設定する。
 制御部13は、半周期Tbの第1期間において、ローサイド側=ON、ハイサイド側=OFFにして循環期間を設定した後、ローサイド側=ON、ハイサイド側=OFFの状態でスイッチング素子BL,AL,YL,XL=OFFにして反転期間を設定する。
 制御部13は、半周期Ta,Tbの第2期間において、スイッチング素子UH,WL=ON,UL,WH=OFFにして供給期間又は回生期間を設定する。これは、端子15aが正だからである。
 また、制御部13は、以下のようにして、インバータモード(2)及びコンバータモード(4)を実現する。制御部13は、半周期Taの第1期間において、ハイサイド側=ON、ローサイド側=OFFにして循環期間を設定した後、ハイサイド側=ON、ローサイド側=OFFの状態でスイッチング素子BL,AL,YL,XL=OFFにして反転期間を設定する。
 制御部13は、半周期Tbの第1期間において、ローサイド側=ON、ハイサイド側=OFFにして循環期間を設定した後、ローサイド側=ON、ハイサイド側=OFFの状態でスイッチング素子BL,AL,YL,XL=OFFにして反転期間を設定する。
 制御部13は、半周期Ta,Tbの第2期間において、スイッチング素子UL,WH=ON,UH,WL=OFFにして供給期間又は回生期間を設定する。これは、端子15bが正だからである。
 なお、制御部13は、循環期間と次の循環期間とにおいて、ハイサイド側とローサイド側とを交互にONさせたが、本発明はこれに限定されない。制御部13は、循環期間と次の循環期間とにおいて、ハイサイド側のみをONさせる、或いはローサイド側のみをONさせる態様を採用してもよい。但し、熱分散の観点からは前者が好ましい。
 <反転期間>
 次に、反転期間におけるスイッチング素子の動作について説明する。図18は、反転期間におけるスイッチング素子の動作を示す回路図である。端子T1,T2間に設けられたコンデンサC14は、図1に示すコンデンサCA,CBを表している。なお、図18では、電圧VT2,VT4の矢印の向きは図1とは逆である。
 <期間SK1>
 期間SK1はトランス53の一次側と二次側とで電力の伝達が行われる伝達期間である。制御部13は、スイッチング素子BL,YL=ON、スイッチング素子AL,XL=OFFにしている。
 このとき、コイルL1,L2,L3,L4には、それぞれVEの電圧が印加される。そのため、コンデンサC14には、端子T1を基準に2VEの電圧が印加される。また、コイルL1には一次側のコイル電流I1が流れ、コイルL3には二次側のコイル電流I2が流れている。コイル電流I1には、直流電源17から供給される駆動電流I01と、コイルL1の励磁電流I02とが含まれる。
 <期間SK2>
 期間SK2は反転期間である。制御部13は、スイッチング素子BL,AL,YL,XL=OFFにする。このとき、スイッチング素子UL,WL=ON、スイッチング素子UH,WH=OFFにされているので、コンバータ部7は循環モードになっている。そのため、コイル電流I2は流れていない。また、駆動電流I01の供給が停止され、コイル電流I1には励磁電流I02(大きさはコイルL2の励磁電流I03と同じ)が含まれている。
 コイル電流I1は、スイッチング素子AL,BL=OFFにより、コイルL1→コンデンサC14→コイルL2の経路を流れる。これにより、コンデンサC14の電荷が次第に抜けていく。
 <期間SK3>
 期間SK3は反転期間である。励磁電流I02により、コンデンサC14の電圧の極性が期間SK2に対して反転している。これにより、期間SK2に対してコイルL1,L2,L3,L4の電圧の極性がそれぞれ反転している。コイル電流I1は、引き続きコイルL1→コンデンサC14→コイルL2の経路を流れ、コンデンサC14に電荷が貯まっていく(端子T1側を正とする。)。
 <期間SK4>
 期間SK4は反転期間である。コンデンサC14の電圧が端子T2を基準に2VEになると、ダイオードDAがONする。これにより、コイル電流I1は、ダイオードDA→コイルL2→VEの経路を流れる。励磁電流I02=0になり、コイル電流I1は励磁電流I03のみとなる。
 <期間SK5>
 期間SK5は伝達期間である。制御部13は、スイッチング素子BL,YL=OFF,AL,XL=ONにする。このとき、コイルL1,L2,L3,L4には、それぞれ、-VE,-VE,-VE,-VEの電圧が印加される。そのため、コンデンサC14には、端子T2を基準に2VEの電圧が印加される。また、コイルL1には駆動電流I01及び励磁電流I03を含むコイル電流I1が流れ、コイルL4にはコイル電流I2が流れている。
 このように、コンバータ部51,52は、コイルL1,L2とコンデンサC14とを共振させることで反転動作を行うので、低損失なスイッチング(ソフトスイッチング)による反転動作を実現できる。
 <スナバ回路>
 次に、スナバ回路60について説明する。図19~図21は、スナバ回路60の効果を説明する図である。図19はスナバ回路60を設けない場合、図20はスナバ回路60としてコンデンサ及び抵抗からなるスナバ回路SCRを設けた場合、図21はスナバ回路60としてコンデンサのみからなるスナバ回路SCを設けた場合を示している。
 図19,図20,図21において、上段は、電力変換システム1においてリンギングを観測するためのシミュレーション回路100,101,102を示し、中段は周波数特性G100,G101,G102を示し、下段は電力変換システム1を構成するスイッチング素子の電圧の波形を示している。
 図19を参照し、シミュレーション回路100は、直列接続された漏れインダクタンスL100とコンデンサC100と交流電源AC10とで構成される。
 漏れインダクタンスL100は、トランス53の漏れインダクタンスを示す。コンデンサC100はOFF状態にあるコンバータ部7のハイサイド側のスイッチング素子UH,WHを等価的に示したコンデンサである。交流電源AC10は、コンバータ部7のローサイド側のスイッチング素子UL,WLがOFF状態からON状態に遷移する状態を等価的に示した交流電源である。
 コンデンサC200及び抵抗R200はスナバ回路SCRを示しているが、ここでは、シミュレーション回路100に組み込まれていない。電圧V1はグラウンドGを基準とするスイッチング素子UH,WHのドレインの電圧であり、電圧V2はグラウンドGを基準とするスイッチング素子UL,WLのドレインの電圧である。
 図19の中段はシミュレーション回路100の周波数特性G100を示す両対数グラフであり、縦軸は電圧V2を基準とする電圧「V1-V2」をdB単位で示し、横軸は交流電源AC10の周波数を示している。
 このシミュレーションでは、交流電源AC10の周波数を10Hzから1GHzにスイープさせて電圧「V1-V2」の実効値を計測することで、漏れインダクタンスL100とコンデンサC100との周波数特性G100を生成した。
 周波数特性G100には、10MHz付近に急峻なピークが表れており、漏れインダクタンスL100とコンデンサC100とが大きく共振していることが分かる。
 図19の下段はスナバ回路SCRを設けていない場合の電力変換システム1に発生するリンギングを示した波形図である。図19の下段において、1段目はスイッチング素子AL,BLのON、OFFを示し、2段目は端子N2を基準とする端子T1,T2の電圧V(T1,N2),V(T2,N2)を示し、3段目は端子N3を基準とする端子T3,T4の電圧V(T3,N3),V(T4,N3)を示し、4段目は端子N3を基準とする端子U1,W1の電圧V(U1,N3),V(W1,N3)を示す。
 図19の下段に示すようにスイッチング素子BL=ON,AL=OFFの期間において、コンバータ部7のスイッチングに応答して、電圧V(T2,N2)に大きなリンギング表れており、電圧V(T4,N3),V(U1,N3)に更に大きなリンギングが表れていることが分かる。すなわち、OFF状態にあるスイッチング素子AL,XL等に印加される電圧に大きなリンギングが表れていることが分かる。
 また、スイッチング素子AL=ON,BL=OFFの期間にもコンバータ部7のスイッチングに応答して、電圧V(T1,N2)に大きなリンギングが表れ、且つ、電圧V(T3,N3),V(U1,N3)に更に大きなリンギングが表れていることが分かる。すなわち、OFF状態にあるスイッチング素子BL,YL等に印加される電圧に大きなリンギングが表れていることが分かる。
 図20を参照する。図20の上段に示すように、シミュレーション回路101はシミュレーション回路100に対して、スナバ回路SCRが設けられている。そのため、図20の中段に示すように周波数特性G101にはオーバーシュートが表れておらず、漏れインダクタンスL100とコンデンサC100との共振が発生していないことが分かる。したがって、図20の下段に示すように、スイッチング素子BL=ON,AL=OFFの期間において、OFF状態のスイッチング素子AL,XL等に表れるリンギングが図19に比べて大幅に低下されていることが分かる。また、スイッチング素子AL=ON,BL=OFFの期間において、OFF状態のスイッチング素子BL,YL等に表れるリンギングが図19に比べて大幅に低下されていることが分かる。
 図21を参照する。図21の上段に示すように、シミュレーション回路102はスナバ回路SCが設けられている。そのため、図21の中段に示すように周波数特性G102には周波数の全域においてオーバーシュートが表れておらず、漏れインダクタンスL100とコンデンサC100との共振が発生していないことが分かる。したがって、図21の下段に示すように、スイッチング素子BL=ON,AL=OFFの期間において、OFF状態のスイッチング素子AL,XL等に表れるリンギングが図19に比べて大幅に低下されていることが分かる。また、スイッチング素子AL=ON,BL=OFFの期間において、OFF状態のスイッチング素子BL,YL等に表れるリンギングが図19に比べて大幅に低下されていることが分かる。但し、図20及び図21においても、トランス電圧の反転時の波形に多少のリンギングが重畳されている。これは、トランス電圧が反転する際に漏れインダクタンスL100とコンデンサC200とが共振するからである。
 そのため、図20,図21を比較すると、スナバ回路SCRの方がスナバ回路SCよりもリンギングの抑制効果が高いことが分かる。
 図22は、電力変換システム1のインピーダンス特性を示すグラフである。上段は漏れインダクタンスL100のインピーダンス特性G11を示し、中段はスナバ回路SCRのインピーダンス特性G12を示し、下段は漏れインダクタンスL100にスナバ回路SCRを並列接続させたときのインピーダンス特性G13を示している。なお、図22の各グラフは両対数グラフであり、縦軸はインピーダンス(Z)、横軸は角周波数(ω)を示している。
 インピーダンス特性G11は、漏れインダクタンスL100の影響により、角周波数が増大するにつれて、インピーダンスが一定の傾きで増大していることが分かる。インピーダンス特性G12は、コンデンサC200の値をC、抵抗R200の値をRとすると、ω<1/CRの領域では、コンデンサC200の影響により、角周波数が増大するにつれてインピーダンスが一定の傾きで減少し、ω>1/CRの領域では、抵抗R200の影響により、周波数が増大するにつれてインピーダンスが一定の値を維持していることが分かる。
 インピーダンス特性G13は、漏れインダクタンスL100の値をL、コンデンサC200の値をCとすると、ω<1√(LC)の領域ではインピーダンス特性G11,G12のうちインピーダンスの低い方のインピーダンス特性G11と同じ特性を持ち、ω>1√(LC)の領域ではインピーダンス特性G11,G12のうちインピーダンスの低い方のインピーダンス特性G12と同じ特性を持っている。
 したがって、リンギングの角周波数をωrとすると、1/CR<ωrとなるように、スナバ回路SCRを設計することで、スナバ回路SCRはリンギング電流を積極的に吸収することができ、リンギングを抑制できる。ここで、漏れインダクタンスL100の値をL、コンデンサC100の値をCpとすると、ωr=1/√(LCp)である。また、キャリア周波数ωCAを1/CRに対して低周波側に設定することで、スナバ回路SCRのインピーダンス特性G12はキャリア周波数に対して高インピーダンスになるので、スナバ回路SCRはキャリア周波数付近の電流を吸収しない。これにより、スナバ回路SCRは電力ロスを抑制できる。なお、キャリア周波数とは、PWM制御に用いられるキャリア信号の周波数であり、例えば20kHzが採用できる。
 <タイミングチャート>
 <インバータモード>
 次に、インバータモードにおける電力変換システム1のタイミングチャートについて説明する。図23はインバータモードにおける電力変換システム1のタイミングチャートを示す図である。図23において、(1)はスイッチング素子BL,ALのON、OFFを示し、ハイレベルがON、ローレベルがOFFである。(2)はスイッチング素子UH,ULのON、OFFを示し、ハイレベルがON、ローレベルがOFFである。(3)はスイッチング素子WH,WLのON、OFFを示し、ハイレベルがON、ローレベルがOFFである。(4)は電圧VT1と電流=(IL1-IL2)とを示す。(5)は電圧「P3-N3を示す。(6)は電流ILと、電圧Voutとを示す。
 (7)は(1)と同じである。(8)は電圧VT1と電流IL1とを示す。(9)は電圧VT3と電流IL3とを示す。(10)は電圧VT2と電流IL2とを示す。(11)は電圧VT4と電流IL4とを示す。(12)はトランス53の励磁電流を示す。励磁電流は(IL1-IL2)-(IL3-IL4)である。
 なお、図23において、スイッチング素子YLの動作は、スイッチング素子BLと同じであり、スイッチング素子XLの動作は、スイッチング素子ALと同じであるため、説明を省く。また、図2の例では、スイッチング素子BL=ONに応答して、循環期間が先に開始されていたが、図23の例では、スイッチング素子BL=ONに応答して、供給期間が先に開始されている。
 <供給期間TA1>
 (1)、(7)を参照し、制御部13は、スイッチング素子BL=YL=ON,AL=XL=OFFにする。このとき、(2)、(3)を参照し、制御部13は、スイッチング素子UH=WL=ON,UL=WH=OFFにし、コンバータ部7を供給モードにする。
 したがって、(6)を参照し、電流ILが直線的に増大している。また、(8)、(9)、(10)、(11)を参照し、電流IL1,IL3は急激に増大した後、緩やかな傾きで増大し、電流IL2,IL4=0である。また、(5)を参照し、電圧「P3-N3」は一定の値を維持している。
 <循環期間TB1>
 供給期間TA1に続いて循環期間TB1が開始される。制御部13は、スイッチング素子BL,YL=ON,AL=XL=OFFの状態で、(2)、(3)を参照し、スイッチング素子UL=WL=ON,UH=WH=OFFにし、コンバータ部7を循環モードにする。
 したがって、(6)を参照し、電流ILが直線的に減少している。また、(8)、(9)、(10)、(11)を参照し、電流IL1,IL3は急激に減少した後、ほぼ0で推移する。詳細には、電流IL3は0であるが、電流IL1は励磁電流が流れる。電流IL2,IL4=0である。また、(5)を参照し、電圧「P3-N3」は一定の値を維持している。
 <反転期間TC1>
 循環期間TB1に続いて反転期間TC1が開始される。制御部13は、コンバータ部7を循環モードにした状態で、(1)、(7)を参照し、スイッチング素子BL=AL=YL=XL=OFFにする。
 したがって、(8)、(9)を参照し、電圧VT1,VT3は正から負の極性に反転し、(10)、(11)を参照し、電圧VT2,VT4は負から正の極性に反転する。また、(5)を参照し、電圧「P3-N3」は一定の値を維持している。
 <供給期間TA2>
 反転期間TC1に続いて供給期間TA2が開始される。(1)、(7)を参照し、制御部13は、スイッチング素子BL=YL=OFF,AL=XL=ONにする。このとき、(2)、(3)を参照し、制御部13は、スイッチング素子UH=WL=ON,UL=WH=OFFにし、コンバータ部7を供給モードにする。
 したがって、(6)を参照し、電流ILが直線的に増大している。また、(8)、(9)、(10)、(11)を参照し、電流IL1,IL3=0であり、電流IL2,IL4は急激に増大した後、緩やかな傾きで増大している。また、(5)を参照し、電圧「P3-N3」は一定の値を維持している。
 <循環期間TB2>
 供給期間TA2に続いて循環期間TB2が開始される。制御部13は、スイッチング素子BL=YL=OFF,AL=XL=ONの状態で、(2)、(3)を参照し、スイッチング素子UH=WH=ON,UL=WL=OFFにし、コンバータ部7を循環モードにする。
 したがって、(6)を参照し、電流ILが直線的に減少している。また、(8)、(9)、(10)、(11)を参照し、電流IL1,IL3はほぼ0を維持する。電流IL2,IL4は急激に減少した後、ほぼ0で推移する。詳細には、電流IL4は0であるが、電流IL2は励磁電流のみ流れる。また、(5)を参照し、電圧「P3-N3」は一定の値を維持している。
 <反転期間TC2>
 循環期間TB2に続いて反転期間TC2が開始される。制御部13は、コンバータ部7を循環モードにした状態で、(1)、(7)を参照し、スイッチング素子BL=AL=YL=XL=OFFにする。
 したがって、(8)、(9)を参照し、電圧VT1,VT3は負から正の極性で反転し、(10)、(11)を参照し、電圧VT2,VT4は正から負の極性に反転する。また、(5)を参照し、電圧「P3-N3」は一定の値を維持している。
 このように、電力変換システム1は、供給期間TA1、循環期間TB1、反転期間TC1、供給期間TA2、循環期間TB2、及び反転期間TC2をサイクリックに繰り返し、インバータモードを実行する。また、電力変換システム1は、PWM制御により、一周期内における供給期間TA1及び供給期間TA2の割合を変化させることで、所望の電圧Voutを生成する。
 また、全期間において電圧「P3-N3」は一定の値を維持しており、極性が反転していないことが分かる。
 図24は、図23において反転期間TC1,TC2を拡大して示したタイミングチャートである。図24において、(1)~(6)は図23の(1)~(6)の反転期間TC2を拡大した図であり、(7)~(8)は図23の(1)~(6)の反転期間TC1を拡大した図である。
 (1)を参照し、反転期間TC2において、スイッチング素子AL=OFFからスイッチング素子BL=ONまでデッドタイムTdが設けられていることが分かる。デッドタイムTdは、例えば2μsである。また、(2)を参照し、スイッチング素子BL=ONからスイッチング素子WH=OFFまでデッドタイムTaが設けられていることが分かる。デッドタイムTaは、例えば0.5μsである。また、(3)を参照し、スイッチング素子WH=OFFからスイッチング素子WL=ONまでデッドタイムTbが設けられていることが分かる。デッドタイムTbは、例えば0.5μsである。これにより、スイッチング素子の保護が図られている。
 (4)を参照し、電圧VT1はデッドタイムTdにおいて正から負の極性に反転していることが分かる。
 (5)を参照し、全期間に亘って電圧「P3-N3」は一定の値を維持していることが分かる。
 (7)を参照し、反転期間TC1において、スイッチング素子BL=OFFからスイッチング素子AL=ONまでデッドタイムTdが設けられていることが分かる。また、(8)を参照し、スイッチング素子AL=ONからスイッチング素子UL=OFFまでデッドタイムTaが設けられていることが分かる。また、(8)を参照し、スイッチング素子UL=OFFからスイッチング素子UH=ONまでデッドタイムTbが設けられていることが分かる。(10)を参照し、電圧VT1はデッドタイムTdにおいて正から負の極性に反転していることが分かる。
 (11)を参照し、全期間に亘って電圧「P3-N3」は一定の値を維持していることが分かる。
 <コンバータモード>
 次に、コンバータモードにおける電力変換システム1のタイミングチャートについて説明する。図25はコンバータモードにおける電力変換システム1のタイミングチャートを示す図である。図25において(1)~(12)は図23の(1)~(12)と同じ波形を示す。
 <回生期間TD1>
 (1)、(7)を参照し、制御部13は、スイッチング素子BL=YL=ON,AL=XL=OFFにする。このとき、(2)、(3)を参照し、制御部13は、スイッチング素子UH=WL=ON,UL=WH=OFFにし、コンバータ部7を回生モードにする。ここでは、電流ILは図1の矢印とは逆方向を正としている。
 したがって、(6)を参照し、電流ILが直線的に減少している。また、(8)、(9)、(10)、(11)を参照し、電流IL1,IL3は急激に減少した後、緩やかな傾きで増大し、電流IL2,IL4=0である。なお、また、(5)を参照し、電圧「P3-N3」は一定の値を維持している。
 <循環期間TE1>
 回生期間TD1に続いて循環期間TE1が開始される。制御部13は、スイッチング素子BL=YL=ON,AL=XL=OFFの状態で、(2)、(3)を参照し、スイッチング素子UL=WL=ON,UH=WH=OFFにし、コンバータ部7を循環モードにする。
 したがって、(6)を参照し、電流ILが直線的に増大している。また、(8)、(9)、(10)、(11)を参照し、電流IL1,IL3は急激に増大した後、ほぼ0で推移する。詳細には、電流IL3=0、電流IL1は励磁電流のみ流れる。また、電流IL2,IL4=0である。また、(5)を参照し、電圧「P3-N3」は一定の値を維持している。
 <反転期間TF1>
 循環期間TE1に続いて反転期間TF1が開始される。制御部13は、コンバータ部7を循環モードにした状態で、(1)、(7)を参照し、スイッチング素子BL=AL=YL=XL=OFFにする。
 したがって、(8)、(9)を参照し、電圧VT1,VT3は正から負の極性に反転し、(10)、(11)を参照し、電圧VT2,VT4は負から正の極性に反転する。また、(5)を参照し、電圧「P3-N3」は一定の値を維持している。
 <回生期間TD2>
 反転期間TF1に続いて回生期間TD2が開始される。(1)、(7)を参照し、制御部13は、スイッチング素子BL=YL=OFF,AL=XL=ONにする。このとき、(2)、(3)を参照し、制御部13は、スイッチング素子UH=WL=ON,UL=WH=OFFにし、コンバータ部7を回生モードにする。
 したがって、(6)を参照し、電流ILが直線的に減少している。また、(8)、(9)、(10)、(11)を参照し、電流IL1,IL3=0であり、電流IL2,IL4は急激に減少した後、緩やかな傾きで増大している。また、(5)を参照し、電圧「P3-N3」は一定の値を維持している。
 <循環期間TE2>
 回生期間TD2に続いて循環期間TE2が開始される。制御部13は、スイッチング素子BL=YL=OFF,AL=XL=ONの状態で、(2)、(3)を参照し、スイッチング素子UL=WL=OFF,UH=WH=ONにし、コンバータ部7を循環モードにする。
 したがって、(6)を参照し、電流ILが直線的に増大している。また、(8)、(9)、(10)、(11)を参照し、電流IL1,IL3=0であり、電流IL2,IL4は急激に増大した後、ほぼ0で推移している。詳細には、電流IL4=0で推移し、電流IL2は励磁電流のみ流れる。また、(5)を参照し、電圧「P3-N3」は一定の値を維持している。
 <反転期間TF2>
 循環期間TE2に続いて反転期間TF2が開始される。制御部13は、コンバータ部7を循環モードにした状態で、(1)、(7)を参照し、スイッチング素子BL=AL=YL=XL=OFFにする。
 したがって、(8)、(9)を参照し、電圧VT1,VT3は負から正の極性に反転し、(10)、(11)を参照し、電圧VT2,VT4は正から負の極性に反転する。また、(5)を参照し、電圧「P3-N3」は一定の値を維持している。
 このように、電力変換システム1は、回生期間TD1、循環期間TE1、反転期間TF1、回生期間TD2、循環期間TE2、及び反転期間TF2をサイクリックに繰り返し、コンバータモードを実行する。また、電力変換システム1は、PWM制御により、一周期内における回生期間TD1及び回生期間TD2の割合を変化させることで、所望の電圧Voutを直流電源17に回生させる。
 図26は、図25において反転期間TF1,TF2を拡大して示したタイミングチャートである。図26において(1)~(12)は図24の(1)~(12)と同じ波形を示している。
 図26を参照し、コンバータモードにおいても、図25と同様、デッドタイムTd,Ta,Tbが設けられている。
 以上、電力変換システム1は、コイルL1,L2のそれぞれに正及び負の電圧が交互に印加されるようにコンバータ部51を制御するが、電圧「P3-N3」が正となるようにコンバータ部52を制御する。そのため、コンバータ部7には、極性が一定の電圧が入力される。その結果、コンバータ部7は、通常のフルブリッジ型の回路で構成でき、通常の制御を適用できる。
 また、電力変換システム1は、第2期間(循環期間及び反転期間)では、トランス53の等価回路上、コンバータ部7はコンデンサ4(図1)とトランス53の漏れインダクタンスとで直結される状態となる。
 電力変換システム1では、この第2期間のみで一次側と二次側とで電力の伝達を行うため、電力の伝達を行うタイミングでは常にコンデンサ4とコンバータ部7とが直結されることになる。
 そのため、端子P3及び端子N3間に、平滑用のコンデンサは不要となり、回路規模を小さくできる。
 また、リンギング対策として、スナバ回路60を設ける際に、小さな容量のコンデンサで対応することが可能である。
 また、電力変換システム1は、コンバータ部7が還流モードに設定されている期間において、コイルL1,L2の極性を反転させる反転期間を設けている。そのため、電力変換システム1は、コンバータモード及びインバータモードのいずれのモードで駆動している場合であっても、負荷電流によらず、励磁電流と共振用のコンデンサCA,CBとの共振動作により反転動作を行うことができる。その結果、電力変換システム1は、コイルL1,L2にかかる電圧の極性の反転を安定的に行うことができる。
 (実施の形態2)
 図27は、実施の形態2に係る電力変換システム1Aの回路図である。実施の形態2の電力変換システム1Aは、コンバータ部51及び一次巻線531をフルブリッジ型(FB型)の回路で構成し、コンバータ部52及び二次巻線532をフルブリッジ型(FB型)の回路で構成したことを特徴とする(FB-FB型)。コンバータ部51は、フルブリッジ接続された4つのスイッチング素子AH,AL,BH,BLを備える。
 スイッチング素子AHはドレインが端子P2に接続され、ソースが端子T2に接続されている。スイッチング素子ALは、ドレインが端子T2に接続され、ソースが端子N2に接続されている。スイッチング素子BHはドレインが端子P2に接続され、ソースが端子T1に接続されている。スイッチング素子BLはドレインが端子T1に接続され、ソースが端子N2に接続されている。
 スイッチング素子AH,AL,BH,BLには、それぞれ、アノードがソース、カソードがドレインに接続されるダイオードDAH,DAL,DBH,DBLが接続されている。
 更に、スイッチング素子AH,AL,BH,BLには、それぞれ、ドレイン、ソース間にコンデンサCAH,CAL,CBH,CBLが接続されている。コンデンサCAH,CAL,CBH,CBLは、図14で示すコンデンサC14と同じ機能を持ち、コイルL11とで共振することで、コンバータ部51をソフトスイッチングさせる。なお、コンデンサCAH,CBHと、コンデンサCAL,CBLとは、それぞれ、端子T1,T2間に接続されてもよい。また、コンデンサCAL,CBLのみ設けられてもよいし、コンデンサCAH,CBHのみ設けられてもよい。
 実施の形態2では、一次巻線531は、センタータップを備えていないので、コイルL11のみで構成されている。また、二次巻線532も、センタータップを備えていないので、コイルL12のみで構成されている。一次巻線531,532は、端子T2,T3が同じ極性になるように磁気結合されている。
 コンバータ部52は、フルブリッジ接続された4つのスイッチング素子XH,XL,YH,YLを備える。
 スイッチング素子XHはドレインが端子P3に接続されソースが端子T3に接続されている。スイッチング素子XLは、ドレインが端子T3に接続され、ソースが端子N3に接続されている。スイッチング素子YHはドレインが端子P3に接続され、ソースが端子T4に接続されている。スイッチング素子YLはドレインが端子T4に接続され、ソースが端子N3に接続されている。
 スイッチング素子XH,XL,YH,YLには、それぞれ、アノードがソース、カソードがドレインに接続されるダイオードDXH,DXL,DYH,DYLが接続されている。
 <タイミングチャート>
 <インバータモード>
 次に、インバータモードにおける電力変換システム1Aのタイミングチャートについて説明する。図28はインバータモードにおける電力変換システム1Aのタイミングチャートを示す図である。
 図28において、(1)はスイッチング素子AH,ALのON、OFFを示し、ハイレベルがON、ローレベルがOFFである。(2)はスイッチング素子UH,ULのON、OFFを示し、ハイレベルがON、ローレベルがOFFである。(3)はスイッチング素子WH,WLのON、OFFを示し、ハイレベルがON、ローレベルがOFFである。(4)は電圧VT1と電流IL1とを示す。(5)は電圧「P3-N3」を示す。(6)は電流ILと、電圧Voutとを示す。
 (7)は(1)と同じである。(8)は電圧VT1と電流IL1とを示す。(9)は電圧VT3と電流IL3とを示す。(10)は励磁電流=(IL1-IL3)を示す。なお、図28において、スイッチング素子BL,XH,YLの動作は、スイッチング素子AHと同じであり、スイッチング素子BH,XL,YHの動作は、スイッチング素子ALと同じであるため、図示を省略している。
 <供給期間TA1>
 (1)、(7)を参照し、制御部13は、スイッチング素子AH=BL=XH=YL=ON,AL=BH=XL=YH=OFFにする。このとき、(2)、(3)を参照し、制御部13は、スイッチング素子UH=WL=ON,UL=WH=OFFにし、コンバータ部7を供給モードにする。
 <循環期間TB1>
 供給期間TA1に続いて循環期間TB1が開始される。制御部13は、スイッチング素子AH=BL=XH=YL=ON,AL=BH=XL=YH=OFFの状態で、(2)、(3)を参照し、スイッチング素子UL=WL=ON,UH=WH=OFFにし、コンバータ部7を循環モードにする。
 <反転期間TC1>
 循環期間TB1に続いて反転期間TC1が開始される。制御部13は、コンバータ部7を循環モードにした状態で、(1)、(7)を参照し、スイッチング素子AH=AL=BH=BL=XH=XL=WH=WL=OFFにする。
 <供給期間TA2>
 反転期間TC1に続いて供給期間TA2が開始される。(1)、(7)を参照し、制御部13は、スイッチング素子AH=BL=XH=YH=OFF,AL=BH=XL=YL=ONにする。このとき、(2)、(3)を参照し、制御部13は、スイッチング素子UH=WL=ON,UL=WH=OFFにし、コンバータ部7を供給モードにする。
 <循環期間TB2>
 供給期間TA2に続いて循環期間TB2が開始される。制御部13は、スイッチング素子AL=BH=XL=YH=ON,AH=BL=XH=YL=OFFの状態で、(2)、(3)を参照し、スイッチング素子UH=WH=ON,UL=WL=OFFにし、コンバータ部7を循環モードにする。
 <反転期間TC2>
 循環期間TB2に続いて反転期間TC2が開始される。制御部13は、コンバータ部7を循環モードにした状態で、(1)、(7)を参照し、スイッチング素子AH=AL=BH=BL=XH=XL=YH=YL=OFFにする。
 図29は、図28において反転期間TC1,TC2を拡大して示したタイミングチャートである。図29の詳細は図24と同じなので説明は省く。
 このように、電力変換システム1Aは、供給期間TA1、循環期間TB1、反転期間TC1、供給期間TA2、循環期間TB2、及び反転期間TC2をサイクリックに繰り返し、インバータモードを実行する。また、電力変換システム1Aは、PWM制御により、一周期内における供給期間TA1および供給期間TA2の割合を変化させることで、所望の電圧Voutを生成する。
 <コンバータモード>
