JP7124972B2 - Laminated nonwovens and sanitary materials - Google Patents

Laminated nonwovens and sanitary materials Download PDF

Info

Publication number
JP7124972B2
JP7124972B2 JP2021538222A JP2021538222A JP7124972B2 JP 7124972 B2 JP7124972 B2 JP 7124972B2 JP 2021538222 A JP2021538222 A JP 2021538222A JP 2021538222 A JP2021538222 A JP 2021538222A JP 7124972 B2 JP7124972 B2 JP 7124972B2
Authority
JP
Japan
Prior art keywords
nonwoven fabric
fabric layer
laminated
layer
laminated nonwoven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021538222A
Other languages
Japanese (ja)
Other versions
JPWO2021251359A1 (en
Inventor
英樹 森岡
健太郎 梶原
義嗣 船津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=78845654&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP7124972(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2021251359A1 publication Critical patent/JPWO2021251359A1/ja
Application granted granted Critical
Publication of JP7124972B2 publication Critical patent/JP7124972B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • B32B5/262Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one fibrous or filamentary layer being a woven fabric layer
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/05Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches protecting only a particular body part
    • A41D13/11Protective face masks, e.g. for surgical use, or for use in foul atmospheres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/51Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
    • A61F13/511Topsheet, i.e. the permeable cover or layer facing the skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/14Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by a layer differing constitutionally or physically in different parts, e.g. denser near its faces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4374Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/20All layers being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2555/00Personal care
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2555/00Personal care
    • B32B2555/02Diapers or napkins

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Textile Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Epidemiology (AREA)
  • Nonwoven Fabrics (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、特に衛生材料用途に好適な積層不織布およびこれを使用した衛生材料に関するものである。 TECHNICAL FIELD The present invention relates to a laminated nonwoven fabric particularly suitable for use in sanitary materials and sanitary materials using the same.

一般に紙おむつや生理用ナプキン、マスク等の衛生材料においては、尿や汗などの水分を素早く取り除き、部材表面をドライに保つことが快適性への鍵となる。 In general, sanitary materials such as disposable diapers, sanitary napkins, and masks are key to comfort by quickly removing moisture such as urine and sweat and keeping the surface of the material dry.

このため、直接肌に触れる部材においては、水分を素早く吸収する「吸水性」と吸収した水分を最表面層から移行させ、表面をドライな状態にする「速乾性」の両立が要求される。 For this reason, members that come into direct contact with the skin are required to have both "water absorption" to quickly absorb moisture and "quick drying" to dry the surface by transferring the absorbed moisture from the outermost layer.

従来、この表面部材には、親水化処理を施した各種不織布が広く使用されてきた。これらは、最表面層から内層の不織布や吸収体へ水分を誘導できるものの、最表面層に水分が残存しやすく、「速乾性」に劣るものであった。 Conventionally, various nonwoven fabrics that have been subjected to hydrophilic treatment have been widely used for this surface member. Although these can induce moisture from the outermost layer to the inner non-woven fabric or absorbent material, moisture tends to remain in the outermost layer, resulting in poor "quick-drying" properties.

この課題に対して、特許文献1では、細繊度繊維からなる繊維層(肌面側)と、太繊度繊維からなる繊維層が積層され、境界面で一部が交絡した不織布が提案されている。また、特許文献2では、複数の繊維の混率と繊維径の差により平均繊維非占有空隙が異なるシートを積層させ、肌に触れる第1層の平均繊維非占有空隙を第1層以外の層よりも大きくしたシートが提案されている。 In response to this problem, Patent Document 1 proposes a nonwoven fabric in which a fiber layer (skin surface side) made of fine fineness fibers and a fiber layer made of large fineness fibers are laminated and partially entangled at the interface. . In addition, in Patent Document 2, sheets with different average non-fiber-occupied voids are laminated according to the difference in the mixing ratio and fiber diameter of a plurality of fibers, and the average non-fiber-occupied voids of the first layer that touches the skin are more than the layers other than the first layer. A sheet with a larger diameter is also proposed.

特開平7-042057号公報JP-A-7-042057 特開平7-178133号公報JP-A-7-178133

しかしながら、特許文献1の技術では、「速乾性」も「吸水性」も得ることが困難であった。 However, with the technique of Patent Document 1, it was difficult to obtain both "quick drying" and "water absorption".

一方、特許文献2の技術では、層間で繊維以外の空隙の体積に差を設けることで、毛細管の効果の差により、第1層で吸収した水分を第2層(肌面と逆の層)に誘導することが可能であると記載されている。しかしながら、特許文献2の技術では、「速乾性」が不十分なものであった。 On the other hand, in the technique of Patent Document 2, by providing a difference in the volume of voids other than fibers between layers, the moisture absorbed in the first layer is transferred to the second layer (the layer opposite to the skin surface) due to the difference in capillary effect. It is described that it is possible to induce However, the technique of Patent Document 2 is insufficient in "quick-drying".

そこで、本発明の目的は、衛材用不織布を用いた部材内の快適性を保つために十分な速乾性を有し、かつ吸水性に優れた積層不織布を提供することである。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a laminated nonwoven fabric that has sufficient quick-drying properties to maintain comfort in a member using nonwoven fabrics for sanitary materials and that is excellent in water absorbency.

本発明者らは、特許文献1の技術では、肌面側の細繊度繊維からなる繊維層がそれ以外の層に対して緻密な構造となるため、肌面側の繊維層に水分が残存しやすく、「速乾性」を得ることが困難であり、さらに、肌面側の緻密な繊維層のため透液性が低下し、水分を迅速に吸収することができず、「吸水性」を得ることが困難であることを見出した。 The present inventors found that in the technique of Patent Document 1, since the fiber layer made of fine fibers on the skin side has a denser structure than the other layers, moisture remains in the fiber layer on the skin side. Furthermore, due to the dense fiber layer on the skin side, the liquid permeability is reduced, and moisture cannot be absorbed quickly, resulting in "water absorption". I found it difficult.

また本発明者らは、特許文献2が開示している平均繊維非占有空隙は繊維以外が占める空間の総体積を示すため、毛細管力に重要である繊維間の空隙のサイズを示す指標ではなく、層間で差があるからといって毛細管力に差が生じることにはならず、特に特許文献2では、肌面ではない層の繊維間空隙のサイズが大きいため、毛細管力を十分に引き出せず、肌面からの水分の移行は限定的な効果となり、「速乾性」は不十分なものとなることを見出した。 In addition, the inventors of the present invention have found that the average non-fiber-occupied voids disclosed in Patent Document 2 indicate the total volume of spaces occupied by non-fibers, so they are not an index indicating the size of voids between fibers, which is important for capillary force. However, even if there is a difference between layers, it does not mean that there is a difference in capillary force. , the transfer of moisture from the skin surface has a limited effect, and it has been found that the "quick-drying property" is insufficient.

そして本発明者等は上記目的を達成するべく鋭意検討を重ねた結果、積層不織布において、特定の不織布層において、目付と厚みに加え、繊維径を考慮した繊維間空隙サイズを特定の範囲に制御することで、衛材用不織布として用いるのに十分な吸水速乾性を有する、積層不織布が得られるという知見を得た。 As a result of extensive studies to achieve the above object, the inventors of the present invention have found that in a specific nonwoven fabric layer in a laminated nonwoven fabric, in addition to the basis weight and thickness, the interfiber void size considering the fiber diameter is controlled within a specific range. By doing so, it was found that a laminated nonwoven fabric having sufficient water absorption and quick drying properties to be used as a nonwoven fabric for hygiene products can be obtained.

本発明は、これらの知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。 The present invention has been completed based on these findings, and the following inventions are provided according to the present invention.

本発明は、熱可塑性樹脂繊維からなる不織布層が積層されてなる積層不織布であって、前記不織布層のうち平均単繊維直径が最も小さい不織布層(A)において、下記式(1)で計算される繊維間空隙サイズRa(μm)が200μm以下である、積層不織布である。
Ra=(100×Ta×da)/(Wa×Da)-Da ・・・式(1)
ここで、
Ta: 不織布層(A)の厚み(μm)
da: 不織布層(A)を構成する熱可塑性樹脂繊維の繊度(dtex)
Wa: 不織布層(A)の目付(g/m
Da: 不織布層(A)を構成する熱可塑性樹脂繊維の平均単繊維直径(μm)。
The present invention provides a laminated nonwoven fabric in which nonwoven fabric layers made of thermoplastic resin fibers are laminated, and in the nonwoven fabric layer (A) having the smallest average single fiber diameter among the nonwoven fabric layers, It is a laminated nonwoven fabric having an interfiber void size Ra (μm) of 200 μm or less.
Ra=(100×Ta×da)/(Wa×Da)−Da Formula (1)
here,
Ta: thickness (μm) of the nonwoven fabric layer (A)
da: fineness (dtex) of the thermoplastic resin fibers constituting the nonwoven fabric layer (A)
Wa: basis weight of nonwoven fabric layer (A) (g/m 2 )
Da: Average single fiber diameter (μm) of the thermoplastic resin fibers constituting the nonwoven fabric layer (A).

また本発明は、少なくとも一部が本発明の積層不織布で構成されてなる衛生材料である。 The present invention also provides a sanitary material at least partially composed of the laminated nonwoven fabric of the present invention.

本発明によれば、衛材用不織布として用いるのに十分な速乾性を有し、かつ優れた吸水速度を有する積層不織布を得ることができる。 ADVANTAGE OF THE INVENTION According to this invention, the laminated nonwoven fabric which has sufficient quick-drying property for use as a nonwoven fabric for sanitary goods, and has the outstanding water absorption rate can be obtained.

以下に、本発明について詳細に説明する。ただし、本発明はその要旨を超えない限り、以下に説明する範囲にのみ限定されるものではない。 The present invention will be described in detail below. However, the present invention is not limited only to the scope described below as long as it does not exceed the gist of the present invention.

[熱可塑性樹脂繊維]
まず、本発明の積層不織布は、熱可塑性樹脂繊維からなる不織布層が積層されてなる。
[Thermoplastic resin fiber]
First, the laminated nonwoven fabric of the present invention is formed by laminating nonwoven fabric layers made of thermoplastic resin fibers.

本発明で言う「熱可塑性樹脂繊維」とは、熱可塑性樹脂からなる繊維のことを指す。このような熱可塑性樹脂は1種類であってもよいし、複数の熱可塑性樹脂からなるものであってもよい。 The term "thermoplastic resin fiber" as used in the present invention refers to fibers made of thermoplastic resin. Such a thermoplastic resin may be of one kind, or may consist of a plurality of thermoplastic resins.

本発明における熱可塑性樹脂繊維に用いられる熱可塑性樹脂の例としては、
ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリヘキサメチレンテレフタレート等の芳香族ポリエステル系ポリマーおよびその共重合体、
ポリ乳酸、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート、ポリヒドロキシブチレート-ポリヒドロキシバリレート共重合体、ポリカプロラクトン等の脂肪族ポリエステル系ポリマーおよびその共重合体、
ポリアミド6、ポリアミド66、ポリアミド610、ポリアミド10、ポリアミド12、ポリアミド6-12等の脂肪族ポリアミド系ポリマーおよびその共重合体、
ポリプロピレン、ポリエチレン、ポリブテン、ポリメチルペンテン等のポリオレフィン系ポリマーおよびその共重合体、
エチレン単位を25モル%から70モル%含有する水不溶性のエチレン-ビニルアルコール共重合体系ポリマー、
ポリスチレン系、ポリジエン系、塩素系、ポリオレフィン系、ポリエステル系、ポリウレタン系、ポリアミド系、フッ素系のエラストマー系ポリマー等であり、これらの中から選んで用いることができる。
Examples of thermoplastic resins used for thermoplastic resin fibers in the present invention include:
aromatic polyester polymers such as polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, and polyhexamethylene terephthalate, and copolymers thereof;
Aliphatic polyester polymers such as polylactic acid, polyethylene succinate, polybutylene succinate, polybutylene succinate adipate, polyhydroxybutyrate-polyhydroxyvalerate copolymer, polycaprolactone and copolymers thereof,
Aliphatic polyamide polymers such as polyamide 6, polyamide 66, polyamide 610, polyamide 10, polyamide 12, polyamide 6-12 and copolymers thereof,
Polyolefin polymers such as polypropylene, polyethylene, polybutene, polymethylpentene and their copolymers,
a water-insoluble ethylene-vinyl alcohol copolymer-based polymer containing 25 mol% to 70 mol% of ethylene units;
Polystyrene-based, polydiene-based, chlorine-based, polyolefin-based, polyester-based, polyurethane-based, polyamide-based, fluorine-based elastomeric polymers, etc., can be selected and used from among these.

