JP2020007697A - Hydrophilic bulky nonwoven fabric - Google Patents

Hydrophilic bulky nonwoven fabric Download PDF

Info

Publication number
JP2020007697A
JP2020007697A JP2019183146A JP2019183146A JP2020007697A JP 2020007697 A JP2020007697 A JP 2020007697A JP 2019183146 A JP2019183146 A JP 2019183146A JP 2019183146 A JP2019183146 A JP 2019183146A JP 2020007697 A JP2020007697 A JP 2020007697A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
fiber
water
less
index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019183146A
Other languages
Japanese (ja)
Other versions
JP6778308B2 (en
Inventor
早織 田中
Saori Tanaka
早織 田中
矢放 正広
Masahiro Yaho
正広 矢放
一哉 税所
Kazuya Zeisho
一哉 税所
一史 加藤
Kazufumi Kato
一史 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59686648&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2020007697(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Publication of JP2020007697A publication Critical patent/JP2020007697A/en
Application granted granted Critical
Publication of JP6778308B2 publication Critical patent/JP6778308B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/51Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
    • A61F13/511Topsheet, i.e. the permeable cover or layer facing the skin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding

Abstract

To provide a hydrophilic bulky nonwoven fabric that is excellent in water permeability and suitable for a surface material of a sanitary material, such as a top sheet of a diaper.SOLUTION: The hydrophilic bulky nonwoven fabric is a hydrophilic bulky nonwoven fabric comprising a thermoplastic fiber and has a nonwoven fabric surface structure in which a ratio of sections where a maximum height in a unit section defined by an X direction and a Y direction is 30% or more with respect to a height at no-load in a Z direction (thickness) of the nonwoven fabric when a measurement reference length in a surface of the nonwoven fabric is set as 100 μm is 50% or more per 40000 of the number of sections corresponding to a 20 mm×20 mm of a surface area of the nonwoven fabric. The nonwoven fabric has a 25 mm or less of a water-permeable flow length value at 54 degrees inclination and has a 85% or more of a fourth-time water permeability durability index.SELECTED DRAWING: None

Description

本発明は、特に衛生材料などの表面素材として用いた場合に、尿や体液などがよどみなく吸収される親水性嵩高不織布に関する。   The present invention relates to a hydrophilic bulky nonwoven fabric, particularly when used as a surface material such as a sanitary material, in which urine and body fluids are absorbed without stagnation.

近年、使い捨ておむつの普及はめざましく、要求される品質や性能は向上してきている。おむつのトップシートとして使用される不織布には、体液を通過し、さらに通過させた体液をすばやく吸収体へ移行する性能(透水性)が求められる。透水性を必要とするトップシートの素材として一般的に用いられる素材は、疎水性のポリオレフィン系の不織布であり、透水剤として界面活性剤を塗布することで、透水性を付与させている。   In recent years, disposable diapers have become remarkably popular, and required quality and performance have been improved. The nonwoven fabric used as the top sheet of the diaper is required to have a performance (water permeability) that allows the body fluid to pass therethrough and the body fluid that has passed through the nonwoven fabric to be quickly transferred to the absorber. A material generally used as a material of a top sheet requiring water permeability is a hydrophobic polyolefin-based nonwoven fabric, and a surfactant is applied as a water-permeable agent to impart water permeability.

これまで透水性の改善には、例えば、以下の特許文献1では、透水剤を改良する手法が多く採用され、透水性の向上が計られている。透水性が向上するということはより活性能が高い界面活性剤を選択せざるを得ないので、衛生材料の表面素材として用いた場合に、接触する肌面のかぶれやしっしんを引き起こしやすくなり、肌への刺激性の点からは好ましくない。   Until now, in order to improve water permeability, for example, in Patent Literature 1 below, many techniques for improving a water-permeable agent have been adopted, and improvement in water permeability has been attempted. Improving water permeability means that it is necessary to select a surfactant with a higher activity, so when used as a surface material for sanitary materials, it tends to cause rash and eczema on the contacting skin surface, It is not preferable from the viewpoint of irritation to the skin.

他方、以下の特許文献2では、不織布に賦型加工を施し、不織布表面の構造を凹凸構造にすることで、肌への接触面積を減らし、且つ透水性の指標である濡れ戻り性能及び耐久透水性能を改善している。しかしながら、凹凸構造を付与するには、特殊エンボスなどによる加工が必要となるため、製造コストが高くなり、生産性も高くない。また、ロール間を通して型付けすることにより厚みが薄くなる部分が発生し、得られる透水性の向上効果も劇的なものではない。   On the other hand, in Patent Document 2 below, a nonwoven fabric is subjected to a shaping process to make the surface of the nonwoven fabric an uneven structure, so that the contact area with the skin is reduced, and wetting return performance and durable water permeability, which are indicators of water permeability. Performance has been improved. However, in order to provide a concavo-convex structure, processing by special embossing or the like is required, so that the manufacturing cost is increased and the productivity is not high. In addition, a portion having a reduced thickness is generated by molding between the rolls, and the effect of improving the obtained water permeability is not dramatic.

また、以下の特許文献3では、不織布に凹凸加工を施し、体液の引き込みを改良している。しかしながら、この手法では肌に湿った感触を与える懸念がある。フラット形状の不織布をおむつや生理用品などの表面シートとして用いた場合、表面シート下部に位置する吸収体であるパルプと高分子吸収体の混合物に不織布全面が接触する。おむつや生理用品着用時は表面シート及び吸収体に使用者の体重がかかり、表面シートである不織布と吸収体がより密接に接触するため、不織布表面に付着した体液は速やかに吸収体へと移行することができるが、特許文献3のような凹凸形状であり、凸部の内部が空洞である不織布を表面シートとして用いた場合、不織布の凸部と吸収体は接触していない状態となる。そのため、不織布表面に体液が付着した場合、体液が吸収体へ速やかに移行することは難しい。更に凸部に付着した体液は表面張力により不織布内部へ保持されたままであるため、肌に湿った感触を与えかねない。さらに、排尿した際、フラット形状の不織布であれば不織布表面全体で尿を処理するが、凹凸形状の不織布の場合、尿は流れやすい凹部に集中する。つまり凸部よりも凹部に流れる尿の量が多くなり、凹部に付着している透水剤が尿によって洗い流されてしまう。凹部の透水剤が尿によって洗い流されてしまうと、尿は凹部に留まるため着用者に湿った感触を与える可能性がある。また、時間経過と共に凹部に留まった尿が蒸発し、肌面のかぶれやしっしんを引き起こす懸念がある。   Further, in Patent Literature 3 below, unevenness is applied to a nonwoven fabric to improve the withdrawal of bodily fluids. However, there is a concern that this technique gives the skin a damp feel. When a flat nonwoven fabric is used as a topsheet for diapers and sanitary products, the entire nonwoven fabric comes into contact with a mixture of pulp, which is an absorber, and a polymer absorber located below the topsheet. When wearing a diaper or sanitary product, the weight of the user is applied to the topsheet and the absorbent body, and the nonwoven fabric, which is the topsheet, comes into more close contact with the absorbent body. However, when a nonwoven fabric having a concave and convex shape as in Patent Document 3 and having a hollow inside the convex portion is used as a topsheet, the convex portion of the nonwoven fabric and the absorber are not in contact with each other. Therefore, when bodily fluids adhere to the surface of the nonwoven fabric, it is difficult for the bodily fluids to quickly transfer to the absorber. Further, the bodily fluid attached to the protruding portion remains held inside the non-woven fabric due to surface tension, and may give a damp feel to the skin. Furthermore, when urinating, if the non-woven fabric has a flat shape, urine is treated on the entire surface of the non-woven fabric. That is, the amount of urine flowing into the concave portion becomes larger than the convex portion, and the water-permeable agent attached to the concave portion is washed away by the urine. If the water-permeable agent in the recess is washed away by the urine, the urine stays in the recess and may give a wet feeling to the wearer. Further, there is a concern that urine remaining in the concave portion evaporates with the passage of time, causing rash and eczema on the skin surface.

特開平10−53955号公報JP-A-10-53555 特開2004−113489号公報JP-A-2004-113489 国際公開第2012−086730号公報International Publication No. 2012-086730

以上に鑑み、本発明が解決しようとする課題は、透水性に優れ、おむつのトップシートなどの衛生材料の表面素材に適した親水性嵩高不織布を提供することである。   In view of the above, an object of the present invention is to provide a hydrophilic bulky nonwoven fabric which is excellent in water permeability and suitable for a surface material of a sanitary material such as a diaper top sheet.

前述の通り、優れた透水性能を発現させるには透水剤として付与する界面活性剤の設計と不織布表面構造が重要となる。特に不織布表面を微細な凹凸のある粗い構造とすることで、尿や汗等の体液が不織布表面に付着した際、表面構造が粗くなる程、体液と不織布表面との接触角が低くなり、体液が不織布内部へと引き込まれやすくなる。本発明者らは不織布表面の微細構造に着目し、長繊維不織布の繊維の捲縮数、ボンディング方法、透水付与方法を鋭意検討し実験を重ねた結果、適切な範囲に繊維が配置された不織布を開発することで、透水性の指標となる透水45度傾斜流長値と耐久透水指数を向上させることに成功し、本発明を完成するに至ったものである。   As described above, the design of the surfactant to be provided as a water-permeable agent and the surface structure of the nonwoven fabric are important for achieving excellent water-permeability. In particular, by making the surface of the nonwoven fabric a rough structure with fine irregularities, when body fluids such as urine and sweat adhere to the surface of the nonwoven fabric, the rougher the surface structure, the lower the contact angle between the body fluid and the surface of the nonwoven fabric, Is easily drawn into the nonwoven fabric. The present inventors focused on the microstructure of the surface of the nonwoven fabric, studied the number of crimps of the fibers of the long-fiber nonwoven fabric, the bonding method, and the method of imparting water permeability, and as a result of repeated experiments, the nonwoven fabric with the fibers arranged in an appropriate range Has succeeded in improving the 45 ° inclined flow length value and the durable water permeability index, which are indicators of water permeability, and have completed the present invention.

すなわち、本発明は下記の通りのものである。
[1]捲縮数が5〜45個/2.54cm(インチ)である熱可塑性繊維からなる親水性嵩高不織布であって、該不織布表面における測定基準長さを100μmとしたときのX方向Y方向により規定する単位区画内での最大高さが、該不織布のZ方向無荷重時の高さ(厚み)に対し30%以上である区画の比率が、該不織布表面積20mm×20mmに相当する区画数40000当たり50%以上である不織布表面構造を有し、該不織布の透水45度傾斜流長値が25mm以下であり、かつ、4回目耐久透水指数が85%以上であることを特徴とする前記親水性嵩高不織布。
[2]前記親水性嵩高不織布のX線CTでの厚み方向の配向指数が0.43以下である、前記[1]に記載の親水性嵩高不織布。
[3]前記親水性嵩高不織布の圧縮仕事量が0.20gf・cm/cm以上1.00gf・cm/cm以下である、前記[1]又は[2]に記載の親水性嵩高不織布。
]前記熱可塑性繊維がサイドバイサイド型又は偏芯鞘芯型の複合繊維である、前記[1]〜[]のいずれかに記載の親水性嵩高不織布。
]前記熱可塑性繊維がポリオレフィン系繊維である、前記[1]〜[]のいずれかに記載の親水性嵩高不織布。
]前記[1]〜[]のいずれかに記載の親水性嵩高不織布を用いてなる衛生材料。
That is, the present invention is as follows.
[1] A hydrophilic bulky nonwoven fabric composed of thermoplastic long fibers having a number of crimps of 5 to 45 pieces / 2.54 cm (inch), in the X direction when the measurement reference length on the surface of the nonwoven fabric is 100 μm The proportion of the section in which the maximum height in the unit section defined by the Y direction is 30% or more with respect to the height (thickness) of the nonwoven fabric in the Z direction at no load corresponds to the nonwoven fabric surface area of 20 mm × 20 mm. The nonwoven fabric has a surface structure of 50% or more per 40,000 sections, the nonwoven fabric has a 45 ° water permeation inclined flow length value of 25 mm or less, and has a fourth durability water permeability index of 85% or more. The hydrophilic bulky nonwoven fabric.
[2] The hydrophilic bulky nonwoven fabric according to the above [1], wherein the hydrophilic bulky nonwoven fabric has an orientation index in a thickness direction by X-ray CT of 0.43 or less.
[3] The hydrophilic bulky nonwoven fabric according to [1] or [2], wherein the hydrophilic bulky nonwoven fabric has a compression work amount of 0.20 gf · cm / cm 2 or more and 1.00 gf · cm / cm 2 or less.
[ 4 ] The hydrophilic bulky nonwoven fabric according to any of [1] to [ 3 ], wherein the thermoplastic fiber is a side-by-side type or an eccentric sheath-core type composite fiber.
[ 5 ] The hydrophilic bulky nonwoven fabric according to any one of [1] to [ 4 ], wherein the thermoplastic fiber is a polyolefin-based fiber.
[ 7 ] A sanitary material comprising the hydrophilic bulky nonwoven fabric according to any one of [1] to [ 5 ].

本発明の親水性嵩高不織布は優れた透水性を有するため、衛生材料、例えば、生理用ナプキン、失禁パット、使い捨ておむつ等の表面のトップシートとして好適に使用することができ、さらには、例えば、マスク、カイロ、テープ基布、貼布薬基布、救急絆基布、包装材、ワイプ製品、医療用ガウン、包帯、衣料、スキンケア用シートなどにも使用することができる。   Because the hydrophilic bulky nonwoven fabric of the present invention has excellent water permeability, sanitary materials, for example, sanitary napkins, incontinence pads, can be suitably used as a top sheet on the surface of disposable diapers, and further, for example, It can also be used for masks, warmers, tape bases, patch bases, first aid bases, packaging materials, wipe products, medical gowns, bandages, clothing, skin care sheets, and the like.

不織布表面における単位区画内の最大高さ(μm)の測定を説明するための図面である。It is a drawing for explaining measurement of the maximum height (μm) in a unit section on the surface of a nonwoven fabric.

以下、本発明の実施形態について詳述する。
本実施形態の不織布は熱可塑性繊維から成り、スパンボンド法により製造された長繊維不織布、カード法などで製造された短繊維不織布でもよい。しかしながら、短繊維不織布の場合、カーディング時に繊維がX方向またはY方向にひき揃えられ、表面が平滑になりやすいこと、強度、生産性の観点、肌への刺激低減などの観点から、ウェブを構成する繊維としては、スパンボンド法により製造された長繊維が好ましい。本願明細書中、長繊維とは、繊維長が55mm以上のものという。繊維長が短いほど、繊維の端部分が肌に触れる確立が増えるため、ちくちくした触感を与えることから、繊維長は55mm以上が好ましい。
Hereinafter, embodiments of the present invention will be described in detail.
The nonwoven fabric of this embodiment is made of a thermoplastic fiber, and may be a long-fiber nonwoven fabric manufactured by a spunbond method or a short-fiber nonwoven fabric manufactured by a card method or the like. However, in the case of short-fiber nonwoven fabric, the fibers are aligned in the X direction or the Y direction during carding, and the surface is easily smoothed. From the viewpoint of strength, productivity, reduction of skin irritation, etc. As a constituent fiber, a long fiber manufactured by a spun bond method is preferable. In the present specification, a long fiber is a fiber having a fiber length of 55 mm or more. The shorter the fiber length, the more likely it is that the end portion of the fiber touches the skin. Therefore, the fiber length is preferably 55 mm or more because it gives a tactile feel.

熱可塑性繊維を構成する熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、共重合ポリプロピレンなどのポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、共重合ポリエステルなどのポリエステル系樹脂、ナイロン−6、ナイロン−66、共重合ナイロンなどのポリアミド系樹脂、及び、ポリ乳酸、ポリブチレンサクシネート、ポリエチレンサクシネートなどの生分解性樹脂が挙げられ、特に限定はされない。不織布の風合いの観点、使用される用途の多くが使い捨て材料であることから、汎用、回収の利便性の観点からは、ポリオレフィン系樹脂が好ましい。   Examples of the thermoplastic resin constituting the thermoplastic fibers include, for example, polyethylene, polypropylene, polyolefin resins such as copolymerized polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyester resins such as copolyester, and nylon-6. And polyamide-based resins such as nylon-66 and copolymerized nylon, and biodegradable resins such as polylactic acid, polybutylene succinate and polyethylene succinate, and are not particularly limited. Polyolefin-based resins are preferred from the viewpoints of general use and the convenience of recovery since many uses are disposable materials from the viewpoint of the feeling of the nonwoven fabric and many uses.

