WO2018070443A1 - Fiber processing agent and liquid permeable nonwoven fabric containing same - Google Patents

Fiber processing agent and liquid permeable nonwoven fabric containing same Download PDF

Info

Publication number
WO2018070443A1
WO2018070443A1 PCT/JP2017/036869 JP2017036869W WO2018070443A1 WO 2018070443 A1 WO2018070443 A1 WO 2018070443A1 JP 2017036869 W JP2017036869 W JP 2017036869W WO 2018070443 A1 WO2018070443 A1 WO 2018070443A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
carbon atoms
component
processing agent
fiber processing
Prior art date
Application number
PCT/JP2017/036869
Other languages
French (fr)
Japanese (ja)
Inventor
早織 田中
矢放 正広
一史 加藤
文明 山下
Original Assignee
旭化成株式会社
日華化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社, 日華化学株式会社 filed Critical 旭化成株式会社
Priority to CN201780063373.5A priority Critical patent/CN109844214B/en
Priority to JP2018545033A priority patent/JP7146641B2/en
Publication of WO2018070443A1 publication Critical patent/WO2018070443A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/51Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
    • A61F13/511Topsheet, i.e. the permeable cover or layer facing the skin
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/144Alcohols; Metal alcoholates
    • D06M13/148Polyalcohols, e.g. glycerol or glucose
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/165Ethers
    • D06M13/17Polyoxyalkyleneglycol ethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/53Polyethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • D06M15/647Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain containing polyether sequences

