WO2022113711A1 - Spunbond nonwoven fabric, and hygienic material equipped therewith - Google Patents

Spunbond nonwoven fabric, and hygienic material equipped therewith Download PDF

Info

Publication number
WO2022113711A1
WO2022113711A1 PCT/JP2021/040939 JP2021040939W WO2022113711A1 WO 2022113711 A1 WO2022113711 A1 WO 2022113711A1 JP 2021040939 W JP2021040939 W JP 2021040939W WO 2022113711 A1 WO2022113711 A1 WO 2022113711A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
fiber
propylene
spunbonded nonwoven
based resin
Prior art date
Application number
PCT/JP2021/040939
Other languages
French (fr)
Japanese (ja)
Inventor
勝田大士
森岡英樹
梶原健太郎
船津義嗣
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2021568257A priority Critical patent/JPWO2022113711A1/ja
Priority to KR1020237017052A priority patent/KR20230107820A/en
Priority to CN202180077481.4A priority patent/CN116546949A/en
Publication of WO2022113711A1 publication Critical patent/WO2022113711A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/51Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
    • A61F13/511Topsheet, i.e. the permeable cover or layer facing the skin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • D01F6/06Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins from polypropylene
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/30Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising olefins as the major constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/46Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyolefins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/007Addition polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/018Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the shape
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2509/00Medical; Hygiene