また、熱可塑性樹脂においては、酸化チタン、シリカ、酸化バリウムなどの無機質、カーボンブラック、染料や顔料などの着色剤、難燃剤、蛍光増白剤、酸化防止剤、あるいは紫外線吸収剤などの各種添加剤が含まれていてもよい。 In addition, in thermoplastic resins, various additives such as inorganic substances such as titanium oxide, silica, and barium oxide, carbon black, coloring agents such as dyes and pigments, flame retardants, fluorescent brighteners, antioxidants, and ultraviolet absorbers. agents may be included.

なお、不織布層間で、熱可塑性樹脂繊維を構成する熱可塑性樹脂が同一であっても、異なっていてもよい。 The thermoplastic resins constituting the thermoplastic resin fibers may be the same or different between the nonwoven fabric layers.

本発明における熱可塑性樹脂繊維は、単成分繊維はもとより、2種類以上の樹脂を複合した複合繊維であってもよい。上記の熱可塑性樹脂繊維が複合繊維の場合、本発明の効果を損ねない限り特に限定されるものではなく、芯鞘型や海島型、サイドバイサイド型、偏心芯鞘型、などから適宜選択すればよい。また、繊維の一部もしくは全体が一本の繊維から複数本の繊維に分割される割繊型複合繊維であってもよい。 The thermoplastic resin fibers in the present invention may be not only monocomponent fibers but also composite fibers obtained by combining two or more kinds of resins. When the above thermoplastic resin fiber is a composite fiber, it is not particularly limited as long as it does not impair the effects of the present invention, and may be appropriately selected from a core-sheath type, a sea-island type, a side-by-side type, an eccentric core-sheath type, and the like. . Alternatively, the fiber may be a split type conjugate fiber in which a single fiber is split into a plurality of fibers in part or in its entirety.

本発明の熱可塑性樹脂繊維の断面形状は、本発明の効果を損ねない限り特に限定されるものではなく、丸断面はもとより、三角や扁平、六角形、中空などの異形断面であっても良い。本発明の積層不織布を衛生材料に用いる場合、生産性が高く、かつ柔軟性に優れることから、丸断面が好ましい。 The cross-sectional shape of the thermoplastic resin fiber of the present invention is not particularly limited as long as it does not impair the effects of the present invention. . When the laminated nonwoven fabric of the present invention is used as a sanitary material, a circular cross section is preferred because of its high productivity and excellent flexibility.

[積層不織布の積層界面]
本発明の積層不織布における不織布層を特定するための積層界面について説明する。本発明の積層不織布における積層界面は、下記の手順により特定される。
[Lamination interface of laminated nonwoven fabric]
The lamination interface for specifying the nonwoven fabric layer in the laminated nonwoven fabric of the present invention will be described. The lamination interface in the laminated nonwoven fabric of the present invention is specified by the following procedure.

(積層界面の特定手順)
手順1:積層不織布から、5cm×5cmの試料片を採取する。このとき、地合い(uniformity)が悪くて厚みが薄くなっている部分は避ける。
(Specification procedure of lamination interface)
Procedure 1: A sample piece of 5 cm x 5 cm is taken from the laminated nonwoven fabric. At this time, avoid the part where the uniformity is bad and the thickness is thin.

手順2:手順1で得た試料片について、高分解能3次元X線顕微鏡により3次元画像を撮影する。測定の解像度は各不織布層の繊維の直径が特定できる範囲であればよいが、1.0μm/voxel以下とすることが好ましい。ここで、積層不織布にエンボス加工がなされている場合には、X線CT画像の撮影範囲内にエンボス点間の中心点、すなわちエンボス加工により残された凸部の中心を含むように撮影する。 Procedure 2: Take a three-dimensional image of the sample piece obtained in Procedure 1 with a high-resolution three-dimensional X-ray microscope. The resolution of the measurement may be within a range in which the fiber diameter of each nonwoven fabric layer can be specified, but is preferably 1.0 μm/voxel or less. Here, when the laminated nonwoven fabric is embossed, the imaging range of the X-ray CT image is captured so as to include the center point between the embossed points, that is, the center of the convex portion left by the embossing.

手順3:手順2で撮影した3次元画像から、解析対象の領域として0.5mm×0.5mmの領域を抽出する。ここで、積層不織布にエンボス加工がなされている場合には、解析対象の領域がエンボス点間の中心点を含むように抽出する。 Procedure 3: A region of 0.5 mm×0.5 mm is extracted as a region to be analyzed from the three-dimensional image captured in Procedure 2. Here, when the laminated nonwoven fabric is embossed, the area to be analyzed is extracted so as to include the center point between the embossed points.

手順4:手順3で抽出した解析対象の領域について、積層不織布の厚み方向に対して垂直で互いに平行なスライス(断面)画像を、1voxel刻みの間隔で作成する。 Step 4: For the region to be analyzed extracted in Step 3, slice (cross-sectional) images perpendicular to the thickness direction of the laminated nonwoven fabric and parallel to each other are created at intervals of 1 voxel.

手順5:手順4で得た各スライス画像内に含まれるすべての繊維の繊維径を解析し、その平均値を算出して暫定平均繊維径とする。 Step 5: Analyze the fiber diameters of all the fibers included in each slice image obtained in Step 4, calculate the average value, and set it as the provisional average fiber diameter.

手順6:手順4で作成した各スライス画像の積層不織布の厚み方向における位置をx軸(単位はμm)、手順5で得た各スライス画像の暫定平均繊維径をy軸(単位はμm)にプロットしてグラフを得る。 Step 6: The position in the thickness direction of the laminated nonwoven fabric of each slice image created in Step 4 is on the x-axis (unit: μm), and the provisional average fiber diameter of each slice image obtained in Step 5 is on the y-axis (unit: μm). Plot to get a graph.

手順7:手順6で得たグラフにおいて、x軸に対するy軸の値の変化率Δy/Δxを連続する15voxelのデータから最小二乗法により算出し、その絶対値が0.30以上となるx軸上の区間を、不織布層同士の積層の界面の位置として特定する。 Step 7: In the graph obtained in Step 6, the rate of change Δy/Δx of the value of the y-axis with respect to the x-axis is calculated by the least squares method from the data of 15 consecutive voxels, and the x-axis whose absolute value is 0.30 or more The top section is identified as the location of the laminate interface between the nonwoven layers.

[不織布層(A)]
本発明の積層不織布における不織布層(A)は、積層不織布を構成する不織布層のうち平均単繊維直径が最も小さいものとして定義される。
[Nonwoven fabric layer (A)]
The nonwoven fabric layer (A) in the laminated nonwoven fabric of the present invention is defined as having the smallest average single fiber diameter among the nonwoven fabric layers constituting the laminated nonwoven fabric.

各不織布層の平均単繊維直径は以下のようにして求められる。 The average single fiber diameter of each nonwoven fabric layer is determined as follows.

(不織布層の平均単繊維直径の測定手順)
手順1:積層不織布の厚み方向の全体が撮影範囲内に収まる倍率で、厚み方向の断面を走査型電子顕微鏡(SEM)で撮影する。
(Measurement procedure for average single fiber diameter of nonwoven fabric layer)
Procedure 1: A cross section in the thickness direction is photographed with a scanning electron microscope (SEM) at a magnification such that the entire thickness direction of the laminated nonwoven fabric is within the photographing range.

手順2:「積層界面の特定手順」により得た積層界面の位置情報を、手順1で得た断面写真に適用する。「積層界面の特定手順」の手順7における、Δy/Δxの絶対値が0.30以上となるx軸上の区間を積層界面の区間とし、同積層界面の区間によって区分された区間を、各不織布層の解析用区間とする。 Procedure 2: Apply the positional information of the lamination interface obtained by the “procedure for specifying the lamination interface” to the cross-sectional photograph obtained in Procedure 1. Sections on the x-axis where the absolute value of Δy/Δx is 0.30 or more in step 7 of "Procedure for specifying the lamination interface" are defined as the sections of the lamination interface, and the sections divided by the sections of the same lamination interface are each This is the section for analysis of the nonwoven fabric layer.

手順3:手順2で特定した各不織布層の解析用区間を対象に、画像解析ソフトを用いて、単繊維の断面輪郭が形成する面積Af(μm)を計測し、この面積Afと同一の面積となる真円の直径を算出する。これを同一の解析用区間から無作為に抽出した単繊維20本について測定し、相加平均を求め、単位をμmとして、小数点第2位を四捨五入して、平均単繊維直径とする。Procedure 3: For the analysis section of each nonwoven fabric layer specified in Procedure 2, using image analysis software, measure the area Af (μm 2 ) formed by the cross-sectional contour of the single fiber, and measure the area Af Calculate the diameter of a perfect circle, which is the area. Twenty single fibers randomly sampled from the same analysis section are measured, the arithmetic mean is obtained, the unit is μm, and the second decimal place is rounded off to obtain the average single fiber diameter.

不織布層(A)を構成する熱可塑性樹脂繊維の平均単繊維直径Daは20.0μm以下であることが好ましい。Daを20.0μm以下、より好ましくは15.0μm以下とすることで、後述する不織布層(A)の繊維間空隙サイズRaを効果的に低下させ、好適な毛細管力を得ることができる。また、Daは2.0μm以上であることが好ましい。Daを2.0μm以上とすることで、不織布層(A)の繊維間空隙サイズRaが極度に小さくなるのを抑え、透液性が低下するのを抑えることができる。 The average single fiber diameter Da of the thermoplastic resin fibers forming the nonwoven fabric layer (A) is preferably 20.0 μm or less. By setting Da to 20.0 μm or less, more preferably 15.0 μm or less, it is possible to effectively reduce the inter-fiber void size Ra of the nonwoven fabric layer (A), which will be described later, and obtain a suitable capillary force. Moreover, Da is preferably 2.0 μm or more. By setting Da to 2.0 μm or more, it is possible to prevent the void size Ra between fibers of the nonwoven fabric layer (A) from becoming extremely small, and to prevent the liquid permeability from lowering.

本発明の積層不織布は、不織布層(A)において、下記式(1)で計算される繊維間空隙サイズRaが200μm以下である。
Ra=(100×Ta×da)/(Wa×Da)-Da ・・・式(1)
ここで、
Ta: 不織布層(A)の厚み(μm)
da: 不織布層(A)を構成する熱可塑性樹脂繊維の繊度(dtex)
Wa: 不織布層(A)のみなし目付(g/m
Da: 不織布層(A)を構成する熱可塑性樹脂繊維の平均単繊維直径(μm)。
In the nonwoven fabric layer (A) of the laminated nonwoven fabric of the present invention, the interfiber void size Ra calculated by the following formula (1) is 200 μm or less.
Ra=(100×Ta×da)/(Wa×Da)−Da Formula (1)
here,
Ta: thickness (μm) of the nonwoven fabric layer (A)
da: fineness (dtex) of the thermoplastic resin fibers constituting the nonwoven fabric layer (A)
Wa: Assumed basis weight of the nonwoven fabric layer (A) (g/m 2 )
Da: Average single fiber diameter (μm) of the thermoplastic resin fibers constituting the nonwoven fabric layer (A).

各不織布層の厚みは以下のようにして求められる。 The thickness of each nonwoven fabric layer is determined as follows.

(不織布層の厚みの測定手順)
手順1:厚みの測定対象とする不織布層とそれに積層する他の不織布層とのそれぞれの、「不織布層の平均単繊維直径の測定手順」で得た平均単繊維直径を足して2で割り、2層の繊維直径の平均値を算出する。厚みの測定対象とする不織布層のもう一方の側にも他の不織布層が積層する場合には、当該他の不織布層との間でも同様に、平均単繊維直径を足して2で割り2層の繊維直径の平均値を算出する。
(Procedure for measuring thickness of nonwoven fabric layer)
Procedure 1: Add the average single fiber diameters obtained in the "Procedure for measuring the average single fiber diameter of the nonwoven fabric layer" for each of the nonwoven fabric layer whose thickness is to be measured and the other nonwoven fabric layer laminated thereon, and divide by 2, Calculate the average fiber diameter of the two layers. When another nonwoven fabric layer is laminated on the other side of the nonwoven fabric layer whose thickness is to be measured, similarly between the other nonwoven fabric layers, the average single fiber diameter is added and divided by 2. Two layers Calculate the average fiber diameter of

手順2:「積層界面の特定手順」の手順6で得たグラフ上の、厚みの測定対象とする不織布層とそれに積層する他の不織布層との積層界面の区間において、yが手順1で算出した2層の繊維直径の平均値をとるx座標を特定する。 Procedure 2: In the section of the lamination interface between the nonwoven fabric layer whose thickness is to be measured and the other nonwoven fabric layer laminated thereon on the graph obtained in Procedure 6 of "Procedure for specifying the lamination interface", y is calculated in Procedure 1. Identify the x-coordinate that takes the average of the fiber diameters of the two layers.