熱可塑性繊維の形態としては、不織布の表面構造に特徴を付与させる観点から、繊維が捲縮していることが好ましい。捲縮数は、5個/2.54cm(インチ)以上が好ましく、より好ましくは5個/インチ以上45個/インチ以下、更に好ましくは10個/インチ以上40個/インチ以下、特に好ましくは10個/インチ以上25個/インチ以下である。捲縮数が45個/インチを超える繊維で構成された不織布では、繊維の捲縮による縮みや斑が目立ち、不織布の見栄えが悪くなってしまう他、斑により濡れ戻り指数が悪くなる。また、捲縮数が5個/インチ未満の繊維で構成された不織布では所望する表面粗さが得られない上に、厚みが薄くなり、風合いが損なわれたり、所望する透水性が得られにくくなる。   The form of the thermoplastic fiber is preferably crimped from the viewpoint of imparting characteristics to the surface structure of the nonwoven fabric. The number of crimps is preferably 5 pieces / 2.54 cm (inch) or more, more preferably 5 pieces / inch to 45 pieces / inch, still more preferably 10 pieces / inch to 40 pieces / inch, and particularly preferably 10 pieces / inch to 40 pieces / inch. Pcs / inch to 25 pcs / inch. In a nonwoven fabric composed of fibers having a number of crimps exceeding 45 pieces / inch, shrinkage and spots due to fiber crimping are conspicuous, the appearance of the nonwoven fabric is deteriorated, and the wetting return index is deteriorated due to spots. In addition, a nonwoven fabric composed of fibers having a number of crimps of less than 5 pieces / inch cannot obtain a desired surface roughness, and has a reduced thickness, impairs a texture, or hardly obtains a desired water permeability. Become.

前記繊維に捲縮を付与させる手段としては、繊維断面を異形断面形状とし紡糸冷却時に偏冷却させることで捲縮を付与することができる。また、熱可塑性樹脂2種類以上から構成させた複合繊維でも捲縮を発現させることが可能であり、その構成をサイドバイサイド型(S/S)、偏芯鞘芯型(偏S/C)などにすることで、更に、容易に捲縮を発現することが可能である。偏芯鞘芯型(偏S/C)の場合、芯部は繊維表面に出てもよく、芯部が繊維表面を占める割合は面積率が0〜50%が好ましく、より好ましくは0〜30%である。繊維表面の芯部の占める比率が50%を超えるほど高くなると、不織布としての接合時の接着に影響し、布強度が低下しやすく毛羽立ちも発生しやすい。   As means for imparting crimp to the fiber, crimp can be imparted by making the fiber cross section into an irregular cross-sectional shape and performing partial cooling during spinning cooling. Further, it is possible to exhibit crimp even in a conjugate fiber composed of two or more kinds of thermoplastic resins, and the constitution is changed to a side-by-side type (S / S), an eccentric sheath-core type (eccentric S / C), or the like. By doing so, crimps can be more easily developed. In the case of the eccentric sheath-core type (unbalanced S / C), the core may be exposed on the fiber surface, and the ratio of the core to the fiber surface is preferably 0 to 50%, more preferably 0 to 30%. %. When the ratio of the core portion of the fiber surface to the core portion is higher than 50%, the adhesion at the time of bonding as a nonwoven fabric is affected, and the fabric strength is easily reduced and fluff is likely to occur.

偏芯鞘芯型(偏S/C)の場合、所望する捲縮数を得る為に芯部の断面積の重心は複合繊維の断面積の重心に対し5〜40%ずれていることが好ましい。芯部のずれは次式により算出される。
芯部のずれ(%)=(複合繊維の断面積の重心と芯部の断面積の重心の最短距離)/(糸の直径)×100
In the case of the eccentric sheath-core type (unbalanced S / C), the center of gravity of the cross-sectional area of the core is preferably shifted by 5 to 40% with respect to the center of gravity of the cross-sectional area of the composite fiber in order to obtain a desired number of crimps. . The displacement of the core is calculated by the following equation.
Core deviation (%) = (the shortest distance between the center of gravity of the cross-sectional area of the composite fiber and the center of gravity of the cross-sectional area of the core) / (diameter of yarn) × 100

前記繊維が、2種類以上の熱可塑性樹脂で組み合わせたものである場合、所望の効果が奏される限り、前記熱可塑性樹脂の何れの組合せでも可能であり、繊維同士の接合の観点からは、融点差のある熱可塑性樹脂の組合せが好ましい。融点差の高い方の樹脂が繊維内に占める重量比率は、好ましくは20wt%以上80wt%以下であり、より好ましくは30wt%以上80wt%以下、更に好ましくは50wt%以上70wt%以下である。
また得られる不織布の風合いの観点からは、ポリオレフィン系樹脂同士の組み合わせ、ポリオレフィン系樹脂とポリエステル系樹脂を組み合わせて用いることが好ましい。ポリオレフィン系樹脂を組み合わせて用いる場合、ポリエチレン、ポリプロピレン、及びそれらのモノマーと他のα−オレフィンとの共重合体などの樹脂から組み合わせた複合繊維が挙げられる。他のα−オレフィンとしては、炭素数3〜10のものであり、具体的にはプロピレン、1−ブテン、1−ペンテン、1−ヘキサン、4−メチル−1−ペンテン、1−オクテンなどが挙げられる。
When the fiber is a combination of two or more thermoplastic resins, any combination of the thermoplastic resins is possible as long as a desired effect is obtained.From the viewpoint of bonding fibers, A combination of thermoplastic resins having different melting points is preferred. The weight ratio of the resin having the higher melting point difference in the fiber is preferably 20 wt% or more and 80 wt% or less, more preferably 30 wt% or more and 80 wt% or less, and still more preferably 50 wt% or more and 70 wt% or less.
Further, from the viewpoint of the texture of the obtained nonwoven fabric, it is preferable to use a combination of polyolefin resins or a combination of a polyolefin resin and a polyester resin. When a polyolefin resin is used in combination, a composite fiber obtained by combining a resin such as polyethylene, polypropylene, or a copolymer of such a monomer with another α-olefin is used. The other α-olefin has 3 to 10 carbon atoms, and specifically includes propylene, 1-butene, 1-pentene, 1-hexane, 4-methyl-1-pentene, 1-octene and the like. Can be

ポリオレフィン系樹脂とポリエステル系樹脂を組み合わせる場合、ポリエステル系樹脂は、ポリエチレンテレフタレート単一成分を、又はイソフタル酸等を含んだ共重合体を使用することが好ましい。また、ポリエチレンテレフタレートはブレンド等により改質したものでも、添加剤等を付与したものでもよい。
その中でも、熱可塑性樹脂の組み合わせとして強度が強く使用時において破断しにくく、且つ衛生材料の生産時における加工適正に優れていること、また、風合いも良いことから、第1成分をポリプロピレン、第2成分をポリエチレンとすることが好ましく、複合繊維が偏芯鞘芯型の場合には、芯部を第1成分、鞘部を第2成分とすることが好ましい。
When a polyolefin-based resin and a polyester-based resin are combined, the polyester-based resin preferably uses a single component of polyethylene terephthalate or a copolymer containing isophthalic acid or the like. Further, the polyethylene terephthalate may be modified by blending or the like, or may be added with an additive or the like.
Among them, as a combination of thermoplastic resins, the strength is strong, it is difficult to break when used, and it is excellent in processing suitability in the production of sanitary materials, and since the texture is good, the first component is polypropylene, the second component is The component is preferably polyethylene, and when the conjugate fiber is an eccentric sheath-core type, the core is preferably the first component and the sheath is preferably the second component.

繊維を前記2種の熱可塑性樹脂で形成する場合、第1成分のポリプロピレンは、一般的なチーグラナッタ触媒により合成されるポリマーでもよいし、メタロセンに代表されるシングルサイト活性触媒により合成されたポリマーでもよい。また、エチレンランダム共重合ポリプロピレンでもよい。これらは1種類単独でも2種類以上を組み合わせてもよい。特に風合い、強度、寸法安定性からホモポリプロピレンを主成分とするものであることが好ましい。   When the fiber is formed of the two thermoplastic resins, the first component polypropylene may be a polymer synthesized by a general Ziegler-Natta catalyst or a polymer synthesized by a single-site active catalyst represented by metallocene. Good. Further, ethylene random copolymerized polypropylene may be used. These may be used alone or in combination of two or more. In particular, it is preferable to use a homopolypropylene as a main component in terms of texture, strength, and dimensional stability.

また、繊維の製造における紡糸性、得られる繊維の強度の面からポリプロピレンのMFRとして、下限が好ましくは20g/10分以上、より好ましくは30g/10分超え、更に好ましくは40g/10分超え、最も好ましくは、53g/10分超えである。MFRの上限は好ましくは85g/10分以下、より好ましくは70g/10分以下、更に好ましくは60g/10分以下である。MFRは、JIS−K7210「プラスチック−熱可塑性プラスチックのメルトマスフローレイト(MFR)及びメルトボリュームフローレイト(MVR)の試験方法」の表1、試験温度230℃、試験荷重2.16kgに準じて測定した。   Further, from the viewpoint of spinnability in the production of fibers and the strength of the obtained fibers, the lower limit of the MFR of the polypropylene is preferably 20 g / 10 min or more, more preferably 30 g / 10 min or more, and still more preferably 40 g / 10 min or more. Most preferably, it is more than 53 g / 10 minutes. The upper limit of the MFR is preferably 85 g / 10 minutes or less, more preferably 70 g / 10 minutes or less, and still more preferably 60 g / 10 minutes or less. The MFR was measured in accordance with JIS-K7210 "Test method for melt mass flow rate (MFR) and melt volume flow rate (MVR) of plastic-thermoplastic", Table 1, test temperature 230 ° C, test load 2.16 kg. .

繊維を前記2種の熱可塑性樹脂で形成する場合、第2成分のポリエチレンは、一般的なチーグラナッタ触媒により合成されるポリマーでもよいし、メタロセンに代表されるシングルサイト活性触媒により合成されたポリマーであってもよい。ポリエチレンは、高密度ポリエチレン、直鎖状低密度ポリエチレンであることが好ましく、密度は0.92〜0.97g/cmであることが好ましく、より好ましくは0.925〜0.96g/cmである。 When the fibers are formed of the two thermoplastic resins, the polyethylene of the second component may be a polymer synthesized by a general Ziegler-Natta catalyst or a polymer synthesized by a single-site active catalyst represented by metallocene. There may be. Polyethylene, high density polyethylene, preferably a linear low density polyethylene, it is preferred that the density is 0.92~0.97g / cm 3, more preferably 0.925~0.96g / cm 3 It is.

また、繊維の製造における紡糸性の観点から、ポリエチレンのMIの下限は10g/10分以上が好ましく、より好ましくは15g/10分超えである。MIの上限は、好ましくは100g/10分以下であり、より好ましくは60g/10分以下、更に好ましくは、40g/10分以下である。MIは、JIS−K7210「プラスチック−熱可塑性プラスチックのメルトマスフローレイト(MFR)及びメルトボリュームフローレイト(MVR)の試験方法」の表1、試験温度190℃、試験荷重2.16kgに準じて測定した。
また、ポリエステル系樹脂を用いる場合は、溶液粘度ηsp/cの下限が0.2以上であることが好ましく、より好ましくは、0.6以上である。溶液粘度ηsp/cの上限は好ましくは0.9以下であり、より好ましくは0.8以下である。
In addition, from the viewpoint of spinnability in the production of fibers, the lower limit of the MI of polyethylene is preferably 10 g / 10 min or more, more preferably 15 g / 10 min or more. The upper limit of MI is preferably 100 g / 10 minutes or less, more preferably 60 g / 10 minutes or less, and further preferably 40 g / 10 minutes or less. MI was measured according to JIS-K7210 "Test method for melt mass flow rate (MFR) and melt volume flow rate (MVR) of plastic-thermoplastic", Table 1, test temperature 190 ° C, test load 2.16 kg. .
When a polyester resin is used, the lower limit of the solution viscosity ηsp / c is preferably 0.2 or more, more preferably 0.6 or more. The upper limit of the solution viscosity ηsp / c is preferably 0.9 or less, more preferably 0.8 or less.

本実施形態の不織布を構成する繊維は、強度、生産性の観点から、スパンボンド法を用いた長繊維のウェブの形態であることが好ましい。2種以上の熱可塑性樹脂と組み合わせた複合長繊維とする場合には、例えば、2つ以上の異なる押出機からそれぞれ異なる熱可塑性樹脂を溶融押出し、多数の紡糸孔を有する紡糸口金から2種以上の熱可塑性樹脂が複合された状態で糸条として吐出させる。次いで、吐出された糸条を5℃〜20℃に制御した冷風をあて、冷却しながら牽引装置により牽引する。牽引装置より出た糸条は、搬送コンベア上に堆積されウェブとして搬送する。搬送中のウェブを積層し、多層積層の不織ウェブとしてもよい。多層積層の不織布の場合、各層毎が異なる繊維径で形成されてもよく、異形断面糸、捲縮繊維、中空糸などの特殊な形態の繊維のものが積層されたものでもよい。   The fibers constituting the nonwoven fabric of the present embodiment are preferably in the form of a long fiber web using a spun bond method from the viewpoint of strength and productivity. In the case of a composite long fiber combined with two or more kinds of thermoplastic resins, for example, different thermoplastic resins are melt-extruded from two or more different extruders, and two or more kinds are made from a spinneret having a large number of spinning holes. Is discharged as a yarn in a state in which the thermoplastic resin is composited. Next, the discharged yarn is exposed to cold air controlled at 5 ° C to 20 ° C, and pulled by a pulling device while being cooled. The yarn coming out of the traction device is deposited on a transport conveyor and transported as a web. The webs being conveyed may be laminated to form a multilayer laminated nonwoven web. In the case of a multi-layered nonwoven fabric, each layer may be formed with a different fiber diameter, or a layer of fibers of a special form such as a modified cross-section yarn, a crimped fiber, or a hollow fiber may be laminated.

前記不織ウェブの接合には、接着剤を用いて接合する方法、低融点繊維や複合繊維により接合する方法、ホットメルトバインダーをウェブ形成中に散布して溶融接合する方法、ニードルパンチ、水流等で繊維を交絡するなどの方法を用いることができ、特に限定はされない。高速生産性の観点から、部分熱圧着により接合してもよい。例えば、ピンポイント状、楕円形状、ダイヤ形状、矩形状などの接合点を付与できる加熱したエンボス/フラットロール間にウェブを通して接合することができる。部分熱圧着における熱圧着面積率は、強度保持および柔軟性、また、不織布の嵩の保持、表面の凹凸構造がロール間で潰れされない様にするという観点から、5〜40%が好ましく、より好ましくは5〜25%である。   For joining the nonwoven web, a method of joining with an adhesive, a method of joining with a low melting point fiber or a composite fiber, a method of spraying and melting a hot melt binder during web formation, a needle punch, a water stream, etc. For example, a method such as entanglement of fibers can be used, and there is no particular limitation. From the viewpoint of high-speed productivity, bonding may be performed by partial thermocompression bonding. For example, the web can be joined between heated emboss / flat rolls that can provide joining points such as pinpoint, ellipse, diamond, and rectangle. The thermocompression bonding area ratio in the partial thermocompression bonding is preferably 5 to 40%, more preferably 5 to 40%, from the viewpoint of maintaining strength and flexibility, maintaining the bulk of the nonwoven fabric, and preventing the uneven structure of the surface from being crushed between rolls. Is 5 to 25%.

また、不織布表面構造の特徴や不織布の厚みを維持しやすいという観点から、特に2種以上の熱可塑性樹脂を組み合わせた複合長繊維の場合には、繊維同士の交点が溶融し接着できる温度以上に加熱する方法であれば特に限定せず用いることができ、加熱する方法としては、熱風循環型、熱風貫通型、赤外線ヒーター型、不織布の両面に熱風を吹き付ける方法、加熱気体中に導入する方法等、各種の加熱方法を用いることができる。繊維同士の交点でより多くの繊維接着点が得られ且つ不織布の破断強度が高くなる観点から、熱風による加熱が好ましく、特に熱風貫通型が好ましい。   In addition, from the viewpoint of easily maintaining the characteristics of the nonwoven fabric surface structure and the thickness of the nonwoven fabric, especially in the case of a conjugate long fiber in which two or more kinds of thermoplastic resins are combined, the temperature is higher than the temperature at which the intersection of the fibers is melted and bonded. Any heating method can be used without particular limitation. Examples of the heating method include a hot air circulation type, a hot air penetration type, an infrared heater type, a method of blowing hot air on both surfaces of a nonwoven fabric, and a method of introducing hot air into a heated gas. And various heating methods can be used. From the viewpoint that more fiber adhesion points are obtained at the intersections of the fibers and the breaking strength of the nonwoven fabric is increased, heating with hot air is preferable, and a hot air penetration type is particularly preferable.