Definitions

  • the present invention relates to a spunbonded nonwoven fabric having excellent flexibility in addition to water absorption and quick-drying to maintain comfort when worn, and a sanitary material provided with the same at least in part.
  • a laminated non-woven fabric having a laminated structure of fiber layers containing long fibers for the purpose of imparting water absorption and quick-drying properties to the non-woven fabric, the distance between the hydrophobic layer containing the hydrophobic fibers and the flatness and flatness.
  • a laminated nonwoven fabric composed of a hydrophilic layer containing hydrophilic fibers in a specific range and having the hydrophobic layer arranged on the surface of the nonwoven fabric (see Patent Document 1).
  • Patent Document 2 and Patent Document 3 both relate to a spunbonded nonwoven fabric using polypropylene modified by a polymer blend or an additive.
  • the spunbonded non-woven fabric has insufficient water absorption and quick-drying property.
  • an object of the present invention is to provide a spunbonded nonwoven fabric having excellent flexibility in addition to water absorption and quick-drying to maintain comfort when worn, and a sanitary material provided with the same at least in part. It is in.
  • the spunbonded nonwoven fabric of the present invention has the following constitution. That is, A spunbonded nonwoven fabric in which one surface (A) is made of fibers (Fa) made of propylene resin and the other surface (B) is made of fibers (Fb) made of propylene resin. A spunbonded nonwoven fabric having a crystal melting heat of 30 J / g or more and 98 J / g or less in the differential scanning calorimetry and satisfying the following formula (1).
  • Da is the average single fiber diameter ( ⁇ m) of the fiber (Fa)
  • Db is the average single fiber diameter ( ⁇ m) of the fiber (Fb).
  • the sanitary material of the present invention is a sanitary material provided with at least a part of the above-mentioned spunbonded nonwoven fabric.
  • the spunbonded nonwoven fabric of the present invention is preferably a propylene-based resin in which at least a part of the propylene-based resin is copolymerized with an ethylene unit of 2 mol% or more and 30 mol% or less.
  • the propylene-based resin is a propylene-based resin having a mesopentad fraction of 50% or more and 92% or less.
  • the spunbonded nonwoven fabric of the present invention is preferably a propylene-based resin in which at least a part of the propylene-based resin contains 0.5% by mass or more of a fatty acid amide compound.
  • the contact angle of the surface (A) with water and the contact angle of the surface (B) with water are both 30 ° or less.
  • the spunbonded nonwoven fabric of the present invention at least a part of the fiber (Fa) and / or the fiber (Fb) has a plurality of convex portions in the fiber cross section, and the degree of roval of the fiber cross section is 5.0%. It is preferable to use the above-mentioned irregular cross-section fiber.
  • the surface (B) is arranged toward the skin side of the wearer.
  • the spunbonded non-woven fabric of the present invention can be used as a part of sanitary materials such as disposable diapers, menstrual napkins, gauze, bandages, masks, gloves, and adhesive plasters.
  • one surface (A) is composed of fibers (Fa) made of a propylene resin
  • the other surface (B) is made of fibers (Fb) made of a propylene resin. Therefore, the heat of crystal melting in the differential scanning calorimetry is 30 J / g or more and 98 J / g or less, and the following formula (1) is satisfied.
  • Da is the average single fiber diameter ( ⁇ m) of the fiber (Fa)
  • Db is the average single fiber diameter ( ⁇ m) of the fiber (Fb).
  • the surface (A) refers to the surface of the two surfaces of the spunbonded nonwoven fabric on the side where the average single fiber diameter of the constituent fibers measured by the method described later is smaller.
  • one surface (A) is composed of fibers (Fa) made of a propylene resin
  • the other surface (B) is made of fibers (Fb) made of a propylene resin.
  • one surface (A) and the other surface (B) are both composed of fibers made of a propylene-based resin.
  • the spunbonded nonwoven fabric of the present invention has a laminated structure of a nonwoven fabric layer made of fibers (Fa) made of propylene-based resin and a nonwoven fabric layer made of fibers (Fb) made of propylene-based resin. ing.
  • the "propylene-based resin” means a resin having a propylene unit as a main repeating unit.
  • examples of the propylene-based resin include homopolymers of propylene, copolymers of propylene and ethylene, copolymers of propylene and various ⁇ -olefins, and mixtures of these polymers.
  • the ⁇ -olefin includes 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-dodecene, 1-hexadecene, 4-methyl-1-pentene and the like.
  • a copolymer of propylene and ethylene is preferably used because it has excellent process stability in the spinning process and also has excellent flexibility when made into a fiber.
  • the above propylene resin is an inorganic substance such as titanium oxide, silica, barium oxide, calcium carbonate, carbon black, a colorant such as a dye or a pigment, a flame retardant, a fluorescent whitening agent, an antioxidant, or an ultraviolet absorber. It may contain various additives such as.
  • the propylene-based resin is preferably a propylene-based resin in which at least a part thereof is copolymerized with an ethylene unit of 2 mol% or more and 30 mol% or less.
  • the copolymerization rate of each ethylene unit is preferably 2 mol% or more, more preferably 3 mol% or more, the spunbonded nonwoven fabric has excellent flexibility in addition to improving the process stability in the spinning process. ..
  • the copolymerization rate of ethylene units to preferably 30 mol% or less, more preferably 25 mol% or less, still more preferably 20 mol% or less, it becomes possible to suppress the stickiness of the spunbonded nonwoven fabric, which is excellent. It is a spunbonded non-woven fabric that has a soft feel.
  • the propylene-based resin is a propylene-based resin having a mesopentad fraction of 50% or more and 92% or less.
  • the mesopentad fraction By setting the mesopentad fraction to preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, it becomes possible to suppress the stickiness of the spunbonded nonwoven fabric, and the spunbonded nonwoven fabric having an excellent tactile sensation can be obtained.
  • the mesopentad fraction to 92% or less, more preferably 90% or less, it is possible to obtain a spunbonded nonwoven fabric having excellent flexibility in addition to improving the process stability in the spinning process. ..
  • the mesopentad fraction (%) referred to here is obtained as follows.
  • 13 C-NMR measurement is performed on the obtained solution.
  • the spectrum derived from the methyl group of the obtained NMR spectrum appears at 21.70 ppm or more and 21.90 ppm or less.
  • Each peak is assigned with the peak as a peak caused by the mesopentad chain, and the ratio to the peak intensity caused by the mesopentad chain to the total sum of all peak intensities derived from the methyl group is calculated as a percentage to calculate the mesopendad fraction. Is rounded off.
  • the propylene-based resin is preferably a propylene-based resin in which at least a part thereof contains 0.5% by mass or more of a fatty acid amide compound.
  • the fatty acid amide compound acts as a lubricant on the fiber surface. Therefore, it becomes a spunbonded non-woven fabric having an excellent tactile sensation.
  • the upper limit of the content of the fatty acid amide compound in the present invention is not particularly limited, but is preferably 5.0% by mass or less from the viewpoint of cost and productivity.
  • the fatty acid amide compound when the propylene-based resin contains the fatty acid amide compound, the fatty acid amide compound preferably has 15 or more carbon atoms and 50 or less carbon atoms.
  • the fatty acid amide compound having 15 or more and 50 or less carbon atoms include a saturated fatty acid monoamide compound, a saturated fatty acid diamide compound, an unsaturated fatty acid monoamide compound, and an unsaturated fatty acid diamide compound.
  • the number of carbon atoms in the present invention means the number of carbon atoms contained in the molecule.
  • the number of carbon atoms of the fatty acid amide compound By setting the number of carbon atoms of the fatty acid amide compound to preferably 15 or more, more preferably 23 or more, and further preferably 30 or more, it is possible to suppress excessive precipitation of the fatty acid amide compound on the fiber surface, resulting in spinnability and processing stability. It is excellent in and can maintain high productivity. Further, by setting the number of carbon atoms of the fatty acid amide compound to preferably 50 or less, more preferably 45 or less, still more preferably 42 or less, the fatty acid amide compound is appropriately precipitated on the fiber surface, so that the spunbonded non-woven fabric has an excellent tactile sensation. Will be.
  • the fiber (Fa) and / or the fiber (Fb) made of a propylene-based resin may be not only a single component fiber but also a composite fiber in which two or more kinds of resins are composited.
  • the fiber made of the propylene-based resin is a composite fiber
  • the composite form is not particularly limited as long as the effect of the present invention is not impaired, and a core sheath type, a sea island type, a side-by-side type, an eccentric core sheath type, etc. It can be appropriately selected from a blend type and the like.
  • the resin used together with the propylene-based resin is mainly a repeating unit of ethylene unit or propylene unit from the viewpoint of process stability and flexibility in the manufacturing process.
  • the above-mentioned olefin-based resin is preferably used.
  • the core component is the propylene-based resin
  • the sheath component is the olefin-based resin
  • the sea component is the olefin-based resin.
  • the island component may be the above-mentioned propylene-based resin or the like.
  • a spunbonded non-woven fabric having an excellent tactile sensation can be obtained by using the above-mentioned propylene-based resin as the core component and using an olefin-based resin having an ethylene unit as the main repeating unit as the sheath component to form a core-sheath type composite fiber. ..
  • At least a part of the fiber (Fa) and / or the fiber (Fb) made of a propylene resin has a plurality of convex portions in the fiber cross section.
  • a plurality of convex portions in the fiber cross section continuous grooves are formed on the side surface of the fiber in the fiber axial direction, and the groove portion serves as a liquid passage path, so that the spunbonded nonwoven fabric has excellent water absorption.
  • FIG. 1 shows an example of a fiber cross section having a plurality of convex portions.
  • the fiber (Fa) and / or the fiber (Fb) made of a propylene-based resin has a plurality of convex portions in the fiber cross section, and the degree of roval of the fiber cross section is high. It is preferably 5.0% or more.
  • the roval degree of the fiber cross section is preferably 5.0% or more, more preferably 10.0% or more, the moisture diffusion efficiency in the surface direction of the spunbonded nonwoven fabric is increased, so that the span has excellent water absorption. It becomes a bonded non-woven fabric.
  • the upper limit of the degree of roval is not particularly limited, it is preferably 60.0% or less from the viewpoint of suppressing peeling of the convex portion due to friction during manufacturing and obtaining a high-quality spunbonded nonwoven fabric.
  • the degree of roval of the fiber cross section referred to here is measured by the method described below, and will be described in detail with reference to FIG.
  • FIG. 2 shows an example of a cross section of a fiber made of a propylene-based resin constituting the spunbonded nonwoven fabric of the present invention.
  • a line for example, L 22
  • L 22 a line parallel to the straight line (L 21 ) and having only one intersection (V 21 ) between the points S 21 and 22 in the contour (C 2 ) is drawn.
  • the distance b between this straight line (L 21 ) and the straight line (L 22 ) is measured.
  • the percentage of the ratio of b to a (b / a ⁇ 100) is obtained. This is arbitrarily extracted and measured for 20 fibers constituting the same surface, a simple arithmetic mean value is obtained, and the value rounded to the second decimal place is defined as the roval degree (%) in the present invention.
  • the contact angle of the fiber (Fa) made of a propylene resin with water and the contact angle of the fiber (Fb) with water are both less than 90 °.
  • the contact angle with water in the fiber made of propylene resin is an index different from the contact angle with water on the surface of the spunbonded nonwoven fabric described later, and if the contact angle is 90 ° or more, it is hydrophobic and less than 90 °. If so, the fiber made of the propylene-based resin becomes hydrophilic.
  • the contact angle of the fiber made of the propylene resin of the present invention with water is, for example, the fiber made of the propylene resin taken out from the spunbonded non-woven fabric left in a room at room temperature of 20 ° C. and relative humidity of 65% for 24 hours or more.
  • the fiber made of the propylene resin taken out from the spunbonded non-woven fabric left in a room at room temperature of 20 ° C. and relative humidity of 65% for 24 hours or more.
  • the heat composed of the fiber (Fa) made of the propylene-based resin on the surface (A) and the fiber (Fb) made of the propylene-based resin on the surface (B) is not beyond the gist of the present invention.
  • the plastic resin, fiber cross section, and the like may be the same or different.
  • the surface (A) is composed of the fibers (Fa) made of the propylene-based resin.
  • the spunbonded nonwoven fabric of the present invention is preferably made of long fibers as in a conventional method, that is, the fibers (Fa) are preferably long fibers. This is because the spunbonded non-woven fabric having both high productivity and excellent mechanical characteristics can be easily formed by being made of long fibers.
  • the average single fiber diameter (Da) of the fiber (Fa) made of the propylene-based resin constituting the surface (A) of the present invention is preferably 1.0 ⁇ m or more and 25.0 ⁇ m or less.
  • the average single fiber diameter (Da) is preferably 1.0 ⁇ m or more, more preferably 3.0 ⁇ m or more, and further preferably 5.0 ⁇ m or more, the arrangement of fibers becomes dense when used as a sanitary material. However, when it is used for disposable diapers, it becomes easy for water to transfer to the adjacent water absorber.
  • the average single fiber diameter (Da) is preferably 25.0 ⁇ m or less, more preferably 20.0 ⁇ m or less, still more preferably 16.0 ⁇ m or less, it is easy to obtain high capillary force and has excellent water absorption. It becomes a spunbonded non-woven fabric.
  • the average single fiber diameter (Da) ( ⁇ m) of the fiber (Fa) made of a propylene-based resin referred to here is obtained as follows. (1) An image is taken of the cross section of the fiber constituting the surface (A) at a magnification at which one fiber can be observed with a scanning electron microscope. (2) Using the captured image, use image analysis software (for example, "WinROOF2015” manufactured by Mitani Shoji Co., Ltd.) to measure the area Af ( ⁇ m 2 ) formed by the cross-sectional contour of the single fiber, and use this area Af. Calculate the diameter of a perfect circle with the same area. (3) This is arbitrarily extracted and measured for 20 fibers constituting the same surface, a simple arithmetic mean value is obtained, the average single fiber diameter (Da) is calculated, and the second decimal place is rounded off.
  • image analysis software for example, "WinROOF2015” manufactured by Mitani Shoji Co., Ltd.
  • the surface (B) is composed of the fibers (Fb) made of the propylene-based resin.
  • the spunbonded nonwoven fabric of the present invention is preferably made of long fibers as in a conventional method, and the constituent fibers (Fb) on the surface (B) are preferably long fibers. This is because the spunbonded non-woven fabric having both high productivity and excellent mechanical characteristics can be easily formed by being made of long fibers.
  • the average single fiber diameter (Db) of the fibers (Fb) constituting the surface (B) of the present invention is preferably 3.0 ⁇ m or more and 30.0 ⁇ m or less.
  • the average single fiber diameter (Db) is preferably 3.0 ⁇ m or more, more preferably 5.0 ⁇ m or more, and further preferably 10.0 ⁇ m or more.
  • moisture can be easily transferred to the surface (A) and quick-drying. It becomes an excellent spunbonded non-woven fabric.
  • the average single fiber diameter (Db) to preferably 30.0 ⁇ m or less, more preferably 28.0 ⁇ m or less, still more preferably 25.0 ⁇ m or less, a spunbonded nonwoven fabric having excellent flexibility can be obtained.
  • the average single fiber diameter (Db) ( ⁇ m) of the fiber (Fb) made of the propylene resin referred to here is obtained as follows. (1) An image is taken of the cross section of the fiber constituting the surface (B) at a magnification at which one fiber can be observed with a scanning electron microscope. (2) Using the captured image, use image analysis software (for example, "WinROOF2015” manufactured by Mitani Shoji Co., Ltd.) to measure the area Af ( ⁇ m 2 ) formed by the cross-sectional contour of the single fiber, and use this area Af. Calculate the diameter of a perfect circle with the same area. (3) This is arbitrarily extracted and measured for 20 fibers constituting the same surface, a simple arithmetic mean value is obtained, the average single fiber diameter (Db) is calculated, and the second decimal place is rounded off.
  • image analysis software for example, "WinROOF2015” manufactured by Mitani Shoji Co., Ltd.
  • one surface (A) is composed of fibers (Fa) made of a propylene-based resin
  • the other surface (B) is made of fibers (Fb) made of a propylene-based resin. It is a spunbonded nonwoven fabric and satisfies the following formula (1).
  • Da is the average single fiber diameter ( ⁇ m) of the fiber (Fa)
  • Db is the average single fiber diameter ( ⁇ m) of the fiber (Fb).
  • Db / Da in the formula (1) is calculated from the average single fiber diameter (Da) and the average single fiber diameter (Db) obtained by using the above-mentioned method, and can be obtained by rounding off to the second decimal place. can.
  • the size of the voids woven by the fibers changes according to the average single fiber diameter of the constituent fibers. Therefore, when layers having different average single fiber diameters are formed, layers having different interfiber void sizes are formed, and when moisture adheres, a layer made of thick fibers is formed due to the difference in capillary force. The absorbed moisture can be transferred to a layer of fine fibers. Furthermore, as a result of diligent studies by the present inventors, by setting the Db / Da in a specific range, not only the water absorption improving effect due to the difference in the capillary effect but also the quick-drying property on the surface (B) made of thick fibers is obtained. Found to be granted.
  • the upper limit of the average single fiber diameter ratio in the present invention is not particularly limited, but is preferably 10.0 or less from the viewpoint of process stability and productivity.
  • the spunbonded nonwoven fabric of the present invention has a crystal melting heat of 30 J / g or more and 98 J / g or less in the differential scanning calorimetry.
  • the amount of heat of crystal melting is set to 30 J / g or more, preferably 40 J / g or more, more preferably 50 J / g or more, still more preferably 60 J / g or more, it becomes possible to suppress the stickiness of the spunbonded nonwoven fabric, which is excellent. It is a spunbonded non-woven fabric that has a soft feel.
  • a spunbonded nonwoven fabric having excellent flexibility can be obtained.
  • Db / Da which is the ratio of the average single fiber diameter (Db) to the average single fiber diameter (Da)
  • Db the average single fiber diameter
  • Da the average single fiber diameter
  • the surface (B) having a large average single fiber diameter is arranged on the skin side of the wearer, so that the tactile sensation is also inferior.
  • the present inventors have found that the flexibility and tactile sensation of the spunbonded nonwoven fabric depend on the amount of heat of crystal melting of the spunbonded nonwoven fabric. That is, by reducing the amount of heat of crystal melting of the spunbonded nonwoven fabric, the crystallinity of the spunbonded nonwoven fabric is lowered, and even if the Db / Da is 1.1 or more, the spunbonded nonwoven fabric has excellent flexibility. ..
  • the amount of heat for melting the crystals is reduced too much, the flexibility is improved, but the proportion of amorphous is too large, so that the spunbonded nonwoven fabric becomes sticky and the tactile sensation tends to deteriorate. Therefore, in the present invention, it is important to set the amount of heat of crystal melting to a specific range in order to achieve both flexibility and tactile sensation.
  • the amount of heat of crystal melting of the spunbonded nonwoven fabric can be controlled by the copolymerization ratio of the propylene resin, the mesopentad fraction, the content of various additives, and the like. For example, when the copolymerization ratio is increased or the mesopentad fraction is decreased, the amount of heat of crystal melting tends to decrease.
  • the amount of heat of crystal melting (J / g) in the differential scanning calorimetry referred to here is obtained as follows.
  • a spunbonded nonwoven fabric of about 2 mg is set in a differential scanning calorimeter, and differential scanning calorimetry is carried out under the conditions of a temperature rise rate of 16 ° C./min and a measurement temperature range of 50 to 200 ° C. under nitrogen.
  • the amount of heat of crystal melting is calculated from the area of the endothermic peak in the obtained measurement result (DSC curve). When a plurality of endothermic peaks are observed, the amount of heat of crystal melting is calculated from the total value of the areas of all endothermic peaks.
  • the measurement position is changed for each level, the measurement is performed three times, a simple arithmetic mean value is obtained, the amount of heat of crystal melting is calculated, and the first decimal place is rounded off.
  • the contact angle of the surface (A) with water and the contact angle of the surface (B) with water are both 30 ° or less.
  • the contact angle with water is hydrophilic, so that the moisture in contact with the surface becomes the spunbonded nonwoven fabric. It is a spunbonded non-woven fabric that easily absorbs water and has excellent water absorption.
  • the lower limit of the contact angle with water in the present invention is 0 °, but the contact angle with water of 0 ° means a state in which all the water is absorbed by the spunbonded non-woven fabric in the measurement method described later.
  • the contact angle with water can be controlled by the hydrophilicity of the propylene-based resin used for the fibers constituting the spunbonded nonwoven fabric and the addition of a hydrophilic oil agent in a subsequent process.
  • the higher the hydrophilicity of the thermoplastic resin and the larger the amount of the hydrophilic oil agent adhered to the resin the smaller the contact angle with water tends to be.
  • the contact angles (°) of the surface (A) and the surface (B) of the spunbonded non-woven fabric referred to here with water are determined as follows. (1) The spunbonded nonwoven fabric is left in a room at room temperature of 20 ° C. and relative humidity of 65% for 24 hours or more. (2) The spunbonded nonwoven fabric subjected to the above treatment is set on the stage of the contact angle meter installed in the same room so that the surface (A) becomes the measurement surface. (3) A 2 ⁇ L droplet composed of ion-exchanged water is prepared at the needle tip and liquidated on a spunbonded non-woven fabric. (4) The contact angle with the droplet is obtained from the image 2 seconds after the droplet has landed on the spunbonded nonwoven fabric.
  • the spunbonded non-woven fabric of the present invention has the highest breaking strength with respect to the lowest breaking strength ⁇ min measured by rotating in the plane of the spunbonded non-woven fabric up to 180 ° every 22.5 ° with 0 ° in any one direction. It is preferable that the ratio of breaking strength ⁇ max ( ⁇ max / ⁇ min , hereinafter, may be simply abbreviated as breaking strength ratio) is 1.2 or more and 4.0 or less. By setting the breaking strength ratio to preferably 1.2 or more, more preferably 1.3 or more, the fibers are oriented in any direction in the surface of the spunbonded nonwoven fabric, so that the water absorbed by the capillary effect is absorbed by the fibers.
  • breaking strength ratio preferably 4.0 or less, more preferably 3.5 or less, an extremely low angle of breaking strength is eliminated, so that tearing of the non-woven fabric during process passage or product processing is suppressed. be able to.
  • the breaking strength ratio of the spunbonded nonwoven fabric referred to here is determined as follows based on "6.3 Tensile strength and elongation (ISO method)" of JIS L 1913: 2010 "General nonwoven fabric test method". It is a thing. (1) Set any one direction of the spunbonded nonwoven fabric to 0 °, cut out a test piece having a length of 300 mm and a width of 25 mm so that the vertical direction coincides with the above direction, change the location, and collect three test pieces. (2) Grasp the test piece and set it in the tensile tester with an interval of 200 mm.
  • a tensile test is carried out at a tensile speed of 100 m / min, the strength [N] at break is obtained for the three collected test pieces, and the arithmetic mean value thereof is defined as the breaking strength ⁇ .
  • the axial direction is the direction rotated clockwise by 22.5 ° in the plane of the spunbonded non-woven fabric with respect to any one direction set to 0 °, and the vertical direction coincides with the above axial direction. Cut out a test piece of 300 mm ⁇ 25 mm in width, change the location, and collect three test pieces. After that, the above operations (2) to (3) are performed to calculate the breaking strength ⁇ .
  • the spunbonded nonwoven fabric of the present invention contains another nonwoven fabric layer composed of fibers other than the fibers made of the propylene-based resin constituting the surface (A) and the surface (B), as long as the effects of the present invention are not impaired. You can go out.
  • a non-woven fabric layer composed of fibers other than the fibers made of the propylene-based resin constituting the surface (A) and the surface (B) is included, the non-woven fabric layer is hydrophilic, so that the water absorption of the spunbonded non-woven fabric as a whole is increased. It is preferable in that it does not impair.
  • nonwoven fabric layer examples include spunbonded nonwoven fabrics and merlo blown nonwoven fabrics made of propylene-based resin fibers having different fiber diameters, spunbonded nonwoven fabrics made of fibers other than propylene-based resin fibers, and melt-blow nonwoven fabrics.
  • the spunbonded nonwoven fabric of the present invention preferably has a water absorption rate of 20 seconds or less measured on the surface (B).
  • the non-woven fabric has good performance of removing water adhering to the surface, that is, excellent water absorption and quick-drying property.
  • the water absorption rate (seconds) referred to here is obtained based on "7.1.1 Dropping method” of JIS L 1907: 2010 "Water absorption test method for textile products”. A drop of water is dropped on the surface (B) of the spunbonded non-woven fabric, the time until it is absorbed and the mirror reflection on the surface disappears is measured, and a simple numerical average value of the values measured at 10 different points is obtained. Calculate the water absorption rate and round off the first digit.
  • the basis weight of the spunbonded nonwoven fabric of the present invention is preferably 5 g / m 2 or more and 200 g / m 2 or less.
  • the basis weight is preferably 5 g / m 2 or more, more preferably 8 g / m 2 or more, and further preferably 10 g / m 2 or more.
  • a spunbonded nonwoven fabric having mechanical strength that can be put into practical use can be obtained.
  • the basis weight to preferably 200 g / m 2 or less, more preferably 150 g / m 2 or less, and further preferably 100 g / m 2 or less. It becomes a spunbonded non-woven fabric having.
  • the basis weight (g / m 2 ) referred to here is obtained based on "6.2 Mass per unit area" of JIS L 1913: 2010 "General non-woven fabric test method”. Three 20 cm x 25 cm test pieces were collected per 1 m of sample width, the mass (g) of each was measured in the standard state, and the mass per 1 m 2 was obtained from the simple arithmetic mean of the measured values. Calculate and round off to the first decimal place.
  • the nonwoven fabric layer made of fibers (Fa) constituting the surface (A) and the nonwoven fabric layer made of fibers (Fb) constituting the surface (B) are integrated.
  • integrated means that these non-woven fabric layers are joined by entanglement of fibers, fixing by components such as an adhesive, and fusion of thermoplastic resins constituting each layer.
  • the spunbonded nonwoven fabric of the present invention may be provided with a hydrophilic agent for the purpose of increasing water absorption.
  • a hydrophilic agent for the purpose of increasing water absorption.
  • examples of the type of the hydrophilizing agent include surfactants, and among them, nonionic surfactants are preferable.
  • the sanitary material of the present invention comprises at least a part of the above-mentioned spunbonded nonwoven fabric. By doing so, a sanitary material having excellent water absorption and quick-drying properties and comfort when worn can be obtained.
  • the sanitary material referred to here is mainly a disposable item used for health-related purposes such as medical care and long-term care.
  • Examples of the sanitary material of the present invention include paper diapers, menstrual napkins, gauze, bandages, masks, gloves, adhesive plasters, and the like, and the constituent members thereof, for example, paper diapers include top sheets, back sheets, side gathers, and the like. ..
  • the sanitary material in which the surface (B) is arranged toward the skin side of the wearer can immediately absorb the moisture adhering to the skin surface side into the inside of the spunbonded non-woven fabric, which is not suitable for the wearer. It is more preferable because it can reduce the pleasant sensation.
  • the sanitary material is a disposable diaper and the spunbonded non-woven fabric is used for the top sheet of the disposable diaper
  • the surface (B) when the surface (B) is arranged toward the skin side of the wearer, sweat or excretion generated during wearing is performed.
  • the urine is quickly absorbed and the liquid is rapidly transferred to the surface (A), so that the surface (B) can be kept smooth without excessive dampness.
  • the sanitary material is a mask and a spunbonded non-woven fabric is used for the inner layer of the mask
  • the surface (B) is arranged toward the wearer's skin side, sweat and exhaled air are condensed and the skin surface is exposed. Even if moisture adheres to the surface (B) arranged on the side, it is immediately absorbed inside the spunbonded non-woven fabric, and the surface (B) can be kept in a smooth state without excessive dampness.
  • the spunbond method is used as the method for producing the surface (A) and the surface (B) constituting the spunbonded nonwoven fabric of the present invention. Further, when a nonwoven fabric layer composed of fibers other than the fibers constituting the surface (A) and the surface (B) is included, the method for producing the nonwoven fabric layer is known as a spunbond method, a melt blow method, a short fiber card method or the like. You can choose from the manufacturing methods.
  • the spunbond method is a method in which a thermoplastic resin, which is a raw material, is melted, spun from a spinneret, and then cooled and solidified. The resulting yarn is pulled by an ejector, stretched, and collected on a moving net. This is a method for producing a non-woven fabric, which requires a step of heat-bonding after forming a fiber web.
  • the raw material used may be a single component, but when two or more different types of resins are used, they may be pre-kneaded, dry-blended, or separately weighed and put into the extruder.
  • a method of separately weighing a propylene-based resin in which an ethylene unit is copolymerized with a propylene homopolymer and charging the resin into an extruder can be mentioned.
  • various shapes such as a round shape and a rectangular shape can be adopted as the shape of the spinneret and the ejector used.
  • the spinning temperature is + 10 ° C. or higher for the melting temperature of the thermoplastic resin as a raw material and + 120 ° C. or lower for the melting temperature of the thermoplastic resin as a raw material. That is, when a propylene-based resin is used, it can be said that a preferable range is approximately 170 ° C. or higher and 280 ° C. or lower. By setting the spinning temperature within the above range, a stable molten state can be obtained and excellent spinning stability can be obtained.
  • the spun yarn is then cooled.
  • a method of cooling the spun yarn for example, a method of forcibly blowing cold air on the yarn, a method of naturally cooling at the atmospheric temperature around the yarn, and a method of adjusting the distance between the spinneret and the ejector. Etc., or a method of combining these methods can be adopted. Further, the cooling conditions can be appropriately adjusted in consideration of the discharge amount per single hole of the spinneret, the spinning temperature, the atmospheric temperature and the like.
  • the cooled and solidified yarn is towed and stretched by the compressed air ejected from the ejector.
  • the spunbonded nonwoven fabric of the present invention it is important to control the average single fiber diameter of the propylene-based resin fibers constituting the surface (A) and the surface (B).
  • the average single fiber diameter of fibers made of propylene-based resin is determined by the discharge rate and traction speed per discharge hole of the spinneret, that is, the spinning speed. Therefore, it is preferable to determine the discharge amount and the spinning speed according to the desired average single fiber diameter.
  • the spinning speed is preferably 2,000 m / min or more, more preferably 3,000 m / min or more.
  • the long fiber yarns stretched by traction in this way are collected by a moving net to form a sheet, and then subjected to a process of heat bonding.
  • the spunbonded nonwoven fabric of the present invention is made of a propylene-based resin fiber having a single fiber diameter different from that of the surface (A) and the surface (B), that is, a nonwoven fabric layer made of fibers constituting the surface (A) and the surface (B). It is a spunbonded nonwoven fabric in which a nonwoven fabric layer composed of fibers constituting the above is laminated.
  • the surface (A) is formed on a collection net by a spunbond method.
  • a method of continuously collecting in-line a non-woven fabric layer made of fibers constituting the surface (B) on the non-woven fabric layer made of fibers and laminating and integrating the surface (A) by adhesion is used.
  • a method of obtaining a non-woven fabric layer made of constituent fibers and a non-woven fabric layer made of fibers constituting the surface (B) separately in advance, superimposing both non-woven fabric layers offline, and laminating and integrating them by adhesion is adopted. Can be done.
  • it since it is excellent in productivity, it is composed of fibers constituting the surface (B) by the spunbonding method on a non-woven fabric layer composed of fibers constituting the surface (A) by the spunbonding method on the collection net.
  • a method of continuously collecting the non-woven fabric layers in-line and laminating and integrating them by adhesion is preferable.
  • thermocompression bonding such as ultrasonic bonding in which heat welding is performed by ultrasonic vibration of the horn can be adopted.
  • the spunbonded nonwoven fabric of the present invention is produced by thermocompression bonding, it is preferable because the mechanical strength of the spunbonded nonwoven fabric is increased by sufficiently adhering a plurality of nonwoven fabric layers.
  • the spunbonded nonwoven fabric of the present invention is produced by the air-through method, it is preferable because it is bulky and has an excellent texture.
  • hydrophilic agent it is preferable to add a hydrophilic agent to the spunbonded nonwoven fabric thus obtained before winding.
  • the method for applying the hydrophilizing agent to the spunbonded non-woven fabric include application by kiss roll or spray, dip coating and the like.
  • a method for applying the hydrophilic agent to the spunbonded nonwoven fabric it is preferable to apply it by kiss roll from the viewpoint of uniformity and ease of controlling the amount of adhesion.
  • the present invention will be described in detail based on examples. However, the present invention is not limited to these examples.
  • the one without any special description is the one obtained by the measurement based on the above-mentioned method.
  • test piece was set in a tensile tester with a grasping interval of 200 mm.
  • the axial direction is the direction rotated clockwise by 22.5 ° in the plane of the laminated non-woven fabric with respect to any one direction set to 0 °, so that the vertical direction coincides with the above axial direction. Cut out a test piece having a length of 300 mm and a width of 25 mm, change the location, and collect three test pieces. After that, the above operations (8.2) to (8.3) were performed to calculate the breaking strength ⁇ .
  • Example 1 (Fiber web constituting surface (A)) A propylene resin having a copolymerization rate of 3 mol% and a mesopentad fraction of 95% in ethylene units is melted by an extruder, and a single hole discharge amount is 0. It was spun at 3 g / min. The spinning temperature at this time was 230 ° C. After the spun yarn is cooled and solidified by cold air, it is pulled and stretched at a spinning speed of 3700 m / min by compressed air with a pressure at the ejector of 0.08 MPa in a rectangular ejector, and is captured on a moving net. Collected to get a textile web. The average single fiber diameter Da of the propylene-based resin fibers constituting the obtained surface (A) was 10.6 ⁇ m.
  • the fiber web thus obtained is made of metal on the lower roll by using a metal embossed roll arranged in a so-called quilting pattern, which is a lattice pattern in which a straight line pattern formed by a perfect circular convex portion is orthogonal to the upper roll.
  • a metal embossed roll arranged in a so-called quilting pattern, which is a lattice pattern in which a straight line pattern formed by a perfect circular convex portion is orthogonal to the upper roll.
  • heat fusion is performed at a linear pressure of 300 N / cm and a heat fusion temperature of 125 ° C.
  • a bonded non-woven material was obtained.
  • a nonionic surfactant as a hydrophilizing agent was applied to the nonwoven fabric using kissroll so that the active ingredient was 0.5 wt% with respect to the weight of the spunbonded nonwoven fabric.
  • Table 1 shows the evaluation results of the obtained spunbonded non-woven fabric.
  • Example 2 A spunbonded nonwoven fabric was prepared in the same manner as in Example 1 except that a propylene resin having a copolymerization rate of 5 mol% and a mesopentad fraction of 95% was used on the surface (A) and the surface (B). Obtained. The evaluation results of the obtained spunbonded nonwoven fabric are also shown in Table 1.
  • Example 3 A spunbonded nonwoven fabric was prepared in the same manner as in Example 1 except that a propylene resin having a copolymerization rate of 0 mol% and a mesopentad fraction of 88% was used on the surface (A) and the surface (B). Obtained. The evaluation results of the obtained spunbonded nonwoven fabric are also shown in Table 1.
  • Example 4 A spunbonded nonwoven fabric was prepared in the same manner as in Example 1 except that a propylene-based resin having an ethylene unit copolymerization rate of 3 mol% and a mesopentad fraction of 88% was used on the surface (A) and the surface (B). Obtained. The evaluation results of the obtained spunbonded nonwoven fabric are also shown in Table 1.
  • Example 1 A spunbonded nonwoven fabric was prepared in the same manner as in Example 1 except that a propylene resin having a copolymerization rate of 0 mol% and a mesopentad fraction of 95% was used on the surface (A) and the surface (B). Obtained. The evaluation results of the obtained spunbonded nonwoven fabric are also shown in Table 1.
  • Example 5 A spunbonded non-woven fabric was obtained in the same manner as in Example 1 except that 1.2 wt% of ethylene bisstearic acid amide was added as a fatty acid amide compound to the propylene resin on the surface (A) and the surface (B). Table 2 shows the evaluation results of the obtained spunbonded nonwoven fabric.
  • Example 6 On the surface (A), a spunbonded nonwoven fabric was obtained by the same method as in Example 1 except that a rectangular base having Y holes was used at the time of producing the fiber web and the cross section of the fiber was a triangular cross section. The evaluation results of the obtained spunbonded nonwoven fabric are also shown in Table 2.
  • Example 2 Same as Example 1 except that the surface (B) was towed and stretched at a spinning speed of 3700 m / min by compressed air having a single-hole discharge rate of 0.3 g / min and an ejector pressure of 0.08 MPa.
  • a spunbonded nonwoven fabric was obtained by the above method.
  • the evaluation results of the obtained spunbonded nonwoven fabric are also shown in Table 2.
  • Example 7 In the spunbonded nonwoven fabric, the same as in Example 1 except that a nonionic surfactant as a hydrophilic agent was applied to the nonwoven fabric using kissroll so that the active ingredient was 0.1 wt% with respect to the weight of the spunbonded nonwoven fabric. A spunbonded nonwoven fabric was obtained by the above method. The evaluation results of the obtained spunbonded nonwoven fabric are also shown in Table 2.
  • the spunbonded nonwoven fabrics obtained in Examples 1 to 7 have a large Db / Da and a moderately small amount of heat for crystal melting, they have excellent water absorption and quick-drying properties and flexibility on the surface (B). I understand.
  • the spunbonded nonwoven fabric obtained in Comparative Example 1 is inferior in flexibility due to the large amount of heat of crystal melting, and the spunbonded nonwoven fabric obtained in Comparative Example 2 has a small Db / Da, so that moisture is present on the surface (A). It can be seen that the surface (B) is inferior in water absorption and quick-drying property without being transferred to.
  • C 1 Cross-section contour L 11 : Straight lines passing through two points (S 11 , S 12 ) on the cross-section contour (C 1 ) in the fiber cross section S 11 and S 12 : Cross-section contour in the fiber cross section (C 1 )
  • Upper point C 2 Cross-section contour L 21 : Straight line passing through two points (S 21 , S 22 ) on the cross-sectional contour (C 2 ) in the fiber cross section L 22 : Parallel to the straight line (L 21 ) and , Lines S 21 , S 22 , V 21 with only one intersection (V 21 ) between points S 21 and 22 of the contour (C 2 ): points on the contour (C 2 ) of the cross section in the fiber cross section.
  • a Distance between points S 21 and S 22
  • b Distance between a straight line (L 21 ) and a straight line (L 22 )

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

This spunbond nonwoven fabric is constituted by one surface (A) formed from a fiber (Fa) comprising a propylene resin and another surface (B) formed from a fiber (Fb) comprising a propylene resin, wherein: an amount of heat of crystal fusion in differential scanning calorimetry is 30-98 J/g; and formula (1) below is satisfied. (1): Db/Da ≥ 1.1, where Da is an average single fiber diameter (µm) of the fiber (Fa), and Db is an average single fiber diameter (µm) of the fiber (Fb). Provided are: a spunbond nonwoven fabric having excellent flexibility and water absorbing/fast drying properties in order to maintain comfort when worn; and also a hygienic material using the same.