手順3:厚みの測定対象とする不織布層の両側に他の不織布層が積層する場合には、両側の積層界面の区間において積層する2層の繊維直径の平均値をとるx座標同士の距離を算出し、測定対象の不織布層の厚みとする。厚みの測定対象とする不織布層の片側にのみ他の不織布層が積層する場合には、その積層界面の区間において2層の繊維直径の平均値をとるx座標と、測定対象の不織布層のもう一方の側の露出した表面のx座標との距離を算出し、測定対象の不織布層の厚みとする。 Procedure 3: When other nonwoven fabric layers are laminated on both sides of the nonwoven fabric layer whose thickness is to be measured, the distance between the x coordinates that take the average value of the fiber diameters of the two layers laminated in the section of the lamination interface on both sides Calculate the thickness of the nonwoven fabric layer to be measured. When another nonwoven fabric layer is laminated only on one side of the nonwoven fabric layer whose thickness is to be measured, the x coordinate that takes the average value of the fiber diameters of the two layers in the section of the lamination interface, and the other nonwoven fabric layer to be measured. The distance to the x-coordinate of the exposed surface on one side is calculated and taken as the thickness of the nonwoven fabric layer to be measured.

また、積層不織布の厚みTtは、「不織布層の厚みの測定手順」の手順3において、積層不織布の両側の表面のx座標同士の距離を算出して求めることができる。 The thickness Tt of the laminated nonwoven fabric can be obtained by calculating the distance between the x-coordinates of the surfaces on both sides of the laminated nonwoven fabric in Procedure 3 of "Procedure for measuring the thickness of the nonwoven fabric layer".

また、不織布層を構成する熱可塑性樹脂繊維の繊度は、「不織布層の平均単繊維直径の測定手順」で測定した熱可塑性樹脂繊維の平均単繊維直径および熱可塑性樹脂繊維の密度を用いて、次式から算出した値の小数点第2位を四捨五入した値とする。
d=(π×ρ×D)/400
ここに、
d: 不織布層を構成する熱可塑性樹脂繊維の繊度(dtex)
ρ: 不織布層を構成する熱可塑性樹脂繊維の密度ρ(g/cm
D: 不織布層を構成する熱可塑性樹脂繊維の平均単繊維直径(μm)。
In addition, the fineness of the thermoplastic resin fibers constituting the nonwoven fabric layer is determined by using the average single fiber diameter of the thermoplastic resin fibers and the density of the thermoplastic resin fibers measured in the "Measurement procedure for the average single fiber diameter of the nonwoven fabric layer". The value calculated from the following formula is rounded off to the second decimal place.
d=(π×ρ×D 2 )/400
Here,
d: fineness (dtex) of the thermoplastic resin fibers constituting the nonwoven fabric layer
ρ: Density ρ (g/cm 3 ) of thermoplastic resin fibers constituting the nonwoven fabric layer
D: Average single fiber diameter (μm) of thermoplastic resin fibers constituting the nonwoven fabric layer.

熱可塑性樹脂繊維の密度ρは、JIS L1013:2010「化学繊維フィラメント糸試験方法」の「8.17.2 密度こうばい管法」に基づき測定されるものである。密度範囲が適切に調整された密度勾配管を作製し、不織布層から採取した約0.1gの繊維片について、繊維の密度(g/cm)を小数点第3位まで測定する。これと同様の動作を不織布層から無作為に採取した、異なる5サンプルについて行った結果の相加平均を求め、小数点第3位を四捨五入した値を第1熱可塑性繊維の密度ρ(g/cm)とする。The density ρ of the thermoplastic resin fiber is measured based on JIS L1013:2010 "Testing methods for chemical fiber filament yarn", "8.17.2 Density gradient tube method". A density gradient tube with an appropriately adjusted density range is prepared, and the fiber density (g/cm 3 ) is measured to three decimal places for about 0.1 g of a piece of fiber taken from the nonwoven layer. The same operation was randomly taken from the nonwoven fabric layer, and the arithmetic mean of the results of five different samples was obtained, and the value rounded to the third decimal place was calculated as the density ρ of the first thermoplastic fiber (g / cm 3 ).

また、不織布層のみなし目付W(g/m)は、以下の様にして求めるものである。Further, the assumed basis weight W (g/m 2 ) of the nonwoven fabric layer is obtained as follows.

まず、積層不織布の目付Wt(g/m)を、JIS L1913:2010「一般不織布試験方法」の「6.2 単位面積当たりの質量」に基づき測定する。具体的には積層不織布から20cm×25cmのサイズに切り出した試験片を、試料の幅1m当たり3枚採取し、標準状態におけるそれぞれの質量(g)を量り、その平均値から算出する1m当たりの質量の小数点第2位を四捨五入した値を積層不織布の目付Wt(g/m)とする。First, the basis weight Wt (g/m 2 ) of the laminated nonwoven fabric is measured based on "6.2 Mass per unit area" of JIS L1913:2010 "General nonwoven fabric test methods". Specifically, three test pieces cut out from the laminated nonwoven fabric to a size of 20 cm x 25 cm are collected per 1 m of the width of the sample, and the mass (g) of each is measured in the standard state, and the average value is calculated per 1 m 2 . The weight of the laminated nonwoven fabric Wt (g/m 2 ) is obtained by rounding off the mass of the second decimal place.

次に、上述した手順にて求めた対象とする不織布層の厚みTおよび積層不織布の厚みTtを用いて、次式から算出した値の小数点第2位を四捨五入した値を不織布層のみなし目付W(g/m)とする。
W=W×T/Tt ・・・式。
Next, using the thickness T of the target nonwoven fabric layer and the thickness Tt of the laminated nonwoven fabric obtained by the above-described procedure, the value obtained by rounding the value calculated from the following formula to the second decimal place is the nonwoven fabric layer nominal weight W (g/m 2 ).
W=W×T/Tt Expression.

式(1)で示される繊維間空隙サイズは、不織布層に含まれる繊維が格子状に規則的に配置されているモデルを仮定した場合の、繊維同士により規定される空隙の一辺の長さを示す値である。この繊維間空隙サイズが小さい程、毛細管力が強く作用するようになり、水を吸い上げる力が向上すると考えられる。 The inter-fiber void size represented by the formula (1) is the length of one side of the voids defined by the fibers when assuming a model in which the fibers contained in the nonwoven fabric layer are arranged regularly in a grid pattern. is the value shown. It is thought that the smaller the size of the voids between the fibers, the stronger the capillary force acting on the fiber, and the higher the water absorbing power.

本発明の積層不織布では、平均単繊維直径が最も小さい不織布層(A)の繊維間空隙サイズRaを200μm以下、好ましくは100μm以下、さらに好ましくは80μm以下とすることで、積層不織布の最表面に液が滴下された際に、不織布層(A)の毛細管力を高め、不織布層(A)に多くの液を移行させ、良好な速乾性を発揮させることができる。 In the laminated nonwoven fabric of the present invention, the interfiber void size Ra of the nonwoven fabric layer (A) having the smallest average single fiber diameter is 200 μm or less, preferably 100 μm or less, and more preferably 80 μm or less. When the liquid is dripped, the capillary force of the nonwoven fabric layer (A) is increased, a large amount of the liquid is transferred to the nonwoven fabric layer (A), and good quick-drying properties can be exhibited.

また、繊維間空隙サイズRaは30μm以上とすることが、一定の透液性、吸水性を確保する上で好ましい。 Further, it is preferable to set the inter-fiber void size Ra to 30 μm or more in order to secure a certain level of liquid permeability and water absorbency.

繊維間空隙サイズRaは、不織布層を構成する熱可塑性樹脂繊維の平均単繊維直径Daを制御することにより制御することができる。 The inter-fiber void size Ra can be controlled by controlling the average single fiber diameter Da of the thermoplastic resin fibers forming the nonwoven fabric layer.

不織布層(A)の厚みは100μm以上とすることが好ましい。不織布層(A)の厚みを100μm以上、より好ましくは120μm以上とすることで、積層不織布が吸収した液を不織布層(A)でより多く保持し、不織布層(A)側の表面における、後述する配水比率を大きくすることができる。 The thickness of the nonwoven fabric layer (A) is preferably 100 μm or more. By setting the thickness of the nonwoven fabric layer (A) to 100 µm or more, more preferably 120 µm or more, the nonwoven fabric layer (A) retains more of the liquid absorbed by the laminated nonwoven fabric, and the surface of the nonwoven fabric layer (A) side is treated later. It is possible to increase the water distribution ratio.

一方、不織布層(A)の厚みは1000μm以下であることが好ましい。不織布層(A)の厚みを1000μm以下とすることで、不織布層(A)の内部に液が滞り不織布層間の液移行が抑制されるのを防ぐことができる。 On the other hand, the thickness of the nonwoven fabric layer (A) is preferably 1000 µm or less. By setting the thickness of the nonwoven fabric layer (A) to 1000 μm or less, it is possible to prevent the liquid from stagnating inside the nonwoven fabric layer (A) and suppressing liquid transfer between the nonwoven fabric layers.

[不織布層(B)]
本発明の積層伸縮不織布における不織布層(B)は、不織布層(A)に接して積層する不織布層として定義される。
[Nonwoven fabric layer (B)]
The nonwoven fabric layer (B) in the laminated stretchable nonwoven fabric of the present invention is defined as a nonwoven fabric layer laminated in contact with the nonwoven fabric layer (A).

本発明の積層不織布は、不織布層(A)に接して積層する不織布層(B)のうち少なくとも一方(不織布層(B)が不織布層(A)の一方にのみ接して積層する場合には当該不織布層(B)が該当する場合も含む)について、下記式(2)で計算される繊維間空隙サイズRb(μm)と前記Ra(μm)との比Rb/Raが1.1倍以上であることが好ましい。
Rb=(100×Tb×db)/(Wb×Db)-Db ・・・式(2)
ここで、
Tb: 不織布層(B)の厚み(μm)
db: 不織布層(B)を構成する熱可塑性樹脂繊維の繊度(dtex)
Wb: 不織布層(B)のみなし目付(g/m
Db: 不織布層(B)を構成する熱可塑性樹脂繊維の平均単繊維直径(μm)。
The laminated nonwoven fabric of the present invention includes at least one of the nonwoven fabric layers (B) laminated in contact with the nonwoven fabric layer (A) (when the nonwoven fabric layer (B) is laminated in contact with only one of the nonwoven fabric layers (A), the Regarding the nonwoven fabric layer (B), the ratio Rb/Ra between the inter-fiber void size Rb (μm) calculated by the following formula (2) and the Ra (μm) is 1.1 times or more. Preferably.
Rb=(100×Tb×db)/(Wb×Db)−Db Expression (2)
here,
Tb: Thickness (μm) of nonwoven fabric layer (B)
db: fineness (dtex) of the thermoplastic resin fibers constituting the nonwoven fabric layer (B)
Wb: Assumed basis weight of nonwoven fabric layer (B) (g/m 2 )
Db: Average single fiber diameter (μm) of the thermoplastic resin fibers constituting the nonwoven fabric layer (B).

また、式(2)に係るTb(μm)、db(dtex)、Wb(g/m)、Db(μm)の求め方は、上述の不織布層の厚みT、不織布層を構成する熱可塑性樹脂繊維の繊度d、不織布層のみなし目付W、不織布層を構成する熱可塑性樹脂繊維の平均単繊維直径Dのとおりである。Further, the method for obtaining Tb (μm), db (dtex), Wb (g/m 2 ), and Db (μm) according to the formula (2) depends on the thickness T of the nonwoven fabric layer and the thermoplasticity of the nonwoven fabric layer. The fineness d of the resin fiber, the apparent basis weight W of the nonwoven fabric layer, and the average single fiber diameter D of the thermoplastic resin fibers constituting the nonwoven fabric layer are as follows.