 次に、コンバータモードにおける電力変換システム1Aのタイミングチャートについて説明する。図30はコンバータモードにおける電力変換システム1Aのタイミングチャートを示す図である。図30において(1)~(10)は図29の(1)~(10)と同じ波形を示す。ここでは、電流ILは、図27で示す矢印とは逆向きを正としている。
 <回生期間TD1>
 (1)、(7)を参照し、制御部13は、スイッチング素子AH=BL=XH=YL=ON,AL=BH=XL=YH=OFFにする。このとき、(2)、(3)を参照し、制御部13は、スイッチング素子UH=WL=ON,UL=WH=OFFにし、コンバータ部7を回生モードにする。
 <循環期間TE1>
 回生期間TD1に続いて循環期間TE1が開始される。制御部13は、スイッチング素子AH=BL=XH=YL=ON,AL=BH=XL=YH=OFFの状態で、(2)、(3)を参照し、スイッチング素子UL=WL=ON,UH=WH=OFFにし、コンバータ部7を循環モードにする。
 <反転期間TF1>
 循環期間TE1に続いて反転期間TF1が開始される。制御部13は、コンバータ部7を循環モードにした状態で、(1)、(7)を参照し、スイッチング素子AH=AL=BH=BL=XH=XL=YH=YL=OFFにする。
 <回生期間TD2>
 反転期間TF1に続いて回生期間TD2が開始される。(1)、(7)を参照し、制御部13は、スイッチング素子AL=BH=XL=YH=ON,AH=BL=XH=YL=OFFにする。このとき、(2)、(3)を参照し、制御部13は、スイッチング素子UH=WL=ON,UL=WH=OFFにし、コンバータ部7を回生モードにする。
 <循環期間TE2>
 回生期間TD2に続いて循環期間TE2が開始される。制御部13は、スイッチング素子AL=BH=XL=YH=ON,AH=BL=XH=YL=OFFの状態で、(2)、(3)を参照し、スイッチング素子UL=WL=OFF,UH=WH=ONにし、コンバータ部7を循環モードにする。
 <反転期間TF2>
 循環期間TE2に続いて反転期間TF2が開始される。制御部13は、コンバータ部7を循環モードにした状態で、(1)、(7)を参照し、スイッチング素子AH=AL=BH=BL=XH=XL=YH=YL=OFFにする。
 図31は、図30において反転期間TF1,TF2を拡大して示したタイミングチャートである。図30の詳細は図26と同じなので説明は省く。
 このように、電力変換システム1Aは、回生期間TD1、循環期間TE1、反転期間TF1、回生期間TD2、循環期間TE2、及び反転期間TF2をサイクリックに繰り返し、コンバータモードを実行する。また、電力変換システム1Aは、PWM制御により、一周期内における回生期間TD1および回生期間TD2の割合を変化させることで、所望の電圧Voutを直流電源17に回生させる。
 以上、電力変換システム1Aは、FB-FB型の回路で構成した場合においても電力変換システム1と同じ効果が得られる。
 (実施の形態3)
 図32は、実施の形態3に係る電力変換システム1Bの回路図である。実施の形態3の電力変換システム1Bは、コンバータ部51及び一次巻線531をハーフブリッジ型(HB型)の回路で構成し、コンバータ部52及び二次巻線532をセンタータップ型(CNT型)の回路で構成したことを特徴とする(HB-CNT型)。
 コンバータ部51は、ハーフブリッジ接続された2つのスイッチング素子AH,ALを備える。スイッチング素子AHはドレインが端子P2に接続され、ソースが端子T2に接続されている。スイッチング素子ALは、ドレインが端子T2に接続され、ソースが端子N2に接続されている。
 スイッチング素子AH,ALには、それぞれ、アノードがソース、カソードがドレインに接続されるダイオードDAH,DALが接続されている。コンデンサC*1とコンデンサC*2とは、直流電源17の電圧VEを分圧した直流電圧Vmを生成するためのコンデンサである。コンデンサC*1は端子P2と端子T1との間に接続され、コンデンサC*2は端子T1と端子N2との間に接続されている。
 スイッチング素子AHのドレイン、ソース間にコンデンサCAHが接続され、スイッチング素子ALのドレイン、ソース間にコンデンサCALが接続される。コンデンサCAH,CALは、図18で示すコンデンサC14と同じ機能を持ち、コイルL11とで共振することで、コンバータ部51をソフトスイッチングさせる。なお、コンデンサCAH,CALは、それぞれ、端子T1と端子T2との間に接続されてもよい。
 実施の形態3では、一次巻線531は、センタータップを備えていないので、コイルL11のみで構成されている。コイルL11は端子T2及び端子T1間に接続されている。コイルL11,L3,L4は、端子T2、センタータップCT2,端子T4が同じ極性になるように磁気結合されている。
 コンバータ部52及び二次巻線532の構成は図1と同じCNT型なので説明を省く。
 <タイミングチャート>
 <インバータモード>
 次に、インバータモードにおける電力変換システム1Bのタイミングチャートについて説明する。図33はインバータモードにおける電力変換システム1Bのタイミングチャートを示す図である。
 図33の(1)~(9)の波形は、(4)で直流電圧Vmが追加されている以外は、図28の(1)~(9)の波形と同じである。直流電圧Vmは、端子N2を基準とする端子T2の電圧「T2-N2」であり、全期間を通じてほぼ一定の値で推移している。図33の(10)の波形は、電圧VT4と電流IL4との波形である。図33の(11)の波形は、IL1-(IL3-IL4)の励磁電流である。
 なお、図33において、スイッチング素子YLの動作は、スイッチング素子AHと同じであり、スイッチング素子XLの動作は、スイッチング素子ALと同じであるため、図示を省略している。
 <供給期間TA1>
 (1)、(7)を参照し、制御部13は、スイッチング素子AH=YL=ON,AL=XL=OFFにする。このとき、(2)、(3)を参照し、制御部13は、スイッチング素子UH=WL=ON,UL=WH=OFFにし、コンバータ部7を供給モードにする。
 <循環期間TB1>
 供給期間TA1に続いて循環期間TB1が開始される。制御部13は、スイッチング素子AH=YL=ON,AL=XL=OFFの状態で、(2)、(3)を参照し、スイッチング素子UL=WL=ON,UH=WH=OFFにし、コンバータ部7を循環モードにする。
 <反転期間TC1>
 循環期間TB1に続いて反転期間TC1が開始される。制御部13は、コンバータ部7を循環モードにした状態で、(1)、(7)を参照し、スイッチング素子AH=AL=YL=XL=OFFにする。
 <供給期間TA2>
 反転期間TC1に続いて供給期間TA2が開始される。(1)、(7)を参照し、制御部13は、スイッチング素子AL=XL=ON,AH=YL=OFFにする。このとき、(2)、(3)を参照し、制御部13は、スイッチング素子UH=WL=ON,UL=WH=OFFにし、コンバータ部7を供給モードにする。
 <循環期間TB2>
 供給期間TA2に続いて循環期間TB2が開始される。制御部13は、スイッチング素子AL=XL=ON,AH=YL=OFFの状態で、(2)、(3)を参照し、スイッチング素子UH=WH=ON,UL=WL=OFFにし、コンバータ部7を循環モードにする。
 <反転期間TC2>
 循環期間TB2に続いて反転期間TC2が開始される。制御部13は、コンバータ部7を循環モードにした状態で、(1)、(7)を参照し、スイッチング素子AH=AL=XL=YL=OFFにする。
 図34は、図33において反転期間TC1,TC2を拡大して示したタイミングチャートである。図34の詳細は図24と同じなので説明は省く。
 このように、電力変換システム1Bは、供給期間TA1、循環期間TB1、反転期間TC1、供給期間TA2、循環期間TB2、及び反転期間TC2をサイクリックに繰り返し、インバータモードを実行する。また、電力変換システム1Bは、PWM制御により、一周期内における供給期間TA1と供給期間TA2との割合を変化させることで、所望の電圧Voutを生成する。
 <コンバータモード>
 次に、コンバータモードにおける電力変換システム1Bのタイミングチャートについて説明する。図35はコンバータモードにおける電力変換システム1Bのタイミングチャートを示す図である。図35の(1)~(9)の波形は、(4)で直流電圧Vmが追加されている以外は、図30の(1)~(9)の波形と同じである。図35の(10)の波形は、電圧VT4と電流IL4との波形である。図35の(11)の波形は、IL1-(IL3-IL4)の励磁電流である。ここでは、電流ILは、図32の矢印とは逆向きを正としている。
 なお、図35において、スイッチング素子YLの動作は、スイッチング素子AHと同じであり、スイッチング素子XLの動作は、スイッチング素子ALと同じであるため、図示を省略している。
 <回生期間TD1>
 (1)、(7)を参照し、制御部13は、スイッチング素子AH=YL=ON,AL=XL==OFFにする。このとき、(2)、(3)を参照し、制御部13は、スイッチング素子UH=WL=ON,UL=WH=OFFにし、コンバータ部7を回生モードにする。
 <循環期間TE1>
 回生期間TD1に続いて循環期間TE1が開始される。制御部13は、スイッチング素子AH=YL=ON,AL=XL=OFFの状態で、(2)、(3)を参照し、スイッチング素子UL=WL=ON,UH=WH=OFFにし、コンバータ部7を循環モードにする。
 <反転期間TF1>
 循環期間TE1に続いて反転期間TF1が開始される。制御部13は、コンバータ部7を循環モードにした状態で、(1)、(7)を参照し、スイッチング素子AH=AL=XL=YL=OFFにする。
 <回生期間TD2>
 反転期間TF1に続いて回生期間TD2が開始される。(1)、(7)を参照し、制御部13は、スイッチング素子AL=YL=ON,AH=XL=OFFにする。このとき、(2)、(3)を参照し、制御部13は、スイッチング素子UH=WL=ON,UL=WH=OFFにし、コンバータ部7を回生モードにする。
 <循環期間TE2>
 回生期間TD2に続いて循環期間TE2が開始される。制御部13は、スイッチング素子AL=YL=ON,AH=XL=OFFの状態で、(2)、(3)を参照し、スイッチング素子UL=WL=OFF,UH=WH=ONにし、コンバータ部7を循環モードにする。
 <反転期間TF2>
 循環期間TE2に続いて反転期間TF2が開始される。制御部13は、コンバータ部7を循環モードにした状態で、(1)、(7)を参照し、スイッチング素子AH=AL=YL=XL=OFFにする。
 図36は、図35において反転期間TF1,TF2を拡大して示したタイミングチャートである。図36の詳細は図26と同じなので説明は省く。
 このように、電力変換システム1Bは、回生期間TD1、循環期間TE1、反転期間TF1、回生期間TD2、循環期間TE2、及び反転期間TF2をサイクリックに繰り返し、コンバータモードを実行する。また、電力変換システム1Bは、PWM制御により、一周期内における回生期間TD1と回生期間TD2との割合を変化させることで、所望の電圧Voutを直流電源17に回生させる。
 以上、電力変換システム1Bは、HB-CNT型の回路で構成した場合においても電力変換システム1と同じ効果が得られる。
 (実施の形態4)
 図37は、実施の形態4に係る電力変換システム1Cの回路図である。実施の形態4の電力変換システム1Cは、コンバータ部51及び一次巻線531をセンタータップ型(CNT型)の回路で構成し、コンバータ部52及び二次巻線532をフルブリッジ型(FB型)の回路で構成しことを特徴とする(CNT-FB型)。
 コンバータ部51及び一次巻線531の構成は図1と同じCNT型なので説明を省く。
 コンバータ部52及び二次巻線532の構成は図27と同じFB型なので説明を省く。
 以上、電力変換システム1Cは、CNT-FB型の回路で構成した場合においても電力変換システム1と同じ効果が得られる。
 (実施の形態5)
 図38は、実施の形態5に係る電力変換システム1Dの回路図である。実施の形態5の電力変換システム1Dは、コンバータ部51及び一次巻線531をハーフブリッジ型(HB型)の回路で構成し、コンバータ部52及び二次巻線532をフルブリッジ型(FB型)の回路で構成しことを特徴とする(HB-FB型)。
 コンバータ部51及び一次巻線531の構成は図37と同じHB型なので説明を省く。
 コンバータ部52及び二次巻線532の構成は図27と同じFB型なので説明を省く。
 以上、電力変換システム1Dは、HB-FB型の回路で構成した場合においても電力変換システム1と同じ効果が得られる。
 (実施の形態6)
 図39は、実施の形態6に係る電力変換システム1Eの回路図である。実施の形態6の電力変換システム1Eは、コンバータ部51及び一次巻線531をフルブリッジ型(FB型)の回路で構成し、コンバータ部52及び二次巻線532をセンタータップ型(CNT型)の回路で構成したことを特徴とする(FB-CNT型)。
 コンバータ部51及び一次巻線531の構成は図27と同じFB型なので説明を省く。
 コンバータ部52及び二次巻線532の構成は図1と同じCNT型なので説明を省く。
 以上、電力変換システム1Eは、FB-CNT型の回路で構成した場合においても電力変換システム1と同じ効果が得られる。
 (実施の形態7)
 図40は、実施の形態7に係る電力変換システム1Fの回路図である。実施の形態7の電力変換システム1Fは、コンバータ部51及び一次巻線531をセンタータップ型(CNT型)の回路で構成し、コンバータ部52及び二次巻線532をハーフブリッジ型(HB型)の回路で構成したことを特徴とする(CNT-HB型)。
 コンバータ部51及び一次巻線531の構成は図1と同じCNT型なので説明を省く。
 コンバータ部52は、ハーフブリッジ接続された2つのスイッチング素子XH,XLを備える。スイッチング素子XHはドレインが端子P3に接続され、ソースが端子T3に接続されている。スイッチング素子XLは、ドレインが端子T3に接続され、ソースが端子N3に接続されている。
 スイッチング素子XH,XLには、それぞれ、アノードがソース、カソードがドレインに接続されるダイオードDXH,DXLが接続されている。
 端子P3と端子T4との間にはコンデンサCXHが接続され、端子T4と端子N3との間にはコンデンサCXLが接続されている。コンデンサCXHとコンデンサCXLとは端子P3及び端子N3間の電圧を分圧した直流電圧を生成するためのコンデンサである。
 実施の形態7では、二次巻線532は、センタータップを備えていないので、コイルL12のみで構成されている。コイルL12は端子T3及び端子T4間に接続されている。
 コイルL1,L2,L12は、それぞれ、センタータップCT1,端子T2,端子T3が同じ極性になるように磁気結合されている。
 以上、電力変換システム1Fは、CNT-HB型の回路で構成した場合においても電力変換システム1と同じ効果が得られる。
 (実施の形態8)
 図41は、実施の形態8に係る電力変換システム1Gの回路図である。実施の形態8の電力変換システム1Gは、コンバータ部51及び一次巻線531をハーフブリッジ型(HB型)の回路で構成し、コンバータ部52及び二次巻線532をハーフブリッジ型(HB型)の回路で構成しことを特徴とする(HB-HB型)。
 コンバータ部51及び一次巻線531の構成は図32と同じHB型なので説明を省く。
 コンバータ部52及び二次巻線532の構成は図40と同じHB型なので説明を省く。
 以上、電力変換システム1Gは、HB-HB型の回路で構成した場合においても電力変換システム1と同じ効果が得られる。
 (実施の形態9)
 図42は、実施の形態9に係る電力変換システム1Hの回路図である。実施の形態9の電力変換システム1Hは、コンバータ部51及び一次巻線531をフルブリッジ型(FB型)の回路で構成し、コンバータ部52及び二次巻線532をハーフブリッジ型(HB型)の回路で構成しことを特徴とする(FB-HB型)。
 コンバータ部51及び一次巻線531の構成は図27と同じFB型なので説明を省く。
 コンバータ部52及び二次巻線532の構成は図40と同じHB型なので説明を省く。
 以上、電力変換システム1Hは、FB-HB型の回路で構成した場合においても電力変換システム1と同じ効果が得られる。
 (実施の形態10)
 図43は、実施の形態10に係る電力変換システム1Iの回路図である。実施の形態10の電力変換システム1Iは、図1に示す電力変換システム1において、コンバータ部7を三相インバータで構成したことを特徴とする。
 図43において、コンバータ部7は、図1に対して更にスイッチング素子VH,VLが追加されている。スイッチング素子VHは、ドレインが端子P3に接続されソースが端子V1に接続されている。スイッチング素子VLは、ドレインが端子V1に接続されソースが端子N3に接続されている。
 スイッチング素子VH,VLには、それぞれ、アノードがソース、カソードがドレインに接続されるダイオードD5,D6が接続されている。フィルタ回路9は、コイル9u,9v,9wと、コンデンサ9uv,9vw,9uwを備えている。
 コイル9uは端子15u及び端子U1間に接続され、コイル9vは端子15v及び端子V1間に接続され、コイル9wは端子15w及び端子W1間に接続されている。
 コンデンサ9uvは端子15u及び端子15v間に接続され、コンデンサ9vwは端子15v及び端子15w間に接続され、コンデンサ9uwは端子15u及び端子15w間に接続されている。交流負荷27は、三相の交流電圧で駆動する電気機器である。
 <タイミングチャート>
 次に、インバータモードにおける電力変換システム1Iのタイミングチャートについて説明する。図44は、インバータモードにおける電力変換システム1Iのタイミングチャートであり、位相が0度の場合を示している。
 図44において、(A)は電圧Eu,Ev,Ewの概略波形を示し、縦軸はデューティ比、横軸は位相を示す。電圧Eu,Ev,Ewは、それぞれ対地電圧を基準とする端子15u,15v,15wの電圧であり、いわゆる相電圧である。電圧Euは位相の基準とされている。電圧Evは電圧Euに対して位相が120度進み、電圧Ewは電圧Euに対して位相が120度遅れている。
 図44において、(1)はスイッチング素子BL,ALのON,OFFを示し、ハイレベルがON、ローレベルがOFFである。スイッチング素子YL,XLは、実施の形態1と同様、それぞれ、スイッチング素子BL,ALと同期してON,OFFするので図示を省く。(2)は電圧VT1と、電流=(IL1-IL2)と、電圧「P3-N3」とを示す。
 (3),(4),(5)は、それぞれ、スイッチング素子UH,VH,WHのON、OFFを示し、ハイレベルがON、ローレベルがOFFである。なお、スイッチング素子UL,VL,WLはスイッチング素子UH,VH,WHに対してON,OFFが反転するだけなので、図示を省略する。スイッチング素子UH,VH,WHのON期間は、デューティ比に依存する。スイッチング素子UH,VH,WHのON期間は、反転期間TC1,TC2の中間時点を基準に左右対称であり、デューティ比が増大するにつれて長くなる。
 (6)は電圧Eu,Ev,Ewの波形を示す。(7)は電流ILu,ILv,ILwの波形を示す。
 <インバータモード>
 <供給期間TA1>
 制御部13は、スイッチング素子BL=YL=ON,AL=XL=OFFの状態で、スイッチング素子VH=ONにする。これにより、スイッチング素子UH,VH,WHの全てがOFFでなくなったので、コンバータ部7は供給モードになる。
 図44の例では、(A)に示すように位相が0度であり、電圧Eu,Ev,Ewのデューティ比はそれぞれ「0.5」、「0.85」、「0.15」である。そのため、制御部13は、スイッチング素子VH,UH,WHの順にスイッチング素子をONする。スイッチング素子UH,VH,WHのそれぞれのONに応答して、電流ILu,ILv,ILwが変化する。
 <循環期間TB1>
 制御部13は、スイッチング素子WH=ONにする。これにより、スイッチング素子UH,VH,WHの全てがONになったので、コンバータ部7は、循環モードになる。
 <反転期間TC1>
 制御部13は、コンバータ部7を循環モードにした状態で、スイッチング素子AL=BL=XL=YL=OFFにする。これにより、電圧VT1は正から負の極性に反転する。
 <循環期間TB3>
 制御部13は、スイッチング素子AL=XL=ON,BL=YL=OFFにする。これにより、反転期間TC1が終了する。また、コンバータ部7は、循環モードを継続しているので、循環期間TB3に戻る。
 <供給期間TA2>
 制御部13は、スイッチング素子WHのOFFタイミングが到来したので、スイッチング素子WHをOFFする。これにより、スイッチング素子UH,VH,WHの全てがONでなくなったので、コンバータ部7は循環モードではなくなる。
 その後、制御部13は、デューティ比に応じてスイッチング素子UH,VHを順次OFFする。スイッチング素子UH,VH,WHのOFFに応答して電流ILu,ILv,ILwが変化する。
 <循環期間TB2>
 制御部13は、スイッチング素子VH=OFFにする。これにより、スイッチング素子UH,VH,WHの全てがOFFになったので、コンバータ部7は、循環モードになる。
 <反転期間TC2>
 制御部13は、コンバータ部7を循環モードにした状態で、スイッチング素子AL=BL=XL=YL=OFFにする。これにより、電圧VT1は負から正の極性に反転する。
 <循環期間TB4>
 制御部13は、スイッチング素子AL=XL=OFF,BL=YL=ONにする。これにより、反転期間TC2が終了する。また、コンバータ部7は、循環モードを継続しているので、循環期間TB4に戻る。
 このように、電力変換システム1Iは、供給期間TA1、循環期間TB1、反転期間TC1、循環期間TB3、供給期間TA2、循環期間TB2、反転期間TC2、循環期間TB4をサイクリックに繰り返し、インバータモードを実行する。また、電力変換システム1Iは、コンバータ部7が循環モードにあるときに反転期間TC1,TC2を設けているので、負荷電流によらず、励磁電流と共振用のコンデンサCA,CBとの共振動作により反転動作が行われ、反転動作を安定的に行うことができる。
 <コンバータモード>
 次に、コンバータモードにおける電力変換システム1Iのタイミングチャートについて説明する。図45は、コンバータモードにおける電力変換システム1Iのタイミングチャートであり、位相が0度の場合を示している。図45において、(A)、(1)~(7)は、(3)~(5)において、スイッチング素子UH,VH,WHではなく、スイッチング素子UL,VL,WLを示している以外は、図44と同じである。スイッチング素子UL,VL,WLのOFF期間は、デューティ比に依存する。スイッチング素子UL,VL,WLのOFF期間は、反転期間TF1,TF2の中間時点を基準に左右対称であり、デューティ比が増大するにつれて長くなる。ここでは、電流ILu,ILv,ILwは、図45の矢印の向きを正としている。
 <回生期間TD1>
 制御部13は、スイッチング素子BL=YL=ON,AL=XL=OFFの状態で、スイッチング素子VL=OFFにする。これにより、スイッチング素子UL,VL,WLの全てがONでなくなったので、コンバータ部7は循環モードではなくなる。
 図45の例では、(A)に示すように位相が0度であり、電圧Eu,Ev,Ewのデューティ比はそれぞれ「0.5」、「0.85」、「0.15」である。そのため、制御部13は、スイッチング素子VL,UL,WLの順にスイッチング素子をOFFする。スイッチング素子UL,VL,WLのそれぞれのOFFに応答して、電流ILu,ILv,ILwが変化する。
 <循環期間TE1>
 制御部13は、スイッチング素子WL=OFFにする。これにより、スイッチング素子UL,VL,WLの全てがOFFになったので、コンバータ部7は、循環モードになる。
 <反転期間TF1>
 制御部13は、コンバータ部7を循環モードにした状態で、スイッチング素子AL=BL=XL=YL=OFFにする。これにより、電圧VT1は正から負の極性に反転する。
 <循環期間TE3>
 制御部13は、スイッチング素子AL=XL=ON,BL=YL=OFFにする。これにより、反転期間TF1が終了する。また、コンバータ部7は、循環モードを継続しているので、循環期間TE3に戻る。
 <回生期間TD2>
 制御部13は、スイッチング素子WLのONのタイミングが到来したので、スイッチング素子WLをONする。これにより、スイッチング素子UL,VL,WLの全てがOFFでなくなったので、コンバータ部7は循環モードでなくなる。
 その後、制御部13は、デューティ比に応じてスイッチング素子UL,WLを順次ONする。スイッチング素子UL,VL,WLのOFFに応答して電流ILu,ILv,ILwが変化する。
 <循環期間TE2>
 制御部13は、スイッチング素子VL=ONにする。これにより、スイッチング素子UL,VL,WLの全てがONになったので、コンバータ部7は、循環モードになる。
 <反転期間TF2>
 制御部13は、コンバータ部7を循環モードにした状態で、スイッチング素子AL=BL=XL=YL=OFFにする。これにより、電圧VT1は負から正の極性に反転する。
 <循環期間TE4>
 制御部13は、スイッチング素子AL=XL=OFF,BL=YL=ONにする。これにより、反転期間TF2が終了する。また、コンバータ部7は、循環モードを継続しているので、循環期間TE4に戻る。
 このように、電力変換システム1Iは、回生期間TD1、循環期間TE1、反転期間TF1、循環期間TE3、回生期間TD2、循環期間TE2、反転期間TF2、循環期間TE4をサイクリックに繰り返し、コンバータモードを実行する。また、電力変換システム1Iは、コンバータ部7が循環モードにあるときに反転期間TF1,TF2を設けているので、反転動作を安定的に行うことができる。また、端子P3及び端子N3間の電圧をほぼ一定の電圧に保つことができるため、端子P3及び端子N3間の電圧を直流電圧と見なすことができ、コンバータ部7に従来のPWM制御を適用することで、三相インバータ動作も可能となる。
 また、電力変換システム1Iは、実施の形態1で示したコンバータ部7を単相インバータで構成した場合と同様、電流ILが想定とは異なる極性となったとしても、インバータモードとコンバータモードとを連続に切り替えることができ、UPSなどの自立運転にも対応ができる。
 (実施の形態11)
 実施の形態11は、実施の形態1~10において、スナバ回路60の構成が異なる。図46は、実施の形態1と同じスナバ回路60の回路構成と、電圧「P3-N3」の波形図とを示す。図47は、実施の形態11の第1態様のスナバ回路60Aの回路構成と、電圧「P3-N3」及び電圧Vclp1の波形図とを示す。図48は、実施の形態11の第2態様のスナバ回路60Bの回路構成と、電圧「P3-N3」及び電圧Vclp2の波形図とを示す。図49は、実施の形態11の第3態様のスナバ回路60Cの回路構成と、電圧「P3-N3」及び電圧Vclp1,Vclp2の波形図とを示す。
 図46に示すように、抵抗61及びコンデンサ62からなるCRスナバ回路でスナバ回路60を構成した場合、コンデンサ62を大きくすれば電圧「P3-N3」のリンギングを低減できるが、抵抗61の損失が増加する。図46の例では、電圧「P3-N3」は、定常電圧が350Vであり、上側のピークが428V、下側のピークが293Vの範囲でリンギングが発生している。
 そこで、実施の形態11は、コンデンサ、抵抗、及びダイオードを含むCRDスナバ回路を用いてスナバ回路60A~60Cを構成する。
 図47に示すスナバ回路60Aは、抵抗61及びコンデンサ62に加えて、ダイオード63、コンデンサ64、及び抵抗65を含む。ダイオード63はアノードが端子P3に接続され、カソードがコンデンサ64を介して端子N3に接続されている。抵抗65はダイオード63と並列接続されている。
 コンデンサ64は、ダイオード63及びコンデンサ64の接続点に、電圧「P3-N3」の定常電圧(350V)よりも高い直流電圧(電圧Vclp1)を生成する。また、コンデンサ64は、リンギングの発生時に電荷を蓄積することで、リンギングを吸収する。ダイオード63は電圧Vclp1をクランプするためのクランプダイオードである。抵抗65は、電圧Vclp1を所望の電圧に低下させるための放電抵抗である。
 スナバ回路60Aは、リンギングにより、端子P3の電圧が電圧Vclp1より高くなるとダイオード63がONし、コンデンサ64に電流を流し、リンギングを吸収する。これにより、スナバ回路60Aは、低損失で電圧「P3-N3」の上側のリンギングを抑制できる。図47の例では、電圧「P3-N3」のリンギングは上側のピークが368Vに抑制されており、スナバ回路60に対して上側のリンギングが抑制されている。
 スナバ回路60Bでは、スナバ回路60Aと同様、ダイオード67、コンデンサ69、及び抵抗68を備えているが、ダイオード67がダイオード63に対して逆方向に接続されている。すなわち、ダイオード67は、カソードが端子P3に接続され、アノードがコンデンサ69を介して端子N3に接続されている。
 スナバ回路60Bでは、コンデンサ69は、電圧「P3-N3」の定常電圧(350V)よりも低い直流電圧である電圧Vclp2を生成する。また、コンデンサ69は、リンギングの発生時に電荷を放電することで、リンギングを吸収する。ダイオード67は電圧Vclp2をクランプするクランプダイオードである。抵抗68は電圧Vclp2を所望の電圧に低下させるための抵抗である。
 スナバ回路60Bは、リンギングにより、端子P3の電圧が電圧Vclp2より低くなるとダイオード67がONし、コンデンサ69に電流を流し、リンギングを吸収する。
 これにより、スナバ回路60Bは、低損失で電圧「P3-N3」の下側のリンギングを抑制することができる。図48の例では、電圧「P3-N3」のリンギングは下側のピークが332Vに抑制されており、スナバ回路60に比べて下側のリンギングを抑制する効果が高い。
 スナバ回路60Cは、スナバ回路60,60A,60Bを組み合わせた構成を有する。スナバ回路60Cでは、スナバ回路60A,60Bを備えているので、電圧「P3-N3」のリンギングは、上側のピークが368Vに抑制され、下側のピークが332Vに抑制されており、スナバ回路60に対して上側及び下側ともリンギングの抑制効果が高い。
 なお、スナバ回路60A~60Cにおいて、抵抗61,63,R3は、それぞれ、例えば、6.4Ω,180Ω,330Ωが採用されている。また、コンデンサ62,64,69は、それぞれ、例えば、10nF,1μF,1μFが採用されている。また、スナバ回路60A~60Cにおいて、抵抗61及びコンデンサ62は、電圧Vcpl1以下、電圧Vcpl2以上の範囲でのリンギングを除去するように機能する。また、スナバ回路60A~60Cにおいて、抵抗61及びコンデンサ62は省かれても良い。
 以上、実施の形態11によれば、低損失でありながら、リンギングの抑制効果の高い電力変換システムを提供できる。
 (実施の形態12)
 図50は、実施の形態12に係る電力変換システム1Jの回路図である。電力変換システム1Jは、直流電源17と直流機器28との間で双方向に電力を変換して伝達する電力変換システムである。
 電力変換システム1Jは、接続部3(第1外部接続部の一例)、コンデンサ4、トランス回路部5、接続部6、DCDCコンバータ7(第3コンバータ部の一例)、及び接続部15(第2外部接続部の一例)を備えるパワーコンディショナである。接続部3は、端子P2(第1外部接続端子の一例)と、端子N2(第2外部接続端子の一例)とを含む。
 接続部3は、直流電源17及び直流機器28の一方(第1接続対象の一例)が接続される。接続部15は、直流機器28及び直流電源17の他方(第2接続対象の一例)が接続される。すなわち、接続部3に直流電源17が接続されている場合、接続部15には直流機器28が接続され、接続部3に直流機器28が接続されている場合、接続部15には直流電源17が接続される。
 トランス回路部5は、コンバータ部51(第1コンバータ部の一例)、コンバータ部52(第2コンバータ部の一例)、及びトランス53を含む。接続部6は、端子P3(第1接続端子の一例)と、端子N3(第2接続端子の一例)と、スナバ回路60とを含む。スナバ回路60は、抵抗61及びコンデンサ62を含む。DCDCコンバータ7は、双方向チョッパ回路で構成されている。接続部15は、端子U2(第3外部接続端子の一例)と端子W2(第4外部接続端子の一例)とを含む。端子U2はコイル71と接続され、端子W2は端子N3と接続されている。
 直流電源17は、例えば、蓄電池、太陽電池、燃料電池などで構成される。直流電源17は、接続部3に接続される場合、正極が端子P2と接続され、負極が端子N2と接続される。以下、接続するとは電気的に接続することを意味する。直流電源17は、接続部3に接続される場合、直流電源17の電力は、端子P2及び端子N2を介して、トランス回路部5に供給される。