Description

スパンボンド不織布およびこれを具備してなる衛生材料Spunbonded non-woven fabric and sanitary materials provided with it
 本発明は、着用時の快適性を保つための吸水速乾性に加え、優れた柔軟性を有するスパンボンド不織布、およびそれを少なくとも一部に具備してなる衛生材料に関するものである。 The present invention relates to a spunbonded nonwoven fabric having excellent flexibility in addition to water absorption and quick-drying to maintain comfort when worn, and a sanitary material provided with the same at least in part.
 近年、使い捨ておむつや生理用ナプキン、マスクなどの衛生材料用途に用いられるスパンボンド不織布に対して、さらに着用快適性を向上させるための様々な検討がなされている。特に、直接肌に触れる表面部材においては、水分を素早く吸収する吸水性と、吸収した水分を最表面層から移行させ表面を過度な湿り気がなくサラサラした状態にする速乾性の両立、すなわち「吸水速乾性」が要求される。また、肌当たりの良さも不織布の優劣を決定する重要な要素であり、肌当たりが良好な「柔軟性」の高い不織布が必要である。 In recent years, various studies have been conducted to further improve wearing comfort for spunbonded non-woven fabrics used for sanitary materials such as disposable diapers, menstrual napkins, and masks. In particular, for surface members that come into direct contact with the skin, both water absorption that quickly absorbs moisture and quick-drying that transfers the absorbed moisture from the outermost surface layer to make the surface smooth without excessive dampness, that is, "water absorption". "Quick drying" is required. In addition, good skin contact is also an important factor in determining the superiority or inferiority of the non-woven fabric, and a highly flexible non-woven fabric with good skin contact is required.
 不織布に吸水性を付与する手段としては、親水性の繊維からなる不織布を用いることや不織布に親水性処理を施すことが効果的である。しかし、これらの技術は吸水した水分を最表面層から移行させる機能がないため、速乾性に劣るという課題がある。 As a means for imparting water absorption to the non-woven fabric, it is effective to use a non-woven fabric made of hydrophilic fibers or to apply a hydrophilic treatment to the non-woven fabric. However, these techniques have a problem that they are inferior in quick-drying property because they do not have a function of transferring absorbed water from the outermost surface layer.
 このような背景から、不織布への吸水速乾性の付与を目的に、長繊維を含む繊維層の積層構造を有する積層不織布であって、疎水性繊維を含む疎水性層と繊維間距離や扁平率が特定の範囲にある親水性繊維を含む親水性層から構成され、上記疎水性層を不織布表面に配置してなる積層不織布が提案されている(特許文献1参照)。 Against this background, a laminated non-woven fabric having a laminated structure of fiber layers containing long fibers for the purpose of imparting water absorption and quick-drying properties to the non-woven fabric, the distance between the hydrophobic layer containing the hydrophobic fibers and the flatness and flatness. Has been proposed as a laminated nonwoven fabric composed of a hydrophilic layer containing hydrophilic fibers in a specific range and having the hydrophobic layer arranged on the surface of the nonwoven fabric (see Patent Document 1).
 また別に、不織布に柔軟性を付与する技術として、特定の融点を有するプロピレン系重合体と特定の脂肪酸アミド化合物を含むプロピレン系重合体組成物からなるスパンボンド不織布や(特許文献2参照)、エラストマー系ランダム共重合体をポリプロピレンにブレンドし、かつアミド化合物が含有されたマスターバッチをブレンドして製造したスパンボンド不織布が提案されている(特許文献3参照)。 Separately, as a technique for imparting flexibility to a non-woven fabric, a spunbonded non-woven fabric composed of a propylene-based polymer having a specific melting point and a specific fatty acid amide compound (see Patent Document 2) and an elastomer A spunbonded non-woven fabric produced by blending a system random copolymer with polypropylene and blending a master batch containing an amide compound has been proposed (see Patent Document 3).
国際公開2018/167881号International Publication No. 2018/167881 国際公開2014/050955号International Publication 2014/050955 特開2011-58157号公報Japanese Unexamined Patent Publication No. 2011-58157
 特許文献1の技術では、不織布の厚み方向に親水性勾配が形成されることにより、最表層に疎水性層を配した面であっても一定の吸水性能が発現する。しかしながら、上記の不織布は、最表面が疎水性層であるため、尿などの多量の水分を吸水するためには性能が十分でなく、また液残りが生じやすいために速乾性も不十分なものである。さらに、柔軟性に劣ることも課題である。 In the technique of Patent Document 1, a hydrophilic gradient is formed in the thickness direction of the nonwoven fabric, so that a certain water absorption performance is exhibited even on a surface in which a hydrophobic layer is arranged on the outermost surface layer. However, since the outermost surface of the above-mentioned non-woven fabric is a hydrophobic layer, the performance is not sufficient for absorbing a large amount of water such as urine, and the quick-drying property is also insufficient because liquid residue is likely to occur. Is. Furthermore, inferior flexibility is also an issue.
 一方、特許文献2および特許文献3の技術は、ともにポリマーブレンドや添加剤などによって改質されたポリプロピレンを用いたスパンボンド不織布に関するものである。しかしながら、上記スパンボンド不織布は、吸水速乾性が不十分なものである。 On the other hand, the techniques of Patent Document 2 and Patent Document 3 both relate to a spunbonded nonwoven fabric using polypropylene modified by a polymer blend or an additive. However, the spunbonded non-woven fabric has insufficient water absorption and quick-drying property.
 そこで、本発明の目的は、着用時の快適性を保つための吸水速乾性に加え、優れた柔軟性を有するスパンボンド不織布、およびそれを少なくとも一部に具備してなる衛生材料を提供することにある。 Therefore, an object of the present invention is to provide a spunbonded nonwoven fabric having excellent flexibility in addition to water absorption and quick-drying to maintain comfort when worn, and a sanitary material provided with the same at least in part. It is in.
 上記課題を達成するため、本発明のスパンボンド不織布は次の構成を有する。すなわち、
 一方の表面(A)がプロピレン系樹脂からなる繊維(Fa)で構成されてなり、他方の表面(B)がプロピレン系樹脂からなる繊維(Fb)で構成されてなるスパンボンド不織布であって、示差走査熱量測定における結晶融解熱量が30J/g以上98J/g以下であり、以下の式(1)を満たすスパンボンド不織布、である。
In order to achieve the above problems, the spunbonded nonwoven fabric of the present invention has the following constitution. That is,
A spunbonded nonwoven fabric in which one surface (A) is made of fibers (Fa) made of propylene resin and the other surface (B) is made of fibers (Fb) made of propylene resin. A spunbonded nonwoven fabric having a crystal melting heat of 30 J / g or more and 98 J / g or less in the differential scanning calorimetry and satisfying the following formula (1).
   Db/Da ≧ 1.1   ・・・(1)
 ここで、Daは、前記の繊維(Fa)の平均単繊維直径(μm)であり、Dbは、前記の繊維(Fb)の平均単繊維直径(μm)である。
Db / Da ≧ 1.1 ・ ・ ・ (1)
Here, Da is the average single fiber diameter (μm) of the fiber (Fa), and Db is the average single fiber diameter (μm) of the fiber (Fb).
 また、本発明の衛生材料は、前記のスパンボンド不織布を少なくとも一部に具備してなる衛生材料、である。 Further, the sanitary material of the present invention is a sanitary material provided with at least a part of the above-mentioned spunbonded nonwoven fabric.
 本発明のスパンボンド不織布は、前記プロピレン系樹脂の少なくとも一部が、エチレン単位が2モル%以上30モル%以下共重合されたプロピレン系樹脂であることが好ましい。 The spunbonded nonwoven fabric of the present invention is preferably a propylene-based resin in which at least a part of the propylene-based resin is copolymerized with an ethylene unit of 2 mol% or more and 30 mol% or less.
 本発明のスパンボンド不織布は、前記プロピレン系樹脂の少なくとも一部が、メソペンタッド分率が50%以上92%以下のプロピレン系樹脂であることが好ましい。 In the spunbonded nonwoven fabric of the present invention, it is preferable that at least a part of the propylene-based resin is a propylene-based resin having a mesopentad fraction of 50% or more and 92% or less.
 本発明のスパンボンド不織布は、前記プロピレン系樹脂の少なくとも一部が、脂肪酸アミド化合物が0.5質量%以上含有されたプロピレン系樹脂であることが好ましい。 The spunbonded nonwoven fabric of the present invention is preferably a propylene-based resin in which at least a part of the propylene-based resin contains 0.5% by mass or more of a fatty acid amide compound.
 本発明のスパンボンド不織布は、前記表面(A)の水との接触角と前記表面(B)の水との接触角とがともに30°以下であることが好ましい。 In the spunbonded nonwoven fabric of the present invention, it is preferable that the contact angle of the surface (A) with water and the contact angle of the surface (B) with water are both 30 ° or less.
 本発明のスパンボンド不織布は、前記繊維(Fa)および/または繊維(Fb)の少なくとも一部が、繊維断面において複数の凸状部を有し、かつ前記繊維断面のローバル度が5.0%以上の異形断面繊維であることが好ましい。 In the spunbonded nonwoven fabric of the present invention, at least a part of the fiber (Fa) and / or the fiber (Fb) has a plurality of convex portions in the fiber cross section, and the degree of roval of the fiber cross section is 5.0%. It is preferable to use the above-mentioned irregular cross-section fiber.
 本発明の衛生材料は、前記表面(B)が着用者の肌側に向けて配されてなることが好ましい。 In the sanitary material of the present invention, it is preferable that the surface (B) is arranged toward the skin side of the wearer.
 本発明のスパンボンド不織布は、紙おむつ、生理用ナプキン、ガーゼ、包帯、マスク、手袋、絆創膏等の衛生材料の一部として使用することができる。 The spunbonded non-woven fabric of the present invention can be used as a part of sanitary materials such as disposable diapers, menstrual napkins, gauze, bandages, masks, gloves, and adhesive plasters.
本発明のスパンボンド不織布を構成するプロピレン系樹脂からなる繊維の断面の一例を示す概念図である。It is a conceptual diagram which shows an example of the cross section of the fiber made of the propylene resin which constitutes the spunbonded nonwoven fabric of this invention. 本発明のスパンボンド不織布を構成するプロピレン系樹脂からなる繊維の断面の一例を示し、ローバル度の測定方法を説明する概念図である。It is a conceptual diagram which shows an example of the cross section of the fiber made of the propylene resin which constitutes the spunbonded nonwoven fabric of this invention, and explains the measuring method of the degree of roval.
 本発明のスパンボンド不織布は、一方の表面(A)がプロピレン系樹脂からなる繊維(Fa)で構成されてなり、他方の表面(B)がプロピレン系樹脂からなる繊維(Fb)で構成されてなり、示差走査熱量測定における結晶融解熱量が30J/g以上98J/g以下であり、以下の式(1)を満たす。 In the spunbonded nonwoven fabric of the present invention, one surface (A) is composed of fibers (Fa) made of a propylene resin, and the other surface (B) is made of fibers (Fb) made of a propylene resin. Therefore, the heat of crystal melting in the differential scanning calorimetry is 30 J / g or more and 98 J / g or less, and the following formula (1) is satisfied.
   Db/Da ≧ 1.1   ・・・(1)
 ここで、Daは、前記の繊維(Fa)の平均単繊維直径(μm)であり、Dbは、前記の繊維(Fb)の平均単繊維直径(μm)である。
Db / Da ≧ 1.1 ・ ・ ・ (1)
Here, Da is the average single fiber diameter (μm) of the fiber (Fa), and Db is the average single fiber diameter (μm) of the fiber (Fb).
 以下に、その構成要素について詳細に説明するが、本発明はその要旨を超えない限り、以下に説明する範囲に何ら限定されるものではない。なお、本発明において、表面(A)とは、スパンボンド不織布の2つの表面のうち、後述される方法によって測定される構成する繊維の平均単繊維直径が、より小さい側の表面を指す。 The components thereof will be described in detail below, but the present invention is not limited to the scope described below as long as the gist of the present invention is not exceeded. In the present invention, the surface (A) refers to the surface of the two surfaces of the spunbonded nonwoven fabric on the side where the average single fiber diameter of the constituent fibers measured by the method described later is smaller.
 [プロピレン系樹脂からなる繊維]
 本発明のスパンボンド不織布は、一方の表面(A)がプロピレン系樹脂からなる繊維(Fa)で構成されてなり、他方の表面(B)がプロピレン系樹脂からなる繊維(Fb)で構成されてなる。つまり、一方の表面(A)および他方の表面(B)がともにプロピレン系樹脂からなる繊維で構成されてなる。換言すれば、本発明のスパンボンド不織布は、プロピレン系樹脂からなる繊維(Fa)で構成された不織布層と、プロピレン系樹脂からなる繊維(Fb)で構成された不織布層との積層構造となっている。
[Fiber made of propylene resin]
In the spunbonded nonwoven fabric of the present invention, one surface (A) is composed of fibers (Fa) made of a propylene resin, and the other surface (B) is made of fibers (Fb) made of a propylene resin. Become. That is, one surface (A) and the other surface (B) are both composed of fibers made of a propylene-based resin. In other words, the spunbonded nonwoven fabric of the present invention has a laminated structure of a nonwoven fabric layer made of fibers (Fa) made of propylene-based resin and a nonwoven fabric layer made of fibers (Fb) made of propylene-based resin. ing.
 ここで、本発明において、「プロピレン系樹脂」とは、主たる繰り返し単位としてプロピレン単位を有する樹脂を意味する。このようなプロピレン系樹脂を用いることにより、低コストであり、かつ柔軟性に優れたスパンボンド不織布とすることができる。 Here, in the present invention, the "propylene-based resin" means a resin having a propylene unit as a main repeating unit. By using such a propylene-based resin, a spunbonded nonwoven fabric having low cost and excellent flexibility can be obtained.
 本発明において、プロピレン系樹脂は、例えば、プロピレンの単独重合体、プロピレンとエチレンの共重合体、プロピレンと各種α-オレフィンとの共重合体、およびこれら重合体の混合物などが挙げられる。ここで、α-オレフィンとは、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-ヘキサデセン、4-メチル-1-ペンテンなど、二重結合がα位にある炭化水素のことをいう。中でも、紡糸工程における工程安定性に優れることに加え、繊維とした際に優れた柔軟性を有する点から、プロピレンとエチレンの共重合体が好適に用いられる。また、上記のプロピレン系樹脂は、酸化チタン、シリカ、酸化バリウム、炭酸カルシウムなどの無機物、カーボンブラック、染料や顔料などの着色剤、難燃剤、蛍光増白剤、酸化防止剤、あるいは紫外線吸収剤などの各種添加剤を含んでいてもよい。 In the present invention, examples of the propylene-based resin include homopolymers of propylene, copolymers of propylene and ethylene, copolymers of propylene and various α-olefins, and mixtures of these polymers. Here, the α-olefin includes 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-dodecene, 1-hexadecene, 4-methyl-1-pentene and the like. A hydrocarbon whose double bond is in the α-position. Among them, a copolymer of propylene and ethylene is preferably used because it has excellent process stability in the spinning process and also has excellent flexibility when made into a fiber. The above propylene resin is an inorganic substance such as titanium oxide, silica, barium oxide, calcium carbonate, carbon black, a colorant such as a dye or a pigment, a flame retardant, a fluorescent whitening agent, an antioxidant, or an ultraviolet absorber. It may contain various additives such as.
[規則91に基づく訂正 16.12.2021] 
 本発明において、プロピレン系樹脂は、その少なくとも一部が、エチレン単位が2モル%以上30モル%以下共重合されたプロピレン系樹脂であることが好ましい。エチレン単位の共重合率を好ましくは2モル%以上、より好ましくは3モル%以上とすることにより、紡糸工程における工程安定性が向上することに加え、優れた柔軟性を有するスパンボンド不織布となる。また、エチレン単位の共重合率を好ましくは30モル%以下、より好ましくは25モル%以下、さらに好ましくは20モル%以下とすることにより、スパンボンド不織布のべたつきを抑制することが可能となり、優れた触感を有するスパンボンド不織布となる。
[Correction under Rule 91 16.12.2021]
In the present invention, the propylene-based resin is preferably a propylene-based resin in which at least a part thereof is copolymerized with an ethylene unit of 2 mol% or more and 30 mol% or less. By setting the copolymerization rate of each ethylene unit to preferably 2 mol% or more, more preferably 3 mol% or more, the spunbonded nonwoven fabric has excellent flexibility in addition to improving the process stability in the spinning process. .. Further, by setting the copolymerization rate of ethylene units to preferably 30 mol% or less, more preferably 25 mol% or less, still more preferably 20 mol% or less, it becomes possible to suppress the stickiness of the spunbonded nonwoven fabric, which is excellent. It is a spunbonded non-woven fabric that has a soft feel.
 ここで言う、エチレン単位の共重合率(モル%)とは、以下のようにして求めるものである。
(1)スパンボンド不織布の表面(A)もしくは表面(B)から採取した50mgのプロピレン系樹脂からなる繊維に、1mLのオルトジクロロベンゼンとベンゼン-d6(ベンゼンの水素が重水素に置換されたもの)との混合溶液(容積比でオルトジクロロベンゼン:ベンゼン-d6=9:1)を加え、135℃に加温する。
(2)得られた溶液について13C-NMR測定を行い、プロピレン単位に起因するピークの面積とエチレン単位に起因するピークの面積をNMRスペクトルから算出する。
(3)プロピレン単位とエチレン単位のピーク面積比よりエチレン単位のモル比を算出し、小数点第1位を四捨五入する。
The copolymerization rate (mol%) of ethylene units referred to here is determined as follows.
(1) Fibers made of 50 mg of propylene-based resin collected from the surface (A) or surface (B) of the spunbonded non-woven fabric, and 1 mL of orthodichlorobenzene and benzene-d6 (hydrogen of benzene are replaced with heavy hydrogen). ) And a mixed solution (orthodichlorobenzene in volume ratio: benzene-d6 = 9: 1) is added and heated to 135 ° C.
(2) 13 C-NMR measurement is performed on the obtained solution, and the area of the peak due to the propylene unit and the area of the peak due to the ethylene unit are calculated from the NMR spectrum.
(3) Calculate the molar ratio of ethylene units from the peak area ratio of propylene units and ethylene units, and round off to the first decimal place.
 本発明において、プロピレン系樹脂は、その少なくとも一部が、メソペンタッド分率が50%以上92%以下のプロピレン系樹脂であることが好ましい。メソペンタッド分率を好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%以上とすることにより、スパンボンド不織布のべたつきを抑制することが可能となり、優れた触感を有するスパンボンド不織布となる。また、メソペンタッド分率を好ましくは92%以下、より好ましくは90%以下とすることにより、紡糸工程における工程安定性が向上することに加え、優れた柔軟性を有するスパンボンド不織布とすることができる。 In the present invention, it is preferable that at least a part of the propylene-based resin is a propylene-based resin having a mesopentad fraction of 50% or more and 92% or less. By setting the mesopentad fraction to preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, it becomes possible to suppress the stickiness of the spunbonded nonwoven fabric, and the spunbonded nonwoven fabric having an excellent tactile sensation can be obtained. Become. Further, by setting the mesopentad fraction to 92% or less, more preferably 90% or less, it is possible to obtain a spunbonded nonwoven fabric having excellent flexibility in addition to improving the process stability in the spinning process. ..
 ここで言う、メソペンタッド分率(%)とは、以下のようにして求めるものである。
(1)スパンボンド不織布の表面(A)もしくは表面(B)から採取した50mgのプロピレン系樹脂からなる繊維に、1mLのオルトジクロロベンゼンとベンゼン-d6との混合溶液(容積比でオルトジクロロベンゼン:ベンゼン-d6=9:1)を加え、135℃に加温する。
(2)得られた溶液について13C-NMR測定を行う。
(3)「Zambelliら、Macromolecules、第8巻、687頁(1975)」に記載の方法に基づき、得られたNMRスペクトルのメチル基由来のスペクトルについて、21.70ppm以上21.90ppm以下に出現するピークをメソペンタッド連鎖に起因するピークとして各ピークの帰属を行い、メチル基由来全ピーク強度の総和に対するメソペンタッド連鎖に起因するピーク強度に対する比率を百分率で求めてメソペンダッド分率を算出し、小数点第1位を四捨五入する。
The mesopentad fraction (%) referred to here is obtained as follows.
(1) A mixed solution of 1 mL of orthodichlorobenzene and benzene-d6 on a fiber made of 50 mg of propylene resin collected from the surface (A) or the surface (B) of the spunbonded nonwoven fabric (orthodichlorobenzene in volume ratio: Benzene-d6 = 9: 1) is added and heated to 135 ° C.
(2) 13 C-NMR measurement is performed on the obtained solution.
(3) Based on the method described in "Zambelli et al., Macromolecules, Vol. 8, p. 687 (1975)", the spectrum derived from the methyl group of the obtained NMR spectrum appears at 21.70 ppm or more and 21.90 ppm or less. Each peak is assigned with the peak as a peak caused by the mesopentad chain, and the ratio to the peak intensity caused by the mesopentad chain to the total sum of all peak intensities derived from the methyl group is calculated as a percentage to calculate the mesopendad fraction. Is rounded off.
 本発明において、プロピレン系樹脂は、その少なくとも一部が、脂肪酸アミド化合物が0.5質量%以上含有されたプロピレン系樹脂であることが好ましい。脂肪酸アミド化合物の含有量を好ましくは0.5質量%以上、より好ましくは0.7質量%以上、さらに好ましくは1.0質量%以上とすることにより、脂肪酸アミド化合物が繊維表面において滑剤として作用するため、触感に優れたスパンボンド不織布となる。なお、本発明における脂肪酸アミド化合物の含有量の上限は特に制限されないが、コストや生産性の観点から5.0質量%以下が好ましい。 In the present invention, the propylene-based resin is preferably a propylene-based resin in which at least a part thereof contains 0.5% by mass or more of a fatty acid amide compound. By setting the content of the fatty acid amide compound to preferably 0.5% by mass or more, more preferably 0.7% by mass or more, still more preferably 1.0% by mass or more, the fatty acid amide compound acts as a lubricant on the fiber surface. Therefore, it becomes a spunbonded non-woven fabric having an excellent tactile sensation. The upper limit of the content of the fatty acid amide compound in the present invention is not particularly limited, but is preferably 5.0% by mass or less from the viewpoint of cost and productivity.
 本発明において、プロピレン系樹脂は、前記の脂肪酸アミド化合物を含有する場合において、脂肪酸アミド化合物の炭素数が15以上50以下であることが好ましい。炭素数が15以上50以下の脂肪酸アミド化合物としては、飽和脂肪酸モノアミド化合物、飽和脂肪酸ジアミド化合物、不飽和脂肪酸モノアミド化合物、および不飽和脂肪酸ジアミド化合物などが挙げられる。なお、本発明における炭素数とは、分子中に含まれる炭素数を意味し、具体的には、パルミチン酸アミド、パルミトレイン酸アミド、ステアリン酸アミド、オレイン酸アミド、エライジン酸アミド、バクセン酸アミド、リノール酸アミド、リノレン酸アミド、ピノレン酸アミド、エレオステアリン酸アミド、ステアリドン酸アミド、ボセオペンタエン酸アミド、アラキジン酸アミド、ガドレイン酸アミド、エイコセン酸アミド、エイコサジエン酸アミド、ミード酸アミド、エイコサトリエン酸アミド、アラキドン酸アミド、エイコサテトラエン酸アミド、エイコサペンタエン酸アミド、ヘンイコシル酸アミド、ベヘン酸アミド、エルカ酸アミド、ドコサジエン酸アミド、アドレン酸アミド、オズボンド酸アミド、イワシ酸アミド、ドコサヘキサエン酸アミド、リグノセリン酸アミド、ネルボン酸アミド、テトラコサペンタエン酸アミド、ニシン酸アミド、セロチン酸アミド、モンタン酸アミド、メリシン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、メチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスオレイン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、エチレンビスエルカ酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンヒドロキシステアリン酸アミド、ジステアリルアジピン酸アミド、ジステアリルセバシン酸アミド、およびヘキサメチレンビスオレイン酸アミドなどが挙げられ、これらを複数組み合わせて用いることができる。脂肪酸アミド化合物の炭素数を好ましくは15以上、より好ましくは23以上、さらに好ましくは30以上とすることにより、脂肪酸アミド化合物が過度に繊維表面に析出することを抑制し、紡糸性と加工安定性に優れ、高い生産性を保持することができる。また、脂肪酸アミド化合物の炭素数を好ましくは50以下、より好ましくは45以下、さらに好ましくは42以下とすることにより、脂肪酸アミド化合物が適度に繊維表面に析出するため、触感に優れたスパンボンド不織布となる。 In the present invention, when the propylene-based resin contains the fatty acid amide compound, the fatty acid amide compound preferably has 15 or more carbon atoms and 50 or less carbon atoms. Examples of the fatty acid amide compound having 15 or more and 50 or less carbon atoms include a saturated fatty acid monoamide compound, a saturated fatty acid diamide compound, an unsaturated fatty acid monoamide compound, and an unsaturated fatty acid diamide compound. The number of carbon atoms in the present invention means the number of carbon atoms contained in the molecule. Linol acid amide, linolenic acid amide, pinolenic acid amide, eleostea acid amide, stearidonic acid amide, bosseopentaenoic acid amide, arachidic acid amide, gadrain acid amide, eicosenoic acid amide, eikosazienoic acid amide, medo acid amide, eicosatrienic acid. Amid, arachidonic acid amide, eikosatetraenoic acid amide, eikosapentaenoic acid amide, henicosyl acid amide, behenic acid amide, erucic acid amide, docosazienoic acid amide, adrenoic acid amide, osbondic acid amide, sardine acid amide, docosahexaenoic acid amide, Lignoseric acid amide, nervonic acid amide, tetracosapentaenoic acid amide, disinic acid amide, cellotic acid amide, montanic acid amide, melic acid amide, ethylene biscapric acid amide, ethylene bislauric acid amide, methylene bislauric acid amide, ethylene Bistearic acid amide, ethylene bisoleic acid amide, ethylene bishydroxystearic acid amide, ethylene bisbechenic acid amide, ethylene biserukaic acid amide, hexamethylene bisstearic acid amide, hexamethylene bisbechenic acid amide, hexamethylene hydroxystearic acid amide , Distearyl adipic acid amide, distearyl sebacic acid amide, hexamethylene bisoleic acid amide and the like, and a plurality of these can be used in combination. By setting the number of carbon atoms of the fatty acid amide compound to preferably 15 or more, more preferably 23 or more, and further preferably 30 or more, it is possible to suppress excessive precipitation of the fatty acid amide compound on the fiber surface, resulting in spinnability and processing stability. It is excellent in and can maintain high productivity. Further, by setting the number of carbon atoms of the fatty acid amide compound to preferably 50 or less, more preferably 45 or less, still more preferably 42 or less, the fatty acid amide compound is appropriately precipitated on the fiber surface, so that the spunbonded non-woven fabric has an excellent tactile sensation. Will be.