Rb/Raを1.1倍以上、より好ましくは1.2倍以上、さらに好ましくは1.5倍以上とすることで、不織布層(A)と不織布層(B)との毛細管力の大きな差により、水分を効率的に不織布層(A)に移行させ、速乾性を向上させることができる。 By setting Rb/Ra to 1.1 times or more, more preferably 1.2 times or more, and even more preferably 1.5 times or more, there is a large difference in capillary force between the nonwoven fabric layer (A) and the nonwoven fabric layer (B). Thus, moisture can be efficiently transferred to the nonwoven fabric layer (A), and quick drying can be improved.

一方で、Raに対するRbの比率が拡大していくとおのずと、不織布層(B)内の繊維間空隙の割合が拡大していく。その際に生じる目付ムラを抑制し、この目付ムラを起点とする強度低下を抑制する観点から、Rb/Raは、10.0倍以下であることが好ましい。 On the other hand, as the ratio of Rb to Ra increases, the ratio of voids between fibers in the nonwoven fabric layer (B) naturally increases. Rb/Ra is preferably 10.0 times or less from the viewpoint of suppressing unevenness in basis weight that occurs at that time and suppressing a decrease in strength caused by this unevenness in basis weight.

不織布層(B)の繊維間空隙サイズRbは、100μm以上であることが好ましい。Rbを100μm以上、より好ましくは120μm以上とすることで、透液性が良好となるため、不織布層(B)に残留する液量が低下し、速乾性を得ることができる。 The inter-fiber void size Rb of the nonwoven fabric layer (B) is preferably 100 μm or more. By setting Rb to 100 μm or more, more preferably 120 μm or more, the liquid permeability is improved, so the amount of liquid remaining in the nonwoven fabric layer (B) is reduced, and quick drying can be obtained.

不織布層(B)の繊維間空隙サイズRbは、500μm以下であることが好ましい。Rbを500μm以下とすることで、不織布層(A)に移行した液が積層不織布に荷重がかかった際にしみ出すのを防ぎ、ドライな表面を維持することができる。 The inter-fiber void size Rb of the nonwoven fabric layer (B) is preferably 500 μm or less. By setting Rb to 500 μm or less, the liquid transferred to the nonwoven fabric layer (A) can be prevented from seeping out when a load is applied to the laminated nonwoven fabric, and a dry surface can be maintained.

不織布層(B)で繊維間空隙サイズRb(μm)を前述の範囲に制御する上では、不織布層(B)を構成する熱可塑性樹脂繊維の平均単繊維直径Dbが15.0μm~30.0μmの範囲内であることが好ましい。 In order to control the interfiber void size Rb (μm) in the nonwoven fabric layer (B) within the above range, the average single fiber diameter Db of the thermoplastic resin fibers constituting the nonwoven fabric layer (B) is 15.0 μm to 30.0 μm. is preferably within the range of

不織布層(B)の厚みは、100~1000μmの範囲内であることが好ましい。不織布層(B)の厚みを100μm以上とすることで、不織布層(A)に保持された水分の一部がしみ出すことにより後述する配水比率が高くなるのを抑えることができる。また、不織布層(B)の厚みを1000μm以下とすることで、不織布層(B)から吸収させた液を速やかに不織布層(A)に浸透させることができる。 The thickness of the nonwoven fabric layer (B) is preferably in the range of 100-1000 μm. By setting the thickness of the nonwoven fabric layer (B) to 100 μm or more, it is possible to suppress an increase in the water distribution rate, which will be described later, due to the seepage of part of the moisture retained in the nonwoven fabric layer (A). Further, by setting the thickness of the nonwoven fabric layer (B) to 1000 μm or less, the liquid absorbed from the nonwoven fabric layer (B) can be rapidly permeated into the nonwoven fabric layer (A).

[積層不織布]
本発明の積層不織布は、その両側の面それぞれについて下記の手順により生理食塩水を吸収させたときの、生理食塩水を吸収させた表面である吸収面およびその反対側の表面の4面のうち、少なくとも一つの表面において、下記式(3)により定義される配水比率が40%以下であることが好ましい。
[Laminated nonwoven fabric]
Of the four surfaces of the laminated nonwoven fabric of the present invention, the absorption surface, which is the surface on which the physiological saline is absorbed, and the surface on the opposite side, when the physiological saline is absorbed by the following procedure on each side of the laminated nonwoven fabric , preferably the water distribution ratio defined by the following formula (3) is 40% or less on at least one surface.

(配水比率の測定手順)
手順1:積層不織布から、5cm×5cmのサンプルを切り出す。
(Measurement procedure for water distribution ratio)
Procedure 1: Cut out a 5 cm x 5 cm sample from the laminated nonwoven fabric.

手順2:JIS P3801の2種に準拠したろ紙を5cm×5cmに切り出したものを1回の測定につき2枚用意し、それぞれ質量を測定する。 Procedure 2: Two sheets of 5 cm x 5 cm cut out from JIS P3801 type 2 filter paper are prepared for each measurement, and the mass of each sheet is measured.

手順3:ポリプロピレン製のフィルムの上に、生理食塩水0.250±0.005mLを滴下する。この際、滴下する生理食塩水の質量を測定しておく。 Procedure 3: Drop 0.250±0.005 mL of physiological saline onto a polypropylene film. At this time, the mass of the physiological saline to be dripped is measured.

手順4:滴下した生理食塩水の上から、これを吸収させる吸収面を下向きにして積層不織布を乗せ、1分間保持する。 Step 4: Laminated nonwoven fabric is placed on the dripped physiological saline solution with the absorbent surface facing downward, and held for 1 minute.

手順5:前記手順4の保持後に積層不織布を前記ポリプロピレン製のフィルムから外し、前記ろ紙の1枚目の上に前記吸収面を上向きにして乗せ、さらにその上から前記ろ紙の2枚目を速やかに乗せる。 Step 5: After holding the step 4, remove the laminated nonwoven fabric from the polypropylene film, place it on the first filter paper with the absorption surface facing upward, and quickly place the second filter paper on top of it. put it on

手順6:前記2枚目のろ紙の上から圧力が5g/cmとなるように125gの重りをのせ、1分間保持する。Step 6: Place a weight of 125 g on the second filter paper so that the pressure is 5 g/cm 2 and hold for 1 minute.

手順7:前記手順6の保持後に重りを外し、各ろ紙の質量を測定し、それぞれのろ紙の質量増加分を算出する。 Step 7: After holding in step 6 above, the weight is removed, the mass of each filter paper is measured, and the increase in mass of each filter paper is calculated.

手順8:下記式から、前記積層不織布におけるそれぞれの表面の配水比率を算出する。
配水比率(%)=100×W1/W0
ここに、
W0:上記手順3において滴下した生理食塩水の質量(g)
W1:上記手順7においてその表面に当てたろ紙の質量増加分(g)。
Step 8: Calculate the water distribution ratio of each surface of the laminated nonwoven fabric from the following formula.
Water distribution ratio (%) = 100 x W1/W0
Here,
W0: Mass (g) of physiological saline dripped in the above procedure 3
W1: Mass increase (g) of the filter paper applied to the surface in step 7 above.

この手順で求められる配水比率は、値が低い程、その表面に保持された液量が少ないことを示す。すなわち、肌面に当たる表面でこの配水比率が低ければ、液を吸収させたあとでも、触った際にドライ感を感じることができるのである。 For the water distribution ratio determined by this procedure, the lower the value, the less liquid is retained on the surface. In other words, if the water distribution ratio is low on the surface that comes in contact with the skin, a dry feeling can be felt even after absorbing the liquid.

本発明の積層不織布では、前述の4面のうち、少なくとも一つの表面で、配水比率が40%以下、より好ましくは30%以下、さらに好ましくは20%以下とすることで、当該表面で保持する水分量が少なく、ドライな表面を効果的に維持することができる。 In the laminated nonwoven fabric of the present invention, at least one of the four surfaces described above has a water distribution ratio of 40% or less, more preferably 30% or less, and still more preferably 20% or less. It has a low moisture content and can effectively maintain a dry surface.

本発明の積層不織布において、前述のような表面の配水比率を達成する態様としては、不織布層(B)が少なくとも片方の最表面に積層されていることが好ましい。すなわち、前述のとおり不織布層(B)が不織布層(A)に接して積層する不織布層として定義されるので、かかる好ましい態様の積層不織布において、少なくとも片方の面から、
不織布層(B)/不織布層(A)…
という積層構成を有する。そして前述のとおり、不織布層(A)が、積層不織布を構成する不織布層のうち平均単繊維直径が最も小さいものとして定義されるので、比較的平均単繊維直径の大きい不織布層(B)側の最表面から液を吸収させたときに、繊維間空隙サイズが前述のように非常に小さく制御されている不織布層(A)に速やかに液が移行されるため、不織布層(B)側の最表面の配水比率が小さくなり、速乾性を得ることができるのである。
In the laminated nonwoven fabric of the present invention, it is preferable that the nonwoven fabric layer (B) is laminated on at least one of the outermost surfaces in order to achieve the surface water distribution ratio as described above. That is, as described above, the nonwoven fabric layer (B) is defined as a nonwoven fabric layer laminated in contact with the nonwoven fabric layer (A).
Nonwoven fabric layer (B)/Nonwoven fabric layer (A)...
It has a laminated structure of As described above, the nonwoven fabric layer (A) is defined as having the smallest average single fiber diameter among the nonwoven fabric layers constituting the laminated nonwoven fabric. When the liquid is absorbed from the outermost surface, the liquid is quickly transferred to the nonwoven fabric layer (A) in which the inter-fiber void size is controlled to be very small as described above, so The water distribution ratio on the surface is reduced, and quick drying can be obtained.

また、本発明の積層不織布は、前記の配水比率が40%以下である表面の反対側の面の配水比率が50%以上であることが好ましい。かかる配水比率を50%以上、より好ましくは60%以上とすることで、吸収させた液を積層不織布の内部に留めることなく、液を吸収させた表面からもう一方の面にスムースに液が移行させることができる。 Further, in the laminated nonwoven fabric of the present invention, it is preferable that the water distribution ratio of the surface opposite to the surface having the water distribution ratio of 40% or less is 50% or more. By setting the water distribution ratio to 50% or more, more preferably 60% or more, the liquid is smoothly transferred from the surface where the liquid is absorbed to the other surface without retaining the absorbed liquid inside the laminated nonwoven fabric. can be made

本発明の積層不織布では、液を吸収させた表面とは反対側の表面の配水比率を前述の範囲に制御するために、毛細管力の高い不織布層(A)を片一方の表面に配置することが好ましい。 In the laminated nonwoven fabric of the present invention, a nonwoven fabric layer (A) with high capillary force is arranged on one surface in order to control the water distribution ratio of the surface opposite to the surface on which the liquid is absorbed within the above range. is preferred.

本発明の積層不織布は、少なくとも一方の表面から測定された吸水速度が20秒以下であることが好ましい。 The laminated nonwoven fabric of the present invention preferably has a water absorption rate of 20 seconds or less as measured from at least one surface.

ここで言う吸水速度とは、JIS L1907:2010「繊維製品の吸水性試験方法」の「7.1.1 滴下法」に基づき測定されるものである。積層不織布に水滴を1滴滴下し、吸収されて表面の鏡面反射が消失するまでの時間を測定し、これを異なる10箇所で測定した値の単純平均を算出し、単位を秒として、小数点第1位を四捨五入した値を、本発明で言う吸水速度とする。 The water absorption rate referred to here is measured based on JIS L1907:2010 "Water absorption test method for textile products", "7.1.1 Dropping method". Drop one drop of water onto the laminated nonwoven fabric, measure the time it takes for the specular reflection on the surface to disappear after being absorbed, and calculate the simple average of the values measured at 10 different points. The value obtained by rounding off to the first place is defined as the water absorption speed referred to in the present invention.

吸水速度が20秒以下、より好ましくは10秒以下であることで、表面に付着した水分を取り除く性能が良好であることを示す。 A water absorption rate of 20 seconds or less, more preferably 10 seconds or less indicates good performance in removing moisture adhering to the surface.

本発明の積層不織布の目付は、10~100g/mとすることが好ましい。The basis weight of the laminated nonwoven fabric of the present invention is preferably 10 to 100 g/m 2 .

目付を好ましくは10g/m以上、より好ましくは13g/m以上、さらに好ましくは15g/m以上とすることにより、実用に供し得る機械的強度の積層不織布を得ることができる。一方、目付を好ましくは100g/m以下、より好ましくは50g/m以下とすることにより、衛生材料用の不織布としての使用に適した適度な柔軟性を有する積層不織布とすることができる。By setting the basis weight to preferably 10 g/m 2 or more, more preferably 13 g/m 2 or more, and even more preferably 15 g/m 2 or more, it is possible to obtain a laminated nonwoven fabric with mechanical strength suitable for practical use. On the other hand, by setting the basis weight to preferably 100 g/m 2 or less, more preferably 50 g/m 2 or less, a laminated nonwoven fabric having appropriate softness suitable for use as a nonwoven fabric for sanitary materials can be obtained.