熱風貫通型における熱風の温度は、組み合わせた熱可塑性樹脂の中でも、融点が低く且つ接合に寄与する熱可塑性樹脂に適した温度に調整することが好ましい。例えば、2種以上の熱可塑性樹脂の低融点側の樹脂がポリエチレンの場合、好ましい熱風の温度はポリエチレンが溶融し接着する120〜155℃であり、好ましくは135〜155℃、より好ましくは140℃〜150℃である。接着温度が120℃より高いと繊維同士の交点で繊維同士の接着が発現し、不織布としての強度を発現することが可能となる。また、接着温度が155℃以上であると、繊維の溶解度が非常に高くなり風合いの硬いものとなる。
熱風の風速は0.5〜3.0m/sが好ましく、より好ましくは0.7〜2.5m/s、更に好ましくは2.0m/s以下である。風速が遅いと不織布の厚み方向に熱風が貫通せず、強度が低くなってしまう。また、風速が速いと熱風は貫通するが、繊維も同時に潰れてしまい嵩の低い不織布となってしまう。
The temperature of the hot air in the hot air penetration type is preferably adjusted to a temperature suitable for a thermoplastic resin having a low melting point and contributing to bonding among the thermoplastic resins combined. For example, when the resin on the low melting point side of the two or more thermoplastic resins is polyethylene, a preferable hot air temperature is 120 to 155 ° C at which the polyethylene melts and adheres, preferably 135 to 155 ° C, more preferably 140 ° C. 150150 ° C. When the bonding temperature is higher than 120 ° C., the bonding between the fibers is developed at the intersection of the fibers, and the strength as a nonwoven fabric can be realized. On the other hand, when the bonding temperature is 155 ° C. or higher, the solubility of the fibers becomes extremely high, and the texture becomes hard.
The velocity of the hot air is preferably 0.5 to 3.0 m / s, more preferably 0.7 to 2.5 m / s, and still more preferably 2.0 m / s or less. If the wind speed is low, the hot air does not penetrate in the thickness direction of the nonwoven fabric, and the strength is reduced. When the wind speed is high, the hot air penetrates, but the fibers are also crushed at the same time, resulting in a low-volume nonwoven fabric.

不織布の表面構造に悪影響を及ぼさない限り、前記の熱風による加熱接合の前の不織ウェブに熱接着を施してもよい。生産性の観点から、熱接着は、金属エンボスロールと金属フラットロールの組合せの一対のロールに通すものが好ましい。不織ウェブの形態保持や最終的に得られる不織布の強度の観点から、エンボス面積率は好ましくは5〜30%、より好ましくは5〜20%、更に好ましくは6〜15%である。また、エンボスの深さは深いほど、不織布の厚みを保持することが可能であり、好ましくは0.5〜2.0mm、更に好ましくは0.7〜1.5mmである。エンボス形状は、特に限定されないが、円形状、楕円形状、ダイヤ形状、矩形状であることが好ましい。   As long as the surface structure of the nonwoven fabric is not adversely affected, the nonwoven web may be subjected to thermal bonding before the heat bonding by the hot air. From the viewpoint of productivity, it is preferable that the heat bonding be performed by passing through a pair of rolls of a combination of a metal embossing roll and a metal flat roll. From the viewpoint of maintaining the shape of the nonwoven web and the strength of the finally obtained nonwoven fabric, the emboss area ratio is preferably 5 to 30%, more preferably 5 to 20%, and still more preferably 6 to 15%. Further, the deeper the embossing depth is, the more the thickness of the nonwoven fabric can be maintained, preferably from 0.5 to 2.0 mm, more preferably from 0.7 to 1.5 mm. The emboss shape is not particularly limited, but is preferably a circular shape, an elliptical shape, a diamond shape, or a rectangular shape.

不織布の繊維の平均繊維径は8.0μm以上38.0μm以下であることが好ましく、より好ましくは9.0μm以上33.5μm以下、更に好ましくは11.0μm以上26.5μm以下である。紡糸安定性の観点から、平均繊維径は8.0μm以上であることが好ましく、衛生材料に使用される不織布の風合いの観点から、38.0μm以下であることがより好ましい。   The average fiber diameter of the fibers of the nonwoven fabric is preferably 8.0 μm or more and 38.0 μm or less, more preferably 9.0 μm or more and 33.5 μm or less, and still more preferably 11.0 μm or more and 26.5 μm or less. The average fiber diameter is preferably 8.0 μm or more from the viewpoint of spinning stability, and more preferably 38.0 μm or less from the viewpoint of the texture of the nonwoven fabric used for the sanitary material.

不織布の目付は8g/m以上80g/m以下が好ましく、より好ましくは10g/m以上40g/m以下、更に好ましくは10g/m以上30g/m以下である。目付が8g/m以上であれば、衛生材料に使用される不織布としては強力を満足し、80g/m以下であれば、衛生材料に使用される不織布の風合いを満足し、外観的に厚ぼったい印象を与えない。 Basis weight of the nonwoven fabric is preferably 8 g / m 2 or more 80 g / m 2 or less, more preferably 10 g / m 2 or more 40 g / m 2 or less, further preferably 10 g / m 2 or more 30 g / m 2 or less. If a basis weight of 8 g / m 2 or more, satisfy the strong as nonwoven fabric is used for sanitary materials, if 80 g / m 2 or less, and satisfy the texture of the nonwoven fabric used for the sanitary materials, the appearance Does not give a thick impression.

不織布の無荷重時の高さは140μm以上が好ましく、より好ましくは140μm以上3000μm以下、更に好ましくは140μm以上2000μm以下である。不織布の風合いおよび透水性の濡れ戻り性能の観点、無荷重時の高さは140μm以上であることが好ましく、3000μmを超えると外観的に厚ぼったい印象を与えるとともに、剛性があり衛生材料としての使用には適さない。   The height of the nonwoven fabric under no load is preferably 140 μm or more, more preferably 140 μm or more and 3000 μm or less, and still more preferably 140 μm or more and 2000 μm or less. From the viewpoint of the wetting and repelling performance of the nonwoven fabric and water permeability, the height under no load is preferably 140 μm or more, and when it exceeds 3000 μm, it gives an impression that the appearance is thick, and has rigidity and is used as a sanitary material. Is not suitable.

不織布のX線CTによる配向指標は0.43以下であり、好ましくは0.425以下である。X線CTによる配向指数がこの範囲であると不織布の厚み方向を占有する繊維が多くなり、荷重下においても嵩が潰れることがなく、嵩高性を有する不織布となり、優れたクッション性および濡れ戻り指数の低い親水性嵩高不織布を得ることが可能となる。下限は低ければ低い方がよいが、配向指標は、好ましくは0.30以上、より好ましくは0.33以上である。   The orientation index of the nonwoven fabric by X-ray CT is 0.43 or less, preferably 0.425 or less. When the orientation index determined by X-ray CT is within this range, the number of fibers occupying the thickness direction of the nonwoven fabric increases, and the bulk does not collapse even under a load, so that the nonwoven fabric has a bulky property. It is possible to obtain a hydrophilic bulky nonwoven fabric having a low bulk. The lower limit is preferably as low as possible, but the orientation index is preferably at least 0.30, more preferably at least 0.33.

本実施形態の不織布の圧縮仕事量WCは0.20gf・cm/cm以上1.00gf・cm/cm以下であることが好ましく、より好ましくは、0.20gf・cm/cm以上0.80gf・cm・cm以下であり、この範囲の圧縮仕事量WCを保持することは、衛生材料に使用される不織布としてのクッション性および優れた濡れ戻り指数を得ることができる。 The compression work amount WC of the nonwoven fabric of the present embodiment is preferably 0.20 gf · cm / cm 2 or more and 1.00 gf · cm / cm 2 or less, and more preferably 0.20 gf · cm / cm 2 or more. It is 80 gf · cm · cm 2 or less, and holding the compression work amount WC in this range can provide a cushioning property and an excellent wetting return index as a nonwoven fabric used for a sanitary material.

本実施形態の親水性嵩高不織布は透水剤を含有させるか又は塗布したものである。使用される透水剤としては、人体への安全性、工程での安全性等を考慮して、高級アルコール、高級脂肪酸、アルキルフェノール等のエチレンオキサイドを付加した非イオン系活性剤、アルキルフォスフェート塩、アルキル硫酸塩等のアニオン系活性剤等の単独又は混合物等で構成される界面活性剤が挙げられる。透水剤としては、例えば、ポリエーテル化合物、ポリエチレンエーテル変性シリコーン、ポリエーテル変性シリコーン、ポリエステル化合物、ポリアミド化合物、ポリグリセリン化合物等も好ましく用いられる。   The hydrophilic bulky nonwoven fabric of this embodiment contains or is coated with a water-permeable agent. As the water-permeable agent used, in consideration of safety to the human body, safety in the process, etc., higher alcohols, higher fatty acids, nonionic surfactants to which ethylene oxide such as alkylphenol is added, alkyl phosphate salts, Surfactants composed of an anionic surfactant such as an alkyl sulfate or the like alone or as a mixture. As the water-permeable agent, for example, polyether compounds, polyethylene ether-modified silicone, polyether-modified silicone, polyester compounds, polyamide compounds, polyglycerin compounds and the like are also preferably used.

透水剤を含有させる又は塗布する方法としては、繊維の中への練り込みやコーティング法(グラビアコーター、キスコーター)、噴霧法等の既存の方法が採用でき、コロナ放電処理、常圧プラズマ放電処理などの前処理も必要に応じて採用してもよい。塗布後の乾燥方法としては、対流伝熱、伝導伝熱、放射伝熱等を利用した既知の方法が採用でき、熱風や赤外線による乾燥、熱接触による乾燥方法等を用いることができる。   Existing methods such as kneading into fibers, coating method (gravure coater, kiss coater), spraying method, etc. can be used as a method for containing or applying a water-permeable agent, such as corona discharge treatment and atmospheric pressure plasma discharge treatment. May be adopted as necessary. As a drying method after the application, a known method using convection heat transfer, conduction heat transfer, radiation heat transfer, or the like can be employed, and a drying method using hot air or infrared rays, a drying method using thermal contact, or the like can be used.

透水剤の付着量は、目的とする用途によって異なるが、例えば、衛生材料用としては、通常、不織布に対して0.10wt%以上1.50wt%以下の範囲が好ましく、より好ましくは0.15wt%以上1.20wt%以下である。0.10wt%未満では満足する透水性能は得られにくく、他方、1.50wt%を超えると肌へのかぶれやしっしんが発生しやすくなる。   The amount of the water-permeable agent varies depending on the intended use. For example, for a sanitary material, the amount is preferably in the range of 0.10 wt% to 1.50 wt% with respect to the nonwoven fabric, and more preferably 0.15 wt%. % Or more and 1.20 wt% or less. If it is less than 0.10 wt%, satisfactory water permeability cannot be obtained, and if it exceeds 1.50 wt%, rash and eczema on the skin are likely to occur.

透水剤は、水などの溶媒で希釈し、水溶液として塗布されてもよい。また、設備の高速化に伴う乾燥工程での乾燥不足などを発生させないためには、透水剤水溶液の塗布量は少ない方が好ましい。不織布に対する塗布量(wt%)は、前記塗布方法のいずれにおいても1.0wt%以上65wt%以下が好ましく、より好ましくは3.0wt%以上60wt%以下であり、更に好ましくは5.0wt%以上50wt%以下である。1.0wt%未満では均一な塗布は得られず、他方、65wt%を超えると、必要な乾燥能力が大きくなり、設備コストが増大し、また乾燥不足を生じかねない。   The water-permeable agent may be diluted with a solvent such as water and applied as an aqueous solution. In order to prevent insufficient drying in the drying step due to the increase in the speed of the equipment, it is preferable that the application amount of the aqueous solution of the water-permeable agent is small. The application amount (wt%) to the nonwoven fabric is preferably 1.0 wt% or more and 65 wt% or less, more preferably 3.0 wt% or more and 60 wt% or less, and still more preferably 5.0 wt% or more. It is 50 wt% or less. If the content is less than 1.0 wt%, uniform coating cannot be obtained. On the other hand, if the content exceeds 65 wt%, the required drying capacity increases, equipment cost increases, and insufficient drying may occur.

例えば、グラビアコーターによる透水剤の塗布においては、グラビアロールの柄は、格子型やピラミッド型でもよいが、グラビアのセル底に透水剤が残りにくい斜線型が好ましい。セル容積は、5cm/m以上40cm/m以下が好ましく、5cm/m未満では、塗布量が少なすぎるため均一な塗布が困難となり、40cm/mを超えると、塗布量が多くなりすぎるため乾燥工程での乾燥不足やマイグレーションによる透水剤の付着ムラが生じるなどの問題が発生する。
前記グラビアのセルの深さは、好ましくは10μm以上80μm以下、その間隔は、好ましくは80メッシュ以上250メッシュ以下の範囲内で、上記セル容積となるように設計するのが好ましい。
For example, in the application of a water-permeable agent by a gravure coater, the pattern of the gravure roll may be a lattice type or a pyramid type, but is preferably a diagonal line type in which the water-permeable agent hardly remains on the gravure cell bottom. The cell volume is preferably 5 cm 3 / m 2 or more and 40 cm 3 / m 2 or less, and if it is less than 5 cm 3 / m 2, it is difficult to apply uniformly because the applied amount is too small, and if it exceeds 40 cm 3 / m 2 , Since the amount is too large, problems such as insufficient drying in the drying step and uneven adhesion of the water-permeable agent due to migration occur.
The gravure cell preferably has a depth of 10 μm or more and 80 μm or less, and an interval thereof is preferably designed to have the above cell volume within a range of preferably 80 mesh or more and 250 mesh or less.

設備の高速化に対応でき、効率良く塗布できること、厚みのある不織布でも厚み方向に均一に塗工可能であること、また、透水剤と不織布の浸透性が若干悪くても均一に塗工できること、且つ一対のロール間に不織布を通す工程が無いため、不織布の厚みを維持しやすいことから噴霧法での透水剤の塗布が好ましい。噴霧法としては、一般的に公知であるエア圧縮による吹付け法や、透水剤水溶液を直接圧縮して噴霧する方法でもよいが、不織布に均一に塗布できる観点から、ローターダンプニング方式が特に好ましい。塗布時の透水剤水溶液の飛散防止策を施すことで設備の高速時でも塗布が可能である。ローターダンプニング方式とは、回転しているローター上に透水剤水溶液を供給し、ローター回転の遠心力を用いて透水剤水溶液を噴霧する方法である。ローターダンプニング方式では、塗布する方向にローター回転によって飛ばされる透水剤水溶液の液粒子を塗布する不織布側にのみ噴霧できるように、且つ不織布のCD方向に均一に塗布できるように開口部が限定され、ローター回転数により噴霧粒子径を調整することが可能である。   It can respond to high-speed equipment, can be applied efficiently, can be applied evenly in the thickness direction even with a thick nonwoven fabric, and can be uniformly applied even if the permeability of the water-permeable agent and the nonwoven fabric is slightly poor. In addition, since there is no step of passing the nonwoven fabric between the pair of rolls, it is preferable to apply a water-permeable agent by a spray method since the thickness of the nonwoven fabric is easily maintained. As the spraying method, a commonly known spraying method by air compression or a method of directly compressing and spraying a water-permeable agent aqueous solution may be used, but a rotor dampening method is particularly preferable from the viewpoint of uniform application to a nonwoven fabric. . By taking measures to prevent the aqueous permeating agent solution from scattering at the time of application, application is possible even at high speed of the equipment. The rotor dampening method is a method of supplying a water-permeable agent aqueous solution onto a rotating rotor and spraying the water-permeable agent aqueous solution using centrifugal force of the rotor rotation. In the rotor dampening method, the opening is limited so that the liquid particles of the aqueous solution of the water-permeable agent that are blown by the rotation of the rotor in the application direction can be sprayed only on the nonwoven fabric side to be applied, and can be uniformly applied in the CD direction of the nonwoven fabric. The diameter of the spray particles can be adjusted by the number of rotations of the rotor.

前記ローターダンプニング方式の場合、例えば、ローターの直径は40mm以上100mm以下のものを選定し、塗布する不織布のCD方向に透水剤水溶液が均一に付着できるように塗布する不織布面とローターの中心との距離を設定する。隣のローターから噴霧される塗布分布範囲の2分の1が重なるように設定されることが望ましい。また、ローターはCD方向に60mm以上220mm以下の範囲において等間隔で配置させ、2段にすることが望ましい。   In the case of the rotor dampening method, for example, a rotor having a diameter of 40 mm or more and 100 mm or less is selected, and the surface of the nonwoven fabric to be applied and the center of the rotor are applied so that the aqueous permeating agent solution can be uniformly attached in the CD direction of the nonwoven fabric to be applied. Set the distance of It is desirable that the setting is set so that one half of the application distribution range sprayed from the adjacent rotor is overlapped. Further, it is desirable that the rotors are arranged at equal intervals in a range of 60 mm or more and 220 mm or less in the CD direction, and it is preferable that the rotors have two stages.