Definitions

  • the present invention relates to a fiber processing agent capable of imparting excellent wettability and repeated water permeability to a nonwoven fabric, a liquid-permeable nonwoven fabric containing the fiber processing agent, and a hygiene using the liquid-permeable nonwoven fabric Regarding materials.
  • Patent Document 1 proposes a polyolefin-based nonwoven fabric provided with a hydrophilic treating agent containing a specific polyether and a polyether-modified silicone.
  • a hydrophilic treating agent containing a specific polyether and a polyether-modified silicone containing a specific polyether and a polyether-modified silicone.
  • the problem to be solved by the present invention is composed of a fiber processing agent capable of improving the wettability and repeated water permeability of a nonwoven fabric, and a fiber provided with the fiber processing agent. Is to provide a non-woven fabric.
  • the present inventors have conducted intensive studies and repeated experiments.
  • the specific component (A) represented by the general formula (1) and the specific component represented by the general formula (2) ( In combination with B) the balance between hydrophilicity and hydrophobicity is maintained, the compatibility with the nonwoven fabric and the compatibility with body fluids such as urine are compatible, and the initial water permeability, wettability, and repeated water permeability are excellent.
  • the present inventors have found that a nonwoven fabric can be provided and have completed the present invention.
  • R 1 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 24 carbon atoms, an alkenyl group having 2 to 24 carbon atoms, an alkanoyl group having 2 to 24 carbon atoms, or 2 to 24 carbon atoms.
  • R 4 is an alkylene group having 1 to 12 carbon atoms, an alkenylene group having 2 to 12 carbon atoms, or an arylene group having 6 to 12 carbon atoms
  • X is a hydrogen atom or an anion
  • R 2 is an alkylene group having 1 to 12 carbon atoms, an alkenylene group having 2 to 12 carbon atoms, or an arylene group having 6 to 12 carbon atoms
  • 2 and A 3 are each independently an alkylene group having 2 to 4 carbon atoms
  • l is an integer of 0 or 1 to 1000
  • m is an integer of 0 or 1 to 1000
  • n Is an integer of 0 or 1-100.
  • the component (B) represented by; A fiber processing agent containing [2] The fiber processing agent according to [1], further including a polyether-modified silicone as the component (C).
  • the nonwoven fabric coated with the fiber processing agent according to the present invention is excellent in initial water permeability, wettability, and repeated water permeability. Therefore, sanitary materials such as sanitary napkins, incontinence pads, disposable diapers and other top sheets and second sheets are used. Or, for example, masks, warmers, tape base materials, patch base materials, emergency bandages, packaging materials, wipe products, medical gowns, bandages, clothing, skin care sheets, etc. It can be preferably used.
  • the fiber processing agent of this embodiment has the following general formula (1): HO— (A 1 O) p —H: General formula (1) ⁇ In the formula, A 1 is an alkylene group having 2 to 4 carbon atoms, and p is an integer of 1 to 3. ⁇ (A); and the following general formula (2) different from the component (A): R 1 —O— (A 2 O) 1 — ⁇ C (O) R 2 C (O) — (A 3 O) m ⁇ n —R 3 ...
  • R 1 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 24 carbon atoms, an alkenyl group having 2 to 24 carbon atoms, an alkanoyl group having 2 to 24 carbon atoms, or 2 to 24 carbon atoms.
  • R 4 is an alkylene group having 1 to 12 carbon atoms, an alkenylene group having 2 to 12 carbon atoms, or an arylene group having 6 to 12 carbon atoms
  • X is a hydrogen atom or an anion
  • R 2 is an alkylene group having 1 to 12 carbon atoms, an alkenylene group having 2 to 12 carbon atoms, or an arylene group having 6 to 12 carbon atoms
  • 2 and A 3 are each independently an alkylene group having 2 to 4 carbon atoms
  • l is an integer of 0 or 1 to 1000
  • m is an integer of 0 or 1 to 1000
  • l + n is 1 or more.
  • the component (B) represented by; Containing.
  • a 1 is an alkylene group having 2 to 4 carbon atoms
  • p is an integer of 1 to 3.
  • a 1 is an alkylene group having 2 to 4 carbon atoms, but an alkylene group having 3 to 4 carbon atoms is preferable and an alkylene group having 3 carbon atoms is more preferable from the viewpoints of wettability and repeated water permeability.
  • p represents the degree of polymerization of the alkyleneoxy group represented by (A 1 O) and is an integer of 1 to 3, preferably 1 to 2 and more preferably 1 from the viewpoints of wettability and repeated water permeability. preferable.
  • the component (A) is, for example, an alkylene glycol having 2 to 4 carbon atoms such as ethylene glycol, propylene glycol, butylene glycol, and the like, such as ethylene oxide, propylene oxide, butylene oxide, etc. at 80 to 200 ° C. under a base catalyst. It can be obtained by adding an alkylene oxide having 2 to 4 carbon atoms.
  • a base catalyst for example, potassium hydroxide, sodium hydroxide and the like can be used.
  • Commercially available ethylene glycol, propylene glycol, butylene glycol, diethylene glycol, dipropylene glycol, dibutylene glycol, triethylene glycol, tripropylene glycol, tributylene glycol, and the like may be used.
  • R 1 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 24 carbon atoms, an alkenyl group having 2 to 24 carbon atoms, an alkanoyl group having 2 to 24 carbon atoms, An alkenoyl group having 2 to 24 carbon atoms or —C (O) —R 4 —COOX (where R 4 represents an alkylene group having 1 to 12 carbon atoms, an alkenylene group having 2 to 12 carbon atoms, or an arylene having 6 to 12 carbon atoms) And X is a hydrogen atom or anion.) And R 2 is an alkylene group having 1 to 12 carbon atoms, an alkenylene group having 2 to 12 carbon atoms, or an arylene group having 6 to 12 carbon atoms.
  • a 2 and A 3 are each independently an alkylene group having 2 to 4 carbon atoms, l is 0 or an integer of 1 to 1000, m is 0 or an integer of 1 to 1000, n is 0 or an integer of 1 to 100. However, since l + n is 1 or more and component (B) is a compound different from component (A), in this specification, general formula (2) is obtained by removing general formula (1). To do.
  • any one of R 1 and R 3 is an alkyl group having 1 to 24 carbon atoms, an alkenyl group having 2 to 24 carbon atoms, an alkanoyl group having 2 to 24 carbon atoms, or An alkenoyl group having 2 to 24 carbon atoms is preferable.
  • the carbon number is preferably 8 to 22, and more preferably 12 to 18.
  • alkyl group, alkenyl group, alkanoyl group and alkenoyl group may be linear or branched.
  • a 2 and A 3 are, independently of each other, an alkylene group having 2 to 4 carbon atoms, but from the viewpoints of rewetting, repeated water permeability, and processing bath stability, they are alkylene groups having 2 to 3 carbon atoms. Is preferred. From the same viewpoint, the polyalkyleneoxy groups represented by (A 2 O) 1 and (A 3 O) m are an alkyleneoxy group having 2 carbon atoms (ethyleneoxy group) and an alkyleneoxy group having 3 carbon atoms. It is more preferable to use (propyleneoxy group) together.
  • the addition method may be block addition or random addition.
  • l and m represent the degree of polymerization of the polyalkyleneoxy group represented by (A 2 O) l and (A 3 O) m , respectively, l represents 0 or an integer from 1 to 1000, and m represents 0 Alternatively, it represents an integer of 1 to 1000, and l and m are preferably 10 to 200 from the viewpoints of rewetting and repeated water permeability.
  • the component (B) represented by the general formula (2) preferably has an average molecular weight of 100,000 or less from the viewpoint of ease of handling.
  • component (B) examples include polyalkylene glycol (B1), polyoxyalkylene alkyl ether (B2), alkyleneoxy group adduct (B3) of divalent carboxylic acid, esterified product (B4) thereof and the like. be able to.
  • Polyalkylene glycol (B1) can be obtained, for example, by adding an alkylene oxide to a divalent alcohol.
  • the polyoxyalkylene alkyl ether (B2) can be obtained, for example, by adding an alkylene oxide to a monovalent alcohol.
  • a base catalyst such as potassium hydroxide or sodium hydroxide may be used at 80 to 200 ° C.
  • Examples of the divalent alcohol include ethylene glycol, propylene glycol, butylene glycol and the like.
  • Examples of monohydric alcohols include alcohols having 1 to 24 carbon atoms. Such an alcohol may have a branch or a double bond.
  • As the alkylene oxide an alkylene oxide having 2 to 4 carbon atoms such as ethylene oxide, propylene oxide, butylene oxide can be used. When two or more types of alkylene oxide are used, the addition method may be a block or random.
  • the alkyleneoxy group adduct (B3) of a divalent carboxylic acid can be obtained, for example, by adding an alkylene oxide to a divalent carboxylic acid or by reacting a divalent carboxylic acid with a polyalkylene glycol.
  • the esterified product (B4) is, for example, the polyalkylene glycol (B1), the polyoxyalkylene alkyl ether (B2), and / or the alkyleneoxy group adduct (B3) of a divalent carboxylic acid obtained above.
  • Monovalent and / or divalent carboxylic acids can be obtained by reacting at about 100 to 300 ° C. according to a conventional method. This reaction may be non-catalytic or may use a catalyst such as sulfuric acid or paratoluenesulfonic acid.
  • Examples of monovalent carboxylic acids include carboxylic acids having 1 to 24 carbon atoms. Such a carboxylic acid may have a branch or a double bond.
  • Examples of the divalent carboxylic acid include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid and phthalic acid, and aliphatic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, adipic acid, sebacic acid, maleic acid and succinic acid. Can be mentioned. Among these, from the viewpoints of wettability and repeated water permeability, aliphatic dicarboxylic acids are preferably used, and adipic acid and succinic acid are more preferably used.
  • the blending ratio of the component (A) is less than the lower limit value, the wettability tends to decrease, and when the blending ratio of the component (A) exceeds the upper limit value, the water permeability tends to decrease repeatedly.
  • a polyether-modified silicone may be further added to the fiber processing agent of the present embodiment as the component (C) for improving the initial water permeability (45-degree inclined flow length). It can.
  • the blending ratio of component (C) is preferably 5% by mass to 50% by mass with respect to the total amount of component (A) and component (B). % To 30% by mass is more preferable.
  • a commercially available polyether-modified silicone can be used as the component (C).
  • the polyether-modified silicone used as the component (C) is not particularly limited, but those having an HLB of 5 to 15 are preferably used from the viewpoints of rewetting, repeated water permeability, and 45 ° gradient flow length. Further, those having a viscosity of 50 to 10,000 cSt are preferably used.
  • the fiber processing agent of the present embodiment may contain other compounds depending on the desired purpose as long as the desired effect is not impaired. I do not care.
  • various surfactants as emulsifiers, softeners, smoothing agents, antistatic agents, and antifoaming agents can be appropriately contained.
  • the adhesion amount of the fiber processing agent varies depending on the intended use.
  • the total amount of the essential components A and B is 0.05% by weight to 1.50 with respect to the nonwoven fabric. It is preferable to apply so as to adhere by weight.
  • the amount of fiber processing agent mixed with component A, component B, component C, and other compounds is 0.10% by weight to 1% in a pure amount (pure amount) excluding a solvent for diluting the processing agent such as water.
  • a range of .50% by weight is preferable, and 0.15% to 1.20% by weight is more preferable. If it is less than 0.05% by weight, satisfactory water permeation performance cannot be obtained. On the other hand, if it exceeds 1.50% by weight, skin irritation or rash may occur.
  • the fiber processing agent When applying the fiber processing agent to the nonwoven fabric, it is also effective to directly apply each of the component (A), the component (B), and the component (C) or a mixture of these to the nonwoven fabric. However, it is preferable to mix in advance, dilute with a solvent such as water, and apply to the nonwoven fabric as an aqueous fiber processing agent solution.
  • the fiber processing agent of the present embodiment is obtained by mixing and homogenizing the component (A), the component (B), and optionally the component (C), and the other compound described above, preferably at a temperature equal to or higher than the melting point. be able to.
  • a known method such as a dipping method, a spraying method, or a coating method can be adopted, and after applying the fiber processing agent, it may be dried using a drying means such as hot air or a hot roll.
  • a drying means such as hot air or a hot roll.
  • the application amount of the aqueous fiber processing agent solution is small so as not to cause insufficient drying in the drying process accompanying the speeding up of the nonwoven fabric production facility.
  • the coating amount (% by weight) with respect to the nonwoven fabric is preferably 1.0% to 65% by weight, more preferably 3.0% to 60% by weight, and still more preferably 5.0% by weight in any of the application methods. % By weight to 50% by weight. If the amount is less than 1.0% by weight, uniform coating cannot be obtained. On the other hand, if the amount exceeds 65% by weight, the required drying capacity increases, the equipment cost increases, and insufficient drying may occur.
  • the concentration of the fiber processing agent to be applied is preferably 0.05% by weight to 100% by weight.
  • a coating method is generally used.
  • Known coating methods include kiss coaters and dies, but it is preferable to use a gravure application method because the fiber processing agent can be applied uniformly in the nonwoven fabric width direction.
  • the gravure roll handle may be a lattice type or a pyramid type, but is preferably a diagonal type in which the fiber processing agent hardly remains on the bottom of the gravure cell.
  • the cell volume is preferably 5 cm 3 / m 2 to 40 cm 3 / m 2 . If it is less than 5 cm ⁇ 3 > / m ⁇ 2 >, since the application amount is too small, uniform application of the fiber processing agent becomes difficult.
  • the cell depth of the gravure roll is preferably 10 ⁇ m to 80 ⁇ m, and the interval is preferably designed to be within the range of 80 mesh to 250 mesh so as to have the above cell volume.
  • the method for scraping off the liquid on the surface of the gravure roll may be a doctor blade method using a general doctor made of a hardened steel plate or a rubber roll method using a roll having a rubber surface.
  • the suppression pressure in the case of the doctor blade method is preferably 0.5 kg / cm to 1.0 kg / cm, more preferably 0.6 kg / cm to 0.8 kg / cm.
  • the suppression pressure is preferably 1.0 kg / cm or more and 5.0 kg / cm or less, more preferably 1.5 kg / cm or more and 3.5 kg / cm or less, within a rubber hardness range of 60 ° or more and 80 ° or less. preferable.
  • the restraining pressure is within the above range, the amount of application of the fiber processing agent is less varied since the nonwoven fabric can be uniformly restrained in the width direction.
  • the application method by the spray method is preferable because it can cope with the high speed of the equipment, can be applied efficiently, and it is easy to maintain the thickness of the nonwoven fabric.
  • the spraying method may be a known spraying method by air compression or a method of directly compressing and spraying the aqueous fiber processing agent solution, but the rotor dampening method is preferred from the viewpoint of uniform application to the nonwoven fabric.
  • the rotor dampening method is a method in which a fiber processing agent aqueous solution is supplied onto a rotating rotor and the fiber processing agent aqueous solution is sprayed by using centrifugal force of rotor rotation.
  • the openings are limited so that the liquid particles of the fiber processing agent aqueous solution that is blown off by the rotation of the rotor in the application direction can be sprayed only on the nonwoven fabric side to be applied and can be uniformly applied in the width direction of the nonwoven fabric. It is possible to adjust the spray particle diameter according to the rotational speed of the rotor.
  • a rotor having a diameter of 40 mm to 100 mm is selected, and the nonwoven fabric surface to be applied and the center of the rotor so that the aqueous fiber processing agent solution can uniformly adhere in the width direction of the nonwoven fabric to be applied.
  • the rotors are preferably arranged in the width direction at an equal interval in the range of 60 mm to 220 mm to have two stages.
  • the point of applying uniformly is to make spray particles reach the inside of the nonwoven fabric to be applied, and the spray particle diameter is preferably 10 ⁇ m to 200 ⁇ m, more preferably 30 ⁇ m to 70 ⁇ m.
  • the surface tension of the aqueous fiber processing agent solution is important.
  • Spray particle diameter ( ⁇ m) ⁇ 100000 ⁇ ⁇ (surface tension (N / m)) ⁇ / (rotor diameter (mm) ⁇ rotor rotational speed (rpm)) Is calculated by
  • the temperature of the fiber processing agent aqueous solution in these coating methods is preferably 5 ° C. to 50 ° C., and more preferably 12 ° C. to 40 ° C. from the viewpoint of uniform dispersion and stability of the solution.
  • the viscosity of the aqueous fiber processing agent solution is preferably 0.5 mPa ⁇ s to 50 mPa ⁇ s, and more preferably 0.8 mPa ⁇ s to 20 mPa ⁇ s from the viewpoint of easier application. When the viscosity exceeds 50 mPa ⁇ s, the permeability of the aqueous fiber processing agent solution to the nonwoven fabric tends to be poor, and uniform application tends to be difficult.
  • a conventional drying method can be used for drying after the application of the aqueous fiber processing agent solution, and it is not particularly limited, and a known method using convection heat transfer, conduction heat transfer, radiant heat transfer, etc. is adopted.
  • Various drying methods such as a hot air circulation type, a hot air penetration type, an infrared heater type, a method of blowing hot air on both surfaces of the nonwoven fabric, and a method of introducing into a heated gas can be used.
  • the non-woven fabric of this embodiment is made of thermoplastic fibers, and may be a long-fiber non-woven fabric manufactured by a spunbond method or a short-fiber non-woven fabric manufactured by a card method or a wet papermaking method.
  • the fibers constituting the web are preferably long fibers produced by a spunbond method.
  • the long fiber means one having a fiber length of 55 mm or more.
  • the form of the thermoplastic fiber not only those having a round cross section, but also having a special cross section such as a flat cross section or a Y-shaped cross section, a hollow fiber or a crimped thread, can be used. It is not particularly limited.
  • the web may be a single layer, but may be laminated by spraying a web that is melt-spun by the melt blown method (M) on the web formed by the spunbond method (S).
  • M melt blown method
  • S spunbond method
  • the state of lamination may be laminated with SS, SSS, SSSS from the viewpoint of productivity, or may be laminated like SM, SMS, SMMS, SMSMS.
  • a method of joining the laminated webs a method of joining using an adhesive, a method of adhering with a low melting fiber or a composite fiber, a method of spraying a hot melt binder during web formation, a melt joining method, a needle punch, a water flow, etc. Any of the methods such as mechanical entanglement such as entanglement with hot air or joining with hot air may be used. However, it is preferable to join by partial thermocompression from the viewpoint of high-speed productivity.
  • the web can be bonded between heated embossed / flat rolls that can provide bonding points such as pinpoint, elliptical, diamond, and rectangular shapes.
  • the area ratio of thermocompression bonding in partial thermocompression bonding is preferably 5 to 40%, more preferably 5 to 25%, from the viewpoint of strength retention and flexibility.
  • a hot air from a viewpoint of maintaining the bulk of a nonwoven fabric and obtaining the cushioning texture preferred as a top sheet of sanitary materials. Any joining method using hot air can be used without particular limitation as long as it is a hot air circulation type, a hot air penetration type, or a method of wiping hot air on both surfaces of a nonwoven fabric.
  • thermoplastic resin constituting the thermoplastic fiber of the present embodiment examples include polyolefin resins such as polyethylene, polypropylene and copolymer polypropylene, and polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and copolymer polyester.
  • Polyamide resins such as nylon-6, nylon-66, and copolymerized nylon
  • biodegradable resins such as polylactic acid, polybutylene succinate, and polyethylene succinate are not particularly limited.
  • polyolefin resins are preferred from the viewpoints of general use and convenience of recovery.
  • the fiber may be one type or a combination of two or more types of resins such as side-by-side and sheath core.
  • the average fineness of the nonwoven fabric fibers is preferably 0.45 dtex to 10.0 dtex, more preferably 0.55 dtex to 8.0 dtex, and still more preferably 0.86 dtex to 5.0 dtex. From the viewpoint of spinning stability, the average fineness is preferably 0.45 dtex or more, and from the viewpoint of the texture of the nonwoven fabric used for the sanitary material, it is preferably 10.0 dtex or less.
  • the basis weight of the nonwoven fabric is preferably 8 g / m 2 to 80 g / m 2 , more preferably 10 g / m 2 to 40 g / m 2 or less, still more preferably 10 g / m 2 to 30 g / m 2 . If the basis weight is 8 g / m 2 or more, the nonwoven fabric used for the sanitary material is strong, and if it is 80 g / m 2 or less, the texture of the nonwoven fabric used for the sanitary material is satisfied. It tends to be difficult to give a thick impression.
  • the nonwoven fabric to which the fiber processing agent of the present embodiment is applied preferably has the following characteristics in order to absorb urine and body fluids without stagnation.
  • the repetitive water permeability that is an index of water permeability of the nonwoven fabric of the present embodiment is preferably 70% or more at the fourth time. Since diapers are not changed every urination, body fluids such as urine need to be passed through without stagnation in non-woven fabrics used for top sheets and second sheets, even for the second and third urination. There is. If the value of the fourth cycle water permeability is less than 70%, for example, when used for a top sheet or a second sheet of a disposable diaper, the water cannot be sufficiently passed to the urine after the second time, which causes urine leakage. there is a possibility.
  • the wettability as an index of water permeability of the nonwoven fabric of this embodiment is 0.5 g or less.
  • the wettability value exceeds 0.5 g, for example, when used as a surface material of a disposable diaper, after urination, when the surface material touches the skin, there is a very moist feeling and the usability is deteriorated. May cause rash.
  • the 45-degree inclined flow length serving as a water permeability index of the nonwoven fabric of the present embodiment is preferably 30 mm or less, more preferably 25 mm or less.
  • the 45-degree inclined flow length exceeds 30 mm, for example, when used for a surface material such as a disposable diaper, the liquid flow on the surface increases, and urine leakage is likely to occur.
  • the present invention will be specifically described by way of examples and comparative examples, but the present invention is not limited to the following examples.
  • the evaluation method of each characteristic is as follows, and the physical property of the obtained nonwoven fabric is shown in the following Table 2.
  • the flow direction in nonwoven fabric production is referred to as the MD direction, the direction perpendicular to that direction and the width direction as the CD direction.
  • Average fineness (dtex) A 1 cm square test piece was sampled by dividing the nonwoven fabric into 5 equal parts in the CD direction, 20 diameters of each fiber were measured with a microscope VHX-700F manufactured by Keyence, and the single yarn fineness was calculated from the average value.
  • Non-woven fabric weight (g / m 2 )
  • g / m 2 The weight per unit area was calculated as a basis weight (g / m 2 ).
  • Rewetting In order to make the characteristics of the absorber constant as the absorber, a test cloth is placed on three sheets of specific filter paper (GRADE: 989 manufactured by Ahlstrom). A 10 cm square plate with a hole of 25 mm in diameter (about 800 g) was placed on top of it, and physiological saline (amount 4.0 times the weight of the absorber) was dropped from the height of 25 mm above the center hole. And absorb. Next, the plate on the test cloth is removed, and a 3.5 kg weight (10 cm square) is placed on it for 3 minutes to stabilize the liquid distribution in the absorbent body.
  • GRADE 989 manufactured by Ahlstrom
  • the increase value (g) was defined as the wettability.
  • Extrusion was performed at a spinning temperature of 220 ° C. by a bond method, and the filament group was extruded toward a moving collection surface using a high-speed traction device using an air jet to prepare a long fiber web having an average fiber diameter of 2.8 dtex. Subsequently, the obtained long fiber web was flat roll and emboss roll at an upper and lower temperature of 135 ° C.
  • the filament group was extruded toward a moving collection surface using a high-speed traction device using an air jet to produce a long fiber web having an average fiber diameter of 2.3 dtex.
  • the obtained long fiber web was partially pressure-bonded to each other under the conditions of a vertical temperature of 135 ° C. and a pressure of 60 kg / cm, The line speed was adjusted so that the intended basis weight was 30 g / m 2 to obtain a long fiber nonwoven fabric (2).
  • Polypropylene (PP) resin having an MFR of 55 g / 10 min (measured at a temperature of 230 ° C. and a load of 2.16 kg according to JIS-K7210) is the first component, and the melt index (MI) is 26 g / 10 min (JIS-K7210).
  • the high-density polyethylene (HDPE) resin at a temperature of 190 ° C. and a load of 2.16 kg is used as the second component, the discharge amount of the first component is 0.54 g / min ⁇ hole, and the discharge amount of the second component is Extruded at a spinning temperature of 220 ° C.
  • the filament group was extruded toward the moving collection surface using a high-speed airflow traction device using an air jet to prepare an eccentric sheath-core type composite continuous fiber web having an average fiber diameter of 2.0 dtex.
  • the obtained long fiber web was partially pressure-bonded to each other under the conditions of an upper and lower temperature of 135 ° C. and a pressure of 60 kg / cm. The line speed was adjusted so that the intended basis weight was 15 g / m 2 to obtain a long fiber nonwoven fabric (4).
  • PP Polypropylene
  • MI is 26 g / 10 min
  • HDPE temperature High-density polyethylene
  • the first component discharge rate is 0.4 g / min ⁇ hole
  • the second component discharge rate is 0.4 g / Extruded at a spinning temperature of 220 ° C.
  • an eccentric sheath-core composite long fiber web having an average fiber diameter of 2.3 dtex was prepared by extrusion toward the moving collection surface. Subsequently, the obtained eccentric sheath-core type composite long fiber nonwoven web was subjected to a flat roll and an embossing roll at 100 ° C.
  • the discharge amount of the first component is 0.40 g / min ⁇ hole and the discharge amount of the second component (polyethylene) is 0.40 g.
  • a fiber having a total discharge rate of 0.8 g / min ⁇ hole and a ratio of the first component to the second component of 1: 1 was extruded at a spinning temperature of 220 ° C. by a spunbond method.
  • the extruded filament is stretched in the traction zone using the suction force of the moving collection surface, and then deposited on the moving collection surface through a diffuser, and a side-by-side type composite long fiber web having an average fiber diameter of 3.0 dtex.
  • the obtained side-by-side type composite long fiber web was bonded to each other with hot air having a hot air temperature of 142 ° C. and a hot air wind speed of 0.7 m / s, and a composite long fiber nonwoven fabric having a basis weight of 15 g / m 2 and a crimp number of 15 pieces / inch ( 6) was obtained.
  • PP Polypropylene
  • the filament group was extruded toward the moving collection surface using a high-speed airflow traction device using an air jet to prepare an eccentric sheath-core type composite long fiber web having an average fiber diameter of 2.8 dtex.
  • the fibers were bonded together with hot air having a hot air temperature of 120 ° C. and a hot air speed of 1.0 m / s to obtain a composite long fiber nonwoven fabric (7) having a basis weight of 20 g / m 2 and a crimp number of 25 pieces / inch.
  • HDPE High-density polyethylene
  • PET polyethylene terephthalate
  • MI solution viscosity ⁇ sp / c of 0.75 as the first component and an MI of 26 g / 10 min (measured according to JIS-K7210 at a temperature of 190 ° C. and a load of 2.16 kg).
  • the resin is the second component
  • the first component discharge rate is 0.50 g / min ⁇ hole
  • the second component discharge rate is 0.25 g / min ⁇ hole
  • the total discharge rate is 0.75 g / min ⁇ hole.
  • a fiber having a ratio of the first component to the second component of 2: 1 was extruded at a spinning temperature of 220 ° C. by a spunbond method.
  • the extruded filament is stretched in the traction zone by using the suction force of the moving collection surface, and then deposited on the moving collection surface through a diffuser to form an eccentric sheath-core composite with an average fiber diameter of 4.0 dtex.
  • a long fiber web was prepared.
  • the resulting eccentric sheath-core composite long fiber web was bonded to each other with hot air having a hot air temperature of 130 ° C. and a hot air speed of 0.7 m / s, and the composite length was 30 g / m 2 and the number of crimps was 13 pieces / inch.
  • a fiber nonwoven fabric (8) was obtained.
  • Component A-1 Propylene glycol manufactured by ADEKA Corporation was used.
  • Component A-2 Dipropylene glycol manufactured by ADEKA Corporation was used.
  • Component B-1 30 mol of propylene oxide and then 8 mol of ethylene oxide were added to propylene glycol according to a conventional method to obtain polyoxyalkylene glycol. Next, 1 mol of this polyoxyalkylene glycol was reacted with 1.5 mol of lauric acid to obtain Component B-1.
  • n is 0 in formula (2)
  • R 1 and R 3 are alkenoyl groups having 11 carbon atoms
  • (A 2 O) 1 is added to both ends of 31 mol of propylene oxide.
  • a compound in which 8 mol of ethylene oxide is added (l is 39), and in general formula (2), n is 0, and either R 1 or R 3 is an alkenoyl group having 11 carbon atoms , (A 2 O) l is a 1: 1 mixture with a compound in which a total of 8 mol of ethylene oxide is added to both ends of 31 mol of propylene oxide (l is 39).
  • Component B-2 50 mol of propylene oxide and then 15 mol of ethylene oxide were added to propylene glycol according to a conventional method to obtain polyoxyalkylene glycol. Next, 1 mol of this polyoxyalkylene glycol was reacted with 1.8 mol of stearic acid to obtain Component B-2.
  • n is 0, R 1 and R 3 are alkenoyl groups having 17 carbon atoms, and (A 2 O) 1 is added to both ends of 51 mol of propylene oxide.
  • Component B-3 30 mol of propylene oxide and then 8 mol of ethylene oxide were added to propylene glycol according to a conventional method to obtain polyoxyalkylene glycol. Subsequently, 3 mol of this polyoxyalkylene glycol was reacted with 2 mol of adipic acid. Next, this reaction product was reacted with 1 mol of lauric acid to obtain Component B-3.
  • Component B-3 in general formula (2), either R 1 or R 3 is an alkenoyl group having 11 carbon atoms, and (A 2 O) 1 is 8 mol in total at both ends of 31 mol of propylene oxide.
  • R 2 is an alkylene group having 4 carbon atoms
  • (A 3 O) m is added to both ends of 31 mol of propylene oxide for a total of 8 mol of ethylene oxide added.
  • a compound in which n is 2 and m is 39.
  • Component B-4 30 mol of propylene oxide and then 8 mol of ethylene oxide were added to propylene glycol according to a conventional method to obtain polyoxyalkylene glycol. Next, 5 mol of this polyoxyalkylene glycol was reacted with 4 mol of adipic acid to obtain Component B-4.
  • Component B-4 is a group (1) in which R 1 and R 3 are hydrogen and (A 2 O) 1 is a total of 8 moles of ethylene oxide added to both ends of 31 moles of propylene oxide. 39), R 2 is an alkylene group having 4 carbon atoms, and (A 3 O) m is a group in which 8 moles of ethylene oxide are added to both ends of 31 moles of propylene oxide (m is 39). , N is 4.
  • Component B-5 According to a conventional method, 24 mol of propylene oxide was added to lauryl alcohol to obtain Component B-5.
  • Component B-5 in general formula (2), n is 0, R 1 and R 3 are alkyl groups having 12 carbon atoms, and (A 2 O) 1 is a group having 24 moles of propylene oxide (where l is 24).
  • glycerin concentrated glycerin for cosmetics manufactured by Miyoshi Oil Co., Ltd. was used.
  • glycerin condensate As the glycerin condensate, hexaglycerin monostearate (manufactured by Sakamoto Yakuhin Kogyo Co., Ltd., trade name: SY Glyster MS-5S) was used.
  • polyoxyalkylene castor oil ether As the polyoxyalkylene castor oil ether, polyoxyethylene (20) hydrogenated castor oil (trade name: NIKKOL HCO-20, manufactured by Nikko Chemical Co., Ltd.) was used.
  • Example 1 The component A-1: 25 parts by mass as the component (A), the component B-1: 55 parts by mass, and the component (C): 20 parts by mass as the component (B) were mixed uniformly at 30 ° C. A processing agent (1) was obtained. The blending ratio of each component is shown in Table 1 below.
  • Examples 2 to 10, Comparative Examples 1 to 7 The fiber processing of Examples 2 to 10 was carried out in the same manner as in Example 1 except that the blending ratio of Component (A), Component (B), Component (C), and other components was changed as shown in Table 1 below. Agents (2) to (10) and fiber finishing agents (Comparative 1) to (Comparative 7) of Comparative Examples 1 to 7 were obtained. The blending ratio of each component is shown in Table 1 below.
  • Example 11 In the nonwoven fabric (1), a 3% by weight aqueous solution of the fiber processing agent (1) of Example 1 is adjusted to a liquid temperature of 20 ° C., so that the coating amount becomes 10% by weight by the rotor dampening method. It applied to the nonwoven fabric, passed through an air-through dryer at 125 ° C., dried and wound up.
  • the rotor dampening apparatus used had a rotor diameter of 80 mm, and the rotors were arranged at intervals of 115 mm in the CD direction so that the distance between the rotor center and the nonwoven fabric to be applied was 180 mm. Further, the rotational speed of the rotor was adjusted so that the sprayed particle diameter of the fiber processing agent to be sprayed was 35 ⁇ m.
  • Table 2-1 Various measurement results of the obtained nonwoven fabric are shown in Table 2-1.
  • Example 12 The fiber processing agent (2) of Example 2 was applied to the nonwoven fabric (1) in the same manner as in Example 11. Various measurement results of the obtained nonwoven fabric are shown in Table 2-1.
  • Example 13 The fiber processing agent (3) of Example 3 was applied to the nonwoven fabric (1) in the same manner as in Example 11. Various measurement results of the obtained nonwoven fabric are shown in Table 2-1.
  • Example 11 is the same as Example 11 except that the nonwoven fabric (1) was adjusted with a 5% by weight aqueous solution of the fiber processing agent (2) of Example 2 at a liquid temperature of 20 ° C. so that the coating amount was 10% by weight. It applied to the nonwoven fabric in the same manner. Various measurement results of the obtained nonwoven fabric are shown in Table 2-1.
  • Example 15 To the nonwoven fabric (1), a 3.4 wt% aqueous solution of the fiber processing agent (4) of Example 4 is adjusted to a liquid temperature of 20 ° C. so that the coating amount is 30 wt%. It apply
  • Example 16 Example 11 except that the nonwoven fabric (1) was adjusted with a 10% by weight aqueous solution of the fiber processing agent (5) of Example 5 at a liquid temperature of 20 ° C. so that the coating amount was 10% by weight. It applied to the nonwoven fabric in the same manner. Various measurement results of the obtained nonwoven fabric are shown in Table 2-1.
  • Example 17 In the production of the nonwoven fabric (1), a nonwoven fabric was obtained in the same manner except that the line speed was adjusted so that the basis weight was 8 g / m 2 . The obtained nonwoven fabric was subjected to corona treatment so that the wetting tension of the nonwoven fabric was 35 to 39 mN / m, and then a 0.34% by weight aqueous solution of the fiber processing agent (4) of Example 4 at a liquid temperature of 20 ° C. Other than the preparation, it was applied to the nonwoven fabric in the same manner as in Example 15. Various measurement results of the obtained nonwoven fabric are shown in Table 2-1.
  • Example 18 In the production of the nonwoven fabric (1), a nonwoven fabric was obtained in the same manner except that the line speed was adjusted so that the basis weight was 15 g / m 2 . The obtained nonwoven fabric was applied to the nonwoven fabric in the same manner as in Example 15 except that a 1.67% by weight aqueous solution of the fiber processing agent (4) of Example 4 was adjusted at a liquid temperature of 20 ° C. Various measurement results of the obtained nonwoven fabric are shown in Table 2-1.
  • Example 19 Example 11 except that the nonwoven fabric (2) was adjusted with a 10% by weight aqueous solution of the fiber processing agent (4) of Example 4 at a liquid temperature of 20 ° C. so that the coating amount was 10% by weight. It applied to the nonwoven fabric in the same manner. Various measurement results of the obtained nonwoven fabric are shown in Table 2-1.
  • Example 20 A nonwoven fabric was produced in the same manner as in Example 19 except that the fiber processing agent (6) was used. Various measurement results of the obtained nonwoven fabric are shown in Table 2-1.
  • Example 21 In the production of the nonwoven fabric (2), a nonwoven fabric was obtained in the same manner except that the line speed was adjusted so that the basis weight was 18 g / m 2 . The nonwoven fabric obtained was applied to the nonwoven fabric in the same manner as in Example 15 except that a 1.0% by weight aqueous solution of the fiber processing agent (7) of Example 7 was adjusted at a liquid temperature of 20 ° C. Various measurement results of the obtained nonwoven fabric are shown in Table 2-1.
  • Example 22 In the production of the nonwoven fabric (1), a nonwoven fabric was obtained in the same manner except that the line speed was adjusted so that the basis weight was 15 g / m 2 . Moreover, the nonwoven fabric was produced by the method similar to Example 21 except having used the fiber processing agent (8). Various measurement results of the obtained nonwoven fabric are shown in Table 2-1.
  • Example 23 The nonwoven fabric (3) was applied to the nonwoven fabric in the same manner as in Example 15 except that a 0.67% by weight aqueous solution of the fiber processing agent (7) was adjusted at a liquid temperature of 20 ° C. Various measurement results of the obtained nonwoven fabric are shown in Table 2-1.
  • Example 24 A nonwoven fabric was produced in the same manner as in Example 23 except that the nonwoven fabric (4) was used. Various measurement results of the obtained nonwoven fabric are shown in Table 2-1.
  • Example 25 A non-woven fabric was prepared in the same manner as in Example 11 except that the non-woven fabric (5) was adjusted with a 2% by weight aqueous solution of the fiber processing agent (7) at a liquid temperature of 20 ° C. and the coating amount was 10% by weight. Produced. Various measurement results of the obtained nonwoven fabric are shown in Table 2-1.
  • Example 26 A fine nonwoven fabric was produced in the same manner as in Example 25 except that the nonwoven fabric (6) was used. Various measurement results of the obtained nonwoven fabric are shown in Table 2-1.
  • Example 27 A nonwoven fabric was prepared in the same manner as in Example 11 except that a 10% by weight aqueous solution of the fiber processing agent (4) was prepared at a liquid temperature of 20 ° C. to the nonwoven fabric (7) and the coating amount was 5% by weight. Produced. Various measurement results of the obtained nonwoven fabric are shown in Table 2-2 below.
  • Example 28 The nonwoven fabric (8) was prepared in the same manner as in Example 11 except that a 6% by weight aqueous solution of the fiber processing agent (4) was prepared at a liquid temperature of 20 ° C. and the coating amount was 5% by weight. Produced. Various measurement results of the obtained nonwoven fabric are shown in Table 2-2 below.
  • Example 29 A 0.67% by weight aqueous solution of the fiber processing agent (4) is prepared on the nonwoven fabric (5) at a liquid temperature of 20 ° C., and is applied using a kiss roll ( ⁇ 400 mm) so that the coating amount becomes 30% by weight. And passed through a 130 ° C. cylinder dryer and wound up.
  • Table 2-2 Various measurement results of the obtained nonwoven fabric are shown in Table 2-2 below.
  • Example 30 The nonwoven fabric (1) was prepared in the same manner as in Example 11 except that a 5% by weight aqueous solution of the fiber processing agent (9) was prepared at a liquid temperature of 20 ° C. and the coating amount was 10% by weight. Was made. Various measurement results of the obtained nonwoven fabric are shown in Table 2-2 below.
  • Example 31 The nonwoven fabric (1) was prepared in Example 11 except that a 3% by weight aqueous solution of the fiber processing agent (10) of Example 10 was prepared at a liquid temperature of 20 ° C. and the coating amount was 10% by weight. A nonwoven fabric was produced in the same manner. Various measurement results of the obtained nonwoven fabric are shown in Table 2-2 below.
  • Comparative Example 11 To the nonwoven fabric (1), the fiber processing agent of Comparative Example 1 (Comparative (1)) was applied to the nonwoven fabric in the same manner as in Example 14. Various measurement results of the obtained nonwoven fabric are shown in Table 2-2 below.
  • Comparative Example 12 A nonwoven fabric was obtained in the same manner as in Comparative Example 11 except that the fiber processing agent of Comparative Example 2 (Comparative (2)) was used. Various measurement results of the obtained nonwoven fabric are shown in Table 2-2 below.
  • Comparative Example 13 A nonwoven fabric was obtained in the same manner as in Comparative Example 11 except that the fiber processing agent of Comparative Example 3 (Comparative (3)) was used. Various measurement results of the obtained nonwoven fabric are shown in Table 2-2 below.
  • Example 14 The nonwoven fabric (1) was applied to the nonwoven fabric in the same manner as in Example 15 except that the 1.67% by weight aqueous solution of the fiber processing agent of Comparative Example 4 (Comparative (4)) was prepared at a liquid temperature of 20 ° C. Various measurement results of the obtained nonwoven fabric are shown in Table 2-2 below.
  • Example 15 The nonwoven fabric (1) was applied to the nonwoven fabric in the same manner as in Example 15 except that the 1.0% by weight aqueous fiber processing agent (Comparative (5)) solution of Comparative Example 5 was prepared at a liquid temperature of 20 ° C. Various measurement results of the obtained nonwoven fabric are shown in Table 2-2 below.
  • Example 17 A nonwoven fabric was produced in the same manner as in Example 11 except that the fiber processing agent of Comparative Example 7 (Comparative (7)) was used. Various measurement results of the obtained nonwoven fabric are shown in Table 2-2 below.
  • the nonwoven fabric coated with the fiber processing agent according to the present invention is excellent in initial water permeability, wettability, and repeated water permeability. Therefore, sanitary materials such as sanitary napkins, incontinence pads, disposable diapers and other top sheets and second sheets are used. For example, or suitable for masks, body warmers, tape base materials, patch base materials, emergency bandages, packaging materials, wipe products, medical gowns, bandages, clothing, skin care sheets, etc. Is available.