本発明の積層不織布は、各不織布層が一体化していることが好ましい。ここでいう一体化とは、不織布層同士が繊維同士の交絡、接着剤等の成分による固定、それぞれの層を構成する熱可塑性樹脂同士の融着によって接合しているものである。 In the laminated nonwoven fabric of the present invention, each nonwoven fabric layer is preferably integrated. The term "integration" as used herein means that the nonwoven fabric layers are joined by entangling fibers, fixing by adhesive or other components, and fusion bonding between thermoplastic resins constituting each layer.

本発明の積層不織布は、吸水性をより高くすることを目的として、親水剤が付与されていても良い。 A hydrophilic agent may be added to the laminated nonwoven fabric of the present invention for the purpose of increasing the water absorption.

[衛生材料]
本発明の衛生材料は、少なくとも一部が本発明の積層不織布から構成されてなることにより、優れた吸水性と速乾性を有する。
[Hygiene materials]
The sanitary material of the present invention has excellent water absorbency and quick-drying properties because at least a portion thereof is composed of the laminated nonwoven fabric of the present invention.

本発明の衛生材料は、医療・介護など健康に関わる目的に好適に使用することができる。本発明の衛生材料は、主に使い捨ての物品に好適に用いることができ、例えば、紙おむつ、生理用ナプキン、ガーゼ、包帯、マスク、手袋、絆創膏等が挙げられる。 The sanitary material of the present invention can be suitably used for health-related purposes such as medical and nursing care. The sanitary material of the present invention can be suitably used mainly for disposable articles such as disposable diapers, sanitary napkins, gauze, bandages, masks, gloves, bandages and the like.

なかでも、紙おむつには、トップシート、バックシート、サイドギャザー等の各所の構成部材として用いることができる。 Among them, in paper diapers, it can be used as constituent members in various places such as top sheets, back sheets, and side gathers.

本発明の衛生材料としてのおむつは、トップシートが本発明の積層不織布で構成されてなることが好ましい。本発明の積層不織布をおむつのトップシートとして用いる場合、不織布層(B)をトップシートの肌面側として設置されるように用いると、排泄された尿を素早く吸収して不織布層(A)に迅速に移行させることができるため、トップシートの表面をドライに保つことができる。 The diaper as a sanitary material of the present invention preferably has a top sheet composed of the laminated nonwoven fabric of the present invention. When the laminated nonwoven fabric of the present invention is used as a top sheet of a diaper, when the nonwoven fabric layer (B) is placed on the skin side of the top sheet, excreted urine is quickly absorbed into the nonwoven fabric layer (A). The rapid transition allows the surface of the topsheet to remain dry.

また、本発明の衛生材料としてのおむつは、ウエスト部の少なくとも一部が本発明の積層不織布で構成されてなることも好ましい。本発明の積層不織布をおむつのウエスト部の一部として用いる場合、不織布層(B)がおむつのウエスト部の肌面側として設置されるように用いると、汗を素早く吸収して不織布層(A)に迅速に移行させることができるため、ウエスト部の表面をドライに保つことができる。 Moreover, it is also preferable that at least a part of the waist portion of the diaper as a sanitary material of the present invention is composed of the laminated nonwoven fabric of the present invention. When the laminated nonwoven fabric of the present invention is used as part of the waist portion of a diaper, if the nonwoven fabric layer (B) is placed on the skin side of the waist portion of the diaper, it can quickly absorb sweat and the nonwoven fabric layer (A ) to keep the surface of the waist dry.

また、本発明の衛生材料は、マスクとしても好適に用いることができる。本発明の衛生材料としてのマスクにおいて、その内面層が本発明の積層不織布で構成されてなることが好ましい。本発明でいう内面層とは、口を覆う面体のうち、最も口側に設置される層のことを指す。本発明の積層不織布を、不織布層(B)が肌面側として設置されるように用いると、汗や呼気が結露して肌面側に水分が付着しても、積層不織布内部にすぐに吸収され、肌面をドライに保つことができるため、着用した際の不快感がなく使用することができる。 Moreover, the sanitary material of the present invention can be suitably used as a mask. In the mask as a sanitary material of the present invention, it is preferable that the inner surface layer is composed of the laminated nonwoven fabric of the present invention. The term "inner layer" as used in the present invention refers to the layer of the face piece covering the mouth that is located closest to the mouth. When the laminated nonwoven fabric of the present invention is used so that the nonwoven fabric layer (B) is placed on the skin side, even if moisture adheres to the skin side due to condensation of sweat or exhalation, it is immediately absorbed inside the laminated nonwoven fabric. Since it can keep the skin dry, it can be used without discomfort when worn.

[積層不織布の製造方法]
次に、本発明の積層不織布を製造する好ましい態様を、具体的に説明する。
[Method for producing laminated nonwoven fabric]
Next, a preferred embodiment for producing the laminated nonwoven fabric of the present invention will be specifically described.

本発明の積層不織布を構成する不織布層(A)および不織布層(B)の製造法は、スパンボンド法、メルトブロー法、短繊維カード法などの公知の製造法から選ぶことができる。 The method for producing the nonwoven fabric layer (A) and the nonwoven fabric layer (B) constituting the laminated nonwoven fabric of the present invention can be selected from known production methods such as the spunbond method, the melt blow method, and the staple fiber card method.

中でも、スパンボンド法は生産性に優れるため、好ましい手法として挙げられる。 Among them, the spunbond method is preferred because of its excellent productivity.

以下、スパンボンド法に基づいて本発明の積層不織布を製造する好ましい様態を説明するが、これに限定されるものではない。 A preferred mode of producing the laminated nonwoven fabric of the present invention based on the spunbond method will be described below, but the present invention is not limited to this.

スパンボンド法とは、原料である熱可塑性樹脂を溶融し、紡糸口金から紡糸した後、冷却固化して得られた糸条に対し、エジェクターで牽引し延伸して、移動するネット上に捕集して不織繊維ウェブ化した後、熱接着する工程を要する不織布の製造方法である。 In the spunbond method, the thermoplastic resin that is the raw material is melted, spun from a spinneret, and then solidified by cooling. It is a nonwoven fabric manufacturing method that requires a step of heat bonding after forming a nonwoven fiber web.

用いられる紡糸口金やエジェクターの形状としては、丸形や矩形等種々のものを採用することができる。中でも、圧縮エアの使用量が比較的少なく、糸条同士の融着や擦過が起こりにくいという観点から、矩形口金と矩形エジェクターの組み合わせを用いることが好ましい態様である。 Various shapes such as a round shape and a rectangular shape can be adopted as the shape of the spinneret and the ejector to be used. Among them, it is preferable to use a combination of a rectangular mouthpiece and a rectangular ejector from the viewpoint that the amount of compressed air used is relatively small and the threads are less likely to fuse or rub against each other.

本発明における、紡糸温度は、(原料である熱可塑性樹脂の融解温度+10℃)以上(原料である熱可塑性樹脂の融解温度+100℃)以下とすることが好ましい。紡糸温度を上記範囲内とすることにより、安定した溶融状態とし、優れた紡糸安定性を得ることができる。 In the present invention, the spinning temperature is preferably (melting temperature of thermoplastic resin as raw material + 10°C) or higher and not higher than (melting temperature of thermoplastic resin as raw material + 100°C). By setting the spinning temperature within the above range, a stable molten state can be obtained and excellent spinning stability can be obtained.

また、不織布層(A)を製造する際には、繊維径を細くすることで平均繊維間空隙を小さくすることができる。このため、細い繊維を安定的に製造するためにも、不織布層(A)に使用するポリマーの溶融粘度を100Pa・s以下とすることが好ましく、50Pa・s以下とすることがより好ましい。 Moreover, when manufacturing the nonwoven fabric layer (A), the average inter-fiber space can be reduced by reducing the fiber diameter. Therefore, in order to stably produce fine fibers, the melt viscosity of the polymer used in the nonwoven fabric layer (A) is preferably 100 Pa·s or less, more preferably 50 Pa·s or less.

ここで言うポリマーの溶融粘度とは、チップ状のポリマーを真空乾燥機によって、水分率を200ppm以下とし、歪速度を段階的に変更して測定し、測定温度を紡糸温度と同様にした場合の歪速度1216s-1における値である。The melt viscosity of the polymer referred to here is measured using a chip-shaped polymer with a moisture content of 200 ppm or less in a vacuum dryer, changing the strain rate in stages, and measuring at the same temperature as the spinning temperature. This is the value at a strain rate of 1216s -1 .

紡出された糸条は、次に冷却されるが、紡出された糸条を冷却する方法としては、例えば、冷風を強制的に糸条に吹き付ける方法、糸条周りの雰囲気温度で自然冷却する方法、および紡糸口金とエジェクター間の距離を調整する方法等が挙げられ、またはこれらの方法を組み合わせる方法を採用することができる。また、冷却条件は、紡糸口金の単孔あたりの吐出量、紡糸する温度および雰囲気温度等を考慮して適宜調整して採用することができる。 The spun yarn is then cooled. Methods for cooling the spun yarn include, for example, a method of forcibly blowing cold air onto the yarn, and natural cooling at the ambient temperature around the yarn. and a method of adjusting the distance between the spinneret and the ejector, or a method of combining these methods. Also, the cooling conditions can be appropriately adjusted in consideration of the discharge amount per single hole of the spinneret, the spinning temperature, the ambient temperature, and the like.

次に、冷却固化された糸条は、エジェクターから噴射される圧縮エアによって牽引され、延伸される。 Next, the cooled and solidified yarn is pulled and stretched by compressed air jetted from an ejector.

本発明の積層不織布では、不織布層(A)および不織布層(B)の平均繊維間空隙サイズは構成する繊維の直径により制御することができる。 In the laminated nonwoven fabric of the present invention, the average inter-fiber void size of the nonwoven fabric layer (A) and the nonwoven fabric layer (B) can be controlled by the diameter of the constituent fibers.

繊維の直径は、紡糸口金の吐出孔当たりの吐出量と牽引速度、すなわち紡糸速度によって決定される。このため、所望の繊維間空隙サイズが得られる直径に制御できるよう、吐出量と紡糸速度を決定することが好ましい。 The diameter of the fiber is determined by the output per hole of the spinneret and the drawing speed, ie spinning speed. Therefore, it is preferable to determine the discharge rate and the spinning speed so that the diameter can be controlled to obtain the desired inter-fiber void size.

紡糸速度は、2000m/分以上であることが好ましい。紡糸速度を2000m/分以上、より好ましくは3000m/分以上とすることにより、高い生産性を有することになり、また繊維の配向結晶化が進み高い強度の長繊維を得ることができる。 The spinning speed is preferably 2000 m/min or higher. By setting the spinning speed to 2000 m/min or more, more preferably 3000 m/min or more, high productivity can be obtained, and the orientation and crystallization of the fibers can be advanced to obtain long fibers with high strength.

このように牽引により延伸された長繊維糸条は、移動するネットに捕集されることでシート化された後に、熱接着する工程に供される。 The long fiber yarn drawn by pulling in this way is collected by a moving net to be formed into a sheet, and then subjected to a thermal bonding step.

本発明の積層不織布は、不織布層が積層されてなる。不織布層を積層する方法としては、例えば、上記のとおり捕集ネット上にスパンボンド法により熱可塑性樹脂繊維を捕集して得た不織布層の上に、スパンボンド法により熱可塑性樹脂繊維を捕集して得た次の不織布層をインラインで連続的に捕集し、積層一体化する方法、別々に得た2つ以上の不織布層同士をオフラインで重ね合わせ、熱圧着などにより積層一体化する方法などを採用することができる。中でも生産性に優れているということから、不織布層の上に次の不織布層をインラインで連続的に捕集し、熱接着により積層一体化する方法が好ましい様態である。 The laminated nonwoven fabric of the present invention is formed by laminating nonwoven fabric layers. As a method for laminating the nonwoven fabric layer, for example, the thermoplastic resin fibers are collected by the spunbond method on the nonwoven fabric layer obtained by collecting the thermoplastic resin fibers on the collection net by the spunbond method as described above. A method in which the next nonwoven fabric layer obtained by collecting is continuously collected inline and integrated by lamination; method etc. can be adopted. Among them, the method of continuously collecting the next nonwoven fabric layer on the nonwoven fabric layer in-line and laminating and integrating them by heat bonding is a preferred mode because it is excellent in productivity.