均一に塗布するポイントは、塗布する不織布の内部にまで噴霧粒子を行き届かせることであり、その噴霧粒子径は0.010mm以上0.200mm以下が好ましく、0.030mm以上0.070mm以下がさらに好ましい。最適な噴霧粒子径を形成するには透水剤水溶液の表面張力が重要となり、噴霧粒子径は次式により算出される。
噴霧粒子径(μm)={100000×√(表面張力(N/m))}/(ローター直径(mm)×ローター回転数(rpm))
The point of uniform application is that the spray particles reach the inside of the non-woven fabric to be applied. The spray particle size is preferably 0.010 mm or more and 0.200 mm or less, and more preferably 0.030 mm or more and 0.070 mm or less. preferable. The surface tension of the water-permeable agent aqueous solution is important for forming the optimum spray particle size, and the spray particle size is calculated by the following equation.
Sprayed particle diameter (μm) = {100,000 × {(surface tension (N / m))} / (rotor diameter (mm) × rotor rotation speed (rpm))

また、これら塗布方法における透水剤水溶液の温度は、5℃以上50℃以下が好ましく、溶液の均一分散、安定性の観点から、12℃以上40℃以下がより好ましい。透水剤水溶液の粘度は、0.5mPa・s以上50mPa・s以下であることが好ましく、より均一に塗布しやすい観点から、0.8mPa・s以上20mPa・s以下がより好ましい。粘度が50mPa・sを超えると、透水剤水溶液の不織布への浸透性が劣り、均一な塗布が困難となる。   Further, the temperature of the aqueous solution of the water-permeable agent in these coating methods is preferably from 5 ° C to 50 ° C, and more preferably from 12 ° C to 40 ° C from the viewpoint of uniform dispersion and stability of the solution. The viscosity of the water permeating agent aqueous solution is preferably 0.5 mPa · s or more and 50 mPa · s or less, and more preferably 0.8 mPa · s or more and 20 mPa · s or less from the viewpoint of easier uniform application. When the viscosity exceeds 50 mPa · s, the permeability of the aqueous solution of the water-permeable agent into the nonwoven fabric is inferior, and uniform application becomes difficult.

透水剤水溶液の塗布後の乾燥には、一般的な乾燥方式を用いることができ、特に限定されるものではなく、対流伝熱、伝導伝熱、放射伝熱等を利用した既知の方法が採用でき、熱風循環型、熱風貫通型、赤外線ヒーター型、不織布の両面に熱風を吹き付ける方法、加熱気体中に導入する方法等、各種の乾燥方法を用いることができる。   A general drying method can be used for drying after application of the water-permeable agent aqueous solution, and is not particularly limited, and a known method using convection heat transfer, conduction heat transfer, radiation heat transfer, or the like is employed. Various drying methods can be used, such as a hot air circulation type, a hot air penetration type, an infrared heater type, a method of blowing hot air to both surfaces of a nonwoven fabric, and a method of introducing hot air into a heated gas.

本実施形態の不織布の表面構造の特徴は、図1に示すように、該不織布表面における測定基準長さを100μmとしたときのX方向Y方向により規定する単位区画内での最大高さが、不織布の無荷重時の高さ(厚み)に対し30%以上である区画の比率が、該不織布表面積20mm×20mmに相当する区画数40000当たり50%以上となることである。
不織布表面における測定基準長さ、及び最大高さは次の通りである。デジタルマイクロスコープKH−8700(ハイロックス製)を用いて不織布のMD方向20mm、CD方向20mmで各方向に20μm間隔で不織布表面の高さ情報を測定採取する。不織布のMD方向20mm×CD方向20mmにおいて得られた高さ情報を100μm毎で区画し、このときの区画した長さを測定基準長さとした。また、該単位区画内での最大値と最小値の差を不織布表面における最大高さとした。不織布の無荷重時の高さ(厚み)に対する最大高さの割合は、最大高さ(μm)/無荷重時の高さ(μm)×100より算出した。
すなわち、不織布の無荷重時の高さ(厚み)に対する最大高さの割合が30%以上である区画の比率が高いほど、不織布表面の微細な区画内での凹凸差は大きくなる。本実施形態においては、不織布の無荷重時の高さ(厚み)に対する最大高さの割合が30%以上である区画が、該不織布のMD方向20mm×CD方向20mmにおいて測定基準長さ100μmとして区画された40000区画当たり50%以上である。このような不織布表面の構造の特徴を有することで、例えば、不織布に付与している透水剤に関わらず、尿などの液体が不織布表面に付着した際、その接触角は低くなり、不織布表面から不織布内部への液移行を速やかにする。不織布の液移行性の観点から、本実施形態においては、最大高さが不織布の無荷重時の高さ(厚み)に対し30%以上である区画の比率は、50%以上であり、好ましくは52%以上、より好ましくは55%以上、さらに好ましくは60%以上である。かかる比率が当該範囲内にあることで、良好な透水性が発現される。かかる比率は高い方がよりよいが、肌触りが悪化することから98%以下が好ましい。
The feature of the surface structure of the nonwoven fabric of the present embodiment is that, as shown in FIG. 1, the maximum height in a unit section defined by the X and Y directions when the measurement reference length on the nonwoven fabric surface is 100 μm, The ratio of the section that is 30% or more to the height (thickness) of the nonwoven fabric under no load is 50% or more per 40,000 sections corresponding to the nonwoven fabric surface area of 20 mm x 20 mm.
The measurement reference length and the maximum height on the nonwoven fabric surface are as follows. Using a digital microscope KH-8700 (manufactured by Hi-Rox), height information on the surface of the nonwoven fabric is measured and collected at an interval of 20 μm in each direction of 20 mm in the MD and 20 mm in the CD direction of the nonwoven. The height information obtained in the MD direction of the nonwoven fabric of 20 mm × CD direction of 20 mm was sectioned every 100 μm, and the sectioned length at this time was defined as a measurement reference length. The difference between the maximum value and the minimum value in the unit section was defined as the maximum height on the surface of the nonwoven fabric. The ratio of the maximum height to the non-loading height (thickness) of the nonwoven fabric was calculated from the maximum height (μm) / height without loading (μm) × 100.
That is, as the ratio of the section in which the ratio of the maximum height to the non-loaded height (thickness) of the nonwoven fabric is 30% or more is higher, the unevenness difference in the fine section of the nonwoven fabric surface is larger. In the present embodiment, the section in which the ratio of the maximum height to the height (thickness) of the nonwoven fabric with no load is 30% or more is defined as a measurement reference length of 100 μm in the MD direction 20 mm × CD direction 20 mm. 50% or more per 40,000 plots. By having such a feature of the structure of the nonwoven fabric surface, for example, regardless of the water-permeable agent imparted to the nonwoven fabric, when a liquid such as urine adheres to the nonwoven fabric surface, the contact angle is reduced, and Speeds up liquid transfer into the nonwoven fabric. From the viewpoint of liquid transferability of the nonwoven fabric, in the present embodiment, the ratio of the section whose maximum height is 30% or more to the height (thickness) of the nonwoven fabric at no load is 50% or more, and is preferably It is at least 52%, more preferably at least 55%, even more preferably at least 60%. When the ratio is within the range, good water permeability is exhibited. The higher the ratio, the better, but it is preferably 98% or less because the touch is deteriorated.

本実施形態の不織布の透水性の指標となる透水45度傾斜流長値は、25mm以下であり、好ましくは22mm以下、更に好ましくは20mm以下、最も好ましくは18mm以下である。透水45度傾斜流長値が25mmを超えると、例えば、使い捨ておむつなどの表面材に用いた場合、表面の液流れが多くなり、尿漏れを起こしやすくなる。   The 45 ° inclined flow length value, which is an index of the water permeability of the nonwoven fabric of the present embodiment, is 25 mm or less, preferably 22 mm or less, more preferably 20 mm or less, and most preferably 18 mm or less. If the 45 ° permeation inclined flow length value exceeds 25 mm, for example, when used as a surface material such as a disposable diaper, the liquid flow on the surface increases and urine leakage easily occurs.

本実施形態の不織布の透水性の指標となる4回目の耐久透水指数は、85%以上である。4回目の耐久透水指数の値が85%未満では、例えば、使い捨ておむつなどの表面材に用いた場合、複数回の排尿に対して表面材の通水が出来ずに表面材としての機能を失い、尿漏れを起こしやすくなる。   The fourth durable water permeability index, which is an index of the water permeability of the nonwoven fabric of the present embodiment, is 85% or more. When the value of the durable permeability index for the fourth time is less than 85%, for example, when used for a surface material such as a disposable diaper, the surface material cannot be passed through a plurality of urinations and loses its function as a surface material. , It is easy to cause urine leakage.

また、本実施形態の不織布の透水性の指標となる濡れ戻り指数は、0.8g以下であることが好ましく、より好ましくは0.5g以下である。濡れ戻り指数の値が0.8gを超えると、例えば、使い捨ておむつの表面材に用いた場合、肌に表面材が触れたとき非常に湿った感触があり使用感が悪くなる。濡れ戻り指数は低いほど良いが、0.01g以下の値は測定下限であり、測定ばらつきが大きい。   The wetting return index, which is an index of water permeability of the nonwoven fabric of the present embodiment, is preferably 0.8 g or less, more preferably 0.5 g or less. When the value of the re-wetting index exceeds 0.8 g, for example, when used as a surface material of a disposable diaper, when the surface material comes into contact with the skin, the skin feels very wet and the feeling of use deteriorates. The lower the wetting return index, the better, but a value of 0.01 g or less is the lower limit of measurement, and the measurement dispersion is large.

以下、実施例、比較例により本発明を具体的に説明するが、本発明は以下の実施例のみに限定されるものではない。尚、各特性の評価方法は下記のとおりであり、得られた物性を以下の表1に示す。以下、不織布製造における流れ方向をMD方向、その方向と直角方向で巾方向をCD方向という。   Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited to only the following Examples. In addition, the evaluation method of each characteristic is as follows, and the obtained physical properties are shown in Table 1 below. Hereinafter, the flow direction in the production of the nonwoven fabric is referred to as the MD direction, and the width direction perpendicular to the MD direction is referred to as the CD direction.

1.平均繊維径(μm)
不織布のCD方向に5等分して1cm角の試験片を採取し、キーエンス社製マイクロスコープVHX−700Fで繊維の直径を各20点ずつ測定し、その平均値を算出した。
1. Average fiber diameter (μm)
A 1 cm square test piece was sampled by dividing the nonwoven fabric into five equal parts in the CD direction, and the diameter of each fiber was measured at 20 points each using a Keyence microscope VHX-700F, and the average value was calculated.

2.不織布の目付(g/m
JIS−L1906に準じ、MD方向20cm×CD方向5cmの試験片を不織布のCD方向に採取位置が均等になるように5枚採取して質量を測定し、その平均値を単位面積あたりの重量に換算して目付(g/m)として求めた。
2. Nonwoven fabric weight (g / m 2 )
According to JIS-L1906, five test pieces of 20 cm in the MD direction and 5 cm in the CD direction were sampled in the CD direction of the nonwoven fabric so that the sampling positions were equal, and the mass was measured. The average value was calculated as the weight per unit area. It was calculated as the basis weight (g / m 2 ).

3.不織布の無荷重時の高さ(厚み)(μm)
MD方向4mm×CD方向10mmの試験片を任意に10枚採取し、KEYENCE製SEM(VE−8800)を用いて不織布断面の写真を撮影した。得られた画像は同じKEYENCE製の画像解析ソフトを使用して厚み方向の距離を1画像につき、5点測定し、その平均値を無荷重時の高さ(厚み)(μm)とした。
3. Non-load height (thickness) of non-woven fabric (μm)
Ten test pieces measuring 4 mm in the MD direction and 10 mm in the CD direction were arbitrarily sampled, and a photograph of the cross section of the nonwoven fabric was taken using SEM (VE-8800) manufactured by KEYENCE. Using the same image analysis software manufactured by KEYENCE, the obtained images were measured for five points in the thickness direction for each image, and the average value was taken as the height (thickness) (μm) under no load.

4.不織布表面における最大高さ(μm)
不織布を任意の方向で20mm×20mmの正方形の寸法で切取り採取する。次いでデジタルマイクロスコープKH−8700(ハイロックス製)の3Dプロファイル機能を用いて、この不織布の正方形の各辺方向20mmで各方向に20μm間隔で不織布表面の高さ情報を測定採取する。不織布の正方形の各辺20mm×20mmにおいて得られた高さ情報を100μm毎で区画し、このときの区画した長さを測定基準長さとした。また該区画内での最大値と最小値の差を不織布表面における最大高さとした。この測定手順を模式的に図1に示す。
不織布の無荷重時の高さ(厚み)(μm)に対する不織布表面における最大高さの割合を、最大高さ(μm)/無荷重時の高さ(厚み)(μm)×100により算出した。
さらに不織布の無荷重時の高さ(厚み)に対する最大高さの割合が30%以上である区画数を、該不織布の正方形の各辺方向20mm×20mmにおいて測定基準長さ100μmとして区画された40000区画数で除して、比率(%)を算出した。
4. Maximum height on the surface of non-woven fabric (μm)
The nonwoven fabric is cut out and collected in an arbitrary direction in a square size of 20 mm × 20 mm. Next, using a 3D profile function of a digital microscope KH-8700 (manufactured by Hilox), height information on the surface of the nonwoven fabric is measured and collected at 20 mm in each side direction of the nonwoven fabric square at intervals of 20 μm in each direction. Height information obtained on each side of 20 mm × 20 mm of the square of the nonwoven fabric was sectioned every 100 μm, and the sectioned length at this time was defined as a measurement reference length. The difference between the maximum value and the minimum value in the section was defined as the maximum height on the surface of the nonwoven fabric. This measurement procedure is schematically shown in FIG.
The ratio of the maximum height on the surface of the nonwoven fabric to the height (thickness) (μm) of the nonwoven fabric with no load was calculated by the following formula: maximum height (μm) / height (thickness) with no load (μm) × 100.
Furthermore, the number of sections where the ratio of the maximum height to the height (thickness) of the nonwoven fabric when there is no load is 30% or more is defined as a measurement reference length of 100 μm in each side direction of 20 mm × 20 mm of the square of the nonwoven fabric. The ratio (%) was calculated by dividing by the number of sections.

5.配向指数(X線CT)
MD方向5mm×CD方向5mmの試験片を任意にカットし、画像解析時の視野約3mm×3mmで測定した。測定装置は高分解能3DX線顕微鏡nano3DX(株式会社リガク製)を用い、軽元素でもコントラストが得られる低エネルギー高輝度X線によるCT測定で行った。詳細な条件を以下に示す。
X線ターゲット:Cu
X線管電圧:40kV
X線管電流:30mA
レンズ:1.08μm/pix
ビニング:2
回転角度:180°
投影数:1000枚
露光時間:10秒/枚
カメラ画素数:3300×2500
再構成:Feldkamp法
CT測定により得られた3次元のトモグラムを画像解析し、直交する3軸(x、y、z)の配向性指標Ix、Iy、Izを求めた。主に評価したいサンプルの厚み方向をz方向と一致させた。ここで、配向性指標Ix、Iy、Izとは、x、y、zの各方向から見た繊維表面の面積の和(各方向での繊維表面の延べ投影面積の和)をそれぞれAx、Ay、Azとしたとき、
Ix=Ax/(Ax+Ay+Az)
Iy=Ay/(Ax+Ay+Az)
Iz=Az/(Ax+Ay+Az)
で定義した。Ax、Ay、Azはトモグラムから求めた。この指標においては、値の小さい方向に配向していることになる。また、等方的構造においてはすべて1/3となる。
5. Orientation index (X-ray CT)
A test piece of 5 mm in the MD direction × 5 mm in the CD direction was arbitrarily cut, and measured in a visual field of about 3 mm × 3 mm at the time of image analysis. The measurement was performed using a high-resolution 3DX X-ray microscope nano3DX (manufactured by Rigaku Corporation) and CT measurement using low-energy, high-brightness X-rays capable of obtaining contrast even with light elements. Detailed conditions are shown below.
X-ray target: Cu
X-ray tube voltage: 40 kV
X-ray tube current: 30 mA
Lens: 1.08 μm / pix
Binning: 2
Rotation angle: 180 °
Number of projections: 1000 Exposure time: 10 seconds / frame Number of camera pixels: 3300 × 2500
Reconstruction: Feldkamp method The three-dimensional tomogram obtained by the CT measurement was subjected to image analysis, and orientation indexes Ix, Iy, Iz of three orthogonal axes (x, y, z) were obtained. The thickness direction of the sample to be mainly evaluated was matched with the z direction. Here, the orientation indices Ix, Iy, and Iz are the sum of the area of the fiber surface viewed from each of the x, y, and z directions (the sum of the total projected area of the fiber surface in each direction), Ax, Ay, respectively. , Az,
Ix = Ax / (Ax + Ay + Az)
Iy = Ay / (Ax + Ay + Az)
Iz = Az / (Ax + Ay + Az)
Defined. Ax, Ay, and Az were determined from tomograms. In this index, it is oriented in the direction of smaller value. In the case of an isotropic structure, it is 1/3 in all cases.

6.圧縮仕事量(WC)
CD方向に5点の5cm角の試験片を採取し、カトーテック社製圧縮試験装置(KES−G5)を用いて測定した。試験片を金属製試料台の上に設置し、加圧面積2cmの円形平面を持つ鋼板間で圧縮した。圧縮速度は0.067mm/sで、圧縮最大荷重は3.4kPa(35gf/cm)とした。回復過程も同一速度で測定し、圧縮仕事量の平均値を算出した。
6. Compression work (WC)
Five test pieces of 5 cm square in the CD direction were sampled and measured using a compression tester (KES-G5) manufactured by Kato Tech. The test piece was placed on a metal sample stand and compressed between steel plates having a circular flat surface with a pressurized area of 2 cm 2 . The compression speed was 0.067 mm / s, and the maximum compression load was 3.4 kPa (35 gf / cm 2 ). The recovery process was also measured at the same speed, and the average value of the compression work was calculated.