Abstract

The purpose of the present invention is to provide a fiber processing agent for improving rewetting properties and repeat liquid permeability of nonwoven fabric, a liquid permeable nonwoven fabric comprising fibers to which the fiber processing agent has been imparted, and a hygienic material using the liquid permeable nonwoven fabric. Provided is a fiber processing agent contains component (A) represented by general formula (1): HO-(A1O)p-H wherein A1 is an alkylene group having 2 – 4 carbons and p is an integer of 1 – 3, and component (B), which is different from component (A), represented by general formula (2): R1-O-(A2O)l-{C(O)R2C(O)-(A3O)m}n - R3 wherein R1, R2, R3, A2, A3, l, m, and n are specified in the claims. Also provided are a liquid permeable nonwoven fabric that contains the fiber processing agent, and a hygienic material that uses the liquid permeable nonwoven fabric.

Description

繊維加工剤、及びこれを含有する液透過性不織布Textile finishing agent and liquid-permeable nonwoven fabric containing the same
 本発明は、不織布に対して、優れた濡れ戻り性と繰返し透水性を付与することができる繊維加工剤、該繊維加工剤を含有する液透過性不織布、並びに該液透過性不織布を用いた衛生材料に関する。 The present invention relates to a fiber processing agent capable of imparting excellent wettability and repeated water permeability to a nonwoven fabric, a liquid-permeable nonwoven fabric containing the fiber processing agent, and a hygiene using the liquid-permeable nonwoven fabric Regarding materials.
 近年、使い捨ておむつや生理用ナプキンなどの普及はめざましく、要求される品質や性能は向上してきている。例えば、使い捨ておむつでは1回の着用で必ずしも1回の排泄物が処理されるとは限られず、数回の排泄に対する不快感の回避が必要とされ、排泄物、汗、体液などを吸収体に素早く移行させる液透過性(初期透水性)のほかに、特に濡れ戻りの少ないこと(濡れ戻り性)、透水性能の耐久性(繰返し透水性)が強く要求されている。 In recent years, disposable diapers and sanitary napkins have been remarkably widespread, and required quality and performance have been improved. For example, disposable diapers do not always treat a single excrement with a single wear, and it is necessary to avoid discomfort for several excretions. In addition to the liquid permeability (initial water permeability) to be transferred quickly, there is a strong demand for particularly low rewetting (wetting resistance) and durability of water permeability (repeated water permeability).
 これらの要求に応えるため、例えば、以下の特許文献1には、特定のポリエーテルとポリエーテル変性シリコーンとを含有する親水性処理剤を付与したポリオレフィン系不織布が提案されている。しかしながら、特許文献1に記載のポリオレフィン系不織布では、初期透水は良好なものの、濡れ戻り性と繰返し透水性は未だ十分ではない。 In order to meet these requirements, for example, the following Patent Document 1 proposes a polyolefin-based nonwoven fabric provided with a hydrophilic treating agent containing a specific polyether and a polyether-modified silicone. However, with the polyolefin-based nonwoven fabric described in Patent Document 1, although the initial water permeability is good, the wettability and the repeated water permeability are still insufficient.
特開平10-53955号公報JP-A-10-53955
 前記した従来技術の問題に鑑み、本発明が解決しようとする課題は、不織布の濡れ戻り性と繰返し透水性を改善することができる繊維加工剤、並びに該繊維加工剤を付与した繊維から構成された不織布を提供することである。 In view of the problems of the prior art described above, the problem to be solved by the present invention is composed of a fiber processing agent capable of improving the wettability and repeated water permeability of a nonwoven fabric, and a fiber provided with the fiber processing agent. Is to provide a non-woven fabric.
 かかる課題を解決すべく、本発明者らは鋭意検討し実験を重ねた結果、一般式(1)で表される特定の成分(A)と一般式(2)で表される特定の成分(B)とを併用することにより、親水性と疎水性のバランスを保ち、不織布に対する親和性と尿などの体液に対する親和性とを両立し、初期透水性、濡れ戻り性、及び繰り返し透水性に優れる不織布を提供することができきることを見出し、本発明を完成するに至ったものである。 In order to solve such problems, the present inventors have conducted intensive studies and repeated experiments. As a result, the specific component (A) represented by the general formula (1) and the specific component represented by the general formula (2) ( In combination with B), the balance between hydrophilicity and hydrophobicity is maintained, the compatibility with the nonwoven fabric and the compatibility with body fluids such as urine are compatible, and the initial water permeability, wettability, and repeated water permeability are excellent. The present inventors have found that a nonwoven fabric can be provided and have completed the present invention.
 すなわち、本発明は下記の通りのものである。
 [1]下記一般式(1):
   HO-(AO)-H …一般式(1)
{式中、Aは、炭素数2~4のアルキレン基であり、そしてpは、1~3の整数である。}で表される成分(A);及び
 該成分(A)とは異なる下記一般式(2):
   R-O-(AO)-{C(O)RC(O)-(AO)-R …一般式(2)
{式中、RとRは、互いに独立に、水素原子、炭素数1~24のアルキル基、炭素数2~24のアルケニル基、炭素数2~24のアルカノイル基、炭素数2~24のアルケノイル基又は-C(O)-R-COOX(ここで、Rは、炭素数1~12のアルキレン基、炭素数2~12のアルケニレン基又は炭素数6~12のアリーレン基であり、そしてXは、水素原子又はアニオンである。)であり、Rは、炭素数1~12のアルキレン基、炭素数2~12のアルケニレン基又は炭素数6~12のアリーレン基であり、AとAは、互いにに独立に、炭素数2~4のアルキレン基であり、lは、0又は1~1000の整数であり、mは、0又は1~1000の整数であり、そしてnは、0又は1~100の整数である。但し、l+nは1以上である。}で表される成分(B);
を含有する繊維加工剤。
 [2]成分(C)としてポリエーテル変性シリコーンをさらに含有する、前記[1]に記載の繊維加工剤。
 [3]前記[1]又は[2]に記載の繊維加工剤の純分付着量が0.1~1.5重量%である液透過性不織布。
 [4]前記液透過性不織布が、熱可塑性繊維から構成される不織布である、前記[3]に記載の液透過性不織布。
 [5]前記不織布が、繊度0.45~5.0dtexの繊維で構成されたものである、前記[3]又は[4]に記載の液透過性不織布。
 [6]前記不織布繊維が、長繊維不織布である、前記[3]~[5]のいずれかに記載の液透過性不織布。
 [7]前記液透過性不織布の繰返し透水性が、4回目で70%以上である、前記[3]~[6]のいずれかに記載の液透過性不織布。
 [8]前記液透過性不織布の濡れ戻り性が、0.5g以下である、前記[3]~[7]のいずれかに記載の液透過性不織布。
 [9]前記[3]~[8]のいずれかに記載の液透過性不織布を用いてなる衛生材料。
That is, the present invention is as follows.
[1] The following general formula (1):
HO— (A 1 O) p —H: General formula (1)
{In the formula, A 1 is an alkylene group having 2 to 4 carbon atoms, and p is an integer of 1 to 3. } (A); and the following general formula (2) different from the component (A):
R 1 —O— (A 2 O) 1 — {C (O) R 2 C (O) — (A 3 O) m } n —R 3 ... General formula (2)
{In the formula, R 1 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 24 carbon atoms, an alkenyl group having 2 to 24 carbon atoms, an alkanoyl group having 2 to 24 carbon atoms, or 2 to 24 carbon atoms. An alkenoyl group or —C (O) —R 4 —COOX (wherein R 4 is an alkylene group having 1 to 12 carbon atoms, an alkenylene group having 2 to 12 carbon atoms, or an arylene group having 6 to 12 carbon atoms) And X is a hydrogen atom or an anion), and R 2 is an alkylene group having 1 to 12 carbon atoms, an alkenylene group having 2 to 12 carbon atoms, or an arylene group having 6 to 12 carbon atoms; 2 and A 3 are each independently an alkylene group having 2 to 4 carbon atoms, l is an integer of 0 or 1 to 1000, m is an integer of 0 or 1 to 1000, and n Is an integer of 0 or 1-100. However, l + n is 1 or more. } The component (B) represented by;
A fiber processing agent containing
[2] The fiber processing agent according to [1], further including a polyether-modified silicone as the component (C).
[3] A liquid-permeable non-woven fabric in which the amount of the pure fiber coating agent according to [1] or [2] is 0.1 to 1.5% by weight.
[4] The liquid-permeable nonwoven fabric according to [3], wherein the liquid-permeable nonwoven fabric is a nonwoven fabric composed of thermoplastic fibers.
[5] The liquid-permeable nonwoven fabric according to [3] or [4], wherein the nonwoven fabric is composed of fibers having a fineness of 0.45 to 5.0 dtex.
[6] The liquid-permeable nonwoven fabric according to any one of [3] to [5], wherein the nonwoven fiber is a long-fiber nonwoven fabric.
[7] The liquid-permeable nonwoven fabric according to any one of [3] to [6], wherein the liquid-permeable nonwoven fabric has a repeated water permeability of 70% or more at the fourth time.
[8] The liquid-permeable nonwoven fabric according to any one of [3] to [7], wherein the liquid-permeable nonwoven fabric has a wet-back property of 0.5 g or less.
[9] A sanitary material using the liquid-permeable nonwoven fabric according to any one of [3] to [8].
 本発明に係る繊維加工剤を塗布した不織布は、初期透水性、濡れ戻り性、及び繰り返し透水性に優れるため、衛生材料、例えば、生理用ナプキン、失禁パット、使い捨ておむつ等のトップシートやセカンドシートとして好適に使用することができ、あるいは、例えば、マスク、カイロ、テープ基材、貼布薬基材、緊急絆創膏、包装材、ワイプ製品、医療用ガウン、包帯、衣料、スキンケア用シートなどにも好適に使用することができる。 The nonwoven fabric coated with the fiber processing agent according to the present invention is excellent in initial water permeability, wettability, and repeated water permeability. Therefore, sanitary materials such as sanitary napkins, incontinence pads, disposable diapers and other top sheets and second sheets are used. Or, for example, masks, warmers, tape base materials, patch base materials, emergency bandages, packaging materials, wipe products, medical gowns, bandages, clothing, skin care sheets, etc. It can be preferably used.
 以下、本発明の実施形態について詳細に説明する。
 本実施形態の繊維加工剤は、下記一般式(1):
   HO-(AO)-H …一般式(1)
{式中、Aは、炭素数2~4のアルキレン基であり、そしてpは、1~3の整数である。}で表される成分(A);及び
 該成分(A)とは異なる下記一般式(2):
   R-O-(AO)-{C(O)RC(O)-(AO)-R …一般式(2)
{式中、RとRは、互いに独立に、水素原子、炭素数1~24のアルキル基、炭素数2~24のアルケニル基、炭素数2~24のアルカノイル基、炭素数2~24のアルケノイル基又は-C(O)-R-COOX(ここで、Rは、炭素数1~12のアルキレン基、炭素数2~12のアルケニレン基又は炭素数6~12のアリーレン基であり、そしてXは、水素原子又はアニオンである。)であり、Rは、炭素数1~12のアルキレン基、炭素数2~12のアルケニレン基又は炭素数6~12のアリーレン基であり、AとAは、互いにに独立に、炭素数2~4のアルキレン基であり、lは、0又は1~1000の整数であり、mは、0又は1~1000の整数であり、そしてnは、0又は1~100の整数である。但し、l+nは1以上である。}で表される成分(B);
を含有する。
Hereinafter, embodiments of the present invention will be described in detail.
The fiber processing agent of this embodiment has the following general formula (1):
HO— (A 1 O) p —H: General formula (1)
{In the formula, A 1 is an alkylene group having 2 to 4 carbon atoms, and p is an integer of 1 to 3. } (A); and the following general formula (2) different from the component (A):
R 1 —O— (A 2 O) 1 — {C (O) R 2 C (O) — (A 3 O) m } n —R 3 ... General formula (2)
{In the formula, R 1 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 24 carbon atoms, an alkenyl group having 2 to 24 carbon atoms, an alkanoyl group having 2 to 24 carbon atoms, or 2 to 24 carbon atoms. An alkenoyl group or —C (O) —R 4 —COOX (wherein R 4 is an alkylene group having 1 to 12 carbon atoms, an alkenylene group having 2 to 12 carbon atoms, or an arylene group having 6 to 12 carbon atoms) And X is a hydrogen atom or an anion), and R 2 is an alkylene group having 1 to 12 carbon atoms, an alkenylene group having 2 to 12 carbon atoms, or an arylene group having 6 to 12 carbon atoms; 2 and A 3 are each independently an alkylene group having 2 to 4 carbon atoms, l is an integer of 0 or 1 to 1000, m is an integer of 0 or 1 to 1000, and n Is an integer of 0 or 1-100. However, l + n is 1 or more. } The component (B) represented by;
Containing.
 まず、一般式(1)で表される成分(A)について説明する。
 一般式(1)中、Aは、炭素数2~4のアルキレン基であり、そしてpは、1~3の整数である。Aは、炭素数2~4のアルキレン基であるが、濡れ戻り性と繰返し透水性の観点から、炭素数3~4のアルキレン基が好ましく、炭素数3のアルキレン基がより好ましい。pは、(AO)で表されるアルキレンオキシ基の重合度を示し、1~3の整数であるが、濡れ戻り性と繰返し透水性の観点から、1~2が好ましく、1がより好ましい。
First, the component (A) represented by the general formula (1) will be described.
In the general formula (1), A 1 is an alkylene group having 2 to 4 carbon atoms, and p is an integer of 1 to 3. A 1 is an alkylene group having 2 to 4 carbon atoms, but an alkylene group having 3 to 4 carbon atoms is preferable and an alkylene group having 3 carbon atoms is more preferable from the viewpoints of wettability and repeated water permeability. p represents the degree of polymerization of the alkyleneoxy group represented by (A 1 O) and is an integer of 1 to 3, preferably 1 to 2 and more preferably 1 from the viewpoints of wettability and repeated water permeability. preferable.
 成分(A)は、例えば、エチレングリコール、プロピレングリコール、ブチレングリコールなどの炭素数2~4のアルキレングリコールに、塩基触媒のもとで、80~200℃でエチレンオキサイド、プロピレンオキサイド、ブチレンオキサイドなどの炭素数2~4のアルキレンオキサイドを付加させることにより得ることができる。塩基触媒としては、例えば、水酸化カリウム、水酸化ナトリウム等を使用することができる。市販のエチレングリコール、プロピレングリコール、ブチレングリコール、ジエチレングリコール、ジプロピレングリコール、ジブチレングリコール、トリエチレングリコール、トリプロピレングリコール、トリブチレングリコールなどを用いてもよい。 The component (A) is, for example, an alkylene glycol having 2 to 4 carbon atoms such as ethylene glycol, propylene glycol, butylene glycol, and the like, such as ethylene oxide, propylene oxide, butylene oxide, etc. at 80 to 200 ° C. under a base catalyst. It can be obtained by adding an alkylene oxide having 2 to 4 carbon atoms. As the base catalyst, for example, potassium hydroxide, sodium hydroxide and the like can be used. Commercially available ethylene glycol, propylene glycol, butylene glycol, diethylene glycol, dipropylene glycol, dibutylene glycol, triethylene glycol, tripropylene glycol, tributylene glycol, and the like may be used.
 一般式(2)中、RとRは、互いに独立に、水素原子、炭素数1~24のアルキル基、炭素数2~24のアルケニル基、炭素数2~24のアルカノイル基、炭素数2~24のアルケノイル基又は-C(O)-R-COOX(ここで、Rは、炭素数1~12のアルキレン基、炭素数2~12のアルケニレン基又は炭素数6~12のアリーレン基であり、そしてXは、水素原子又はアニオンである。)であり、Rは、炭素数1~12のアルキレン基、炭素数2~12のアルケニレン基又は炭素数6~12のアリーレン基であり、AとAは、互いに独立に、炭素数2~4のアルキレン基であり、lは、0又は1~1000の整数であり、mは、0又は1~1000の整数であり、nは、0又は1~100の整数である。但し、l+nは1以上であり、また、成分(B)は、成分(A)と異なる化合物であるため、本明細書中、一般式(2)は、一般式(1)を除いたものとする。 In general formula (2), R 1 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 24 carbon atoms, an alkenyl group having 2 to 24 carbon atoms, an alkanoyl group having 2 to 24 carbon atoms, An alkenoyl group having 2 to 24 carbon atoms or —C (O) —R 4 —COOX (where R 4 represents an alkylene group having 1 to 12 carbon atoms, an alkenylene group having 2 to 12 carbon atoms, or an arylene having 6 to 12 carbon atoms) And X is a hydrogen atom or anion.) And R 2 is an alkylene group having 1 to 12 carbon atoms, an alkenylene group having 2 to 12 carbon atoms, or an arylene group having 6 to 12 carbon atoms. A 2 and A 3 are each independently an alkylene group having 2 to 4 carbon atoms, l is 0 or an integer of 1 to 1000, m is 0 or an integer of 1 to 1000, n is 0 or an integer of 1 to 100. However, since l + n is 1 or more and component (B) is a compound different from component (A), in this specification, general formula (2) is obtained by removing general formula (1). To do.
 濡れ戻り性と繰返し透水性の観点から、RとRのうちいずれか一方は、炭素数1~24のアルキル基、炭素数2~24のアルケニル基、炭素数2~24のアルカノイル基又は炭素数2~24のアルケノイル基であることが好ましい。この場合、同様の観点から、炭素数は8~22であることが好ましく、12~18であることがより好ましい。これらのアルキル基、アルケニル基、アルカノイル基及びアルケノイル基は、直鎖状であっても分岐鎖状であってもよい。 From the viewpoints of wettability and repeated water permeability, any one of R 1 and R 3 is an alkyl group having 1 to 24 carbon atoms, an alkenyl group having 2 to 24 carbon atoms, an alkanoyl group having 2 to 24 carbon atoms, or An alkenoyl group having 2 to 24 carbon atoms is preferable. In this case, from the same viewpoint, the carbon number is preferably 8 to 22, and more preferably 12 to 18. These alkyl group, alkenyl group, alkanoyl group and alkenoyl group may be linear or branched.
 AとAは、互いに独立に、炭素数2~4のアルキレン基であるが、濡れ戻り性と繰返し透水性、加工浴安定性の観点から、炭素数2~3のアルキレン基であることが好ましい。
 また、同様の観点から、(AO)、(AO)で表されるポリアルキレンオキシ基は、炭素数2のアルキレンオキシ基(エチレンオキシ基)と炭素数3のアルキレンオキシ基(プロピレンオキシ基)とを併用することがより好ましい。この場合、エチレンオキシ基とプロピレンオキシ基の配合比率はモル比で、エチレンオキシ基:プロピレンオキシ基=5:95~50:50が好ましく、5:95~40:60がより好ましく、10:90~30:70がさらに好ましい。
A 2 and A 3 are, independently of each other, an alkylene group having 2 to 4 carbon atoms, but from the viewpoints of rewetting, repeated water permeability, and processing bath stability, they are alkylene groups having 2 to 3 carbon atoms. Is preferred.
From the same viewpoint, the polyalkyleneoxy groups represented by (A 2 O) 1 and (A 3 O) m are an alkyleneoxy group having 2 carbon atoms (ethyleneoxy group) and an alkyleneoxy group having 3 carbon atoms. It is more preferable to use (propyleneoxy group) together. In this case, the blending ratio of ethyleneoxy group and propyleneoxy group is molar ratio, preferably ethyleneoxy group: propyleneoxy group = 5: 95 to 50:50, more preferably 5:95 to 40:60, 10:90. ~ 30: 70 is more preferred.
 (AO)、(AO)で表されるポリアルキレンオキシ基が複数のアルキレンオキシ基からなる場合、その付加方法はブロック付加であってもランダム付加であってもよい。lとmはそれぞれ、(AO)と(AO)で表されるポリアルキレンオキシ基の重合度を表し、lは、0又は1~1000の整数を表し、mは、0又は1~1000の整数を表すが、濡れ戻り性と繰返し透水性の観点から、lとmは、共に10~200が好ましい。
 また、一般式(2)で表される成分(B)は、取り扱いの容易さの観点から、平均分子量10万以下であることが好ましい。
When the polyalkyleneoxy group represented by (A 2 O) 1 or (A 3 O) m is composed of a plurality of alkyleneoxy groups, the addition method may be block addition or random addition. l and m represent the degree of polymerization of the polyalkyleneoxy group represented by (A 2 O) l and (A 3 O) m , respectively, l represents 0 or an integer from 1 to 1000, and m represents 0 Alternatively, it represents an integer of 1 to 1000, and l and m are preferably 10 to 200 from the viewpoints of rewetting and repeated water permeability.
The component (B) represented by the general formula (2) preferably has an average molecular weight of 100,000 or less from the viewpoint of ease of handling.
 成分(B)としては、例えば、ポリアルキレグリコール(B1)、ポリオキシアルキレンアルキルエーテル(B2)、2価カルボン酸のアルキレンオキシ基付加物(B3)、それらのエステル化物(B4)などを挙げることができる。
 ポリアルキレグリコール(B1)は、例えば、2価のアルコールにアルキレンオキサイドを付加させることにより得ることができる。また、ポリオキシアルキレンアルキルエーテル(B2)は、例えば、1価のアルコールにアルキレンオキサイドを付加させることにより得ることができる。この場合、常法に従い、例えば、水酸化カリウム、水酸化ナトリウムなどの塩基触媒を使用して、80~200℃で行えばよい。2価のアルコールとしては、例えば、エチレングリコール、プロピレングリコール、ブチレングリコール等を挙げることができる。1価のアルコールとしては、炭素数1~24のアルコールを挙げることができる。このようなアルコールは分岐や二重結合を持っていても構わない。アルキレンオキサイドとしては、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイドなどの炭素数2~4のアルキレンオキサイドを使用することができる。2種以上のアルキレンオキサイドを使用する場合は、付加方法はブロックであってもランダムであってもよい。
Examples of the component (B) include polyalkylene glycol (B1), polyoxyalkylene alkyl ether (B2), alkyleneoxy group adduct (B3) of divalent carboxylic acid, esterified product (B4) thereof and the like. be able to.
Polyalkylene glycol (B1) can be obtained, for example, by adding an alkylene oxide to a divalent alcohol. The polyoxyalkylene alkyl ether (B2) can be obtained, for example, by adding an alkylene oxide to a monovalent alcohol. In this case, according to a conventional method, for example, a base catalyst such as potassium hydroxide or sodium hydroxide may be used at 80 to 200 ° C. Examples of the divalent alcohol include ethylene glycol, propylene glycol, butylene glycol and the like. Examples of monohydric alcohols include alcohols having 1 to 24 carbon atoms. Such an alcohol may have a branch or a double bond. As the alkylene oxide, an alkylene oxide having 2 to 4 carbon atoms such as ethylene oxide, propylene oxide, butylene oxide can be used. When two or more types of alkylene oxide are used, the addition method may be a block or random.
 2価カルボン酸のアルキレンオキシ基付加物(B3)は、例えば、2価カルボン酸にアルキレンオキサイドを付加させる方法、又は2価カルボン酸とポリアルキレングリコールと反応させることで得ることができる。
 前記エステル化物(B4)は、例えば、前記で得られた、ポリアルキレグリコール(B1)、ポリオキシアルキレンアルキルエーテル(B2)、及び/又は2価カルボン酸のアルキレンオキシ基付加物(B3)と、1価及び/又は2価のカルボン酸を、常法に従って100~300℃程度で反応することにより得ることができる。この反応は、無触媒でも構わないし、硫酸やパラトルエンスルホン酸等の触媒を使用してもよい。
The alkyleneoxy group adduct (B3) of a divalent carboxylic acid can be obtained, for example, by adding an alkylene oxide to a divalent carboxylic acid or by reacting a divalent carboxylic acid with a polyalkylene glycol.
The esterified product (B4) is, for example, the polyalkylene glycol (B1), the polyoxyalkylene alkyl ether (B2), and / or the alkyleneoxy group adduct (B3) of a divalent carboxylic acid obtained above. Monovalent and / or divalent carboxylic acids can be obtained by reacting at about 100 to 300 ° C. according to a conventional method. This reaction may be non-catalytic or may use a catalyst such as sulfuric acid or paratoluenesulfonic acid.
 1価カルボン酸としては、炭素数1~24のカルボン酸が挙げられる。このようなカルボン酸は分岐や二重結合を持っていても構わない。2価カルボン酸としては、例えば、テレフタル酸、イソフタル酸、フタル酸等の芳香族ジカルボン酸、1,4-シクロヘキサンジカルボン酸、アジピン酸、セバシン酸、マレイン酸、コハク酸等の脂肪族ジカルボン酸を挙げることができる。この中でも濡れ戻り性と繰返し透水性の観点から、脂肪族ジカルボン酸が好ましく用いられ、より好ましくはアジピン酸、コハク酸が用いられる。 Examples of monovalent carboxylic acids include carboxylic acids having 1 to 24 carbon atoms. Such a carboxylic acid may have a branch or a double bond. Examples of the divalent carboxylic acid include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid and phthalic acid, and aliphatic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, adipic acid, sebacic acid, maleic acid and succinic acid. Can be mentioned. Among these, from the viewpoints of wettability and repeated water permeability, aliphatic dicarboxylic acids are preferably used, and adipic acid and succinic acid are more preferably used.
 濡れ戻り性と繰返し透水性の観点から、繊維加工剤中の、成分(A)と成分(B)との配合比率は質量比で、成分(A):成分(B)=1:99~90:10が好ましく、5:95~50:50がより好ましい。成分(A)の配合比率が下限値未満であると、濡れ戻り性が低下する傾向があり、成分(A)の配合比率が上限値を上回ると、繰返し透水性が低下する傾向がある。 From the viewpoint of rewetting and repeated water permeability, the blending ratio of component (A) to component (B) in the fiber processing agent is a mass ratio, and component (A): component (B) = 1: 99 to 90. : 10 is preferable, and 5:95 to 50:50 is more preferable. When the blending ratio of the component (A) is less than the lower limit value, the wettability tends to decrease, and when the blending ratio of the component (A) exceeds the upper limit value, the water permeability tends to decrease repeatedly.
 本実施形態の繊維加工剤には、成分(A)、成分(B)の他に初期透水性(45度傾斜流長)を改善する成分(C)としてポリエーテル変性シリコーンをさらに配合することもできる。濡れ戻り性と45度傾斜流長の観点から、成分(C)の配合比率は、成分(A)と成分(B)の合計量に対して、5質量%~50質量%が好ましく、10質量%~30質量%がより好ましい。 In addition to the component (A) and the component (B), a polyether-modified silicone may be further added to the fiber processing agent of the present embodiment as the component (C) for improving the initial water permeability (45-degree inclined flow length). it can. From the viewpoint of rewetting and 45-degree inclined flow length, the blending ratio of component (C) is preferably 5% by mass to 50% by mass with respect to the total amount of component (A) and component (B). % To 30% by mass is more preferable.