不織布層同士を熱接着により一体化させて本発明の積層不織布とする方法としては、上下一対のロール表面にそれぞれ彫刻(凹凸部)が施された熱エンボスロール、片方のロール表面がフラット(平滑)なロールと他方のロール表面に彫刻(凹凸部)が施されたロールとの組み合わせからなる熱エンボスロール、および上下一対のフラット(平滑)ロールの組み合わせからなる熱カレンダーロールなど、各種ロールにより熱接着する方法や、ホーンの超音波振動により熱溶着させる超音波接着などの熱圧着による方法を採用することができる。また、本発明の積層不織布を熱接着により積層一体化する方法として、熱風を吹き付ける手法である、いわゆるエアスルー法も挙げることができる。 As a method for forming the laminated nonwoven fabric of the present invention by integrating nonwoven fabric layers by thermal bonding, a thermal embossing roll in which engraving (unevenness) is applied to the surfaces of a pair of upper and lower rolls, and one roll surface is flat (smooth ) and another roll with engraved (unevenness) on the surface, and heat calender rolls that combine a pair of upper and lower flat (smooth) rolls. It is possible to employ a bonding method or a thermocompression bonding method such as ultrasonic bonding in which thermal bonding is performed by ultrasonic vibration of a horn. Moreover, as a method for laminating and integrating the laminated nonwoven fabric of the present invention by thermal bonding, a so-called air-through method, which is a method of blowing hot air, can be mentioned.

中でも、上下一対の熱ロールにより熱接着する方法は、積層不織布層を圧縮しながら接着することで、不織布層(A)を緻密化でき、繊維間空隙サイズを低減できるため、好ましい。 Among them, the method of heat-bonding with a pair of upper and lower heat rolls is preferable because the non-woven fabric layer (A) can be densified by bonding while compressing the laminated non-woven fabric layer, and the void size between fibers can be reduced.

本発明の積層不織布を、熱ロールによる熱圧着にて製造する場合には、ロール間で積層不織布が受ける線圧を100N/cm以上とすることが、不織布層(A)を十分に緻密化できるため、好ましい。 When the laminated nonwoven fabric of the present invention is produced by thermocompression using hot rolls, the nonwoven fabric layer (A) can be sufficiently densified by setting the linear pressure that the laminated nonwoven fabric receives between rolls to 100 N/cm or more. Therefore, it is preferable.

また、積層不織布において、不織布層(B)よりも不織布層(A)に近い表面をフラットロール、その反対側の表面を彫刻が施された熱エンボスロールとして加工することが好ましい。このようなロールの組み合わせを採用することで、不織布層(A)に対して不織布層(B)が圧縮されにくくなるため、不織布層(A)と不織布層(B)の繊維間空隙サイズの差を大きく確保することができる。 Moreover, in the laminated nonwoven fabric, it is preferable to process the surface closer to the nonwoven fabric layer (A) than the nonwoven fabric layer (B) to a flat roll and the opposite surface to a heat-embossed roll with engraving. By adopting such a combination of rolls, the nonwoven fabric layer (B) is less likely to be compressed with respect to the nonwoven fabric layer (A). can be secured to a large extent.

本発明の積層不織布に対し、巻取り前に親水化剤を付与しても良い。積層不織布への親水化剤の付与方法としては、キスロールやスプレーによる塗布やディップコーティングなどが挙げられるが、均一性や付着量制御の容易さからキスロールによる塗布が好ましい。 A hydrophilizing agent may be applied to the laminated nonwoven fabric of the present invention before winding. Examples of the method for applying the hydrophilizing agent to the laminated nonwoven fabric include application by a kiss roll or spray, dip coating, etc., but application by a kiss roll is preferred in terms of uniformity and ease of control of the amount of adhesion.

次に、実施例に基づき本発明を詳細に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。なお、各物性の測定において、特段の記載がないものは、前述の方法に基づいて測定を行ったものである。 The present invention will now be described in detail based on examples. However, the present invention is not limited only to these examples. In the measurement of each physical property, unless otherwise specified, the measurement was performed according to the method described above.

(1)積層界面の特定
前述の「積層界面の特定手順」により、積層不織布の積層界面を特定した。なお、高分解能3次元X線顕微鏡として株式会社リガク製「nano3DX」を用いた。また、解像度は0.6μm/voxelとした。
(1) Identification of Lamination Interface The lamination interface of the laminated nonwoven fabric was identified according to the above-described "Lamination Interface Identification Procedure". In addition, "nano3DX" manufactured by Rigaku Corporation was used as a high-resolution three-dimensional X-ray microscope. Also, the resolution was set to 0.6 μm/voxel.

(2)平均単繊維直径
前述の「不織布層の平均単繊維直径の測定手順」により、各不織布層の平均単繊維直径を測定した。なお、走査型電子顕微鏡(SEM)として株式会社日立ハイテクノロジーズ製「S-5500」を、画像解析ソフトとして三谷商事株式会社製「WinROOF2015」を用いた。
(2) Average single fiber diameter The average single fiber diameter of each nonwoven fabric layer was measured according to the above-mentioned "Procedure for measuring the average single fiber diameter of the nonwoven fabric layer". "S-5500" manufactured by Hitachi High-Technologies Corporation was used as a scanning electron microscope (SEM), and "WinROOF2015" manufactured by Mitani Shoji Co., Ltd. was used as image analysis software.

(3)積層不織布の製造過程における平均単繊維直径
それぞれの熱可塑性樹脂繊維について、ネット上に捕集した不織繊維ウェブからランダムに繊維サンプル採取し、繊維の横断面を株式会社日立ハイテクノロジーズ製の走査型電子顕微鏡「S-5500」で1本の繊維が観察できる倍率として画像を撮影した。その後、画像解析ソフトとして、三谷商事株式会社製「WinROOF2015」を用い、前述のとおり測定を行った。
(3) Average single fiber diameter in the manufacturing process of laminated nonwoven fabric For each thermoplastic resin fiber, fiber samples were randomly collected from the nonwoven fiber web collected on the net, and the cross section of the fiber was measured by Hitachi High-Technologies Corporation. The image was taken with a scanning electron microscope "S-5500" of No. 1 at a magnification that allows observation of a single fiber. After that, as image analysis software, "WinROOF2015" manufactured by Mitani Shoji Co., Ltd. was used, and the measurement was performed as described above.

積層不織布の製造過程における平均単繊維直径を測定したところ、本実施例・比較例においては上記の「不織布層の平均単繊維直径の測定手順」による測定と差の無い平均単繊維直径が得られたことを確認出来た。 When the average single fiber diameter was measured in the manufacturing process of the laminated nonwoven fabric, in the present examples and comparative examples, the average single fiber diameter was obtained with no difference from the measurement by the above-mentioned "Procedure for measuring the average single fiber diameter of the nonwoven fabric layer". I was able to confirm that.

(4)厚み
前述の「不織布層の厚みの測定手順」により、積層不織布および各不織布層の厚みを測定した。
(4) Thickness The thicknesses of the laminated nonwoven fabric and each nonwoven fabric layer were measured according to the "Procedure for measuring the thickness of the nonwoven fabric layer" described above.

(5)簡便な方法による厚み
積層不織布の機械方向に対して垂直な断面について、走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製「S-5500」)で厚みが観察できる倍率として画像を撮影した。撮影した画像を基に、積層不織布および各不織布層の厚みを測定した。
(5) Thickness by Simple Method An image of the cross section perpendicular to the machine direction of the laminated nonwoven fabric was taken with a scanning electron microscope ("S-5500" manufactured by Hitachi High-Technologies Corporation) at a magnification that allows observation of the thickness. Based on the photographed images, the thickness of the laminated nonwoven fabric and each nonwoven fabric layer was measured.

簡便な方法による積層不織布および各不織布層の厚みを測定したところ、本実施例・比較例においては上記の「不織布層の厚みの測定手順」による測定と差の無い厚みが得られたことを確認出来た。 When the thickness of the laminated nonwoven fabric and each nonwoven fabric layer was measured by a simple method, in this example and comparative example, it was confirmed that the thickness was obtained with no difference from the measurement by the above "Procedure for measuring the thickness of the nonwoven fabric layer". done.

(6)繊維間空隙サイズ
次式により、不織布層の繊維間空隙サイズを算出した。
R=(100×T×d)/(W×D)-D
ここで、
T: 不織布層の厚み(μm)。上記(4)により測定される。
d: 不織布層を構成する熱可塑性樹脂繊維の繊度(dtex)。前述のdの定義により測定される。
W: 不織布層のみなし目付(g/m)。前述のWの定義により測定される。なお、本実施例・比較例においては、後述する不織繊維ウェブ層の目付と差が無いことを確認出来た。
D: 不織布層を構成する熱可塑性樹脂繊維の平均単繊維直径(μm)。上記(2)により測定される。
(6) Interfiber void size The interfiber void size of the nonwoven fabric layer was calculated according to the following formula.
R=(100×T×d)/(W×D)−D
here,
T: Thickness (μm) of the nonwoven fabric layer. Measured by (4) above.
d: Fineness (dtex) of thermoplastic resin fibers constituting the nonwoven fabric layer. Measured by the definition of d above.
W: The nominal basis weight of the nonwoven fabric layer (g/m 2 ). Measured by the definition of W above. In addition, in the present examples and comparative examples, it was confirmed that there was no difference from the basis weight of the nonwoven fiber web layer described later.
D: Average single fiber diameter (μm) of thermoplastic resin fibers constituting the nonwoven fabric layer. Measured by (2) above.

(7)配水比率
前述の「配水比率の測定手順」により、積層不織布の両面の配水比率を測定した。本実施例・比較例においては、不織布層(B)を最表面に配した面を「配水比率の測定手順」の手順4における「吸収面」とした。またサンプル数は5とし、その相加平均を求め、小数点第1位を四捨五入した。
(7) Water distribution ratio The water distribution ratio on both sides of the laminated nonwoven fabric was measured according to the above-mentioned "measurement procedure of water distribution ratio". In the present examples and comparative examples, the surface on which the nonwoven fabric layer (B) was placed as the outermost surface was used as the "absorbing surface" in procedure 4 of "procedure for measuring water distribution ratio". The number of samples was set to 5, the arithmetic mean was obtained, and the first decimal place was rounded off.

(8)吸水速度
JIS L1907:2010「繊維製品の吸水性試験方法」の「7.1.1 滴下法」に基づき吸水速度を測定した。積層不織布に水滴を1滴滴下し、吸収されて表面の鏡面反射が消失するまでの時間を測定した。これを異なる10箇所で測定した値の単純平均を算出し、単位を秒として、小数点第1位を四捨五入した。
(8) Water Absorption Rate The water absorption rate was measured according to JIS L1907:2010 "Testing method for water absorption of textile products", "7.1.1 Dropping method". One drop of water was dropped on the laminated nonwoven fabric, and the time it took for the water to be absorbed and the specular reflection on the surface to disappear was measured. A simple average of the values measured at 10 different points was calculated, the unit was seconds, and the first decimal place was rounded off.

(9)吸水速乾性
上記(7)の配水比率を測定した後の積層不織布について、健康な一般成人(男女15名ずつ計30名)が手で「吸収面」側を触り、表面のドライ感について、次の3段階で評価した。各不織布について評価結果の平均点を算出し、その積層不織布の肌触りとした。
5: 表面がドライな触感であり、水分を感じない
3: 表面に水分はないが、しっとりしている
1: 表面に水分があり、しっとりしている
[実施例1]
(不織繊維ウェブ層(A))
ポリプロピレン(PP、溶融粘度30Pa・s)を押出機で溶融し、矩形口金から、単孔吐出量0.30g/分で紡出した。紡出した糸条を、冷却固化した後、矩形エジェクターにおいてエジェクターでの圧力を0.10MPaとした圧縮エアによって、牽引・延伸し、移動するネット上に捕集してスパンボンド法により不織繊維ウェブ層(A)を得た。得られた不織繊維ウェブ層(A)を構成する繊維は、平均単繊維直径が10.6μmであった。また、目付は35.0g/mとした。
(9) Water absorption and quick drying property Regarding the laminated nonwoven fabric after measuring the water distribution ratio in (7) above, healthy general adults (30 people in total, 15 men and 15 men) touched the “absorbent surface” side with their hands, and the dry feeling on the surface was evaluated in the following three stages. The average score of the evaluation results was calculated for each nonwoven fabric, and the feel of the laminated nonwoven fabric was obtained.
5: The surface has a dry feel and does not feel moisture 3: The surface has no moisture but is moist 1: The surface has moisture and is moist [Example 1]
(Nonwoven fibrous web layer (A))
Polypropylene (PP, melt viscosity 30 Pa·s) was melted with an extruder and spun from a rectangular spinneret at a single hole discharge rate of 0.30 g/min. After the spun yarn is cooled and solidified, it is pulled and stretched by compressed air in a rectangular ejector at a pressure of 0.10 MPa at the ejector, collected on a moving net, and spunbonded to form a nonwoven fiber. A web layer (A) was obtained. The fibers constituting the resulting nonwoven fibrous web layer (A) had an average single fiber diameter of 10.6 µm. Also, the basis weight was set to 35.0 g/m 2 .