 一方、直流電源17は、接続部15に接続される場合、正極が端子U2に接続され、負極が端子W2に接続される。直流電源17は、接続部15に接続される場合、直流電源17の電力は、端子U2及び端子W2を介して、トランス回路部5に供給される。
 コンデンサ4は、端子P2及び端子N2間に接続された電解コンデンサであり、端子P2及び端子N2間の電圧を安定化させる。
 トランス53は、高周波トランスであり、互いに磁気的に結合された一次巻線531と、二次巻線532とを含む。一次巻線531はコイルL11を含む。一次巻線531は端子T1(第1巻線端子の一例)と端子T2(第2巻線端子の一例)とを含む。
 二次巻線532はコイルL12を含む。二次巻線532は端子T3(第3巻線端子の一例)と端子T4(第4巻線端子の一例)とを含む。
 コイルL11,L12は、それぞれ、端子T2,T3の極性が同じになるように磁気結合されている。また、コイルL11,L12の巻数比は1:1であるとして説明する。但し、これは一例であり、コイルL11,L12の巻数比は1:1とは異なる巻数比が採用されてもよい。
 コンバータ部51は、直流電源17から供給される直流電圧を例えば20kHzの矩形波状の高周波の交流電圧に変換し、一次巻線531及び二次巻線532に供給する高周波インバータである。コンバータ部51は、4個のスイッチング素子AH,AL,BH,BLと、4個のダイオードDAH,DAL,DBH,DBLと、4個のコンデンサCAH,CAL,CBH,CBLとを備える。
 スイッチング素子AH,AL,BH,BLは、例えば、n型の電界効果トランジスタで構成されている。スイッチング素子AH(第3スイッチング素子の一例)は、ドレインが端子P2と接続され、ソースが端子T2と接続されている。スイッチング素子AL(第4スイッチング素子の一例)は、ドレインが端子T2と接続され、ソースが端子N2と接続されている。スイッチング素子BH(第1スイッチング素子の一例)は、ドレインが端子P2と接続され、ソースが端子T1と接続されている。スイッチング素子BL(第2スイッチング素子の一例)はドレインが端子T1と接続され、ソースが端子N2と接続されている。すなわち、コンバータ部51は、4個のスイッチング素子がフルブリッジ接続されたフルブリッジ型(FB型)の回路で構成されている。
 ダイオードDAH,DAL,DBH,DBLは、それぞれ、アノードがスイッチング素子AH,AL,BH,BLのソースに接続され、カソードがスイッチング素子AH,AL,BH,BLのドレインに接続されている。
 ダイオードDAH,DAL,DBH,DBLは、それぞれ、スイッチング素子AH,AL,BH,BLのボディダイオードであってもよいし、外付けのダイオードであってもよい。更にこの場合、ダイオードDAHは、スイッチング素子AHがオンされているときにスイッチング素子AHに流れる電流と逆向きの電流が流れるように、エミッタ及びコレクタにわたって接続される。このことは、ダイオードDAL,DBH,DBLも同じである。
 コンデンサCAH,CAL,CBH,CBLは、それぞれ、スイッチング素子AH,AL,BH,BLのソース及びドレイン間に接続されている。コンデンサCAH,CAL,CBH,CBLは、一次巻線531と共振することで、スイッチング素子AH,AL,BH,BLのソフトスイッチングを実現する。なお、コンデンサCAH,CBHと、コンデンサCAL,CBLとは、それぞれ、端子T1,T2間に接続されてもよい。また、コンデンサCAL,CBLのみ設けられてもよいし、コンデンサCAH,CBHのみ設けられてもよい。
 コンバータ部52は、二次巻線532に交互に供給される正及び負の極性を持つ矩形波状の交流電圧を、正の極性を持つ電圧に変換し、端子P3及び端子N3間に供給する。コンバータ部52は、4個のスイッチング素子XH,XL,YH,YLと、4個のダイオードDXH,DXL,DYH,DYLとを備える。
 スイッチング素子XH,XL,YH,YLは、例えば、n型の電界効果トランジスタで構成されている。スイッチング素子XH(第5スイッチング素子の一例)は、ドレインが端子P3と接続され、ソースが端子T3と接続されている。スイッチング素子XL(第6スイッチング素子の一例)はドレインが端子T3と接続され、ソースが端子N3と接続されている。スイッチング素子YH(第7スイッチング素子の一例)は、ドレインが端子P3と接続され、ソースが端子T4と接続されている。スイッチング素子YL(第8スイッチング素子の一例)は、ドレインが端子T4と接続され、ソースが端子N3と接続されている。すなわち、コンバータ部52は、4個のスイッチング素子がフルブリッジ接続されたフルブリッジ型(FB型)の回路で構成されている。
 ダイオードDXH,DXL,DYH,DYLは、それぞれ、アノードがスイッチング素子XH,XL,YH,YLのソースに接続され、カソードがスイッチング素子XH,XL,YH,YLのドレインに接続されている。
 スイッチング素子XH,XL,YH,YLは、それぞれ、電界効果型トランジスタに代えて、例えばnpn型の絶縁ゲートバイポーラトランジスタで構成されてもよい。この場合、ダイオードDXH,DXL,DYH,DYLは還流ダイオードとして設けられる。更にこの場合、ダイオードDXHは、スイッチング素子XHがオンされているときにスイッチング素子XHに流れる電流と逆向きの電流が流れるように、エミッタ及びコレクタにわたって接続される。このことは、ダイオードDXL,DYH,DYLも同じである。
 制御部13は、スイッチング素子AH,BL,XH,YLをONしているときにスイッチング素子AL,BH,XL,YHをOFFし、スイッチング素子AH,BL,XH,YLをOFFしているときにスイッチング素子AL,BH,XL,YHをONする。ここで、制御部13は、スイッチング素子AH,AL,BH,BL,XH,XL,YH,YLを同じデューティ比で制御する。なお、図51の例では、スイッチング素子AH,AL,BH,BL,XH,XL,YH,YLのデューティ比は、実質的に50%である。実質的に50%とは、50%のデューティ比からデッドタイム(スイッチング素子AH,AL,BH,BL,XH,XL,YH,YLが全てOFFする反転期間)を差し引いたデューティ比である。
 DCDCコンバータ7は、スイッチング素子UH(第9スイッチング素子の一例)と、スイッチング素子UL(第10スイッチング素子の一例)と、2つのダイオードD1,D2と、コイル71と、コンデンサ72とを含む。
 DCDCコンバータ7は、後述の第1伝達モードにおいては、端子P3及び端子N3間に供給される正の電圧を、例えば降圧して接続部15に供給する。また、DCDCコンバータ7は、後述の第2伝達モードにおいては、接続部15から供給される直流電圧を、例えば、昇圧して端子P3及び端子N3間に供給する。
 コイル71は、端子U2及び端子U1間に接続されている。コンデンサ72は、端子U2及び端子W2間に接続されている。なお、コンデンサ72は直流機器28又は直流電源17が備えていても良い。
 スイッチング素子UH,ULは、それぞれ、n型の電界効果型トランジスタで構成されている。スイッチング素子UHは、ドレインが端子P3と接続され、ソースが端子U1と接続されている。スイッチング素子ULはドレインが端子U1に接続され、ソースが端子N3に接続されている。
 ダイオードD1,D2は、それぞれ、アノードがスイッチング素子UH,ULのソースに接続され、カソードがスイッチング素子UH,ULのドレインに接続されている。
 スイッチング素子UH,ULは、それぞれ、電界効果型トランジスタに代えて、例えばnpn型の絶縁ゲートバイポーラトランジスタで構成されてもよい。この場合、ダイオードD1,D2は還流ダイオードとして設けられる。更にこの場合、ダイオードD1は、スイッチング素子UHがオンされているときにスイッチング素子UHに流れる電流と逆向きの電流が流れるように、エミッタ及びコレクタにわたって接続される。このことは、ダイオードD2も同じである。
 制御部13は、スイッチング素子UHとスイッチング素子ULとを相補的にON又はOFFすることによって、直流機器28が接続部15に接続される場合、端子U2,W2から出力若しくは入力される直流電圧である電圧Voutと、端子P2を流れる電流Ibusとの少なくとも一方の大きさを制御する。詳しくは、後で説明する。
 直流機器28は、例えば、直流電力で駆動する電気機器又は直流電源17を充電する充電器で構成される。直流機器28は、接続部15に接続される場合、正極が端子U2に接続され、負極が端子W2に接続される。一方、直流機器28は、接続部3に接続される場合、正極が端子P2に接続され、負極が端子N2に接続される。
 制御部13は、例えば、CPU、FPGA、又はASIC等で構成され、コンバータ部51,52及びDCDCコンバータ7を制御する。
 制御部13は、一次巻線531及び二次巻線532に高周波の交流電圧が供給されるようにコンバータ部51を制御し、且つ、端子P3及び端子N3間に正の極性を持つ電圧が供給されるようにコンバータ部52を制御する。
 制御部13は、一次巻線531の電圧の極性が反転する反転期間を含む第1期間において、トランス回路部5及びDCDCコンバータ7間で電力の伝達が行わないようにDCDCコンバータ7を制御する。制御部13は、第1期間とは異なる第2期間において、トランス回路部5からDCDCコンバータ7に向かう第1方向又は第1方向とは逆の第2方向で電力の伝達が行われるようにDCDCコンバータ7を制御する。
 詳細には、制御部13は、一次巻線531に供給される交流電圧の半周期(単位期間の一例)を構成する第1期間において、反転期間と後述の循環期間とを割り付け、第1期間とは異なる第2期間に後述の第1伝達期間又は第2伝達期間を割り付けるようにコンバータ部51,52及びDCDCコンバータ7を制御する。
 より詳細には、制御部13は、目標とする値を持つ電圧Vout又は電流IbusにするためのDCDCコンバータ7のデューティ比を設定し、設定したデューティ比でスイッチング素子UH,ULを制御する。
 次に、電力変換システム1Jの動作を説明する。
 電力変換システム1Jは、接続部3から接続部15に直流電力を供給する第1伝達モード(降圧モード)と、接続部15から接続部3に直流電力を供給する第2伝達モード(昇圧モード)とのいずれかで動作する。
 第1伝達モードは、端子U2及び端子W2間において、電流が流れる向きと同じ向きに電圧降下が発生するモード、すなわち、電圧Voutと電流ILとの極性が同じモードである。第2伝達モードは、端子U2及び端子W2間において、電流が流れる向きと逆の向きに電圧降下が発生するモード、すなわち、電圧Voutと電流ILとの極性が異なるモードである。
 <タイミングチャート>
 <第1伝達モード>
 次に、第1伝達モードにおける電力変換システム1Jのタイミングチャートについて説明する。図51は第1伝達モードにおける電力変換システム1Jのタイミングチャートを示す図である。以下の説明では、接続部3に直流電源17が接続され、接続部15に直流機器28が接続されているものとする。
 図51において、(1)はスイッチング素子AL,AHのON、OFFを示し、ハイレベルがON、ローレベルがOFFである。なお、スイッチング素子BH,XL,YHはスイッチング素子ALと同一タイミングでON、OFFする。また、スイッチング素子BL,XH,YLは、スイッチング素子AHと同一タイミングでON、OFFする。
 (2)はスイッチング素子UH,ULのON、OFFを示し、ハイレベルがON、ローレベルがOFFである。(3)はコイル71に流れる電流ILと、コイルL12に流れる電流IL3とを示す。(4)は端子N3を基準とする端子P3の電圧「P3-N3」と、端子T4を基準とするコイルL12の電圧VT3とを示す。(5)は端子W2を基準とする端子U2の電圧Voutを示す。以下、端子N2を基準とする端子P2の電圧を電圧VEとして説明する。また、周期Tは、一次巻線531に供給される交流電圧の1周期を示す。
 以下、コンバータ部51,52に着目したシーケンスを期間ST1~ST4に示し、DCDCコンバータ7に着目したシーケンスをTA1,TB1,TC1,TB3,TA2,TB2,TC2,TB4の符号を付した期間に示す。
 <期間ST1>
 制御部13は、スイッチング素子AH,BL,XH,YL=ON、スイッチング素子AL,BH,XL,YH=OFFにする。これにより、電圧VT1=VE,VT3=VEとなる。
 <期間ST2>
 制御部13は、スイッチング素子UH=OFF、スイッチング素子UL=ONにし、電流ILを循環させた状態で、スイッチング素子AH,AL,BH,BL,XH,XL,YH,YL=OFFにする。これにより、コイルL11の励磁電流とコンデンサCAH,CAL,CBH,CBLとの共振動作により、電圧VT1,VT3の極性が正から負に次第に反転され、ソフトスイッチングが実現される。この極性が反転する期間が反転期間である。
 <期間ST3>
 制御部13は、スイッチング素子AH,BL,XH,YL=OFFの状態で、スイッチング素子AL,BH,XL,YH=ONにする。これにより、電圧VT1,VT3=-VEとなる。
 <期間ST4>
 期間ST2と同様、制御部13は、スイッチング素子AH,AL,BH,BL,XH,XL,YH,YL=OFFにし、電圧VT1,VT3の極性を反転させる。
 以後、コンバータ部51,52は、期間ST1、ST2、ST3、ST4の動作を繰り返す。これにより、電圧「P3-N3」=VEが維持され、DCDCコンバータ7に供給される。
 なお、DCDCコンバータ7は、トランス53を介して直流電源17又は直流機器28と接続されている。そのため、DCDCコンバータ7は、トランス53の漏れインダクタンスを介して直流電源17又は直流機器28と直接的に接続されているとみなすことができる。これにより、DCDCコンバータ7のスイッチング時に、電力変換システム1J内でリンギングが生じる。これを防止するためにスナバ回路60が設けられているが、電圧「P3-N3」の極性が反転すると、スナバ回路60に流れる電流の向きも反転するので、コンデンサ62を大容量化することができない。そのため、電圧「P3-N3」の極性が反転すると、リンギングを抑制することが困難である。
 一方、電力変換システム1Jは、電圧「P3-N3」の極性が反転しないので、コンデンサ62の容量を、電圧「P3-N3」の極性が反転する場合に比べて大きくすることができる。そのため、電力変換システム1Jは、リンギングを抑制できる。
 <第1伝達期間TA1>
 制御部13は、スイッチング素子AH,BL,XH,YL=ON,AL,BH,XL,YH=OFFの状態で、スイッチング素子UH=ON、UL=OFFにする。これにより、電流ILが伝達経路K1(図50)を流れる第1伝達期間となる。第1伝達経路K1は、二次巻線532に電流が流れており、接続部3からDCDCコンバータ7へ電力が伝達されている。その結果、DCDCコンバータ7は、第1伝達モードとなる。
 このとき、(3)を参照し、電流ILは直線的に増大している。また、(3)を参照し、電流IL3は急激に減少した後、緩やかな傾きで減少している。
 <循環期間TB1>
 第1伝達期間TA1に続いて循環期間TB1が開始される。制御部13は、スイッチング素子AH,BL,XH,YL=ON,AL,BH,XL,YH=OFFの状態で、スイッチング素子UH=OFF、スイッチング素子UL=ONにする。これにより、電流ILが循環経路K2(図50)を流れる循環期間となる。循環経路K2は、DCDCコンバータ7内で閉ループになっており、接続部3からDCDCコンバータ7への電力の伝達が遮断されている。その結果、DCDCコンバータ7は循環モードになる。
 このとき、(3)を参照し、電流ILが直線的に減少している。また、(3)を参照し、電流IL3は急激に増大した後、0で推移している。
 <反転期間TC1>
 循環期間TB1に続いて反転期間TC1が開始される。反転期間TC1は上述の期間ST2と同じである。制御部13は、DCDCコンバータ7を循環モードにした状態で、スイッチング素子AH,AL,BH,BL,XH,XL,YH,YL=OFFにする。
 <循環期間TB3>
 反転期間TC1に続いて循環期間TB3が開始される。制御部13は、スイッチング素子UH=OFF,UL=ONの状態で(DCDCコンバータ7を循環モードにした状態で)スイッチング素子AL,BH,XL,YH=ONにする。循環期間TB1、反転期間TC1、及び循環期間TB3にわたって、DCDCコンバータ7は循環モードを継続し、接続部3からDCDCコンバータ7への電力の伝達が遮断されている。
 <第1伝達期間TA2>
 循環期間TB3に続いて第1伝達期間TA2が開始される。制御部13は、スイッチング素子AL,BH,XL,YH=ON,AH,BL,XH,YL=OFFの状態で、スイッチング素子UH=ON,UL=OFFにする。これにより、DCDCコンバータ7は第1伝達モードになる。
 このとき、(3)を参照し、電流ILは直線的に増大している。また、(3)を参照し、電流IL3は急激に増大した後、緩やかな傾きで増大している。
 <循環期間TB2>
 第1伝達期間TA2に続いて循環期間TB2が開始される。制御部13は、スイッチング素子AL,BH,XL,YH=ON,AH,BL,XH,YL=OFFの状態で、スイッチング素子UL=ON,UH=OFFにし、DCDCコンバータ7を循環モードにする。
 このとき、(3)を参照し、電流ILは直線的に減少している。また、(3)を参照し、電流IL3は急激に減少した後、0で推移している。
 <反転期間TC2>
 循環期間TB2に続いて反転期間TC2が開始される。反転期間TC2は上述の期間ST4と同じである。制御部13は、DCDCコンバータ7を循環モードにした状態で、スイッチング素子AH,AL,BH,BL,XH,XL,YH,YL=OFFにする。
 <循環期間TB4>
 反転期間TC2に続いて循環期間TB4が開始される。制御部13は、DCDCコンバータ7を循環モードにした状態でスイッチング素子AH,BL,XH,YL=ONにする。循環期間TB2、反転期間TC2、及び循環期間TB4にわたって、DCDCコンバータ7は循環モードを継続し、接続部3からDCDCコンバータ7への電力の伝達が遮断されている。
 このように、電力変換システム1Jは、第1伝達期間TA1、循環期間TB1、反転期間TC1、循環期間TB3、第1伝達期間TA2、循環期間TB2、反転期間TC2、及び循環期間TB4をサイクリックに繰り返し、第1伝達モードを実行する。また、制御部13は、周期Tの半周期を単位周期とし、単位周期における第1伝達期間TA1,TA2の割合をDCDCコンバータ7のデューティ比として設定することで、DCDCコンバータ7から所望の値の電圧Voutを出力する。(5)を参照し、電圧Voutは約249Vから約251Vまでの範囲で若干のリプルが観測されているが、平均すると約250Vの値を持つことが分かる。したがって、接続部15には、約250Vの直流電圧が供給されることになる。制御部13は、このデューティ比を変更することで電圧Voutの値を調節する。
 <第2伝達モード>
 図52は第2伝達モードにおける電力変換システム1Jのタイミングチャートを示す図である。以下の説明では、接続部3に直流電源17が接続され、接続部15に直流機器28が接続されているものとする。図52において、(1)~(4)は図51の(1)~(4)と同じであり、(5)は電圧Voutを示す。なお、スイッチング素子BH,XL,YHはスイッチング素子ALと同一タイミングでON、OFFする。また、スイッチング素子BL,XH,YLは、スイッチング素子AHと同一タイミングでON、OFFする。
 以下、コンバータ部51,52に着目したシーケンスを期間ST1~ST4に示し、DCDCコンバータ7に着目したシーケンスをTD1,TE1,TF1,TE3,TD2,TE2,TF2,TE4の符号を付した期間に示す。
 <期間ST1>~<期間ST4>
 図52において、<期間ST1>~<期間ST4>のシーケンスは、図51の<期間ST1>~<期間ST4>と同じなので、説明を省く。
 <第2伝達期間TD1>
 制御部13は、スイッチング素子AH,BL,XH,YL=ON,AL,BH,XL,YH=OFFの状態で、スイッチング素子UH=ON、UL=OFFにする。これにより、電流ILが伝達経路K3(図50)を流れる第2伝達期間となる。伝達経路K3は、二次巻線532に電流が流れており、DCDCコンバータ7から接続部3へ電力が伝達されている。その結果、DCDCコンバータ7は、第2伝達モードとなる。
 このとき、(3)を参照し、電流ILは直線的に増大している。また、(3)を参照し、電流IL3は急激に増大した後、緩やかな傾きで減少している。
 <循環期間TE1>
 第2伝達期間TD1に続いて循環期間TE1が開始される。制御部13は、スイッチング素子AH,BL,XH,YL=ON,AL,BH,XL,YH=OFFの状態で、スイッチング素子UH=OFF、スイッチング素子UL=ONにする。これにより、電流ILが循環経路K4(図50)を流れる循環期間となる。循環経路K4は、DCDCコンバータ7内で閉ループになっており、DCDCコンバータ7から接続部3への電力の伝達が遮断されている。その結果、DCDCコンバータ7は循環モードになる。
 このとき、(3)を参照し、電流ILは直線的に減少している。また、(3)を参照し、電流IL3は急激に減少した後、0で推移している。
 <反転期間TF1>
 循環期間TE1に続いて反転期間TF1が開始される。反転期間TF1は上述の期間ST2と同じである。制御部13は、DCDCコンバータ7を循環モードにした状態で、スイッチング素子AH,AL,BH,BL,XH,XL,YH,YL=OFFにする。
 <循環期間TE3>
 反転期間TF1に続いて循環期間TE3が開始される。制御部13は、スイッチング素子UH=OFF,UL=ONの状態で(DCDCコンバータ7を循環モードにした状態で)スイッチング素子AL,BH,XL,YH=ONにする。循環期間TE1、反転期間TF1、及び循環期間TE3にわたって、DCDCコンバータ7は循環モードを継続し、DCDCコンバータ7から接続部3への電力の伝達が遮断されている。
 <第2伝達期間TD2>
 循環期間TE3に続いて第2伝達期間TD2が開始される。(1)、(2)を参照し、制御部13は、スイッチング素子AL,BH,XL,YH=ON,AH,BL,XH,YL=OFFの状態で、スイッチング素子UH=ON,UL=OFFにする。これにより、DCDCコンバータ7は第2伝達モードになる。
 このとき、(3)を参照し、電流ILが直線的に増大している。また、(3)を参照し、電流IL1は急激に減少した後、緩やかな傾きで増大している。
 <循環期間TE2>
 第2伝達期間TD2に続いて循環期間TE2が開始される。制御部13は、スイッチング素子AL,BH,XL,YH=ON,AH,BL,XH,YL=OFFの状態で、スイッチング素子UL=ON,UH=OFFにし、DCDCコンバータ7を循環モードにする。
 このとき、(3)を参照し、電流ILは直線的に減少している。また、(3)を参照し、電流IL3は急激に増大した後、0で推移している。
 <反転期間TF2>
 循環期間TE2に続いて反転期間TF2が開始される。反転期間TF2は上述の期間ST4と同じである。制御部13は、DCDCコンバータ7を循環モードにした状態で、スイッチング素子AH,AL,BH,BL,XH,XL,YH,YL=OFFにする。
 <循環期間TE4>
 反転期間TF2に続いて循環期間TE4が開始される。制御部13は、DCDCコンバータ7を循環モードにした状態でスイッチング素子AH,BL,XH,YL=ONにする。循環期間TE2、反転期間TF2、及び循環期間TE4にわたって、DCDCコンバータ7は循環モードを継続し、DCDCコンバータ7から接続部3への電力の伝達が遮断されている。
 このように、電力変換システム1Jは、第2伝達期間TD1、循環期間TE1、反転期間TF1、循環期間TE3、第2伝達期間TD2、循環期間TE2、反転期間TF2、及び循環期間TE4をサイクリックに繰り返し、第2伝達モードを実行する。また、制御部13は、周期Tの半周期を単位周期とし、単位周期における第2伝達期間TD1,TD2の割合をDCDCコンバータ7のデューティ比として設定することで、接続部3に所望の値の電圧Vbusを出力する。(5)を参照し、電圧Vbusは約254.2Vから約254.6Vまでの範囲で若干のリプルが観測されているが、平均すると約254Vの値を持つことが分かる。したがって、接続部3には、約254Vの直流電圧が供給されることになる。制御部13は、このデューティ比を変更することで電圧Vbusの値を調節する。
 図51,図52の波形図を比較すると、第1伝達モードと第2伝達モードとは、スイッチング素子AH,AL,BH,BL,XH,XL,YH,YLを同一のシーケンスで駆動できることが分かる。
 例えば、電流ILの極性の誤検出や外乱による電流ILの乱れにより、電流ILが想定する極性とは異なる極性を示すことがある。電力変換システム1Jは、第1伝達モード及び第2伝達モードとが同一シーケンスなので、両モードにおいて電流ILは同一経路をたどることになる。その結果、電力変換システム1Jは、電流ILが想定する極性と異なる極性を示したとしても、その影響を受けにくくなる。したがって、電力変換システム1Jは、電流ILが想定する極性とは異なる極性を示したとしても、第1伝達モードと第2伝達モードとを連続的に切り替えることができる。その結果、UPS(無停電電源装置)など自立運転にも適応できる。
 以上、電力変換システム1Jは、コイルL11,L12のそれぞれに正及び負の電圧が交互に印加されるようにコンバータ部51を制御するが、電圧「P3-N3」が正となるようにコンバータ部52を制御する。そのため、DCDCコンバータ7には、極性が一定の電圧が入力される。その結果、DCDCコンバータ7は、通常のDCDCコンバータで構成でき、通常の制御をそのまま適用できる。
 また、電力変換システム1Jは、第2期間(第1及び第2伝達期間)では、トランス53の等価回路上、DCDCコンバータ7はコンデンサ4(図50)とトランス53の漏れインダクタンスで直結される状態となる。
 電力変換システム1Jでは、この第2期間のみで一次側と二次側とで電力の伝達を行うため、電力の伝達を行うタイミングでは常にコンデンサ4とDCDCコンバータ7とが直結されることになる。
 そのため、端子P3及び端子N3間に、平滑用のコンデンサは不要となり、回路規模を小さくできる。
 また、リンギング対策として、スナバ回路60を設ける際に、小さな容量のコンデンサで対応することが可能である。
 また、電力変換システム1Jは、DCDCコンバータ7が循環モードに設定されている期間において、コイルL11,L12の極性を反転させる反転期間を設けている。そのため、電力変換システム1Jは、第2伝達モード及び第1伝達モードのいずれのモードで駆動している場合であっても、負荷電流によらず、励磁電流と共振用のコンデンサCAH,CAL,CBH,CBLとの共振動作により反転動作を行うことができる。その結果、電力変換システム1Jは、コイルL11,L12にかかる電圧の極性の反転を安定的に行うことができる。
 実施の形態12では、コンバータ部51,52が共にフルブリッジ型(FB型)である場合を例として説明したが、コンバータ部51,52は、それぞれ、センタータップ型(CNT型)であってもよいし、ハーフブリッジ型(HB型)であってもよい。すなわち、トランス回路部5は、これらの組み合わせにより構成されていればよい。
 また、スナバ回路60の代わりに、図47~図49に示すスナバ回路60A~60Cを適用してもよい。
 (実施の形態13)
 図53は、実施の形態13に係る電力変換システム1Kの回路図である。電力変換システム1Kは、接続部3(第1外部接続部の一例)から接続部15(第2外部接続部の一例)に向かう第1単方向に電力を変換して伝達する電力変換システムである。
 電力変換システム1Kは、接続部3、コンデンサ4、トランス回路部5、接続部6、コンバータ部7、及び接続部15を備えるパワーコンディショナである。接続部3は、端子P2(第1外部接続端子の一例)と、端子N2(第2外部接続端子の一例)とを含む。
 トランス回路部5は、コンバータ部51(第1コンバータ部の一例)、コンバータ部52(第2コンバータ部の一例)、及びトランス53を含む。接続部6は、端子P3(第1接続端子の一例)と、端子N3(第2接続端子の一例)と、スナバ回路60とを含む。スナバ回路60は、抵抗61及びコンデンサ62を含む。コンバータ部7(第3コンバータ部の一例)は、第1単方向に電力を伝達するチョッパ回路で構成されている。接続部15は、端子U2(第3外部接続端子の一例)と端子W2(第4外部接続端子の一例)とを含む。端子U2はコイル71と接続され、端子W2は端子N3と接続されている。
 直流電源17(第1接続対象の一例)は、例えば、蓄電池、太陽電池、燃料電池などで構成される。直流電源17の正極は端子P2と接続され、直流電源17の負極は端子N2と接続される。以下、接続するとは電気的に接続することを意味する。直流電源17の電力は、端子P2及び端子N2を介して、トランス回路部5に供給される。
 コンデンサ4は、端子P2及び端子N2間に接続された電解コンデンサであり、端子P2及び端子N2間の電圧を安定化させる。
 トランス53は、高周波トランスであり、互いに磁気的に結合された一次巻線531と、二次巻線532とを含む。一次巻線531はコイルL11を含む。一次巻線531は端子T1(第1巻線端子の一例)と端子T2(第2巻線端子の一例)とを含む。
 二次巻線532はコイルL12を含む。二次巻線532は端子T3(第3巻線端子の一例)と端子T4(第4巻線端子の一例)とを含む。
 コイルL11,L12は、それぞれ、端子T2,T3の極性が同じになるように磁気結合されている。また、コイルL11,L12の巻数比は1:1であるとして説明する。但し、これは一例であり、コイルL11,L12の巻数比は1:1とは異なる巻数比が採用されてもよい。
 コンバータ部51は、直流電源17から供給される直流電圧を例えば20kHzの矩形波状の高周波の交流電圧に変換し、一次巻線531及び二次巻線532に供給する高周波インバータである。コンバータ部51は、4個のスイッチング素子AH,AL,BH,BLと、4個のダイオードDAH,DAL,DBH,DBLと、4個のコンデンサCAH,CAL,CBH,CBLとを備える。
 スイッチング素子AH,AL,BH,BLは、例えば、n型の電界効果トランジスタで構成されている。スイッチング素子AH(第3スイッチング素子の一例)は、ドレインが端子P2と接続され、ソースが端子T2と接続されている。スイッチング素子AL(第4スイッチング素子の一例)は、ドレインが端子T2と接続され、ソースが端子N2と接続されている。スイッチング素子BH(第1スイッチング素子の一例)は、ドレインが端子P2と接続され、ソースが端子T1と接続されている。スイッチング素子BL(第2スイッチング素子の一例)はドレインが端子T1と接続され、ソースが端子N2と接続されている。すなわち、コンバータ部51は、4個のスイッチング素子がフルブリッジ接続されたフルブリッジ型(FB型)の回路で構成されている。
 ダイオードDAH,DAL,DBH,DBLは、それぞれ、アノードがスイッチング素子AH,AL,BH,BLのソースに接続され、カソードがスイッチング素子AH,AL,BH,BLのドレインに接続されている。
 ダイオードDAH,DAL,DBH,DBLは、それぞれ、スイッチング素子AH,AL,BH,BLのボディダイオードであってもよいし、外付けのダイオードであってもよい。更にこの場合、ダイオードDAHは、スイッチング素子AHがオンされているときにスイッチング素子AHに流れる電流と逆向きの電流が流れるように、エミッタ及びコレクタにわたって接続される。このことは、ダイオードDAL,DBH,DBLも同じである。
 コンデンサCAH,CAL,CBH,CBLは、それぞれ、スイッチング素子AH,AL,BH,BLのソース及びドレイン間に接続されている。コンデンサCAH,CAL,CBH,CBLは、一次巻線531と共振することで、スイッチング素子AH,AL,BH,BLのソフトスイッチングを実現する。なお、コンデンサCAH,CBHと、コンデンサCAL,CBLとは、それぞれ、端子T1,T2間に接続されてもよい。また、コンデンサCAL,CBLのみ設けられてもよいし、コンデンサCAH,CBHのみ設けられてもよい。
 コンバータ部52は、二次巻線532に交互に供給される正及び負の極性を持つ矩形波状の交流電圧を、正の極性を持つ電圧に変換し、端子P3及び端子N3間に供給する。コンバータ部52は、4個のダイオードDXH,DXL,DYH,DYLを備える。