7.捲縮数(個/2.54cm(インチ))
不織布のCD方向に5等分して5cm角の試験片を採取し、キーエンス社製マイクロスコープVH−Z450にて繊維に荷重がかからない状態で5本の繊維を選んで、長さ1インチ当たりの捲縮数を測定し、その平均値から捲縮数(個/インチ)を算出した。
7. Number of crimps (pcs / 2.54 cm (inch))
A 5 cm square test piece was sampled by dividing the nonwoven fabric in the CD direction by 5 equal parts, and five fibers were selected in a state in which no load was applied to the fibers using a Keyence microscope VH-Z450, and a length per inch was selected. The number of crimps was measured, and the number of crimps (pieces / inch) was calculated from the average value.

8.透水45度傾斜流長値(mm)
45度に傾斜した板上に吸収体としてトイレットペーパー(イトマン株式会社製ハードシングル1R55m)を10枚重ねて、その上に試験布(20cm角)を置いてセットし、布の上方10mmの高さから0.1ccの生理食塩水を滴下した。滴下位置から吸収終了までの生理食塩水が流れ落ちた距離を読み取った。この測定を試験布内で任意に20点行い、その平均値を透水45度傾斜流長値(mm)とした。
8. 45 ° water permeability gradient flow length value (mm)
Ten sheets of toilet paper (Hard Single 1R55m, manufactured by Itoman Co., Ltd.) are stacked on a board inclined at 45 degrees, and a test cloth (20 cm square) is placed on the toilet paper and set, and a height of 10 mm above the cloth is set. , 0.1 cc of physiological saline was added dropwise. The distance from which the physiological saline flowed down from the dropping position to the end of absorption was read. This measurement was arbitrarily performed at 20 points in the test cloth, and the average value thereof was defined as a 45 ° water permeability inclined flow length value (mm).

9.耐久透水指数(%)
吸収体としてトイレットペーパー(イトマン株式会社製ハードシングル1R55m)を10枚重ねて、その上に試験布(20cm×30cm)を置く。さらにその上に直径1.5cmの穴を等間隔に10ヶ所開けたステンレス製の板を置き、それぞれの穴に位置する布の上方10mmの高さから生理食塩水0.3ccを滴下し、3分経過後、再度同様に滴下する。3回目の滴下後、10秒以内に吸収される穴の数(A)を数える。これを同じ試料の40ヶ所について試験し{((A)/(穴10ヶ所×試料40ヶ所)×100)}を3回目透水耐久指数(%)とした。また、継続して4回目の滴下後も3回目と同様に10秒以内に吸収される穴の数(B)を数え、{((B)/(穴10ヶ所×試料40ヶ所)×100)}を4回目透水耐久指数(%)とした。
9. Durability permeability index (%)
Ten sheets of toilet paper (Hard Single 1R55m, manufactured by Itoman Co., Ltd.) are stacked as an absorber, and a test cloth (20 cm × 30 cm) is placed thereon. Further, a stainless steel plate in which 10 holes of 1.5 cm in diameter were opened at equal intervals was placed thereon, and 0.3 cc of physiological saline was dropped from a height of 10 mm above the cloth located in each hole. After a lapse of minutes, the solution is again dropped. After the third drop, the number of holes (A) absorbed within 10 seconds is counted. This was tested at 40 locations of the same sample and {((A) / (10 holes × 40 samples) × 100)} was taken as the third permeability endurance index (%). Also, after the fourth dropping, the number of holes (B) absorbed within 10 seconds is counted as in the third drop, and Δ ((B) / (10 holes × 40 samples) × 100)と し た was taken as the fourth permeability endurance index (%).

10.濡れ戻り指数(g)
吸収体として吸収体の特性を一定化しておくため、特定濾紙(Ahlstrоm社製 GRADE:989)3枚の上に試験布を置く。さらにその上に10cm角で中央に直径25mmの穴を開けた板(約800g)を置き、中央穴の上部25mm高さより、生理食塩水(吸収体重量の3.5倍の液量)を滴下し、吸収させる。次に、試験布の上の板を取り除き、3.5kgの錘(10cm角)をしずかに載せて3分間かけ、吸収体中の液の分布を一定化する。次いで、3.5kgの錘を一旦取り除き、試験布の上に予め秤量した測定用濾紙(HOLLINGSWORTH&VOSE.CONPANY製 ERTMWWSSHEETS 12.5cm角)2枚を速やかに置き、再度3.6kgの錘を静かに載せる。2分後にその測定濾紙の重量増加を秤量する。その増加分の値(g)を濡れ戻り指数とした。
10. Rewetting index (g)
A test cloth is placed on three specific filter papers (GRADE: 989 manufactured by Ahlstrom) in order to keep the characteristics of the absorber as an absorber. A plate (about 800 g) with a 10 cm square hole with a diameter of 25 mm in the center is placed on top of it, and physiological saline (3.5 times the weight of the absorber) is dropped from the height of 25 mm above the center hole. And absorb. Next, the plate on the test cloth is removed, and a 3.5 kg weight (10 cm square) is gently placed thereon for 3 minutes to stabilize the liquid distribution in the absorber. Next, the 3.5 kg weight is once removed, and two filter papers (12.5 cm square, ERTMWWSSHEETS manufactured by HOLLINGSWORTH & VOSE.CONPANY) weighed in advance are quickly placed on the test cloth, and the 3.6 kg weight is gently placed again. . After 2 minutes, the weight gain of the measurement filter paper is weighed. The value (g) of the increase was defined as a rewetting index.

11.透水剤水溶液の塗布量(wt%)
透水付与加工1時間分の透水剤水溶液消費量から下記式にて算出した値を透水剤水溶液の塗布量(wt%)とした。
塗布量(wt%)=透水剤水溶液消費量(g)/{不織布目付(g/m)×幅(m)×加工速度(m/min)×60(min)}×100
11. Application amount of water permeating agent aqueous solution (wt%)
The value calculated by the following equation from the consumption amount of the aqueous solution of the water-permeable agent for one hour of the water-permeable imparting process was defined as the application amount (wt%) of the aqueous solution of the water-permeable agent.
Coating amount (wt%) = consumption amount of aqueous permeating agent solution (g) / {non-woven fabric weight (g / m 2 ) × width (m) × processing speed (m / min) × 60 (min)} × 100

12.透水剤純分付着量(wt%)
25℃×40%RHの温湿度で24時間調湿した透水剤が付着した不織布試料の重量(W1)およびについて、この不織布試料からメタノールを用いて、ソックスレー抽出した、透水剤の重量(W2)を測定し、透水剤純分付着量C(wt%)を下記の式より求めた。
C(wt%)=[W2/W1]×100
不織布試料のサンプリングはMD方向に30cm間隔で5ヶ所、CD方向に不織布の巾内で等間隔に5ヶ所から、切取り巾が5cm〜10cm範囲で不織布試料が約2gとなるような長さで切取り、合計10枚の試験布を採取する。上記測定を行ない、それらの平均値を透水剤純分付着量(wt%)とした。
12. Amount of pure water permeant (wt%)
The weight (W1) of the nonwoven fabric sample to which the water-permeable agent was conditioned at a temperature and humidity of 25 ° C. × 40% RH for 24 hours and the weight (W2) of the water-permeable agent obtained by Soxhlet extraction from this nonwoven fabric sample using methanol. Was measured, and the attached amount C (wt%) of the pure water-permeable agent was determined by the following equation.
C (wt%) = [W2 / W1] × 100
Sampling of the nonwoven fabric sample is performed at 5 locations at 30 cm intervals in the MD direction and 5 locations at equal intervals within the width of the nonwoven fabric in the CD direction at a length such that the nonwoven fabric sample is about 2 g in a range of 5 cm to 10 cm. , A total of 10 test cloths are collected. The above measurements were performed, and the average value thereof was defined as the amount of pure water permeating agent attached (wt%).

13.分散
不織布を50cm×50cmで採取し、目視判定によって不織布の見栄えの以下の評価基準で等級づけした。分散の評価の観点は、筋状など斑に規則性がないか、単糸が均一に広がっているか(塊状になっていないか)とした。等級が高いほど、分散は良好であることを示す。
5:非常に良い
4:良い
3:通常(製品として使用可能なレベル)
2:悪い
1:非常に悪い
13. Dispersion The nonwoven fabric was sampled at 50 cm × 50 cm, and the appearance of the nonwoven fabric was rated by visual evaluation according to the following evaluation criteria. From the viewpoint of the evaluation of the dispersion, it was determined whether the spots such as streaks had no regularity, and whether the single yarns were uniformly spread (whether or not they were clumped). Higher grades indicate better dispersion.
5: Very good 4: Good 3: Normal (level that can be used as a product)
2: Bad 1: Very bad

[実施例1]
MFRが55g/10分(JIS−K7210に準じ、温度230℃、荷重2.16kgで測定)のポリプロピレン(PP)樹脂を第1成分とし、MIが26g/10分(JIS−K7210に準じ、温度190℃、荷重2.16kgで測定)の高密度ポリエチレン(HDPE)樹脂を第2成分とし、第1成分の吐出量が0.4g/分・hоle、第2成分の吐出量が0.4g/分・hоleで全吐出量が0.8g/分・hоleであり、第1成分と第2成分の比が1/1となる繊維をスパンボンド法により紡糸温度220℃で押出し、このフィラメント群をエアジェットによる高速気流牽引装置を使用して紡速3200m/minで、移動捕集面に向けて押出し平均繊維径17.9μmの偏芯鞘芯型複合長繊維ウェブを調製した。
次いで、得られたウェブを熱風温度142℃、熱風風速0.7m/sの熱風により繊維同士を接着し、目付18g/m、捲縮数15個/インチの複合長繊維不織布を得た。
次いで、得られた不織布に透水剤水溶液として、ヘキサグリセリンモノステアリン酸エステル、ポリエーテル変性シリコーンとポリオキシアルキレンひまし油エーテルの混合物からなる透水剤の3wt%水溶液を、液温20℃、液粘度3.2mPa・sに調整し、塗布量が10wt%となるように、ローターダンプニング方式にて上記不織布に塗布した。使用したローターの直径は80mmであり、各ローターは、CD方向に115mm間隔、塗布する不織布とのローター中心の距離を180mmとなるように配置した。また、ローター回転数を調整し、噴霧される透水剤水溶液の噴霧粒子径が35μmとなるようにした。
得られた不織布の表面における測定基準長さを100μmとしたときの区画内での最大高さが、不織布の無荷重時の高さ(厚み)に対し30%以上である区画の比率は85%であり、不織布の透水45度傾斜流長値は16mm、4回目耐久透水指数は99%であり、濡れ戻り指数は0.12gであった。結果を以下の表1に示す。
[Example 1]
A polypropylene (PP) resin having an MFR of 55 g / 10 minutes (measured at a temperature of 230 ° C. and a load of 2.16 kg according to JIS-K7210) is used as the first component, and an MI of 26 g / 10 minutes (temperature according to JIS-K7210) A high-density polyethylene (HDPE) resin (measured at 190 ° C. under a load of 2.16 kg) is used as the second component, and the discharge amount of the first component is 0.4 g / min · hole and the discharge amount of the second component is 0.4 g / min. A fiber having a total discharge amount of 0.8 g / min · hole in minute / hole and a ratio of the first component to the second component of 1/1 is extruded at a spinning temperature of 220 ° C. by a spun bond method. An eccentric sheath-core composite long fiber web having an average fiber diameter of 17.9 μm was prepared by extruding the moving collection surface at a spinning speed of 3200 m / min using a high-speed airflow traction device using an air jet.
Then, the fibers of the obtained web were bonded to each other by hot air at a hot air temperature of 142 ° C. and a hot air speed of 0.7 m / s to obtain a composite long-fiber nonwoven fabric having a basis weight of 18 g / m 2 and a number of crimps of 15 pieces / inch.
Next, a 3 wt% aqueous solution of a water-permeable agent comprising a mixture of hexaglycerin monostearate, a polyether-modified silicone and a polyoxyalkylene castor oil ether was used as the water-permeable agent aqueous solution in the obtained nonwoven fabric at a liquid temperature of 20 ° C. and a liquid viscosity of 3. It was adjusted to 2 mPa · s, and applied to the nonwoven fabric by a rotor dampening method so that the application amount was 10 wt%. The diameter of the rotor used was 80 mm, and each rotor was arranged at intervals of 115 mm in the CD direction such that the distance between the center of the rotor and the nonwoven fabric to be applied was 180 mm. Further, the number of rotations of the rotor was adjusted so that the spray particle size of the sprayed water-permeable agent aqueous solution was 35 μm.
The percentage of the section where the maximum height in the section when the measurement reference length is 100 μm on the surface of the obtained nonwoven fabric is 30% or more of the height (thickness) of the nonwoven fabric when no load is applied is 85%. The 45-degree inclined flow length value of the nonwoven fabric was 16 mm, the fourth durable water permeability index was 99%, and the rewetting index was 0.12 g. The results are shown in Table 1 below.

[実施例2]
実施例1と同様の方法で、平均繊維径17.9μm、目付10g/m、捲縮数15個/インチの偏芯鞘芯型複合長繊維不織布を得た。次いで、得られた複合長繊維不織布に実施例1と同様の透水剤水溶液を同様の塗工条件で塗布した。
得られた不織布の表面における測定基準長さを100μmとしたときの区画内での最大高さが、不織布の無荷重時の高さ(厚み)に対し30%以上である区画の比率は87%であり、不織布の透水45度傾斜流長値は14mmであり、4回目耐久透水指数は99%であり、濡れ戻り指数は0.50gであった。結果を以下の表1に示す。
[Example 2]
In the same manner as in Example 1, an eccentric sheath-core composite long-fiber nonwoven fabric having an average fiber diameter of 17.9 μm, a basis weight of 10 g / m 2 , and a number of crimps of 15 pieces / inch was obtained. Next, the same aqueous permeating agent solution as in Example 1 was applied to the obtained composite long-fiber nonwoven fabric under the same application conditions.
The ratio of the section in which the maximum height in the section when the measurement reference length on the surface of the obtained nonwoven fabric is 100 μm is 30% or more of the height (thickness) of the nonwoven fabric when no load is applied is 87%. The 45 ° water permeability inclined flow length value of the nonwoven fabric was 14 mm, the fourth durable water permeability index was 99%, and the rewetting index was 0.50 g. The results are shown in Table 1 below.

[実施例3]
第1成分の吐出量が0.54g/分・hоle、第2成分の吐出量が0.26g/分・hоleで全吐出量が0.80g/分・hоleであり、第1成分と第2成分の比が約2/1とする以外は実施例1と同様の方法で、平均繊維径が17.9μmの偏芯鞘芯型複合長繊維ウェブを調製した。
得られた偏芯鞘芯型複合長繊維ウェブを熱風温度145℃、熱風風速1.0m/sの熱風により、繊維同士を接着し、目付18g/m、捲縮数10個/インチの複合長繊維不織布を得た。
次いで、得られた複合長繊維不織布に、実施例1と同様の透水剤水溶液を同様の塗工条件で塗布した。
得られた不織布の表面における測定基準長さを100μmとしたときの区画内での最大高さが、不織布の無荷重時の高さ(厚み)に対し30%以上である区画の比率は74%であり、不織布の透水45度傾斜流長値は16mmであり、4回目耐久透水指数は99%であり、濡れ戻り指数は0.12gであった。結果を以下の表1に示す。
[Example 3]
The discharge amount of the first component is 0.54 g / min · hole, the discharge amount of the second component is 0.26 g / min · hole, and the total discharge amount is 0.80 g / min · hole. An eccentric sheath-core composite long fiber web having an average fiber diameter of 17.9 μm was prepared in the same manner as in Example 1 except that the ratio of the components was about 2/1.
The obtained eccentric sheath-core type composite long fiber web is bonded to each other by hot air at a hot air temperature of 145 ° C. and a hot air speed of 1.0 m / s to form a composite having a basis weight of 18 g / m 2 and a number of crimps of 10 / inch. A long-fiber nonwoven fabric was obtained.
Next, the same water-permeable agent aqueous solution as in Example 1 was applied to the obtained composite long-fiber nonwoven fabric under the same coating conditions.
The ratio of the section where the maximum height in the section when the measurement reference length on the surface of the obtained nonwoven fabric is 100 μm is 30% or more of the height (thickness) of the nonwoven fabric when no load is applied is 74%. The 45-degree inclined flow length value of the nonwoven fabric was 16 mm, the fourth durable permeability index was 99%, and the rewetting index was 0.12 g. The results are shown in Table 1 below.