(不織繊維ウェブ層(B))
不織繊維ウェブ層(A)で用いた原料と同じポリプロピレン(PP)を押出機で溶融し、矩形口金から、単孔吐出量0.85g/分で紡出した。紡出した糸条を、冷却固化した後、矩形エジェクターにおいてエジェクターでの圧力を0.08MPaとした圧縮エアによって、牽引・延伸し、移動するネット上の不織繊維ウェブ層(A)上に捕集してスパンボンド法により不織繊維ウェブ層(B)を得た。得られた不織繊維ウェブ層(B)を構成する繊維は、平均単繊維直径が20.4μmであった。また、目付は30.0g/mとした。
(Nonwoven fibrous web layer (B))
The same polypropylene (PP) as the raw material used for the nonwoven fibrous web layer (A) was melted with an extruder and spun from a rectangular spinneret at a single hole discharge rate of 0.85 g/min. After the spun yarn is cooled and solidified, it is drawn and stretched by compressed air in a rectangular ejector with a pressure of 0.08 MPa at the ejector, and captured on the nonwoven fiber web layer (A) on the moving net. A nonwoven fibrous web layer (B) was obtained by collecting and spunbonding. The fibers constituting the resulting nonwoven fibrous web layer (B) had an average single fiber diameter of 20.4 μm. Also, the basis weight was set to 30.0 g/m 2 .

不織繊維ウェブ層(A)の上に不織繊維ウェブ層(B)を捕集する、インラインにより積層したことにより、不織繊維ウェブ層(A)/不織繊維ウェブ層(B)の2層構造の積層繊維ウェブを得た。 By collecting the nonwoven fibrous web layer (B) on the nonwoven fibrous web layer (A), by in-line lamination, two of the nonwoven fibrous web layer (A)/nonwoven fibrous web layer (B) A laminated fibrous web with a layered structure was obtained.

(積層不織布)
得られた積層繊維ウェブを、上ロールに正円形の凸部がMDおよびCDの両方向に同じピッチで千鳥配置された金属製エンボスロールを上ロールとし、また金属製フラットロールを下ロールとする上下一対の加熱機構を有するエンボスロールを用いて、線圧300N/cm、熱接着温度125℃で熱接着した。次いで親水加工を施し、目付が65.0g/mの積層不織布を得た。
(Laminated nonwoven fabric)
The obtained laminated fibrous web is placed on top and bottom, with a metal embossing roll having circular projections staggered in both the MD and CD directions at the same pitch as the upper roll and a metal flat roll as the lower roll. Thermal bonding was performed at a linear pressure of 300 N/cm and a thermal bonding temperature of 125° C. using an embossing roll having a pair of heating mechanisms. Then, a hydrophilic treatment was applied to obtain a laminated nonwoven fabric having a basis weight of 65.0 g/m 2 .

得られた積層不織布について、各層の厚み、繊維間空隙サイズ、配水比率、吸水速度、吸水速乾性を評価した。不織布層(A)の厚みは300μmであり、繊維間空隙サイズは54μmであった。また不織布層(B)の厚みは420μmであり、繊維間空隙サイズは181μmであった。結果を表1に示す。 The obtained laminated nonwoven fabric was evaluated for thickness of each layer, interfiber void size, water distribution ratio, water absorption speed, and water absorption and quick drying property. The nonwoven fabric layer (A) had a thickness of 300 μm and an inter-fiber void size of 54 μm. The nonwoven fabric layer (B) had a thickness of 420 μm and a void size between fibers of 181 μm. Table 1 shows the results.

[実施例2]
不織繊維ウェブ層(A)を得る工程で単孔吐出量を0.80g/分とし、不織繊維ウェブ層(B)を得る工程で単孔吐出量を1.20g/分とした以外は実施例1と同様にして、積層不織布を得た。得られた積層不織布の評価結果を表1に示す。
[Example 2]
Except for setting the single hole discharge rate to 0.80 g/min in the step of obtaining the nonwoven fibrous web layer (A) and setting the single hole discharge rate to 1.20 g/min in the step of obtaining the nonwoven fibrous web layer (B) A laminated nonwoven fabric was obtained in the same manner as in Example 1. Table 1 shows the evaluation results of the obtained laminated nonwoven fabric.

[実施例3]
不織繊維ウェブ層(B)を得る工程で単孔吐出量を0.35g/分とした以外は実施例1と同様にして、積層不織布を得た。得られた積層不織布の評価結果を表1に示す。
[Example 3]
A laminated nonwoven fabric was obtained in the same manner as in Example 1, except that the discharge rate per hole was changed to 0.35 g/min in the step of obtaining the nonwoven fibrous web layer (B). Table 1 shows the evaluation results of the obtained laminated nonwoven fabric.

[実施例4]
不織繊維ウェブ層(A)の目付を15.0g/m、不織繊維ウェブ層(B)の目付を13.0g/mとした以外は実施例1と同様にして、積層不織布を得た。得られた積層不織布の評価結果を表1に示す。
[Example 4]
A laminated nonwoven fabric was produced in the same manner as in Example 1, except that the basis weight of the nonwoven fibrous web layer (A) was 15.0 g/m 2 and the basis weight of the nonwoven fibrous web layer (B) was 13.0 g/m 2 . Obtained. Table 1 shows the evaluation results of the obtained laminated nonwoven fabric.

[実施例5]
不織繊維ウェブ層(A)の目付を10.0g/mとした以外は実施例1と同様にして、積層不織布を得た。得られた積層不織布の評価結果を表1に示す。
[Example 5]
A laminated nonwoven fabric was obtained in the same manner as in Example 1, except that the basis weight of the nonwoven fiber web layer (A) was 10.0 g/m 2 . Table 1 shows the evaluation results of the obtained laminated nonwoven fabric.

[実施例6]
(不織繊維ウェブ層(A))
実施例1と同様にして、不織繊維ウェブ層(A)を得た。
[Example 6]
(Nonwoven fibrous web layer (A))
A nonwoven fibrous web layer (A) was obtained in the same manner as in Example 1.

(不織繊維ウェブ層(B))
牽引・延伸した糸条を移動するネット上に直接捕集した以外は実施例1と同様にして、不織繊維ウェブ層(B)を得た。
(Nonwoven fibrous web layer (B))
A nonwoven fibrous web layer (B) was obtained in the same manner as in Example 1, except that the pulled and stretched yarn was directly collected on a moving net.

不織繊維ウェブ層(A)および不織繊維ウェブ層(B)をそれぞれ得た後に積層させるオフラインにより積層させ、不織繊維ウェブ層(A)/不織繊維ウェブ層(B)の2層構造の積層繊維ウェブを得た。 After obtaining the nonwoven fibrous web layer (A) and the nonwoven fibrous web layer (B), they are laminated offline to obtain a two-layer structure of nonwoven fibrous web layer (A)/nonwoven fibrous web layer (B). of the laminated fibrous web was obtained.

(積層不織布)
得られた積層繊維ウェブを実施例1と同様の方法で熱接着して親水加工を施し、積層不織布を得た。得られた積層不織布の評価結果を表1に示す。
(Laminated nonwoven fabric)
The obtained laminated fiber web was heat-bonded in the same manner as in Example 1 and subjected to hydrophilic treatment to obtain a laminated nonwoven fabric. Table 1 shows the evaluation results of the obtained laminated nonwoven fabric.

[実施例7]
不織布層(A)および不織布層(B)に使用するポリマーを、ポリエチレングリコール共重合ポリエチレンテレフタレート(共重合PET、ポリエチレングリコールの共重合率がポリマーの8質量%である)とした。
[Example 7]
The polymer used for the nonwoven fabric layer (A) and the nonwoven fabric layer (B) was polyethylene glycol-copolymerized polyethylene terephthalate (copolymerized PET, the copolymerization rate of polyethylene glycol of which is 8% by mass of the polymer).

(不織繊維ウェブ層(A))
繊維の原料のポリマーとして、ポリエチレングリコールをポリマーの8質量%共重合させた共重合ポリエチレンテレフタレート(共重合PET)を用いた。共重合PETを用い、ネットの走行速度を変更した以外は実施例1と同様にして、不織繊維ウェブ層(A)を得た。得られたスパンボンド不織布層(A)を構成する繊維は、平均単繊維直径が8.5μmであった。また、目付は30.0g/mとした。
(Nonwoven fibrous web layer (A))
Copolymerized polyethylene terephthalate (copolymerized PET) obtained by copolymerizing 8% by mass of polyethylene glycol was used as a fiber raw material polymer. A nonwoven fibrous web layer (A) was obtained in the same manner as in Example 1, except that copolymer PET was used and the running speed of the net was changed. The fibers constituting the obtained spunbond nonwoven fabric layer (A) had an average single fiber diameter of 8.5 µm. Also, the basis weight was set to 30.0 g/m 2 .

(不織繊維ウェブ層(B))
不織繊維ウェブ層(A)で用いた原料と同じ共重合PETを用いた以外は実施例1と同様にして不織繊維ウェブ層(B)を得た。得られたスパンボンド不織布層(B)を構成する繊維の特性は、平均単繊維直径が17.5μmであった。また、目付は30.0g/mとした37.0g/mとした。
(Nonwoven fibrous web layer (B))
A nonwoven fibrous web layer (B) was obtained in the same manner as in Example 1, except that the same copolymerized PET as the raw material used in the nonwoven fibrous web layer (A) was used. The fibers constituting the obtained spunbond nonwoven fabric layer (B) had an average single fiber diameter of 17.5 μm. Also, the basis weight was 30.0 g/m 2 and 37.0 g/m 2 .

(積層不織布)
熱接着温度を200℃とした以外は実施例1と同様の方法にて積層不織布を得た。不織布層(A)の厚みは270μmであり、繊維間空隙サイズは73μmであった。また不織布層(B)の厚みは350μmであり、繊維間空隙サイズは158μmであった。得られた積層不織布の評価結果を表1に示す。
(Laminated nonwoven fabric)
A laminated nonwoven fabric was obtained in the same manner as in Example 1, except that the heat bonding temperature was 200°C. The nonwoven fabric layer (A) had a thickness of 270 μm and an inter-fiber void size of 73 μm. The nonwoven fabric layer (B) had a thickness of 350 μm and a void size between fibers of 158 μm. Table 1 shows the evaluation results of the obtained laminated nonwoven fabric.

[比較例1]
不織繊維ウェブ層(A)を得る工程で単孔吐出量を1.20g/分、エジェクターでの圧力を0.08MPaとし、不織繊維ウェブ層(B)を得る工程で単孔吐出量を1.20g/分とした以外は実施例1と同様にして、積層不織布を得た。得られた不織繊維ウェブ層(A)を構成する繊維は、平均単繊維直径が22.0μmであった。また、不織布層(A)の厚みは430μmであり、繊維間空隙サイズは245μmであった。得られた積層不織布の評価結果を表1に示す。
[Comparative Example 1]
In the step of obtaining the nonwoven fibrous web layer (A), the single-hole discharge rate was 1.20 g/min, the pressure in the ejector was 0.08 MPa, and the single-hole discharge rate was set in the step of obtaining the nonwoven fibrous web layer (B). A laminated nonwoven fabric was obtained in the same manner as in Example 1, except that the flow rate was 1.20 g/min. The fibers constituting the resulting nonwoven fibrous web layer (A) had an average single fiber diameter of 22.0 μm. The nonwoven fabric layer (A) had a thickness of 430 μm and an inter-fiber void size of 245 μm. Table 1 shows the evaluation results of the obtained laminated nonwoven fabric.