 ダイオードDXH(第5スイッチング素子の一例)は、カソードが端子P3と接続され、アノードが端子T3と接続されている。ダイオードDXL(第6スイッチング素子の一例)は、カソードが端子T3と接続され、アノードが端子N3と接続されている。ダイオードDYH(第7スイッチング素子の一例)は、カソードが端子P3と接続され、アノードが端子T4と接続されている。ダイオードDYL(第8スイッチング素子の一例)は、カソードが端子T4と接続され、アノードが端子N3と接続されている。すなわち、コンバータ部52は、4個のダイオードがフルブリッジ接続されたフルブリッジ型(FB型)の回路で構成されている。なお、コンバータ部52は、2つのダイオードがハーフブリッジ接続されたハーフブリッジ型の回路で構成されていてもよい。
 制御部13は、スイッチング素子AH,BLをONしているときにスイッチング素子AL,BHをOFFし、スイッチング素子AH,BLをOFFしているときにスイッチング素子AL,BHをONする。ここで、制御部13は、スイッチング素子AH,AL,BH,BLを同じデューティ比で制御する。なお、図54の例では、スイッチング素子AH,AL,BH,BLのデューティ比は、実質的に50%である。実質的に50%とは、50%のデューティ比からデッドタイム(スイッチング素子AH,AL,BH,BLが全てOFFする反転期間)を差し引いたデューティ比である。
 コンバータ部7は、スイッチング素子UH(第9スイッチング素子の一例)と、2つのダイオードD1,D2と、コイル71と、コンデンサ72とを含む。
 コンバータ部7は、端子P3及び端子N3間に供給される正の電圧を、例えば降圧して直流機器28に供給する。
 コイル71は、端子U2及び端子U1間に接続されている。コンデンサ72は、端子U2及び端子W2間に接続されている。
 スイッチング素子UHは、n型の電界効果型トランジスタで構成されている。スイッチング素子UHは、ドレインが端子P3と接続され、ソースが端子U1と接続されている。
 ダイオードD1は、カソードがスイッチング素子UHのドレインに接続され、アノードがスイッチング素子UHのソースに接続されている。ダイオードD2は、カソードが端子U1に接続され、アノードが端子N3に接続されている。
 スイッチング素子UHは、電界効果型トランジスタに代えて、例えばnpn型の絶縁ゲートバイポーラトランジスタで構成されてもよい。この場合、ダイオードD1は還流ダイオードとして設けられる。更にこの場合、ダイオードD1は、スイッチング素子UHがオンされているときにスイッチング素子UHに流れる電流と逆向きの電流が流れるように、エミッタ及びコレクタにわたって接続される。
 制御部13は、スイッチング素子UHをON及びOFFすることによって、端子U2,W2から出力される直流電圧である電圧Voutと、端子P2に流れる電流Ibusとの少なくとも一方の大きさを制御する。詳しくは、後で説明する。
 直流機器28(第2接続対象の一例)は、例えば、直流電力で駆動する電気機器、又は直流電源17を充電する充電器で構成される。
 制御部13は、例えば、CPU、FPGA、又はASIC等で構成され、コンバータ部51及びコンバータ部7を制御する。
 制御部13は、一次巻線531及び二次巻線532に高周波の交流電圧が供給され、且つ、端子P3及び端子N3間に正の極性を持つ電圧が供給されるようにコンバータ部51を制御する。
 制御部13は、一次巻線531の電圧の極性が反転する反転期間を含む第1期間において、トランス回路部5及びコンバータ部7間で電力の伝達が行わないようにコンバータ部7を制御する。制御部13は、第1期間とは異なる第2期間において、トランス回路部5からコンバータ部7に向かう第1単方向で電力の伝達が行われるようにコンバータ部7を制御する。
 詳細には、制御部13は、一次巻線531に供給される交流電圧の半周期(単位期間の一例)を構成する第1期間において、反転期間と後述の循環期間とを割り付けるようにコンバータ部51及びコンバータ部7を制御する。
 より詳細には、制御部13は、目標とする値を持つ電圧Vout又は電流Ibusにするためのコンバータ部7のデューティ比を設定し、設定したデューティ比でスイッチング素子UHを制御する。
 電力変換システム1Kは、端子U2及び端子W2間において、直流機器28を介して電流が流れる向きと同じ向きに電圧降下が発生する、すなわち、電圧Voutと電流ILとの極性が同じになるように動作する。
 <タイミングチャート>
 次に、電力変換システム1Kのタイミングチャートについて説明する。図54は電力変換システム1Kのタイミングチャートを示す図である。図54において、(1)はスイッチング素子AL,AHのON、OFFを示し、ハイレベルがON、ローレベルがOFFである。なお、スイッチング素子BH,XLはスイッチング素子ALと同一タイミングでON、OFFする。また、スイッチング素子BL,XHは、スイッチング素子AHと同一タイミングでON、OFFする。
 (2)はスイッチング素子UHのON、OFFを示し、ハイレベルがON、ローレベルがOFFである。(3)はコイル71に流れる電流ILと、コイルL12に流れる電流IL3とを示す。(4)は端子N3を基準とする端子P3の電圧「P3-N3」と、端子T4を基準とするコイルL12の電圧VT3とを示す。(5)は端子W2を基準とする端子U2の電圧Voutを示す。以下、端子N2を基準とする端子P2の電圧を電圧VEとして説明する。また、周期Tは、一次巻線531に供給される交流電圧の1周期を示す。
 以下、コンバータ部51,52に着目したシーケンスを期間ST1~ST4に示し、コンバータ部7に着目したシーケンスをTA1,TB1,TC1,TB3,TA2,TB2,TC2,TB4の符号を付した期間に示す。
 <期間ST1>
 制御部13は、スイッチング素子AH,BL=ON、スイッチング素子AL,BH=OFFにする。これにより、電圧VT1=VE,VT3=VEとなる。このとき、ダイオードDXH,DYL=ON,DXL,DYH=OFFになるので、電圧「P3-N3」=VEとなる。
 <期間ST2>
 制御部13は、スイッチング素子UH=OFFにし、電流ILを循環させた状態で、スイッチング素子AH,AL,BH,BL=OFFにする。これにより、コイルL11の励磁電流とコンデンサCAH,CAL,CBH,CBLとの共振動作により、電圧VT1,VT3の極性が正から負に次第に反転され、ソフトスイッチングが実現される。この極性が反転する期間が反転期間である。
 <期間ST3>
 制御部13は、スイッチング素子AH,BL=OFFの状態で、スイッチング素子AL,BH=ONにする。これにより、電圧VT1,VT3=-VEとなる。このとき、ダイオードDXH,DYL=OFF,DXL,DYH=ONになるので、電圧「P3-N3」=VEとなる。
 <期間ST4>
 期間ST2と同様、制御部13は、スイッチング素子AH,AL,BH,BL=OFFにし、電圧VT1,VT3の極性を反転させる。
 以後、コンバータ部51,52は、期間ST1、ST2、ST3、ST4の動作を繰り返す。これにより、電圧「P3-N3」=VEが維持され、コンバータ部7に供給される。
 なお、コンバータ部7は、トランス53を介して直流電源17と接続されている。そのため、コンバータ部7は、トランス53の漏れインダクタンスを介して直流電源17と直接的に接続されているとみなすことができる。これにより、コンバータ部7のスイッチング時に、電力変換システム1K内でリンギングが生じる。これを防止するためにスナバ回路60が設けられているが、電圧「P3-N3」の極性が反転すると、スナバ回路60に流れる電流の向きも反転するので、コンデンサ62を大容量化することができない。そのため、電圧「P3-N3」の極性が反転すると、リンギングを抑制することが困難である。
 一方、電力変換システム1Kは、電圧「P3-N3」の極性が反転しないので、コンデンサ62の容量を、電圧「P3-N3」の極性が反転する場合に比べて大きくすることができる。そのため、電力変換システム1Kは、リンギングを抑制できる。
 <第1伝達期間TA1>
 制御部13は、スイッチング素子AH,BL=ON,AL,BH=OFFの状態で、スイッチング素子UH=ONにする。これにより、電流ILが第1伝達経路K1(図53)を流れる第1伝達期間となる。第1伝達経路K1は、二次巻線532に電流が流れており、第1単方向に電力が伝達されている。その結果、コンバータ部7は、第1単方向に電力を伝達する第1伝達モードとなる。ここでは、接続部3には直流電源17が接続され、接続部15には直流機器28が接続されているので、第1伝達期間は直流電源17から直流機器28に電力が伝達される期間になる。
 このとき、(3)を参照し、電流ILは直線的に増大している。また、(3)を参照し、電流IL3は急激に減少した後、緩やかな傾きで減少している。
 <循環期間TB1>
 第1伝達期間TA1に続いて循環期間TB1が開始される。制御部13は、スイッチング素子AH,BL=ON,AL,BH=OFFの状態で、スイッチング素子UH=OFFにする。これにより、電流ILが循環経路K2(図53)を流れる循環期間となる。循環経路K2は、コンバータ部7内で閉ループになっており、直流電源17からコンバータ部7への電力の伝達が遮断されている。その結果、コンバータ部7は循環モードになる。
 このとき、(3)を参照し、電流ILが直線的に減少している。また、(3)を参照し、電流IL3は急激に増大した後、0で推移している。
 <反転期間TC1>
 循環期間TB1に続いて反転期間TC1が開始される。反転期間TC1は上述の期間ST2と同じである。制御部13は、コンバータ部7を循環モードにした状態で、スイッチング素子AH,AL,BH,BL=OFFにする。
 <循環期間TB3>
 反転期間TC1に続いて循環期間TB3が開始される。制御部13は、スイッチング素子UH=OFFの状態で(コンバータ部7を循環モードにした状態で)スイッチング素子AL,BH=ONにする。循環期間TB1、反転期間TC1、及び循環期間TB3にわたって、コンバータ部7は循環モードを継続し、直流電源17からコンバータ部7への電力の伝達が遮断されている。
 <第1伝達期間TA2>
 循環期間TB3に続いて第1伝達期間TA2が開始される。制御部13は、スイッチング素子AL,BH=ON,AH,BL=OFFの状態で、スイッチング素子UH=ONにする。これにより、コンバータ部7は第1伝達モードになる。
 このとき、(3)を参照し、電流ILは直線的に増大している。また、(3)を参照し、電流IL3は急激に増大した後、緩やかな傾きで増大している。
 <循環期間TB2>
 第1伝達期間TA2に続いて循環期間TB2が開始される。制御部13は、スイッチング素子AL,BH=ON,AH,BL=OFFの状態で、スイッチング素子UH=OFFにし、コンバータ部7を循環モードにする。
 このとき、(3)を参照し、電流ILは直線的に減少している。また、(3)を参照し、電流IL3は急激に減少した後、0で推移している。
 <反転期間TC2>
 循環期間TB2に続いて反転期間TC2が開始される。反転期間TC2は上述の期間ST4と同じである。制御部13は、コンバータ部7を循環モードにした状態で、スイッチング素子AH,AL,BH,BL=OFFにする。
 <循環期間TB4>
 反転期間TC2に続いて循環期間TB4が開始される。制御部13は、コンバータ部7を循環モードにした状態でスイッチング素子AH,BL=ONにする。循環期間TB2、反転期間TC2、及び循環期間TB4にわたって、コンバータ部7は循環モードを継続し、直流電源17からコンバータ部7への電力の伝達が遮断されている。
 このように、電力変換システム1Kは、第1伝達期間TA1、循環期間TB1、反転期間TC1、循環期間TB3、第1伝達期間TA2、循環期間TB2、反転期間TC2、及び循環期間TB4をサイクリックに繰り返し、直流機器28に電力を供給する。また、制御部13は、周期Tの半周期を単位周期とし、単位周期における第1伝達期間TA1,TA2の割合をコンバータ部7のデューティ比として設定することで、コンバータ部7から所望の値の電圧Voutを出力する。(5)を参照し、電圧Voutは約249Vから約250.75Vまでの範囲で若干のリプルが観測されているが、平均すると約250Vの値を持つことが分かる。したがって、直流機器28には、約250Vの直流電圧が供給されることになる。制御部13は、このデューティ比を変更することで電圧Voutの値を調節する。
 図55は、図54において反転期間TC1,TC2を拡大して示したタイミングチャートである。図55において、(1)~(5)は図54の(1)~(5)の反転期間TC2を拡大した図であり、(6)~(10)は図5の(1)~(5)の反転期間TC1を拡大した図である。
 (1)を参照し、反転期間TC2において、スイッチング素子AL=OFFからスイッチング素子AH=ONまでデッドタイムTdが設けられていることが分かる。デッドタイムTdは、例えば2μsである。また、(2)を参照し、スイッチング素子AH=ONからスイッチング素子UH=ONまでデッドタイムTaが設けられていることが分かる。デッドタイムTaは、例えば0.5μsである。これにより、スイッチング素子の保護が図られている。
 (4)を参照し、電圧VT3はデッドタイムTdにおいて負から正の極性に反転していることが分かる。
 (4)を参照し、全期間に亘って電圧「P3-N3」は一定の値を維持していることが分かる。
 (6)を参照し、反転期間TC1において、スイッチング素子AH=OFFからスイッチング素子AL=ONまでデッドタイムTdが設けられていることが分かる。また、(7)を参照し、スイッチング素子AL=ONからスイッチング素子UH=ONまでデッドタイムTaが設けられていることが分かる。(9)を参照し、電圧VT3はデッドタイムTdにおいて正から負の極性に反転していることが分かる。
 (9)を参照し、全期間に亘って電圧「P3-N3」は一定の値を維持していることが分かる。
 以上、電力変換システム1Kは、コイルL11,L12のそれぞれに正及び負の電圧が交互に印加され、且つ、電圧「P3-N3」が正となるようにコンバータ部51を制御する。そのため、コンバータ部7には、極性が一定の電圧が入力される。その結果、コンバータ部7は、通常のチョッパ回路で構成でき、通常の制御をそのまま適用できる。
 また、電力変換システム1Kは、第2期間(第1伝達期間)では、トランス53の等価回路上、コンバータ部7はコンデンサ4(図53)とトランス53の漏れインダクタンスで直結される状態となる。
 電力変換システム1Kでは、この第2期間のみで一次側と二次側とで電力の伝達を行うため、電力の伝達を行うタイミングでは常にコンデンサ4とコンバータ部7とが直結されることになる。
 そのため、端子P3及び端子N3間に、平滑用のコンデンサは不要となり、回路規模を小さくできる。
 また、リンギング対策として、スナバ回路60を設ける際に、小さな容量のコンデンサで対応することが可能である。
 また、電力変換システム1Kは、コンバータ部7が循環モードに設定されている期間において、コイルL11,L12の極性を反転させる反転期間を設けている。そのため、電力変換システム1Kは、負荷電流によらず、励磁電流と共振用のコンデンサCAH,CAL,CBH,CBLとの共振動作により反転動作を行うことができる。その結果、電力変換システム1Kは、コイルL11,L12にかかる電圧の極性の反転を安定的に行うことができる。
 (実施の形態14)
 図56は、実施の形態14に係る電力変換システム1Lの回路図である。実施の形態14の電力変換システム1Lは、コンバータ部51及び一次巻線531をセンタータップ型(CNT型)の回路で構成し、コンバータ部52及び二次巻線532をセンタータップ型(CNT型)の回路で構成したことを特徴とする(CNT-CNT型)。以下、実施の形態14において、実施の形態13と同一構成は同一の符号を付して説明を省く。また、実施の形態14に係る電力変換システム1Lも実施の形態13と同様、第1単方向に電力を伝達する電力変換システムである。
 トランス53は、センタータップ型の高周波トランスであり、互いに磁気的に結合された一次巻線531と、二次巻線532とを含む。一次巻線531は、センタータップCT1(第1センタータップの一例)により分離される2つのコイルL1,L2を含む。
 センタータップCT1は、端子P2と接続される。一次巻線531の一端である端子T1は、スイッチング素子BL(第1スイッチング素子の一例)に接続されている。一次巻線531の他端である端子T2(第2巻線端子の一例)は、スイッチング素子AL(第2スイッチング素子の一例)に接続されている。
 二次巻線532は、センタータップCT2(第2センタータップの一例)により分離される2つのコイルL3,L4を含む。センタータップCT2は、端子P3と接続されている。二次巻線532の一端である端子T3(第3巻線端子の一例)は、ダイオードDYL(第5スイッチング素子の一例)に接続されている。二次巻線532の他端である端子T4(第4巻線端子の一例)は、ダイオードDXL(第6スイッチング素子の一例)に接続されている。コイルL1,L2,L3,L4は、それぞれ、センタータップCT1,端子T2,センタータップCT2,端子T4の極性が同じになるように磁気結合されている。
 以下、コイルL1~L4(高周波トランス)の巻数比は1:1:1:1であるとして説明する。但し、これは一例であり、コイルL1~L4の巻数比は1:1:1:1とは異なる巻数比が採用されてもよい。
 コンバータ部51は、2個のスイッチング素子AL,BLと、2個のダイオードDAL,DBLと、2個のコンデンサCAL,CBLとを備える。これらコンバータ部51を構成する素子の接続関係は図53の同一符号を付した素子と同じであるため、説明を省く。
 コンバータ部52は、2個のダイオードDYL,DXLを備える。ダイオードDYLは、カソードが端子T3と接続され、アノードが端子N3と接続されている。ダイオードDXLはカソードが端子T4と接続され、アノードが端子N3と接続されている。
 次に、電力変換システム1Lのコンバータ部51,52の動作について説明する。下記に示す<期間ST1>~<期間ST4>は実施の形態13で説明した<期間ST1>~<期間ST4>に対応している。以下の説明では、図56に示す電圧VT1,VT2,VT3,VT4は、それぞれ、端子T1,T2,T3,T4を基準とするコイルL1,L2,L3,L4の電圧である。なお、電力変換システム1Lにおいて、コンバータ部7の動作は実施の形態13と同じであるため、説明を省く。
 <期間ST1>
 制御部13は、スイッチング素子BL=ON、スイッチング素子AL=OFFにする。これにより、VT1=VE、VT2=-VE、VT3=VE,VT4=-VEとなる。
 このとき、端子N2を基準とする端子T1の電圧「T1-N2」=0、端子N2を基準とする端子T2の電圧「T2-N2」=2VEとなる。また、ダイオードDYLがONし、ダイオードDXLがOFFになるので、端子N3を基準とする端子T3の電圧「T3-N3」=0、端子N3を基準とする端子T4の電圧「T4-N3」=2VEとなる。よって、端子N3を基準とする端子P3の電圧「P3-N3」=VEになる。
 <期間ST2>
 制御部13は、スイッチング素子UH=OFFにし、電流ILを循環させた状態で、スイッチング素子AL,BL=OFFにする。これにより、コイルL1の励磁電流とコンデンサCAL,CBLとの共振動作により、電圧VT1,VT3の極性が正から負に次第に反転され、電圧VT2,VT4の極性が負から正に次第に反転され、ソフトスイッチングが実現される。
 <期間ST3>
 制御部13は、スイッチング素子BL=OFFの状態で、スイッチング素子AL=ONにする。これにより、VT2=VEとなり、VT1=-VE、VT3=-VE、VT4=VEになる。
 このとき、ダイオードDXLがONし、ダイオードDYLがOFFになるので、電圧「T1-N2」=2VE、電圧「T2-N2」=0、電圧「T3-N3」=2VE、電圧「T4-N3」=0となる。よって、電圧「P3-N3」=VEになる。
 <期間ST4>
 期間ST2と同様、制御部13は、スイッチング素子AL,BL=OFFにし、電圧VT1~VT4の極性を反転させる。
 以後、コンバータ部51,52は、期間ST1、ST2、ST3、ST4の動作を繰り返す。これにより、電圧「P3-N3」=VEが維持され、コンバータ部7に供給される。
 以上、電力変換システム1Lは、CNT-CNT型の回路で構成した場合においても電力変換システム1Kと同じ効果が得られる。
 (実施の形態15)
 図57は、実施の形態15に係る電力変換システム1Mの回路図である。実施の形態15の電力変換システム1Mは、コンバータ部51及び一次巻線531をハーフブリッジ型(HB型)の回路で構成し、コンバータ部52及び二次巻線532をセンタータップ型(CNT型)の回路で構成したことを特徴とする(HB-CNT型)。以下、実施の形態15において、実施の形態13,14と同一構成は同一の符号を付して説明を省く。また、実施の形態15に係る電力変換システム1Mも実施の形態13,14と同様、第1単方向に電力を伝達する電力変換システムである。
 コンバータ部51は、ハーフブリッジ接続された2つのスイッチング素子AH,ALを備える。スイッチング素子AH(第1スイッチング素子の一例)はドレインが端子P2に接続され、ソースが端子T2に接続されている。スイッチング素子AL(第2スイッチング素子の一例)は、ドレインが端子T2に接続され、ソースが端子N2に接続されている。
 スイッチング素子AH,ALには、それぞれ、アノードがソース、カソードがドレインに接続されるダイオードDAH,DALが接続されている。コンデンサC*1とコンデンサC*2とは、直流電源17の電圧VEを分圧した直流電圧Vmを生成するためのコンデンサである。コンデンサC*1は端子P2と端子T1との間に接続され、コンデンサC*2は端子T1と端子N2との間に接続されている。
 スイッチング素子AHのドレイン、ソース間にコンデンサCAHが接続され、スイッチング素子ALのドレイン、ソース間にコンデンサCALが接続される。コンデンサCAH,CALは、図5で示すコンデンサC14と同じ機能を持ち、コイルL11とで共振することで、コンバータ部51をソフトスイッチングさせる。なお、コンデンサCAH,CALは、それぞれ、端子T1と端子T2との間に接続されてもよい。
 実施の形態15では、一次巻線531は、センタータップを備えていないので、コイルL11のみで構成されている。コイルL11は端子T2及び端子T1間に接続されている。コイルL11,L3,L4は、端子T2、センタータップCT2,端子T4が同じ極性になるように磁気結合されている。
 コンバータ部52及び二次巻線532の構成は図56と同じCNT型なので説明を省く。
 次に、電力変換システム1Mのコンバータ部51,52の動作について説明する。下記に示す<期間ST1>~<期間ST4>は実施の形態13で説明した<期間ST1>~<期間ST4>に対応している。以下の説明では、図7に示す、電圧VT1,VT3,VT4は、それぞれ、端子T1,T3,T4を基準とするコイルL11,L3,L4の電圧である。なお、電力変換システム1Mにおいて、コンバータ部7の動作は実施の形態13と同じであるため、説明を省く。
 <期間ST1>
 制御部13は、スイッチング素子AH=ON、スイッチング素子AL=OFFにする。このとき、ダイオードDYL=ON,DXL=OFFになる。これにより、VT1=VE、VT3=VE,VT4=-VEとなる。よって、端子N3を基準とする端子P3の電圧「P3-N3」=VEになる。
 <期間ST2>
 制御部13は、スイッチング素子UH=OFFにし、電流ILを循環させた状態で、スイッチング素子AH,AL=OFFにする。これにより、コイルL11の励磁電流とコンデンサCAH,CALとの共振動作により、電圧VT1,VT3の極性が正から負に次第に反転され、ソフトスイッチングが実現される。
 <期間ST3>
 制御部13は、スイッチング素子AH=OFFの状態で、スイッチング素子AL=ONにする。このとき、ダイオードDYL=OFF,DXL=ONになる。これにより、VT1=-VE、VT3=-VE、VT4=VEになる。よって、端子N3を基準とする端子P3の電圧「P3-N3」=VEになる。
 <期間ST4>
 期間ST2と同様、制御部13は、スイッチング素子AH,AL=OFFにし、電圧VT1,VT3,VT4の極性を反転させる。
 以後、コンバータ部51,52は、期間ST1、ST2、ST3、ST4の動作を繰り返す。これにより、電圧「P3-N3」=VEが維持され、コンバータ部7に供給される。
 以上、電力変換システム1Mは、HB-CNT型の回路で構成した場合においても電力変換システム1Kと同じ効果が得られる。
 実施の形態13では、コンバータ部51,52が共にフルブリッジ型(FB型)であり、実施の形態14では、コンバータ部51,52が共にセンタータップ型(CNT型)であり、実施の形態15では、コンバータ部51がハーフブリッジ型(HB型)、コンバータ部52がセンタータップ型である場合を例として説明したが、コンバータ部51,52の組み合わせは上記の組み合わせに限定されない。例えば、コンバータ部51がセンタータップ型、コンバータ部52がフルブリッジ型であってもよいし、コンバータ部51,52が共にハーフブリッジ型であってもよい。
 また、スナバ回路60の代わりに、図47~図49に示すスナバ回路60A~60Cを適用してもよい。
 (実施の形態16)
 図58は、実施の形態16に係る電力変換システム1Nの回路図である。実施の形態16の電力変換システム1Nは、コンバータ部7を単相インバータで構成したことを特徴とする。本実施の形態において、コンバータ部51,52は、それぞれ、図56と同様、CNT型であるので詳細な説明は省略する。
 コンバータ部7及び接続部15間にはフィルタ回路9が設けられている。フィルタ回路9は、一対のコイル91,92及びコンデンサ93を含む。
 コンバータ部7は、端子P3及び端子N3間に供給される正の電圧から例えば、周波数が50Hz又は60Hzの商用の交流電圧を生成する単相インバータである。コンバータ部7は、スイッチング素子UH(第9スイッチング素子の一例)と、スイッチング素子UL(第10スイッチング素子の一例)と、スイッチング素子WH(第11スイッチング素子の一例)と、スイッチング素子WL(第12スイッチング素子の一例)と、4つのダイオードD1~D4と、端子U1と、端子W1とを含み、スイッチング素子、UH,UL,WH,WLがフルブリッジ接続された単相インバータである。
 スイッチング素子UH~WLは、それぞれ、n型の電界効果型トランジスタで構成されている。スイッチング素子UHは、ドレインが端子P3と接続され、ソースが端子U1と接続されている。スイッチング素子WHはドレインが端子P3と接続され、ソースが端子W1と接続されている。
 スイッチング素子ULはドレインが端子U1に接続され、ソースが端子N3に接続されている。スイッチング素子WLはドレインが端子W1に接続され、ソースが端子N3に接続されている。
 ダイオードD1~D4は、それぞれ、アノードがソースに接続され、カソードがドレインに接続されるようにスイッチング素子UH~WLと接続されている。
 スイッチング素子UH,UL,WH,WLは、それぞれ、電界効果型トランジスタに代えて、例えばnpn型の絶縁ゲートバイポーラトランジスタで構成されてもよい。この場合、ダイオードD1,D2,D3,D4は還流ダイオードとして設けられる。更にこの場合、ダイオードD1は、スイッチング素子UHがオンされているときにスイッチング素子UHに流れる電流と逆向きの電流が流れるように、エミッタ及びコレクタにわたって接続される。このことは、ダイオードD2,D3,D4も同じである。
 制御部13は、スイッチング素子UH~WLをON又はOFFすることによって、端子U2,W2における電圧Voutまたは端子P2を流れる電流Ibusの少なくとも一方の振幅を制御する。詳しくは、後で説明する。
 コイル91は、端子U1及び端子U2間に接続され、コイル92は、端子W1及び端子W2間に接続される。コンデンサ93は端子U2及び端子W2間に接続される。コイル91,92とコンデンサ93とは、コンバータ部7から出力された矩形波状の交流電圧を平滑化するフィルタ回路を構成する。これにより、コンバータ部7から出力された矩形波状の交流電圧は、パルス幅に応じた振幅を持つ正弦波状の交流電圧に変換される。
 直流電源17から交流電力系統29に電力を供給するとき(売電)するとき、端子U2,W2が交流電力系統29に接続される。
 直流電源17から交流機器30に電力を供給するとき、端子U2,W2が交流機器30に接続される。交流機器30は、例えば、商用の交流電圧で駆動する電気機器である。
 制御部13は、例えば、CPU、FPGA、又はASIC等で構成され、コンバータ部51及びコンバータ部7を制御する。
 制御部13は、一次巻線531及び二次巻線532に高周波の交流電圧が供給され、且つ、端子P3及び端子N3間に正の極性を持つ電圧が供給されるようにコンバータ部51を制御する。
 詳細には、制御部13は、一次巻線531に供給される交流電圧の半周期(単位期間の一例)を構成する第1期間において、反転期間と循環期間とを割り付け、第1期間とは異なる第2期間に後述の第1伝達期間を割り付けるようにコンバータ部51,7を制御する。
 より詳細には、制御部13は、コンバータ部7をPWM制御して各単位期間における第2期間の割合を変更することで目標とする電圧Vout又は電流Ibusを生成する。目標とする電圧Vout又は電流ILとは、例えば、PWM制御で用いられる変調波信号と同じ波形を持つ電圧又は電流である。
 <タイミングチャート>
 次に、電力変換システム1Nのタイミングチャートについて説明する。図59は電力変換システム1Nのタイミングチャートを示す図である。図59において、(1)はスイッチング素子BL,ALのON、OFFを示し、ハイレベルがON、ローレベルがOFFである。(2)はスイッチング素子UH,ULのON、OFFを示し、ハイレベルがON、ローレベルがOFFである。(3)はスイッチング素子WH,WLのON、OFFを示し、ハイレベルがON、ローレベルがOFFである。(4)は電圧VT1と電流=(IL1-IL2)とを示す。(5)は電圧「P3-N3」を示す。(6)は電流ILと、電圧Voutとを示す。
 (7)は(1)と同じである。(8)は電圧VT1と電流IL1とを示す。(9)は電圧VT3と電流IL3とを示す。(10)は電圧VT2と電流IL2とを示す。(11)は電圧VT4と電流IL4とを示す。(12)はトランス53の励磁電流を示す。励磁電流は(IL1-IL2)-(IL3-IL4)である。
 <第1伝達期間TA1>
 (1)、(7)を参照し、制御部13は、スイッチング素子BL=ON,AL=OFFにする。これにより、VT1=VE,VT2=-VE,VT3=VE,VT4=-VEとなり、ダイオードDYL=ON,DXL=OFFになる。このとき、(2)、(3)を参照し、制御部13は、スイッチング素子UH,WL=ON,UL,WH=OFFにし、コンバータ部7を第1伝達モードにする。
 したがって、(6)を参照し、電流ILが直線的に増大している。また、(8)、(9)、(10)、(11)を参照し、電流IL1,IL3は急激に増大した後、緩やかな傾きで増大し、電流IL2,IL4=0である。また、(5)を参照し、電圧「P3-N3」は一定の値を維持している。
 <循環期間TB1>
 第1伝達期間TA1に続いて循環期間TB1が開始される。制御部13は、スイッチング素子BL=ON,AL=OFFの状態で、(2)、(3)を参照し、スイッチング素子UL,WL=ON,UH=WH=OFFにし、コンバータ部7を循環モードにする。
 したがって、(6)を参照し、電流ILが直線的に減少している。また、(8)、(9)、(10)、(11)を参照し、電流IL1,IL3は急激に減少した後、ほぼ0で推移する。詳細には、電流IL3は0であるが、電流IL1は励磁電流が流れる。電流IL2,IL4=0である。また、(5)を参照し、電圧「P3-N3」は一定の値を維持している。
 <反転期間TC1>
 循環期間TB1に続いて反転期間TC1が開始される。制御部13は、コンバータ部7を循環モードにした状態で、(1)、(7)を参照し、スイッチング素子BL,AL=OFFにする。
 したがって、(8)、(9)を参照し、電圧VT1,VT3は正から負の極性に反転し、(10)、(11)を参照し、電圧VT2,VT4は負から正の極性に反転する。また、(5)を参照し、電圧「P3-N3」は一定の値を維持している。
 <第1伝達期間TA2>