 成分(C)としては、市販のポリエーテル変性シリコーンを用いることができる。例えば、信越化学工業株式会社のKF-351A、KF-352A、KF-353、KF-355A、KF-615A、KF-642、KF-6204、KF-6011、KF-6012、KF-6013;東レ・ダウコーニング株式会社の、SH8700、SH8410、SH8400、L-7002、FZ-2104、FZ-77、L-7604;モメンティブパフォーマンスマテリアルズジャパン合同会社の、TSF4440、TSF4441、TSF4452、SF1188A、SF1288、Silsoft840、Silsoft860、Silsoft870、Silsoft875、Silsoft880、Silsoft895などを用いることができる。成分(C)として用いるポリエーテル変性シリコーンは特に制限されるものではないが、濡れ戻り性と繰返し透水性と45度傾斜流長の観点から、HLBが5~15のものが好適に用いられ、また、粘度50~10000cStのものが好適に用いられる。 As the component (C), a commercially available polyether-modified silicone can be used. For example, KF-351A, KF-352A, KF-353, KF-355A, KF-615A, KF-642, KF-6204, KF-6011, KF-6012, KF-6013 from Shin-Etsu Chemical Co., Ltd .; Dow Corning Corporation SH8700, SH8410, SH8400, L-7002, FZ-2104, FZ-77, L-7604; Momentive Performance Materials Japan GK, TSF4440, TSF4441, TSF4452, SF1188A, SF1288, Silsoft840 , Silsoft 870, Silsoft 875, Silsoft 880, Silsoft 895, and the like can be used. The polyether-modified silicone used as the component (C) is not particularly limited, but those having an HLB of 5 to 15 are preferably used from the viewpoints of rewetting, repeated water permeability, and 45 ° gradient flow length. Further, those having a viscosity of 50 to 10,000 cSt are preferably used.
 本実施形態の繊維加工剤には、成分(A)、成分(B)、成分(C)の他に、所望の効果を損なわない限り、所望の目的に応じて他の化合物を配合しても構わない。例えば、乳化剤、柔軟剤、平滑剤、帯電防止剤、消泡剤としての各種界面活性剤を適宜含有させることができる。 In addition to the component (A), the component (B), and the component (C), the fiber processing agent of the present embodiment may contain other compounds depending on the desired purpose as long as the desired effect is not impaired. I do not care. For example, various surfactants as emulsifiers, softeners, smoothing agents, antistatic agents, and antifoaming agents can be appropriately contained.
 繊維加工剤の付着量は、目的とする用途によって異なるが、例えば、衛生材料用としては、必須成分であるA成分とB成分の合計量が不織布に対して0.05重量%から1.50重量%付着する様に塗布することが好ましい。成分Aおよび成分B、成分C、その他の化合物を混合した繊維加工剤の付着量は水等の加工剤を希釈する溶媒を除いた純分(純分付着量)で0.10重量%~1.50重量%の範囲が好ましく、より好ましくは0.15重量%~1.20重量%である。0.05重量%未満では満足する透水性能は得られにくく、他方、1.50重量%を超えると肌へのかぶれや、しっしんが発生する可能性がある。 The adhesion amount of the fiber processing agent varies depending on the intended use. For example, for sanitary materials, the total amount of the essential components A and B is 0.05% by weight to 1.50 with respect to the nonwoven fabric. It is preferable to apply so as to adhere by weight. The amount of fiber processing agent mixed with component A, component B, component C, and other compounds is 0.10% by weight to 1% in a pure amount (pure amount) excluding a solvent for diluting the processing agent such as water. A range of .50% by weight is preferable, and 0.15% to 1.20% by weight is more preferable. If it is less than 0.05% by weight, satisfactory water permeation performance cannot be obtained. On the other hand, if it exceeds 1.50% by weight, skin irritation or rash may occur.
 繊維加工剤を不織布に付与するに際し、成分(A)、成分(B)、成分(C)の各々を、あるいはこれらを混合して一剤としたものを不織布に直接付与することも有効であるが、予め混合し、水等の溶媒で希釈し、繊維加工剤水溶液として不織布に付与することが好ましい。本実施形態の繊維加工剤は、成分(A)と成分(B)と、場合により、成分(C)と、上記の他の化合物とを好ましくは融点以上の温度で混合均一とすることで得ることができる。
 不織布への繊維加工剤の付与方法としては、浸漬法、噴霧法、コーティング法等の既知の方法が採用でき、繊維加工剤付与後、熱風、熱ロールなどの乾燥手段を用いて乾燥してもよい。また、繊維加工剤付与前にコロナ放電処理、常圧プラズマ放電処理などの処理も必要に応じて採用してもよい。
When applying the fiber processing agent to the nonwoven fabric, it is also effective to directly apply each of the component (A), the component (B), and the component (C) or a mixture of these to the nonwoven fabric. However, it is preferable to mix in advance, dilute with a solvent such as water, and apply to the nonwoven fabric as an aqueous fiber processing agent solution. The fiber processing agent of the present embodiment is obtained by mixing and homogenizing the component (A), the component (B), and optionally the component (C), and the other compound described above, preferably at a temperature equal to or higher than the melting point. be able to.
As a method for applying the fiber processing agent to the nonwoven fabric, a known method such as a dipping method, a spraying method, or a coating method can be adopted, and after applying the fiber processing agent, it may be dried using a drying means such as hot air or a hot roll. Good. Moreover, you may employ | adopt treatments, such as a corona discharge process and an atmospheric pressure plasma discharge process, before a fiber processing agent provision.
 不織布製造設備の高速化に伴う乾燥工程における乾燥不足などを発生させないために、繊維加工剤水溶液の塗布量は少ない方が好ましい。不織布に対する塗布量(重量%)は、前記付与方法のいずれにおいても1.0重量%~65重量%が好ましく、より好ましくは3.0重量%~60重量%であり、更に好ましくは5.0重量%~50重量%である。1.0重量%未満では均一な塗布は得られず、他方、65重量%を超えると、必要な乾燥能力が大きくなり、設備コストが増大し、また乾燥不足を生じかねない。尚、塗布する繊維加工剤の濃度は0.05重量%以上~100重量%が好ましい。 It is preferable that the application amount of the aqueous fiber processing agent solution is small so as not to cause insufficient drying in the drying process accompanying the speeding up of the nonwoven fabric production facility. The coating amount (% by weight) with respect to the nonwoven fabric is preferably 1.0% to 65% by weight, more preferably 3.0% to 60% by weight, and still more preferably 5.0% by weight in any of the application methods. % By weight to 50% by weight. If the amount is less than 1.0% by weight, uniform coating cannot be obtained. On the other hand, if the amount exceeds 65% by weight, the required drying capacity increases, the equipment cost increases, and insufficient drying may occur. The concentration of the fiber processing agent to be applied is preferably 0.05% by weight to 100% by weight.
 繊維加工剤の付与方式はコーティングによる方法が一般的である。公知のコーティング法として、キスコーター、ダイ等が挙げられるが、繊維加工剤を不織布幅方向に均一に付与できることからグラビアによる付与方式を使用することが好ましい。
 グラビアロールの柄は、格子型やピラミッド型でもよいが、グラビアのセル底に繊維加工剤が残りにくい斜線型が好ましい。セル容積は、5cm/m~40cm/mが好ましい。5cm/m未満では、塗布量が少なすぎるため、繊維加工剤の均一な塗布が困難となる。他方、40cm/mを超えると、塗布量が多くなりすぎるため乾燥工程での乾燥不足やマイグレーションによる繊維加工剤の付着斑が生じるなどの問題が発生する。
 前記グラビアロールのセルの深さは、10μm~80μmが好ましく、その間隔は、80メッシュ~250メッシュの範囲内で、上記セル容積となるように設計するのが好ましい。
As a method for applying the fiber processing agent, a coating method is generally used. Known coating methods include kiss coaters and dies, but it is preferable to use a gravure application method because the fiber processing agent can be applied uniformly in the nonwoven fabric width direction.
The gravure roll handle may be a lattice type or a pyramid type, but is preferably a diagonal type in which the fiber processing agent hardly remains on the bottom of the gravure cell. The cell volume is preferably 5 cm 3 / m 2 to 40 cm 3 / m 2 . If it is less than 5 cm < 3 > / m < 2 >, since the application amount is too small, uniform application of the fiber processing agent becomes difficult. On the other hand, if it exceeds 40 cm 3 / m 2 , the coating amount becomes too large, and problems such as insufficient drying in the drying process and adhesion spots of the fiber processing agent due to migration occur.
The cell depth of the gravure roll is preferably 10 μm to 80 μm, and the interval is preferably designed to be within the range of 80 mesh to 250 mesh so as to have the above cell volume.
 グラビアロール表面の液をかき取るための方式は、一般的な焼入鋼板製のドクターを用いるドクターブレード方式や表面がゴム製のロールを用いるゴムロール方式であってもよい。ドクターブレード方式の場合の抑え圧としては0.5kg/cm~1.0kg/cmが好ましく、0.6kg/cm~0.8kg/cmがより好ましい。ゴムロール方式の場合はゴム硬度60°以上80°以下の範囲内において、抑え圧は1.0kg/cm以上5.0kg/cm以下が好ましく、1.5kg/cm以上3.5kg/cm以下がより好ましい。いずれの方式でも抑え圧が前記範囲内であると、不織布幅方向に均一に抑えられるため、繊維加工剤の塗布量のばらつきが少なくなる。 The method for scraping off the liquid on the surface of the gravure roll may be a doctor blade method using a general doctor made of a hardened steel plate or a rubber roll method using a roll having a rubber surface. The suppression pressure in the case of the doctor blade method is preferably 0.5 kg / cm to 1.0 kg / cm, more preferably 0.6 kg / cm to 0.8 kg / cm. In the case of the rubber roll method, the suppression pressure is preferably 1.0 kg / cm or more and 5.0 kg / cm or less, more preferably 1.5 kg / cm or more and 3.5 kg / cm or less, within a rubber hardness range of 60 ° or more and 80 ° or less. preferable. In any method, when the restraining pressure is within the above range, the amount of application of the fiber processing agent is less varied since the nonwoven fabric can be uniformly restrained in the width direction.
 また、設備の高速化に対応でき、効率良く塗布できること、且つ不織布の厚みを維持しやすいことから噴霧法での付与方式も好ましい。噴霧法としては、公知のエア圧縮による吹付け法や、繊維加工剤水溶液を直接圧縮して噴霧する方法でもよいが、不織布に均一に塗布できる観点から、ローターダンプニング方式が好ましい。塗布時の繊維加工剤水溶液の飛散防止策を施すことで設備の高速時でも塗布が可能である。ローターダンプニング方式とは、回転しているローター上に繊維加工剤水溶液を供給し、ローター回転の遠心力を用いて繊維加工剤水溶液を噴霧する方法である。ローターダンプニング方式では、塗布する方向にローター回転によって飛ばされる繊維加工剤水溶液の液粒子を塗布する不織布側にのみ噴霧できるよう、且つ不織布の幅方向に均一に塗布できるように開口部が限定され、ローター回転数により噴霧粒子径を調整することが可能である。 Also, the application method by the spray method is preferable because it can cope with the high speed of the equipment, can be applied efficiently, and it is easy to maintain the thickness of the nonwoven fabric. The spraying method may be a known spraying method by air compression or a method of directly compressing and spraying the aqueous fiber processing agent solution, but the rotor dampening method is preferred from the viewpoint of uniform application to the nonwoven fabric. By applying a measure to prevent the aqueous fiber processing agent solution from being scattered at the time of application, it can be applied even at a high speed of the equipment. The rotor dampening method is a method in which a fiber processing agent aqueous solution is supplied onto a rotating rotor and the fiber processing agent aqueous solution is sprayed by using centrifugal force of rotor rotation. In the rotor dampening method, the openings are limited so that the liquid particles of the fiber processing agent aqueous solution that is blown off by the rotation of the rotor in the application direction can be sprayed only on the nonwoven fabric side to be applied and can be uniformly applied in the width direction of the nonwoven fabric. It is possible to adjust the spray particle diameter according to the rotational speed of the rotor.
 前記ローターダンプニング方式の場合、例えば、ローターの直径は40mm~100mmのものを選定し、塗布する不織布の幅方向に繊維加工剤水溶液が均一に付着できるように、塗布する不織布面とローターの中心との距離を設定する。隣のローターから噴霧される塗布分布範囲の2分の1が重なるように設定されることが好ましい。また、ローターは幅方向に60mm~220mmの範囲において等間隔で配置させ、2段にすることが好ましい。 In the case of the rotor dampening method, for example, a rotor having a diameter of 40 mm to 100 mm is selected, and the nonwoven fabric surface to be applied and the center of the rotor so that the aqueous fiber processing agent solution can uniformly adhere in the width direction of the nonwoven fabric to be applied. Set the distance to. It is preferable to set so that one half of the coating distribution range sprayed from the adjacent rotor overlaps. Further, the rotors are preferably arranged in the width direction at an equal interval in the range of 60 mm to 220 mm to have two stages.
 均一に塗布するポイントは、塗布する不織布の内部にまで噴霧粒子を行き届かせることであり、その噴霧粒子径は10μm~200μmが好ましく、30μm~70μmがより好ましい。最適な噴霧粒子径を形成するには繊維加工剤水溶液の表面張力が重要となり、噴霧粒子径は下記式:
   噴霧粒子径(μm)={100000×√(表面張力(N/m))}/(ローター直径(mm)×ローター回転数(rpm))
により算出される。
The point of applying uniformly is to make spray particles reach the inside of the nonwoven fabric to be applied, and the spray particle diameter is preferably 10 μm to 200 μm, more preferably 30 μm to 70 μm. In order to form the optimum spray particle size, the surface tension of the aqueous fiber processing agent solution is important.
Spray particle diameter (μm) = {100000 × √ (surface tension (N / m))} / (rotor diameter (mm) × rotor rotational speed (rpm))
Is calculated by
 また、これら塗布方法における繊維加工剤水溶液の温度は、5℃~50℃が好ましく、溶液の均一分散、安定性の観点から、12℃~40℃がより好ましい。繊維加工剤水溶液の粘度は、0.5mPa・s~50mPa・sであることが好ましく、より均一に塗布しやすい観点から、0.8mPa・s~20mPa・sがより好ましい。粘度が50mPa・sを超えると、繊維加工剤水溶液の不織布への浸透性が劣り、均一な塗布が困難となる傾向がある。 In addition, the temperature of the fiber processing agent aqueous solution in these coating methods is preferably 5 ° C. to 50 ° C., and more preferably 12 ° C. to 40 ° C. from the viewpoint of uniform dispersion and stability of the solution. The viscosity of the aqueous fiber processing agent solution is preferably 0.5 mPa · s to 50 mPa · s, and more preferably 0.8 mPa · s to 20 mPa · s from the viewpoint of easier application. When the viscosity exceeds 50 mPa · s, the permeability of the aqueous fiber processing agent solution to the nonwoven fabric tends to be poor, and uniform application tends to be difficult.
 繊維加工剤水溶液の塗布後の乾燥には、慣用の乾燥方式を用いることができ、特に限定されるものではなく、対流伝熱、伝導伝熱、放射伝熱等を利用した既知の方法が採用でき、熱風循環型、熱風貫通型、赤外線ヒーター型、不織布の両面に熱風を吹き付ける方法、加熱気体中に導入する方法等、各種の乾燥方法を用いることができる。 A conventional drying method can be used for drying after the application of the aqueous fiber processing agent solution, and it is not particularly limited, and a known method using convection heat transfer, conduction heat transfer, radiant heat transfer, etc. is adopted. Various drying methods such as a hot air circulation type, a hot air penetration type, an infrared heater type, a method of blowing hot air on both surfaces of the nonwoven fabric, and a method of introducing into a heated gas can be used.
 本実施形態の不織布は熱可塑性繊維から成り、スパンボンド法により製造された長繊維不織布であっても、カード法や湿式抄造法などで製造された短繊維不織布であってもよい。しかしながら、強度、生産性の観点、不織布表面構造に特徴を持たせ、肌への刺激低減などの観点から、ウェブを構成する繊維としては、スパンボンド法により製造された長繊維が好ましい。本明細書中、長繊維とは、繊維長が55mm以上のものをいう。また、熱可塑性繊維の形態としては、丸形断面のものだけでなく、断面が扁平やY型などの異型断面繊維、中空糸や捲縮糸などの特殊な形態のものを用いることができ、特に限定されるものではない。 The non-woven fabric of this embodiment is made of thermoplastic fibers, and may be a long-fiber non-woven fabric manufactured by a spunbond method or a short-fiber non-woven fabric manufactured by a card method or a wet papermaking method. However, from the viewpoints of strength, productivity, characteristics of the nonwoven fabric surface structure and reduction of skin irritation, the fibers constituting the web are preferably long fibers produced by a spunbond method. In the present specification, the long fiber means one having a fiber length of 55 mm or more. In addition, as the form of the thermoplastic fiber, not only those having a round cross section, but also having a special cross section such as a flat cross section or a Y-shaped cross section, a hollow fiber or a crimped thread, can be used. It is not particularly limited.
 ウェブは1層単体でもよいが、スパンボンド法(S)により形成されたウェブの上に、メルトブロウン法(M)により溶融紡糸されるウェブを吹付けて積層してもよい。積層の状態は生産性の観点からSS、SSS、SSSSと積層したり、SM、SMS、SMMS、SMSMSのように積層したりしてもよい。また、各層毎に異なる目付や繊維径、繊維形態に形成しても構わない。 The web may be a single layer, but may be laminated by spraying a web that is melt-spun by the melt blown method (M) on the web formed by the spunbond method (S). The state of lamination may be laminated with SS, SSS, SSSS from the viewpoint of productivity, or may be laminated like SM, SMS, SMMS, SMSMS. Moreover, you may form in the fabric weight, fiber diameter, and fiber form which differ for every layer.
 積層するウェブの接合方法としては、接着剤を用いて接合する方法、低融点繊維や複合繊維により接着する方法、ホットメルトバインダーをウェブ形成中に散布して溶融接合する方法、ニードルパンチ、水流等で交絡する等の機械交絡や、熱風による接合などの方法のいずれでも構わない。しかしながら、高速生産性の点からは、部分熱圧着により接合するのが好ましい。例えば、ピンポイント状、楕円形状、ダイヤ形状、矩形状などの接合点を付与できる加熱したエンボス/フラットロール間にウェブを通して接合することができる。部分熱圧着における熱圧着面積率は、強度保持及び柔軟性の点から5~40%が好ましく、より好ましくは5~25%である。また、不織布の嵩を維持し、衛生材料のトップシートとして好まれるクッション性のある風合いを得ることができる観点から、熱風を用いて接合するのも好ましい。熱風を用いた接合方式として熱風循環型、熱風貫通型、不織布の両面に熱風をふきつける方法であれば、特に限定せず用いることができる。 As a method of joining the laminated webs, a method of joining using an adhesive, a method of adhering with a low melting fiber or a composite fiber, a method of spraying a hot melt binder during web formation, a melt joining method, a needle punch, a water flow, etc. Any of the methods such as mechanical entanglement such as entanglement with hot air or joining with hot air may be used. However, it is preferable to join by partial thermocompression from the viewpoint of high-speed productivity. For example, the web can be bonded between heated embossed / flat rolls that can provide bonding points such as pinpoint, elliptical, diamond, and rectangular shapes. The area ratio of thermocompression bonding in partial thermocompression bonding is preferably 5 to 40%, more preferably 5 to 25%, from the viewpoint of strength retention and flexibility. Moreover, it is also preferable to join using a hot air from a viewpoint of maintaining the bulk of a nonwoven fabric and obtaining the cushioning texture preferred as a top sheet of sanitary materials. Any joining method using hot air can be used without particular limitation as long as it is a hot air circulation type, a hot air penetration type, or a method of wiping hot air on both surfaces of a nonwoven fabric.
 本実施形態の熱可塑性繊維を構成する熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、共重合ポリプロピレンなどのポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、共重合ポリエステルなどのポリエステル系樹脂、ナイロン-6、ナイロン-66、共重合ナイロンなどのポリアミド系樹脂、及び、ポリ乳酸、ポリブチレンサクシネート、ポリエチレンサクシネートなどの生分解性樹脂が挙げられ、特に制限されない。不織布の風合いの観点と、使用される用途の多くが使い捨て材料であり、汎用、回収の利便性の観点から、ポリオレフィン系樹脂が好ましい。また、繊維は1種類でも、サイドバイサイドや鞘芯など、2種類以上の樹脂を組み合わせたものでも構わない。 Examples of the thermoplastic resin constituting the thermoplastic fiber of the present embodiment include polyolefin resins such as polyethylene, polypropylene and copolymer polypropylene, and polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and copolymer polyester. Polyamide resins such as nylon-6, nylon-66, and copolymerized nylon, and biodegradable resins such as polylactic acid, polybutylene succinate, and polyethylene succinate are not particularly limited. In view of the texture of the nonwoven fabric and many of the uses used are disposable materials, polyolefin resins are preferred from the viewpoints of general use and convenience of recovery. Moreover, the fiber may be one type or a combination of two or more types of resins such as side-by-side and sheath core.
 不織布の繊維の平均繊度は0.45dtex~10.0dtexであることが好ましく、より好ましくは0.55dtex~8.0dtex、更に好ましくは0.86dtex~5.0dtexである。紡糸安定性の観点から、平均繊度は0.45dtex以上であることが好ましく、他方、衛生材料に使用される不織布の風合いの観点から、10.0dtex以下であることが好ましい。 The average fineness of the nonwoven fabric fibers is preferably 0.45 dtex to 10.0 dtex, more preferably 0.55 dtex to 8.0 dtex, and still more preferably 0.86 dtex to 5.0 dtex. From the viewpoint of spinning stability, the average fineness is preferably 0.45 dtex or more, and from the viewpoint of the texture of the nonwoven fabric used for the sanitary material, it is preferably 10.0 dtex or less.
 不織布の目付は8g/m~80g/mが好ましく、より好ましくは10g/m~40g/m以下、更に好ましくは10g/m~30g/mである。目付が8g/m以上であれば、衛生材料に使用される不織布としては強力を満足し、他方、80g/m以下であれば、衛生材料に使用される不織布の風合いを満足し、外観的に厚ぼったい印象を与えにくい傾向がある。 The basis weight of the nonwoven fabric is preferably 8 g / m 2 to 80 g / m 2 , more preferably 10 g / m 2 to 40 g / m 2 or less, still more preferably 10 g / m 2 to 30 g / m 2 . If the basis weight is 8 g / m 2 or more, the nonwoven fabric used for the sanitary material is strong, and if it is 80 g / m 2 or less, the texture of the nonwoven fabric used for the sanitary material is satisfied. It tends to be difficult to give a thick impression.
 本実施形態の繊維加工剤が付与された不織布は、尿や体液などをよどみなく吸収する為に、下記のような特性を有することが好ましい。 The nonwoven fabric to which the fiber processing agent of the present embodiment is applied preferably has the following characteristics in order to absorb urine and body fluids without stagnation.
 本実施形態の不織布の透水性の指標となる繰り返し透水性は、4回目で70%以上であることが好ましい。排尿毎におむつを交換することはないため、トップシートやセカンドシートなどに使用される不織布には2回目、3回目と繰返しの排尿に対しても、澱みなく尿等の体液を通水する必要がある。4回目の繰返し透水性の値が70%未満では、例えば、使い捨ておむつのトップシートやセカンドシートなどに用いた場合、2回目以降の尿に対し十分に通水できないことから尿漏れの原因となる可能性がある。 The repetitive water permeability that is an index of water permeability of the nonwoven fabric of the present embodiment is preferably 70% or more at the fourth time. Since diapers are not changed every urination, body fluids such as urine need to be passed through without stagnation in non-woven fabrics used for top sheets and second sheets, even for the second and third urination. There is. If the value of the fourth cycle water permeability is less than 70%, for example, when used for a top sheet or a second sheet of a disposable diaper, the water cannot be sufficiently passed to the urine after the second time, which causes urine leakage. there is a possibility.
 本実施形態の不織布の透水性の指標となる濡れ戻り性は、0.5g以下であることが好ましい。濡れ戻り性の値が0.5gを超えると、例えば、使い捨ておむつの表面材に用いた場合、排尿後、肌に表面材が触れたとき非常に湿った感触があり使用感が悪くなる他、かぶれを引き起こす原因となる可能性がある。濡れ戻り性は低いほど良いが、0.01g以下の値は測定下限値である。 It is preferable that the wettability as an index of water permeability of the nonwoven fabric of this embodiment is 0.5 g or less. When the wettability value exceeds 0.5 g, for example, when used as a surface material of a disposable diaper, after urination, when the surface material touches the skin, there is a very moist feeling and the usability is deteriorated. May cause rash. The lower the wettability, the better, but the value of 0.01 g or less is the lower limit of measurement.