 本発明において、プロピレン系樹脂からなる繊維(Fa)および/または繊維(Fb)は、単成分繊維はもとより、2種類以上の樹脂を複合した複合繊維であってもよい。前記のプロピレン系樹脂からなる繊維が複合繊維の場合において、その複合形態は本発明の効果を損ねない限り特に限定されるものではなく、芯鞘型や海島型、サイドバイサイド型、偏心芯鞘型、ブレンド型などから適宜選択することができる。なお、前記のプロピレン系樹脂繊維を複合繊維とする場合において、前記のプロピレン系樹脂と共に使用される樹脂は、製造工程における工程安定性や柔軟性の観点から、エチレン単位やプロピレン単位を主たる繰り返し単位としたオレフィン系樹脂が好適に用いられる。例えば、芯鞘型複合繊維とする場合において、芯成分を前記のプロピレン系樹脂、鞘成分を前記のオレフィン系樹脂としたり、海島型複合繊維とする場合において、海成分を前記のオレフィン系樹脂、島成分を前記のプロピレン系樹脂などとしたりすることができる。中でも、芯成分に前記のプロピレン系樹脂を用い、鞘成分にエチレン単位を主たる繰り返し単位とするオレフィン系樹脂を用いた芯鞘型複合繊維とすることにより、優れた触感を有するスパンボンド不織布となる。 In the present invention, the fiber (Fa) and / or the fiber (Fb) made of a propylene-based resin may be not only a single component fiber but also a composite fiber in which two or more kinds of resins are composited. When the fiber made of the propylene-based resin is a composite fiber, the composite form is not particularly limited as long as the effect of the present invention is not impaired, and a core sheath type, a sea island type, a side-by-side type, an eccentric core sheath type, etc. It can be appropriately selected from a blend type and the like. When the propylene-based resin fiber is used as a composite fiber, the resin used together with the propylene-based resin is mainly a repeating unit of ethylene unit or propylene unit from the viewpoint of process stability and flexibility in the manufacturing process. The above-mentioned olefin-based resin is preferably used. For example, in the case of a core-sheath type composite fiber, the core component is the propylene-based resin, the sheath component is the olefin-based resin, or in the case of a sea-island type composite fiber, the sea component is the olefin-based resin. The island component may be the above-mentioned propylene-based resin or the like. Above all, a spunbonded non-woven fabric having an excellent tactile sensation can be obtained by using the above-mentioned propylene-based resin as the core component and using an olefin-based resin having an ethylene unit as the main repeating unit as the sheath component to form a core-sheath type composite fiber. ..
 本発明において、プロピレン系樹脂からなる繊維(Fa)および/または繊維(Fb)は、その少なくとも一部が、繊維断面において複数の凸状部を有していることが好ましい。繊維断面において複数の凸状部を有していることにより、繊維側面に繊維軸方向に連続した溝が形成され、溝部分が通液パスとなるため、優れた吸水性を有するスパンボンド不織布となる。 In the present invention, it is preferable that at least a part of the fiber (Fa) and / or the fiber (Fb) made of a propylene resin has a plurality of convex portions in the fiber cross section. By having a plurality of convex portions in the fiber cross section, continuous grooves are formed on the side surface of the fiber in the fiber axial direction, and the groove portion serves as a liquid passage path, so that the spunbonded nonwoven fabric has excellent water absorption. Become.
 ここで言う、「繊維断面において複数の凸状部を有する」とは、以下に説明する断面形状のことであり、これについて、図1を用いて説明する。 Here, "having a plurality of convex portions in the fiber cross section" means the cross-sectional shape described below, which will be described with reference to FIG. 1.
 図1には、複数の凸状部を有する繊維断面の一例を示している。この繊維断面において、断面の輪郭(C)上のある2点(S11、S12)を通る直線であって、S11とS12との2点間の線分が輪郭(C)の中を通らない線(例えば、L11)を少なくとも2本引くことができる断面形状を意味する。 FIG. 1 shows an example of a fiber cross section having a plurality of convex portions. In this fiber cross section, a straight line passing through two points (S 11 and S 12 ) on the contour (C 1 ) of the cross section, and the line segment between the two points S 11 and S 12 is the contour (C 1 ). It means a cross-sectional shape in which at least two lines (for example, L 11 ) that do not pass through the inside can be drawn.
 本発明において、プロピレン系樹脂からなる繊維(Fa)および/または繊維(Fb)は、前記のとおり、少なくとも一部が、繊維断面において複数の凸状部を有し、かつ繊維断面のローバル度が5.0%以上であることが好ましい。繊維断面のローバル度を好ましくは5.0%以上、より好ましくは10.0%以上とすることにより、スパンボンド不織布の面方向への水分拡散効率が高くなるため、優れた吸水性を有するスパンボンド不織布となる。なお、ローバル度の上限は特に制限されないが、製造時の摩擦による凸部の剥離を抑制し、高品位のスパンボンド不織布が得られるといった点から、60.0%以下が好ましい。 In the present invention, as described above, at least a part of the fiber (Fa) and / or the fiber (Fb) made of a propylene-based resin has a plurality of convex portions in the fiber cross section, and the degree of roval of the fiber cross section is high. It is preferably 5.0% or more. By setting the roval degree of the fiber cross section to preferably 5.0% or more, more preferably 10.0% or more, the moisture diffusion efficiency in the surface direction of the spunbonded nonwoven fabric is increased, so that the span has excellent water absorption. It becomes a bonded non-woven fabric. Although the upper limit of the degree of roval is not particularly limited, it is preferably 60.0% or less from the viewpoint of suppressing peeling of the convex portion due to friction during manufacturing and obtaining a high-quality spunbonded nonwoven fabric.
 ここで言う、繊維断面のローバル度とは、以下に説明する手法にて測定されるものであり、図2を用いて詳細に説明する。 The degree of roval of the fiber cross section referred to here is measured by the method described below, and will be described in detail with reference to FIG.
 図2には、本発明のスパンボンド不織布を構成するプロピレン系樹脂からなる繊維の断面の一例を示している。 FIG. 2 shows an example of a cross section of a fiber made of a propylene-based resin constituting the spunbonded nonwoven fabric of the present invention.
[規則91に基づく訂正 16.12.2021] 
 まず、スパンボンド不織布を構成する繊維の横断面を走査型電子顕微鏡で1本の単繊維が観察できる倍率として画像を撮影する。撮影された繊維断面画像を用いて、同一断面内で断面の輪郭(図2のC)上のある2点(図2のS21、S22)を通る直線であって、S21とS22との2点間の線分が輪郭(C)の中を通らない線(例えば、図2のL21)を引き、点S21とS22間の距離aを測定する。次に、直線(L21)に平行で、かつ、輪郭(C)のうち点S21と点22の間において交点(V21)が1点しかない線(例えば、L22)を引く。そして、この直線(L21)と直線(L22)との間の距離bを測定する。さらに、aに対するbの比の百分率(b/a×100)を求める。これを任意に抽出した同じ表面を構成する繊維20本について測定し、単純な数平均値を求め、小数点第2位を四捨五入した値を、本発明で言うローバル度(%)とする。
[Correction under Rule 91 16.12.2021]
First, an image is taken of the cross section of the fibers constituting the spunbonded nonwoven fabric at a magnification at which one single fiber can be observed with a scanning electron microscope. Using the photographed fiber cross-section image, it is a straight line passing through two points (S 21 , S 22 in FIG. 2) on the contour of the cross-section (C 2 in FIG. 2) in the same cross-section, and is S 21 and S. A line segment (for example, L 21 in FIG. 2) in which the line segment between the two points with 22 does not pass through the contour (C 2 ) is drawn, and the distance a between the points S 21 and S 22 is measured. Next, a line (for example, L 22 ) parallel to the straight line (L 21 ) and having only one intersection (V 21 ) between the points S 21 and 22 in the contour (C 2 ) is drawn. Then, the distance b between this straight line (L 21 ) and the straight line (L 22 ) is measured. Further, the percentage of the ratio of b to a (b / a × 100) is obtained. This is arbitrarily extracted and measured for 20 fibers constituting the same surface, a simple arithmetic mean value is obtained, and the value rounded to the second decimal place is defined as the roval degree (%) in the present invention.
 また、本発明のスパンボンド不織布において、プロピレン系樹脂からなる繊維(Fa)の水との接触角と繊維(Fb)の水との接触角とが、ともに90°未満であることが好ましい。プロピレン系樹脂からなる繊維における水との接触角は、後述するスパンボンド不織布の表面の水との接触角とは異なる指標であり、該接触角が90°以上であれば疎水性、90°未満であれば、前記のプロピレン系樹脂からなる繊維は親水性となる。なお、本発明のプロピレン系樹脂からなる繊維の水との接触角は、例えば、室温20℃、相対湿度65%の室内に24時間以上放置したスパンボンド不織布から取り出したプロピレン系樹脂からなる繊維に対し、インクジェット方式水滴吐出部を搭載した自動接触角計を用いて極少量(15pL)の水滴を繊維表面に着液させた際の、液滴の空気界面と繊維のなす角を測定することにより求められる。 Further, in the spunbonded nonwoven fabric of the present invention, it is preferable that the contact angle of the fiber (Fa) made of a propylene resin with water and the contact angle of the fiber (Fb) with water are both less than 90 °. The contact angle with water in the fiber made of propylene resin is an index different from the contact angle with water on the surface of the spunbonded nonwoven fabric described later, and if the contact angle is 90 ° or more, it is hydrophobic and less than 90 °. If so, the fiber made of the propylene-based resin becomes hydrophilic. The contact angle of the fiber made of the propylene resin of the present invention with water is, for example, the fiber made of the propylene resin taken out from the spunbonded non-woven fabric left in a room at room temperature of 20 ° C. and relative humidity of 65% for 24 hours or more. On the other hand, by measuring the angle between the air interface of the droplet and the fiber when a very small amount (15 pL) of water droplet is landed on the fiber surface using an automatic contact angle meter equipped with an inkjet water droplet ejection part. Desired.
 なお、本発明においては、その要旨を超えない範囲において、表面(A)のプロピレン系樹脂からなる繊維(Fa)と表面(B)のプロピレン系樹脂からなる繊維(Fb)とで、構成する熱可塑性樹脂や繊維断面などが同一であっても、異なっていてもよい。 In the present invention, the heat composed of the fiber (Fa) made of the propylene-based resin on the surface (A) and the fiber (Fb) made of the propylene-based resin on the surface (B) is not beyond the gist of the present invention. The plastic resin, fiber cross section, and the like may be the same or different.
 [表面(A)および表面(B)]
 本発明のスパンボンド不織布において、表面(A)は、前記のプロピレン系樹脂からなる繊維(Fa)で構成される。
[Surface (A) and Surface (B)]
In the spunbonded nonwoven fabric of the present invention, the surface (A) is composed of the fibers (Fa) made of the propylene-based resin.
 本発明のスパンボンド不織布は、常法の通り、長繊維からなることが好ましく、すなわち、前記の繊維(Fa)が長繊維であることが好ましい。長繊維からなることにより、高い生産性と優れた力学物性を両立したスパンボンド不織布とすることが容易にできるためである。 The spunbonded nonwoven fabric of the present invention is preferably made of long fibers as in a conventional method, that is, the fibers (Fa) are preferably long fibers. This is because the spunbonded non-woven fabric having both high productivity and excellent mechanical characteristics can be easily formed by being made of long fibers.
 本発明の表面(A)を構成するプロピレン系樹脂からなる繊維(Fa)の平均単繊維直径(Da)は、1.0μm以上25.0μm以下であることが好ましい。この平均単繊維直径(Da)を好ましくは1.0μm以上、より好ましくは3.0μm以上、さらに好ましくは5.0μm以上とすることにより、衛生材料として使用した場合、繊維の配置が密になり過ぎず、紙おむつ用途とした場合、隣接する吸水体に水分が移行しやすくなる。また、平均単繊維直径(Da)を好ましくは25.0μm以下、より好ましくは20.0μm以下、さらに好ましくは16.0μm以下とすることにより、高い毛管力を得やすく、優れた吸水性を有したスパンボンド不織布となる。 The average single fiber diameter (Da) of the fiber (Fa) made of the propylene-based resin constituting the surface (A) of the present invention is preferably 1.0 μm or more and 25.0 μm or less. By setting the average single fiber diameter (Da) to preferably 1.0 μm or more, more preferably 3.0 μm or more, and further preferably 5.0 μm or more, the arrangement of fibers becomes dense when used as a sanitary material. However, when it is used for disposable diapers, it becomes easy for water to transfer to the adjacent water absorber. Further, by setting the average single fiber diameter (Da) to preferably 25.0 μm or less, more preferably 20.0 μm or less, still more preferably 16.0 μm or less, it is easy to obtain high capillary force and has excellent water absorption. It becomes a spunbonded non-woven fabric.
[規則91に基づく訂正 16.12.2021] 
 ここで言う、プロピレン系樹脂からなる繊維(Fa)の平均単繊維直径(Da)(μm)とは、以下のようにして求めるものである。
(1)表面(A)を構成する繊維の横断面を、走査型電子顕微鏡で1本の繊維が観察できる倍率として画像を撮影する。
(2)撮影した画像を用い、画像解析ソフト(例えば三谷商事株式会社製「WinROOF2015」など)を用いて、単繊維の断面輪郭が形成する面積Af(μm)を計測し、この面積Afと同一の面積となる真円の直径を算出する。
(3)これを任意に抽出した同じ表面を構成する繊維20本について測定し、単純な数平均値を求め平均単繊維直径(Da)を算出し、小数点第2位を四捨五入する。
[Correction under Rule 91 16.12.2021]
The average single fiber diameter (Da) (μm) of the fiber (Fa) made of a propylene-based resin referred to here is obtained as follows.
(1) An image is taken of the cross section of the fiber constituting the surface (A) at a magnification at which one fiber can be observed with a scanning electron microscope.
(2) Using the captured image, use image analysis software (for example, "WinROOF2015" manufactured by Mitani Shoji Co., Ltd.) to measure the area Af (μm 2 ) formed by the cross-sectional contour of the single fiber, and use this area Af. Calculate the diameter of a perfect circle with the same area.
(3) This is arbitrarily extracted and measured for 20 fibers constituting the same surface, a simple arithmetic mean value is obtained, the average single fiber diameter (Da) is calculated, and the second decimal place is rounded off.
 本発明のスパンボンド不織布において、表面(B)は、前記のプロピレン系樹脂からなる繊維(Fb)で構成される。 In the spunbonded nonwoven fabric of the present invention, the surface (B) is composed of the fibers (Fb) made of the propylene-based resin.
 本発明のスパンボンド不織布は、常法の通り、長繊維からなることが好ましく、表面(B)の構成繊維(Fb)が、長繊維であることが好ましい。長繊維からなることにより、高い生産性と優れた力学物性を両立したスパンボンド不織布とすることが容易にできるためである。 The spunbonded nonwoven fabric of the present invention is preferably made of long fibers as in a conventional method, and the constituent fibers (Fb) on the surface (B) are preferably long fibers. This is because the spunbonded non-woven fabric having both high productivity and excellent mechanical characteristics can be easily formed by being made of long fibers.
 本発明の表面(B)を構成する繊維(Fb)の平均単繊維直径(Db)は、3.0μm以上30.0μm以下であることが好ましい。この平均単繊維直径(Db)を好ましくは3.0μm以上、より好ましくは5.0μm以上、さらに好ましくは10.0μm以上とすることにより、表面(A)に水分が移行しやすくなり、速乾性に優れたスパンボンド不織布となる。また、平均単繊維直径(Db)を好ましくは30.0μm以下、より好ましくは28.0μm以下、さらに好ましくは25.0μm以下とすることにより、優れた柔軟性を有したスパンボンド不織布となる。 The average single fiber diameter (Db) of the fibers (Fb) constituting the surface (B) of the present invention is preferably 3.0 μm or more and 30.0 μm or less. By setting the average single fiber diameter (Db) to preferably 3.0 μm or more, more preferably 5.0 μm or more, and further preferably 10.0 μm or more, moisture can be easily transferred to the surface (A) and quick-drying. It becomes an excellent spunbonded non-woven fabric. Further, by setting the average single fiber diameter (Db) to preferably 30.0 μm or less, more preferably 28.0 μm or less, still more preferably 25.0 μm or less, a spunbonded nonwoven fabric having excellent flexibility can be obtained.
[規則91に基づく訂正 16.12.2021] 
 ここで言う、プロピレン系樹脂からなる繊維(Fb)の平均単繊維直径(Db)(μm)とは、以下のようにして求めるものである。
(1)表面(B)を構成する繊維の横断面を、走査型電子顕微鏡で1本の繊維が観察できる倍率として画像を撮影する。
(2)撮影した画像を用い、画像解析ソフト(例えば三谷商事株式会社製「WinROOF2015」など)を用いて、単繊維の断面輪郭が形成する面積Af(μm)を計測し、この面積Afと同一の面積となる真円の直径を算出する。
(3)これを任意に抽出した同じ表面を構成する繊維20本について測定し、単純な数平均値を求め平均単繊維直径(Db)を算出し、小数点第2位を四捨五入する。
[Correction under Rule 91 16.12.2021]
The average single fiber diameter (Db) (μm) of the fiber (Fb) made of the propylene resin referred to here is obtained as follows.
(1) An image is taken of the cross section of the fiber constituting the surface (B) at a magnification at which one fiber can be observed with a scanning electron microscope.
(2) Using the captured image, use image analysis software (for example, "WinROOF2015" manufactured by Mitani Shoji Co., Ltd.) to measure the area Af (μm 2 ) formed by the cross-sectional contour of the single fiber, and use this area Af. Calculate the diameter of a perfect circle with the same area.
(3) This is arbitrarily extracted and measured for 20 fibers constituting the same surface, a simple arithmetic mean value is obtained, the average single fiber diameter (Db) is calculated, and the second decimal place is rounded off.
 本発明のスパンボンド不織布は、一方の表面(A)がプロピレン系樹脂からなる繊維(Fa)で構成されてなり、他方の表面(B)がプロピレン系樹脂からなる繊維(Fb)で構成されてなるスパンボンド不織布であって、以下の式(1)を満たす。 In the spunbonded nonwoven fabric of the present invention, one surface (A) is composed of fibers (Fa) made of a propylene-based resin, and the other surface (B) is made of fibers (Fb) made of a propylene-based resin. It is a spunbonded nonwoven fabric and satisfies the following formula (1).
   Db/Da ≧ 1.1   ・・・(1)
 ここで、Daは、前記繊維(Fa)の平均単繊維直径(μm)であり、Dbは、前記繊維(Fb)の平均単繊維直径(μm)である。式(1)におけるDb/Daとは、前述の手法を用いて求めた平均単繊維直径(Da)と平均単繊維直径(Db)より算出し、小数点第2位を四捨五入することで求めることができる。
Db / Da ≧ 1.1 ・ ・ ・ (1)
Here, Da is the average single fiber diameter (μm) of the fiber (Fa), and Db is the average single fiber diameter (μm) of the fiber (Fb). Db / Da in the formula (1) is calculated from the average single fiber diameter (Da) and the average single fiber diameter (Db) obtained by using the above-mentioned method, and can be obtained by rounding off to the second decimal place. can.
 一般に、不織布においては、構成する繊維の平均単繊維直径に応じて、繊維同士が織りなす空隙サイズが変化する。このため、平均単繊維直径が異なる層が形成した場合には繊維間空隙サイズが異なる層が形成されることとなり、水分が付着した場合には、毛管力の差により、太い繊維からなる層に吸収された水分を、細い繊維からなる層に移行させることができる。さらに、本発明者らは鋭意検討の結果、前記Db/Daを特定の範囲とすることで、毛細管効果の差による吸水性向上効果のみならず、太い繊維からなる表面(B)に速乾性が付与されることを見出した。 Generally, in a non-woven fabric, the size of the voids woven by the fibers changes according to the average single fiber diameter of the constituent fibers. Therefore, when layers having different average single fiber diameters are formed, layers having different interfiber void sizes are formed, and when moisture adheres, a layer made of thick fibers is formed due to the difference in capillary force. The absorbed moisture can be transferred to a layer of fine fibers. Furthermore, as a result of diligent studies by the present inventors, by setting the Db / Da in a specific range, not only the water absorption improving effect due to the difference in the capillary effect but also the quick-drying property on the surface (B) made of thick fibers is obtained. Found to be granted.
 したがって、Db/Daを1.1以上、好ましくは1.2以上、より好ましくは1.3以上とすることにより、上述の毛細管効果が作用し、良好な吸水性および表面(B)における速乾性を得ることができる。なお、本発明における平均単繊維直径比の上限は特に制限されないが、工程安定性や生産性の観点から10.0以下が好ましい。 Therefore, by setting Db / Da to 1.1 or more, preferably 1.2 or more, more preferably 1.3 or more, the above-mentioned capillary effect acts, and good water absorption and quick-drying property on the surface (B) are exerted. Can be obtained. The upper limit of the average single fiber diameter ratio in the present invention is not particularly limited, but is preferably 10.0 or less from the viewpoint of process stability and productivity.
 [スパンボンド不織布]
 本発明のスパンボンド不織布は、示差走査熱量測定における結晶融解熱量が30J/g以上98J/g以下である。結晶融解熱量を30J/g以上、好ましくは40J/g以上、より好ましくは50J/g以上、さらに好ましくは60J/g以上とすることにより、スパンボンド不織布のべたつきを抑制することが可能となり、優れた触感を有するスパンボンド不織布となる。また、結晶融解熱量を98J/g以下、好ましくは95J/g以下、より好ましくは92J/g以下、さらに好ましくは90J/g以下とすることにより、優れた柔軟性を有するスパンボンド不織布となる。
[Spunbond non-woven fabric]
The spunbonded nonwoven fabric of the present invention has a crystal melting heat of 30 J / g or more and 98 J / g or less in the differential scanning calorimetry. By setting the amount of heat of crystal melting to 30 J / g or more, preferably 40 J / g or more, more preferably 50 J / g or more, still more preferably 60 J / g or more, it becomes possible to suppress the stickiness of the spunbonded nonwoven fabric, which is excellent. It is a spunbonded non-woven fabric that has a soft feel. Further, by setting the heat of crystal melting to 98 J / g or less, preferably 95 J / g or less, more preferably 92 J / g or less, and further preferably 90 J / g or less, a spunbonded nonwoven fabric having excellent flexibility can be obtained.
 不織布の柔軟性や触感を向上させるための手法としては、不織布を構成する繊維の平均単繊維直径を小さくして繊維の断面二次モーメントを低下させる手法などが一般的に用いられる。しかしながら、本発明のスパンボンド不織布は、平均単繊維直径(Da)に対する平均単繊維直径(Db)の比であるDb/Daが1.1以上であるため、平均単繊維直径(Db)が必然的に大きくなってしまい、柔軟性が低下する傾向であった。また、衛生材料として使用した場合、平均単繊維直径の大きい表面(B)が着用者の肌側に配されるため、触感にも劣る物であった。 As a method for improving the flexibility and tactile sensation of a non-woven fabric, a method of reducing the average single fiber diameter of the fibers constituting the non-woven fabric to reduce the moment of inertia of area of the fibers is generally used. However, in the spunbonded non-woven fabric of the present invention, Db / Da, which is the ratio of the average single fiber diameter (Db) to the average single fiber diameter (Da), is 1.1 or more, so that the average single fiber diameter (Db) is inevitable. It tended to become larger and less flexible. Further, when used as a sanitary material, the surface (B) having a large average single fiber diameter is arranged on the skin side of the wearer, so that the tactile sensation is also inferior.
 上記の課題に対して本発明者らは鋭意検討を重ねた結果、スパンボンド不織布の柔軟性や触感が、スパンボンド不織布の結晶融解熱量に依存することを見出した。すなわち、スパンボンド不織布の結晶融解熱量を低下させることにより、スパンボンド不織布の結晶性が低下し、Db/Daが1.1以上であっても、柔軟性に優れたスパンボンド不織布となるのである。一方、結晶融解熱量を低下させ過ぎた場合、柔軟性は向上するものの、非晶の割合が多くなりすぎるためにスパンボンド不織布がべたつきやすくなり、触感が悪化する傾向にある。したがって、本発明において、柔軟性と触感とを両立するためには結晶融解熱量を特定の範囲とすることが重要となるのである。 As a result of diligent studies on the above problems, the present inventors have found that the flexibility and tactile sensation of the spunbonded nonwoven fabric depend on the amount of heat of crystal melting of the spunbonded nonwoven fabric. That is, by reducing the amount of heat of crystal melting of the spunbonded nonwoven fabric, the crystallinity of the spunbonded nonwoven fabric is lowered, and even if the Db / Da is 1.1 or more, the spunbonded nonwoven fabric has excellent flexibility. .. On the other hand, when the amount of heat for melting the crystals is reduced too much, the flexibility is improved, but the proportion of amorphous is too large, so that the spunbonded nonwoven fabric becomes sticky and the tactile sensation tends to deteriorate. Therefore, in the present invention, it is important to set the amount of heat of crystal melting to a specific range in order to achieve both flexibility and tactile sensation.
 なお、スパンボンド不織布の結晶融解熱量は、プロピレン系樹脂の共重合比率やメソペンタッド分率、各種添加剤の含有量などにより制御することができる。例えば、共重合比率を高くする、もしくはメソペンタッド分率を低くすると、結晶融解熱量は低下する傾向にある。 The amount of heat of crystal melting of the spunbonded nonwoven fabric can be controlled by the copolymerization ratio of the propylene resin, the mesopentad fraction, the content of various additives, and the like. For example, when the copolymerization ratio is increased or the mesopentad fraction is decreased, the amount of heat of crystal melting tends to decrease.
 ここで言う、示差走査熱量測定における結晶融解熱量(J/g)とは、以下のようにして求めるものである。
(1)示差走査熱量計に約2mgのスパンボンド不織布をセットし、窒素下、昇温速度16℃/分、測定温度範囲50~200℃の条件で示差走査熱量測定を実施する。
(2)得られた測定結果(DSC曲線)における吸熱ピークの面積より結晶融解熱量を算出する。なお、吸熱ピークが複数見られた場合、すべての吸熱ピークの面積を合算した値より、結晶融解熱量を算出する。
(3)1水準につき測定位置を変更して3回測定を行い、単純な数平均値を求め結晶融解熱量を算出し、小数点第1位を四捨五入する。
The amount of heat of crystal melting (J / g) in the differential scanning calorimetry referred to here is obtained as follows.
(1) A spunbonded nonwoven fabric of about 2 mg is set in a differential scanning calorimeter, and differential scanning calorimetry is carried out under the conditions of a temperature rise rate of 16 ° C./min and a measurement temperature range of 50 to 200 ° C. under nitrogen.