 反転期間TC1に続いて第1伝達期間TA2が開始される。(1)、(7)を参照し、制御部13は、スイッチング素子BL=OFF,AL=ONにする。これにより、VT1=-VE,VT2=VE,VT3=-VE,VT4=VEとなり、ダイオードDYL=OFF,DXL=ONになる。このとき、(2)、(3)を参照し、制御部13は、スイッチング素子UH=WL=ON,UL=WH=OFFにし、コンバータ部7を第1伝達モードにする。
 したがって、(6)を参照し、電流ILが直線的に増大している。また、(8)、(9)、(10)、(11)を参照し、電流IL1,IL3=0であり、電流IL2,IL4は急激に増大した後、緩やかな傾きで増大している。また、(5)を参照し、電圧「P3-N3」は一定の値を維持している。
 <循環期間TB2>
 第1伝達期間TA2に続いて循環期間TB2が開始される。制御部13は、スイッチング素子BL=OFF,AL=ONの状態で、(2)、(3)を参照し、スイッチング素子UH=WH=ON,UL=WL=OFFにし、コンバータ部7を循環モードにする。
 したがって、(6)を参照し、電流ILが直線的に減少している。また、(8)、(9)、(10)、(11)を参照し、電流IL1,IL3はほぼ0を維持する。電流IL2,IL4は急激に減少した後、ほぼ0で推移する。詳細には、電流IL4は0であるが、電流IL2は励磁電流のみ流れる。また、(5)を参照し、電圧「P3-N3」は一定の値を維持している。
 <反転期間TC2>
 循環期間TB2に続いて反転期間TC2が開始される。制御部13は、コンバータ部7を循環モードにした状態で、(1)、(7)を参照し、スイッチング素子AL,BL=OFFにする。
 したがって、(8)、(9)を参照し、電圧VT1,VT3は負から正の極性で反転し、(10)、(11)を参照し、電圧VT2,VT4は正から負の極性に反転する。また、(5)を参照し、電圧「P3-N3」は一定の値を維持している。
 このように、電力変換システム1Nは、第1伝達期間TA1、循環期間TB1、反転期間TC1、第1伝達期間TA2、循環期間TB2、及び反転期間TC2をサイクリックに繰り返し、交流電力系統29又は交流機器30に電力を供給する。また、電力変換システム1Nは、PWM制御により、一周期内における第1伝達期間TA1及び第1伝達期間TA2の割合を変化させることで、所望の電圧Voutを生成する。
 また、全期間において電圧「P3-N3」は一定の値を維持しており、極性が反転していないことが分かる。
 実施の形態16では、コンバータ部7が単相インバータである場合を例として説明したが、コンバータ部7は単相インバータに限らず、三相インバータであってもよい。
 また、実施の形態16では、直流電源17から交流電力系統29(すなわち、第1方向)に電力を供給する場合を例として説明したが、交流電力系統29から直流電源17(すなわち、第2方向)に電力を供給するように構成されていてもよい。
 (実施の形態17)
 図60は、実施の形態17に係る電力変換システム1Pの回路図である。電力変換システム1Pは、接続部15から接続部3に向かう第2単方向に電力を変換して伝達する電力変換システムである。なお、図60では、図53とは異なり、接続部15には直流電源17(第2の接続対象の一例)が接続され、接続部3には直流機器28(第1の接続対象の一例)が接続されている。詳細には、端子P2(第1外部接続端子の一例)に直流機器28の正極が接続され、端子N2(第2外部接続端子の一例)に直流機器28の負極が接続されている。また、端子U2(第3外部接続端子の一例)に直流電源17の正極が接続され、端子W2(第4外部接続端子の一例)に直流電源17の負極が接続されている。
 実施の形態17に係る電力変換システム1Pは、実施の形態13に係る電力変換システム1Kと同様、コンバータ部51及び一次巻線531をフルブリッジ型(FB型)の回路で構成し、コンバータ部52及び二次巻線532をフルブリッジ型(FB型)の回路で構成したことを特徴とする(FB-FB型)。以下、実施の形態17において、実施の形態13~16と同一構成は同一の符号を付して説明を省く。
 コンバータ部51及び一次巻線531の構成は図53と同じFB型である。但し、図60では、スイッチング素子AH,AL,BH,BLが省かれている点が相違する。詳細には、ダイオードDAHはアノードが端子T2に接続され、カソードが端子P2に接続され、ダイオードDALはアノードが端子N2に接続され、カソードが端子T2に接続され、ダイオードDBHはアノードが端子T1に接続され、カソードが端子P2に接続され、ダイオードDBLはアノードが端子N2に接続され、カソードが端子T1に接続されている。
 コンバータ部52及び二次巻線532の構成は図50と同じFB型である。但し、図60では、スイッチング素子XH,XL,YH,YLが追加されている点が相違する。詳細には、スイッチング素子XHは、ソースが端子T3に接続され、ドレインが端子P3に接続され、スイッチング素子XLは、ソースが端子N3に接続され、ドレインが端子T3に接続され、スイッチング素子YHは、ソースが端子T4に接続され、ドレインが端子P3に接続され、スイッチング素子YLは、ソースが端子N3に接続され、ドレインが端子T4に接続されている。
 コンバータ部7は、第2単方向に電力を伝達するチョッパ回路で構成されている。詳細には、コンバータ部7は、スイッチング素子UL(第9スイッチング素子の一例)と、2つのダイオードD1,D2と、コイル71と、コンデンサ72とを含む。
 コンバータ部7は、直流機器28から供給される電圧Voutを昇圧して端子P3及び端子N3間に供給する。
 コイル71は、端子U2及び端子U1間に接続されている。コンデンサ72は、端子U2及び端子W2間に接続されている。
 スイッチング素子ULは、n型の電界効果型トランジスタで構成されている。スイッチング素子ULは、ドレインが端子U1と接続され、ソースが端子N3と接続されている。
 ダイオードD2は、カソードがスイッチング素子ULのドレインに接続され、アノードがスイッチング素子ULのソースに接続されている。ダイオードD1は、カソードが端子P3に接続され、アノードが端子U1に接続されている。
 スイッチング素子ULは、電界効果型トランジスタに代えて、例えばnpn型の絶縁ゲートバイポーラトランジスタで構成されてもよい。この場合、ダイオードD2は還流ダイオードとして設けられる。更にこの場合、ダイオードD2は、スイッチング素子ULがオンされているときにスイッチング素子ULに流れる電流と逆向きの電流が流れるように、エミッタ及びコレクタにわたって接続される。
 制御部13は、スイッチング素子ULをON及びOFFすることによって、端子U2に流れる電流Ioutと、端子P2及び端子N2間の電圧Vbusとの少なくとも一方の大きさを制御する。詳しくは、後で説明する。
 制御部13は、一次巻線531の電圧の極性が反転する反転期間を含む第1期間において、トランス回路部5及びコンバータ部7間で電力の伝達が行わないようにコンバータ部7を制御する。制御部13は、第1期間とは異なる第2期間において、コンバータ部7からトランス回路部5に向かう第2単方向で電力の伝達が行われるようにコンバータ部7を制御する。
 詳細には、制御部13は、一次巻線531に供給される交流電圧の半周期(単位期間の一例)を構成する第1期間において、反転期間と後述の循環期間とを割り付けるようにコンバータ部51,52及びコンバータ部7を制御する。
 より詳細には、制御部13は、目標とする値を持つ電圧Vbus又は電流Ioutにするためのコンバータ部7のデューティ比を設定し、設定したデューティ比でスイッチング素子ULを制御する。
 電力変換システム1Pは、端子U2及び端子W2間において、直流電源17を介して電流が流れる向きと逆の向きに電圧降下が発生する、すなわち、電圧Voutと電流ILとの極性が異なるように動作する。
 <タイミングチャート>
 次に、電力変換システム1Pのタイミングチャートについて説明する。図61は電力変換システム1Pのタイミングチャートを示す図である。図61において、(1)はスイッチング素子XH,XLのON、OFFを示し、ハイレベルがON、ローレベルがOFFである。なお、スイッチング素子YLはスイッチング素子XHと同一タイミングでON、OFFする。また、スイッチング素子YHは、スイッチング素子XLと同一タイミングでON、OFFする。
 (2)はスイッチング素子ULのON、OFFを示し、ハイレベルがON、ローレベルがOFFである。(3)はコイル71に流れる電流ILと、コイルL12に流れる電流IL3とを示す。(4)は端子N3を基準とする端子P3の電圧「P3-N3」と、端子T4を基準とするコイルL12の電圧VT3とを示す。(5)は電圧Vbusを示す。以下、端子N2を基準とする端子P2の電圧を電圧VEとして説明する。周期Tは、一次巻線531に供給される交流電圧の1周期を示す。なお、電圧VEは、電圧Voutがコンバータ部7により昇圧された電圧である。
 以下、コンバータ部51,52に着目したシーケンスを期間ST1~ST4に示し、コンバータ部7に着目したシーケンスをTD1,TE1,TF1,TE3,TD2,TE2,TF2,TE4の符号を付した期間に示す。
 <期間ST1>
 制御部13は、スイッチング素子XH,YL=ON、スイッチング素子XL,YH=OFFにする。これにより、ダイオードDAH,DBL=ON,DAL,DBH=OFFになり、電圧VT1=VE,VT3=VEとなる。よって、電圧「P3-N3」=VEとなる。
 <期間ST2>
 制御部13は、スイッチング素子UL=ONにし、電流ILを循環させた状態で、スイッチング素子XH,XL,YH,YL=OFFにする。これにより、コイルL11の励磁電流とコンデンサCAH,CAL,CBH,CBLとの共振動作により、電圧VT1,VT3の極性が正から負に次第に反転され、ソフトスイッチングが実現される。この極性が反転する期間が反転期間である。
 <期間ST3>
 制御部13は、スイッチング素子XH,YL=OFFの状態で、スイッチング素子XL,YH=ONにする。これにより、ダイオードDAH,DBL=OFF,DAL,DBH=ONになり、電圧VT1,VT3=-VEとなる。よって、電圧「P3-N3」=VEとなる。
 <期間ST4>
 期間ST2と同様、制御部13は、スイッチング素子XH,XL,YH,YL=OFFにし、電圧VT1,VT3の極性を反転させる。
 以後、コンバータ部51,52は、期間ST1、ST2、ST3、ST4の動作を繰り返す。これにより、電圧「P3-N3」=VEが維持される。
 <第2伝達期間TD1>
 制御部13は、スイッチング素子XH,YL=ON,XL,YH=OFFの状態で、スイッチング素子UL=OFFにする。これにより、電流ILが第2伝達経路K3(図60)を流れる第2伝達期間となる。第2伝達経路K3は、二次巻線532に電流が流れており、第2単方向に電力が伝達されている。その結果、コンバータ部7は、第2単方向に電力を伝達する第2伝達モードとなる。ここでは、接続部3には直流機器28が接続され、接続部15には直流電源17が接続されているので、第2伝達期間は直流電源17から直流機器28に電力が伝達される期間になる。
 このとき、(3)を参照し、電流ILは直線的に増大している。また、(3)を参照し、電流IL3は急激に増大した後、緩やかな傾きで減少している。
 <循環期間TE1>
 第2伝達期間TD1に続いて循環期間TE1が開始される。制御部13は、スイッチング素子XH,YL=ON,XL,YH=OFFの状態で、スイッチング素子UL=ONにする。これにより、電流ILが循環経路K4(図60)を流れる循環期間となる。循環経路K4は、コンバータ部7内で閉ループになっており、コンバータ部7から直流電源17への電力の伝達が遮断されている。その結果、コンバータ部7は循環モードになる。
 このとき、(3)を参照し、電流ILが直線的に減少している。また、(3)を参照し、電流IL3は急激に増大した後、ほぼ0で推移している。
 <反転期間TF1>
 循環期間TE1に続いて反転期間TF1が開始される。反転期間TF1は上述の期間ST2と同じである。制御部13は、コンバータ部7を循環モードにした状態で、スイッチング素子XH,XL,YH,YL=OFFにする。
 <循環期間TE3>
 反転期間TF1に続いて循環期間TE3が開始される。制御部13は、スイッチング素子UL=ONの状態で(コンバータ部7を循環モードにした状態で)スイッチング素子XL,YH=ONにする。循環期間TE1、反転期間TF1、及び循環期間TE3にわたって、コンバータ部7は循環モードを継続し、コンバータ部7から直流電源17への電力の伝達が遮断されている。
 <第2伝達期間TD2>
 循環期間TE3に続いて第2伝達期間TD2が開始される。制御部13は、スイッチング素子XL,YH=ON,XH,YL=OFFの状態で、スイッチング素子UL=OFFにする。これにより、コンバータ部7は第2伝達モードになる。
 このとき、(3)を参照し、電流ILは直線的に増大している。また、(3)を参照し、電流IL3は急激に減少した後、緩やかな傾きで増大している。
 <循環期間TE2>
 第2伝達期間TD2に続いて循環期間TE2が開始される。制御部13は、スイッチング素子XL,YH=ON,XH,YL=OFFの状態で、スイッチング素子UL=ONにし、コンバータ部7を循環モードにする。
 このとき、(3)を参照し、電流ILは直線的に減少している。また、(3)を参照し、電流IL3は急激に増大した後、ほぼ0で推移している。
 <反転期間TF2>
 循環期間TE2に続いて反転期間TF2が開始される。反転期間TF2は上述の期間ST4と同じである。制御部13は、コンバータ部7を循環モードにした状態で、スイッチング素子XH,XL,YH,YL=OFFにする。
 <循環期間TE4>
 反転期間TF2に続いて循環期間TE4が開始される。制御部13は、コンバータ部7を循環モードにした状態でスイッチング素子XH,YL=ONにする。循環期間TE2、反転期間TF2、及び循環期間TE4にわたって、コンバータ部7は循環モードを継続し、コンバータ部7から直流電源17への電力の伝達が遮断されている。
 このように、電力変換システム1Pは、第2伝達期間TD1、循環期間TE1、反転期間TF1、循環期間TE3、第2伝達期間TD2、循環期間TE2、反転期間TF2、及び循環期間TE4をサイクリックに繰り返し、直流機器28の電力を供給する。また、制御部13は、周期Tの半周期を単位周期とし、単位周期における第2伝達期間TD1,TD2の割合をコンバータ部7のデューティ比として設定することで、電圧Vbusを所望の値に設定する。(5)を参照し、電圧Vbusは約254Vから約254.35Vまでの範囲で若干のリプルが観測されているが、平均すると約254.175Vの値を持つことが分かる。したがって、直流機器28には、約254.175Vの直流電圧が供給されることになる。制御部13は、このデューティ比を変更することで電圧Vbusの値を調節する。
 図62は、図61において反転期間TF1,TF2を拡大して示したタイミングチャートである。図62において、(1)~(5)は図61の(1)~(5)の反転期間TF2を拡大した図であり、(6)~(10)は図61の(1)~(5)の反転期間TF1を拡大した図である。
 (1)を参照し、反転期間TF2において、スイッチング素子XL=OFFからスイッチング素子XH=ONまでデッドタイムTdが設けられていることが分かる。デッドタイムTdは、例えば2μsである。また、(2)を参照し、スイッチング素子XH=ONからスイッチング素子UL=OFFまでデッドタイムTaが設けられていることが分かる。デッドタイムTaは、例えば0.5μsである。これにより、スイッチング素子の保護が図られている。
 (4)を参照し、電圧VT3はデッドタイムTdにおいて負から正の極性に反転していることが分かる。
 (4)を参照し、全期間に亘って電圧「P3-N3」は一定の値を維持していることが分かる。
 (6)を参照し、反転期間TF1において、スイッチング素子XH=OFFからスイッチング素子XL=ONまでデッドタイムTdが設けられていることが分かる。また、(7)を参照し、スイッチング素子XL=ONからスイッチング素子UL=OFFまでデッドタイムTaが設けられていることが分かる。(9)を参照し、電圧VT3はデッドタイムTdにおいて正から負の極性に反転していることが分かる。
 (9)を参照し、全期間に亘って電圧「P3-N3」は一定の値を維持していることが分かる。
 このように実施の形態17に係る電力変換システム1Pによれば、第2単方向に電力を伝達する場合においても実施の形態13と同様の効果が得られる。
 (実施の形態18)
 図63は、実施の形態18に係る電力変換システム1Qの回路図である。実施の形態18に係る電力変換システム1Qは、実施の形態14に係る電力変換システム1Lと同様、コンバータ部51及び一次巻線531をセンタータップ型(CNT型)の回路で構成し、コンバータ部52及び二次巻線532をセンタータップ型(CNT型)の回路で構成したことを特徴とする(CNT-CNT型)。以下、実施の形態18において、実施の形態13~17と同一構成は同一の符号を付して説明を省く。また、実施の形態18に係る電力変換システム1Qも実施の形態17と同様、第2単方向に電力を伝達する電力変換システムである。
 コンバータ部51及び一次巻線531の構成は図56と同じCNT型である。但し、図63では、スイッチング素子AL,BLが省かれている点が相違する。詳細には、ダイオードDALはアノードが端子N2に接続され、カソードが端子T2に接続され、ダイオードDBLはアノードが端子N2に接続され、カソードが端子T1に接続されている。
 コンバータ部52及び二次巻線532の構成は図56と同じCNT型である。但し、図63では、スイッチング素子YL,XLが追加されている。詳細には、スイッチング素子YLはソースが端子N3に接続され、ドレインが端子T3に接続されている。スイッチング素子XLはソースが端子N3に接続され、ドレインが端子T4に接続されている。
 次に、電力変換システム1Qのコンバータ部51,52の動作について説明する。下記に示す<期間ST1>~<期間ST4>は実施の形態17で説明した<期間ST1>~<期間ST4>に対応している。以下の説明では、図63に示す電圧VT1,VT2,VT3,VT4は、それぞれ、端子T1,T2,T3,T4を基準とするコイルL1,L2,L3,L4の電圧である。なお、電力変換システム1Qにおいて、コンバータ部7の動作は実施の形態17と同じであるため、説明を省く。
 <期間ST1>
 制御部13は、スイッチング素子YL=ON,XL=OFFにする。これにより、ダイオードDBL=ON,DAL=OFFとなり、VT1=VE、VT2=-VE、VT3=VE,VT4=-VEとなる。よって、電圧「P3-N3」=VEになる。
 <期間ST2>
 制御部13は、スイッチング素子UL=ONにし、電流ILを循環させた状態で、スイッチング素子YL,XL=OFFにする。これにより、コイルL1の励磁電流とコンデンサCAL,CBLとの共振動作により、電圧VT1,VT3の極性が正から負に次第に反転され、電圧VT2,VT4の極性が負から正に次第に反転され、ソフトスイッチングが実現される。
 <期間ST3>
 制御部13は、スイッチング素子YL=OFFの状態で、スイッチング素子XL=ONにする。これにより、ダイオードDAL=ON,DBL=OFFになり、VT1=-VE、VT2=VE、VT3=-VE、VT4=VEになる。よって、電圧「P3-N3」=VEになる。
 <期間ST4>
 期間ST2と同様、制御部13は、スイッチング素子YL,XL=OFFにし、電圧VT1~VT4の極性を反転させる。
 以後、コンバータ部51,52は、期間ST1、ST2、ST3、ST4の動作を繰り返す。これにより、電圧「P3-N3」=VEが維持される。
 以上、電力変換システム1Qは、CNT-CNT型の回路で構成した場合においても電力変換システム1Pと同じ効果が得られる。
 (実施の形態19)
 図64は、実施の形態19に係る電力変換システム1Rの回路図である。実施の形態19の電力変換システム1Rは、コンバータ部51及び一次巻線531をハーフブリッジ型(HB型)の回路で構成し、コンバータ部52及び二次巻線532をセンタータップ型(CNT型)の回路で構成したことを特徴とする(HB-CNT型)。以下、実施の形態19において、実施の形態13~18と同一構成は同一の符号を付して説明を省く。また、実施の形態19に係る電力変換システム1Qも実施の形態17,18と同様、第2単方向に電力を伝達する電力変換システムである。
 コンバータ部51は、図57と同じHB型である。但し、スイッチング素子AH,ALが省かれている。詳細には、ダイオードDAHはアノードが端子T2に接続され、カソードが端子P2に接続され、ダイオードDALはアノードが端子N2に接続され、カソードが端子T2に接続されている。
 コンバータ部52及び二次巻線532は、図57と同じCNT型である。但し、スイッチング素子YL,XLが追加されている。詳細には、スイッチング素子YLはソースが端子N3に接続され、ドレインが端子T3に接続されている。スイッチング素子XLはソースが端子N3に接続され、ドレインが端子T4に接続されている。
 次に、電力変換システム1Rのコンバータ部51,52の動作について説明する。下記に示す<期間ST1>~<期間ST4>は実施の形態17で説明した<期間ST1>~<期間ST4>に対応している。以下の説明では、図64に示す、電圧VT1,VT3,VT4は、それぞれ、端子T1,T3,T4を基準とするコイルL11,L3,L4の電圧である。なお、電力変換システム1Rにおいて、コンバータ部7の動作は実施の形態17と同じであるため、説明を省く。
 <期間ST1>
 制御部13は、スイッチング素子YL=ON、スイッチング素子XL=OFFにする。このとき、ダイオードDAH=ON,DAL=OFFになる。これにより、VT1=VE、VT3=VE,VT4=-VEとなる。よって、電圧「P3-N3」=VEになる。
 <期間ST2>
 制御部13は、スイッチング素子UL=ONにし、電流ILを循環させた状態で、スイッチング素子YL,XL=OFFにする。これにより、コイルL11の励磁電流とコンデンサCAH,CALとの共振動作により、電圧VT1,VT3の極性が正から負に次第に反転され、ソフトスイッチングが実現される。
 <期間ST3>
 制御部13は、スイッチング素子YL=OFFの状態で、スイッチング素子XL=ONにする。これにより、ダイオードDAL=ON,DAH=OFFとなり、VT1=-VE、VT3=-VE、VT4=VEになる。よって、電圧「P3-N3」=VEになる。
 <期間ST4>
 期間ST2と同様、制御部13は、スイッチング素子YL,XL=OFFにし、電圧VT1,VT3,VT4の極性を反転させる。
 以後、コンバータ部51,52は、期間ST1、ST2、ST3、ST4の動作を繰り返す。これにより、電圧「P3-N3」=VEが維持される。
 以上、電力変換システム1Rは、HB-CNT型の回路で構成した場合においても電力変換システム1Pと同じ効果が得られる。
 実施の形態17では、コンバータ部51,52が共にフルブリッジ型(FB型)であり、実施の形態18では、コンバータ部51,52が共にセンタータップ型(CNT型)であり、実施の形態19では、コンバータ部51がハーフブリッジ型(HB型)、コンバータ部52がセンタータップ型である場合を例として説明したが、コンバータ部51,52の組み合わせは上記の組み合わせに限定されない。例えば、コンバータ部51がセンタータップ型、コンバータ部52がフルブリッジ型であってもよいし、コンバータ部51,52が共にハーフブリッジ型であってもよい。
 また、スナバ回路60の代わりに、図47~図49に示すスナバ回路60A~60Cを適用してもよい。
 (実施の形態20)
 図65は、実施の形態20に係る電力変換システム1Sの回路図である。実施の形態20の電力変換システム1Sは、コンバータ部7を単相インバータで構成したことを特徴とする。本実施の形態において、コンバータ部51,52は、それぞれ、図63と同様、CNT型であるので詳細な説明は省略する。また、コンバータ部7及びフィルタ回路9の構成は、それぞれ、図58と同一構成なので、詳細な説明は省略する。さらに、実施の形態20に係る電力変換システム1Sも実施の形態17,18,19と同様、第2単方向に電力を伝達する電力変換システムである。
 制御部13は、スイッチング素子UH~WLをON又はOFFすることによって、端子P2,U2における電圧Vbusと端子U2に流れる電流Ioutとの少なくとも一方の振幅を制御する。詳しくは、後で説明する。
 交流電力系統29から電力供給を受けて直流電源17を充電するとき、端子U2,W2が交流電力系統29に接続される。交流機器30から電力供給を受けて直流電源17を充電するとき、端子U2,W2が交流機器30に接続される。
 制御部13は、一次巻線531に供給される交流電圧の半周期(単位期間の一例)を構成する第1期間において、反転期間と循環期間とを割り付け、第1期間とは異なる第2期間に第2伝達期間を割り付けるようにコンバータ部52,7を制御する。
 実施の形態20では、コンバータ部7が単相インバータである場合を例として説明したが、コンバータ部7は単相インバータに限らず、三相インバータであってもよい。
 (実施の形態21)
 (1)概要
 まず、実施の形態21に係る電力変換システム1Tの概要について、図66を参照して説明する。
 電力変換システム1Tは、トランス回路部5と、コンバータ部7と、制御部13と、を備えている。トランス回路部5は、第1接続対象(ここでは直流電源17)からの電力と第1接続対象への電力との少なくとも一方について電力変換を行う。コンバータ部7は、第2接続対象(ここでは交流電力系統29)からの電力と第2接続対象への電力との少なくとも一方について電力変換を行う。制御部13は、コンバータ部7と第2接続対象との間を遮断する場合に、コンバータ部7を停止させ、かつトランス回路部5を所定期間動作させる。例えば、接続部(第2外部接続部の一例)15の端子15a,15bが開放状態になると、フィルタ回路9のコイル91,92からの回生エネルギによってスイッチ部(スイッチング素子XL,YL)に過大なストレスがかかる可能性がある。本実施形態に係る電力変換システム1Tは、端子15a,15bが開放状態になってもトランス回路部5を動作させることにより、スイッチ部(スイッチング素子XL,YL)にかかるストレスを低減することができる。
 電力変換システム1Tは、一例として、図66に示すように、第2接続対象としての交流電力系統29と第1接続対象としての直流電源(例えば、蓄電池)17との間における電力変換に用いられる。ここでいう「交流電力系統」は、電力会社等の電気事業者が需要家の受電設備に電力を供給するためのシステム全体を意味する。図66の例では、電力変換システム1Tは、直流電源17が電気的に接続される接続部(第1外部接続部)3と、交流電力系統29が電気的に接続される接続部(第2外部接続部)15と、を有する。この電力変換システム1Tは、直流電源17の充電時には、交流電力系統29から入力される交流電力を直流電力に変換し、変換した直流電力を直流電源17に供給する。また、電力変換システム1Tは、直流電源17の放電時には、直流電源17から入力される直流電力を交流電力に変換し、変換した交流電力を交流電力系統3に出力する。
 本実施形態では、電力変換システム1Tは、直流電源17の充電及び放電の両方に対応できるよう、端子P2,N2と端子15a,15bとの間で、双方向に電力の変換を行うように構成されている。すなわち、本実施形態に係る電力変換システム1Tは、双方向型のDC/ACインバータである。これにより、電力変換システム1Tは、直流電源17を充電したり、直流電源17の放電電力を交流電力系統29に接続された負荷に供給したりすることができる。本実施形態では、一例として、このような電力変換システム1T及び直流電源17を含む蓄電システムが、オフィスビル、病院、商業施設及び学校等の、非住宅施設に導入される場合を想定して説明する。
 (2)構成
 以下に、本実施形態に係る電力変換システム1Tの構成について、図66を参照して説明する。
 本実施形態に係る電力変換システム1Tは、図66に示すように、接続部3と、コンデンサ4と、トランス回路部5と、接続部6と、コンバータ部7と、フィルタ回路9と、制御部13と、接続部15と、を備えている。接続部3は、端子P2と、端子N2と、を含む。接続部6は、端子P3と、端子N3と、スナバ回路60と、を含む。接続部15は、端子15aと、端子15bと、を含む。
 図66の例では、端子P2が高電位(正極)となるように、2つの端子P2,N2間には直流電源17が電気的に接続されている。また、2つの端子15a,15b間には、交流電力系統29が電気的に接続されている。ただし、ここでいう「端子」は、電線等を接続するための部品でなくてもよく、例えば、電子部品のリードや、回路基板に含まれる導体の一部であってもよい。
 本実施形態では、2つの端子15a,15bと交流電力系統29との間に開閉部2が電気的に接続されている(図66参照)。開閉部2は、制御部13から出力される開閉信号に従って開閉するように構成されている。そのため、制御部13は、開閉部2の開閉状態を把握している。開閉部2は、例えば交流電力系統29から電力変換システム1Tを解列させるための解列用のリレーである。
 コンデンサ4は、直流電圧へ平滑するためのコンデンサであり、所望の容量を持つ電界コンデンサやフィルムコンデンサなどであっても構わない。ここでは電解コンデンサであって、2つの端子P2,N2間に電気的に接続されている。コンデンサ4は、2つの端子P2,N2間の電圧を安定化する機能を有している。
 スナバ回路60は、抵抗61と、コンデンサ62と、を有している。抵抗61及びコンデンサ62は、2つの端子P3,N3間に電気的に直列に接続されている。電力変換システム1Tの動作時には、2つの端子P3,N3間に直流電圧が発生する。
 トランス回路部5は、コンデンサ4と接続部6との間に電気的に接続されている。トランス回路部5は、コンバータ部51(第1コンバータ部の一例)と、コンバータ部52(第2コンバータ部の一例)と、トランス53と、を含む。
 コンバータ部51は、2個のスイッチング素子AL,BLと、2個のダイオードDA,DBと、2個のコンデンサCA,CBと、を備える。スイッチング素子AL,BLは、例えば、デプレッション型のnチャネルMOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)からなる。ダイオードDAは、還流用のダイオードであって、アノードがスイッチング素子ALのソースに接続され、カソードがスイッチング素子ALのドレインに接続されている。また、ダイオードDBは、ダイオードDAと同様に還流用のダイオードであって、カソードがスイッチング素子BLのソースに接続され、アノードがスイッチング素子BLのドレインに接続されている。コンデンサCAは、スイッチング素子ALのソース及びドレイン間に接続され、コンデンサCBは、スイッチング素子BLのソース及びドレイン間に接続されている。
 コンバータ部52は、2個のスイッチング素子YL,XLと、2個のダイオードDY,DXと、を備える。スイッチング素子YL,XLは、例えば、デプレッション型のnチャネルMOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)からなる。ダイオードDYは、還流用のダイオードであって、アノードがスイッチング素子YLのソースに接続され、カソードがスイッチング素子YLのドレインに接続されている。また、ダイオードDXは、ダイオードDYと同様に還流用のダイオードであって、カソードがスイッチング素子XLのソースに接続され、アノードがスイッチング素子XLのドレインに接続されている。なお、ダイオードDA,DB,DY,DXはMOSFETの寄生ダイオードでも構わない。
 トランス53は、センタータップ付きの高周波絶縁トランスであって、互いに磁気的に結合された一次巻線531と、二次巻線532と、を含む。一次巻線531は、一次側センタータップ(一次側中間端子)CT1を接続点とする、2つの巻線L1,L2の直列回路にて構成される。同様に、二次巻線532は、二次側センタータップ(二次側中間端子)CT2を接続点とする、2つの巻線L3,L4の直列回路にて構成される。一次側センタータップCT1は、コンデンサ4の正極側の端子(端子P2)、言い換えれば、直流電源17の第1端に電気的に接続されている。二次側センタータップCT2は、2つの端子P3,N3のうち高電位側の端子P3に電気的に接続されている。本実施形態では、一例として、巻線L1,L2,L3,L4の巻数比は、1:1:1:1であることとする。