Figure 0007124972000001
Figure 0007124972000001

表1に示すとおり、実施例1~7については、吸水速乾性に優れていることが分かる。特に、実施例1および実施例6については、吸水速度と吸水速乾性を高いレベルで両立するものであった。一方、比較例1については、吸水速乾性が低い結果であった。
As shown in Table 1, it can be seen that Examples 1 to 7 are excellent in water absorption and quick drying properties. In particular, in Examples 1 and 6, both the water absorption rate and the water absorption and quick drying properties were achieved at high levels. On the other hand, Comparative Example 1 showed low water absorption and quick drying properties.

Claims (10)

熱可塑性樹脂繊維からなる不織布層が積層されてなる積層不織布であって、前記不織布層のうち平均単繊維直径が最も小さい不織布層(A)において、下記式(1)で計算される繊維間空隙サイズRa(μm)が200μm以下である、積層不織布。
Ra=(100×Ta×da)/(Wa×Da)-Da ・・・式(1)
ここで、
Ta: 不織布層(A)の厚み(μm)
da: 不織布層(A)を構成する熱可塑性樹脂繊維の繊度(dtex)
Wa: 不織布層(A)の目付(g/m
Da: 不織布層(A)を構成する熱可塑性樹脂繊維の平均単繊維直径(μm)。
In a laminated nonwoven fabric layer (A) having the smallest average single fiber diameter among the nonwoven fabric layers, the gap between fibers is calculated by the following formula (1). A laminated nonwoven fabric having a size Ra (μm) of 200 μm or less.
Ra=(100×Ta×da)/(Wa×Da)−Da Formula (1)
here,
Ta: thickness (μm) of the nonwoven fabric layer (A)
da: fineness (dtex) of the thermoplastic resin fibers constituting the nonwoven fabric layer (A)
Wa: basis weight of nonwoven fabric layer (A) (g/m 2 )
Da: Average single fiber diameter (μm) of the thermoplastic resin fibers constituting the nonwoven fabric layer (A).
前記不織布層(A)に接して積層する不織布層(B)のうち少なくとも一方について、下記式(2)で計算される繊維間空隙サイズRb(μm)と前記Raとの比Rb/Raが1.1以上である、請求項1に記載の積層不織布。
Rb=(100×Tb×db)/(Wb×Db)-Db ・・・式(2)
ここで、
Tb: 不織布層(B)の厚み(μm)
db: 不織布層(B)を構成する熱可塑性樹脂繊維の繊度(dtex)
Wb: 不織布層(B)の目付(g/m
Db: 不織布層(B)を構成する熱可塑性樹脂繊維の平均単繊維直径(μm)。
For at least one of the nonwoven fabric layers (B) laminated in contact with the nonwoven fabric layer (A), the ratio Rb/Ra between the interfiber void size Rb (μm) calculated by the following formula (2) and the Ra is 1 .1 or more.
Rb=(100×Tb×db)/(Wb×Db)−Db Expression (2)
here,
Tb: Thickness (μm) of nonwoven fabric layer (B)
db: fineness (dtex) of the thermoplastic resin fibers constituting the nonwoven fabric layer (B)
Wb: basis weight of nonwoven fabric layer (B) (g/m 2 )
Db: Average single fiber diameter (μm) of the thermoplastic resin fibers constituting the nonwoven fabric layer (B).
前記積層不織布の両側の面それぞれについて下記の手順により生理食塩水を吸収させたときの、生理食塩水を吸収させた表面である吸収面およびその反対側の表面の4面のうち、少なくとも一つの表面において、下記式(3)により定義される配水比率が40%以下である、請求項1または2に記載の積層不織布。
手順1:積層不織布から、5cm×5cmのサンプルを切り出す。
手順2:JIS P3801の2種に準拠したろ紙を5cm×5cmに切り出したものを1回の測定につき2枚用意し、それぞれ質量を測定する。
手順3:ポリプロピレン製のフィルムの上に、生理食塩水0.250±0.005mLを滴下する。この際、滴下する生理食塩水の質量を測定しておく。
手順4:滴下した生理食塩水の上から、これを吸収させる吸収面を下向きにして積層不織布を乗せ、1分間保持する。
手順5:前記手順4の保持後に積層不織布を前記ポリプロピレン製のフィルムから外し、前記ろ紙の1枚目の上に前記吸収面を上向きにして乗せ、さらにその上から前記ろ紙の2枚目を速やかに乗せる。
手順6:前記2枚目のろ紙の上から圧力が5g/cmとなるように125gの重りをのせ、1分間保持する。
手順7:前記手順6の保持後に重りを外し、各ろ紙の質量を測定し、それぞれのろ紙の質量増加分を算出する。
手順8:下記式から、前記積層不織布におけるそれぞれの表面の配水比率を算出する。
配水比率(%)=100×W1/W0
ここに、
W0:上記手順3において滴下した生理食塩水の質量(g)
W1:上記手順7においてその表面に当てたろ紙の質量増加分(g)。
At least one of the four surfaces of the absorbent surface, which is the surface on which the physiological saline is absorbed, and the surface on the opposite side when physiological saline is absorbed by the following procedure for each of the surfaces on both sides of the laminated nonwoven fabric 3. The laminated nonwoven fabric according to claim 1 or 2, wherein the surface has a water distribution ratio defined by the following formula (3) of 40% or less.
Procedure 1: Cut out a 5 cm x 5 cm sample from the laminated nonwoven fabric.
Procedure 2: Two sheets of 5 cm x 5 cm cut out from JIS P3801 type 2 filter paper are prepared for each measurement, and the mass of each sheet is measured.
Procedure 3: Drop 0.250±0.005 mL of physiological saline onto a polypropylene film. At this time, the mass of the physiological saline to be dripped is measured.
Step 4: Laminated nonwoven fabric is placed on the dripped physiological saline solution with the absorbent surface facing downward, and held for 1 minute.
Step 5: After holding the step 4, remove the laminated nonwoven fabric from the polypropylene film, place it on the first filter paper with the absorption surface facing upward, and quickly place the second filter paper on top of it. put it on
Step 6: Place a weight of 125 g on the second filter paper so that the pressure is 5 g/cm 2 and hold for 1 minute.
Step 7: After holding in step 6 above, the weight is removed, the mass of each filter paper is measured, and the increase in mass of each filter paper is calculated.
Step 8: Calculate the water distribution ratio of each surface of the laminated nonwoven fabric from the following formula.
Water distribution ratio (%) = 100 x W1/W0
Here,
W0: Mass (g) of physiological saline dripped in the above procedure 3
W1: Mass increase (g) of the filter paper applied to the surface in step 7 above.
前記配水比率が40%以下である表面の反対側の面の配水比率が50%以上である、請求項3に記載の積層不織布。 The laminated nonwoven fabric according to claim 3, wherein the water distribution ratio of the surface opposite to the surface having the water distribution ratio of 40% or less is 50% or more. 少なくとも一方の表面において、JIS L1907:2010の滴下法により測定される吸水速度が20秒以下である、請求項1~4のいずれかに記載の積層不織布。 5. The laminated nonwoven fabric according to any one of claims 1 to 4, wherein at least one surface has a water absorption rate of 20 seconds or less as measured by the dropping method of JIS L1907:2010. 少なくとも一部が請求項1~5のいずれかに記載の積層不織布で構成されてなる、衛生材料。 A sanitary material at least partially composed of the laminated nonwoven fabric according to any one of claims 1 to 5. 前記衛生材料がおむつである、請求項6記載の衛生材料。 7. The sanitary material according to claim 6, wherein said sanitary material is a diaper. トップシートが前記積層不織布で構成されてなる、請求項7記載の衛生材料。 The sanitary material according to claim 7, wherein the top sheet is composed of the laminated nonwoven fabric. ウエスト部の少なくとも一部が前記積層不織布で構成されてなる、請求項7記載の衛生材料 The sanitary material according to claim 7, wherein at least part of the waist portion is composed of the laminated nonwoven fabric. 前記衛生材料がマスクであり、当該マスクの内面層が前記積層不織布で構成されてなる、請求項7記載の衛生材料。
8. The sanitary material according to claim 7, wherein said sanitary material is a mask, and the inner surface layer of said mask is composed of said laminated nonwoven fabric.
JP2021538222A 2020-06-11 2021-06-08 Laminated nonwovens and sanitary materials Active JP7124972B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020101425 2020-06-11
JP2020101425 2020-06-11
PCT/JP2021/021681 WO2021251359A1 (en) 2020-06-11 2021-06-08 Layered nonwoven fabric and sanitary material

Publications (2)

Publication Number Publication Date
JPWO2021251359A1 JPWO2021251359A1 (en) 2021-12-16
JP7124972B2 true JP7124972B2 (en) 2022-08-24

Family

ID=78845654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021538222A Active JP7124972B2 (en) 2020-06-11 2021-06-08 Laminated nonwovens and sanitary materials

Country Status (4)

Country Link
JP (1) JP7124972B2 (en)
KR (1) KR20230022837A (en)
CN (1) CN115380139A (en)
WO (1) WO2021251359A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7417672B2 (en) 2022-06-22 2024-01-18 前田工繊株式会社 sanitary mask
KR20240082052A (en) * 2022-12-01 2024-06-10 도레이첨단소재 주식회사 Nonwoven fabric composite having quick moisture-absorption and fast drying properties and article including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004834A1 (en) 2009-07-07 2011-01-13 クラレクラフレックス株式会社 Laminated sheet, and process for production thereof
JP2016069748A (en) 2014-09-30 2016-05-09 花王株式会社 Nonwoven fabric

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742057A (en) 1993-07-30 1995-02-10 New Oji Paper Co Ltd Nonwoven fabric to be used as surface material of sanitary material
JP3442837B2 (en) 1993-12-21 2003-09-02 花王株式会社 Surface material for absorbent articles
JP4303505B2 (en) * 2003-04-01 2009-07-29 大和紡績株式会社 Composite nonwoven fabric
JP5712598B2 (en) * 2010-12-16 2015-05-07 東レ株式会社 Air filter media and air filter
JP6256944B2 (en) * 2013-12-26 2018-01-10 花王株式会社 Absorbent articles
JP6554250B2 (en) * 2017-03-15 2019-08-07 花王株式会社 Absorbent articles
JP7245963B2 (en) * 2017-10-04 2023-03-27 大和紡績株式会社 Nonwoven fabric for absorbent articles, surface sheet for absorbent articles, and absorbent articles containing the same
JP7126417B2 (en) * 2018-09-25 2022-08-26 花王株式会社 absorbent article

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004834A1 (en) 2009-07-07 2011-01-13 クラレクラフレックス株式会社 Laminated sheet, and process for production thereof
JP2016069748A (en) 2014-09-30 2016-05-09 花王株式会社 Nonwoven fabric

Also Published As

Publication number Publication date
KR20230022837A (en) 2023-02-16
WO2021251359A1 (en) 2021-12-16
JPWO2021251359A1 (en) 2021-12-16
TW202202113A (en) 2022-01-16
CN115380139A (en) 2022-11-22

Similar Documents

Publication Publication Date Title
JP4068171B2 (en) Laminated nonwoven fabric and method for producing the same
CN112292105B (en) Absorbent article having a shaped, soft and textured nonwoven fabric
JP7124972B2 (en) Laminated nonwovens and sanitary materials
JP6778308B2 (en) Hydrophilic bulky non-woven fabric
JP4605653B2 (en) Surface material and absorbent article using the same
TWI641737B (en) Non-woven fabrics and sanitary materials
TW201904536A (en) Non-woven fabric and laminated non-woven fabric
WO2021256146A1 (en) Spun-bonded nonwoven fabric and sanitary material
CN115151689B (en) Laminated nonwoven fabric and sanitary material
JPH10251960A (en) Laminated non-woven fabric
CN115003872B (en) Laminated nonwoven fabric and sanitary material
TWI856254B (en) Laminated nonwovens and sanitary materials
JP7373985B2 (en) Surface sheet for absorbent articles
JP2019063414A (en) Non-woven fabric for absorbent article, surface sheet for absorbent article, and absorbent article containing the same
JP7226659B1 (en) Spunbond nonwovens and sanitary materials
WO2023042540A1 (en) Spunbonded nonwoven fabric and sanitary material
WO2022113711A1 (en) Spunbond nonwoven fabric, and hygienic material equipped therewith
JP2022184296A (en) mask
JP2023132020A (en) Laminated nonwoven fabric and absorbent article
JP2023000510A (en) clothing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220620

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220725

R151 Written notification of patent or utility model registration

Ref document number: 7124972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157