(2) The amount of heat of crystal melting is calculated from the area of the endothermic peak in the obtained measurement result (DSC curve). When a plurality of endothermic peaks are observed, the amount of heat of crystal melting is calculated from the total value of the areas of all endothermic peaks.
(3) The measurement position is changed for each level, the measurement is performed three times, a simple arithmetic mean value is obtained, the amount of heat of crystal melting is calculated, and the first decimal place is rounded off.
 本発明のスパンボンド不織布は、前記の表面(A)の水との接触角と前記の表面(B)の水との接触角とがともに30°以下であることが好ましい。水との接触角を好ましくは30°以下、より好ましくは20°以下、さらに好ましくは10°以下とすることにより、スパンボンド不織布が親水性であるため、表面に接触した水分がスパンボンド不織布に吸水されやすく、優れた吸水性を有するスパンボンド不織布となる。また、本発明における水との接触角の下限は0°であるが、水との接触角が0°とは、後述の測定方法においてすべての水がスパンボンド不織布に吸水された状態をいう。 In the spunbonded nonwoven fabric of the present invention, it is preferable that the contact angle of the surface (A) with water and the contact angle of the surface (B) with water are both 30 ° or less. By setting the contact angle with water to preferably 30 ° or less, more preferably 20 ° or less, still more preferably 10 ° or less, the spunbonded nonwoven fabric is hydrophilic, so that the moisture in contact with the surface becomes the spunbonded nonwoven fabric. It is a spunbonded non-woven fabric that easily absorbs water and has excellent water absorption. Further, the lower limit of the contact angle with water in the present invention is 0 °, but the contact angle with water of 0 ° means a state in which all the water is absorbed by the spunbonded non-woven fabric in the measurement method described later.
 なお、水との接触角は、スパンボンド不織布を構成する繊維に用いられるプロピレン系樹脂の親水性や後工程による親水性油剤付与によって制御することができる。例えば、上記熱可塑性樹脂の親水性が高いほど、また親水性油剤の付着量が多いほど、水との接触角は小さくなる傾向にある。 The contact angle with water can be controlled by the hydrophilicity of the propylene-based resin used for the fibers constituting the spunbonded nonwoven fabric and the addition of a hydrophilic oil agent in a subsequent process. For example, the higher the hydrophilicity of the thermoplastic resin and the larger the amount of the hydrophilic oil agent adhered to the resin, the smaller the contact angle with water tends to be.
 ここで言う、スパンボンド不織布の表面(A)、表面(B)の水との接触角(°)とは、以下のようにして求めるものである。
(1)スパンボンド不織布を、室温20℃、相対湿度65%の室内に24時間以上放置する。
(2)上記処理を施したスパンボンド不織布を、同室に設置した接触角計のステージ上に、表面(A)が測定面となるようにセットする。
(3)イオン交換水からなる2μLの液滴を針先に作製し、スパンボンド不織布に着液させる。
(4)スパンボンド不織布に液滴が着液してから2秒後の画像より、液滴との接触角を求める。
(5)1水準につき測定位置を変更して5回測定を行い、単純な数平均値を求めて表面(A)の水との接触角を算出し、小数点第1位を四捨五入する。なお、2秒以内にすべての水がスパンボンド不織布に吸水された場合は、液滴の空気との界面がスパンボンド不織布の表面と同一面に存在すると判断し、水との接触角を0°と定義する。
(6)(1)と同様の処理を施したスパンボンド不織布を、表面(B)が測定面となるようにセットし、上記(2)~(5)の操作を繰り返し行い、表面(B)と水との接触角を算出する。
The contact angles (°) of the surface (A) and the surface (B) of the spunbonded non-woven fabric referred to here with water are determined as follows.
(1) The spunbonded nonwoven fabric is left in a room at room temperature of 20 ° C. and relative humidity of 65% for 24 hours or more.
(2) The spunbonded nonwoven fabric subjected to the above treatment is set on the stage of the contact angle meter installed in the same room so that the surface (A) becomes the measurement surface.
(3) A 2 μL droplet composed of ion-exchanged water is prepared at the needle tip and liquidated on a spunbonded non-woven fabric.
(4) The contact angle with the droplet is obtained from the image 2 seconds after the droplet has landed on the spunbonded nonwoven fabric.
(5) The measurement position is changed for each level, the measurement is performed 5 times, a simple arithmetic mean value is obtained, the contact angle of the surface (A) with water is calculated, and the first decimal place is rounded off. If all the water is absorbed by the spunbonded nonwoven fabric within 2 seconds, it is judged that the interface of the droplets with air is on the same surface as the surface of the spunbonded nonwoven fabric, and the contact angle with water is 0 °. Is defined as.
(6) A spunbonded nonwoven fabric subjected to the same treatment as (1) is set so that the surface (B) is the measurement surface, and the above operations (2) to (5) are repeated to obtain the surface (B). Calculate the contact angle between water and water.
 本発明のスパンボンド不織布は、任意の一方向を0°とし22.5°毎に180°まで、スパンボンド不織布の面内で回転させて測定した破断強力の内、最低破断強力σminに対する最高破断強力σmaxの比(σmax/σmin、以下、単に破断強力比と略することがある)が1.2以上4.0以下であることが好ましい。破断強力比を好ましくは1.2以上、より好ましくは1.3以上とすることにより、スパンボンド不織布面内のいずれかの方向に繊維が配向しているため、毛細管効果により吸水した水分を繊維配向方向に広げることができ、より高い吸水速乾性を得ることが可能となる。また、破断強力比を好ましくは4.0以下、より好ましくは3.5以下とすることにより、極端に破断強力の低い角度がなくなるため、工程通過時や製品加工時の不織布の破れを抑制することができる。 The spunbonded non-woven fabric of the present invention has the highest breaking strength with respect to the lowest breaking strength σ min measured by rotating in the plane of the spunbonded non-woven fabric up to 180 ° every 22.5 ° with 0 ° in any one direction. It is preferable that the ratio of breaking strength σ maxmax / σ min , hereinafter, may be simply abbreviated as breaking strength ratio) is 1.2 or more and 4.0 or less. By setting the breaking strength ratio to preferably 1.2 or more, more preferably 1.3 or more, the fibers are oriented in any direction in the surface of the spunbonded nonwoven fabric, so that the water absorbed by the capillary effect is absorbed by the fibers. It can be expanded in the orientation direction, and higher water absorption and quick-drying properties can be obtained. Further, by setting the breaking strength ratio to preferably 4.0 or less, more preferably 3.5 or less, an extremely low angle of breaking strength is eliminated, so that tearing of the non-woven fabric during process passage or product processing is suppressed. be able to.
[規則91に基づく訂正 16.12.2021] 
 ここで言う、スパンボンド不織布の破断強力比とは、JIS L 1913:2010「一般不織布試験方法」の「6.3 引張強さ及び伸び率(ISO法)」に基づき、以下のようにして求めるものである。
(1)スパンボンド不織布の任意の一方向を0°とし、縦方向が上記の方向と一致するよう縦300mm×横25mmの試験片を切り出し、場所を変更して試験片を3枚採取する。
(2)試験片をつかみ間隔200mmで引張試験機にセットする。
(3)引張速度100m/分で引張試験を実施し、採取した3枚の試験片について破断時の強力〔N〕を求め、その算術平均値を破断強力σとする。
(4)0°とした任意の一方向に対してスパンボンド不織布の面内で時計回りに22.5°回転させた方向を軸方向とし、縦方向が上記の軸方向と一致するように縦300mm×横25mmの試験片を切り出し、場所を変更して試験片を3枚採取する。その後、上記(2)~(3)の操作を行い、破断強力σを算出する。
(5)スパンボンド不織布の面内での回転角度が180°になるまで上記(4)の操作を繰り返し行い、それぞれの角度における破断強力σを算出する。
(6)上記の方法で算出された破断強力σの内、最低破断強力σminに対する最高破断強力σmaxの比(σmax/σmin)を算出し、スパンボンド不織布の破断強力比とする。
[Correction under Rule 91 16.12.2021]
The breaking strength ratio of the spunbonded nonwoven fabric referred to here is determined as follows based on "6.3 Tensile strength and elongation (ISO method)" of JIS L 1913: 2010 "General nonwoven fabric test method". It is a thing.
(1) Set any one direction of the spunbonded nonwoven fabric to 0 °, cut out a test piece having a length of 300 mm and a width of 25 mm so that the vertical direction coincides with the above direction, change the location, and collect three test pieces.
(2) Grasp the test piece and set it in the tensile tester with an interval of 200 mm.
(3) A tensile test is carried out at a tensile speed of 100 m / min, the strength [N] at break is obtained for the three collected test pieces, and the arithmetic mean value thereof is defined as the breaking strength σ.
(4) The axial direction is the direction rotated clockwise by 22.5 ° in the plane of the spunbonded non-woven fabric with respect to any one direction set to 0 °, and the vertical direction coincides with the above axial direction. Cut out a test piece of 300 mm × 25 mm in width, change the location, and collect three test pieces. After that, the above operations (2) to (3) are performed to calculate the breaking strength σ.
(5) The operation of (4) above is repeated until the rotation angle of the spunbonded nonwoven fabric in the plane becomes 180 °, and the breaking strength σ at each angle is calculated.
(6) Of the breaking strength σ calculated by the above method, the ratio of the maximum breaking strength σ max to the lowest breaking strength σ minmax / σ min ) is calculated and used as the breaking strength ratio of the spunbonded non-woven fabric.
 本発明のスパンボンド不織布は、本発明の効果を損なわない範囲で、表面(A)および表面(B)を構成するプロピレン系樹脂からなる繊維以外の繊維で構成される、別の不織布層を含んでいても良い。表面(A)および表面(B)を構成するプロピレン系樹脂からなる繊維以外の繊維で構成される不織布層を含む場合、その不織布層は親水性であることがスパンボンド不織布全体としての吸水性を損なわない点で好ましい。上記の不織布層としては、例えば、繊維径の異なるプロピレン系樹脂繊維からなるスパンボンド不織布やメルロブロー不織布、プロピレン系樹脂繊維以外の繊維からなるスパンボンド不織布やメルトブロー不織布などが挙げられる。 The spunbonded nonwoven fabric of the present invention contains another nonwoven fabric layer composed of fibers other than the fibers made of the propylene-based resin constituting the surface (A) and the surface (B), as long as the effects of the present invention are not impaired. You can go out. When a non-woven fabric layer composed of fibers other than the fibers made of the propylene-based resin constituting the surface (A) and the surface (B) is included, the non-woven fabric layer is hydrophilic, so that the water absorption of the spunbonded non-woven fabric as a whole is increased. It is preferable in that it does not impair. Examples of the above-mentioned nonwoven fabric layer include spunbonded nonwoven fabrics and merlo blown nonwoven fabrics made of propylene-based resin fibers having different fiber diameters, spunbonded nonwoven fabrics made of fibers other than propylene-based resin fibers, and melt-blow nonwoven fabrics.
 本発明のスパンボンド不織布は、表面(B)にて測定された吸水速度が20秒以下であることが好ましい。吸水速度を好ましくは20秒以下、より好ましくは15秒以下、さらに好ましくは10秒以下とすることにより、表面に付着した水分を取り除く性能が良好である、すなわち吸水速乾性に優れる不織布となる。 The spunbonded nonwoven fabric of the present invention preferably has a water absorption rate of 20 seconds or less measured on the surface (B). By setting the water absorption rate to preferably 20 seconds or less, more preferably 15 seconds or less, still more preferably 10 seconds or less, the non-woven fabric has good performance of removing water adhering to the surface, that is, excellent water absorption and quick-drying property.
 ここで言う、吸水速度(秒)とは、JIS L 1907:2010「繊維製品の吸水性試験方法」の「7.1.1 滴下法」に基づき求めるものである。スパンボンド不織布の表面(B)に水滴を1滴滴下し、吸収されて表面の鏡面反射が消失するまでの時間を測定し、これを異なる10箇所で測定した値の単純な数平均値を求めて吸水速度を算出し、小数点第1位を四捨五入する。 The water absorption rate (seconds) referred to here is obtained based on "7.1.1 Dropping method" of JIS L 1907: 2010 "Water absorption test method for textile products". A drop of water is dropped on the surface (B) of the spunbonded non-woven fabric, the time until it is absorbed and the mirror reflection on the surface disappears is measured, and a simple numerical average value of the values measured at 10 different points is obtained. Calculate the water absorption rate and round off the first digit.
[規則91に基づく訂正 16.12.2021] 
 本発明のスパンボンド不織布の目付は、5g/m以上200g/m以下とすることが好ましい。目付を好ましくは5g/m以上、より好ましくは8g/m以上、さらに好ましくは10g/m以上とすることにより、実用に供し得る機械的強度を有したスパンボンド不織布となる。また、目付を好ましくは200g/m以下、より好ましくは150g/m以下、さらに好ましくは100g/m以下とすることにより、衛生材料用の不織布としての使用に適した適度な柔軟性を有するスパンボンド不織布となる。
[Correction under Rule 91 16.12.2021]
The basis weight of the spunbonded nonwoven fabric of the present invention is preferably 5 g / m 2 or more and 200 g / m 2 or less. By setting the basis weight to preferably 5 g / m 2 or more, more preferably 8 g / m 2 or more, and further preferably 10 g / m 2 or more, a spunbonded nonwoven fabric having mechanical strength that can be put into practical use can be obtained. Further, by setting the basis weight to preferably 200 g / m 2 or less, more preferably 150 g / m 2 or less, and further preferably 100 g / m 2 or less, appropriate flexibility suitable for use as a non-woven fabric for sanitary materials is obtained. It becomes a spunbonded non-woven fabric having.
 ここで言う、目付(g/m)とは、JIS L 1913:2010「一般不織布試験方法」の「6.2 単位面積当たりの質量」に基づき求めるものである。20cm×25cmの試験片を、試料の幅1m当たり3枚採取して標準状態におけるそれぞれの質量(g)を量り、測定した値の単純な数平均値から1m当たりの質量を求めて目付を算出し、小数点第1位を四捨五入する。 The basis weight (g / m 2 ) referred to here is obtained based on "6.2 Mass per unit area" of JIS L 1913: 2010 "General non-woven fabric test method". Three 20 cm x 25 cm test pieces were collected per 1 m of sample width, the mass (g) of each was measured in the standard state, and the mass per 1 m 2 was obtained from the simple arithmetic mean of the measured values. Calculate and round off to the first decimal place.
 本発明のスパンボンド不織布は、表面(A)を構成する繊維(Fa)からなる不織布層と表面(B)を構成する繊維(Fb)からなる不織布層とが一体化していることが好ましい。ここでいう一体化とは、これらの不織布層が繊維同士の交絡、接着剤等の成分による固定、それぞれの層を構成する熱可塑性樹脂同士の融着によって接合しているものである。 In the spunbonded nonwoven fabric of the present invention, it is preferable that the nonwoven fabric layer made of fibers (Fa) constituting the surface (A) and the nonwoven fabric layer made of fibers (Fb) constituting the surface (B) are integrated. The term "integration" as used herein means that these non-woven fabric layers are joined by entanglement of fibers, fixing by components such as an adhesive, and fusion of thermoplastic resins constituting each layer.
 なお、本発明のスパンボンド不織布は、吸水性をより高くすることを目的として、親水化剤を付与しても良い。親水化剤の種類としては、界面活性剤などが挙げられるが、中でも非イオン性界面活性剤が好ましい。 The spunbonded nonwoven fabric of the present invention may be provided with a hydrophilic agent for the purpose of increasing water absorption. Examples of the type of the hydrophilizing agent include surfactants, and among them, nonionic surfactants are preferable.
 [衛生材料]
 本発明の衛生材料は、前記のスパンボンド不織布を少なくとも一部に具備してなる。このようにすることで、吸水速乾性および着用時の快適性に優れた衛生材料が得られる。なお、ここで言う衛生材料とは、例えば、医療・介護など健康に関わる目的で使用される、主に使い捨ての物品である。本発明の衛生材料は、紙おむつ、生理用ナプキン、ガーゼ、包帯、マスク、手袋、絆創膏等が挙げられ、その構成部材、例えば、紙おむつにおいては、そのトップシート、バックシート、サイドギャザー等も含まれる。
[Sanitary material]
The sanitary material of the present invention comprises at least a part of the above-mentioned spunbonded nonwoven fabric. By doing so, a sanitary material having excellent water absorption and quick-drying properties and comfort when worn can be obtained. The sanitary material referred to here is mainly a disposable item used for health-related purposes such as medical care and long-term care. Examples of the sanitary material of the present invention include paper diapers, menstrual napkins, gauze, bandages, masks, gloves, adhesive plasters, and the like, and the constituent members thereof, for example, paper diapers include top sheets, back sheets, side gathers, and the like. ..
 中でも、前記の表面(B)が着用者の肌側に向けて配されてなる衛生材料は、肌面側に付着した水分をスパンボンド不織布の内部へ直ちに吸収することができ、着用者に不快感を低減できるため、より好ましい。 Above all, the sanitary material in which the surface (B) is arranged toward the skin side of the wearer can immediately absorb the moisture adhering to the skin surface side into the inside of the spunbonded non-woven fabric, which is not suitable for the wearer. It is more preferable because it can reduce the pleasant sensation.
 例えば、衛生材料が紙おむつであって、スパンボンド不織布が紙おむつのトップシートに用いられる場合において、表面(B)着用者の肌側に向けて配されてなるときには、着用時に生じる汗や排泄された尿を素早く吸収し、表面(A)に迅速に液移行されることとなり、表面(B)を過度な湿り気がなくサラサラした状態に保つことができる。 For example, when the sanitary material is a disposable diaper and the spunbonded non-woven fabric is used for the top sheet of the disposable diaper, when the surface (B) is arranged toward the skin side of the wearer, sweat or excretion generated during wearing is performed. The urine is quickly absorbed and the liquid is rapidly transferred to the surface (A), so that the surface (B) can be kept smooth without excessive dampness.
 衛生材料がマスクであって、スパンボンド不織布がマスクの内面層に用いられる場合において、表面(B)が着用者の肌側に向けて配されてなるときには、汗や呼気が結露し、肌面側に配される表面(B)に水分が付着しても、スパンボンド不織布内部にすぐに吸収され、表面(B)を過度な湿り気がなくサラサラした状態に保つことができる。 When the sanitary material is a mask and a spunbonded non-woven fabric is used for the inner layer of the mask, when the surface (B) is arranged toward the wearer's skin side, sweat and exhaled air are condensed and the skin surface is exposed. Even if moisture adheres to the surface (B) arranged on the side, it is immediately absorbed inside the spunbonded non-woven fabric, and the surface (B) can be kept in a smooth state without excessive dampness.
 [スパンボンド不織布の製造方法]
 次に、本発明のスパンボンド不織布を製造する好ましい態様を、具体的に説明する。
[Manufacturing method of spunbonded non-woven fabric]
Next, a preferred embodiment for producing the spunbonded nonwoven fabric of the present invention will be specifically described.
 本発明のスパンボンド不織布を構成する表面(A)および表面(B)の製造方法は、スパンボンド法が用いられる。また、表面(A)および表面(B)を構成する繊維以外の繊維で構成される不織布層を含む場合、その不織布層の製造方法はスパンボンド法、メルトブロー法、短繊維カード法などの公知の製造方法から選ぶことができる。 The spunbond method is used as the method for producing the surface (A) and the surface (B) constituting the spunbonded nonwoven fabric of the present invention. Further, when a nonwoven fabric layer composed of fibers other than the fibers constituting the surface (A) and the surface (B) is included, the method for producing the nonwoven fabric layer is known as a spunbond method, a melt blow method, a short fiber card method or the like. You can choose from the manufacturing methods.
 以下、本発明のスパンボンド不織布を製造する好ましい様態を説明するが、これに限定されるものではない。 Hereinafter, a preferable mode for producing the spunbonded nonwoven fabric of the present invention will be described, but the present invention is not limited thereto.
 スパンボンド法とは、原料である熱可塑性樹脂を溶融し、紡糸口金から紡糸した後、冷却固化して得られた糸条に対し、エジェクターで牽引し延伸して、移動するネット上に捕集して繊維ウェブ化した後、熱接着する工程を要する不織布の製造方法である。 The spunbond method is a method in which a thermoplastic resin, which is a raw material, is melted, spun from a spinneret, and then cooled and solidified. The resulting yarn is pulled by an ejector, stretched, and collected on a moving net. This is a method for producing a non-woven fabric, which requires a step of heat-bonding after forming a fiber web.
 使用する原料は、単成分でも構わないが、異なる2種類以上の樹脂を用いる場合は、事前混練、ドライブレンド、もしくは別々に計量しながら押出機に投入しても良い。例えば、プロピレンの単独重合体にエチレン単位が共重合されたプロピレン系樹脂を別々に計量して押出機に投入する方法などが挙げられる。 The raw material used may be a single component, but when two or more different types of resins are used, they may be pre-kneaded, dry-blended, or separately weighed and put into the extruder. For example, a method of separately weighing a propylene-based resin in which an ethylene unit is copolymerized with a propylene homopolymer and charging the resin into an extruder can be mentioned.
 スパンボンド法において、用いられる紡糸口金やエジェクターの形状としては、丸形や矩形等種々のものを採用することができる。中でも、圧縮エアの使用量が比較的少なく、糸条同士の融着や擦過が起こりにくいという観点から、矩形口金と矩形エジェクターの組み合わせを用いることが好ましい。 In the spunbond method, various shapes such as a round shape and a rectangular shape can be adopted as the shape of the spinneret and the ejector used. Above all, it is preferable to use a combination of a rectangular base and a rectangular ejector from the viewpoint that the amount of compressed air used is relatively small and the yarns are less likely to be fused or scratched.
 本発明のスパンボンド不織布を製造する場合、紡糸温度は、原料である熱可塑性樹脂の融解温度+10℃以上、かつ、原料である熱可塑性樹脂の融解温度+120℃以下とすることが好ましい。すなわち、プロピレン系樹脂を用いる場合、おおよそ170℃以上280℃以下が好ましい範囲と言える。紡糸温度を上記範囲内とすることにより、安定した溶融状態とし、優れた紡糸安定性を得ることができる。 When producing the spunbonded nonwoven fabric of the present invention, it is preferable that the spinning temperature is + 10 ° C. or higher for the melting temperature of the thermoplastic resin as a raw material and + 120 ° C. or lower for the melting temperature of the thermoplastic resin as a raw material. That is, when a propylene-based resin is used, it can be said that a preferable range is approximately 170 ° C. or higher and 280 ° C. or lower. By setting the spinning temperature within the above range, a stable molten state can be obtained and excellent spinning stability can be obtained.
 紡出された糸条は、次に冷却される。紡出された糸条を冷却する方法としては、例えば、冷風を強制的に糸条に吹き付ける方法、糸条周りの雰囲気温度で自然冷却する方法、および紡糸口金とエジェクター間の距離を調整する方法等が挙げられ、またはこれらの方法を組み合わせる方法を採用することができる。また、冷却条件は、紡糸口金の単孔あたりの吐出量、紡糸する温度および雰囲気温度等を考慮して適宜調整することができる。 The spun yarn is then cooled. As a method of cooling the spun yarn, for example, a method of forcibly blowing cold air on the yarn, a method of naturally cooling at the atmospheric temperature around the yarn, and a method of adjusting the distance between the spinneret and the ejector. Etc., or a method of combining these methods can be adopted. Further, the cooling conditions can be appropriately adjusted in consideration of the discharge amount per single hole of the spinneret, the spinning temperature, the atmospheric temperature and the like.
 次に、冷却固化された糸条は、エジェクターから噴射される圧縮エアによって牽引され、延伸される。 Next, the cooled and solidified yarn is towed and stretched by the compressed air ejected from the ejector.
 本発明のスパンボンド不織布では、表面(A)と表面(B)を構成するプロピレン系樹脂繊維の平均単繊維直径の制御が重要である。 In the spunbonded nonwoven fabric of the present invention, it is important to control the average single fiber diameter of the propylene-based resin fibers constituting the surface (A) and the surface (B).
 プロピレン系樹脂からなる繊維の平均単繊維直径は、紡糸口金の吐出孔当たりの吐出量と牽引速度、すなわち紡糸速度によって決定される。このため、所望の平均単繊維直径に応じて、吐出量と紡糸速度を決定することが好ましい。 The average single fiber diameter of fibers made of propylene-based resin is determined by the discharge rate and traction speed per discharge hole of the spinneret, that is, the spinning speed. Therefore, it is preferable to determine the discharge amount and the spinning speed according to the desired average single fiber diameter.
 紡糸速度は、2,000m/分以上であることが好ましく、より好ましくは3,000m/分以上である。紡糸速度を2,000m/分以上とすることにより、高い生産性を有することになり、また繊維の配向結晶化が進み高い強度の長繊維を得ることができる。 The spinning speed is preferably 2,000 m / min or more, more preferably 3,000 m / min or more. By setting the spinning speed to 2,000 m / min or more, high productivity can be obtained, and the orientation and crystallization of the fibers can be advanced to obtain high-strength long fibers.
 このように牽引により延伸された長繊維糸条は、移動するネットに捕集されることでシート化された後に、熱接着する工程に供される。 The long fiber yarns stretched by traction in this way are collected by a moving net to form a sheet, and then subjected to a process of heat bonding.