 本実施形態の不織布の透水性の指標となる45度傾斜流長は、30mm以下が好ましく、より好ましくは25mm以下である。45度傾斜流長が30mmを超えると、例えば、使い捨ておむつなどの表面材に用いた場合、表面の液流れが多くなり、尿漏れを起こしやすくなる。 The 45-degree inclined flow length serving as a water permeability index of the nonwoven fabric of the present embodiment is preferably 30 mm or less, more preferably 25 mm or less. When the 45-degree inclined flow length exceeds 30 mm, for example, when used for a surface material such as a disposable diaper, the liquid flow on the surface increases, and urine leakage is likely to occur.
 以下、実施例、比較例により本発明を具体的に説明するが、本発明は以下の実施例のみに限定されるものではない。尚、各特性の評価方法は下記のとおりであり、得られた不織布の物性を以下の表2に示す。以下、不織布製造における流れ方向をMD方向、その方向と直角方向で幅方向をCD方向という。 Hereinafter, the present invention will be specifically described by way of examples and comparative examples, but the present invention is not limited to the following examples. In addition, the evaluation method of each characteristic is as follows, and the physical property of the obtained nonwoven fabric is shown in the following Table 2. Hereinafter, the flow direction in nonwoven fabric production is referred to as the MD direction, the direction perpendicular to that direction and the width direction as the CD direction.
1.平均繊度(dtex)
 不織布のCD方向に5等分して1cm角の試験片を採取し、キーエンス社製マイクロスコープVHX-700Fで繊維の直径を各20点ずつ測定し、その平均値から単糸繊度を算出した。
1. Average fineness (dtex)
A 1 cm square test piece was sampled by dividing the nonwoven fabric into 5 equal parts in the CD direction, 20 diameters of each fiber were measured with a microscope VHX-700F manufactured by Keyence, and the single yarn fineness was calculated from the average value.
2.不織布の目付(g/m
 JIS-L1906に準じ、MD方向20cm×CD方向5cmの試験片を不織布のCD方向に採取位置が均等になるように5枚採取して質量を測定し、その平均値を単位面積あたりの重量に換算して目付(g/m)として求めた。
2. Non-woven fabric weight (g / m 2 )
In accordance with JIS-L1906, five specimens measuring 20 cm in the MD direction and 5 cm in the CD direction were sampled so that the sampling positions were uniform in the CD direction of the nonwoven fabric, the mass was measured, and the average value was taken as the weight per unit area. The weight per unit area was calculated as a basis weight (g / m 2 ).
3.繊維加工剤水溶液の塗布量(重量%)
 繊維加工剤水溶液付与加工1時間分の繊維加工剤水溶液の消費量から下記式:
   繊維加工剤水溶液塗布量(重量%)=繊維加工剤水溶液消費量(g)/{不織布目付(g/m)×幅(m)×加工速度(m/min)×60(min)}×100
により算出した値を繊維加工剤水溶液の塗布量(重量%)とした。
3. Application amount of fiber processing agent aqueous solution (wt%)
From the consumption of the fiber processing agent aqueous solution for one hour, the following formula:
Application amount of fiber processing agent aqueous solution (% by weight) = Consumption amount of fiber processing agent aqueous solution (g) / {nonwoven fabric weight (g / m 2 ) × width (m) × processing speed (m / min) × 60 (min)} × 100
The value calculated by the above was defined as the coating amount (% by weight) of the aqueous fiber processing agent solution.
4.純分付着量は、塗布量(重量%)から下記式:
   純分付着量(重量%)= 塗布量(重量%)×(繊維加工剤の水溶液濃度(重量%))÷100により算出した値を繊維加工剤(全成分)の純分付着量とした。
 また、成分(A)と成分(B)の純分付着量は、塗布量(重量%)から下記式:
   成分(A)と成分(B)の純分付着量(重量%)= 塗布量(重量%)×(繊維加工剤水溶液の成分(A)の成分濃度(重量%)+繊維加工剤水溶液の成分(B)の成分濃度(重量%))÷100
により算出した。
4). The amount of net adhesion is expressed by the following formula from the coating amount (% by weight):
Amount of net adhesion (wt%) = application amount (wt%) × (aqueous solution concentration of fiber processing agent (wt%)) ÷ 100 was calculated as the net adhesion amount of the fiber processing agent (all components).
In addition, the amount of the pure component attached to the component (A) and the component (B) is expressed by the following formula from the coating amount (% by weight)
Component (A) and component (B) net adhesion amount (% by weight) = coating amount (% by weight) x (component concentration (% by weight) of component (A) of fiber processing agent aqueous solution + component of fiber processing agent aqueous solution (B) component concentration (% by weight)) / 100
Calculated by
5.濡れ戻り性(g)
 吸収体として吸収体の特性を一定化しておくため、特定濾紙(Ahlstrоm社製 GRADE:989)3枚の上に試験布を置く。さらにその上に10cm角で中央に直径25mmの穴を開けた板(約800g)を置き、中央穴の上部25mm高さより、生理食塩水(吸収体重量の4.0倍の液量)を滴下し、吸収させる。次に、試験布の上の板を取り除き、3.5kgの錘(10cm角)をしずかに載せて3分間かけ、吸収体中の液の分布を一定化する。次いで、3.5kgの錘を一旦取り除き、試験布の上に予め秤量した測定用濾紙(HOLLINGSWORTH&VOSE.CONPANY製 ERTMWWSSHEETS 12.5cm角)2枚を速やかに置き、再度3.5kgの錘を静かに載せる。2分後にその測定濾紙の重量増加を秤量する。その増加分の値(g)を濡れ戻り性とした。
5). Rewetting (g)
In order to make the characteristics of the absorber constant as the absorber, a test cloth is placed on three sheets of specific filter paper (GRADE: 989 manufactured by Ahlstrom). A 10 cm square plate with a hole of 25 mm in diameter (about 800 g) was placed on top of it, and physiological saline (amount 4.0 times the weight of the absorber) was dropped from the height of 25 mm above the center hole. And absorb. Next, the plate on the test cloth is removed, and a 3.5 kg weight (10 cm square) is placed on it for 3 minutes to stabilize the liquid distribution in the absorbent body. Next, the 3.5 kg weight is temporarily removed, and two pieces of pre-weighed measurement filter paper (ERTLWWSSHEETS 12.5 cm square manufactured by HOLLINGSWORTH & VOSE.CONPANY) are quickly placed on the test cloth, and the 3.5 kg weight is gently placed again. . After 2 minutes, weigh the increase in the weight of the measuring filter paper. The increase value (g) was defined as the wettability.
6.繰返し透水性(%)
 吸収体としてトイレットペーパー(イトマン株式会社製ハードシングル1R55m)を10枚重ねて、その上に試験布(20cm×30cm)を置く。さらにその上に直径1.5cmの穴を等間隔に10ヶ所開けたステンレス製の板を置き、それぞれの穴に位置する布の上方10mmの高さから生理食塩水0.05gを滴下し、3分経過後、再度同様に滴下する。4回目の滴下後、10秒以内に吸収される穴の数(a)を数える。これを同じ試料の40ヶ所について試験し{((a)/(穴10ヶ所×試料40ヶ所)×100)}を4回目の繰返し透水性(%)とした。また、継続して5回目の滴下後も4回目と同様に10秒以内に吸収される穴の数(b)を数え、{((b)/(穴10ヶ所×試料40ヶ所)×100)}を5回目の繰返し透水性(%)とした。
6). Repeated water permeability (%)
Ten toilet papers (hard single 1R55m manufactured by Itoman Co., Ltd.) are stacked as an absorbent body, and a test cloth (20 cm × 30 cm) is placed thereon. Further, a stainless steel plate having 10 holes of 1.5 cm in diameter at equal intervals was placed thereon, and 0.05 g of physiological saline was dropped from a height of 10 mm above the cloth located in each hole. After the lapse of minutes, it is dropped again in the same manner. Count the number of holes (a) absorbed within 10 seconds after the fourth drop. This was tested at 40 locations of the same sample, and {((a) / (10 locations of holes × 40 locations of samples) × 100)} was defined as the fourth repeated water permeability (%). In addition, after the 5th dripping, the number of holes (b) absorbed within 10 seconds was counted as in the 4th time, {((b) / (10 holes × 40 samples) × 100) } Was defined as the fifth cycle water permeability (%).
7.45度傾斜流長(mm)
 45度に傾斜した板上に吸収体としてトイレットペーパー(イトマン株式会社製ハードシングル1R55m)を10枚重ねて、その上に試験布(20cm角)を置いてセットし、布の上方10mmの高さから0.05gの生理食塩水を滴下した。滴下位置から吸収終了までの生理食塩水が流れ落ちた距離を読み取った。この測定を試験布内で任意に20点行い、その平均値を透水45度傾斜流長(mm)とした。
7.45 degree inclined flow length (mm)
10 sheets of toilet paper (hard single 1R55m manufactured by Itoman Co., Ltd.) are stacked as an absorber on a plate inclined at 45 degrees, and a test cloth (20 cm square) is placed on top of it, and the height is 10 mm above the cloth. 0.05 g of physiological saline was added dropwise. The distance that the physiological saline flowed from the dropping position to the end of absorption was read. This measurement was arbitrarily performed at 20 points in the test cloth, and the average value was defined as a water permeability of 45 ° inclined flow length (mm).
<不織布の製造(1)>
 メルトフローレート(MFR)が55g/10分(JIS-K7210に準じ、温度230℃、荷重2.16kgで測定)のポリプロピレン(PP)樹脂を吐出量0.88g/分・hоleとなる様にスパンボンド法で、紡糸温度220℃で押出し、このフィラメント群をエアジェットによる高速牽引装置を使用して、移動捕集面に向けて押出し、平均繊維径2.8dtexの長繊維ウェブを調製した。
 次いで、得られた長繊維ウェブを上下温度135℃、圧力60kg/cmでのフラットロールとエンボスロール(パターン仕様:直径0.425mm円形、千鳥配列、横ピッチ2.1mm、縦ピッチ1.1mm、圧着面積率6.3%)の間に通して繊維同士を部分圧着して、目的とする目付が18g/mとなる様にライン速度を調整し、長繊維不織布(1)を得た。
<Manufacture of nonwoven fabric (1)>
A polypropylene (PP) resin with a melt flow rate (MFR) of 55 g / 10 min (measured at a temperature of 230 ° C. and a load of 2.16 kg according to JIS-K7210) is spun so that the discharge rate is 0.88 g / min / hour. Extrusion was performed at a spinning temperature of 220 ° C. by a bond method, and the filament group was extruded toward a moving collection surface using a high-speed traction device using an air jet to prepare a long fiber web having an average fiber diameter of 2.8 dtex.
Subsequently, the obtained long fiber web was flat roll and emboss roll at an upper and lower temperature of 135 ° C. and a pressure of 60 kg / cm (pattern specifications: diameter 0.425 mm circular, staggered arrangement, horizontal pitch 2.1 mm, vertical pitch 1.1 mm, The fibers were partially bonded to each other through a pressure-bonding area ratio of 6.3%, and the line speed was adjusted so that the intended basis weight was 18 g / m 2 to obtain a long-fiber nonwoven fabric (1).
<不織布の製造(2)>
 エチレン成分含有量が4.3モル%、MFRが24のエチレン・プロピレンランダム共重合体樹脂(r-PP)を吐出量0.84g/分・hоleとなる様にスパンボンド法で、紡糸温度230℃で押出し、このフィラメント群をエアジェットによる高速牽引装置を使用して、移動捕集面に向けて押出し、平均繊維径2.3dtexの長繊維ウェブを作製した。次いで、得られた長繊維ウェブを不織布の製造(1)で使用したものと同じフラットロール/エンボスロールを用いて上下温度135℃、圧力60kg/cmの条件で、繊維同士を部分圧着して、目的とする目付が30g/mとなる様にライン速度を調整し、長繊維不織布(2)を得た。
<Manufacture of non-woven fabric (2)>
An ethylene / propylene random copolymer resin (r-PP) having an ethylene component content of 4.3 mol% and an MFR of 24 is spun by a spunbond method at a spinning temperature of 230 to a discharge rate of 0.84 g / min · hole. The filament group was extruded toward a moving collection surface using a high-speed traction device using an air jet to produce a long fiber web having an average fiber diameter of 2.3 dtex. Next, using the same flat roll / embossing roll as that used in the production of nonwoven fabric (1), the obtained long fiber web was partially pressure-bonded to each other under the conditions of a vertical temperature of 135 ° C. and a pressure of 60 kg / cm, The line speed was adjusted so that the intended basis weight was 30 g / m 2 to obtain a long fiber nonwoven fabric (2).
<不織布の製造(3)>
 MFRが38g/10分のポリプロピレン(PP)を、ハ型異型ノズルを配置した紡糸口金を用いて紡糸温度240℃、吐出量が0.80g/分・hоleで押出し、このフィラメント群をエアジェットによる高速気流牽引装置を使用して、移動捕集面に向けて押出し、平均繊維径2.5dtexの長繊維ウェブを得た。
 次いで、得られた長繊維ウェブを温度135℃、圧力60kg/cmに設定したフラットロールとエンボスロール(パターン仕様:直径1.00mm円形、千鳥配列、横ピッチ4.4mm、縦ピッチ4.4mm、圧着面積率7.9%)の間に通して繊維同士を部分的に接着し、目付15g/m、捲縮数28個/インチの長繊維不織布(3)を得た。
<Manufacture of nonwoven fabric (3)>
Polypropylene (PP) with an MFR of 38 g / 10 min was extruded at a spinning temperature of 240 ° C. and a discharge rate of 0.80 g / min · hole using a spinneret with a C-shaped nozzle, and this filament group was formed by air jet. Using a high-speed airflow traction device, extrusion was performed toward the moving collection surface to obtain a long fiber web having an average fiber diameter of 2.5 dtex.
Next, a flat roll and an embossing roll (pattern specification: diameter 1.00 mm circular, staggered arrangement, horizontal pitch 4.4 mm, vertical pitch 4.4 mm, the temperature of the obtained long fiber web set to 135 ° C. and pressure 60 kg / cm, The fibers were partially bonded to each other through a crimping area ratio of 7.9%) to obtain a long fiber nonwoven fabric (3) having a basis weight of 15 g / m 2 and a crimped number of 28 pieces / inch.
<不織布の製造(4)>
 MFRが55g/10分(JIS-K7210に準じ、温度230℃、荷重2.16kgで測定)のポリプロピレン(PP)樹脂を第1成分とし、メルトインデックス(MI)が26g/10分(JIS-K7210に準じ、温度190℃、荷重2.16kgで測定)の高密度ポリエチレン(HDPE)樹脂を第2成分とし、第1成分の吐出量が0.54g/分・hоle、第2成分の吐出量が0.26g/分・hоleで全吐出量が0.8g/分・hоleであり、第1成分と第2成分の比が約2/1となる繊維をスパンボンド法により紡糸温度220℃で押出し、このフィラメント群をエアジェットによる高速気流牽引装置を使用して、移動捕集面に向けて押出し平均繊維径2.0dtexの偏芯鞘芯型複合長繊維ウェブを調製した。
 次いで、得られた長繊維ウェブを不織布の製造(3)で使用したものと同じフラットロール/エンボスロールを用いて、上下温度135℃、圧力60kg/cmの条件で、繊維同士を部分圧着して、目的とする目付が15g/mとなる様にライン速度を調整して、長繊維不織布(4)を得た。
<Manufacture of nonwoven fabric (4)>
Polypropylene (PP) resin having an MFR of 55 g / 10 min (measured at a temperature of 230 ° C. and a load of 2.16 kg according to JIS-K7210) is the first component, and the melt index (MI) is 26 g / 10 min (JIS-K7210). The high-density polyethylene (HDPE) resin at a temperature of 190 ° C. and a load of 2.16 kg is used as the second component, the discharge amount of the first component is 0.54 g / min · hole, and the discharge amount of the second component is Extruded at a spinning temperature of 220 ° C. by a spunbond method with a total discharge rate of 0.86 g / min · hole at 0.26 g / min · hole and a ratio of the first component to the second component of about 2/1 The filament group was extruded toward the moving collection surface using a high-speed airflow traction device using an air jet to prepare an eccentric sheath-core type composite continuous fiber web having an average fiber diameter of 2.0 dtex.
Next, using the same flat roll / embossing roll as that used in the production of nonwoven fabric (3), the obtained long fiber web was partially pressure-bonded to each other under the conditions of an upper and lower temperature of 135 ° C. and a pressure of 60 kg / cm. The line speed was adjusted so that the intended basis weight was 15 g / m 2 to obtain a long fiber nonwoven fabric (4).
<不織布の製造(5)>
 MFRが55g/10分(JIS-K7210に準じ、温度230℃、荷重2.16kgで測定)のポリプロピレン(PP)樹脂を第1成分とし、MIが26g/10分(JIS-K7210に準じ、温度190℃、荷重2.16kgで測定)の高密度ポリエチレン(HDPE)樹脂を第2成分とし、第1成分の吐出量が0.4g/分・hоle、第2成分の吐出量が0.4g/分・hоleで全吐出量が0.8g/分・hоleであり、第1成分と第2成分の比が1/1となる繊維をスパンボンド法により紡糸温度220℃で押出し、このフィラメント群をエアジェットによる高速気流牽引装置を使用して、移動捕集面に向けて押出し平均繊維径2.3dtexの偏芯鞘芯型複合長繊維ウェブを調製した。
 次いで、得られた偏芯鞘芯型複合長繊維不織ウェブを100℃のフラットロールとエンボスロール(パターン仕様:直径1.00mm円形、千鳥配列、横ピッチ4.4mm、縦ピッチ4.4mm、圧着面積率7.9%)の間に通して繊維同士を仮接着し、次いで、熱風温度142℃、熱風風速0.7m/sの熱風により繊維同士を接着し、目付25g/m、捲縮数17個/インチの複合長繊維不織布(5)を得た。
<Manufacture of nonwoven fabric (5)>
Polypropylene (PP) resin having an MFR of 55 g / 10 min (measured according to JIS-K7210, at a temperature of 230 ° C. and a load of 2.16 kg) is the first component, and MI is 26 g / 10 min (according to JIS-K7210, temperature High-density polyethylene (HDPE) resin (measured at 190 ° C. and a load of 2.16 kg) is the second component, the first component discharge rate is 0.4 g / min · hole, and the second component discharge rate is 0.4 g / Extruded at a spinning temperature of 220 ° C. by the spunbond method, the total discharge rate is 0.8 g / min / hour and the ratio of the first component to the second component is 1/1. Using an air jet high-speed air traction device, an eccentric sheath-core composite long fiber web having an average fiber diameter of 2.3 dtex was prepared by extrusion toward the moving collection surface.
Subsequently, the obtained eccentric sheath-core type composite long fiber nonwoven web was subjected to a flat roll and an embossing roll at 100 ° C. (pattern specification: circular with a diameter of 1.00 mm, staggered arrangement, horizontal pitch 4.4 mm, vertical pitch 4.4 mm, through during the crimping area ratio 7.9%) was provisionally bonded to fibers, then a hot air temperature of 142 ° C., the fibers were bonded by hot air hot air velocity 0.7 m / s, the basis weight 25 g / m 2, wound A composite continuous fiber non-woven fabric (5) having a reduced number of 17 pieces / inch was obtained.
<不織布の製造(6)>
 不織布の製造(5)の製造で用いたものと同じポリマーを用いて、第1成分(ポリプロピレン)の吐出量が0.40g/分・hоle、第2成分(ポリエチレン)の吐出量が0.40g/分・hоleで全吐出量が0.8g/分・hоleであり、第1成分と第2成分の比が1:1となる繊維をスパンボンド法により紡糸温度220℃で押出した。押出したフィラメントは、移動捕集面の吸引力を利用して牽引ゾーン内で延伸させた後、ディフューザーを通し移動捕集面に堆積させて、平均繊維径3.0dtexのサイドバイサイド型複合長繊維ウェブを調製した。得られたサイドバイサイド型複合長繊維ウェブを熱風温度142℃、熱風風速0.7m/sの熱風により繊維同士を接着し、目付15g/m、捲縮数15個/インチの複合長繊維不織布(6)を得た。
<Manufacture of non-woven fabric (6)>
Using the same polymer as used in the manufacture of non-woven fabric (5), the discharge amount of the first component (polypropylene) is 0.40 g / min · hole and the discharge amount of the second component (polyethylene) is 0.40 g. A fiber having a total discharge rate of 0.8 g / min · hole and a ratio of the first component to the second component of 1: 1 was extruded at a spinning temperature of 220 ° C. by a spunbond method. The extruded filament is stretched in the traction zone using the suction force of the moving collection surface, and then deposited on the moving collection surface through a diffuser, and a side-by-side type composite long fiber web having an average fiber diameter of 3.0 dtex. Was prepared. The obtained side-by-side type composite long fiber web was bonded to each other with hot air having a hot air temperature of 142 ° C. and a hot air wind speed of 0.7 m / s, and a composite long fiber nonwoven fabric having a basis weight of 15 g / m 2 and a crimp number of 15 pieces / inch ( 6) was obtained.
<不織布の製造(7)>
 MFRが36g/10分(JIS-K7210に準じ、温度230℃、荷重2.16kgで測定)のポリプロピレン(PP)樹脂を第1成分とし、MIが17g/10分(JIS-K7210に準じ、温度190℃、荷重2.16kgで測定)の直鎖上低密度直鎖ポリエチレン(LLDPE)樹脂を第2成分とし、第1成分の吐出量が0.50g/分・hоle、第2成分の吐出量が0.25g/分・hоleで全吐出量が0.75g/分・hоleであり、第1成分と第2成分の比が2/1となる繊維をスパンボンド法により紡糸温度220℃で押出し、このフィラメント群をエアジェットによる高速気流牽引装置を使用して、移動捕集面に向けて押出し平均繊維径2.8dtexの偏芯鞘芯型複合長繊維ウェブを調製した。
 次いで、熱風温度120℃、熱風風速1.0m/sの熱風により繊維同士を接着し、目付20g/m、捲縮数25個/インチの複合長繊維不織布(7)を得た。
<Manufacture of nonwoven fabric (7)>
Polypropylene (PP) resin having an MFR of 36 g / 10 min (measured according to JIS-K7210, at a temperature of 230 ° C. and a load of 2.16 kg) as the first component, MI was 17 g / 10 min (according to JIS-K7210, temperature The first component discharge rate is 0.50 g / min · hole, and the second component discharge rate is 190 ° C, measured at a load of 2.16 kg). Is extruded at a spinning temperature of 220 ° C. by a spunbond method with a total discharge rate of 0.75 g / min · hole and a total discharge rate of 0.75 g / min · hole and a ratio of the first component to the second component of 2/1. The filament group was extruded toward the moving collection surface using a high-speed airflow traction device using an air jet to prepare an eccentric sheath-core type composite long fiber web having an average fiber diameter of 2.8 dtex.
Next, the fibers were bonded together with hot air having a hot air temperature of 120 ° C. and a hot air speed of 1.0 m / s to obtain a composite long fiber nonwoven fabric (7) having a basis weight of 20 g / m 2 and a crimp number of 25 pieces / inch.
<不織布の製造(8)>
 溶液粘度ηsp/c0.75のポリエチレンテレフタレート(PET)樹脂を第1成分とし、MIが26g/10分(JIS-K7210に準じ、温度190℃、荷重2.16kgで測定)の高密度ポリエチレン(HDPE)樹脂を第2成分とし、第1成分の吐出量が0.50g/分・hоle、第2成分の吐出量が0.25g/分・hоleで全吐出量が0.75g/分・hоleであり、第1成分と第2成分の比が2:1となる繊維をスパンボンド法により紡糸温度220℃で押出した。押出したフィラメントは、移動捕集面の吸引力を利用して牽引ゾーン内で延伸させた後、ディフューザーを通し移動捕集面に堆積させて、平均繊維径4.0dtexの偏芯鞘芯型複合長繊維ウェブを調製した。得られた偏芯鞘芯型複合長繊維ウェブを熱風温度130℃、熱風風速0.7m/sの熱風により繊維同士を接着し、目付30g/m、捲縮数13個/インチの複合長繊維不織布(8)を得た。
<Manufacture of non-woven fabric (8)>
High-density polyethylene (HDPE) having a polyethylene terephthalate (PET) resin having a solution viscosity ηsp / c of 0.75 as the first component and an MI of 26 g / 10 min (measured according to JIS-K7210 at a temperature of 190 ° C. and a load of 2.16 kg). ) When the resin is the second component, the first component discharge rate is 0.50 g / min · hole, the second component discharge rate is 0.25 g / min · hole, and the total discharge rate is 0.75 g / min · hole. Yes, a fiber having a ratio of the first component to the second component of 2: 1 was extruded at a spinning temperature of 220 ° C. by a spunbond method. The extruded filament is stretched in the traction zone by using the suction force of the moving collection surface, and then deposited on the moving collection surface through a diffuser to form an eccentric sheath-core composite with an average fiber diameter of 4.0 dtex. A long fiber web was prepared. The resulting eccentric sheath-core composite long fiber web was bonded to each other with hot air having a hot air temperature of 130 ° C. and a hot air speed of 0.7 m / s, and the composite length was 30 g / m 2 and the number of crimps was 13 pieces / inch. A fiber nonwoven fabric (8) was obtained.
<成分(A)>
 成分A-1:株式会社ADEKA製のプロピレングリコールを用いた。
 成分A-2:株式会社ADEKA製のジプロピレングリコールを用いた。
<Component (A)>
Component A-1: Propylene glycol manufactured by ADEKA Corporation was used.
Component A-2: Dipropylene glycol manufactured by ADEKA Corporation was used.
<成分(B)>
 成分B-1:プロピレングリコールに、常法に従い、プロピレンオキサイド30モル、次いでエチレンオキサイド8モルを付加してポリオキシアルキレングリコールを得た。次いで、このポリオキシアルキレングリコール1モルと、ラウリン酸1.5モルとを反応させて成分B-1を得た。成分B-1は、一般式(2)において、nが0であり、RとRが炭素数11のアルケノイル基であり、(AO)がプロピレンオキサイド31モルの両末端に合計8モルのエチレンオキサイドが付加した基(lが39)である化合物と、一般式(2)において、nが0であり、RとRのいずれか一方が炭素数11のアルケノイル基であり、(AO)がプロピレンオキサイド31モルの両末端に合計8モルのエチレンオキサイドが付加した基(lが39)である化合物と、の1:1混合物である。
<Component (B)>
Component B-1: 30 mol of propylene oxide and then 8 mol of ethylene oxide were added to propylene glycol according to a conventional method to obtain polyoxyalkylene glycol. Next, 1 mol of this polyoxyalkylene glycol was reacted with 1.5 mol of lauric acid to obtain Component B-1. In Component B-1, n is 0 in formula (2), R 1 and R 3 are alkenoyl groups having 11 carbon atoms, and (A 2 O) 1 is added to both ends of 31 mol of propylene oxide. A compound in which 8 mol of ethylene oxide is added (l is 39), and in general formula (2), n is 0, and either R 1 or R 3 is an alkenoyl group having 11 carbon atoms , (A 2 O) l is a 1: 1 mixture with a compound in which a total of 8 mol of ethylene oxide is added to both ends of 31 mol of propylene oxide (l is 39).