[実施例4]
実施例3と同様の方法で、平均繊維径17.9μm、目付18g/m、捲縮数10個/インチの複合長繊維不織布を得た。
得られた複合長繊維不織布に、グラビア塗工方式で透水剤の1wt%水溶液を、液温20℃、液濃度2.3mPa・sに調整し、塗布量が30wt%となるように、斜線柄120メッシュ、セル容積22cm/mのグラビアロールを用いて塗布し、次いで、120℃のシリンダードライヤーに通して乾燥させ巻き取った。
得られた不織布の表面における測定基準長さを100μmとしたときの区画内での最大高さが、不織布の無荷重時の高さ(厚み)に対し30%以上である区画の比率は70%であり、不織布の透水45度傾斜流長値は17mmであり、4回目耐久透水指数は97%であり、濡れ戻り指数は0.22gであった。結果を以下の表1に示す。
[Example 4]
In the same manner as in Example 3, a composite long-fiber nonwoven fabric having an average fiber diameter of 17.9 μm, a basis weight of 18 g / m 2 , and a number of crimps of 10 / inch was obtained.
A 1 wt% aqueous solution of a water-permeable agent is adjusted to the obtained composite long-fiber nonwoven fabric by a gravure coating method at a liquid temperature of 20 ° C. and a liquid concentration of 2.3 mPa · s. The coating was performed using a gravure roll having a mesh size of 120 mesh and a cell volume of 22 cm 3 / m 2 , and then dried and wound up through a cylinder dryer at 120 ° C.
The ratio of the section where the maximum height in the section when the measurement reference length is 100 μm on the surface of the obtained nonwoven fabric is 30% or more of the height (thickness) of the nonwoven fabric when no load is applied is 70%. The 45-degree inclined flow length value of the nonwoven fabric was 17 mm, the fourth durable permeability index was 97%, and the rewetting index was 0.22 g. The results are shown in Table 1 below.

[実施例5]
第1成分を実施例1と同様のポリプロピレン樹脂、第2成分をMIが16.8g/10分(JIS‐K7210に準じ、温度190℃、荷重2.16kgで測定)の直鎖状低密度ポリエチレン(LLDPE)樹脂とし、第1成分の吐出量が0.54g/分・hоle、第2成分の吐出量が0.26g/分・hоleで全吐出量が0.8g/分・hоleであり、第1成分と第2成分の比が約2/1となる繊維をスパンボンド法により紡糸温度220℃で押出し、このフィラメント群をエアジェットによる高速気流牽引装置を使用して移動捕集面に向けて押出し、平均繊維径20.5μmの偏芯鞘芯型長繊維ウェブを調製した。
得られた偏芯鞘芯型長繊維ウェブを熱風温度150℃、熱風風速0.3m/sの熱風により繊維同士を接着し、目付18g/m、捲縮数40個/インチの複合長繊維不織布を得た。
次いで、得られた複合長繊維不織布に、実施例1と同様の透水剤水溶液を同様の塗工条件で塗布した。
得られた不織布の表面における測定基準長さを100μmとしたときの区画内での最大高さが、不織布の無荷重時の高さ(厚み)に対し30%以上である区画の比率は92%であり、不織布の透水45度傾斜流長値は15mmであり、4回目耐久透水指数は99%であり、濡れ戻り指数は0.35gであった。結果を以下の表1に示す。
[Example 5]
The first component is the same polypropylene resin as in Example 1, and the second component is a linear low-density polyethylene having an MI of 16.8 g / 10 min (measured at a temperature of 190 ° C. and a load of 2.16 kg according to JIS-K7210). (LLDPE) resin, the discharge amount of the first component is 0.54 g / min · hole, the discharge amount of the second component is 0.26 g / min · hole, and the total discharge amount is 0.8 g / min · hole. A fiber having a ratio of the first component to the second component of about 2/1 is extruded at a spinning temperature of 220 ° C. by a spun bond method, and the filament group is directed to a moving collecting surface by using a high-speed airflow traction device by an air jet. And extruded to prepare an eccentric sheath-core type long fiber web having an average fiber diameter of 20.5 μm.
The obtained eccentric sheath-core long-fiber web is bonded to each other by hot air at a hot air temperature of 150 ° C. and a hot air velocity of 0.3 m / s to form a composite long fiber having a basis weight of 18 g / m 2 and a number of crimps of 40 pieces / inch. A non-woven fabric was obtained.
Next, the same water-permeable agent aqueous solution as in Example 1 was applied to the obtained composite long-fiber nonwoven fabric under the same coating conditions.
The ratio of the section in which the maximum height in the section when the measurement reference length on the surface of the obtained nonwoven fabric is 100 μm is 30% or more of the height (thickness) of the nonwoven fabric when no load is applied is 92%. The 45-degree inclined flow length value of the nonwoven fabric was 15 mm, the fourth durable permeability index was 99%, and the rewetting index was 0.35 g. The results are shown in Table 1 below.

[実施例6]
実施例5と同様の方法で、平均繊維径20.5μm、目付18g/m、捲縮数40個/インチの偏芯鞘芯型複合長繊維不織布を得た。次いで、得られた複合長繊維不織布に、透水剤水溶液の濃度を5wt%とした以外は実施例1と同様の透水剤水溶液を、同様の塗工条件で塗布した。
得られた不織布の表面における測定基準長さを100μmとしたときの区画内での最大高さが、不織布の無荷重時の高さ(厚み)に対し30%以上である区画の比率は92%であり、不織布の透水45度傾斜流長値は13mmであり、4回目耐久透水指数は99%であり、濡れ戻り指数は0.47gであった。結果を以下の表1に示す。
[Example 6]
In the same manner as in Example 5, an eccentric sheath-core composite long-fiber nonwoven fabric having an average fiber diameter of 20.5 μm, a basis weight of 18 g / m 2 , and a number of crimps of 40 pieces / inch was obtained. Next, the same water-permeable agent aqueous solution as in Example 1 was applied to the obtained composite long-fiber nonwoven fabric under the same application conditions except that the concentration of the water-permeable agent aqueous solution was 5 wt%.
The ratio of the section in which the maximum height in the section when the measurement reference length on the surface of the obtained nonwoven fabric is 100 μm is 30% or more of the height (thickness) of the nonwoven fabric when no load is applied is 92%. The 45 ° water permeability inclined flow length value of the nonwoven fabric was 13 mm, the fourth durable water permeability index was 99%, and the wettability index was 0.47 g. The results are shown in Table 1 below.

[実施例7]
実施例1と同様の方法で、平均繊維径17.9μmの偏芯鞘芯型複合長繊維ウェブを調整した。
次いで、得られた偏芯鞘芯型複合長繊維不織ウェブを100℃のフラットロールとエンボスロール(パターン仕様:直径1.00mm円形、千鳥配列、横ピッチ4.4mm、縦ピッチ4.4mm、圧着面積率7.9%)の間に通して繊維同士を仮接着し、次いで、熱風温度142℃、熱風風速0.7m/sの熱風により繊維同士を接着し、目付18g/m、捲縮数17個/インチの複合長繊維不織布を得た。
次いで、得られた複合長繊維不織布に、実施例1と同様の透水剤水溶液を同様の塗工条件で塗布した。
得られた不織布の表面における測定基準長さを100μmとしたときの区画内での最大高さが、不織布の無荷重時の高さ(厚み)に対し30%以上である区画の比率は72%であり、不織布の透水45度傾斜流長値は18mmであり、4回目耐久透水指数は95%であり、濡れ戻り指数は0.18gであった。結果を以下の表1に示す。
[Example 7]
An eccentric sheath-core composite continuous fiber web having an average fiber diameter of 17.9 μm was prepared in the same manner as in Example 1.
Next, the obtained eccentric sheath-core type composite long fiber nonwoven web was flat rolled and embossed at 100 ° C. (pattern specifications: 1.00 mm diameter circle, staggered arrangement, horizontal pitch 4.4 mm, vertical pitch 4.4 mm, (The pressure-bonding area ratio is 7.9%), and the fibers are temporarily bonded to each other. Then, the fibers are bonded to each other by hot air at a hot air temperature of 142 ° C. and a hot air speed of 0.7 m / s, and the basis weight is 18 g / m 2 . A composite long-fiber nonwoven fabric with a shrinkage of 17 pieces / inch was obtained.
Next, the same water-permeable agent aqueous solution as in Example 1 was applied to the obtained composite long-fiber nonwoven fabric under the same coating conditions.
The ratio of the section where the maximum height in the section when the measurement reference length on the surface of the obtained nonwoven fabric is 100 μm is 30% or more with respect to the height (thickness) of the nonwoven fabric under no load is 72%. The 45-degree inclined flow length value of the nonwoven fabric was 18 mm, the fourth durable permeability index was 95%, and the rewetting index was 0.18 g. The results are shown in Table 1 below.

[実施例8]
実施例7と同様の方法で、平均繊維径17.9μm、目付8g/m、捲縮数17個/インチの偏芯鞘芯型複合長繊維不織布を得た。次いで、得られた複合長繊維不織布に、実施例1と同様の透水剤水溶液を同様の塗工条件で塗布した。
得られた不織布の表面における測定基準長さを100μmとしたときの区画内での最大高さが、不織布の無荷重時の高さ(厚み)に対し30%以上である区画の比率は74%であり、不織布の透水45度傾斜流長値は16mmであり、4回目耐久透水指数は97%であり、濡れ戻り指数は0.42gであった。結果を以下の表1に示す。
Example 8
In the same manner as in Example 7, an eccentric sheath-core composite long-fiber nonwoven fabric having an average fiber diameter of 17.9 μm, a basis weight of 8 g / m 2 , and a crimp count of 17 / inch was obtained. Next, the same water-permeable agent aqueous solution as in Example 1 was applied to the obtained composite long-fiber nonwoven fabric under the same coating conditions.
The ratio of the section where the maximum height in the section when the measurement reference length on the surface of the obtained nonwoven fabric is 100 μm is 30% or more of the height (thickness) of the nonwoven fabric when no load is applied is 74%. The 45-degree inclined flow length value of the nonwoven fabric was 16 mm, the fourth durable water permeability index was 97%, and the rewetting index was 0.42 g. The results are shown in Table 1 below.

[実施例9]
実施例1と同様の成分を用いて、第1成分の吐出量が0.40g/分・hоle、第2成分の吐出量が0.40g/分・hоleで全吐出量が0.8g/分・hоleであり、第1成分と第2成分の比が1/1となる繊維をスパンボンド法により紡糸温度220℃で押出した。このフィラメント群をエアジェットによる高速気流牽引装置を使用して紡速3200m/minで移動捕集面に向けて押出し、平均繊維径17.9μmのサイドバイサイド型複合長繊維ウェブを調製した。
次いで、得られたサイドバイサイド型複合長繊維ウェブを実施例7と同様にして繊維同士を接着させ、目付18g/m、捲縮数23個/インチの複合長繊維不織布を得た。次いで得られた複合長繊維不織布に、実施例1と同様の透水剤水溶液を同様の塗工条件で塗布した。
得られた不織布の表面における測定基準長さを100μmとしたときの区間内での最大高さが、不織布の無荷重状態の高さ(厚み)に対し30%以上である区画の比率は76%であり、不織布の透水45度傾斜流長値は15mmであり、4回目耐久透水指数は99%であり、濡れ戻り指数は0.15gであった。結果を以下の表1に示す。
[Example 9]
Using the same components as in Example 1, the discharge amount of the first component is 0.40 g / min · hole, the discharge amount of the second component is 0.40 g / min · hole, and the total discharge amount is 0.8 g / min. A fiber which was hollow and had a ratio of the first component to the second component of 1/1 was extruded at a spinning temperature of 220 ° C. by a spun bond method. This filament group was extruded at a spinning speed of 3200 m / min toward a moving collection surface by using a high-speed airflow traction device using an air jet to prepare a side-by-side type composite continuous fiber web having an average fiber diameter of 17.9 μm.
Next, the obtained side-by-side type composite continuous fiber web was adhered to each other in the same manner as in Example 7 to obtain a composite continuous fiber nonwoven fabric having a basis weight of 18 g / m 2 and a crimp count of 23 pieces / inch. Next, the same aqueous permeating agent solution as in Example 1 was applied to the obtained composite long-fiber nonwoven fabric under the same coating conditions.
The ratio of the section where the maximum height in the section when the measurement reference length on the surface of the obtained nonwoven fabric is 100 μm is 30% or more of the height (thickness) of the nonwoven fabric in the unloaded state is 76%. The 45-degree inclined flow length value of the nonwoven fabric was 15 mm, the fourth durable permeability index was 99%, and the rewetting index was 0.15 g. The results are shown in Table 1 below.

[実施例10]
第1成分を溶液粘度ηsp/c0.75のポリエチレンテレフタレート(PET)とし、第2成分を実施例1と同様の高密度ポリエチレン(HDPE)とし、第1成分の吐出量が0.54g/分・hоle、第2成分の吐出量が0.26g/分・hоleで、全吐出量が0.80g/分・hоleであり、第1成分と第2成分の比が約2/1となる繊維をスパンボンド法により紡糸温度295℃で押出し、このフィラメント群をエアジェットによる高速気流牽引装置を使用して移動捕集面に向けて押出し、平均繊維径18.7μmの偏芯鞘芯型複合長繊維ウェブを調製した。
得られた偏芯鞘芯型複合長繊維ウェブを実施例1と同様に繊維同士を接着し、目付18g/m、捲縮数20個/インチの複合長繊維不織布を得た。
次いで、得られた複合長繊維不織布に実施例1と同様の透水剤水溶液を同様の塗工条件で塗布した。
得られた不織布の表面における測定基準長さを100μmとしたときの区画内での最大高さが、不織布の無荷重時の高さ(厚み)に対し30%以上である区画の比率は87%であり、不織布の透水45度傾斜流長値は15mmであり、4回目耐久透水指数は99%であり、濡れ戻り指数は0.15gであった。結果を以下の表1に示す。
Example 10
The first component was polyethylene terephthalate (PET) having a solution viscosity ηsp / c of 0.75, the second component was high density polyethylene (HDPE) as in Example 1, and the discharge rate of the first component was 0.54 g / min. When the discharge amount of the hole and the second component is 0.26 g / min · hole, the total discharge amount is 0.80 g / min · hole, and the ratio of the first component to the second component is about 2/1. The filaments are extruded at a spinning temperature of 295 ° C. by a spun bond method, and the filaments are extruded toward a moving collecting surface using a high-speed airflow traction device by an air jet, and the eccentric sheath-core composite filament having an average fiber diameter of 18.7 μm. A web was prepared.
The obtained eccentric sheath-core composite continuous fiber web was bonded to the fibers in the same manner as in Example 1 to obtain a composite continuous fiber nonwoven fabric having a basis weight of 18 g / m 2 and a crimp count of 20 pieces / inch.
Next, the same aqueous permeating agent solution as in Example 1 was applied to the obtained composite long-fiber nonwoven fabric under the same application conditions.
The ratio of the section in which the maximum height in the section when the measurement reference length on the surface of the obtained nonwoven fabric is 100 μm is 30% or more of the height (thickness) of the nonwoven fabric when no load is applied is 87%. The 45-degree inclined flow length value of the nonwoven fabric was 15 mm, the fourth durable permeability index was 99%, and the rewetting index was 0.15 g. The results are shown in Table 1 below.

[実施例11]
実施例1と同様の成分を用いて、第1成分の吐出量が0.24g/分・hоle、第2成分の吐出量が0.56g/分・hоleで全吐出量が0.8g/分・hоleであり、第1成分と第2成分の比が3/7とする以外は、実施例1と同様の方法で、平均繊維径17.9μmの偏芯鞘芯型複合長繊維ウェブを調製した。
得られた偏芯鞘芯型複合長繊維ウェブを実施例1と同様に繊維同士を接着し、目付18g/m、捲縮数17個/インチの複合長繊維不織布を得た。次いで、得られた複合長繊維不織布に、実施例4と同様の透水剤水溶液を同様の塗工条件で塗布した。
得られた不織布の表面における測定基準長さを100μmとしたときの区間内での最大高さが、不織布の無荷重状態の高さ(厚み)に対し30%以上である区画の比率は70%であり、不織布の透水45度傾斜流長値は18mmであり、4回目耐久透水指数は95%であり、濡れ戻り指数は0.18gであった。結果を以下の表1に示す。
[Example 11]
Using the same components as in Example 1, the discharge amount of the first component is 0.24 g / min · hole, the discharge amount of the second component is 0.56 g / min · hole, and the total discharge amount is 0.8 g / min. An eccentric sheath-core type composite continuous fiber web having an average fiber diameter of 17.9 μm is prepared in the same manner as in Example 1 except that the mixture is hollow and the ratio of the first component to the second component is 3/7. did.
The obtained eccentric sheath-core type composite continuous fiber web was bonded to each other in the same manner as in Example 1 to obtain a composite continuous fiber nonwoven fabric having a basis weight of 18 g / m 2 and a crimp count of 17 pieces / inch. Next, the same water-permeable agent aqueous solution as in Example 4 was applied to the obtained composite long-fiber nonwoven fabric under the same coating conditions.
The ratio of the section where the maximum height in the section when the measurement reference length on the surface of the obtained nonwoven fabric is 100 μm is 30% or more of the height (thickness) of the nonwoven fabric in the unloaded state is 70%. The 45-degree inclined flow length value of the nonwoven fabric was 18 mm, the fourth durable permeability index was 95%, and the rewetting index was 0.18 g. The results are shown in Table 1 below.