 本発明のスパンボンド不織布は、表面(A)と表面(B)とが異なる単繊維直径のプロピレン系樹脂繊維からなる、すなわち表面(A)を構成する繊維からなる不織布層と、表面(B)を構成する繊維からなる不織布層が積層されたスパンボンド不織布である。表面(A)を構成する繊維からなる不織布層と、表面(B)を構成する繊維からなる不織布層を積層する方法としては、例えば、捕集ネット上にスパンボンド法により表面(A)を構成する繊維からなる不織布層の上に、スパンボンド法により表面(B)を構成する繊維からなる不織布層をインラインで連続的に捕集し、接着により積層一体化する方法や、表面(A)を構成する繊維からなる不織布層と、表面(B)を構成する繊維からなる不織布層を予め別々に得ておき、オフラインで両不織布層を重ね合わせ、接着により積層一体化する方法などを採用することができる。中でも生産性に優れているということから、捕集ネット上にスパンボンド法により表面(A)を構成する繊維からなる不織布層の上に、スパンボンド法により表面(B)を構成する繊維からなる不織布層をインラインで連続的に捕集し、接着により積層一体化する方法が好ましい。 The spunbonded nonwoven fabric of the present invention is made of a propylene-based resin fiber having a single fiber diameter different from that of the surface (A) and the surface (B), that is, a nonwoven fabric layer made of fibers constituting the surface (A) and the surface (B). It is a spunbonded nonwoven fabric in which a nonwoven fabric layer composed of fibers constituting the above is laminated. As a method of laminating the nonwoven fabric layer made of fibers constituting the surface (A) and the nonwoven fabric layer consisting of fibers constituting the surface (B), for example, the surface (A) is formed on a collection net by a spunbond method. A method of continuously collecting in-line a non-woven fabric layer made of fibers constituting the surface (B) on the non-woven fabric layer made of fibers and laminating and integrating the surface (A) by adhesion is used. A method of obtaining a non-woven fabric layer made of constituent fibers and a non-woven fabric layer made of fibers constituting the surface (B) separately in advance, superimposing both non-woven fabric layers offline, and laminating and integrating them by adhesion is adopted. Can be done. Among them, since it is excellent in productivity, it is composed of fibers constituting the surface (B) by the spunbonding method on a non-woven fabric layer composed of fibers constituting the surface (A) by the spunbonding method on the collection net. A method of continuously collecting the non-woven fabric layers in-line and laminating and integrating them by adhesion is preferable.
 本発明のスパンボンド不織布を熱接着により積層一体化する方法としては、上下一対のロール表面にそれぞれ彫刻(凹凸部)が施された熱エンボスロール、片方のロール表面がフラット(平滑)なロールと他方のロール表面に彫刻(凹凸部)が施されたロールとの組み合わせからなる熱エンボスロール、および上下一対のフラット(平滑)ロールの組み合わせからなる熱カレンダーロールなど、各種ロールにより熱接着する方法や、ホーンの超音波振動により熱溶着させる超音波接着などの熱圧着による方法を採用することができる。 As a method of laminating and integrating the spunbonded non-woven fabric of the present invention by thermal welding, a thermal embossed roll in which a pair of upper and lower roll surfaces are engraved (concavo-convex portions), and a roll in which one roll surface is flat (smooth) are used. A method of heat welding with various rolls, such as a thermal embossing roll consisting of a roll with engraving (unevenness) on the surface of the other roll, and a thermal calendar roll consisting of a pair of upper and lower flat (smooth) rolls. , A method by thermocompression bonding such as ultrasonic bonding in which heat welding is performed by ultrasonic vibration of the horn can be adopted.
 熱圧着により本発明のスパンボンド不織布を製造した場合には、複数の不織布層が十分に接着されることで、スパンボンド不織布の機械強度が増すため、好ましい。 When the spunbonded nonwoven fabric of the present invention is produced by thermocompression bonding, it is preferable because the mechanical strength of the spunbonded nonwoven fabric is increased by sufficiently adhering a plurality of nonwoven fabric layers.
 本発明のスパンボンド不織布を熱接着する方法として、熱風を吹き付ける手法である、いわゆるエアスルー法も挙げることができる。 As a method of heat-bonding the spunbonded nonwoven fabric of the present invention, a so-called air-through method, which is a method of blowing hot air, can also be mentioned.
 エアスルー法で本発明のスパンボンド不織布を製造した場合には、嵩高く、風合いに優れるため、好ましい。 When the spunbonded nonwoven fabric of the present invention is produced by the air-through method, it is preferable because it is bulky and has an excellent texture.
[規則91に基づく訂正 16.12.2021] 
 このようにして得られたスパンボンド不織布に対し、巻取り前に親水化剤を付与することが好ましい。スパンボンド不織布への親水化剤の付与方法としては、キスロールやスプレーによる塗布やディップコーティングなどが挙げられる。スパンボンド不織布への親水化剤の付与方法は、均一性や付着量制御の容易さからキスロールによる塗布が好ましい。
[Correction under Rule 91 16.12.2021]
It is preferable to add a hydrophilic agent to the spunbonded nonwoven fabric thus obtained before winding. Examples of the method for applying the hydrophilizing agent to the spunbonded non-woven fabric include application by kiss roll or spray, dip coating and the like. As a method for applying the hydrophilic agent to the spunbonded nonwoven fabric, it is preferable to apply it by kiss roll from the viewpoint of uniformity and ease of controlling the amount of adhesion.
 次に、実施例に基づき本発明を詳細に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。なお、各物性の測定において、特段の記載がないものは、前述の方法に基づいて測定を行ったものである。 Next, the present invention will be described in detail based on examples. However, the present invention is not limited to these examples. In addition, in the measurement of each physical property, the one without any special description is the one obtained by the measurement based on the above-mentioned method.
 (1)目付
 前述のとおり測定を行った。
(1) Metsuke The measurement was performed as described above.
 (2)平均単繊維直径(Da、Db)およびDb/Da
 表面(A)および表面(B)について、不織布表面からランダムに繊維サンプル採取し、繊維の横断面を株式会社日立ハイテクノロジーズ製の走査型電子顕微鏡「S-5500」で1本の繊維が観察できる倍率として画像を撮影した。その後、画像解析ソフトとして、三谷商事株式会社製「WinROOF2015」を用い、前述のとおり測定を行った。
(2) Average single fiber diameter (Da, Db) and Db / Da
For the surface (A) and the surface (B), fiber samples are randomly taken from the surface of the non-woven fabric, and one fiber can be observed with a scanning electron microscope "S-5500" manufactured by Hitachi High-Technologies Corporation in the cross section of the fiber. The image was taken as a magnification. Then, as the image analysis software, "WinROOF2015" manufactured by Mitani Corporation was used, and the measurement was performed as described above.
 (3)結晶融解熱量
 TA Instruments社製の示差走査熱量計「DSC Q2000」を用い、前述のとおり測定を行った。
(3) Crystal melting calorie The measurement was carried out as described above using a differential scanning calorimeter "DSC Q2000" manufactured by TA Instruments.
 (4)ローバル度
 株式会社日立ハイテク製の走査型電子顕微鏡「S-5500」を用い、前述のとおり測定を行った。
(4) Roval degree The measurement was carried out as described above using a scanning electron microscope "S-5500" manufactured by Hitachi High-Tech Co., Ltd.
 (5)エチレン単位の共重合率
 Bruker社製の13C-NMR「DRX-500」を用い、以下の条件にて、前述のとおり測定を行った。
・観測核:13C核
・観測周波数:125.8MHz
・パルス幅:5.0μs(45°pulse)
・パルス待ち時間:5.0秒
・積算回数:25,000回以上
・測定温度:135℃
・測定方法:single 13C pulse with inverse gated H decoupling
 (6)メソペンタッド分率
 Bruker社製の13C-NMR「DRX-500」を用い、以下の条件にて、前述のとおり測定を行った。
・観測核:13C核
・観測周波数:125.8MHz
・パルス幅:5.0μs(45°pulse)
・パルス待ち時間:5.0秒
・積算回数:25,000回以上
・測定温度:135℃
・測定方法:single 13C pulse with inverse gated H decoupling。
(5) Copolymerization rate in ethylene units Using 13 C-NMR "DRX-500" manufactured by Bruker, measurements were carried out under the following conditions as described above.
・ Observation nucleus: 13 C nucleus ・ Observation frequency: 125.8MHz
-Pulse width: 5.0 μs (45 ° pulse)
・ Pulse waiting time: 5.0 seconds ・ Number of integrations: 25,000 or more ・ Measurement temperature: 135 ° C
-Measurement method: single 13 C pulse with inverse gated 1 H decoupling
(6) Mesopentad fraction Using 13 C-NMR "DRX-500" manufactured by Bruker, the measurement was carried out under the following conditions as described above.
・ Observation nucleus: 13 C nucleus ・ Observation frequency: 125.8MHz
-Pulse width: 5.0 μs (45 ° pulse)
・ Pulse waiting time: 5.0 seconds ・ Number of integrations: 25,000 or more ・ Measurement temperature: 135 ° C
-Measuring method: single 13 C pulse with inverted gated 1 H decoupling.
 (7)スパンボンド不織布の表面(A)、表面(B)の水との接触角
 協和界面科学株式会社製の接触角計「DMo-501」を用い、前述のとおり測定を行った。
(7) Contact angle of the surface (A) and surface (B) of the spunbonded nonwoven fabric with water The measurement was carried out as described above using a contact angle meter "DMo-501" manufactured by Kyowa Interface Science Co., Ltd.
 (8)破断強力比(σmax/σmin)
 株式会社オリエンテック製の引張試験機「テンシロンUCT100」を用い、
JIS L 1913:2010「一般不織布試験方法」の「6.3 引張強さ及び伸び率(ISO法)」に基づき、以下の方法で測定し、破断強力比を算出した。
(8) Fracture strength ratio (σmax / σmin)
Using the tensile tester "Tensilon UCT100" manufactured by Orientec Co., Ltd.
Based on "6.3 Tensile strength and elongation (ISO method)" of JIS L 1913: 2010 "General non-woven fabric test method", the measurement was performed by the following method, and the breaking strength ratio was calculated.
 (8.1)積層不織布の任意の一方向を0°とし、縦方向が上記の方向と一致するよう縦300mm×横25mmの試験片を切り出し、場所を変更して試験片を3枚採取した。 (8.1) An arbitrary one direction of the laminated nonwoven fabric was set to 0 °, and a test piece having a length of 300 mm and a width of 25 mm was cut out so that the vertical direction coincided with the above direction, and three test pieces were collected at different locations. ..
 (8.2)試験片をつかみ間隔200mmで引張試験機にセットした。 (8.2) The test piece was set in a tensile tester with a grasping interval of 200 mm.
 (8.3)引張速度100m/分で引張試験を実施し、採取した3枚の試験片について破断時の強力〔N〕を求め、その算術平均値を破断強力σとした。 (8.3) A tensile test was carried out at a tensile speed of 100 m / min, the strength [N] at break was obtained for the three collected test pieces, and the arithmetic mean value was taken as the breaking strength σ.
[規則91に基づく訂正 16.12.2021] 
 (8.4)0°とした任意の一方向に対して積層不織布の面内で時計回りに22.5°回転させた方向を軸方向とし、縦方向が上記の軸方向と一致するように縦300mm×横25mmの試験片を切り出し、場所を変更して試験片を3枚採取する。その後、上記(8.2)~(8.3)の操作を行い、破断強力σを算出した。
[Correction under Rule 91 16.12.2021]
(8.4) The axial direction is the direction rotated clockwise by 22.5 ° in the plane of the laminated non-woven fabric with respect to any one direction set to 0 °, so that the vertical direction coincides with the above axial direction. Cut out a test piece having a length of 300 mm and a width of 25 mm, change the location, and collect three test pieces. After that, the above operations (8.2) to (8.3) were performed to calculate the breaking strength σ.
 (8.5)積層不織布の面内での回転角度が180°になるまで上記(8.4)の操作を繰り返し行い、それぞれの角度における破断強力σを算出した。 (8.5) The operation of (8.4) above was repeated until the in-plane rotation angle of the laminated nonwoven fabric became 180 °, and the breaking strength σ at each angle was calculated.
 (8.6)上記の方法で算出された破断強力σの内、最低破断強力σminに対する最高破断強力σmaxの比(σmax/σmin)を算出し、積層不織布の破断強力比とした。 (8.6) Of the breaking strength σ calculated by the above method, the ratio of the highest breaking strength σmax to the lowest breaking strength σmin (σmax / σmin) was calculated and used as the breaking strength ratio of the laminated nonwoven fabric.
[規則91に基づく訂正 16.12.2021] 
 (9)吸水速度
 スパンボンド不織布の表面(B)に対し、JIS L 1907:2010「繊維製品の吸水性試験方法」の「7.1.1 滴下法」に基づき、吸水速度を測定した。積層不織布に水滴を1滴滴下し、吸収されて表面の鏡面反射が消失するまでの時間を測定し、これを異なる10箇所で測定した値の単純平均値を算出し、単位を秒として、小数点第1位を四捨五入した値を、吸水速度とした。なお、測定は60秒間実施し、60秒経ってもスパンボンド不織布の表面(B)の鏡面反射が消失しない場合は、一律「60秒以上(>60)」とした。
[Correction under Rule 91 16.12.2021]
(9) Water absorption rate The water absorption rate was measured on the surface (B) of the spunbonded nonwoven fabric based on "7.1.1 Dropping method" of JIS L 1907: 2010 "Water absorption test method for textile products". Drop one drop of water on the laminated non-woven fabric, measure the time until it is absorbed and the mirror reflection on the surface disappears, calculate the simple average value of the values measured at 10 different points, and use the second as the unit. The value rounded off to the first place was taken as the water absorption rate. The measurement was carried out for 60 seconds, and if the specular reflection on the surface (B) of the spunbonded nonwoven fabric did not disappear even after 60 seconds, the measurement was uniformly set to "60 seconds or more (>60)".
 (10)吸水速乾性
 スパンボンド不織布の表面(B)を上にして水滴を1滴滴下し、1分間経過した後の表面の触感について、健康な一般成人(男女15名ずつ計30名)が手で触り、次の3段階で評価した。各不織布について評価結果の平均点を算出し、そのスパンボンド不織布の吸水速乾性(級)とした。
(10) Water-absorbing and quick-drying A healthy general adult (15 males and 15 females, 30 in total) about the tactile sensation of the surface after 1 minute has passed by dropping 1 drop of water with the surface (B) of the spunbonded non-woven fabric facing up. It was touched by hand and evaluated in the following three stages. The average score of the evaluation results was calculated for each non-woven fabric, and the water absorption and quick-drying property (class) of the spunbonded non-woven fabric was used.
 5:表面がサラサラしており、水分を感じない
 3:表面に水分はないが、しっとりしている
 1:表面に水分があり、しっとりしている。
5: The surface is smooth and does not feel moisture 3: There is no moisture on the surface, but it is moist 1: The surface is moist and moist.
 (11)柔軟性
 スパンボンド不織布を健康な一般成人(男女15名ずつ計30名)が手で触り、表面の触感を次の3段階で評価した。各スパンボンド不織布について評価結果の平均点を算出し、その不織布の柔軟性(級)とした。
(11) Flexibility The spunbonded non-woven fabric was touched by healthy general adults (15 males and 15 females, 30 in total), and the tactile sensation on the surface was evaluated in the following three stages. The average score of the evaluation results was calculated for each spunbonded nonwoven fabric and used as the flexibility (grade) of the nonwoven fabric.
 5:非常に柔軟に感じる(表面を撫でたときの触り心地がスムーズで、かつ不織布を曲げた際に柔らかい)
 3:やや柔軟に感じる
 1:柔軟ではない(表面を撫でたときにひっかかりを感じ、不織布を曲げた際に硬く感じる)。
5: Feels very flexible (smooth to the touch when stroking the surface and soft when the non-woven fabric is bent)
3: Feels a little flexible 1: Not flexible (feels stuck when stroking the surface and feels hard when the non-woven fabric is bent).
 [実施例1]
 (表面(A)を構成する繊維ウェブ)
 エチレン単位の共重合率が3モル%、メソペンタッド分率が95%のプロピレン系樹脂を押出機で溶融し、孔径が0.4mmφの丸孔を有した矩形口金から、単孔吐出量が0.3g/分で紡出した。このときの紡糸温度は230℃とした。紡出した糸条を、冷風にて冷却固化した後、矩形エジェクターにおいてエジェクターでの圧力を0.08MPaとした圧縮エアによって、紡糸速度3700m/分にて牽引・延伸し、移動するネット上に捕集して繊維ウェブを得た。得られた表面(A)を構成するプロピレン系樹脂繊維の平均単繊維直径Daは10.6μmであった。
[Example 1]
(Fiber web constituting surface (A))
A propylene resin having a copolymerization rate of 3 mol% and a mesopentad fraction of 95% in ethylene units is melted by an extruder, and a single hole discharge amount is 0. It was spun at 3 g / min. The spinning temperature at this time was 230 ° C. After the spun yarn is cooled and solidified by cold air, it is pulled and stretched at a spinning speed of 3700 m / min by compressed air with a pressure at the ejector of 0.08 MPa in a rectangular ejector, and is captured on a moving net. Collected to get a textile web. The average single fiber diameter Da of the propylene-based resin fibers constituting the obtained surface (A) was 10.6 μm.
 (表面(B)を構成する繊維ウェブ)
 エチレン単位の共重合率が3モル%、メソペンタッド分率が95%のプロピレン系樹脂を押出機で溶融し、孔径が0.4mmφの丸孔を有した矩形口金から、単孔吐出量が0.9g/分で紡出した。このときの紡糸温度は230℃とした。紡出した糸条を、冷却固化した後、矩形エジェクターにおいてエジェクターでの圧力を0.10MPaとした圧縮エアによって、紡糸速度3700m/分にて牽引・延伸し、移動するネット上で表面(A)を構成する繊維ウェブに捕集して繊維ウェブを得た。得られた表面(B)を構成するプロピレン系樹脂繊維の平均単繊維直径Dbは18.4μmであった。
(Fiber web constituting the surface (B))
A propylene resin having a copolymerization rate of 3 mol% and a mesopentad fraction of 95% in ethylene units is melted by an extruder, and a single hole discharge amount is 0. It was spun at 9 g / min. The spinning temperature at this time was 230 ° C. After the spun yarn is cooled and solidified, it is pulled and stretched at a spinning speed of 3700 m / min by compressed air having a pressure at the ejector of 0.10 MPa in a rectangular ejector, and the surface (A) is on a moving net. The fiber web was collected and collected on the fiber web that constitutes the fiber web. The average single fiber diameter Db of the propylene-based resin fibers constituting the obtained surface (B) was 18.4 μm.
 (スパンボンド不織布)
 このようにして得た繊維ウェブを、上ロールに正円形の凸部が形成する直線のパターンが直交する格子柄の、いわゆるキルティングパターンに配置された金属製エンボスロールを用い、下ロールに金属製フラットロールで構成される上下一対の加熱機構を有するエンボスロールを用いて、線圧が300N/cmで、熱融着温度が125℃の温度で熱融着し、目付が40g/mのスパンボンド不織布を得た。その後、親水化剤として非イオン性界面活性剤をスパンボンド不織布重量に対して有効成分が0.5wt%となるよう、キスロールを用いて不織布に塗布した。
(Spunbond non-woven fabric)
The fiber web thus obtained is made of metal on the lower roll by using a metal embossed roll arranged in a so-called quilting pattern, which is a lattice pattern in which a straight line pattern formed by a perfect circular convex portion is orthogonal to the upper roll. Using an embossed roll having a pair of upper and lower heating mechanisms composed of flat rolls, heat fusion is performed at a linear pressure of 300 N / cm and a heat fusion temperature of 125 ° C. A bonded non-woven material was obtained. Then, a nonionic surfactant as a hydrophilizing agent was applied to the nonwoven fabric using kissroll so that the active ingredient was 0.5 wt% with respect to the weight of the spunbonded nonwoven fabric.
 得られたスパンボンド不織布の評価結果を表1に示す。 Table 1 shows the evaluation results of the obtained spunbonded non-woven fabric.
[規則91に基づく訂正 16.12.2021] 
Figure WO-DOC-TABLE-1
[Correction under Rule 91 16.12.2021]
Figure WO-DOC-TABLE-1
 [実施例2]
 表面(A)および表面(B)において、エチレン単位の共重合率が5モル%、メソペンタッド分率が95%のプロピレン系樹脂を用いた以外は、実施例1と同様の方法でスパンボンド不織布を得た。得られたスパンボンド不織布の評価結果を表1に併せて示す。
[Example 2]
A spunbonded nonwoven fabric was prepared in the same manner as in Example 1 except that a propylene resin having a copolymerization rate of 5 mol% and a mesopentad fraction of 95% was used on the surface (A) and the surface (B). Obtained. The evaluation results of the obtained spunbonded nonwoven fabric are also shown in Table 1.
 [実施例3]
 表面(A)および表面(B)において、エチレン単位の共重合率が0モル%、メソペンタッド分率が88%のプロピレン系樹脂を用いた以外は、実施例1と同様の方法でスパンボンド不織布を得た。得られたスパンボンド不織布の評価結果を表1に併せて示す。
[Example 3]
A spunbonded nonwoven fabric was prepared in the same manner as in Example 1 except that a propylene resin having a copolymerization rate of 0 mol% and a mesopentad fraction of 88% was used on the surface (A) and the surface (B). Obtained. The evaluation results of the obtained spunbonded nonwoven fabric are also shown in Table 1.
 [実施例4]
 表面(A)および表面(B)において、エチレン単位の共重合率が3モル%、メソペンタッド分率が88%のプロピレン系樹脂を用いた以外は、実施例1と同様の方法でスパンボンド不織布を得た。得られたスパンボンド不織布の評価結果を表1に併せて示す。
[Example 4]
A spunbonded nonwoven fabric was prepared in the same manner as in Example 1 except that a propylene-based resin having an ethylene unit copolymerization rate of 3 mol% and a mesopentad fraction of 88% was used on the surface (A) and the surface (B). Obtained. The evaluation results of the obtained spunbonded nonwoven fabric are also shown in Table 1.
 [比較例1]
 表面(A)および表面(B)において、エチレン単位の共重合率が0モル%、メソペンタッド分率が95%のプロピレン系樹脂を用いた以外は、実施例1と同様の方法でスパンボンド不織布を得た。得られたスパンボンド不織布の評価結果を表1に併せて示す。
[Comparative Example 1]
A spunbonded nonwoven fabric was prepared in the same manner as in Example 1 except that a propylene resin having a copolymerization rate of 0 mol% and a mesopentad fraction of 95% was used on the surface (A) and the surface (B). Obtained. The evaluation results of the obtained spunbonded nonwoven fabric are also shown in Table 1.
 [実施例5]
 表面(A)および表面(B)において、プロピレン系樹脂に脂肪酸アミド化合物としてエチレンビスステアリン酸アミドを1.2wt%添加した以外は、実施例1と同様の方法でスパンボンド不織布を得た。得られたスパンボンド不織布の評価結果を表2に示す。
[Example 5]
A spunbonded non-woven fabric was obtained in the same manner as in Example 1 except that 1.2 wt% of ethylene bisstearic acid amide was added as a fatty acid amide compound to the propylene resin on the surface (A) and the surface (B). Table 2 shows the evaluation results of the obtained spunbonded nonwoven fabric.
[規則91に基づく訂正 16.12.2021] 
Figure WO-DOC-TABLE-2
[Correction under Rule 91 16.12.2021]
Figure WO-DOC-TABLE-2
 [実施例6]
 表面(A)において、繊維ウェブ製造時にY孔を有した矩形口金を用い、繊維の横断面を三角断面とした以外は、実施例1と同様の方法でスパンボンド不織布を得た。得られたスパンボンド不織布の評価結果を表2に併せて示す。
[Example 6]
On the surface (A), a spunbonded nonwoven fabric was obtained by the same method as in Example 1 except that a rectangular base having Y holes was used at the time of producing the fiber web and the cross section of the fiber was a triangular cross section. The evaluation results of the obtained spunbonded nonwoven fabric are also shown in Table 2.
 [比較例2]
 表面(B)において、単孔吐出量を0.3g/分、エジェクターでの圧力を0.08MPaとした圧縮エアによって、紡糸速度3700m/分にて牽引・延伸した以外は、実施例1と同様の方法でスパンボンド不織布を得た。得られたスパンボンド不織布の評価結果を表2に併せて示す。
[Comparative Example 2]
Same as Example 1 except that the surface (B) was towed and stretched at a spinning speed of 3700 m / min by compressed air having a single-hole discharge rate of 0.3 g / min and an ejector pressure of 0.08 MPa. A spunbonded nonwoven fabric was obtained by the above method. The evaluation results of the obtained spunbonded nonwoven fabric are also shown in Table 2.
 [実施例7]
 スパンボンド不織布において、親水化剤として非イオン性界面活性剤をスパンボンド不織布重量に対して有効成分が0.1wt%となるよう、キスロールを用いて不織布に塗布した以外は、実施例1と同様の方法でスパンボンド不織布を得た。得られたスパンボンド不織布の評価結果を表2に併せて示す。
[Example 7]
In the spunbonded nonwoven fabric, the same as in Example 1 except that a nonionic surfactant as a hydrophilic agent was applied to the nonwoven fabric using kissroll so that the active ingredient was 0.1 wt% with respect to the weight of the spunbonded nonwoven fabric. A spunbonded nonwoven fabric was obtained by the above method. The evaluation results of the obtained spunbonded nonwoven fabric are also shown in Table 2.
 実施例1~7で得られたスパンボンド不織布は、Db/Daが大きく、かつ結晶融解熱量が適度に小さいことから、表面(B)における優れた吸水速乾性と柔軟性を有していることが分かる。 Since the spunbonded nonwoven fabrics obtained in Examples 1 to 7 have a large Db / Da and a moderately small amount of heat for crystal melting, they have excellent water absorption and quick-drying properties and flexibility on the surface (B). I understand.
 一方、比較例1で得られたスパンボンド不織布は結晶融解熱量が大きいため柔軟性に劣り、比較例2で得られたスパンボンド不織布はDb/Daが小さいため不織布内で水分が表面(A)に移行されず、表面(B)における吸水速乾性に劣ることが分かる。 On the other hand, the spunbonded nonwoven fabric obtained in Comparative Example 1 is inferior in flexibility due to the large amount of heat of crystal melting, and the spunbonded nonwoven fabric obtained in Comparative Example 2 has a small Db / Da, so that moisture is present on the surface (A). It can be seen that the surface (B) is inferior in water absorption and quick-drying property without being transferred to.
:断面の輪郭
11:繊維断面において断面の輪郭(C)上のある2点(S11、S12)を通る直線
11、S12:繊維断面において断面の輪郭(C)上の点
:断面の輪郭
21:繊維断面において断面の輪郭(C)上のある2点(S21、S22)を通る直線
22:直線(L21)に平行で、かつ、輪郭(C)のうち点S21と点22の間において交点(V21)が1点しかない線
21、S22、V21:繊維断面において断面の輪郭(C)上の点
a:点S21、S22間の距離
b:直線(L21)と直線(L22)との間の距離
C 1 : Cross-section contour L 11 : Straight lines passing through two points (S 11 , S 12 ) on the cross-section contour (C 1 ) in the fiber cross section S 11 and S 12 : Cross-section contour in the fiber cross section (C 1 ) Upper point C 2 : Cross-section contour L 21 : Straight line passing through two points (S 21 , S 22 ) on the cross-sectional contour (C 2 ) in the fiber cross section L 22 : Parallel to the straight line (L 21 ) and , Lines S 21 , S 22 , V 21 with only one intersection (V 21 ) between points S 21 and 22 of the contour (C 2 ): points on the contour (C 2 ) of the cross section in the fiber cross section. a: Distance between points S 21 and S 22 b: Distance between a straight line (L 21 ) and a straight line (L 22 )