 成分B-2:プロピレングリコールに、常法に従い、プロピレンオキサイド50モル、次いで、エチレンオキサイド15モルを付加してポリオキシアルキレングリコールを得た。次いで、このポリオキシアルキレングリコール1モルとステアリン酸1.8モルとを反応させて成分B-2を得た。成分B-2は、一般式(2)において、nが0であり、RとRが炭素数17のアルケノイル基であり、(AO)がプロピレンオキサイド51モルの両末端に合計15モルのエチレンオキサイドが付加した基(lが66)である化合物と、一般式(2)において、nが0であり、RとRのいずれか一方が炭素数17のアルケノイル基であり、(AO)がプロピレンオキサイド51モルの両末端に合計15モルのエチレンオキサイドが付加した基(lが66)である化合物と、の9:1混合物である。 Component B-2: 50 mol of propylene oxide and then 15 mol of ethylene oxide were added to propylene glycol according to a conventional method to obtain polyoxyalkylene glycol. Next, 1 mol of this polyoxyalkylene glycol was reacted with 1.8 mol of stearic acid to obtain Component B-2. In Component B-2, in general formula (2), n is 0, R 1 and R 3 are alkenoyl groups having 17 carbon atoms, and (A 2 O) 1 is added to both ends of 51 mol of propylene oxide. In the compound which is a group to which 15 mol of ethylene oxide is added (l is 66), in the general formula (2), n is 0, and either R 1 or R 3 is an alkenoyl group having 17 carbon atoms , (A 2 O) l is a 9: 1 mixture with a compound in which a total of 15 mol of ethylene oxide is added to both ends of 51 mol of propylene oxide (l is 66).
 成分B-3:プロピレングリコールに、常法に従い、プロピレンオキサイド30モル、次いで、エチレンオキサイド8モルを付加してポリオキシアルキレングリコールを得た。次いで、このポリオキシアルキレングリコール3モルとアジピン酸2モルとを反応させた。次いで、この反応物とラウリン酸1モルとを反応させて成分B-3を得た。
 成分B-3は、一般式(2)において、RとRのいずれか一方が炭素数11のアルケノイル基であり、(AO)がプロピレンオキサイド31モルの両末端に合計8モルのエチレンオキサイドが付加した基(lが39)であり、Rが炭素数4のアルキレン基であり、(AO)がプロピレンオキサイド31モルの両末端に合計8モルのエチレンオキサイドが付加した基(mが39)であり、nが2である化合物である。
Component B-3: 30 mol of propylene oxide and then 8 mol of ethylene oxide were added to propylene glycol according to a conventional method to obtain polyoxyalkylene glycol. Subsequently, 3 mol of this polyoxyalkylene glycol was reacted with 2 mol of adipic acid. Next, this reaction product was reacted with 1 mol of lauric acid to obtain Component B-3.
Component B-3, in general formula (2), either R 1 or R 3 is an alkenoyl group having 11 carbon atoms, and (A 2 O) 1 is 8 mol in total at both ends of 31 mol of propylene oxide. Of ethylene oxide added (l is 39), R 2 is an alkylene group having 4 carbon atoms, and (A 3 O) m is added to both ends of 31 mol of propylene oxide for a total of 8 mol of ethylene oxide added. A compound in which n is 2 and m is 39.
 成分B-4:プロピレングリコールに、常法に従い、プロピレンオキサイド30モル、次いで、エチレンオキサイド8モルを付加してポリオキシアルキレングリコールを得た。次いで、このポリオキシアルキレングリコール5モルとアジピン酸4モルとを反応させて、成分B-4を得た。成分B-4は、一般式(2)において、RとRが水素であり、(AO)がプロピレンオキサイド31モルの両末端に合計8モルのエチレンオキサイドが付加した基(lが39)であり、Rが炭素数4のアルキレン基であり、(AO)がプロピレンオキサイド31モルの両末端に合計8モルのエチレンオキサイドが付加した基(mが39)であり、nが4である化合物である。 Component B-4: 30 mol of propylene oxide and then 8 mol of ethylene oxide were added to propylene glycol according to a conventional method to obtain polyoxyalkylene glycol. Next, 5 mol of this polyoxyalkylene glycol was reacted with 4 mol of adipic acid to obtain Component B-4. Component B-4 is a group (1) in which R 1 and R 3 are hydrogen and (A 2 O) 1 is a total of 8 moles of ethylene oxide added to both ends of 31 moles of propylene oxide. 39), R 2 is an alkylene group having 4 carbon atoms, and (A 3 O) m is a group in which 8 moles of ethylene oxide are added to both ends of 31 moles of propylene oxide (m is 39). , N is 4.
 成分B-5:ラウリルアルコールに、常法に従い、プロピレンオキサイド24モルを付加して成分B-5を得た。
 成分B-5は、一般式(2)において、nが0であり、RとRが炭素数12のアルキル基であり、(AO)がプロピレンオキサイド24モルの基(lが24)である化合物である。
Component B-5: According to a conventional method, 24 mol of propylene oxide was added to lauryl alcohol to obtain Component B-5.
In Component B-5, in general formula (2), n is 0, R 1 and R 3 are alkyl groups having 12 carbon atoms, and (A 2 O) 1 is a group having 24 moles of propylene oxide (where l is 24).
<成分(C)>
 ポリエーテル変性シリコーンとして、KF-6013(信越化学工業株式会社製、HLB=10、粘度は400cSt)を用いた。
<Ingredient (C)>
As the polyether-modified silicone, KF-6013 (manufactured by Shin-Etsu Chemical Co., Ltd., HLB = 10, viscosity is 400 cSt) was used.
 グリセリンとして、ミヨシ油脂株式会社製の化粧品用濃グリセリンを用いた。 As glycerin, concentrated glycerin for cosmetics manufactured by Miyoshi Oil Co., Ltd. was used.
<ポリエーテル>
 水にプロピレンオキシドを付加重合して平均重合度85のポリプロピレングリコールを得た。次いで、該ポリプロピレングリコールにエチレンオキシドを平均重合度25となるように付加重合して、平均分子量約6000の(プロピレンオキシド)85・(エチレンオキシド)25のブロックポリエーテル化合物を得た。
<Polyether>
Addition polymerization of propylene oxide to water gave polypropylene glycol having an average polymerization degree of 85. Subsequently, ethylene oxide was subjected to addition polymerization to the polypropylene glycol so as to have an average polymerization degree of 25 to obtain a block polyether compound of (propylene oxide) 85 · (ethylene oxide) 25 having an average molecular weight of about 6000.
<グリセリン縮合物>
 グリセリン縮合物として、ヘキサグリセリンモノステアリン酸エステル(阪本薬品工業株式会社製、商品名:SYグリスターMS-5S)を用いた。
<Glycerin condensate>
As the glycerin condensate, hexaglycerin monostearate (manufactured by Sakamoto Yakuhin Kogyo Co., Ltd., trade name: SY Glyster MS-5S) was used.
<ポリオキシアルキレンひまし油エーテル>
 ポリオキシアルキレンひまし油エーテルとして、ポリオキシエチレン(20)硬化ひまし油(日光ケミカル株式会社製、商品名:NIKKOL HCO-20)を用いた。
<Polyoxyalkylene castor oil ether>
As the polyoxyalkylene castor oil ether, polyoxyethylene (20) hydrogenated castor oil (trade name: NIKKOL HCO-20, manufactured by Nikko Chemical Co., Ltd.) was used.
[実施例1]
 成分(A)として成分A-1:25質量部、成分(B)として成分B-1:55質量部、成分(C):20質量部、を30℃で混合均一とし、実施例1の繊維加工剤(1)を得た。各成分の配合比率を以下の表1に示す。
[Example 1]
The component A-1: 25 parts by mass as the component (A), the component B-1: 55 parts by mass, and the component (C): 20 parts by mass as the component (B) were mixed uniformly at 30 ° C. A processing agent (1) was obtained. The blending ratio of each component is shown in Table 1 below.
[実施例2~10、比較例1~7]
 成分(A)、成分(B)、成分(C)、その他の成分の配合比率を、以下の表1に示すように変更した他は実施例1と同様にして実施例2~10の繊維加工剤(2)~(10)、及び比較例1~7の繊維加工剤(比較1)~(比較7)を得た。各成分の配合比率を以下の表1に示す。
[Examples 2 to 10, Comparative Examples 1 to 7]
The fiber processing of Examples 2 to 10 was carried out in the same manner as in Example 1 except that the blending ratio of Component (A), Component (B), Component (C), and other components was changed as shown in Table 1 below. Agents (2) to (10) and fiber finishing agents (Comparative 1) to (Comparative 7) of Comparative Examples 1 to 7 were obtained. The blending ratio of each component is shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例11]
 前記不織布(1)に、実施例1の繊維加工剤(1)の3重量%水溶液を、液温20℃に調整し、塗布量が10重量%となるように、ローターダンプニング方式にて上記不織布に塗布し125℃のエアスルードライヤーに通して乾燥させ巻き取った。使用したローターダンプニング装置のローターの直径は80mmであり、各ローターは、CD方向に115mm間隔、塗布する不織布とのローター中心の距離を180mmとなるように配置した。また、ローター回転数を調整し、噴霧される繊維加工剤の噴霧粒子径が35μmとなるようにした。得られた不織布の各種測定結果を以下の表2-1に示す。
[Example 11]
In the nonwoven fabric (1), a 3% by weight aqueous solution of the fiber processing agent (1) of Example 1 is adjusted to a liquid temperature of 20 ° C., so that the coating amount becomes 10% by weight by the rotor dampening method. It applied to the nonwoven fabric, passed through an air-through dryer at 125 ° C., dried and wound up. The rotor dampening apparatus used had a rotor diameter of 80 mm, and the rotors were arranged at intervals of 115 mm in the CD direction so that the distance between the rotor center and the nonwoven fabric to be applied was 180 mm. Further, the rotational speed of the rotor was adjusted so that the sprayed particle diameter of the fiber processing agent to be sprayed was 35 μm. Various measurement results of the obtained nonwoven fabric are shown in Table 2-1.
[実施例12]
 前記不織布(1)に、実施例2の繊維加工剤(2)を、実施例11と同様にして不織布に付与した。得られた不織布の各種測定結果を以下の表2-1に示す。
[Example 12]
The fiber processing agent (2) of Example 2 was applied to the nonwoven fabric (1) in the same manner as in Example 11. Various measurement results of the obtained nonwoven fabric are shown in Table 2-1.
[実施例13]
 前記不織布(1)に、実施例3の繊維加工剤(3)を、実施例11と同様にして不織布に付与した。得られた不織布の各種測定結果を以下の表2-1に示す。
[Example 13]
The fiber processing agent (3) of Example 3 was applied to the nonwoven fabric (1) in the same manner as in Example 11. Various measurement results of the obtained nonwoven fabric are shown in Table 2-1.
[実施例14]
 前記不織布(1)に、実施例2の繊維加工剤(2)の5重量%水溶液を、液温20℃で調整し、塗布量が10重量%となるようにした他は、実施例11と同様にして不織布に付与した。得られた不織布の各種測定結果を以下の表2-1に示す。
[Example 14]
Example 11 is the same as Example 11 except that the nonwoven fabric (1) was adjusted with a 5% by weight aqueous solution of the fiber processing agent (2) of Example 2 at a liquid temperature of 20 ° C. so that the coating amount was 10% by weight. It applied to the nonwoven fabric in the same manner. Various measurement results of the obtained nonwoven fabric are shown in Table 2-1.
[実施例15]
 前記不織布(1)に、実施例4の繊維加工剤(4)の3.4重量%水溶液を、液温20℃に調整し、塗布量が30重量%となるように、斜線柄120メッシュ、セル容積22cm/mのグラビアロールを用いて塗布し、次いで、120℃のシリンダードライヤーに通して乾燥させ巻き取った。得られた不織布の各種測定結果を以下の表2-1に示す。
[Example 15]
To the nonwoven fabric (1), a 3.4 wt% aqueous solution of the fiber processing agent (4) of Example 4 is adjusted to a liquid temperature of 20 ° C. so that the coating amount is 30 wt%. It apply | coated using the gravure roll with a cell volume of 22 cm < 3 > / m < 2 >, Then, it passed through the 120 degreeC cylinder dryer and wound up. Various measurement results of the obtained nonwoven fabric are shown in Table 2-1.
[実施例16]
 前記不織布(1)に、実施例5の繊維加工剤(5)の10重量%水溶液を、液温20℃で調整し、塗布量が10重量%となるようにした他は、実施例11と同様にして不織布に付与した。得られた不織布の各種測定結果を以下の表2-1に示す。
[Example 16]
Example 11 except that the nonwoven fabric (1) was adjusted with a 10% by weight aqueous solution of the fiber processing agent (5) of Example 5 at a liquid temperature of 20 ° C. so that the coating amount was 10% by weight. It applied to the nonwoven fabric in the same manner. Various measurement results of the obtained nonwoven fabric are shown in Table 2-1.
[実施例17]
 前記不織布の製造(1)において、目付を8g/mとなるようにライン速度を調整したこと以外は同様にして不織布を得た。得られた不織布に、不織布の濡れ張力が35~39mN/mとなる様にコロナ処理を行った後、実施例4の繊維加工剤(4)の0.34重量%水溶液を液温20℃で調製した他は、実施例15と同様にして不織布に付与した。得られた不織布の各種測定結果を以下の表2-1に示す。
[Example 17]
In the production of the nonwoven fabric (1), a nonwoven fabric was obtained in the same manner except that the line speed was adjusted so that the basis weight was 8 g / m 2 . The obtained nonwoven fabric was subjected to corona treatment so that the wetting tension of the nonwoven fabric was 35 to 39 mN / m, and then a 0.34% by weight aqueous solution of the fiber processing agent (4) of Example 4 at a liquid temperature of 20 ° C. Other than the preparation, it was applied to the nonwoven fabric in the same manner as in Example 15. Various measurement results of the obtained nonwoven fabric are shown in Table 2-1.
[実施例18]
 前記不織布の製造(1)において、目付を15g/mとなるようにライン速度を調整したこと以外は同様にして不織布を得た。得られた不織布に、実施例4の繊維加工剤(4)の1.67重量%水溶液を液温20℃で調整した他は、実施例15と同様にして不織布に付与した。得られた不織布の各種測定結果を以下の表2-1に示す。
[Example 18]
In the production of the nonwoven fabric (1), a nonwoven fabric was obtained in the same manner except that the line speed was adjusted so that the basis weight was 15 g / m 2 . The obtained nonwoven fabric was applied to the nonwoven fabric in the same manner as in Example 15 except that a 1.67% by weight aqueous solution of the fiber processing agent (4) of Example 4 was adjusted at a liquid temperature of 20 ° C. Various measurement results of the obtained nonwoven fabric are shown in Table 2-1.
[実施例19]
 前記不織布(2)に、実施例4の繊維加工剤(4)の10重量%水溶液を、液温20℃で調整し、塗布量が10重量%となるようにした他は、実施例11と同様にして不織布に付与した。得られた不織布の各種測定結果を以下の表2-1に示す。
[Example 19]
Example 11 except that the nonwoven fabric (2) was adjusted with a 10% by weight aqueous solution of the fiber processing agent (4) of Example 4 at a liquid temperature of 20 ° C. so that the coating amount was 10% by weight. It applied to the nonwoven fabric in the same manner. Various measurement results of the obtained nonwoven fabric are shown in Table 2-1.
[実施例20]
 前記繊維加工剤(6)を用いた他は、実施例19と同様の方法で不織布を作製した。得られた不織布の各種測定結果を以下の表2-1に示す。
[Example 20]
A nonwoven fabric was produced in the same manner as in Example 19 except that the fiber processing agent (6) was used. Various measurement results of the obtained nonwoven fabric are shown in Table 2-1.
[実施例21]
 前記不織布の製造(2)において、目付を18g/mとなるようにライン速度を調整したこと以外は同様にして不織布を得た。得られた不織布に、実施例7の繊維加工剤(7)の1.0重量%水溶液を液温20℃で調整した他は、実施例15と同様にして不織布に付与した。得られた不織布の各種測定結果を以下の表2-1に示す。
[Example 21]
In the production of the nonwoven fabric (2), a nonwoven fabric was obtained in the same manner except that the line speed was adjusted so that the basis weight was 18 g / m 2 . The nonwoven fabric obtained was applied to the nonwoven fabric in the same manner as in Example 15 except that a 1.0% by weight aqueous solution of the fiber processing agent (7) of Example 7 was adjusted at a liquid temperature of 20 ° C. Various measurement results of the obtained nonwoven fabric are shown in Table 2-1.
[実施例22]
 前記不織布の製造(1)において、目付を15g/mとなるようにライン速度を調整したこと以外は同様にして不織布を得た。また、繊維加工剤(8)を用いた他は、実施例21と同様の方法で不織布を作製した。得られた不織布の各種測定結果を以下の表2-1に示す。
[Example 22]
In the production of the nonwoven fabric (1), a nonwoven fabric was obtained in the same manner except that the line speed was adjusted so that the basis weight was 15 g / m 2 . Moreover, the nonwoven fabric was produced by the method similar to Example 21 except having used the fiber processing agent (8). Various measurement results of the obtained nonwoven fabric are shown in Table 2-1.
[実施例23]
 前記不織布(3)に、繊維加工剤(7)の0.67重量%水溶液を液温20℃で調整した他は、実施例15と同様にして不織布に付与した。得られた不織布の各種測定結果を以下の表2-1に示す。
[Example 23]
The nonwoven fabric (3) was applied to the nonwoven fabric in the same manner as in Example 15 except that a 0.67% by weight aqueous solution of the fiber processing agent (7) was adjusted at a liquid temperature of 20 ° C. Various measurement results of the obtained nonwoven fabric are shown in Table 2-1.
[実施例24]
 前記不織布(4)を用いた他は、実施例23と同様にして不織布を作製した。得られた不織布の各種測定結果を以下の表2-1に示す。
[Example 24]
A nonwoven fabric was produced in the same manner as in Example 23 except that the nonwoven fabric (4) was used. Various measurement results of the obtained nonwoven fabric are shown in Table 2-1.
[実施例25]
 前記不織布(5)に繊維加工剤(7)の2重量%水溶液を、液温20℃で調整し、塗布量が10重量%となるようにした他は、実施例11と同様にして不織布を作製した。得られた不織布の各種測定結果を以下の表2-1に示す。
[Example 25]
A non-woven fabric was prepared in the same manner as in Example 11 except that the non-woven fabric (5) was adjusted with a 2% by weight aqueous solution of the fiber processing agent (7) at a liquid temperature of 20 ° C. and the coating amount was 10% by weight. Produced. Various measurement results of the obtained nonwoven fabric are shown in Table 2-1.
[実施例26]
 前記不織布(6)を用いた他は、実施例25と同様にして繊不織布を作製した。得られた不織布の各種測定結果を以下の表2-1に示す。
[Example 26]
A fine nonwoven fabric was produced in the same manner as in Example 25 except that the nonwoven fabric (6) was used. Various measurement results of the obtained nonwoven fabric are shown in Table 2-1.
[実施例27]
 前記不織布(7)に繊維加工剤(4)の10重量%水溶液を、液温20℃で調製し、塗布量が5重量%となるようにした他は、実施例11と同様にして不織布を作製した。得られた不織布の各種測定結果を以下の表2-2に示す。
[Example 27]
A nonwoven fabric was prepared in the same manner as in Example 11 except that a 10% by weight aqueous solution of the fiber processing agent (4) was prepared at a liquid temperature of 20 ° C. to the nonwoven fabric (7) and the coating amount was 5% by weight. Produced. Various measurement results of the obtained nonwoven fabric are shown in Table 2-2 below.
[実施例28]
 前記不織布(8)に繊維加工剤(4)の6重量%水溶液を、液温20℃で調製し、塗布量が5重量%となるようにした他は、実施例11と同様にして不織布を作製した。得られた不織布の各種測定結果を以下の表2-2に示す。
[Example 28]
The nonwoven fabric (8) was prepared in the same manner as in Example 11 except that a 6% by weight aqueous solution of the fiber processing agent (4) was prepared at a liquid temperature of 20 ° C. and the coating amount was 5% by weight. Produced. Various measurement results of the obtained nonwoven fabric are shown in Table 2-2 below.
[実施例29]
 前記不織布(5)に繊維加工剤(4)の0.67重量%水溶液を、液温20℃で調製し、塗布量が30重量%となるようにキスロール(φ400mm)を用いて塗布し、次いで、130℃のシリンダードライヤーに通して乾燥させ巻き取った。得られた不織布の各種測定結果を以下の表2-2に示す。
[Example 29]
A 0.67% by weight aqueous solution of the fiber processing agent (4) is prepared on the nonwoven fabric (5) at a liquid temperature of 20 ° C., and is applied using a kiss roll (φ400 mm) so that the coating amount becomes 30% by weight. And passed through a 130 ° C. cylinder dryer and wound up. Various measurement results of the obtained nonwoven fabric are shown in Table 2-2 below.
[実施例30]
 前記不織布(1)に、繊維加工剤(9)の5重量%水溶液を、液温20℃で調製し、塗布量が10重量%となるようにした他は、実施例11と同様にして不織布を作製した。得られた不織布の各種測定結果を以下の表2-2に示す。
[Example 30]
The nonwoven fabric (1) was prepared in the same manner as in Example 11 except that a 5% by weight aqueous solution of the fiber processing agent (9) was prepared at a liquid temperature of 20 ° C. and the coating amount was 10% by weight. Was made. Various measurement results of the obtained nonwoven fabric are shown in Table 2-2 below.
[実施例31]
 前記不織布(1)に、実施例10の繊維加工剤(10)の3重量%水溶液を、液温20℃で調製し、塗布量が10重量%となるようにした他は、実施例11と同様にして不織布を作製した。得られた不織布の各種測定結果を以下の表2-2に示す。
[Example 31]
The nonwoven fabric (1) was prepared in Example 11 except that a 3% by weight aqueous solution of the fiber processing agent (10) of Example 10 was prepared at a liquid temperature of 20 ° C. and the coating amount was 10% by weight. A nonwoven fabric was produced in the same manner. Various measurement results of the obtained nonwoven fabric are shown in Table 2-2 below.
[比較例11]
 前記不織布(1)に、比較例1の繊維加工剤(比較(1))を、実施例14と同様にして不織布に付与した。得られた不織布の各種測定結果を以下の表2-2に示す。
[Comparative Example 11]
To the nonwoven fabric (1), the fiber processing agent of Comparative Example 1 (Comparative (1)) was applied to the nonwoven fabric in the same manner as in Example 14. Various measurement results of the obtained nonwoven fabric are shown in Table 2-2 below.
[比較例12]
 比較例2の繊維加工剤(比較(2))を用いた他は、比較例11と同様にして不織布を得た。得られた不織布の各種測定結果を以下の表2-2に示す。
[Comparative Example 12]
A nonwoven fabric was obtained in the same manner as in Comparative Example 11 except that the fiber processing agent of Comparative Example 2 (Comparative (2)) was used. Various measurement results of the obtained nonwoven fabric are shown in Table 2-2 below.
[比較例13]
 比較例3の繊維加工剤(比較(3))を用いた他は、比較例11と同様にして不織布を得た。得られた不織布の各種測定結果を以下の表2-2に示す。
[Comparative Example 13]
A nonwoven fabric was obtained in the same manner as in Comparative Example 11 except that the fiber processing agent of Comparative Example 3 (Comparative (3)) was used. Various measurement results of the obtained nonwoven fabric are shown in Table 2-2 below.
[比較例14]
 前記不織布(1)に、比較例4の繊維加工剤(比較(4))1.67重量%水溶液を、液温20℃で調製した他は、実施例15と同様にして不織布に付与した。得られた不織布の各種測定結果を以下の表2-2に示す。
[Comparative Example 14]
The nonwoven fabric (1) was applied to the nonwoven fabric in the same manner as in Example 15 except that the 1.67% by weight aqueous solution of the fiber processing agent of Comparative Example 4 (Comparative (4)) was prepared at a liquid temperature of 20 ° C. Various measurement results of the obtained nonwoven fabric are shown in Table 2-2 below.
[比較例15]
 前記不織布(1)に、比較例5の繊維加工剤(比較(5))1.0重量%水溶液を、液温20℃で調製した他は、実施例15と同様にして不織布に付与した。得られた不織布の各種測定結果を以下の表2-2に示す。
[Comparative Example 15]
The nonwoven fabric (1) was applied to the nonwoven fabric in the same manner as in Example 15 except that the 1.0% by weight aqueous fiber processing agent (Comparative (5)) solution of Comparative Example 5 was prepared at a liquid temperature of 20 ° C. Various measurement results of the obtained nonwoven fabric are shown in Table 2-2 below.
[比較例16]
 前記不織布(1)に、比較例6の繊維加工剤(比較(6))1.67重量%水溶液を、液温20℃で調製した他は、実施例15と同様にして不織布に付与した。得られた不織布の各種測定結果を以下の表2-2に示す。
[Comparative Example 16]
The nonwoven fabric (1) was applied to the nonwoven fabric in the same manner as in Example 15 except that the 1.67% by weight aqueous solution of the fiber processing agent of Comparative Example 6 (Comparative (6)) was prepared at a liquid temperature of 20 ° C. Various measurement results of the obtained nonwoven fabric are shown in Table 2-2 below.
[比較例17]
 比較例7の繊維加工剤(比較(7))を用いた他は、実施例11と同様にして不織布を作製した。得られた不織布の各種測定結果を以下の表2-2に示す。
[Comparative Example 17]
A nonwoven fabric was produced in the same manner as in Example 11 except that the fiber processing agent of Comparative Example 7 (Comparative (7)) was used. Various measurement results of the obtained nonwoven fabric are shown in Table 2-2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明に係る繊維加工剤を塗布した不織布は、初期透水性、濡れ戻り性、及び繰り返し透水性に優れるため、衛生材料、例えば、生理用ナプキン、失禁パット、使い捨ておむつ等のトップシートやセカンドシートとして好適に利用可能であり、あるいは、例えば、マスク、カイロ、テープ基材、貼布薬基材、緊急絆創膏、包装材、ワイプ製品、医療用ガウン、包帯、衣料、スキンケア用シートなどにも好適に利用可能である。 The nonwoven fabric coated with the fiber processing agent according to the present invention is excellent in initial water permeability, wettability, and repeated water permeability. Therefore, sanitary materials such as sanitary napkins, incontinence pads, disposable diapers and other top sheets and second sheets are used. For example, or suitable for masks, body warmers, tape base materials, patch base materials, emergency bandages, packaging materials, wipe products, medical gowns, bandages, clothing, skin care sheets, etc. Is available.