 また、一次巻線531は、一次側第1巻線端子5311と、一次側第2巻線端子5312と、を有している。一次側第1巻線端子5311は、巻線L2における巻線L1と反対側の端部に設けられており、スイッチング素子ALを介して直流電源17の第2端に電気的に接続されている。一次側第2巻線端子5312は、巻線L1における巻線L2と反対側の端部に設けられており、スイッチング素子BLを介して直流電源17の第2端に電気的に接続されている。
 また、二次巻線532は、二次側第1巻線端子5321と、二次側第2巻線端子5322と、を有している。二次側第1巻線端子5321は、巻線L4における巻線L3と反対側の端部に設けられており、スイッチング素子XLを介して端子N3に電気的に接続されている。二次側第2巻線端子5322は、巻線L3における巻線L4と反対側の端部に設けられており、スイッチング素子YL介して端子N3に電気的に接続されている。
 スイッチング素子ALは、コンデンサ4の両端間において、巻線L2と電気的に直列に接続されている。スイッチング素子BLは、コンデンサ4の両端間において、巻線L1と電気的に直列に接続されている。言い換えれば、2つの端子P2,N2間には、巻線L2及びスイッチング素子ALの直列回路と、巻線L1及びスイッチング素子BLの直列回路とが、電気的に並列に接続されている。具体的には、スイッチング素子ALのドレインが、巻線L2を介して一次側センタータップCT1に電気的に接続され、スイッチング素子BLのドレインが、巻線L1を介して一次側センタータップCT1に電気的に接続されている。スイッチング素子AL,BLのソースは、いずれもコンデンサ4の負極側の端子(端子N2)に電気的に接続されている。
 スイッチング素子YLは、スナバ回路60の両端間において、巻線L3と電気的に直列に接続されている。スイッチング素子XLは、スナバ回路60の両端間において、巻線L4と電気的に直列に接続されている。言い換えれば、2つの端子P3,N3間には、巻線L3及びスイッチング素子YLの直列回路と、巻線L4及びスイッチング素子XLの直列回路とが、電気的に並列に接続されている。具体的には、スイッチング素子YLのドレインが、巻線L3を介して二次側センタータップCT2に電気的に接続され、スイッチング素子XLのドレインが、巻線L4を介して二次側センタータップCT2に電気的に接続されている。スイッチング素子YL,XLのソースは、いずれも2つの端子P3,N3のうち低電位側の端子N3に電気的に接続されている。
 コンバータ部7は、スナバ回路60と2つの端子15a,15bとの間に電気的に接続されている。コンバータ部7は、4つのスイッチング素子UH,UL,WH,WLを有している。4つのスイッチング素子UH,UL,WH,WLには、還流用のダイオードD1~D4がそれぞれ逆並列に接続されている。コンバータ部7は、スナバ回路60とフィルタ回路9との間において、直流電圧から交流電圧、又は交流電圧から直流電圧への変換を行うDC/ACコンバータ(インバータ)を構成する。言い換えれば、コンバータ部7は、トランス回路部5からの直流電力を交流電力系統29への単相交流電力に変換し、又は交流電力系統29からの単相交流電力をトランス回路部5への直流電力に変換する単相インバータを構成する。本実施形態では、一例として、スイッチング素子UH,UL,WH,WLの各々は、デプレッション型のnチャネルMOSFETからなる。
 スイッチング素子UH,UL,WH,WLは、フルブリッジ接続されている。つまり、スイッチング素子UHは、スナバ回路60の両端間において、スイッチング素子ULと電気的に直列に接続されている。スイッチング素子WHは、スナバ回路60の両端間において、スイッチング素子WLと電気的に直列に接続されている。言い換えれば、スナバ回路60の両端間において、スイッチング素子UH,ULの直列回路と、スイッチング素子WH,WLの直列回路とが、電気的に並列に接続されている。具体的には、スイッチング素子UH,WHのドレインは、いずれも2つの端子P3,N3のうち高電位側の端子P3に電気的に接続されている。スイッチング素子UL,WLのソースは、いずれも2つの端子P3,N3のうち低電位側の端子N3に電気的に接続されている。
 フィルタ回路9は、図66に示すように、2つのコイル91,92と、コンデンサ93と、を有している。コイル91の一端、言い換えれば、フィルタ回路9におけるコンバータ部7側の一対の端子の一方は、スイッチング素子UHのソース及びスイッチング素子ULのドレインの接続点に、電気的に接続されている。コイル92の一端、言い換えれば、フィルタ回路9におけるコンバータ部7側の一対の端子の他方は、スイッチング素子WHのソース及びスイッチング素子WLのドレインの接続点に、電気的に接続されている。コイル91,92の他端、言い換えれば、フィルタ回路9における端子15a,15b側の一対の端子は、2つの端子15a,15bに電気的に接続されている。言い換えれば、コンバータ部7は、フィルタ回路9を介して2つの端子15a,15bに電気的に接続されている。また、コイル91の他端とコイル92の他端との間には、コンデンサ93が電気的に接続されている。
 制御部13は、8つのスイッチング素子AL,BL,YL,XL,UH,UL,WH,WLをそれぞれ制御するための制御信号AL,BL,YL,XL,UH,UL,WH,WLを出力する。制御信号AL,BL,YL,XL,UH,UL,WH,WLは、直接的に、又は駆動回路を介して、スイッチング素子AL,BL,YL,XL,UH,UL,WH,WLのゲートに印加され、スイッチング素子をAL,BL,YL,XL,UH,UL,WH,WLを個別にオン/オフする。制御部13は、デューティ比を調節可能なPWM(Pulse Width Modulation)方式によって、スイッチング素子AL,BL,YL,XL,UH,UL,WH,WLを制御する。制御部13は、例えば、CPU(Central Processing Unit)を含むマイクロコンピュータ、FPGA(Field-Programmable Gate Array)、又はASIC(Application Specific Integrated Circuit)等で構成される。
 (3)動作
 (3.1)基本動作
 以下に、電力変換システム1Tの基本動作について、図66を参照して簡単に説明する。
 本実施形態では、上述したように電力変換システム1Tは、2つの端子P2,N2と2つの端子15a,15bとの間で、トランス53を介して、双方向に電力の変換を行うように構成されている。そのため、電力変換システム1Tは、「インバータモード」と、「コンバータモード」との2つの動作モードを有している。インバータモードは、2つの端子P2,N2に入力される直流電力を交流電力に変換して2つの端子15a,15bから出力する動作モードである。コンバータモードは、2つの端子15a,15bに入力される交流電力を直流電力に変換して2つの端子P2,N2から出力する動作モードである。
 まず、インバータモードでの電力変換システム1Tの動作について説明する。ここでは、2つの端子P2,N2間の電圧、つまりコンデンサ4の両端電圧の大きさが「E」であることと仮定する。
 制御部13は、スイッチング素子AL,XLの組み合わせと、スイッチング素子BL,YLの組み合わせとが交互にオンするように、トランス回路部5のスイッチング素子AL,BL,XL,YLを制御する。ここで、スイッチング素子AL,XL(又はスイッチング素子BL,YL)のデューティ比は50%である。これにより、スイッチング素子AL,XLがオンのときには、巻線L4の両端に電圧「-E」が発生し、スイッチング素子BL,YLがオンのときには巻線L3の両端に電圧「E」が発生する。そのため、2つの端子P3,N3に対しては、巻線L3及び巻線L4から交互に電圧「E」が印加される。
 2つの端子P3,N3の電圧が固定されている期間において、制御部13は、コンバータ部7をPWM制御することにより、コンバータ部7の出力電圧を制御する。具体的には、スイッチング素子UH,WL(又はスイッチング素子UL,WH)がオンする供給期間には、巻線L3(又は巻線L4)からコンバータ部7を通して2つの端子15a,15bに電流が供給される。一方、スイッチング素子UH,WH(又はスイッチング素子UL,WL)がオンする循環期間には、還流経路としてのコンバータ部7を通してコイル91,92からの電流が流れる。制御部13は、これら供給期間と循環期間との比率を変えることにより、コンバータ部7の出力電圧を制御する。トランス回路部5のトランス53の二次巻線532における反転動作は、循環期間において行われる。
 以上説明したような動作を繰り返すことにより、電力変換システム1Tは、直流電源(蓄電池)17からの直流電力を交流電力に変換して、2つの端子15a,15bから交流電力系統29に出力する。
 また、電力変換システム1Tは、コンバータモードにおいても、基本的には上記インバータモードと同様のシーケンスにより、トランス回路部5(コンバータ部51,52)及びコンバータ部7を動作させる。すなわち、電力変換システム1Tにおいて、コンバータ部7の出力電圧が交流電力系統29の電圧を下回っていれば、交流電力系統29からの交流電力は直流電力に変換され、2つの端子P2,N2から直流電源17に出力される。
 ところで、上述した蓄電システムにおいて、制御部13からの開閉信号によって開閉部2が開状態になった場合、フィルタ回路9のコイル91,92に蓄積されたエネルギがコンバータ部7側に回生される。このとき、制御部13は、電力変換システム1Tが交流電力系統29から解列しているため、通常であれば、トランス回路部5(コンバータ部51,52)及びコンバータ部7を停止させる。この場合、コンバータ部7では、コイル91,92からの回生電流が、例えばダイオードD3を通り、トランス回路部5の二次側センタータップCT2に向けて流れる。しかしながら、トランス回路部5では、スイッチング素子AL,BL,YL,XLがオフであるため、上記回生電流が流れる経路を形成することができない。そのため、上記回生電流によって、スイッチング素子YL,XLに過大なストレスがかかる可能性がある。
 (3.2)開閉部の開時における動作
 以下に、開閉部2の開時における電力変換システム1Tの動作、言い換えればコンバータ部7と交流電力系統29との間を遮断する場合の電力変換システム1Tの動作について、図67、図68A及び図68Bを参照して説明する。
 本実施形態の電力変換システム1Tでは、制御部13は、コンバータ部7と交流電力系統29との間を遮断する場合、コンバータ部7を停止させ、かつトランス回路部5を所定期間動作させる。言い換えれば、制御部13は、開閉部2を開状態にする場合、コンバータ部7を停止させ、かつトランス回路部5を所定期間動作させる。具体的には、制御部13は、上記所定期間において、開閉部2を開状態にする前と同じ動作をトランス回路部5に行わせる。言い換えれば、制御部13は、上記所定期間において、一次巻線531に二次巻線532側の電力が回生されるようにトランス回路部5を動作させる。つまり、制御部13は、上記所定期間において、スイッチング素子AL,XL(又はスイッチング素子BL,YL)のデューティ比を50%とする。なお、上記所定期間は、ここでは予め決められた期間である。
 まず、開閉部2の開時における電力変換システム1Tの動作の概略について、図67を参照して説明する。図67における「Sig1」は、制御部13から開閉部2への開閉信号であり、「Sig2」は、制御部13からコンバータ部7への制御信号であり、「Sig3」は、制御部13からトランス回路部5への制御信号である。
 制御部13は、時刻t1のときに、ローレベルの開閉信号Sig1を開閉部2に出力する。開閉部2は、制御部13からの開閉信号Sig1によって開状態になる。制御部13は、時刻t2のときに、ローレベルの制御信号Sig2をコンバータ部7に出力する。コンバータ部7は、制御部13からの制御信号Sig2に従って動作を停止する。言い換えれば、コンバータ部7は、制御信号Sig2に従って、スイッチング素子UH,UL,WH,WLをオフする。
 一方、制御部13は、時刻t3になるまで、ハイレベルの制御信号Sig3をトランス回路部5に出力する。トランス回路部5は、制御部13からの制御信号Sig3に従って、ディーティ比が50%のオンオフ動作を行う。そして、制御部13は、時刻t3のときに、ローレベルの制御信号Sig3をトランス回路部5に出力する。トランス回路部5は、制御部13からの制御信号Sig3に従って動作を停止する。言い換えれば、トランス回路部5は、制御信号Sig3に従って、スイッチング素子AL,BL,XL,YLをオフする。
 ここで、本実施形態では、時刻t2から時刻t3までの期間Ti1において、コンバータ部7を停止させ、かつトランス回路部5を動作させている。すなわち、期間Ti1が所定期間である。そして、期間Ti1において、トランス回路部5を動作させることによって、二次巻線532側で発生するエネルギを一次巻線531側に回生させることができる。以下、回生動作の詳細について、図68A及び図68Bを参照して説明する。
 まず、スイッチング素子BL,YLがオンであるときの電力変換システム1Tの動作について、図68Aを参照して説明する。開閉部2が開状態となることでコンバータ部7と交流電力系統29との間が遮断された状態では、コイル91,92に蓄積さえたエネルギがコンバータ部7側に回生される。このとき、上記エネルギによって、例えばコイル91→コンデンサ93→コイル92の向き(図68A中の矢印A1の向き)に回生電流が流れる。この回生電流は、例えばダイオードD3を通り、トランス回路部5の二次側センタータップCT2へと流れる(図68A中の矢印A2参照)。
 このとき、スイッチング素子YLがオンであるため、上記回生電流は、二次側センタータップCT2から二次側第2巻線端子5322に向かう向き(図68A中の矢印A3の向き)で巻線L3に流れる。ここで、巻線L1と巻線L3とは巻き方向が同じなので、一次側の巻線L1には、巻線L3と逆向きの電流が流れる。このとき、スイッチング素子BLがオンであるため、上記電流は、巻線L1→コンデンサ4→スイッチング素子BL→巻線L1の経路で流れる(図68A中の矢印A4参照)。このように、コイル91,92に蓄積されたエネルギは、コンデンサ4に回生される。
 次に、スイッチング素子AL,XLがオンであるときの電力変換システム1Tの動作について、図68Bを参照して説明する。開閉部2が開状態になることでコンバータ部7と交流電力系統29との間が遮断された状態では、コイル91,92に蓄積されたエネルギがコンバータ部7側に回生される。このとき、上記エネルギによって、例えばコイル91→コンデンサ93→コイル92の向き(図68B中の矢印B1の向き)に回生電流が流れる。この回生電流は、例えばダイオードD3を通り、トランス回路部5の二次側センタータップCT2へと流れる(図68B中の矢印B2参照)。
 このとき、スイッチング素子XLがオンであるため、上記回生電流は、二次側センタータップCT2から二次側第1巻線端子5321に向かう向き(図68Bの矢印B3の向き)で巻線L4に流れる。ここで、巻線L2と巻線L4とは巻き方向が同じなので、一次側の巻線L2には、巻線L4と逆向きの電流が流れる。このとき、スイッチング素子ALがオンであるため、上記電流は、巻線L2→コンデンサ4→スイッチング素子AL→巻線L2の経路で流れる(図68B中の矢印B4参照)。このように、コイル91,92に蓄積されたエネルギは、コンデンサ4に回生される。
 そして、制御部13は、上記所定期間が経過すると、トランス回路部5を停止させる。言い換えれば、制御部13は、4つのスイッチング素子AL,BL,XL,YLをオフする。
 上述のシーケンスは、直流電源(蓄電池)17の放電時(インバータモード)におけるシーケンスであるが、直流電源17の充電時(コンバータモード)においても、同様のシーケンスにより、コイル91,92に蓄積されたエネルギをコンデンサ4に回生させることができる。
 本実施形態に係る電力変換システム1Tでは、上述のように、開閉部2が開状態となった場合に、開閉部2が開状態となる前と同じ動作をトランス回路部5に所定期間行わせている。言い換えれば、制御部13は、上記所定期間において、一次巻線531に二次巻線532側の電力が回生されるようにトランス回路部5を動作させている。そのため、フィルタ回路9のコイル91,92に蓄積されたエネルギを、直流電源17側、言い換えれば、直流電源17の両端間に接続されたコンデンサ4に回生させることができる。これにより、上記所定期間においてトランス回路部5を停止させる場合に比べて、スイッチング素子YL,XLにかかるストレスを低減することができる。なお、上述の実施例では、開閉信号Sig1によって開閉部2が開状態になった後に、制御信号Sig2によってコンバータ部7が停止している。これに対して、実際には開閉部2の応答遅れのため、コンバータ部7が停止した後に、開閉部2が開状態になる場合があるが、開閉部2とコンバータ部7の動作の順番が入れ替わっても構わない。
 ところで、上述の実施形態では、開閉部2を開状態にする場合を例に説明したが、例えば瞬間的な過電流などの異常状態を検出して電力の伝達を停止させる場合、開閉部2を開状態にしないでコンバータ部7の停止処理(ゲートブロック)のみで対応する場合がある。この場合、本実施形態に係る電力変換システム1Tでは、出力側のコンバータ部7の動作を停止させる(ゲートブロック)。したがって、この場合には、トランス回路部5も合わせて停止させてしまうと、上述の実施形態と同様に、コイル91,92からの回生電流によってスイッチング素子XL,YLに過大なストレスがかかる可能性がある。したがって、この場合においても、制御部13は、コンバータ部7を停止させ、かつトランス回路部5を所定期間動作させるように構成されていることが好ましい。なお、動作については上述の実施形態と同様であるため、ここでは説明を省略する。
 (4)変形例
 上述の実施形態は本開示の一例に過ぎず、本開示は、上述の実施形態に限定されることはなく、上述の実施形態以外であっても、本開示に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。以下、上述の実施形態の変形例について列挙する。
 電力変換システム1T及び直流電源(蓄電池)17を含む蓄電システムは、非住宅施設に限らず、例えば、住宅に導入されてもよいし、電気自動車等、施設以外に適用されてもよい。また、電力変換システム1Tは、交流電力系統29と、直流電源17との間における電力変換に限らず、例えば、太陽光発電装置又は燃料電池等の発電設備と、交流電力系統29との間の電力変換に用いられてもよい。
 電力変換システム1Tは、双方向に電力の変換を行う構成に限らず、例えば、2つの端子P2,N2から2つの端子15a,15bへの一方向(単方向)にのみ、電力の変換を行う構成であってもよい。
 スイッチング素子AL,BL,XL,YL,UH,UL,WL,WLがMOSFETであれば、還流用のダイオードDA,DB,DY,DX,D1~D4の代わりに、スイッチング素子AL,BL,XL,YL,UH,UL,WL,WLの寄生ダイオードを利用してもよい。更に、スイッチング素子AL,BL,XL,YL,UH,UL,WL,WLの各々は、MOSFETに限らず、例えば、IGBT(Insulated Gate Bipolar Transistor)等であってもよい。
 上述の実施形態では、2個のスイッチング素子を同期させた同期整流の場合を例として説明したが、例えば、1個のスイッチング素子及び1個のダイオードによるダイオード整流(非同期整流)であってもよい。
 上述の実施形態では、コンバータ部7が単相インバータである場合を例として説明したが、コンバータ部7は三相コンバータであってもよい。
 上述の実施形態では、第2接続対象が交流電力系統29である場合を例として説明したが、第2接続対象は交流電力系統29に限らず、例えば交流電力を動作電源とする交流負荷であってもよい。
 また、上述の実施形態では、第1接続対象が直流電源17である場合を例として説明したが、第1接続対象は直流電源17に限らず、例えば直流負荷であってもよいし、双方向に電力変換を行うDC/DCコンバータであってもよい。
 上述の実施形態では、コンバータ部51,52が共にセンタータップ型(CNT型)である場合を例として説明したが、コンバータ部51,52は、それぞれ、フルブリッジ型(FB型)であってもよいし、ハーフブリッジ型(HB型)であってもよい。すなわち、トランス回路部5は、これらの組み合わせにより構成されていればよい。
 また、スナバ回路60の代わりに、図47~図49に示すスナバ回路60A~60Cを適用してもよい。
 (まとめ)
 以上述べた実施形態から明らかなように、第1の態様に係る電力変換システム(1,1A~1T)は、直流電源(17)(第1接続対象の一例)と交流負荷(27)(第2接続対象の一例)との間で少なくとも単方向に電力を伝達する電力変換システムである。電力変換システム(1,1A~1T)は、接続部(3)(第1外部接続部の一例)と、接続部(15)(第2外部接続部の一例)と、トランス回路部(5)と、コンバータ部(7)(第3コンバータ部の一例)と、接続部(6)と、制御部(13)と、を備える。接続部(3)は、直流負荷(17)に接続される。接続部(15)は、交流負荷(27)に接続される。トランス回路部(5)は、一次巻線(531)と、二次巻線(532)と、コンバータ部(51)(第1コンバータ部の一例)と、コンバータ部(52)(第2コンバータ部の一例)とを含む。一次巻線(531)は、直流電源(17)側に設けられる。二次巻線(532)は、一次巻線(531)と磁気結合される。コンバータ部(51)は、接続部(3)及び一次巻線(531)間に接続される。コンバータ部(52)は、二次巻線(532)に接続される。コンバータ部(7)は、接続部(15)に接続される。接続部(6)は、コンバータ部(52)及びコンバータ部(7)間を接続する端子(P3)(第1接続端子の一例)及び端子(N3)(第2接続端子の一例)を含む。制御部(13)は、一次巻線(531)に正及び負の電圧が交互に印加され、かつ端子(N3)に対する端子(P3)の電圧が正となるようにコンバータ部(51)及びコンバータ部(52)の少なくとも一方を制御する。制御部(13)は、一次巻線(531)の電圧の極性が反転する反転期間を含む第1期間において、トランス回路部(5)及びコンバータ部(7)間で電力の伝達が行われないようにコンバータ部(7)を制御する。制御部(13)は、第1期間とは異なる第2期間において、トランス回路部(5)からコンバータ部(7)に向かう第1方向又は第1方向とは逆の第2方向で電力の伝達が行われるようにコンバータ部(7)を制御する。
 第1の態様によれば、平滑用の大容量コンデンサが不要となり回路規模を小さくすることができ、かつ一次巻線(531)にかかる電圧極性の反転を安定的に行うことで、スイッチング素子(AL,BL,YL,XL,UH,UL,WH,WL)の損失及び耐圧を低下させることができる。
 第2の態様に係る電力変換システム(1,1A~1I)では、第1の態様において、第1接続対象は直流電源(17)であり、かつ第2接続対象は交流電力系統(29)である場合と、第1接続対象は直流電源(17)であり、かつ第2接続対象は交流負荷(27)である場合と、第1接続対象は直流負荷(28)であり、かつ第2接続対象は交流電力系統(29)である場合とのいずれかである。電力変換システム(1,1A~1I)は、第1接続対象と第2接続対象との間で双方向に電力を伝達する。
 第2の態様によれば、第1接続対象と第2接続対象との間で双方向に電力を伝達することができる。
 第3の態様に係る電力変換システム(1J)では、第1の態様において、第1接続対象は直流電源(17)であり、かつ第2接続対象は直流負荷(28)である場合と、第1接続対象は直流負荷(28)であり、かつ第2接続対象は直流電源(17)である場合と、第1接続対象及び第2接続対象が共に直流電源(17)である場合とのいずれかである。電力変換システム(1J)は、第1接続対象と第2接続対象との間で双方向に直流電力を伝達する。
 第3の態様によれば、第1接続対象と第2接続対象との間で双方向に直流電力を伝達することができる。
 第4の態様に係る電力変換システム(1K~1S)では、第1の態様において、第1接続対象は直流電源(17)と直流機器(27)(負荷の一例)との一方であり、第2接続対象は直流電源(17)と直流機器(27)との他方又は交流電力系統(29)である。電力変換システム(1K~1S)は、直流電源(17)と直流機器(27)又は交流電力系統(29)との間で単方向に電力を伝達する。
 第4の態様によれば、直流電源(17)と直流機器(27)又は交流電力系統(29)との間で単方向に電力を伝達することができる。
 第5の態様に係る電力変換システム(1,1A~1T)では、第1~4のいずれかの態様において、接続部(6)は、端子(P3)及び端子(N3)間に接続されるスナバ回路(60)を含む。
 第5の態様によれば、スナバ回路(60)によって、電力変換システム(1,1A~1T)内に発生するリンギングを抑えることができる。
 第6の態様に係る電力変換システム(1,1A~1I)は、第1~4のいずれかの態様において、第2接続対象に接続される2以上の電源端子(U1,W1)を含む。制御部(13)は、第1期間において、2以上の電源端子(U1,W1)間が短絡されるように第3コンバータ部(7)を制御する。
 第6の態様によれば、トランス回路部(5)及びコンバータ部(7)間で電力の伝達が行われないようにすることができる。
 第7の態様に係る電力変換システム(1,1A~1I)では、第6の態様において、制御部(13)は、第1期間において、第1制御と第2制御との一方を行う。第1制御は、2以上のハイサイド側スイッチング素子(UH,WH)をオンし、かつ2以上のローサイド側スイッチング素子(UL,WL)をオフする制御である。第2制御は、ハイサイド側スイッチング素子(UH,WH)をオフし、かつローサイド側スイッチング素子(UL,WL)をオンする制御である。ハイサイド側スイッチング素子(UH,WH)は、端子(P3)及び2以上の電源端子(U1,W1)のうちのいずれか1つに接続される。ローサイド側スイッチング素子(UL,WL)は、端子(N3)及び2以上の電源端子(U1,W1)のうちのいずれか1つに接続される。
 第7の態様によれば、トランス回路部(5)及びコンバータ部(7)間で電力の伝達が行われないようにすることができる。
 第8の態様に係る電力変換システム(1,1A~1J)は、第1~3のいずれかの態様において、第1インバータモードと、第2インバータモードと、第1コンバータモードと、第2コンバータモードとのいずれかのモードで駆動する。第1インバータモードでは、コンバータ部(7)から第2外部接続部(15)に出力される出力電圧が正であり、第2インバータモードでは、上記出力電圧が負である。第1コンバータモードでは、第2外部接続部(15)を介してコンバータ部(7)に入力される入力電圧が正であり、第2コンバータモードでは、上記入力電圧が負である。制御部(13)は、第1インバータモードと第1コンバータモードとにおいて、コンバータ部(7)を同一シーケンスで制御し、第2インバータモードと第2コンバータモードとにおいて、コンバータ部(7)を同一のシーケンスで制御する。
 第8の態様によれば、コンバータ部(7)の出力電流又は入力電流の極性が想定する極性と異なる極性を示したとしても、第1インバータモードと第1コンバータモードとを連続的に切り替え、かつ第2インバータモードと第2コンバータモードとを連続的に切り替えることができる。その結果、UPS(無停電電源装置)などの自立運転にも適応できる。
 第9の態様に係る電力変換システム(1K)では、第4の態様において、第1接続対象は直流電源(17)である。第2接続対象は負荷である。負荷(機器)は直流機器(27)(直流負荷)である。接続部(15)は、端子(U2)(第1外部接続端子の一例)、及び端子(N3)に接続される端子(W2)(第2外部接続端子の一例)を含む。コンバータ部(7)は、第1方向に直流電力を伝達するチョッパ回路で構成されている。チョッパ回路は、コイル(71)と、スイッチング素子(UH)と、ダイオード(D2)と、を含む。コイル(71)は、端子(U2)に第1コイル端子が接続される。スイッチング素子(UH)は、コイル(71)の第2コイル端子(U1)及び端子(P3)間に接続される。ダイオード(D2)は、カソードが第2コイル端子(U1)に接続され、アノードが端子(N3)に接続される。
 第9の態様によれば、第1方向に電力を伝達することができる。
 第10の態様に係る電力変換システム(1K)では、第9の態様において、制御部(13)は、第1期間においてスイッチング素子(UH)をオフし、第2期間においてスイッチング素子(UH)をオンする。
 第10の態様によれば、第1方向に電力を伝達することができる。
 第11の態様に係る電力変換システム(1P)では、第4の態様において、第1接続対象は負荷である。第2接続対象は直流電源(17)又は交流電力系統(29)である。負荷(機器)は直流機器(27)(直流負荷)である。接続部(15)は、端子(U2)(第1外部接続端子の一例)、及び端子(N3)に接続される端子(W2)(第2外部接続端子の一例)を含む。コンバータ部(7)は、第2方向に直流電力を伝達するチョッパ回路で構成されている。チョッパ回路は、コイル(71)と、ダイオード(D1)と、スイッチング素子(UL)と、を含む。コイル(71)は、端子(U2)に第1コイル端子が接続される。ダイオード(D1)は、アノードがコイル(71)の第2コイル端子(U1)に接続され、カソードが端子(P3)に接続される。スイッチング素子(UL)は、第2コイル端子(U1)及び端子(N3)間に接続される。
 第11の態様によれば、第2方向に電力を伝達することができる。
 第12の態様に係る電力変換システム(1P)では、第11の態様において、制御部(13)は、第1期間においてスイッチング素子(UL)をオンし、第2期間においてスイッチング素子(UL)をオフする。
 第12の態様によれば、第2方向に電力を伝達することができる。
 第13の態様に係る電力変換システム(1K)では、第4の態様において、制御部(13)は、第1期間において、トランス回路部(5)を介さずに電流が流れる閉ループをコンバータ部(7)内に形成し、閉ループにて電流を循環させる循環モードを有する。
 第13の態様によれば、トランス回路部(5)及びコンバータ部(7)間で電力の伝達が行われないようにすることができる。
 第14の態様に係る電力変換システム(1T)では、第1~5のいずれかの態様において、制御部(13)は、コンバータ部(7)と交流電力系統(29)との間における電力の伝達を停止する場合に、コンバータ部(7)を停止させ、かつトランス回路部(5)を所定期間動作させる。
 第14の態様によれば、コンバータ部(7)と交流電力系統(29)との間における電力の伝達を停止する場合に、トランス回路部(5)を所定期間動作させることによって、二次巻線(532)側で生じた電力を一次巻線(531)側に回生させることができる。
 第15の態様に係る電力変換システム(1T)では、第14の態様において、制御部(13)は、所定期間において、一次巻線(531)側に二次巻線(532)側の電力が回生されるようにトランス回路部(5)を動作させる。
 第15の態様によれば、二次巻線(532)側で生じた電力を一次巻線(531)側に回生させることができる。
 第2~第15の態様に係る構成については、電力変換システム(1,1A~1T)の必須の構成ではなく、適宜省略可能である。
 本開示は、例えば、定置用蓄電池のパワーコンディショナ、または、EV/PHV用のV2H(Vehicle to Home)パワーコンディショナ、モータードライブなどに利用することができる。
 AH,AL スイッチング素子
 BH,BL スイッチング素子
 CA,CB コンデンサ
 CT1 センタータップ
 CT2 センタータップ
 IL 電流
 L1,L11,L12,L2,L3,L4 コイル
 N2,N3 端子
 P2,P3 端子
 T1,T2,T3,T4 端子
 U1,U2 端子
 UH,UL スイッチング素子
 VH,VL スイッチング素子
 VT1,VT2,VT3,VT4 電圧
 Vo,Vout 電圧
 W1,W2 端子
 WH,WL,XH,XL,YH,YL スイッチング素子
 1,1A,1B,1C,1D,1E,1F,1G,1H,1I,1J,1K,1L,1M,1N,1P,1Q,1R,1S,1T 電力変換システム
 5 トランス回路部
 6 接続部
 7 コンバータ部
 9 フィルタ回路
 13 制御部
 15 接続部
 17 直流電源
 27 交流負荷
 29 交流電力系統
 51 コンバータ部
 52 コンバータ部
 53 トランス
 60 スナバ回路
 531 一次巻線
 532 二次巻線