Claims (8)

  1.  一方の表面(A)がプロピレン系樹脂からなる繊維(Fa)で構成されてなり、他方の表面(B)がプロピレン系樹脂からなる繊維(Fb)で構成されてなるスパンボンド不織布であって、示差走査熱量測定における結晶融解熱量が30J/g以上98J/g以下であり、以下の式(1)を満たすスパンボンド不織布。
       Db/Da ≧ 1.1   ・・・(1)
     ここで、Daは、前記繊維(Fa)の平均単繊維直径(μm)であり、Dbは、前記繊維(Fb)の平均単繊維直径(μm)である。
    A spunbonded nonwoven fabric in which one surface (A) is made of fibers (Fa) made of propylene resin and the other surface (B) is made of fibers (Fb) made of propylene resin. A spunbonded nonwoven fabric having a crystal melting heat of 30 J / g or more and 98 J / g or less in the differential scanning calorimetry and satisfying the following formula (1).
    Db / Da ≧ 1.1 ・ ・ ・ (1)
    Here, Da is the average single fiber diameter (μm) of the fiber (Fa), and Db is the average single fiber diameter (μm) of the fiber (Fb).
  2.  前記プロピレン系樹脂の少なくとも一部が、エチレン単位が2モル%以上30モル%以下共重合されたプロピレン系樹脂である請求項1に記載のスパンボンド不織布。 The spunbonded nonwoven fabric according to claim 1, wherein at least a part of the propylene-based resin is a propylene-based resin copolymerized with ethylene units of 2 mol% or more and 30 mol% or less.
  3.  前記プロピレン系樹脂の少なくとも一部が、メソペンタッド分率が50%以上92%以下のプロピレン系樹脂である請求項1または2に記載のスパンボンド不織布。 The spunbonded nonwoven fabric according to claim 1 or 2, wherein at least a part of the propylene-based resin is a propylene-based resin having a mesopentad fraction of 50% or more and 92% or less.
  4.  前記プロピレン系樹脂の少なくとも一部が、脂肪酸アミド化合物が0.5質量%以上含有されたプロピレン系樹脂である請求項1~3のいずれかに記載のスパンボンド不織布。 The spunbonded nonwoven fabric according to any one of claims 1 to 3, wherein at least a part of the propylene-based resin is a propylene-based resin containing 0.5% by mass or more of a fatty acid amide compound.
  5.  前記表面(A)の水との接触角と前記表面(B)の水との接触角とがともに30°以下である請求項1~4のいずれかに記載のスパンボンド不織布。 The spunbonded nonwoven fabric according to any one of claims 1 to 4, wherein both the contact angle of the surface (A) with water and the contact angle of the surface (B) with water are 30 ° or less.
  6.  前記繊維(Fa)および/または繊維(Fb)の少なくとも一部が、繊維断面において複数の凸状部を有し、かつ前記繊維断面のローバル度が5.0%以上の異形断面繊維である請求項1~5のいずれかに記載のスパンボンド不織布。 Claimed that at least a part of the fiber (Fa) and / or the fiber (Fb) is a deformed cross-section fiber having a plurality of convex portions in the fiber cross section and having a roval degree of the fiber cross section of 5.0% or more. Item 2. The spunbonded nonwoven fabric according to any one of Items 1 to 5.
  7.  請求項1~6のいずれかに記載のスパンボンド不織布を少なくとも一部に具備してなる衛生材料。 A sanitary material comprising at least a part of the spunbonded nonwoven fabric according to any one of claims 1 to 6.
  8.  前記表面(B)が着用者の肌側に向けて配されてなる請求項7に記載の衛生材料。 The sanitary material according to claim 7, wherein the surface (B) is arranged toward the wearer's skin side.
PCT/JP2021/040939 2020-11-27 2021-11-08 Spunbond nonwoven fabric, and hygienic material equipped therewith WO2022113711A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021568257A JPWO2022113711A1 (en) 2020-11-27 2021-11-08
KR1020237017052A KR20230107820A (en) 2020-11-27 2021-11-08 Spunbond nonwoven fabric and sanitary material comprising the same
CN202180077481.4A CN116546949A (en) 2020-11-27 2021-11-08 Spun-bonded nonwoven fabric and sanitary material comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-196582 2020-11-27
JP2020196582 2020-11-27