Claims (9)

  1.  下記一般式(1):
       HO-(AO)-H …一般式(1)
    {式中、Aは、炭素数2~4のアルキレン基であり、そしてpは、1~3の整数である。}で表される成分(A);及び
     該成分(A)とは異なる下記一般式(2):
       R-O-(AO)-{C(O)RC(O)-(AO)-R …一般式(2)
    {式中、RとRは、互いに独立に、水素原子、炭素数1~24のアルキル基、炭素数2~24のアルケニル基、炭素数2~24のアルカノイル基、炭素数2~24のアルケノイル基又は-C(O)-R-COOX(ここで、Rは、炭素数1~12のアルキレン基、炭素数2~12のアルケニレン基又は炭素数6~12のアリーレン基であり、そしてXは、水素原子又はアニオンである。)であり、Rは、炭素数1~12のアルキレン基、炭素数2~12のアルケニレン基又は炭素数6~12のアリーレン基であり、AとAは、互いに独立に、炭素数2~4のアルキレン基であり、lは、0又は1~1000の整数であり、mは、0又は1~1000の整数であり、そしてnは、0又は1~100の整数である。但し、l+nは1以上である。}で表される成分(B);
    を含有する繊維加工剤。
    The following general formula (1):
    HO— (A 1 O) p —H: General formula (1)
    {In the formula, A 1 is an alkylene group having 2 to 4 carbon atoms, and p is an integer of 1 to 3. } (A); and the following general formula (2) different from the component (A):
    R 1 —O— (A 2 O) 1 — {C (O) R 2 C (O) — (A 3 O) m } n —R 3 ... General formula (2)
    {In the formula, R 1 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 24 carbon atoms, an alkenyl group having 2 to 24 carbon atoms, an alkanoyl group having 2 to 24 carbon atoms, or 2 to 24 carbon atoms. An alkenoyl group or —C (O) —R 4 —COOX (wherein R 4 is an alkylene group having 1 to 12 carbon atoms, an alkenylene group having 2 to 12 carbon atoms, or an arylene group having 6 to 12 carbon atoms) And X is a hydrogen atom or an anion), and R 2 is an alkylene group having 1 to 12 carbon atoms, an alkenylene group having 2 to 12 carbon atoms, or an arylene group having 6 to 12 carbon atoms; 2 and A 3 are each independently an alkylene group having 2 to 4 carbon atoms, 1 is an integer of 0 or 1 to 1000, m is an integer of 0 or 1 to 1000, and n is , 0 or an integer from 1 to 100. However, l + n is 1 or more. } The component (B) represented by;
    A fiber processing agent containing
  2.  成分(C)としてポリエーテル変性シリコーンをさらに含有する、請求項1に記載の繊維加工剤。 The fiber processing agent according to claim 1, further comprising a polyether-modified silicone as a component (C).
  3.  請求項1又は2に記載の繊維加工剤の純分付着量が0.1~1.5重量%である液透過性不織布。 A liquid-permeable non-woven fabric, wherein the amount of the fiber processing agent according to claim 1 or 2 is 0.1 to 1.5% by weight.
  4.  前記液透過性不織布が、熱可塑性繊維から構成される不織布である、請求項3に記載の液透過性不織布。 The liquid-permeable nonwoven fabric according to claim 3, wherein the liquid-permeable nonwoven fabric is a nonwoven fabric composed of thermoplastic fibers.
  5.  前記不織布が、繊度0.45~5.0dtexの繊維で構成されたものである、請求項3又は4に記載の液透過性不織布。 The liquid-permeable nonwoven fabric according to claim 3 or 4, wherein the nonwoven fabric is composed of fibers having a fineness of 0.45 to 5.0 dtex.
  6.  前記不織布が、長繊維不織布である、請求項3~5のいずれか1項に記載の液透過性不織布。 The liquid-permeable nonwoven fabric according to any one of claims 3 to 5, wherein the nonwoven fabric is a long-fiber nonwoven fabric.
  7.  前記液透過性不織布の繰返し透水性が、4回目で70%以上である、請求項3~6のいずれか1項に記載の液透過性不織布。 The liquid-permeable nonwoven fabric according to any one of claims 3 to 6, wherein the liquid-permeable nonwoven fabric has a repeated water permeability of 70% or more at the fourth time.
  8.  前記液透過性不織布の濡れ戻り性が、0.5g以下である、請求項3~7のいずれか1項に記載の液透過性不織布。 The liquid-permeable nonwoven fabric according to any one of claims 3 to 7, wherein the liquid-permeable nonwoven fabric has a wet-back property of 0.5 g or less.
  9.  請求項3~8のいずれか1項に記載の液透過性不織布を用いてなる衛生材料。 A sanitary material using the liquid-permeable nonwoven fabric according to any one of claims 3 to 8.
PCT/JP2017/036869 2016-10-13 2017-10-11 Fiber processing agent and liquid permeable nonwoven fabric containing same WO2018070443A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780063373.5A CN109844214B (en) 2016-10-13 2017-10-11 Fiber processing agent and liquid-permeable nonwoven fabric containing same
JP2018545033A JP7146641B2 (en) 2016-10-13 2017-10-11 Textile processing agent and liquid-permeable nonwoven fabric containing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-202114 2016-10-13
JP2016202114 2016-10-13