Claims (15)

  1.  第1接続対象と第2接続対象との間で少なくとも単方向に電力を伝達する電力変換システムであって、
     前記第1接続対象に接続される第1外部接続部と、
     前記第2接続対象に接続される第2外部接続部と、
     前記第1外部接続部側に設けられた一次巻線と、前記一次巻線と磁気結合される二次巻線と、前記第1外部接続部及び前記一次巻線間に接続される第1コンバータ部と、前記二次巻線に接続される第2コンバータ部とを含むトランス回路部と、
     前記第2外部接続部に接続される第3コンバータ部と、
     前記第2コンバータ部及び前記第3コンバータ部間を接続する第1接続端子及び第2接続端子を含む接続部と、
     前記一次巻線に正及び負の電圧が交互に印加され、かつ前記第2接続端子に対する前記第1接続端子の電圧が正となるように前記第1コンバータ部及び前記第2コンバータ部の少なくとも一方を制御する制御部と、を備え、
     前記制御部は、前記一次巻線の電圧の極性が反転する反転期間を含む第1期間において、前記トランス回路部及び前記第3コンバータ部間で電力の伝達が行われないように前記第3コンバータ部を制御し、前記第1期間とは異なる第2期間において、前記トランス回路部から前記第3コンバータ部に向かう第1方向又は前記第1方向とは逆の第2方向で電力の伝達が行われるように前記第3コンバータ部を制御する
     電力変換システム。
  2.  前記第1接続対象は直流電源であり、かつ前記第2接続対象は交流電力系統である場合と、
     前記第1接続対象は前記直流電源であり、かつ前記第2接続対象は交流負荷である場合と、
     前記第1接続対象は直流負荷であり、かつ前記第2接続対象は前記交流電力系統である場合とのいずれかであり、
     前記第1接続対象と前記第2接続対象との間で双方向に電力を伝達する
     請求項1に記載の電力変換システム。
  3.  前記第1接続対象は直流電源であり、かつ前記第2接続対象は直流負荷である場合と、
     前記第1接続対象は前記直流負荷であり、かつ前記第2接続対象は前記直流電源である場合と、
     前記第1接続対象及び前記第2接続対象が共に前記直流電源である場合とのいずれかであり、
     前記第1接続対象と前記第2接続対象との間で双方向に電力を伝達する
     請求項1に記載の電力変換システム。
  4.  前記第1接続対象は直流電源と負荷との一方であり、前記第2接続対象は前記直流電源と前記負荷との他方又は交流電力系統であって、
     前記直流電源と前記負荷又は前記交流電力系統との間で単方向に電力を伝達する
     請求項1に記載の電力変換システム。
  5.  前記接続部は、前記第1接続端子及び前記第2接続端子間に接続されるスナバ回路を含む
     請求項1~4のいずれか1項に記載の電力変換システム。
  6.  前記第2接続対象と接続される2以上の電源端子を含み、
     前記制御部は、前記第1期間において、前記2以上の電源端子間が短絡されるように前記第3コンバータ部を制御する
     請求項1~4のいずれか1項に記載の電力変換システム。
  7.  前記制御部は、前記第1期間において、前記第1接続端子及び前記2以上の電源端子のうちのいずれか1つに接続される2以上のハイサイド側スイッチング素子をオンし、かつ、前記第2接続端子及び前記2以上の電源端子のうちのいずれか1つに接続される2以上のローサイド側スイッチング素子をオフする制御と、前記ハイサイド側スイッチング素子をオフし、かつ、前記ローサイド側スイッチング素子をオンする制御とのいずれか一方を行う
     請求項6に記載の電力変換システム。
  8.  前記電力変換システムは、前記第3コンバータ部から前記第2外部接続部に出力される出力電圧が正の第1インバータモードと、前記出力電圧が負の第2インバータモードと、前記第2外部接続部を介して前記第3コンバータ部に入力される入力電圧が正の第1コンバータモードと、前記入力電圧が負の第2コンバータモードとのいずれかのモードで駆動し、
     前記制御部は、前記第1インバータモードと前記第1コンバータモードとにおいて、前記第3コンバータ部を同一シーケンスで制御し、前記第2インバータモードと前記第2コンバータモードとにおいて、前記第3コンバータ部を同一のシーケンスで制御する
     請求項1~3のいずれか1項に記載の電力変換システム。
  9.  前記第1接続対象は前記直流電源であり、
     前記第2接続対象は前記負荷であり、
     前記負荷は直流負荷であり、
     前記第2外部接続部は、第1外部接続端子、及び前記第2接続端子に接続される第2外部接続端子を含み、
     前記第3コンバータ部は、前記第1方向に直流電力を伝達するチョッパ回路で構成され、
     前記チョッパ回路は、
     前記第1外部接続端子に第1コイル端子が接続されるコイルと、
     前記コイルの第2コイル端子及び前記第1接続端子間に接続されるスイッチング素子と、
     カソードが前記第2コイル端子に接続され、アノードが前記第2接続端子に接続されるダイオードと、を含む
     請求項4に記載の電力変換システム。
  10.  前記制御部は、前記第1期間において前記スイッチング素子をオフし、前記第2期間において前記スイッチング素子をオンする
     請求項9に記載の電力変換システム。
  11.  前記第1接続対象は前記負荷であり、
     前記第2接続対象は前記直流電源又は前記交流電力系統であり、
     前記負荷は直流負荷であり、
     前記第2外部接続部は、第1外部接続端子、及び前記第2接続端子に接続される第2外部接続端子を含み、
     前記第3コンバータ部は、前記第2方向に直流電力を伝達するチョッパ回路で構成され、
     前記チョッパ回路は、
     前記第1外部接続端子に第1コイル端子が接続されるコイルと、
     アノードが前記コイルの第2コイル端子に接続され、カソードが前記第1接続端子に接続されるダイオードと、
     前記第2コイル端子及び前記第2接続端子間に接続されるスイッチング素子と、を含む
     請求項4に記載の電力変換システム。
  12.  前記制御部は、前記第1期間において前記スイッチング素子をオンし、前記第2期間において前記スイッチング素子をオフする
     請求項11に記載の電力変換システム。
  13.  前記制御部は、前記第1期間において、前記トランス回路部を介さずに電流が流れる閉ループを前記第3コンバータ部内に形成し、前記閉ループにて電流を循環させる循環モードを有する
     請求項4に記載の電力変換システム。
  14.  前記制御部は、前記第3コンバータ部と前記第2接続対象との間における電力の伝達を停止する場合に、前記第3コンバータ部を停止させ、かつ前記トランス回路部を所定期間動作させる
     請求項1~5のいずれか1項に記載の電力変換システム。
  15.  前記制御部は、前記所定期間において、前記一次巻線側に前記二次巻線側の電力が回生されるように前記トランス回路部を動作させる
     請求項14に記載の電力変換システム。
PCT/JP2017/037073 2016-10-12 2017-10-12 電力変換システム WO2018070496A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780063130.1A CN109874385B (zh) 2016-10-12 2017-10-12 电力转换系统
EP17859815.7A EP3528373B1 (en) 2016-10-12 2017-10-12 Power conversion system
JP2018545062A JP6675106B2 (ja) 2016-10-12 2017-10-12 電力変換システム
US16/341,387 US10840814B2 (en) 2016-10-12 2017-10-12 Power conversion system