Publications (1)

Publication Number Publication Date
WO2022113711A1 true WO2022113711A1 (en) 2022-06-02

Family

ID=81755805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040939 WO2022113711A1 (en) 2020-11-27 2021-11-08 Spunbond nonwoven fabric, and hygienic material equipped therewith

Country Status (5)

Country Link
JP (1) JPWO2022113711A1 (en)
KR (1) KR20230107820A (en)
CN (1) CN116546949A (en)
TW (1) TW202231954A (en)
WO (1) WO2022113711A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04100963A (en) * 1990-08-18 1992-04-02 Oji Paper Co Ltd Nonwoven fabric made of crimping continuous filament and its production
JPH04119162A (en) * 1990-09-04 1992-04-20 Oji Paper Co Ltd Production of nonwoven fabric made of continuous fiber
JPH0742057A (en) * 1993-07-30 1995-02-10 New Oji Paper Co Ltd Nonwoven fabric to be used as surface material of sanitary material
JPH1096157A (en) * 1996-09-24 1998-04-14 Mitsui Petrochem Ind Ltd Flexible nonwoven fabric
WO2011030893A1 (en) * 2009-09-14 2011-03-17 出光興産株式会社 Spun-bonded nonwoven fabric and fiber product
JP2011058157A (en) * 2009-09-11 2011-03-24 Toray Saehan Inc Spun-bonded nonwoven fabric excellent in softness and method for producing the same
JP2019049089A (en) * 2016-08-23 2019-03-28 王子ホールディングス株式会社 Spun-bonded nonwoven fabric, sheet, and absorbent article
JP2019196576A (en) * 2018-05-07 2019-11-14 東レ株式会社 Spun-bonded nonwoven fabric
WO2021153312A1 (en) * 2020-01-29 2021-08-05 東レ株式会社 Layered nonwoven fabric and sanitary material
WO2021172051A1 (en) * 2020-02-28 2021-09-02 東レ株式会社 Layered nonwoven fabric and sanitary material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101490332B1 (en) 2012-10-22 2015-02-05 주식회사 디엠비테크놀로지 Driving Method and Apparatus for Direct AC LED

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04100963A (en) * 1990-08-18 1992-04-02 Oji Paper Co Ltd Nonwoven fabric made of crimping continuous filament and its production
JPH04119162A (en) * 1990-09-04 1992-04-20 Oji Paper Co Ltd Production of nonwoven fabric made of continuous fiber
JPH0742057A (en) * 1993-07-30 1995-02-10 New Oji Paper Co Ltd Nonwoven fabric to be used as surface material of sanitary material
JPH1096157A (en) * 1996-09-24 1998-04-14 Mitsui Petrochem Ind Ltd Flexible nonwoven fabric
JP2011058157A (en) * 2009-09-11 2011-03-24 Toray Saehan Inc Spun-bonded nonwoven fabric excellent in softness and method for producing the same
WO2011030893A1 (en) * 2009-09-14 2011-03-17 出光興産株式会社 Spun-bonded nonwoven fabric and fiber product
JP2019049089A (en) * 2016-08-23 2019-03-28 王子ホールディングス株式会社 Spun-bonded nonwoven fabric, sheet, and absorbent article
JP2019196576A (en) * 2018-05-07 2019-11-14 東レ株式会社 Spun-bonded nonwoven fabric
WO2021153312A1 (en) * 2020-01-29 2021-08-05 東レ株式会社 Layered nonwoven fabric and sanitary material
WO2021172051A1 (en) * 2020-02-28 2021-09-02 東レ株式会社 Layered nonwoven fabric and sanitary material

Also Published As

Publication number Publication date
JPWO2022113711A1 (en) 2022-06-02
TW202231954A (en) 2022-08-16
KR20230107820A (en) 2023-07-18
CN116546949A (en) 2023-08-04

Similar Documents

Publication Publication Date Title
JP4599366B2 (en) A flexible and extensible nonwoven web containing fibers with high melt flow rate
JP2018145544A (en) Bulky combined filament nonwoven fabric excellent in barrier property
US20120164908A1 (en) Mixed fiber spunbonded nonwoven fabric, and method for production and use thereof
JP6714982B2 (en) Bulky composite long fiber non-woven fabric
WO2002061192A1 (en) Non-woven fabrics of wind-shrink fiber and laminates thereof
EP3575467B1 (en) Spun-bonded nonwoven fabric
JP2020151605A (en) Absorber and sanitation product
JP4605653B2 (en) Surface material and absorbent article using the same
WO2021256146A1 (en) Spun-bonded nonwoven fabric and sanitary material
JPH1136168A (en) Nonwoven fabric for sanitary material and medical use
WO2021010357A1 (en) Spun-bonded nonwoven fabric and laminated nonwoven fabric
JP2008133572A (en) Crimped conjugate fiber and method for producing the same
WO2022113711A1 (en) Spunbond nonwoven fabric, and hygienic material equipped therewith
CN115151689B (en) Laminated nonwoven fabric and sanitary material
JP7124972B2 (en) Laminated nonwovens and sanitary materials
JP5276305B2 (en) Mixed fiber non-woven fabric
JP7168125B1 (en) Spunbond nonwovens and laminated nonwovens, their production methods and sanitary materials
CN115003872B (en) Laminated nonwoven fabric and sanitary material
WO2021039553A1 (en) Multilayer nonwoven fabric
JPH11239587A (en) Top sheet material for absorptive object
JP2006043998A (en) Nonwoven fabric
JP7226659B1 (en) Spunbond nonwovens and sanitary materials
JP2023132020A (en) Laminated nonwoven fabric and absorbent article
WO2023042540A1 (en) Spunbonded nonwoven fabric and sanitary material
JP2024065356A (en) Nonwoven fabric, laminated nonwoven fabric, sanitary material, and method for manufacturing nonwoven fabric

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021568257

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897686

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180077481.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237017052

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897686

Country of ref document: EP

Kind code of ref document: A1