Publications (1)

Publication Number Publication Date
WO2018070443A1 true WO2018070443A1 (en) 2018-04-19

Family

ID=61905494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036869 WO2018070443A1 (en) 2016-10-13 2017-10-11 Fiber processing agent and liquid permeable nonwoven fabric containing same

Country Status (4)

Country Link
JP (3) JP7146641B2 (en)
CN (1) CN109844214B (en)
TW (1) TWI651448B (en)
WO (1) WO2018070443A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021251402A1 (en) * 2020-06-11 2021-12-16 松本油脂製薬株式会社 Water permeability imparting agent and use thereof
WO2023149286A1 (en) * 2022-02-01 2023-08-10 旭化成株式会社 Nonwoven-fabric processing agent and nonwoven fabric containing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020161347A1 (en) * 2001-02-15 2002-10-31 Arie Besemer Absorbent article
JP2003049360A (en) * 2001-05-28 2003-02-21 Chisso Corp Hot-melting type conjugated fiber and fiber product using the same
JP2008038277A (en) * 2006-08-04 2008-02-21 Asahi Kasei Fibers Corp Polyolefin-based filament nonwoven fabric for sanitary material
JP2010526629A (en) * 2007-05-15 2010-08-05 ザ プロクター アンド ギャンブル カンパニー Use of a lotion composition on absorbent articles to reduce skin excretion or menstrual adherence
JP2016041858A (en) * 2014-08-15 2016-03-31 旭化成せんい株式会社 Bulky conjugate filament nonwoven fabric

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5607760A (en) * 1995-08-03 1997-03-04 The Procter & Gamble Company Disposable absorbent article having a lotioned topsheet containing an emollient and a polyol polyester immobilizing agent
JP3313280B2 (en) * 1996-05-08 2002-08-12 旭化成株式会社 Hydrophilicity improver for polyolefin fibers
JP3362348B2 (en) * 1996-05-15 2003-01-07 旭化成株式会社 Polyolefin nonwoven fabric for sanitary materials
JP3340624B2 (en) * 1996-06-24 2002-11-05 旭化成株式会社 Hygienic materials with excellent water permeability
JP3313284B2 (en) * 1996-08-02 2002-08-12 旭化成株式会社 Polyolefin-based nonwoven fabric with hydrophilic treatment agent
JP5650991B2 (en) * 2010-11-09 2015-01-07 松本油脂製薬株式会社 Water permeability imparting agent, water permeable fiber to which it is attached, and method for producing nonwoven fabric
IN2014KN00864A (en) * 2011-11-02 2015-10-02 Asahi Kasei Fibers Corp
JP5213291B1 (en) * 2012-09-28 2013-06-19 竹本油脂株式会社 Synthetic fiber treatment agent, synthetic fiber treatment aqueous solution, synthetic fiber treatment method and synthetic fiber
CN104540990B (en) * 2013-04-19 2016-08-24 花王株式会社 Non-woven fabrics and fibre finish
JP6360399B2 (en) * 2013-12-12 2018-07-18 花王株式会社 Long fiber nonwoven fabric

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020161347A1 (en) * 2001-02-15 2002-10-31 Arie Besemer Absorbent article
JP2003049360A (en) * 2001-05-28 2003-02-21 Chisso Corp Hot-melting type conjugated fiber and fiber product using the same
JP2008038277A (en) * 2006-08-04 2008-02-21 Asahi Kasei Fibers Corp Polyolefin-based filament nonwoven fabric for sanitary material
JP2010526629A (en) * 2007-05-15 2010-08-05 ザ プロクター アンド ギャンブル カンパニー Use of a lotion composition on absorbent articles to reduce skin excretion or menstrual adherence
JP2016041858A (en) * 2014-08-15 2016-03-31 旭化成せんい株式会社 Bulky conjugate filament nonwoven fabric

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021251402A1 (en) * 2020-06-11 2021-12-16 松本油脂製薬株式会社 Water permeability imparting agent and use thereof
JP6994612B1 (en) * 2020-06-11 2022-01-14 松本油脂製薬株式会社 Permeability enhancer and its use
CN115698420A (en) * 2020-06-11 2023-02-03 松本油脂制药株式会社 Water permeability-imparting agent and use thereof
WO2023149286A1 (en) * 2022-02-01 2023-08-10 旭化成株式会社 Nonwoven-fabric processing agent and nonwoven fabric containing same

Also Published As

Publication number Publication date
JP2020190067A (en) 2020-11-26
TWI651448B (en) 2019-02-21
JPWO2018070443A1 (en) 2019-06-24
JP7146641B2 (en) 2022-10-04
JP7140803B2 (en) 2022-09-21
TW201816225A (en) 2018-05-01
CN109844214B (en) 2022-09-16
CN109844214A (en) 2019-06-04
JP2022173264A (en) 2022-11-18

Similar Documents

Publication Publication Date Title
US5573719A (en) Process of making highly absorbent nonwoven fabric
TWI535903B (en) Permeable nonwovens
JP2022173264A (en) Fiber processing agent and liquid permeable nonwoven fabric containing same
TWI811210B (en) Nonwoven cellulose fiber fabric, method and device for manufacturing the same, method of using the same, and product comprising the same
CN106062449B (en) Check valve non-woven material
TWI762608B (en) Nonwoven cellulose fiber fabric, method and device for producing the same, method for using the same, and product or composite comprising the same
JP6605833B2 (en) Non-woven fabric manufacturing agent and its use
TW201900962A (en) Non-woven cellulose fabric with fiber diameter distribution
CN107075790A (en) Fibre finish, it is attached with the water penetration fiber of the fibre finish and the manufacture method of non-woven fabrics
TWI782967B (en) Nonwoven cellulose fiber fabric with fibers, method and device for manufacturing the same, method of using the same, and product comprising the same
JP2020007697A (en) Hydrophilic bulky nonwoven fabric
JP6960231B2 (en) Hydrophilic non-woven fabric
JP2011084824A (en) Hydrophilizing agent for fiber and fiber containing the same
DE10034232A1 (en) Hydrophilic fiber for textiles contains a treatment agent comprising polyglycerin fatty acid ester, polyoxyalkylene modified silicone, alkyl imidazolium alkyl sulfate, alkylene oxide adduct of alkanoyl amide and polyetherester
WO2023149286A1 (en) Nonwoven-fabric processing agent and nonwoven fabric containing same
JP6092578B2 (en) Weakly acid permeable nonwoven fabric
CN114207210B (en) Fiber treating agent for nonwoven fabric
CN116829782A (en) Hydrophilic agent for fibers and nonwoven fabric
WO2022239838A1 (en) Nonwoven fabric for sanitary materials, base material for sap sheets, and sap sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17860150

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018545033

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17860150

Country of ref document: EP

Kind code of ref document: A1