[実施例12]
実施例1と同様の成分を用いて、第1成分の吐出量が0.16g/分・hоle、第2成分の吐出量が0.64g/分・hоleで全吐出量が0.8g/分・hоleであり、第1成分と第2成分の比が1:4とする以外は、実施例1と同様の方法で、平均繊維径18.7μmの偏芯鞘芯型複合長繊維ウェブを調製した。
得られた偏芯鞘芯型複合長繊維ウェブを実施例1と同様に繊維同士を接着し、目付18g/m、捲縮数5個/インチの複合長繊維不織布を得た。次いで、得られた複合長繊維不織布に実施例1と同様の透水剤水溶液を同様の塗工条件で塗布した。
得られた不織布の表面における測定基準長さを100μmとしたときの区間内での最大高さが、不織布の無荷重状態の高さ(厚み)に対し30%以上である区画の比率は52%であり、不織布の透水45度傾斜流長値は22mmであり、4回目耐久透水指数は85%であり、濡れ戻り指数は0.45gであった。結果を以下の表1に示す。
[Example 12]
Using the same components as in Example 1, the discharge amount of the first component is 0.16 g / min · hole, the discharge amount of the second component is 0.64 g / min · hole, and the total discharge amount is 0.8 g / min. An eccentric sheath-core composite continuous fiber web having an average fiber diameter of 18.7 μm is prepared in the same manner as in Example 1 except that the mixture is hollow and the ratio of the first component to the second component is 1: 4. did.
The obtained eccentric sheath-core type composite continuous fiber web was bonded to each other in the same manner as in Example 1 to obtain a composite continuous fiber nonwoven fabric having a basis weight of 18 g / m 2 and a crimp count of 5 pieces / inch. Next, the same aqueous permeating agent solution as in Example 1 was applied to the obtained composite long-fiber nonwoven fabric under the same application conditions.
The ratio of the section where the maximum height in the section when the measurement reference length on the surface of the obtained nonwoven fabric is 100 μm is 30% or more of the height (thickness) of the nonwoven fabric in the unloaded state is 52%. The 45 ° -permeability inclined flow length value of the nonwoven fabric was 22 mm, the fourth durable water permeability index was 85%, and the wet-back index was 0.45 g. The results are shown in Table 1 below.

[実施例13]
実施例1と同様の成分を用いて、第1成分の吐出量が0.40g/分・hоle、第2成分の吐出量が0.40g/分・hоleで全吐出量が0.8g/分・hоleであり、第1成分と第2成分の比が1:1となる繊維をスパンボンド法により紡糸温度220℃で押出した。押出したフィラメントは、移動捕集面の吸引力を利用して牽引ゾーン内で延伸させた後、ディフューザーを通し移動捕集面に堆積させて、平均繊維径20.5μmのサイドバイサイド型複合長繊維ウェブを調製した。
次いで、得られたサイドバイサイド型複合長繊維ウェブを実施例1と同様にして繊維同士を接着させ、目付18g/m、捲縮数25個/インチの複合長繊維不織布を得た。次いで得られた複合長繊維不織布に実施例1と同様の透水剤水溶液を同様の塗工条件で塗布した。
得られた不織布の表面における測定基準長さを100μmとしたときの区間内での最大高さが、不織布の無荷重状態の高さ(厚み)に対し30%以上である区画の比率は90%であり、不織布の透水45度傾斜流長値は14mmであり、4回目耐久透水指数は99%であり、濡れ戻り指数は0.17gであった。結果を以下の表1に示す。
Example 13
Using the same components as in Example 1, the discharge amount of the first component is 0.40 g / min · hole, the discharge amount of the second component is 0.40 g / min · hole, and the total discharge amount is 0.8 g / min. A fiber which was hollow and had a ratio of the first component to the second component of 1: 1 was extruded at a spinning temperature of 220 ° C. by a spun bond method. The extruded filaments are drawn in the traction zone by using the suction force of the moving collecting surface, and then are deposited on the moving collecting surface through a diffuser to form a side-by-side composite long fiber web having an average fiber diameter of 20.5 μm. Was prepared.
Then, the obtained side-by-side type composite continuous fiber web was bonded to each other in the same manner as in Example 1 to obtain a composite continuous fiber nonwoven fabric having a basis weight of 18 g / m 2 and a crimp count of 25 pieces / inch. Next, the same water-permeable agent aqueous solution as in Example 1 was applied to the obtained composite long-fiber nonwoven fabric under the same coating conditions.
The proportion of the section in which the maximum height in the section when the measurement reference length on the surface of the obtained nonwoven fabric is 100 μm is 30% or more of the height (thickness) of the nonwoven fabric in the unloaded state is 90%. The 45 ° -permeability inclined flow length value of the nonwoven fabric was 14 mm, the fourth durable water-permeability index was 99%, and the rewetting index was 0.17 g. The results are shown in Table 1 below.

[実施例14]
実施例13と同様の方法で、平均繊維径20.5μm、目付30g/m、捲縮数25個/インチの偏芯鞘芯型複合長繊維不織布を得た。次いで、得られた複合長繊維不織布に実施例1と同様の透水剤水溶液を同様の塗工条件で塗布した。
得られた不織布の表面における測定基準長さを100μmとしたときの区画内での最大高さが、不織布の無荷重時の高さ(厚み)に対し30%以上である区画の比率は89%であり、不織布の透水45度傾斜流長値は14mmであり、4回目耐久透水指数は99%であり、濡れ戻り指数は0.12gであった。結果を以下の表1に示す。
[Example 14]
In the same manner as in Example 13, an eccentric sheath-core composite long-fiber nonwoven fabric having an average fiber diameter of 20.5 μm, a basis weight of 30 g / m 2 , and a crimp count of 25 / inch was obtained. Next, the same aqueous permeating agent solution as in Example 1 was applied to the obtained composite long-fiber nonwoven fabric under the same application conditions.
The ratio of the section where the maximum height in the section when the measurement reference length on the surface of the obtained nonwoven fabric is 100 μm is 30% or more of the height (thickness) of the nonwoven fabric when no load is applied is 89%. The 45 ° water permeability inclined flow length value of the nonwoven fabric was 14 mm, the fourth durable water permeability index was 99%, and the rewetting index was 0.12 g. The results are shown in Table 1 below.

[実施例15]
MFRが38g/10分のポリプロピレン(PP)を、ハ型異型ノズルを配置した紡糸口金を用いて紡糸温度240℃、吐出量が0.80g/分・hоleで押出し、このフィラメント群をエアジェットによる高速気流牽引装置を使用して、移動捕集面に向けて押出し、平均繊維径18.7μmの長繊維ウェブを得た。
次いで、得られた長繊維ウェブを温度135℃、圧力60kg/cmに設定したフラットロールとエンボスロール(パターン仕様:直径0.425mm円形、千鳥配列、横ピッチ2.1mm、縦ピッチ1.1mm、圧着面積率6.3%)の間に通して繊維同士を部分的に接着し、目付25g/m、捲縮数28個/インチの長繊維不織布を得た。
次いで得られた長繊維不織布に実施例4と同様の透水剤水溶液を同様の塗工条件で塗布した。
得られた不織布の表面における測定基準長さを100μmとしたときの区画内での最大高さが、不織布の無荷重時の高さ(厚み)に対し30%以上である区画の比率は55%であり、不織布の透水45度傾斜流長値は23mmであり、4回目耐久透水指数は89%であり、濡れ戻り指数は0.12gであった。結果を以下の表1に示す。
[Example 15]
Polypropylene (PP) having an MFR of 38 g / 10 min is extruded at a spinning temperature of 240 ° C. and a discharge rate of 0.80 g / min · hole using a spinneret having a C-shaped nozzle, and the filament group is air jetted. Using a high-speed airflow traction device, the fiber was extruded toward a moving collection surface to obtain a long fiber web having an average fiber diameter of 18.7 μm.
Then, the obtained long fiber web was flat roll and emboss roll set at a temperature of 135 ° C. and a pressure of 60 kg / cm (pattern specifications: 0.425 mm diameter circle, staggered arrangement, horizontal pitch 2.1 mm, vertical pitch 1.1 mm, The fibers were partially adhered to each other by passing through a press-bonded area ratio of 6.3% to obtain a long-fiber nonwoven fabric having a basis weight of 25 g / m 2 and a crimp count of 28 pieces / inch.
Next, the same water-permeable agent aqueous solution as in Example 4 was applied to the obtained long-fiber nonwoven fabric under the same coating conditions.
The proportion of the section in which the maximum height in the section when the measurement reference length on the surface of the obtained nonwoven fabric is 100 μm is 30% or more of the height (thickness) of the nonwoven fabric when no load is applied is 55%. The 45 ° -permeability inclined flow length value of the nonwoven fabric was 23 mm, the fourth durability water-permeability index was 89%, and the wet-back index was 0.12 g. The results are shown in Table 1 below.

Figure 2020007697
Figure 2020007697

[比較例1]
MFRが55g/10分(JIS−K7210に準じ、温度230℃、荷重2.16kgで測定)のポリプロピレン(PP)樹脂を単成分にてスパンボンド法により紡糸温度220℃で押出し、このフィラメント群をエアジェットによる高速気流牽引装置を使用して、移動捕集面に向けて押し出し、平均繊維径17.9μmの長繊維ウェブを調製した。
次いで、得られたウェブを、141℃のフラットロールとエンボスロール(パターン仕様:直径0.425mm円形、千鳥配列、横ピッチ2.1mm、縦ピッチ1.1mm、圧着面積率6.3%)の間に通して繊維同士を接着し、目付18g/mの繊維が捲縮していない長繊維不織布を得た。
次いで、得られた長繊維不織布に実施例4と同様の透水剤水溶液を同様の塗工条件で塗布した。
得られた不織布の表面における測定基準長さを100μmとしたときの区画内での最大高さが、不織布の無荷重時の高さ(厚み)に対し30%以上である区画の比率は40%であり、不織布の透水45度傾斜流長値は28mmであり、4回目耐久透水指数は74%であり、濡れ戻り指数は0.56gであった。結果を以下の表2に示す。
[Comparative Example 1]
A polypropylene (PP) resin having an MFR of 55 g / 10 minutes (measured at a temperature of 230 ° C. and a load of 2.16 kg according to JIS-K7210) is extruded as a single component at a spinning temperature of 220 ° C. by a spun bond method. Using a high-speed airflow traction device using an air jet, the fiber was extruded toward the moving collecting surface to prepare a long fiber web having an average fiber diameter of 17.9 μm.
Next, the obtained web was subjected to flat roll and emboss roll at 141 ° C. (pattern specification: 0.425 mm diameter circle, staggered arrangement, horizontal pitch 2.1 mm, vertical pitch 1.1 mm, compression area ratio 6.3%). The fibers were adhered to each other through the gap to obtain a long-fiber nonwoven fabric in which a fiber having a basis weight of 18 g / m 2 was not crimped.
Next, the same water-permeable agent aqueous solution as in Example 4 was applied to the obtained long-fiber nonwoven fabric under the same coating conditions.
The ratio of the section in which the maximum height in the section when the measurement reference length on the surface of the obtained nonwoven fabric is 100 μm is 30% or more of the height (thickness) of the nonwoven fabric when no load is applied is 40%. The 45 ° -permeability inclined flow length value of the nonwoven fabric was 28 mm, the fourth durable water permeability index was 74%, and the wet-back index was 0.56 g. The results are shown in Table 2 below.

[比較例2]
比較例1で得た長繊維不織布を、1辺0.9mm、線幅0.1mmの連続ハニカム形状柄(亀甲凹柄)(押付面積率:12.5%、柄ピッチ;タテ2.8mm、ヨコ3.2mm、深さ0.7mm)のエンボスロール(80℃)と表面硬度60度(JIS‐A硬度)のゴムロールとの間に通し、2kg/cmの圧力で柄を押しつけた。亀甲周辺が押し付けられ高密度域を持ち、中央が盛り上がった柔軟な長繊維不織布を得た。
次いで得られた長繊維不織布に実施例4と同様の透水剤水溶液を同様の塗工条件で塗布した。
得られた不織布の表面における測定基準長さを100μmとしたときの区画内での最大高さが、不織布の無荷重時の高さ(厚み)に対し30%以上である区画の比率は42%であり、不織布の透水45度傾斜流長値は27mmであり、4回目耐久透水指数は80%であり、濡れ戻り指数は0.68gであった。結果を以下の表2に示す。
[Comparative Example 2]
The continuous-fiber nonwoven fabric obtained in Comparative Example 1 is a continuous honeycomb-shaped pattern having a side of 0.9 mm and a line width of 0.1 mm (concave pattern) (press area ratio: 12.5%, pattern pitch: vertical 2.8 mm, The pattern was passed between an embossing roll (width of 3.2 mm, depth of 0.7 mm) (80 ° C.) and a rubber roll having a surface hardness of 60 degrees (JIS-A hardness), and a pattern was pressed with a pressure of 2 kg / cm 2 . A flexible long-fiber nonwoven fabric was obtained in which the periphery of the tortoise shell was pressed to have a high-density region and the center was raised.
Next, the same water-permeable agent aqueous solution as in Example 4 was applied to the obtained long-fiber nonwoven fabric under the same coating conditions.
The ratio of the section in which the maximum height in the section when the measurement reference length on the surface of the obtained nonwoven fabric is 100 μm is 30% or more of the height (thickness) of the nonwoven fabric when no load is applied is 42%. The 45 ° -permeability inclined flow length value of the nonwoven fabric was 27 mm, the fourth durable water-permeability index was 80%, and the wet-back index was 0.68 g. The results are shown in Table 2 below.

[比較例3]
実施例1と同様の成分を用いて、第1成分の吐出量が0.72g/分・hоle、第2成分の吐出量が0.08g/分・hоleで全吐出量が0.8g/分・hоleであり、第1成分と第2成分の比が9/1となる繊維をスパンボンド法により紡糸温度220℃で押出し、このフィラメント群をエアジェットによる高速気流牽引装置を使用して、移動捕集面に向けて押出し、平均繊維径16.7μmの偏芯鞘芯型複合長繊維ウェブを調製した。
次いで、得られた偏芯鞘芯型複合長繊維ウェブを熱風温度142℃、熱風風速0.7m/sの熱風により繊維同士を接着し、目付18g/m、捲縮数0個/インチの複合長繊維不織布を得た。
次いで、得られた複合長繊維不織布に実施例4と同様の透水剤水溶液を同様の塗工条件で塗布した。
得られた不織布の表面における測定基準長さを100μmとしたときの区画内での最大高さが、不織布の無荷重時の高さ(厚み)に対し30%以上である区画の比率は48%であり、不織布の透水45度傾斜流長値は28mmであり、4回目耐久透水指数は64%であり、濡れ戻り指数は0.52gであった。結果を以下の表2に示す。
[Comparative Example 3]
Using the same components as in Example 1, the discharge amount of the first component is 0.72 g / min · hole, the discharge amount of the second component is 0.08 g / min · hole, and the total discharge amount is 0.8 g / min. A fiber which is hollow and has a ratio of the first component to the second component of 9/1 is extruded by a spun bond method at a spinning temperature of 220 ° C., and the filament group is moved by using a high-speed airflow traction device by an air jet. The mixture was extruded toward the collecting surface to prepare an eccentric sheath-core composite long fiber web having an average fiber diameter of 16.7 μm.
Next, the obtained eccentric sheath-core type composite continuous fiber web was bonded to each other by hot air at a hot air temperature of 142 ° C. and a hot air speed of 0.7 m / s, and the basis weight was 18 g / m 2 and the number of crimps was 0 / inch. A composite long-fiber nonwoven fabric was obtained.
Next, the same aqueous permeating agent solution as in Example 4 was applied to the obtained composite long-fiber nonwoven fabric under the same application conditions.
When the measurement reference length on the surface of the obtained nonwoven fabric is 100 μm, the maximum height in the compartment is 30% or more of the height (thickness) of the nonwoven fabric when no load is applied. The 45 ° water permeability inclined flow length value of the nonwoven fabric was 28 mm, the fourth durability water permeability index was 64%, and the wettability index was 0.52 g. The results are shown in Table 2 below.

[比較例4]
実施例1と同様の成分を用いて、第1成分の吐出量が0.54g/分・hоle、第2成分の吐出量が0.26g/分・hоleで全吐出量が0.8g/分・hоleであり、第1成分と第2成分の比が2/1となる繊維をスパンボンド法により紡糸温度220℃で押出し、このフィラメント群をエアジェットによる高速気流牽引装置を使用して、移動捕集面に向けて押出し、平均繊維径16.7μmの鞘芯型複合長繊維ウェブを調製した。
次いで、得られたウェブは比較例3と同様の方法及び条件で、繊維同士を接着した後、透水剤水溶液を塗布し、目付18g/m、捲縮数0個/インチの複合長繊維不織布を得た。
得られた不織布の表面における測定基準長さを100μmとしたときの区画内での最大高さが、不織布の無荷重時の高さ(厚み)に対し30%以上である区画の比率は46%であり、不織布の透水45度傾斜流長値は26mmであり、4回目耐久透水指数は73%であり、濡れ戻り指数は0.60gであった。結果を以下の表2に示す。
[Comparative Example 4]
Using the same components as in Example 1, the discharge amount of the first component is 0.54 g / min · hole, the discharge amount of the second component is 0.26 g / min · hole, and the total discharge amount is 0.8 g / min. A fiber which is hollow and has a ratio of the first component to the second component of 2/1 is extruded by a spun bond method at a spinning temperature of 220 ° C., and the filament group is moved by using a high-speed airflow traction device by an air jet. The mixture was extruded toward the collection surface to prepare a sheath-core composite continuous fiber web having an average fiber diameter of 16.7 μm.
Then, in the resulting web same method and conditions as in Comparative Example 3, after bonding the fibers, the permeability agent solution was applied, basis weight 18 g / m 2, crimp number 0 / inch composite long fiber nonwoven fabric I got
The ratio of the section where the maximum height in the section when the measurement reference length is 100 μm on the surface of the obtained nonwoven fabric is 30% or more of the height (thickness) of the nonwoven fabric when no load is applied is 46%. The 45-degree inclined flow length value of the nonwoven fabric was 26 mm, the fourth durable permeability index was 73%, and the rewetting index was 0.60 g. The results are shown in Table 2 below.