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2016200860 2016-10-12
JP2016-200860 2016-10-12
JP2016218320 2016-11-08
JP2016-218320 2016-11-08
JP2016218319 2016-11-08
JP2016-218319 2016-11-08
JP2017-027255 2017-02-16
JP2017027255 2017-02-16

Publications (1)

Publication Number Publication Date
WO2018070496A1 true WO2018070496A1 (ja) 2018-04-19

Family

ID=61905583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037073 WO2018070496A1 (ja) 2016-10-12 2017-10-12 電力変換システム

Country Status (5)

Country Link
US (1) US10840814B2 (ja)
EP (1) EP3528373B1 (ja)
JP (1) JP6675106B2 (ja)
CN (1) CN109874385B (ja)
WO (1) WO2018070496A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021186918A1 (ja) * 2020-03-18 2021-09-23 パナソニック株式会社 電力変換システム、電力変換システムの制御方法及びプログラム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10917004B2 (en) * 2016-12-27 2021-02-09 Panasonic Intellectual Property Management Co., Ltd. Snubber circuit and power conversion system using same
JP2020145819A (ja) * 2019-03-05 2020-09-10 オムロン株式会社 パワーコンディショナ
US20220181985A1 (en) * 2019-03-20 2022-06-09 Panasonic Intellectual Property Management Co., Ltd. Power conversion system, and diagnosis method and program for power conversion circuit
CN114786590A (zh) 2019-12-03 2022-07-22 波士顿科学国际有限公司 药剂施用医疗装置
CN111181738B (zh) * 2020-01-20 2021-11-23 深圳市普威技术有限公司 一种poe供电设备和系统
US11502613B2 (en) * 2020-08-18 2022-11-15 Lear Corporation DC-DC converter that applies a dual active bridge rectifier topology
US11575326B2 (en) * 2020-11-27 2023-02-07 Lear Corporation Wide high voltage-input range DC-DC converter
CN117254692B (zh) * 2023-11-13 2024-03-22 宁德时代新能源科技股份有限公司 Dc/dc变换器的控制方法、电池系统、装置、设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110273917A1 (en) * 2010-05-05 2011-11-10 Electric Power Research Institute, Inc. Intelligent photovoltaic interface and system
JP2014117086A (ja) * 2012-12-11 2014-06-26 Diamond Electric Mfg Co Ltd 系統連系システム
JP2016096660A (ja) * 2014-11-14 2016-05-26 シャープ株式会社 パワーコンディショナ、およびその制御装置
JP2016178708A (ja) * 2015-03-18 2016-10-06 住友電気工業株式会社 変換装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0723505A (ja) * 1993-06-22 1995-01-24 Toshiba Corp 車載用電動機の制御装置
JP4773002B2 (ja) * 2001-08-17 2011-09-14 株式会社三社電機製作所 メッキ用電源装置
JP2008048485A (ja) 2006-08-11 2008-02-28 Toyota Industries Corp 直流交流変換装置、および直流交流変換装置の過電流保護方法
US8446743B2 (en) * 2009-07-10 2013-05-21 Regents Of The University Of Minnesota Soft switching power electronic transformer
CN101800476A (zh) 2010-04-01 2010-08-11 华为技术有限公司 电压变换装置、方法及供电系统
JP5299555B2 (ja) 2011-11-28 2013-09-25 ダイキン工業株式会社 電力変換制御装置
EP2926446A4 (en) * 2012-11-28 2016-08-31 Guangdong Rui Ding Electrical Technology Ltd SINGLE-FLOOR SINGLE-STAGE ISOLATED CUT POWER AMPLIFIER
JP6206502B2 (ja) 2013-10-17 2017-10-04 日産自動車株式会社 電力変換装置及び電力変換方法
US20160072293A1 (en) 2014-09-08 2016-03-10 Astronics Advanced Electronic Systems Corp. Multi-Mode Power Converter Power Supply System
US9543823B2 (en) * 2014-11-13 2017-01-10 Panasonic Intellectual Property Management Co., Ltd. Power conversion apparatus having a switching circuit unit that includes a switching device and an auxiliary switching device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110273917A1 (en) * 2010-05-05 2011-11-10 Electric Power Research Institute, Inc. Intelligent photovoltaic interface and system
JP2014117086A (ja) * 2012-12-11 2014-06-26 Diamond Electric Mfg Co Ltd 系統連系システム
JP2016096660A (ja) * 2014-11-14 2016-05-26 シャープ株式会社 パワーコンディショナ、およびその制御装置
JP2016178708A (ja) * 2015-03-18 2016-10-06 住友電気工業株式会社 変換装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021186918A1 (ja) * 2020-03-18 2021-09-23 パナソニック株式会社 電力変換システム、電力変換システムの制御方法及びプログラム

Also Published As

Publication number Publication date
CN109874385B (zh) 2021-03-30
CN109874385A (zh) 2019-06-11
EP3528373A4 (en) 2019-08-21
EP3528373A1 (en) 2019-08-21
EP3528373B1 (en) 2021-04-28
JPWO2018070496A1 (ja) 2019-08-08
US10840814B2 (en) 2020-11-17
US20200044573A1 (en) 2020-02-06
JP6675106B2 (ja) 2020-04-01

Similar Documents

Publication Publication Date Title
JP6675106B2 (ja) 電力変換システム
WO2021000742A1 (zh) 一种车辆及其能量转换装置与动力系统
US8884564B2 (en) Voltage converter and voltage converter system including voltage converter
US8901883B2 (en) Charger for electric vehicle
US10027232B2 (en) Motor bi-directional DC/DC converter and control method thereof
EP3553928B1 (en) Snubber circuit and power conversion system using same
US9866135B2 (en) Power conversion device including primary inverter, transformer, secondary converter
CN106208769B (zh) 电力转换装置
US9866129B2 (en) Power conversion device including primary inverter, transformer, secondary converter, and controller
US9209698B2 (en) Electric power conversion device
US12074470B2 (en) System and method for single-stage on-board charger power factor correction reactive control
CN112224056B (zh) 一种车辆及其能量转换装置
US11870291B2 (en) Apparatus for single stage on-board charger with an integrated pulsating buffer control
CN106787899A (zh) 一种新型两级式多电平功率逆变系统
WO2018123552A1 (ja) スナバ回路、及びそれを用いた電力変換システム
CN112224064B (zh) 一种能量转换装置、动力系统及车辆
JP2020533945A (ja) Dc/dcコンバータを備える車両充電器
JP2015122903A (ja) スイッチング電源装置、電力変換装置
JP2015139312A (ja) スイッチング電源装置、電力変換装置
CN210760332U (zh) 能量存储单元与包括该能量存储单元的电动车辆
Lin et al. Hybrid ZVS Converter with a Wide ZVS Range and a Low Circulating Current
EP2575246A1 (en) Method for discharging a DC-link capacitor in a DC-DC converter apparatus, and corresponding DC-DC converter apparatus
Patwa et al. A Modified Buck Converter with Bridgeless configuration to achieve Power Factor Correction for suitable for EV application
JP2016105666A (ja) 電力変換装置
CN115411921A (zh) 一种变换器和逆变器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17859815

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018545062

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017859815

Country of ref document: EP

Effective date: 20190513