Figure 2020007697
Figure 2020007697

本発明の親水性嵩高不織布は優れた透水性を有するため、衛生材料の製造に好適に使用することができる。衛生材料については使い捨ておむつ、生理用ナプキン又は失禁パットの表面のトップシートに好適に使用することができる。また、本発明の親水性嵩高不織布は、前記用途に限らず、例えば、マスク、カイロ、テープ基布、貼布薬基布、救急絆基布、包装材、ワイプ製品、医療用ガウン、包帯、衣料、スキンケア用シートなどにも使用することができる。   Since the hydrophilic bulky nonwoven fabric of the present invention has excellent water permeability, it can be suitably used for manufacturing sanitary materials. The sanitary material can be suitably used as a top sheet on the surface of a disposable diaper, sanitary napkin or incontinence pad. Further, the hydrophilic bulky nonwoven fabric of the present invention is not limited to the above-mentioned applications, and includes, for example, a mask, a warmer, a tape base cloth, a patch base cloth, a first aid base cloth, a packaging material, a wipe product, a medical gown, a bandage, It can also be used for clothing and skin care sheets.

すなわち、本発明は下記の通りのものである。
[1]捲縮数が5〜45個/2.54cm(インチ)である熱可塑性長繊維からなる親水性嵩高不織布であって、該不織布表面における測定基準長さを100μmとしたときのX方向Y方向により規定する単位区画内での最大高さが、該不織布のZ方向無荷重時の高さ(厚み)に対し30%以上である区画の比率が、該不織布表面積20mm×20mmに相当する区画数40000当たり50%以上である不織布表面構造を有し、かつ、透水剤が含有されるか又は塗布されているものであることを特徴とする前記親水性嵩高不織布。 [2]前記親水性嵩高不織布のX線CTでの厚み方向の配向指数が0.43以下である、前記[1]に記載の親水性嵩高不織布。
[3]前記親水性嵩高不織布の圧縮仕事量が0.20gf・cm/cm以上1.00gf・cm/cm以下である、前記[1]又は[2]に記載の親水性嵩高不織布。
[4]前記熱可塑性繊維がサイドバイサイド型又は偏芯鞘芯型の複合繊維である、前記[1]〜[3]のいずれかに記載の親水性嵩高不織布。
[5]前記熱可塑性繊維がポリオレフィン系繊維である、前記[1]〜[4]のいずれかに記載の親水性嵩高不織布。
[6]前記透水材剤が、高級アルコール、高級脂肪酸、エチレンオキサイドを付加した非イオン系活性剤、アルキルフォスフェート塩、及びアニオン系活性剤からなる群から選択される少なくとも1種の界面活性剤である、前記[1]〜[5]のいずれかに記載の親水性嵩高不織布。
[7]前記透水剤が、ポリエーテル化合物、ポリエチレンエーテル変性シリコーン、ポリエーテル変性シリコーン、ポリエステル化合物、ポリアミド化合物、及びポリグリセリン化合物からなる群から選択される少なくとも1種の界面活性剤である、前記[1]〜[5]のいずれかに記載の親水性嵩高不織布。
[8]前記複合繊維同士の交点が溶融し接着している、前記[4]〜[7]のいずれかに記載の親水性嵩高不織布。
[9]部分熱圧着されている、前記[1]〜[8]のいずれかに記載の親水性嵩高不織布。
10]前記[1]〜[]のいずれかに記載の親水性嵩高不織布を用いてなる衛生材料。
That is, the present invention is as follows.
[1] A hydrophilic bulky nonwoven fabric composed of thermoplastic long fibers having a number of crimps of 5 to 45 pieces / 2.54 cm (inch), in the X direction when the measurement reference length on the surface of the nonwoven fabric is 100 μm The proportion of the section in which the maximum height in the unit section defined by the Y direction is 30% or more with respect to the height (thickness) of the nonwoven fabric in the Z direction at no load corresponds to the nonwoven fabric surface area of 20 mm × 20 mm. The above-mentioned hydrophilic bulky nonwoven fabric having a nonwoven fabric surface structure of 50% or more per 40,000 sections and containing or applying a water-permeable agent . [2] The hydrophilic bulky nonwoven fabric according to the above [1], wherein the hydrophilic bulky nonwoven fabric has an orientation index in the thickness direction by X-ray CT of 0.43 or less.
[3] The hydrophilic bulky nonwoven fabric according to [1] or [2], wherein the work of compression of the hydrophilic bulky nonwoven fabric is 0.20 gf · cm / cm 2 or more and 1.00 gf · cm / cm 2 or less.
[4] The hydrophilic bulky nonwoven fabric according to any of [1] to [3], wherein the thermoplastic fiber is a side-by-side type or an eccentric sheath-core type composite fiber.
[5] The hydrophilic bulky nonwoven fabric according to any one of [1] to [4], wherein the thermoplastic fiber is a polyolefin-based fiber.
[6] The water-permeable material is at least one surfactant selected from the group consisting of higher alcohols, higher fatty acids, nonionic surfactants to which ethylene oxide is added, alkyl phosphate salts, and anionic surfactants. The bulky hydrophilic nonwoven fabric according to any one of the above [1] to [5].
[7] The water-permeable agent is at least one surfactant selected from the group consisting of a polyether compound, a polyethylene ether-modified silicone, a polyether-modified silicone, a polyester compound, a polyamide compound, and a polyglycerin compound. The hydrophilic bulky nonwoven fabric according to any one of [1] to [5].
[8] The hydrophilic bulky nonwoven fabric according to any of [4] to [7], wherein the intersections of the conjugate fibers are melted and adhered.
[9] The hydrophilic bulky nonwoven fabric according to any one of [1] to [8], which is partially thermocompression-bonded.
[ 10 ] A sanitary material comprising the hydrophilic bulky nonwoven fabric according to any one of [1] to [ 9 ].

Claims (6)

捲縮数が5〜45個/2.54cm(インチ)である熱可塑性長繊維からなる親水性嵩高不織布であって、該不織布表面における測定基準長さを100μmとしたときのX方向Y方向により規定する単位区画内での最大高さが、該不織布のZ方向無荷重時の高さ(厚み)に対し30%以上である区画の比率が、該不織布表面積20mm×20mmに相当する区画数40000当たり50%以上である不織布表面構造を有し、該不織布の透水45度傾斜流長値が25mm以下であり、かつ、4回目耐久透水指数が85%以上であることを特徴とする前記親水性嵩高不織布。   A hydrophilic bulky nonwoven fabric made of thermoplastic filaments having a number of crimps of 5 to 45 pieces / 2.54 cm (inch), which is determined in the X and Y directions when the measurement reference length on the surface of the nonwoven fabric is 100 μm. The ratio of the section in which the maximum height in the specified unit section is 30% or more to the height (thickness) of the nonwoven fabric in the Z direction at no load is 40,000, the number of the sections corresponding to the nonwoven fabric surface area of 20 mm × 20 mm. The hydrophilicity is characterized by having a nonwoven fabric surface structure of not less than 50% per unit, a 45 ° water permeability gradient flow length value of the nonwoven fabric being 25 mm or less, and a fourth durable water permeability index of 85% or more. Bulk nonwoven fabric. 前記親水性嵩高不織布のX線CTでの厚み方向の配向指数が0.43以下である、請求項1に記載の親水性嵩高不織布。   The hydrophilic bulky nonwoven fabric according to claim 1, wherein the hydrophilic bulky nonwoven fabric has an orientation index in a thickness direction by X-ray CT of 0.43 or less. 前記親水性嵩高不織布の圧縮仕事量が0.20gf・cm/cm以上1.00gf・cm/cm以下である、請求項1又は2に記載の親水性嵩高不織布。 3. The hydrophilic bulky nonwoven fabric according to claim 1, wherein a compression work amount of the hydrophilic bulky nonwoven fabric is 0.20 gf · cm / cm 2 or more and 1.00 gf · cm / cm 2 or less. 4. 前記熱可塑性繊維がサイドバイサイド型又は偏芯鞘芯型の複合繊維である、請求項1〜3のいずれか1項に記載の親水性嵩高不織布。   The hydrophilic bulky nonwoven fabric according to any one of claims 1 to 3, wherein the thermoplastic fiber is a conjugate fiber of a side-by-side type or an eccentric sheath-core type. 前記熱可塑性繊維がポリオレフィン系繊維である、請求項1〜4のいずれか1項に記載の親水性嵩高不織布。   The hydrophilic bulky nonwoven fabric according to any one of claims 1 to 4, wherein the thermoplastic fiber is a polyolefin-based fiber. 請求項1〜5のいずれか1項に記載の親水性嵩高不織布を用いてなる衛生材料。   A sanitary material using the hydrophilic bulky nonwoven fabric according to any one of claims 1 to 5.
JP2019183146A 2016-02-22 2019-10-03 Hydrophilic bulky non-woven fabric Active JP6778308B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016031353 2016-02-22
JP2016031353 2016-02-22

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018501677A Division JP6600069B2 (en) 2016-02-22 2017-02-20 Hydrophilic bulky nonwoven fabric

Publications (2)

Publication Number Publication Date
JP2020007697A true JP2020007697A (en) 2020-01-16
JP6778308B2 JP6778308B2 (en) 2020-10-28

Family

ID=59686648

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018501677A Active JP6600069B2 (en) 2016-02-22 2017-02-20 Hydrophilic bulky nonwoven fabric
JP2019183146A Active JP6778308B2 (en) 2016-02-22 2019-10-03 Hydrophilic bulky non-woven fabric

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018501677A Active JP6600069B2 (en) 2016-02-22 2017-02-20 Hydrophilic bulky nonwoven fabric

Country Status (5)

Country Link
JP (2) JP6600069B2 (en)
CN (1) CN108699744B (en)
MY (1) MY186401A (en)
TW (1) TWI649471B (en)
WO (1) WO2017145999A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113543966B (en) 2019-03-08 2024-02-09 三井化学株式会社 Nonwoven fabric laminate, composite laminate, and cover sheet
CN115427621A (en) * 2020-04-22 2022-12-02 花王株式会社 Sanitary nonwoven fabric, sanitary product and absorbent article provided with same, and method for producing sanitary nonwoven fabric
CN117355642A (en) * 2021-05-12 2024-01-05 三井化学朝日生活材料株式会社 Nonwoven fabric for sanitary material, substrate for SAP sheet, and SAP sheet

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201503A (en) * 1988-02-01 1989-08-14 Asahi Chem Ind Co Ltd Improved disposable sanitary material
JPH09302586A (en) * 1996-05-15 1997-11-25 Asahi Chem Ind Co Ltd Polyolefin-based nonwoven fabric for hygienic materials
JPH108367A (en) * 1996-06-24 1998-01-13 Teijin Ltd Hydrophilic filament nonwoven fabric and its production
JP2002065743A (en) * 2000-09-04 2002-03-05 Uni Charm Corp Continuous filament and absorptive article using absorption sheet
JP2002339174A (en) * 1991-07-23 2002-11-27 Clemson Univ Research Foundation Method for helically crimping fiber
JP3995697B2 (en) * 2003-08-28 2007-10-24 大和紡績株式会社 Latent crimped conjugate fiber, method for producing the same, fiber assembly, and nonwoven fabric
JP2008038277A (en) * 2006-08-04 2008-02-21 Asahi Kasei Fibers Corp Polyolefin-based filament nonwoven fabric for sanitary material
WO2008108238A1 (en) * 2007-03-02 2008-09-12 Mitsui Chemicals, Inc. Layered nonwoven fabric
JP5881442B2 (en) * 2012-01-31 2016-03-09 ダイワボウホールディングス株式会社 Hydrophilic synthetic fibers, fiber aggregates, skin contact products and hydrophilic fiber treatment agents

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3008822B2 (en) * 1995-06-27 2000-02-14 信越化学工業株式会社 (Poly) stannosiloxane and method for producing the same
JP4026926B2 (en) * 1998-04-06 2007-12-26 三井化学株式会社 Top sheet for disposable diapers and multilayer nonwoven fabric for disposable diapers
JP4079751B2 (en) * 2002-11-05 2008-04-23 旭化成せんい株式会社 Hydrophilic polyolefin nonwoven fabric
US20040201125A1 (en) * 2003-04-14 2004-10-14 Nordson Corporation Method of forming high-loft spunbond non-woven webs and product formed thereby
US20120237718A1 (en) * 2011-03-15 2012-09-20 Paul Thomas Weisman Structured Fibrous Web
CN104024517B (en) * 2011-11-02 2015-12-02 旭化成纤维株式会社 Permeable nonwoven fabric

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201503A (en) * 1988-02-01 1989-08-14 Asahi Chem Ind Co Ltd Improved disposable sanitary material
JP2002339174A (en) * 1991-07-23 2002-11-27 Clemson Univ Research Foundation Method for helically crimping fiber
JPH09302586A (en) * 1996-05-15 1997-11-25 Asahi Chem Ind Co Ltd Polyolefin-based nonwoven fabric for hygienic materials
JPH108367A (en) * 1996-06-24 1998-01-13 Teijin Ltd Hydrophilic filament nonwoven fabric and its production
JP2002065743A (en) * 2000-09-04 2002-03-05 Uni Charm Corp Continuous filament and absorptive article using absorption sheet
JP3995697B2 (en) * 2003-08-28 2007-10-24 大和紡績株式会社 Latent crimped conjugate fiber, method for producing the same, fiber assembly, and nonwoven fabric
JP2008038277A (en) * 2006-08-04 2008-02-21 Asahi Kasei Fibers Corp Polyolefin-based filament nonwoven fabric for sanitary material
WO2008108238A1 (en) * 2007-03-02 2008-09-12 Mitsui Chemicals, Inc. Layered nonwoven fabric
JP5881442B2 (en) * 2012-01-31 2016-03-09 ダイワボウホールディングス株式会社 Hydrophilic synthetic fibers, fiber aggregates, skin contact products and hydrophilic fiber treatment agents

Also Published As

Publication number Publication date
CN108699744A (en) 2018-10-23
TWI649471B (en) 2019-02-01
CN108699744B (en) 2021-03-12
TW201732107A (en) 2017-09-16
WO2017145999A1 (en) 2017-08-31
JP6600069B2 (en) 2019-10-30
JP6778308B2 (en) 2020-10-28
JPWO2017145999A1 (en) 2018-09-06
MY186401A (en) 2021-07-22

Similar Documents

Publication Publication Date Title
JP5180408B2 (en) Structured fiber web
JP6714982B2 (en) Bulky composite long fiber non-woven fabric
KR20090023338A (en) Non-woven fabric
KR20090023339A (en) Non-woven fabric
CN112292105B (en) Absorbent article having a shaped, soft and textured nonwoven fabric
KR20090023343A (en) Nonwoven fabric
JP6778308B2 (en) Hydrophilic bulky non-woven fabric
TWI641737B (en) Non-woven fabrics and sanitary materials
JP2015134979A (en) Permeable nonwoven fabric
JP2021525596A (en) Fluid distribution material for absorbent articles
JPH0288058A (en) Surface material for sanitary good
WO2021256146A1 (en) Spun-bonded nonwoven fabric and sanitary material
JPH10251960A (en) Laminated non-woven fabric
WO2012046694A1 (en) Multilayered non-woven fabric and product thereof
JP2020190067A (en) Fiber processing agent and liquid permeable nonwoven fabric containing same
JP7124972B2 (en) Laminated nonwovens and sanitary materials
CN115151689B (en) Laminated nonwoven fabric and sanitary material
CN115003872B (en) Laminated nonwoven fabric and sanitary material
JP2001146674A (en) Spunbonded nonwoven fabric, method for producing the same and absorptive article using the same
JP2009120975A (en) Blended filament nonwoven fabric
JP7226659B1 (en) Spunbond nonwovens and sanitary materials
WO2023042540A1 (en) Spunbonded nonwoven fabric and sanitary material
WO2021172476A1 (en) Nonwoven fabric, nonwoven fabric product and absorbent article each provided with same, and method for producing said nonwoven fabric product
JP5503768B2 (en) Mixed fiber non-woven fabric
WO2022239838A1 (en) Nonwoven fabric for sanitary materials, base material for sap sheets, and sap sheet

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201009

R150 Certificate of patent or registration of utility model

Ref document number: 6778308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350